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1 Introduction

The vehicle routing problem (VRP) is one of the most studied combinatorial optimization prob-

lems. Given a set of customers, the objective is to minimize the traveling cost, while visiting all

the customers. All vehicles start and end at a depot and visit customers to deliver their demand.

For companies it is interesting to minimize their transportation cost, because most of the times

this cost is a significant amount of the total cost for a product. Using optimized routes, companies

can save on the transportation cost. An efficient heuristic to solve the VRP is proposed by Arnold

and Sörensen (2019a) to obtain high quality solutions. They want to solve the capacitated vehicle

routing problem, where each vehicle can deliver a limited amount of goods, all vehicles have the

same capacity. They propose the knowledge-guided local search method (KGLS) which combines

three local search methods in an efficient way. In combination with perturbation this leads to solid

solutions. The VRP is a NP-hard problem, so using effective solution methods is necessary to ob-

tain high quality solutions. For delivery companies the VRP is a relevant well known problem.

For these companies an efficient solution method is key to address this challenging combinatorial

problem. The method proposed in this paper does not make use of random components, other

type of heuristics have some random components used in their heuristics. It is interesting to see

how the KGLS performs compared to these heuristics. Other variants of the vehicle routing prob-

lem will be addressed and solved with the KGLS, these variants are the vehicle routing problem

with time windows (VRPTW) and the vehicle routing problem with a heterogeneous fleet.

In order to find good solutions for the vehicle routing problem the following research question is

formulated:

• Does the knowledge-guided local search method also provide good solutions for other vari-

ants of the vehicle routing problem?

The research question is supported by the following sub-questions:

• How does the local search method perform compared to other state-of-the-art solution meth-

ods?

• Does the knowledge-guided local search method give a good starting point for a local search

method for a vehicle routing problem with time windows and for a vehicle routing problem

with a heterogeneous fleet?
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• Can the knowledge-guided local search method simply be adjusted for other vehicle routing

variants?

The research question together with the sub-questions form the core of this paper. This paper first

shows some effective local search methods and how they are combined in a algorithm for a VRP.

It also shows how it can be applied to a vehicle routing problem with time windows (VRPTW)

and on a vehicle routing problem with heterogeneous fleet.

The paper is organised as follows. In section 2 state-of-the-art solution methods are given for the

VRP. Also know solution methods for the VRPTW and VRP with heterogeneous fleet are shown.

Section 3 gives a mathematical formulation of the VRP. In section 4 the KGLS heuristic is given

and explained, in section 5 the usage of KGLS is extended to other variants. In section 6 the used

data is explained. In section 7 the obtained results are given and analysed. Section 8 gives a brief

summary of the findings.

2 Literature

In Johnson, Papadimitriou, and Yannakakis (1988) the effectiveness of local search is explained,

the local optimums are easier to find then optimal solutions of the problem. VRP can be optimized

by inter- or intra-route optimizations. A well known intra-route optimization method is given in

Lin and Kernighan (1973) (LK), where κ-opt moves efficiently used to optimize a single route.

The LK heuristic will be further explained in 4.2. In Subramanian et al. (2012) a iterated local

search (ILS) heuristic is proposed, the heuristic makes use of a random selected neighbourhood.

ILS is combined with a Set Partitioning approach to improve the solution even more. In Toth and

Tramontani (2008) a solution method is proposed where a initial solution is optimized by first

selecting a neighbourhood and reducing the size of the neighbourhood with heuristics. Then the

reduced neighbourhood is optimized by using the ILP formulation with Column Generation prob-

lem. The neighbourhood is chosen with random components using probability functions based

on several aspects like the distance of the edges.

As an addition to the normal vehicle routing problem, time windows can be implemented. In

Bräysy and Gendreau (2005) multiple local search methods are compared, the heuristics in Bräysy

(2002) and Russell (1995) are recommended as good and efficient solution methods in this paper.
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In Bräysy (2002) a three phase approach is suggested. In stage one an initial solution is made, in

the second stage the number of routes is be minimized. The third stage uses an Or-opt exchange

proposed by Or (1977). In Russell (1995) a hybrid algorithm between a interchange heuristic and a

parallel construction heuristic is suggested. The interchange heuristic is embedded in the parallel

construction heuristic to get quality solutions.

The fleet in a VRP could be heterogeneous, the cost and capacity of the vehicles could differ be-

tween the types. In Subramanian et al. (2012) a hybrid algorithm is proposed where a iterated local

search based heuristic is combined with set partitioning formulation. Random neighbourhood or-

dering is used and Or-opt moves are used for intra-route optimization. For unlimited fleets an

empty route of each vehicle type is added. In Gendreau et al. (1999) a tabu search heuristic is

proposed with a random chosen neighbourhood. When a vertex is moved from a route to another

route, it is not allowed to be reinserted for the next θ iterations, where θ is randomly selected

from an interval. After the tabu search a optimization and fleet change is executed on the best

known solution. In Taillard et al. (1997) initially the problems are solved as homogeneous VRP’s,

this solutions are then effectively combined to solve the problem with a heterogeneous fleet by

choosing routes that are often generated in the homogeneous solutions. The routes are selected in

a way that they have no customers in common. Then the solution is optimized with a tabu search

method and afterwards this solution is further solved in CPLEX.

