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Abstract

The promising performance of univariate peak over threshold models in risk management
applications has been well documented in the literature, for example by Bilandi and Kudła
(2016) and Marinelli et al. (2007). However, the same cannot be said for multivariate peak over
threshold models. In order to contribute to this gap in the literature, this study explores the
usage of the multivariate Generalized Pareto Distribution (GPD) model proposed in Kiriliouk
et al. (2019) and the Hill method applied to a polar transformation of the multivariate data, as
proposed in Resnick (2007), in the estimation of Value-at-Risk (VaR) and Expected Shortfall
(ES). These risk measures are estimated for the daily losses of an equally weighted portfolio
consisting of Amazon, Microsoft, J.P. Morgan and Johnson & Johnson, over the 2000-2020
period. The VaR estimates are evaluated using the Duration test for independence proposed
in Christoffersen and Pelletier (2004), as well as the Dynamic Quantile test proposed in Engle
and Manganelli (2004). The ES estimates are evaluated using the test proposed in McNeil and
Frey (2000). The conclusions show that both methods seem to significantly overestimate VaR
and ES. Hence, the application of these methods should be explored further, especially in
combination with GARCH models which can account for conditional heteroskedasticity.

The views stated in this thesis are those of the author and may not necessarily reflect those of the supervisor, second
assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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Introduction

1 Introduction

The fact that returns of financial assets exhibit heavy-tails is a well established stylized-fact

that can be traced to Mandelbrot (1963). Heavy-tails refers to the fact that the statistical prop-

erties of returns can be thought of as being driven by large periodic shocks. This is opposite

to conventional statistics which is focused on processes driven by averaging effects. As such,

heavy-tailed distributions possess their own field of study, Extreme Value Theory (EVT), which

offers an extensive literature documenting the properties and estimation methods available for

such processes. Nowadays, EVT plays an important role in the field of portfolio risk management,

which is focused on finding appropriate criteria to evaluate and handle the risks stemming from

portfolios of financial assets. Its importance can be attributed to the fact that risk can be under-

stood as the portfolios’ exposure to the threat of large losses, and in evaluating large values one

falls in the realm of EVT. However, this perception of risk and the application of EVT to portfolio

risk management has only recently become applied in practice, as noted in Embrechts et al.

(1999b). In the beginnings of the portfolio management field, which can be traced to Markowitz

(1952), variance was initially introduced as the primary measure of risk. However, since then,

many like Price et al. (1982) have uncovered flaws behind the usage of variance as a risk measure.

The most trivial flaw is that variance considers not only losses, but also gains as sources of risk,

which does not align with current definitions of risk.

Following the view that risk is only related to the downside potential of the portfolio, a plethora

of risk measures have been developed to gauge the level of risk in a portfolio. Amongst the most

popular ones lies Value-at-Risk (VaR), whose development is widely credited to Till Guldimann

during his time at J.P. Morgan in the late 1980’s. This measure is essentially a quantile of the

distribution of portfolio losses, corresponding to a high level of confidence e.g. 0.95 or 0.99, as

denoted in (9). Even though it provides a perception of the maximum loss that could be attained

at a given level of confidence, VaR does not provide any information regarding how much a

portfolio manager can expect to lose if VaR is exceeded. Expected Shortfall (ES) was proposed

by Artzner et al. (1999) as a solution to this problem. ES is an estimate of the loss that can be

expected given that VaR has been exceeded, as denoted in (10). It becomes apparent from both of

these definitions that the crucial step in obtaining good VaR and ES estimates is to obtain a good

estimate for the distribution of portfolio losses. In particular, as our interest lies in high quantiles

of the distribution, it is crucial to have a good understanding of the tail of the distribution.

Given that there exist numerous techniques in EVT for estimating the tail of a distribution, an

exploratory study comparing the relative performance of various methods can help practitioners

looking to navigate the vast literature on this topic. This study seeks to build upon the work done

by Bilandi and Kudła (2016), Harmantzis et al. (2006) and Marinelli et al. (2007) in evaluating the
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Theoretical Background

performance of univariate EVT methods for the estimation of financial risk measures, by carrying

out a similar analysis on a multivariate level. In particular, this study will explore the performance

of the Hill method applied on a polar transformation of multivariate data, as proposed in Resnick

(2007), against the novel multivariate Generalized Pareto Distribution (GPD) estimation method

proposed in Kiriliouk et al. (2019). Even though both methods fall within the semi-parametric

Peak-over-Threshold class of models, they differ in their underlying assumptions as will be shown

in section 2. Hence, it becomes interesting to evaluate if these differences result in significantly

different VaR and ES estimates, and the effects that such differences may have for portfolio

managers in practice.

The remainder of this study is structured as follows. In section 2, a theoretical background

is provided to introduce the reader to the concept of Peak-over-Threshold estimation and the

theory underpinning the two semi-parametric methods to be compared. Section 3 presents the

data to be used and explores the properties of their tails. Section 4 provides an outline of the

methods used to carry out the study and the results are summarized in Section 5. Lastly, Section

6 contains the conclusions of the study.

2 Theoretical Background

2.1 Extreme Value Theory Models

Extreme Value Theory (EVT) is concerned with understanding the behaviour of maxima, in

the same way that conventional statistics is focused on the study of averages and moments. One

could argue that EVT starts where conventional statistics stops. This is exemplified by the fact

that one of the most general classes of distributions studied in EVT, i.e. heavy-tailed distributions,

do not exhibit finite moment generating functions. Formally, Rolski et al. (2009) state that a

distribution F (x) = P(X < x) exhibits heavy-tails if its moment generating function MX (t) is

infinite for all t > 0. In particular, this implies that its tails (only the right tail considered in (1))

decay slower than that of any exponential distribution, as:

MX (t ) =
∫ ∞

−∞
e t xdF (x) =∞ =⇒ lim

x→∞
1−F (x)

e−t x
=∞ , ∀t (1)

There exist two major strands of models in EVT used to study the tail behaviour of distribu-

tions: Block Maxima (BM) and Peak Over Threshold (POT). BM involes splitting the data into n

subsamples, finding the maximum in each sample i.e. M1, . . . , Mn , and subsequently modelling

the behaviour of these maxima through a Generalized Extreme Value Distribution (GEV). The

properties of this method are derived from the theorems outlined in Fisher and Tippett (1928)
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and Gnedenko (1943), which are considered the fundamental building blocks of EVT. In par-

ticular, they show that the distribution of any properly normalized collection of maxima, such

as that obtained through the BM approach, will converge to one of three distributions. These

distributions, which are mentioned in decreasing order of tail mass as shown in Figure 1, are the

Fréchet, Gumbel and Weibull distributions.

POT on the other hand utilizes the entire sample without subsampling, and is based on the

premise that observations exceeding some sufficiently large threshold µ can be considered to be

sufficiently tail. Sufficiently close is more formally referred to as the intermediate region close

to the tail, and it corresponds to the collection of the largest order statistics in a sample. Note

that the standing assumption is that one is never able to observe tail observations, as noted in

Resnick (2007). The observations exceeding µ are referred to as exceedances, and the difference

between an exceedance and µ is referred to as an excess. The behavior of these excesses can then

modelled by a Generalized Pareto Distribution (GPD) as shown by the Pickands III et al. (1975)

and Balkema and De Haan (1974). Similarly to GEV, GPD is able to capture all three types of tails.

As a matter of fact, these distributions are asymptotically consistent as shown in De Haan and

Ferreira (2007). Note that the type of tail is given by the shape parameter ξ for both the GEV and

the GPD. In particular, ξ> 0 leads to a Fréchet distribution, ξ< 0 to a Weibull distribution and

ξ= 0 to a Gumbel distribution. Nonetheless, this study only considers POT models, as they have

been shown to outperform BM models in studies such as Marinelli et al. (2007).

Figure 1: Extreme value densities with equal location and scale.

2.2 Maximum Domain of Attraction

As noted in the Fisher and Tippett (1928) and Gnedenko (1943) theorems, all tails can be shown

to be of the extreme value distributions, that is Fréchet, Gumbel or Weibull. This concept is

made rigorous through the definition of the maximum domain of attraction (MDA). According

to De Haan and Ferreira (2007), a random variable X ∈ R : X ∼ F (x) is said to be in the MDA
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of a multivariate non-degenerate1 extreme value distribution G(x), i.e. F ∈ D(G), if it satisfies

Von Mises (1936) conditions. That is, if there exist sequences an > 0 and bn ∈R such that for n

i.i.d. copies of X , i.e. X1, . . . , Xn , it holds that:

P

(
max(X1, . . . , Xn)−bn

an
≤ x

)
→G(x) (2)

Intuitively, this implies that as n →∞ the distribution of appropriately scaled sample maxima

converges to one of the three above-mentioned extreme value distribution.

2.3 Fat-tailed distributions

The notion of fat-tailed distributions is formalized through the concept of regular variation.

According to Danielsson (2011), a random variable X ∼ F (x) is said to be regularly varying at ∞
with tail index α if:

lim
t→∞

1−F (t x)

1−F (t )
= lim

t→∞
F̄ (t x)

F̄ (t )
= x−α, ∀x > 0, α> 0 (3)

where F̄ (x) = 1−F (x). This is denoted by Resnick (2007) as F (x) ∈ RVα. If α = 0 the function

is called slowly varying and denoted L(x). Note that if F (x) ∈ RVα then L(x) = F (x)/x−α, which

implies that F (x) = x−αL(x) for any regulary α-varying function. This representation is more

commonly used in the literature. As shown in De Haan and Ferreira (2007), F (x) ∈ RVα iff

F (x) ∈D(Gα) where G denotes an extreme value distribution with α= 1/ξ> 0. This implies that

regular variation is equivalent to being in the MDA of a Fréchet distribution.

2.4 Multivariate Generalized Pareto Distribution

In order to make the step from univariate to multivariate POT models, consider X ∈ Rd : X =
(X (1), . . . , X (d))′. Then, according to Rootzén et al. (2018a) if X is in the MDA of a nondegenerate

multivariate max-stable2 distribution with normalizing sequences an ∈ (0,∞)d and bn ∈ Rd it

follows that:

max

{
X−bn

an
,η

}∣∣∣∣X 6≤ bn
d−→ Y as n →∞ (4)

where Y follows a multivariate GP distribution G and η denotes a vector of lower endpoints.

The latter is only relevant when dealing with mass on lower-dimensional subspaces according

to Kiriliouk et al. (2019). In essence, if µ is a sufficiently high threshold across all margins

1Nondegeneracy implies that the density is not condensed at a single point.
2Max-stability implies that the distribution of the maximum of n independent copies of the random variable is

invariant up to a parameter specification.
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X (1), . . . , X (d) then X−µ|X�µ can be approximated by a multivariate GP distribution with scale

σ and shape ξ parameters equal to the collection of estimated scale and shape parameters of

the margins. Moreover, the marginal distributions and the dependence structure must also be

estimated. Below a brief outline of the threshold stability property which will later be used to fit

the dependence structure is provided. For a more comprehensive overview of this distribution

and its properties see Rootzén et al. (2018a).

Threshold stability Consider a multivariate random variable X ∈ Rd : X ∼ Gξ,σ, where G is a

multivariate GPD with µ = 0. Then, for w ≥ 0 where Gξ,σ(w) < 1 and σ+ ξw > 0, threshold

stability implies that:

X−w | X�w ∼Gξ,σ+ξw (5)

Intuitively, this implies that the conditional distribution of the excesses remains multivariate

generalized pareto when moving further into the tail (i.e. when increasing the threshold). In

particular, the shape parameter remains the same, whilst the scale parameter changes from

σ to σ+ ξw. Kiriliouk et al. (2019) proposes a test for the appropriateness of a multivariate

generalized pareto distribution model using a special case of this property. Consider the threshold

w = wt = σ(tξ−1)
ξ

, which corresponds to the 1− 1
t quantile of P(X > x|X > 0), such that threshold

exceedances are Poisson(t ) distributed. Then, for any set A ⊂ {x ∈Rd : x� 0} it holds that for t ≥ 1:

P(X ∈ wt + tξA) = P(X ∈ A)

t
(6)

where wt + tξA = {wt + tξx : x ∈ A}.