3 VRP formulation

The VRP problem can be notated in a mathematical formulation. First the variables and param-

eters of the capacitated VRP are introduced and explained. Then the objective function is given

with the accessory restrictions. After the capacitated VRP formulation the formulation of the re-

spectively the VRPTW and VRP with heterogeneous fleet are given.

3.1 CVRP

The vehicle routing problem can be seen as a complete graph G = (V, E), with V the set of cus-

tomers and a depot, E is the set of edges between the customers. The variable x indicates if the

edge between customer i and j is used by vehicle k. Parameter c gives the cost for travelling

between customer i and j. Set K is introduced as the set of available vehicles, all vehicles are
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homogeneous.

xi,j,k =


1 if edge (i, j) ∈ E is used by vehicle k.

0 otherwise.

ci,j = The cost to travel from customer i to customer j.

di = The demand from customer i.

q = The capacity of a vehicle.

With these variable and parameters the following objective function and constraints are formu-

lated. The first node in V is the depot node.

min. ∑
k∈K

∑
i∈V

∑
j∈V

ci,jxi,j,k (1)

s.t. ∑
k∈K

∑
i∈V

xi,j,k = 1 ∀j ∈ V \ {0} (2)

∑
i∈V

xi,h,k = ∑
j∈V

xh,j,k ∀h ∈ C \ {0}, ∀k ∈ K (3)

∑
i∈V

xi,0,k = ∑
j∈V

x0,j,k ∀k ∈ K (4)

∑
i∈V

di ∑
j∈V

xi,j,k ≤ q ∀k ∈ K (5)

xi,j,k ∈ B ∀i, j ∈ V, ∀k ∈ K (6)

The objective function (1) minimizes the total travelling cost, most of the times the cost between

customer i and j is the euclidean distance between the nodes. Constraint (2) states that every

customer is visited exactly once. Constraints (3) and (4) ensure that every vehicle that leaves

the depot also returns and that after arriving at a customer the vehicle also leaves the customer.

Constraint (4) also ensures that the amount of vehicles leaving the depot is equal to the amount of

vehicles entering the depot. Finally the constraint (5) makes sure that every route does not exceed

the vehicle capacity.
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3.2 CVRPTW

For CVRPTW the customers now have a limited time interval when they have to be served. The

objective function is the same as for CVRP, but extra restrictions have to be added. First a new

variable and parameters are introduced. Variable s indicates when vehicle k arrives at customers

i. Parameters a and b indicate the time window and e is the service time. The travelling time

between customer i and j is here equal to the distance.

si,k = The time when vehicle k arrives at customer i.

ai = The opening time of customer i.

bi = The closing time of customer i.

ei = The service time of customer i.

M = Large number that exceeds the time horizon.

The following restrictions are added to the normal CVRP model.

si,k + ci,j + ei −M(1− xi,j,k) ≤ sj,k ∀i, j ∈ V, ∀k ∈ K (7)

ai ≤ si,k ≤ bi ∀i ∈ V, ∀k ∈ K (8)

si,k ∈ B ∀i ∈ V, ∀k ∈ K (9)

Here constraint (7) states that the time that vehicle k cannot arrive at customer j before the ar-

rival time at customer i plus the travel and service time if vehicle k travels from customer i to j.

Constraint (8) ensures that the time windows are respected.

3.3 VRP with heterogeneous fleet

For VRP with heterogeneous fleet the different types of vehicles have different costs, so the objec-

tive function is slightly different. All the normal restrictions of the CVRP have to be respected. The

set of vehicles K now has a specific demand and cost for each k. One variable and two parameters

are introduced for this formulation. Variable y indicates whether vehicle k is used. Parameter q

indicates now the capacity and f indicates the cost for vehicle k.
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yk =


1 if vehicle k ∈ K is used.

0 otherwise.

qk = The capacity of vehicle k.

fk = The cost of vehicle k.

Now the objective function is different and constraint (5) is slightly adjusted. One constraint is

added to the model. All the other restrictions of CVRP are the same.

min. ∑
k∈K

( fkyk + ∑
i∈V

∑
j∈V

ci,jxi,j,k) (10)

s.t. ∑
i∈V

di ∑
j∈V

xi,j,k ≤ q ∀k ∈ K (11)

∑
j∈V

x0,j,k = yk ∀k ∈ K (12)

yk ∈ B ∀k ∈ K (13)

The objective function (10) now minimizes the travelling cost combined with the vehicle cost.

Constraint (11) is the adjusted version of (5), where now for every vehicle type a different capacity

is used. Constraint (12) ensures that a vehicle only leaves the depot when it is used.

4 Arnold and Sörensen heuristic

The knowledge-guided local search algorithm is separated into a construction, an initial optimi-

sation, a perturbation and an optimisation part. In the construction part the Clarke and Wright

(1964) (CW) heuristic is used. After CW the individual routes are optimized with the heuristic

from Lin and Kernighan (1973) (LK). The initial optimisation will consist of Cross-Exchange (CE)

and Relocation Chain (RC). The routes changed are re-optimised with LK and the "badness" of

the edges is set, the badness of an edge is explained later on. Then the perturbation starts and

the edge with the highest badness is penalized. CE and RC are applied with the new costs of the

edges. After 30 edges are penalized, LK is applied and then CE and RC with the normal costs. If a

route is changed after CE or RC, it will be re-optimized with LK and the badness will be adapted.