2.5 Hill Method

Lets first consider the Hill method in a univariate setting and then make the step towards the

multivariate case. The univariate Hill method requires the presence of fat-tails, hence, we assume

that the underlying distribution is in the MDA of the Fréchet. As previously mentioned, this is

equivalent to assuming that F̄ (x) tends to a Pareto distribution. Under this assumption, the Hill

method estimates the tail index α= 1/ξ> 0 via the Hill estimator proposed in Hill (1975). This

estimator corresponds to the maximum likelihood estimator of a Pareto distribution’s tail index

and is given by:

α̂k,n =
k∑

i=1

k

log X(i ) − log X(k+1)
(7)

where X(i ) denotes the i th order statistic of a finite sample of observations X1, . . . , Xn . As this is a

finite sample POT estimator, an additional assumption regarding the start of the Pareto behaviour
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of the tail is needed. This is the role of k within this estimator, i.e. to denote the number of highest

order statistics which are considered to be in the intermediate region close to the tail. The choice

of an appropriate k is a crucial step in using the Hill estimator due to the high sensitivity of the

estimator towards this parameter, as noted by Nguyen and Samorodnitsky (2012) and De Haan

et al. (2016). In particular, there exists a bias-variance trade-off, as large values of k imply using

more observations which reduces the variance of the estimates, but increases the bias as more

observations farther away from the tail are included in the estimation. Conversely, small values

of k reduce the bias as the highest order statistics are the closest to the tail, but using a smaller

amount of observations leads to a higher variance in the estimates.

Similarly to the univariate case, in order to model a collection of fat-tailed random variables X =
(X (1), . . . , X (d))′ ∈Rd via the Hill method it is necessary to assume multivariate regular variation

(MRV). As noted in Resnick (2007), MRV implies that the joint distribution of X is in the maximum

domain of attraction of the Fréchet distribution. Hence, in this setting we require the joint

distribution to exhibit a fat-tail. In particular, because we are now in a multivariate context,

it is practical to make use of the polar transformation (R,S) = (||X||1, X
||X||1 ). Note that here the

unit-norm ||X||1 = ∑d
i=1 |X (i )| is used for simplification, but Resnick (2007) mentions that any

norm can be used. This transformation allows for the decomposition of X into the radial part R

which contains information on the joint behaviour of X (1), . . . , X (d), and the angular part S which

provides information on the dependence structure of X (1), . . . , X (d). Using this transformation,

Resnick (2007) states that X is MRV if there exists a well-defined angular measure Ψ for the

dependence structure in the limit, and if R is univariate regularly varying with an appropriate

normalizing function b(t) : limt→∞ b(t) = ∞. This is summarized in equation (8), where
v−→

denotes vague convergence in measure and c > 0. For more information on vague convergence

in measures see Kallenberg (1983).

tP

[(
R

b(t )
,S

)
∈ ·

]
v→ cvα×Ψ (8)

As shown by Basrak et al. (2002) under the assumption of equal tail indices across each

X ( j ) for j ∈ {1, . . . ,d}, multivariate regular variation of X with tail index α implies univariate

regular variation with tail index α for any linear combination of the components of X. In a

financial context, this implies univariate regular variation with tail index α for any portfolio w′X
where w ∈Rd .
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2.6 Value-at-Risk and Expected Shortfall

The risk measures that will be used to explore the benefits of the above-mentioned POT

methods, are Value-at-Risk (VaR) and Expected Shortfall (ES). Consider a random variable X ∼
F (x) which denotes the loss of a portfolio. V aRX (p) corresponds to the (1−p)th quantile of F (x)

as stated in (9), whilst ES corresponds to the expected value of X |X >V aRX (p) as shown in (10).

P(X ≤V aRX (p)) = 1−p (9)

ESX (p) = E(X |X >V aR(p)) (10)

Even though VaR is the most popular risk measure in practice, a lot of research has been done

outlining its pitfalls. In particular, many such as Acerbi and Tasche (2002) have reached the

conclusion that VaR is not a subadditive risk measure. As mentioned in Frittelli and Gianin (2002),

subadditivity refers to the convexity of a risk measure, and it intuitively determines if the measure

is capable of accounting for the well-known benefits of diversification. The lack of subadditivity

thus implies that the risk from holding two assets in a portfolio is not smaller or equal than

the risk of holding the two assets independently. However, recent research by Daníelsson et al.

(2013) has shown that VaR is subadditive for high quantiles of fat-tailed distributions, i.e. if

regular variation is satisfied. However, regular variation requires the random variable to be in the

MDA of the Fréchet distribution, which clearly does not apply to all distributions. Moreover, the

universe of distributions for which VaR is subadditive is constrained even further by Mainik and

Rüschendorf (2010), who argues that VaR can only be subadditive for finite mean models, which

imposes α> 1 as an additional requirement. Hence, this motivates to also consider ES which

satisfies subadditivity for any type of tail. For more information regarding the properties of risk

measures see Frittelli and Gianin (2002).

3 Data

This study considers daily prices from Amazon (AMZN), Microsoft (MSFT), J.P. Morgan (JPM)

and Johnson & Johnson (JNJ) from 03/01/2000 to 22/05/2020, retrieved from Yahoo Finance.

These companies were chosen because they operate in seemingly different industries, (consumer

discretionary, information technology, financials and health care, respectively) which could

resemble the portfolio choice of an average diversification-seeking investor. Additionally, this

timeframe was chosen because it encompasses various high-risk periods, where the probability

of observing values close to the tail is maximized. In particular, this period includes the 2000’s

dotcom bubble, the 2008-2009 subprime mortgage crisis and the 2020 COVID-19 crisis.
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Figure 2: Daily losses of AMZN, MSFT, JPM and JNJ where the red line denotes the mean loss over the full
period.

As it can be observed in Figure (2), both AMZN and MSFT exhibit their highest losses around

the dotcom bubble. It can also be observed that all firms exhibit significantly larger than average

losses during the 2008 subprime mortgage crisis. Lastly, even though all firms exhibit larger

than average losses during the COVID-19 crisis, JPM and MSFT exhibit significantly higher

relative losses than AMZN and JNJ. Hence, we can observe that even though these firms operate

in seemingly unrelated industries, their losses seem to exhibit some degree of dependence

during periods of high risk. Additionally, we can clearly observe that some periods exhibit

significantly higher volatility than others, which is formally referred to as volatility clustering.

This phenomenon could have a negative effect on the performance of the methods considered in

this study, as they are unconditional models. Hence, unlike GARCH models, they fail to account

for conditional heteroskedasticity (i.e. volatility clustering).

3.1 Preliminary Analyses

Even though it has been well-documented that financial returns exhibit heavy-tails, it is sen-

sible to evaluate the appropriateness of this assumption previous to applying EVT methods.

In particular, several visualization techniques which evaluate necessary (but not sufficient)

conditions for heavy-tailed behaviour are considered in the remainder of this section.
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Firstly, as noted in Embrechts et al. (1999a) QQ-plots of univariate losses against the exponential

distribution can offer evidence of fat-tails in case of a concave plot, or thin tails in case of a convex

plot. As can be observed in the QQ-plots for the full sample in Figure (3), all assets seem to exhibit

relatively concave plots especially towards the tail of the plot (i.e. highest values of x), which

supports the assumption of fat-tailed behaviour. This conclusion is supported by Zipf and MS

plots which can be found in Appendix A.

Figure 3: QQ-plots against the exponential distribution for the losses of AMZN, MSFT, JPM and JNJ for the
period 03/01/2000−22/05/2020.

4 Methodology

Before providing an outline of how the models will be fitted and evaluated, it should be noted

that only the first half of the sample, i.e. {0, . . . ,τ}, is used to derive the model specification. Note

that observation 0 corresponds to the observation of 03/01/2000, and τ to that of 15/03/2010.

The second half, i.e. {τ, . . . ,T } where T corresponds to the observation of 21/05/2020, will be

used for the evaluation of the estimated risk measures. Moreover, the parameter estimation is

repeated on a daily basis throughout the evaluation period, using an expanding window. The

choice of an expanding window is motivated by the fact that observations considered to be in the

intermediate region close to the tail will be quite scarce, and using a moving window risks having

a window with no observations belonging to it. Lastly, following Kiriliouk et al. (2019) the models

are fit on the relative losses of the data. For the j th asset, the relative loss at time t is given by

X ( j )
t = P

( j )
t−1−P

( j )
t

P
( j )
t−1

where P ( j )
t−1 denotes the closing price of the asset at time (i.e. day) t . Note that

relative losses are only defined for the period {1, . . . ,τ}, as the loss for t = 0 is undefined.

4.1 Fitting the models

4.1.1 Multivariate Generalized Pareto Distribution

Following Kiriliouk et al. (2019), the multivariate GP density will be fit to the data using the

generators U and T, outlined in Rootzén et al. (2018b). These generators are simply means of

fitting data to a multivariate GP distribution under different sets of assumptions. In particular,
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U makes stricter assumptions on the data, which are less likely to hold but can be benefitial.

For more information on the generators themselves see Rootzén et al. (2018b). Both of these

methods require the data to be in standard form, that is, they can only be applied on a random

variable X0 ∈Rd with parametersσ= 1 ∈Rd and γ= 0 ∈Rd . To this end, the empirical probability

integral transform is applied to transform the relative losses into uniform scale. Subsequently,

the empirically uniform-scaled data is transformed into the standardized Pareto scale using

the transformation outlined in Kiriliouk et al. (2019): X0 = 1
1−U ∼ Pareto(xm = 1,α = 1) for U a

uniformly distributed random variable. Note that Kiriliouk et al. (2019) also uses the standard

Pareto scale in their applications even though they derive the theory based on the standard

Exponential distribution. However, given that the standard Pareto scale is simply the exponential

of the standard Exponential scale, the results are argued to be equivalent. Lastly, the multivariate

GP density for the observed scale given in (12), is derived using the density for the standardized

scale h(·;1,0) and the data after being transformed back into the observed scale using (11).

X
d=σ(eγX0 −1)

γ
(11)

h(x ;σ,γ) =h

(
1

γ
log(1+γx/σ);1,0

) d∏
j=1

1

σ j +γ j x j
(12)

where h is a density from U or T.

In order to fit (12) to the data, censored maximum likelihood is applied. This is done because

only those observations considered to be in the intermediate region close to the tail are relevant

for the estimation. Following Kiriliouk et al. (2019), we determine the threshold delimiting the

start of the intermediate region close to the tail by using the stability property of multivariate GP

distributions, together with the small-sample equivalent of the following measure of asymptotic

dependence:

χ1,...,d (q) = P(F1(x(1)) > q, . . . ,Fd (x(d)) > q)

1−q
, q ∈ (0,1) (13)

where F j denotes the marginal loss distribution and x( j ) the observed loss for asset j ∈ {1, . . . ,d}.

The threshold stability property of multivariate GP distributions implies that χ1,...,d (q) should be

constant for sufficiently high q . Hence, choosing u = (F−1
1 (q∗), . . . ,F−1

d (q∗)) where q∗ = i n f {0 <
q̃ < 1 :χ1,...,d (q) =χ, ∀q > q̃} should provide an adequate threshold for the dependence structure.

The appropriateness of using this as a threshold for the collection of marginals is evaluated by

means of Chi-plots outlined below. After choosing an appropriate threshold u which denotes the

start of the intermediate region close to the tail, the following likelihood is maximized over the

10
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fitting period {1, . . . ,τ} to estimate the parameters of the multivariate GP distribution:

L(θ,σ,γ) =
τ∏

t=1
h

(
x (D\Ct )

t −u(D\Ct );θ,σ,γ
)

where D = {1, . . . ,d}, Ct = {d ∈ D : x(d)
t < u(d)} denotes the collection of assets censored at time t ,

x (D\Ct )
t and u(D\Ct ) denote the collections of uncensored assets and thresholds for time t, and θ

denotes the parameters assumed for the generator.

As it was mentioned in section 2, the multivariate GP distribution is able to capture all three

types of tails. In order to find the best fitting tail, different classes of multivariate GP densities are

evaluated, namely, Gumbel T, Gumbel U, Weibull, Reverse Exponential T and Reverse Exponential

U. The one with the highest Akaike information criterium (AIC) is chosen as the appropriate

model. For more information on these densities see Kiriliouk et al. (2019). In order to evaluate the

appropriateness of more parsimonious models, likelihood ratio tests are used within the chosen

class. For example the presence of a common shape parameter across all assets is evaluated to

reduce the estimation from 4 shape parameters to 1. Lastly, in order to evaluate the goodness of fit,

Kiriliouk et al. (2019) proposed examining QQ-plots for the marginal univariate GP distributions,

and plots with estimated values of χi j (q) s.t. i 6= j ∈ 1, . . . ,d for q ∈ [0.5,1).