The perturbation and re-optimization process are continued until the time limit is reached. In this

section first the local search methods used in this heuristic are explained. Then the implementa-
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tion and construction of the algorithm is given. A pseudo-code of the algorithm can be found in

the appendix at subsection 9.4.

4.1 Local search

Local search methods are a well known solution method for NP-hard problems. For a VRP multi-

ple local search operators can be used. There are two types of operators: inter-route operators and

intra-route operators. In inter-route optimization the allocation of costumers between routes is op-

timized, in intra-route optimization the route itself is optimized. A well known way of intra-route

optimization is 2-opt. In 2-opt two edges are removed and replaced by two new edges, the two

edges are chosen so that the total cost is lower. In 2-opt the replacement results in a reversed order

for a part of the tour. The sequence A-B-C-D-E-F-G-H-A for example changes to A-B-C-D-G-F-E-

H-A if the edges between (D,E) and (H,G) are removed and replaced with (D,G) and (E,H) if this

results in a better solution. The optimization is better described in Lin and Kernighan (1973). For

inter-route optimization the swap, Or-exchange and a crossover are three well known methods to

change the allocation of customers between routes. In a swap four edges are exchanged in such a

way that a subset of customers from route one are allocated to route two and a subset of customers

from route two is allocated to route one. In an Or-exchange a subset of customers from route one

is allocated to route two, by changing three edges. In a crossover two edges are exchanged and

a subset of customer from route one is allocated to route two, a subset of customers from route

two is allocated to route one in return, both subsets are connected to the depot. The inter-route

optimization will be explained in more detail in section 4.3.

4.2 Lin-Kernighan heuristic

Intra-route optimization is the same as a traveling salesman problem. A well known intra-route

optimization method is the Lin-Kernighan heuristic (LK). LK uses κ-opt moves to improve the

route. With κ-opt moves the complexity increases fast, so for this problem we use a upper limit for

κ of four. With κ-opt moves edges are removed and added to come to a better solution. With LK

we start looking at the longest edge in the route, this edge is considered to be removed. If we want

to remove the edge another edge that shares an endpoint with the removed edge has to be added.

When looking for a edge to add, we look at edges to the ten nearest nodes. We only consider a

move if the partial gain criterion is satisfied, so the cost of the added edges has to be lower than
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the cost of the removed edges. The pair of edges also has to satisfy the condition that closing the

tour results in a feasible tour. In a VRP the routes contains most of the times a few customers, so

all feasible κ-opt moves are considered for a particular starting edge before a move is executed.

The set of removed and added edges has to be distinct and for each node in the route only one of

the initial edges may be removed. When for a starting edge an improvement is found the move

with the highest gain is executed and LK will start again until no improvements can be found. An

example of a 3-opt move is given in figure 3. A more complete description can be found in Lin

and Kernighan (1973) or in Helsgaun (2000).
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Figure 1: Example of a LK move with a 3-opt move. First the edge (7,8) is removed and the edge
(8,4) is added. This must result in a positive gain to consider continuation of the move. An edge
incident to 4 must be removed and adding an edge from the new t4, edge (3,4) is removed and
edge (1,3) is added. Again continuation is only considered if the gain is positive. The move can be
completed by removing edge (1,2) and adding edge (2,7). The move is executed if it is the highest
possible gain.
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4.3 CROSS-exchange

CROSS-exchange (CE) is a inter-route optimizer, where two substrings r̂i and r̂j of routes ri and

rj are exchanged if this leads to a positive gain. For CE we first need to determine node Ik as the

starting point from the substring r̂i, Ik is the node in route I on index k of that route. For Ik we

only consider the C closest nodes as the starting point Jl of r̂j. When we consider a particular node

Jl , we need to remove edge to an incident node of Jl , either (Jl , Jl−1) or (Jl , Jl+1) and the other end

of the removed edge is connected to Ik+1. This is visually shown in figure 4.3. We only consider

the substring if the start results in a positive gain. So for the removal of edge (Ik, Ik+1), we need to

consider 4C starts, 2C for both nodes. Whenever the starting move results in a positive gain other

lengths of the substring are considered. If the completion of the exchange results in a positive gain

the move is added to the possible moves. Every size of substring r̂j is considered until the depot is

reached or the capacity constraint is violated. For every size of r̂i the same consideration applies.

There are also special cases where either r̂i or r̂j is empty, here different starting moves apply. If for

example r̂i is empty we only consider the cost of removed edge (Ik, Ik+1) and added edge (Ik, Jl).

If all possible substring are considered the candidate with the steepest decent is executed. A more

elaborate description of CE is given in Taillard et al. (1997).

Ik

Ik+1

Jl

Jl−1

Jl+1

Ik

Ik+1

Jl

Jl−1

Jl+1

Figure 2: Example of the possible starts for a given Ik and Ik+1, substring r̂i start in the direction of
Jl+1 or Jl−1.
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4.4 Relocation chain

Relocation chain (RC) is a also a inter-route optimizer. RC starts with the relocation of one cus-

tomer from route ri to route rj. A node from route rj is then replaced from rj to route rk. We repeat

this process until we have reached the limit of relocations. If the moves result in a positive gain,

the move is executed. If the move from a node from ri to rj results in a violation of the capacity

constraint, the move can still become feasible if a node from rj is replaced into route rk. The cost

of the detour of node Ik from route ri can be computed by:

cD = c(Ik−1, Ik+1)− c(Ik, Ik−1)− c(Ik, Ik+1)

Customer Ik will be inserted next to node Jl , it could be before or after Jl . The option with the least

cost will be considered. The cost of the insertion can therefore be computed with:

c1 = minJ∗l ∈(Jl−1,Jl+1)(c(Ik, Jl) + c(Ik, J∗l )− c(Jl , J∗l )

If CD + C1 ≤ 0 it can be considered as a start. If the relocation results in a feasible move the move

is considered as a candidate, else a relocation for a customer in rj is considered. The candidate

move with the highest gain will be executed. The limit of relocations is set at three.