Lastly, having estimated the multivariate GP distribution G(σ,ξ) for a collection of translated

assets losses X − u ∈ Rd , the distribution for any portfolio consisting of these assets can be

easily derived under the assumption of a common shape parameter ξ ∈ R. This follows from

the fact that, for a collection of weights w = (w (1), . . . , w (d))′ the portfolio losses are given by

Y =∑d
j=1 w j

(
X ( j ) −u( j )

)
. In particular, Kiriliouk et al. (2019) states that:

Y
∣∣Y > 0 ∼ GP

(
d∑

j=1
w ( j )σ( j ),ξ

)
(14)

where w ( j ) = 1/d , ∀ j ∈ {1, . . . ,d} as we consider an equally weighted portfolio. Hence, the shape

parameter ξ remains the same, whilst the scale parameter becomes a weighted sums of the scale

parameters of the marginals.

4.1.2 Hill Method

As mentioned in section 2.5, in order to apply the Hill method in a multivariate setting, i.e.

to the losses X = (X (1), . . . , X (d))′ ∈ Rd , it is necessary to assume multivariate regular variation

(MRV). An additional relevant assumption to make in order to model the equally weighted (EW)

11
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portfolio of assets, is that X (1), . . . , X (d) exhibit the same tail index α> 0. Mainik and Rüschendorf

(2010) mention that the opposite case, i.e. allowing for different tail indices, can be considered

trivial, as the asset with the lowest tail index will tend to dominate the rest. This assumption will

be evaluated by eyeballing the bias-variance trade-off in the Hill plots of the assets, as done in

De Haan et al. (2016). Hill plots correspond to plots of the Hill estimator for different threshold

levels.

Even though we assume that all assets X (1), . . . , X (d) exhibit the same tail index, this is unlikely

to be exact in a finite sample setting. Hence, in order to incorporate all assets in the estimation

of the common α and make the results for the portfolio α more realistic, we first apply the

polar transformation (R,S) = (||X||1, X
||X||1 ) and estimate the tail index of R. This incorporates

the information of all assets into the estimation of the tail index. As mentioned in section 2,

under these assumptions it suffices to estimate α for R to parametrize the tail of any portfolio

constructed using X (1), . . . , X (d). The Hill estimator for the radial parts is given by:

α̂k :=
k∑

i=1

k

logR(i ) − logR(k+1)
(15)

where R(i ) denotes the i th order statistic of our finite sample of estimation observations, i.e.

R1, . . . ,Rτ, and k denotes the threshold after which the data is assumed to belong to the region

close to the tail.

4.2 Estimation of Extreme Risk Measures

4.2.1 Multivariate Generalized Pareto Distribution

In order to estimate VaR and ES for the multivariate GP method, the estimators outlined in

Kiriliouk et al. (2019) are used. In particular, the estimators are given by plugging the sample

estimates of the distribution’s parameters ξ̂ and σ̂ and the empirical distribution value of F̄ (u)3

into:

V aRGPD
t (p) = 1

ξ

d∑
j=1

w ( j )σ( j )

((
1−p

F̄ (u)

)ξ
−1

)
+

d∑
j=1

w ( j )u( j ) (16)

ESGPD (p) =V aRGPD (p)+
∑d

j=1 w ( j )σ( j ) +ξ
(
V aRGPD (p)−∑d

j=1 w ( j )u( j )
)

1−ξ (17)

For the derivation of these estimators see Appendix B.

3This is given by ˆ̄F (u) = CT
T , where CT denotes the number of observations exceeding u in the sample, and T the

total sample size.
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4.2.2 Hill Method

Given that the portfolio losses are univariate regularly varying with index α for the Hill method,

it suffices to focus on the univariate expression derived by Danielsson (2011) to estimate VaR as

shown in (18). Moreover, according to Norton et al. (2019) it suffices to estimate the mean of the

Pareto conditional excess distribution, to derive ES for the Hill method as shown in (19).

V aR Hi l l (p) = u

(
F̄(u)

p

) 1
α

(18)

ESHi l l (p) = E(Y |Y >V aR(p)) = αV aR Hi l l (p)

α−1
(19)

Hence, V aR Hi l l (p) and ESHi l l (p) can be estimated by pluggin the estimated tail index α̂ and the

empirical distribution value of F̄ (u) into the expression above. The derivation of these estimators

can be found in Appendix B.

4.3 Evaluation of Extreme Risk Measures

4.3.1 Evaluation of VaR Estimates

In order to evaluate the VaR estimates Berkowitz et al. (2011) found that the Dynamic Quantile

(DQ) test for conditional coverage proposed in Engle and Manganelli (2004) as well as duration

tests, such as the independence test proposed in christoffersen2004backtesting, offer significantly

more power4 than conventional tests such as those proposed in christoffersen1998evaluating

and Kupiec (1995). Given that the models employed in this study are unconditional, meaning

that the conditional heteroskedasticity is not being accounted for, independence tests will most

likely reject the null hypothesis of correct VaR specification. However, for illustrative purposes

both of the above-mentioned tests will be used to evaluate the goodness of the VaR estimates.

The duration test for independence proposed by Christoffersen and Pelletier (2004) is based on

the duration of time between two VaR exceedances, i.e. Di = ti − ti−1 where ti denotes the time of

the i th violation. Under the null hypothesis of correct model specification, this duration should

be memoryless (i.e. independent of previous durations) and have a mean of 1/(1−p) days. This

can be tested via the Weibull distribution, which is memoryless if b = 1. This test corresponds to a

likelihood ratio test with H0 : b = 1, and it is performed using the implementation in the package

4Power refers to the probability of rejecting the null hypothesis when it is indeed false.
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Ghalanos (2020). The log-likelihood is given by (20).

lnL(D ;Θ) =Cτ ln F̄ (Dτ)+ (1−C1) ln f (D1;Θ)+
T−1∑

i=τ+1
ln

(
f (Di ;Θ)

)
+CT ln F̄ (DT )+ (1−CT ) ln f (DT ;Θ)

(20)

where f (·) and F̄ correspond to the density and survival function of the Weibull distribution,

respectively. Moreover, Ci indicates if a duration is censored. Hence, Cτ = 0 if the observation

at time τ (which corresponds to the start of the estimation period) exceeds its VaR, otherwise

the first duration is left censored and Cτ = 1. Similarly, CT = 0 if the observation at time T (which

corresponds to the end of the estimation period) exceeds its VaR, otherwise the last duration

is right censored and CT = 1. For censored observations the density is not informative, as we

do not know the exact duration. However, given that we know that for a censored observation

the duration was at least Dτ or DT days, their contribution to the likelihood is given by the

corresponding survival function value.