D
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I3

I4

D

D

J1

J2

J3

J4

D

D

f1

f2

f3

D

D

I1

J3

I2

I3

D

D

J1

J2

f3

J4

D

D

f1

f2

f4

D

Figure 3: Example of a RC move with 2 relocations. First the customer I2 relocated to route J after
J2 , then customer J3 is relocated to route f after customer f2.
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4.5 Knowledge-guided local search heuristic

4.5.1 Initial solution

The construction begins with finding a initial solution with CW. The good solutions mostly have

as few routes as possible, because for every extra route we have an extra edge. To make sure the

starting solution begins with as few routes as possible we set a lower bound of different routes

at Mmin = dD
Qe, where D is the total demand and Q is the capacity limit. CW computes a so-

lution with MCW routes, if MCW > Mmin + 1 then we will compute a new CW solution with a

modification. The classic CW is computed with the savings:

s(i, j) = c(d, i) + c(d, j)− c(i, j)

Here d is the depot and c(i,j) is the cost of the edge between customer i and customer j. With the

modified CW the savings will be replaced with weighted savings. The weighted saving for edge

(i,j) is computed as follows:

sw(i, j)
s(i, j)

maxk,ls(k, l)
+

d(i) + d(j)
maxk,l(d(k) + d(l))

Here s(i,j) is computed as stated above and d(i) denotes the demand of customer i. Customers

with a high demand are now prioritized with this new formula, this should lead to less vehicles

needed to carry the demand. The individual routes in the starting solution are optimized with LK.

After the construction, initial optimisation is performed. CE and RC are applied to the solution,

after these two are applied all routes that changed are re-optimized with LK. The initial optimisa-

tion is now finished and badness of an edge can be set. To compute the badness of an edge we use

the following formula:

bw(i, j) =
w(i, j)

1 + p(i, j)

Here w(i,j) is the width of an edge and p(i,j) the number of received penalties, which will be

initialized at 0 for every edge. The width of an edge is computed as explained in Arnold and

Sörensen (2019b). Now everything is set up and the perturbation can start.
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4.5.2 Perturbation

When the perturbation starts the edge with the highest badness is penalized with one. Then we

use CE and RC on the edge (i,j) and we use cg as evaluation criterion. Here cg for edge (i,j) is

computed as follows:

cg(i, j) = c(i, j) + λp(i, j)L

Here c(i,j) is the normal cost of edge (i,j), lambda decides the impact of penalization and experi-

ments showed that lambda = 0.01 was a good value. L represents the average cost of a edge in the

starting solution. After this process is repeated 30 times the current solution is optimized. First

LK is applied, then CE and RC are applied on all edges that were changed during perturbation.

Now we use the normal cost as criterion. If a route is changed with CE or RC we apply LK on the

route. Now we update all the bw values. This process is repeated until the time limit is reached.

5 Extensions

The KGLS can be extended to solve other variants of the VRP. I demonstrate how the algorithm

could be adjusted so good quality solutions can be provided for the VRP with time windows and

the VRP with a heterogeneous fleet.

5.1 Time windows

The knowledge-guided local search algorithm can also be used to tackle the vehicle routing prob-

lem with time windows. With time windows, a customer can only be visited in a specific time

frame. This adds another constraint to the problem, which must be satisfied. Now the heuristics

for the initial solution have to be performed with another feasibility check. The time window con-

straints have to be respected as well.

For the following steps in the knowledge-guided local search, CE and RC can still be used, but

they have to take the time windows into account as well now. For every possible move now a fea-

sibility check for the time windows have do be done before a move is executed. The LK heuristic

can results in a big change in the route order, so when the last move is considered the new possible

solution is tested in both orders on feasibility for time windows. If the move is feasible and also

results in a positive gain the move is considered as a candidate. For CE a move results in allocating
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customers from route one into route two and vice versa, a possible move is checked on feasibility

before it is considered as a candidate. For RC all relocations for customers to another route are also

checked on feasibility for time windows. Because of the time windows, some parameter values

could now no longer be optimal and could be considered to be optimized again with experimental

research. The optimal size of the neighbourhood or the penalization value could vary now.

5.2 Heterogeneous fleet

An other variant and a extension of the vehicle routing problem is the vehicle routing problem

with with heterogeneous fleet. In the problem multiple sorts of vehicles can be used. Now the

algorithm must have the ability to change the vehicle type of a route. First with the initial solution

CW is adjusted to decide which type of vehicles are in the starting solution. The savings are now

computed with:

s(i, j)∗ = c(d, i) + c(d, j)− c(i, j) + C(ri) + C(rj)− C(ri + rj)

The first three terms correspond with the normal CW savings. The term C(ri) gives the cost of the

smallest possible vehicle to carry the demand of the route whereto i belongs. After every move in

CW the last three terms can differ, because adding a node to that specific route, so the saving for

every customer are computed again until no more moves can be executed. This solution should

offer a good starting point for the KGLS. Now KGLS should also be able to change the vehicle

type when optimizing, to achieve this, after the normal RC is executed a adjusted version of RC

will start. This version is able to relocate a customer from one route to another while changing

the vehicle type for both routes if necessary. In this relocation only one customer is relocated. The

relocating is executed if this results in a positive gain, taking the costs of the vehicles into account

as well. This version of RC will also be executed in the perturbation part.

Because KGLS does penalize the cost of a vehicle type, the penalty cost for edges should not be to

high, because then the cost of the vehicles will not be significant enough and the algorithm will

tend to use only the largest type of vehicle. Experiments showed that using λ = 0.001 gave the

best results.
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6 Data

The data is obtained from Uchoa et al. (2017). The data contains 100 instances varying from 100 till

1000 customers. The instances differ also on other characteristics, there is variation in the customer

distribution, the vehicle capacity, the demand of the customers and the relative position of the de-

pot. The position of the customers can be randomly chosen or be clustered, some instances have

a combination of the two. The capacity varies so different average lengths of routes are present

in the solutions. This data set provides a wide variation of possibilities so every type of problem

could be investigated. The results will be compared with the results from Arnold and Sörensen

(2019a).

For the VRPTW, the 56 instances with 100 customers from Solomon (1987) are used. The 100 cus-

tomers are uniformly or in a cluster distributed over a square. The instances are divided into short

and long time windows. In the instances with short time windows, the capacity of a vehicle will

be small, so only a few customers can be visited. The solutions computed in Kallehauge et al.

(2005) will be set as the benchmark for the knowledge-guided local search algorithm.

For VRP with heterogeneous fleet the benchmark from Taillard et al. (1997) will be used. The

instances used are from Christofides and Eilon (1969) and extended with different types of vehicles

by Golden et al. (1984). This are instances of 75 to 100 customers with three types of vehicles.

7 Results

The KLGS is implemented in Java using Eclipse and the instances are executed on a Intel Core i7

processor. For the instances a time limit is set, as a time limit per 100 customers KGLS is performed

3 minutes, so the time limit is computed with 3 N
100 minutes, where N is the number of customers.

In pre-testing using higher time limits did not result in significantly better solutions. Experiments

showed that using λ = 0.01 gave the best result form CVRP and CVRPTW, using λ = 0.001 gave

the best results for VRP with heterogeneous fleet. A pseudo-code of KGLS can be found in the

appendix at subsection 9.4.
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7.1 Replication

A summary of the result for the VRP are given in table 1. All individual results can be found in

the appendix in table 4, 5, 6 and 7.

Table 1: Average results of instances from Uchoa et al. (2017). Time is reported in seconds and the

gap is in respect to the specific benchmark.

Arnold and Sörensen

N Time Gap Time

100-250 109 0.81% 104

251-500 312 0.93% 266

501-1001 935 1.23% 596

446 0.99% 319

The table shows that the results obtained are slightly worse then the results from Arnold and

Sörensen (2019a). Also the time for computing the best solutions is slightly higher. For instances

with more customers the gap with the solution value becomes larger. A possible explanation for

this gap is the penalization of the edges, in the text it is unclear if the edge (i,j) is considered as

the same edge as (j,i). In LK or CROSS exchange the order of some used edges can turn, this

could lead to slower penalization of some edges. The paper also did not explain in which order

CE must be executed, so the difference in solution values may be due to the different order of the

CE execution. Now the edges were sorted on their saving value. The computational times were

significantly higher then the times of Arnold and Sörensen (2019a). This might be due to a more

efficient way of programming. Also not every instance had the same amount of vehicles in the

optimal solution.

7.2 Extensions

For VRPTW the instances of Solomon (1986) were tested. In table 2 the results for all the different

types are given. In Kallehauge et al. (2005) the solutions for the instances that are optimally solved

are given. Not for every instance the optimal solution was known. The solutions for all instance

can be found in the appendix in tables 8, 9 and 10.
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Table 2: Results of the instances given in Solomon (1986). Gap given is the difference between the

solution of KGLS and the solution as given in Kallehauge et al. (2005). Time is given in seconds,

the computational time for the results in Kallehauge et al. (2005) where not given.

Gap Time KGLS

Clustered 1.32% 18.7

Random 1.94% 105.5

Random-Clustered 2.74% 96.8

The sets of instances had a very different quality of results. The first set of clustered instances had

a for all instances a gap smaller then 0.22%. The second set of clustered instances scored signif-

icantly worse with some outliers of more then 5%. The sets of random instances scored mostly

between 1 and 2 percent with some outliers to 4%. The set of random clustered scored overall the

worst with almost all instances having a gap of more than 2%. The gaps are computed to their op-

timal solution, for some instances the optimal solution was not known in Kallehauge et al. (2005).

For the VRP with heterogeneous fleet edges should be penalized less, because they are only a part

of the total cost. In KGLS the vehicles for a specific route are not penalized, this resulted in a lower

optimal λ. The results for the instances from Golden et al. (1984) are given in table 3. They are

compared to the results from Taillard et al. (1997). The results from Taillard et al. (1997) are given

in the best solution and the average solution computed, the time is the average computed time.