The DQ test proposed by Engle and Manganelli (2004) performs a linear regression of the Hit

variable, Hitt (p) = 1(yt > V aR(p))−p, on a constant, lagged Hits and other past information

suspected of affecting the Hits. Under conditional coverage (i.e. both independence and un-

conditional coverage5), Hitt (p) would be uncorrelated with its lags and have an expected value

of zero. Hence, we can test for conditional coverage by applying a Wald test (i.e. joint linear

restrictions) to test the validity of a zero mean and lack of autocorrelation with respect to any lags

or historical information. This test is performed using the implementation in the package Ardia

et al. (2019) and its test statistic for H0 :β= 0 is given by:

DQ = β̂′(Var(β̂))−1β̂
d−→χ2

g , as T →∞

where β̂ denotes the OLS estimate of β, Var(β̂) denotes the estimated OLS variance of β̂ and g

denotes the number of regressors considered. Note that the convergence in distribution requires

additional assumptions specified in Engle and Manganelli (2004).

4.3.2 Evaluation of ES Estimates

The evaluation of ES estimates is a disputed topic in the literature. On the one hand, there exist

many methods for evaluating ES estimates in the literature, such as the one proposed in McNeil

5Unconditional coverage implies that at the p th level of confidence, we should observe approximately 1− p
exceedances.
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and Frey (2000). This method is based on the premise that the ES should not be significantly

different from the average exceedance given that VaR has been exceeded. The test consists

of a one-sided t-test as specified in (21), which is used to evaluate if the average difference

between the estimated ES (ÊS t for {τ, . . . ,T }) and the average exceedance value ē6, denoted by

d̄ = (T −τ)−1 ∑T
t=τ(ÊS t − ē), is significantly larger than zero. This is equivalent to testing if the

expected shortfall is being systematically underestimated.

t = d̄√
Var(d̄)/(T −τ)

d−→ Student-t(T−τ−1) (21)

Note that Var(d̄) denotes the sample variance of d̄ .

On the other hand, Gneiting (2011) showed that ES is not an elicitable measure, and used this

to argue that it is not possible to evaluate ES estimates. Nonetheless, Fissler et al. (2015) showed

that ES and VaR are jointly elicitable, meaning that joint tests could be a feasible alternative. In

light of the discrepancies in the literature, this study is inclined to perform the abovementioned

test under the following caveat. Given that VaR is usually computed for high levels of confidence,

one would require an immense amount of observations to obtain a sufficiently large sample

by which the Law of Large Numbers could be used to argued that the sample average is close

to a true mean. Hence, the validity of the conclusions remains highly questionable. The test is

implemented using the package Ghalanos (2020).

5 Results

5.1 Estimation and Evaluation of Semiparametric EVT Models

5.1.1 Multivariate Generalized Pareto Model

As mentioned in section 4 the first step in fitting the multivariate GP model is to determine an

appropriate density. The results for the AIC’s corresponding to each of the densities considered

are summarized in Table (1). It can be observed that similarly to Kiriliouk et al. (2019), we find

the Gumbel T density to offer the best fit to our data.

Table 1: AIC statistics for each Multivariate Generalized Pareto density considered.

Gumbel T Gumbel U Gaussian Reverse Exponential T Reverse Exponential U

AIC 1835.137 1851.926 2037.270 1848.692 1850.985

6ē =∑T
t=τ 1(Lt >V aRt (p))(Lt −V aRt (p)).
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Next, we evaluate different model specifications of the Gumbel T density in search of a more

parsimonious model specification. The resulting maximized log-likelihoods are summarized in

Table (2). Likelihood ratio tests lead us to observe that M3 and M4 are significantly better models

than M1 at the 5% level. Moreover, M2 is not significantly better than M1 at the 5% level with a

p-value of 0.059. Given that M3 and M4 are not found to be significantly different even at the 10%

level, we decide to proceed with M4 as it offers the most parsimonious model.

Table 2: Log-likelihoods for different model specifications of the chosen Gumbel T density

Model Parameters Maximized log-likelihood

M1 α1,α2,α3,α4,β1,β2,β3 - 1821.1
M2 α1,α2,α3,α4 - 1824.9
M3 α,β1,β2,β3 - 1827.4
M4 α - 1827.5

Figure (4) below contains plots for the fits of the marginal GP distributions for each of the four

assets. We can observe that in general the fits tend to improve towards the tail, with the exception

of AMZN, which seems to drift away from the 45-degree line towards its tail. However, these plots

suggests that the model exhibits an overall appropriate fit at the marginal level.
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Figure 4: Marginal GPD QQ-plots. From left to right the plots correspond to MSFT, AMZN, JNJ and JPM.

When looking at the fit of the dependence structure, the results are not as promising as for

the marginals. Figure (5) shows that based on the model selection, the value of the χ̂(q) statistic

assumed to be constant for sufficiently high q falls almost outside of its 95% confidence interval,

which can be seen as a sign of misspecification. Additionally, this value is very close to 0 which

indicates a weak dependence between the assets. This contradicts the initial observations from

section 3, where the assets seemed to offer some dependence over periods of high risk.

We evaluate this concern further by looking at bivariate Chi-plots for each pair of assets in the

portfolio, which are summarized in Figure (6). This is done to evaluate if the dependence structure

between each pair of assets is being correctly incorporated into the model. We can immediately

observe that the dependence structure between AMZN and JPM is not being correctly taken into
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Figure 5: Chi plot for all assets

account, as the estimated χ̂(q) value falls outside of its 95% confidence interval. Additionally, the

estimated χ̂(q) for the dependence between AMZN and JNJ falls very closely to the upper bound

of the 95% confidence interval, which also raises concerns about misspecification. The rest of

the plots can be found in Figure 12 in Appendix A, and their estimated χ̂(q) seems to behave

appropriately.
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Figure 6: Bivariate Chi plots with fitted for AMZN and JPM, AMZN and JNJ

5.1.2 Hill Method Model

In this section we evaluate the validity of the assumptions underlying the Hill method. Starting

from the left in the top row Figure (7) contains Hill plots for each asset, followed by Hill plots

for the Radial parts and the equally weighted portfolio. In order to choose an appropriate cutoff

point k, we evaluate the stability of the Hill-plot based on the bias-variance trade-off of the

Hill estimator. In particular, the most stability seems to occur at k ≈ 128 which corresponds to

roughly 5% of the sample. For this choice of cutoff point, α = 2.9 seems to be an appropriate

estimate across all assets. Hence, the assumption of an equal tail index does not seem implausible.

Moreover, this estimate also seems appropriate for both the Radial parts and the equally weighted

portfolio at the chosen cutoff point k. Hence, These results are supportive of the assumption of

equal tail indices across all assets. We proceed by considering the top 5% order statistics as the

intermediate region close to the tail and by assuming equal tail indices.
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Figure 7: Hill plots for each asset, Radial parts and Equally Weighted portfolios. Order starting from the
top left corner: AMZN, MSFT, JNJ, JPM, Radials, Portfolio.

5.2 Estimation and Evaluation of Extreme Risk Estimates

5.2.1 VaR Estimates

Figure (8) below summarizes the estimation results for V aRGPD and V aR Hi l l at the 99% and

95% confidence levels, in the left and right columns respectively. We can observe that the plots

corresponding to the multivariate GPD method heavily overestimate VaR both at the 99% and

95% confidence levels, as no exceedances seem to have occurred even though we would expect

1% and 5% of observations to exceed the corresponding VaR’s if correctly specified. The estimates

obtained through the Hill method seem to offer a significantly more realistic view of the VaR, as

some exceedances are indeed observed. The number of expected and actual exceedances are

summarized in the first 2 columns of Table (3). The p-values corresponding to the tests outlined

in the last 2 columns of Table (3). In particular, all test results yield a strong rejection of the

hypotheses for correct specification, except for the duration test for independence (IND), which

pertains to the assumption of independent exceedances. Clearly this result is also irrelevant as

there are no exceedances for multivariate GP VaR estimates, thus the assumption of independence

cannot be appropriately evaluated.

A reason for why both methods overestimate VaR, is that none of them are able to account

for the conditional heteroskedasticity present in the data, as highlighted in section 3. This

could be solved by combining these methods with a GARCH model, which accounts for this
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Figure 8: Plots of VaR estimates and returns for the backtesting period 16/03/2010 - 22/05/2020. Top row
contains V aRGPD estimates and bottom row V aR Hi l l estimates. The left column contains 99% and the
right 95% confidence level estimates.

Table 3: Number of VaR exceedances and P-values of tests.

Estimate Expected Exceedances Actual Exceedances DQ P-value IND P-value

V ar GPD (0.01) 25 0 0 0.317
V ar GPD (0.05) 128 0 0 0.317
V ar Hi l l (0.01) 25 10 0 0
V ar Hi l l (0.05) 128 72 0 0

property. Additionally, the multivariate GPD model could be argued to offer a significantly worse

performance because there seems to be little to no dependence amongst the assets, as noted in

Figure (5). The lack of dependence implies that the event of an extreme loss in one of the assets

provides little information regarding the behavior of other assets. Thus, it could be argued that

this uncertainty stemming from the lack of dependence can be a cause for overestimation.

5.2.2 ES Estimates

The 99% and 95% confidence ES estimates for each method can be observed in Figure (9). Based

on the test of McNeil and Frey (2000), the ES estimates obtained from the multivariate GP method

cannot be evaluated as no exceedances are empirically observed. For the Hill method estimates,

the test can be carried out as there are exceedances both at the 99% and 95% confidence levels, as

shown in Table (3). In particular, the test is unable to reject H0 : d̄ = 0 for both sets of estimates, as

it attains p-values of 0.98 and 0.94 for the 0.95% and 0.99% confidence ES estimates, respectively.

Nonetheless, these results cannot be taken as clear indications of correct specification due to the
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concerns raised in Section 4.

Figure 9: Plots of ES estimates for multivariate GP (left), multivariate Hill method (right) and returns of the
equally weighted portfolio of assets, for the backtesting period 16/03/2010 - 22/05/2020. 95% confidence
estimates are plotted in red, whilst 99% confidence estimates are plotted in blue.

6 Conclusions

The goal of this study was to explore the empirical application of multivariate peak over

threshold models to risk management. To this end, the multivariate Generalized Pareto (GP)

and Hill method were fitted on the losses of an equally weighted portfolio consisting of Amazon,

Microsoft, J.P. Morgan and Johnson and Johnson over the period 03/01/2000−14/03/2010. These

models were used to evaluate daily VaR and ES estimates for the portfolio over the period

15/03/2010−22/05/2020 using an expanding window.

Even though preliminary analyses motivated the use of extreme value theory techniques in

the data, the results obtained for both methods were far from promising, particularly for the

multivariate GP method. The results point towards the conclusion that both methods tend to

overestimate both VaR as the null hypothesis of correct specification was reject by both the

Dynamic Quantile and the Duration test for independence. With regards to the ES estimates,

those of the multivariate GP method could not be evaluated with McNeil’s test as there were no

exceedances. However, those of the Hill method could be evaluated and led to the conclusion

that the specification could not be deemed incorrect. Nonetheless, there has been plenty of

discussion in the literature regarding the validity of ES tests, and this result should not be taken a

strong argument in favour of the Hill method’s performance.

A possible reason for these drastic negative results, is that the heteroskedasticity (or volatility

clustering) present in the data is not being appropriately incorporated in any of the two models.

Hence, further research exploring applications of these techniques combined with GARCH

models could provide interesting results for practitioners. Moreover, the multivariate GPD model

could be argued to offer a significantly worse performance than the Hill method model due to

the lack of dependence amongst the assets.
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Appendices

A Additional Preliminary Analyses

Zipf Plots As noted by Cirillo (2013) Zipf plots (also known as log-log plots) exploit the functional

form of the Pareto distribution to evaluate the presence of a fat-tail. In particular, for a Pareto

distribution the survival function is given by F̄ (x) = 1−F (x) =
(

x
xl

)−α
, where α denotes the tail

index and xl corresponds to the lower bound of the support. Hence, taking logs on both sides

of the previous expression yields: ln F̄ (x) = α ln xl −α ln x, where α ln xl is constant for a given

choice of α and xl . Hence, in the presence of a Pareto tail (α > 0) the plot should resemble a

downward sloping line for large values of x. The Zipf plot for each of the assets considered over

the full sample can be observed in Figure (10). All plots seem except AMZN’s seem to offer a

relatively linear behaviour for large values of x, which would support the presence of a fat-tail.