Table 3: Results of the instances given in Golden et al. (1984). The first gap given is the difference

between the solution of KGLS and the best solution in Taillard et al. (1997). The second gap is

the difference between KGLS and the average solution in Taillard et al. (1997). Time is given in

seconds.
Taillard et al

N Time Gap Best Gap Average Time

50-100 57 2.52 % 2.19 % 2648

KGLS performs slightly worse for most instances. For instance 14 the gap between the prices of

the vehicles are significantly higher than for most other instance, here KGLS performs worse than

in most other cases. KGLS computes the solutions much faster then the algorithm given in Taillard

et al. (1997). Most instances scored or between 0% and 0.5% or between 2% and 3%. Their were
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no differences in solution qualities compared to the size of instance.

8 Conclusion

The aim of this paper was to test if KGLS could provide good solutions for variants of the VRP.

KGLS was compared with several state-of-the-art solution methods to know how good KGLS per-

formed. Three local search methods were combined to get good solutions. The solutions were

slightly worse than the used benchmarks, but the computation times were significantly lower.

The KGLS could thus be used for problems were low computation times are needed.

To know if KGLS was good starting point for VRPTW and VRP with heterogeneous fleet, the so-

lutions of KGLS were compared with high quality benchmarks. The results of KGLS were slightly

worse, but also here the computation times were lower. For VRP with heterogeneous fleet the

types of vehicles were not included in the penalization. In some cases this made KGLS perform

significantly worse.

KGLS also could easily be adjusted to perform well for other variants. The design of KGLS is

straight forward so implementations for feasibility checks or new relocation methods can be eas-

ily implemented. The VRPTW needed an extra feasibility check for potential relocations. For VRP

with heterogeneous fleet an extra option to change the vehicle type was implemented in reloca-

tion chain. In most cases this worked well, but for vehicles with a high cost difference this method

performed significantly worse.

In the future KGLS could be used as a starting-point for other solving methods and could be

improved with smarter penalization methods. For the other VRP with heterogeneous fleet a better

way to switch from vehicles could be implemented, or the vehicles should be penalized as well,

this could improve the solution quality. For CVRPTW KGLS could be adjusted so it also tries to

minimize the waiting time. KGLS is a well working solution method for problems with a restricted

computation time.
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9 Appendix

9.1 VRP results

Table 4: Results given of instances from Uchoa et al. (2017), instance number is given with number

of customers between brackets. Difference is computed between KGLS and the solution in Arnold

and Sörensen (2019a). Reported time is given in seconds.

Arnold and Sörensen

Instance KGLS Time Solution Gap Time

1 (101) 27643.6 38 27650.0 -0.02% 180

2 (106) 26504.3 30 26411.0 0.35% 90

3 (110) 15017.3 41 14971.0 0.31% 6

4 (115) 12764.4 76 12747.0 0.14% 12

5 (120) 13399.2 104 13332.0 0.50% 6

6 (125) 56441.8 11 55798.0 1.15% 6

8 (134) 10999.0 55 10916.0 0.76% 12

9 (139) 13661.7 17 13590.0 0.53% 6

10 (143) 15866.4 252 15728.0 0.88% 18

11 (148) 43934.1 10 43599.0 0.77% 102

12 (153) 21950.1 262 21390.0 2.62% 78

13 (157) 16911.0 3 16876.0 0.21% 252

14 (162) 14287.7 31 14147.0 0.99% 66

15 (167) 20684.8 38 20589.0 0.47% 12

16 (172) 45974.0 50 45807.0 0.36% 60

18 (181) 25743.3 6 25628.0 0.45% 42

19 (186) 24401.7 76 24194.0 0.86% 132

20 (190) 17164.0 195 17036.0 0.75% 324

21 (195) 44634.1 50 44442.0 0.43% 96

22 (200) 59931.8 75 58747.0 2.02% 300

23 (204) 19754.8 177 19666.0 0.45% 216

24 (209) 30919.3 51 30738.0 0.59% 30

25 (214) 11092.4 177 10929.0 1.50% 150

26 (219) 117796.4 50 117696.0 0.09% 66

27 (223) 41041.5 31 40691.0 0.86% 96
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Table 5: Results given of instances from Uchoa et al. (2017), instance number is given with number

of customers between brackets. Difference is computed between KGLS and the solution in Arnold

and Sörensen (2019a). Reported time is given in seconds.