AMZN appears to show quite some curvature even for large values of x, which questions the

presence of a fat-tail.

Figure 10: Zipf plot for the losses of AMZN, MSFT, JPM and JNJ for the period 03/01/2000−22/05/2020.

MS Plots Maximum-to-Sum (MS) plots will be used to evaluate which moments of the data

could be considered to be well-defined. In particular, given that the moments of variables with

Gumbel or Weibull tails are all theoretically well-defined as noted in Resnick (2007), finding

evidence of undefined moments can be used to argue in favor of a Fréchet tail (i.e. fat-tail).

As explained in Cirillo and Taleb (2016) an MS plot for the p th moment consist of a plot of

Rn(p) = Mn (p)
Sn (p) for increasing values of the sample size n ≥ 0. Note that Sn(p) = ∑n

i=1 |xi |p and

Mn(p) = max(|x1|p , . . . , |xn |p ) denote the partial sum and maximum, respectively. The above-

mentioned result regarding the well-definedness of the p th moment follows from the fact that

if E(X p ) <∞ then Rn(p)
p−→ 0 as n →∞. Figure (11) contains MS plots for p = 1, . . . ,4 for each

asset of the assets considered, over the fitting period. The plots for p = 1 and p = 2 lead to the

conclusion that the first and second moments for every asset seem to be well-defined, as they

appear to converge to zero as n increases. Moreover, the plots for p = 3 show that the third

moment seems to be well-defined for AMZN, MSFT and JNJ, but not for JPM. Lastly, the plots for
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p = 4 do not seem to converge to zero for any of the assets, which implies that the assumption of

well-defined fourth moments does not seem plausible for any asset. Hence, these plots are also

supportive of the presence of fat-tails.

Figure 11: MS plots for p = 1, . . . ,4 of the losses of AMZN (upper left quadrant), MSFT (upper right quad-
rant), JPM (lower left quadrant) and JNJ (lower right quadrant), for the period 03/01/2000−22/05/2020.

B Additional Derivations

VaR and ES estimators for multivariate GPD model The survival function F̄ (y) = 1−F (y) of

the portfolio losses Yt at a point t ∈ {τ, . . . ,T } in time, can be expressed as:

F̄ (y) =P(Yt > y)

=P(Yt > y |Yt � u)P(Yt � u), for y � u

= F̄u(y)F̄ (u)

25
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where F̄u(y) denotes the multivariate GP distribution described in (14). Then, we can derive the

corresponding VaR using the definition provided in (9) and solving for the quantile y as follows:

1−p = F̄ (u)

1+
y −∑d

j=1 w ( j )u( j )

α
∑d

j=1 w ( j )σ j

α

V aRGPD
t (p) =α

d∑
j=1

w ( j )σ( j )

((
1−p

F̄ (u)

) 1
α −1

)
+

d∑
j=1

w ( j )u( j ) (22)

In order to derive an estimator for ESGPD
t (p), one can make use of the threshold stability

property of GP distributions as outlined in section 2. This allows us to see the distribution of Yt

conditional on exceeding V aRGPD
t (p) as the distribution of Yt conditional on exceeding some

threshold and then simply estimating the mean of the resulting distribution. Noting that the

mean of a GP (µ,σ,ξ) distribution is given by µ+ σ
1−ξ if ξ< 1 (i.e. if the mean of the distribution is

defined), we can express ESX (p) using the definition (10) as:

ES(p) = E(Y |Y >V aR(p)) (23)

= E(V aR(p)+Y −V aR(p)|Y >V aR(p)) (24)

=V aR(p)+E(Y −V aR(p)|Y >V aR(p)) (25)

By threshold stability of GP distributions it follows that:

Y −V aR(p)|Y >V aR(p) ∼GP

(
d∑

j=1
w jσ j +γ(V aR(p)−

d∑
j=1

w j u j ),γ

)

Hence, we conclude that:

ESGPD (p) =V aRGPD (p)+
∑d

j=1 w jσ j +γ
(
V aRGPD (p)−∑d

j=1 w j u j

)
1−γ (26)

Hence, it follows that both V aRGPD
t (p) and ESGPD

t (p) can be estimated by plugging the

sample estimates of the distribution’s parameters and the empirical distribution, into (22) and

(26) respectively.

VaR and ES estimators for Hill method In order to derive the VaR estimate for the Hill method,

it suffices to focus on the univariate estimator derived by Danielsson (2011). Namely, note that
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we can express the probability of exceeding V aR(p) conditional on being in the tail, i.e. Y > u as:

P(Y >V aR(p)|Y > u) = P(Y >V aR(p))

P(Y > u)
= p

F̄ (u)
(27)

P(Y >V aR(p)|Y > u) =
(

V aR(p)

u

)− 1
γ =

(
V aR(p)

u

)−α
(28)

where (27) follows from the definition of conditional probability and (28) follows from the as-

sumption of a fat-tail, i.e. Pareto-distributed tail. Note that (28) is only true in the limit, but

assuming a strict equality allows for the estimator to be derived. Equating these two expressions

and solving for V aR(p) yields:

V aR Hi l l (p) = u

(
F̄(u)

p

) 1
α

(29)

To find an ES estimator for the Hill method we follow a similar approach to that used in Kiriliouk

et al. (2019) to derive the ES of the multivariate GP method. In particular, note that due to the MRV

assumption, we assume that the excessess are Pareto distributed. Similar to the GP distribution,

the Pareto distribution also exhibits threshold stability. Hence, it suffices to estimate the mean of

the conditional excess distribution to estimate ES. Given that the mean of a Pareto-distributed

random variable Y is given by E(Y |Y > xm) = αxm
α−1 for α> 1, it follows7:

ESHi l l (p) = E(Y |Y >V aR(p)) (30)

= αV aR Hi l l (p)

α−1
(31)

Hence, we can estimate V aR Hi l l (p) and ESHi l l (p) using the estimated tail index α̂ and the

empirical distribution value of F̄ (u).

7Note that Norton et al. (2019) offers a formal proof of this result.
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C Additional Results

Additional Bivariate Chi Plots These plots consist of the bivariate Chi plots with fitted values

not included in Figure (6).
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Figure 12: Bivariate Chi plots with fitted
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