Arnold and Sörensen

Instance KGLS Time Solution Gap Time

28 (228) 25983.4 356 25830.0 0.59% 108

29 (233) 19517.7 346 19341.0 0.91% 204

30 (237) 27282.6 176 27146.0 0.50% 12

31 (242) 83500.3 99 83144.0 0.43% 378

32 (247) 38439.8 355 37336.0 2.96% 240

33 (251) 39090.4 29 38916.0 0.45% 66

34 (256) 19011.3 28 18899.0 0.59% 126

35 (261) 26919.7 237 26704.0 0.81% 390

36 (266) 76464.7 57 75966.0 0.66% 282

37 (270) 35591.9 87 35453.0 0.39% 12

38 (275) 21487.1 156 21300.0 0.88% 132

39 (280) 34009.0 429 33709.0 0.89% 474

40 (284) 20577.2 500 20389.0 0.92% 258

41 (289) 96075.9 125 95885.0 0.20% 396

42 (294) 47846.7 78 47450.0 0.84% 258

43 (298) 34608.8 373 34332.0 0.81% 18

44 (303) 22089.9 212 21877.0 0.97% 186

45 (308) 26505.8 295 26072.0 1.66% 162

46 (313) 95475.4 187 94844.0 0.67% 534

47 (317) 78840.8 110 78414.0 0.54% 432

48 (322) 30627.6 217 30038.0 1.96% 156

49 (327) 27985.1 583 27652.0 1.20% 240

50 (331) 31572.5 588 31142.0 1.38% 372

51 (336) 140653.9 415 141060.0 -0.29% 24

52 (344) 42851.2 546 42398.0 1.07% 486

53 (351) 26438.1 214 26162.0 1.06% 180

54 (359) 52381.1 471 51988.0 0.76% 24

55 (367) 23721.9 339 22972.0 3.26% 498

56 (376) 148209.0 145 147879.0 0.22% 522

57 (384) 66949.9 174 66400.0 0.83% 42
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Table 6: Results given of instances from Uchoa et al. (2017), instance number is given with number

of customers between brackets. Difference is computed between KGLS and the solution in Arnold

and Sörensen (2019a). Reported time is given in seconds.

Arnold and Sörensen

Instance KGLS Time Solution Gap Time

58 (393) 38655.9 364 38381.0 0.72% 78

59 (401) 66792.0 276 66571.0 0.33% 30

60 (411) 20271.6 698 20065.0 1.03% 642

61 (420) 109036.7 164 108351.0 0.63% 150

62 (429) 66412.1 430 65820.0 0.90% 240

63 (439) 36709.9 693 36502.0 0.57% 252

64 (449) 56555.0 394 55747.0 1.45% 72

65 (459) 24760.3 275 24240.0 2.15% 810

66 (469) 226375.7 536 223433.0 1.32% 138

67 (480) 90944.7 340 89970.0 1.08% 228

68 (491) 67670.4 463 67261.0 0.61% 654

69 (502) 69621.3 156 69327 0.42% 900

70 (513) 24638.5 700 24287 1.45% 132

71 (524) 158465.8 625 155342 2.01% 606

72 (536) 96180.6 678 95875 0.32% 156

73 (548) 87507.1 396 86920 0.68% 672

74 (561) 43403.3 1008 42989 0.96% 78

75 (573) 51444.2 970 51020 0.83% 630

76 (586) 193396.0 1054 191094 1.20% 210

77 (599) 110261.0 389 109397 0.79% 642

78 (613) 60960.9 298 60100 1.43% 156

79 (627) 63255.4 602 62612 1.03% 132

80 (641) 65256.3 510 64035 1.91% 144

81 (655) 107168.0 318 106969 0.19% 132

82 (670) 152107.8 1205 147796 2.92% 18

83 (685) 69590.2 458 68927 0.96% 288

84 (701) 83479.0 710 82551 1.12% 144

85 (716) 44234.4 745 43772 1.06% 1008

86 (733) 137639.5 830 137364 0.20% 606

87 (749) 78909.7 652 78337 0.73% 156
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Table 7: Results given of instances from Uchoa et al. (2017), instance number is given with number

of customers between brackets. Difference is computed between KGLS and the solution in Arnold

and Sörensen (2019a). Reported time is given in seconds.

Arnold and Sörensen

Instance KGLS Time Solution Gap Time

88 (766) 117755.4 1372 115418 2.03% 588

89 (783) 73992.2 1008 73038 1.31% 708

90 (801) 74499.4 947 73525 1.33% 912

91 (819) 161333.1 1471 159525 1.13% 888

92 (837) 196497.3 1496 195203 0.66% 834

93 (856) 89909.5 1536 89289 0.69% 1494

94 (876) 100888.4 1493 100244 0.64% 1194

95 (895) 55643.5 1404 54321 2.43% 264

96 (916) 334614.2 1643 331081 1.07% 648

97 (936) 139024.3 1400 133968 3.77% 1578

98(957) 86572.6 1341 85756 0.95% 882

99 (979) 120665.5 1478 119737 0.78% 576

100 (1001) 74814.8 1015 73060 2.40% 1686
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9.2 VRPTW

Table 8: Results of instance from Solomon (1986). First value represents the distance, second value

the total scheduling time and third the waiting time. The difference with the optimal solutions

given in Kallehauge et al. (2005) is computed. Times of solutions given in Kallehauge et al. (2005)

were not given.

Kallehauge et al Kallehauge et al

Instance KGLS Time Solution Gap Instance KGLS Time Solution Gap

C101 828.9 1.2 827.3 0.20% C201 591.6 1.5 589.1 0.42%

9328.6 9530.7

0.0 0.0

C102 828.9 2.5 827.3 0.20% C202 591.6 12.5 589.1 0.42%

9339.5 9526.7

0.0 0.0

C103 828.1 7.1 826.3 0.21% C203 644.8 40.4 588.7 9.53%

9423.6 9600.0

445.8 592.3

C104 824.8 81.5 822.9 0.23% C204 614.5 10.6 588.1 4.48%

9653.2 9576.3

1040.3 781.1

C105 828.9 2.9 827.3 0.20% C205 589.7 4.3 586.4 0.57%

9342.7 9528.8

0.0 0.0

C106 828.9 1.8 827.3 0.20% C206 590.4 52.5 586 0.74%

9328.6 9529.4

0.0 0.0

C107 828.9 2.9 827.3 0.20% C207 590.2 14.7 585.8 0.75%

9328.6 9601.4

0.0 267.4

C108 828.9 7.3 827.3 0.20% C208 607.2 34.5 585.8 3.66%

9328.6 9544.2

0.0 0.0

C109 828.9 40.7 827.3 0.20%

9336.7

0.0
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Table 9: Results of instance from Solomon (1986). First value represents the distance, second value
the total scheduling time and third the waiting time. The difference with the optimal solutions
given in Kallehauge et al. (2005) is computed. Times of solutions given in Kallehauge et al. (2005)
were not given.

Kallehauge et al Kallehauge et al
Instance KGLS Time Solution Gap Instance KGLS Time Solution Gap

R101 1646.2 145.6 1637.7 0.52% R201 1156.8 31.9 1143.2 1.19%
2545.2 6111.6
2420.0 5764.5

R102 1489.2 14.8 1466.6 1.54% R202 1055.2 91.0
2247.6 5564.8
1929.8 4993.1

R103 1231.3 49.5 1208.7 1.87% R203 879.4 128.0
2159.3 4262.2
1403.2 3455.4

R104 1007.8 142.5 971.5 3.74% R204 750.3 115.0
1901.6 3452.7

506.2 2179.6
R105 1382.2 172.0 1355.3 1.98% R205 971.1 128.6

1955.4 3296.2
1052.7 971.1

R106 1262.2 167.3 1234.6 2.24% R206 900.7 78.5
1922.4 3438.4

430.2 2335.2
R107 1079.3 178.6 1064.6 1.38% R207 818.3 146.7

1886.2 2673.3
391.6 1416.9

R108 958.1 63.7 R208 710.9 83.6
1921.5 2136.6

548.5 696.0
R109 1170.2 125.1 1146.9 2.03% R209 877.3 49.8

1935.6 2908.1
536.5 1608.5

R110 1111.8 49.0 1068 4.10% R210 924.3 95.5
1961.4 4551.9

610.9 3765.8
R111 1057.0 146.9 1048.7 0.79% R211 771.5 159.0

1903.4 2742.1
341.5 1312.6

R112 970.5 63.1
1768.9

318.4
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Table 10: Results of instance from Solomon (1986). First value represents the distance, second

value the total scheduling time and third the waiting time. The difference with the optimal solu-

tions given in Kallehauge et al. (2005) is computed. Times of solutions given in Kallehauge et al.

(2005) were not given.

Kallehauge et al Kallehauge et al

Instance KGLS Time Solution Gap Instance KGLS Time Solution Gap

RC101 1665.7 28.7 1619.8 2.83% RC201 1290.4 165.3 1261.8 2.26%

2158.8 5685.5

1133.4 5259.2

RC102 1490.1 152.9 1457.4 2.25% RC202 1112.3 154.5 1092.3 1.83%

2222.2 5053.0

1259.8 4376.1

RC103 1313.7 51.6 1258 4.43% RC203 951.3 94.0

2097.1 3849.1

813.3 2692.6

RC104 1172.1 153.8 RC204 806.2 82.9

2028.7 3205.7

490.8 1862.2

RC105 1581.8 30.6 1513.7 4.50% RC205 1181.0 33.1 1154 2.34%

2019.2 5907.7

1548.4 5218.7

RC106 1412.4 121.3 RC206 1085.6 84.4

2059.1 4094.2

492.0 3265.0

RC107 1230.4 102.6 1207.8 1.87% RC207 980.3 53.1

1882.3 3445.0

440.6 2337.6

RC108 1140.8 93.9 1114.2 2.39% RC208 794.1 147.6

1730.5 2885.4

321.6 1578.1
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9.3 VRP heterogeneous fleet

Table 11: Results from the instances given in Golden et al. (1984). The gap is reported in % and

between the solution of KGLS and the average solution from Taillard et al. (1997).

KGLS Taillard et al

Value Time Best Average Time Gap

13 (50) 2503.9 50 2413.8 2436.8 470 2.75%

14 (50) 9648.1 11 9119.0 9123.6 570 5.75%

15 (50) 2600.9 39 2586.4 2593.6 334 0.28%

16 (50) 2807.4 81 2741.5 2744.3 349 2.30%

17 (75) 1814.7 46 1747.2 1753.7 2072 3.48%

18 (75) 2392.4 47 2373.6 2382.8 2744 0.40%

19 (100) 8670.2 35 8661.8 8665.4 12528 0.05%

20 (100) 4164.6 148 4047.6 4063.2 2117 2.50%

57 2648 2.19%

9.4 Pseudo-code

1. Construct a starting solution with CW, if MCW > Mmin + 1, use CW with adapted savings.

2. Optimise individual routes with LK.

3.Apply CE and RC. If a route is changed re-optimise it with LK, set b.

4. While time < time limit

5. While P<30

6. Penalize edge (i,j) with highest b(i,j) value by increment p(i,j).

7. Use CE and RC on (i,j) using cg

end while

8. Apply LK, CE and RC on all changed routes with normal c.

If a route is changed with CE or RC re-optimise it. Change b.

end while
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