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Abstract

In this research, we propose a novel procedure for forecasting when there is little data available.
This method could be interesting after an event that is suspected to have changed the parameters
in the model. Our two-step procedure allows for the possibility to only use the most recent data
due to information sharing between groups. Our procedure uses cluster analysis to establish these
groups among related problem instances. The groups are then jointly estimated with the joint lasso.
Which is a penalizing framework containing both a lasso term and a term that penalizes differences
between group-specific parameters. Before we started the procedure, we compared several stability
algorithms using simulated data. Ultimately, the bootstrap validation algorithm was used as the
stability algorithm to estimate the number of clusters k-means should partition the data into. The
results acquired show possible gains for using this two-step procedure.
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Forecasting via cluster analysis

1. Introduction

Structural changes pose a problem for the forecasting abilities of regression models. Disrupting
events (e.g. wars, pandemics and economic crises) are certainly not a thing of the past. Globalization
and rapid technological advancements, disruptions in themselves, might even increase the rate of
this structural instability or at least increase the size of their effect. Even if non-permanent,
as (hopefully) with the corona-crises, these time-variabilities are a central issue in econometrics
(Greene, 2000).

In this research, we investigate a novel two-step procedure to handle a key issue associated with
forecasting after a structural change, namely the lack of sufficient data associated with the new
situation. Dondelinger, Mukherjee, and Initiative (2020) propose the joint lasso as a method that
allows for information sharing between groups by treating them as related problem instances and
estimating the group-specific equations simultaneously. This method, therefore, performs well in
small sample sizes. Our two-step procedure uses the joint lasso to increase the forecasting abilities of
regression models, however, to be able to use this method, first groups have to be established. This
constitutes the first step and involves cluster analysis where we use stability algorithms to determine
the number of clusters in the dataset when using k-means. Each cluster will form a group in the joint
lasso regression and will thus have the same coefficients. In this way, our two-step approach consists
of first determining the number of clusters, ’k’, by an algorithm that maximizes the robustness of
the clustering (i.e. stability algorithm) and applying k-means with this value for ’k’. Secondly,
forecasts are obtained by using the coefficients estimated from the joint lasso model. We use the
same data for clustering and estimation of the coefficients to get as much information out of the
data as possible to investigate if this enhances the forecasting ability. Thus, we investigate the
following research question:

Does our two-step procedure, consisting of clustering and applying the joint lasso method, increase
forecasting performance?

In their paper, Dondelinger et al. (2020) mention that they rely on expert knowledge and clinical
trials to determine groups, which at times do not lead to clear groupings. This possibly explains the
mixed results and why their method does not always outperform other methods such as a pooled
regression. By applying cluster analysis we try to extract as much information and patterns from
the data. This can lead to better results and be of help in a situation where the theory has not been
established or in a social science such as economics; in which consensus sometimes is hard to find,
in which the theory is questionable (e.g. rationality) or empirical results do not (fully) support the
theory (e.g. international trade theories).

The choice for the clustering method and determining the number of clusters is not a trivial one.
In cluster analysis, a major issue is assessing the quality of the outcome. How well the proposed
partition fits the data is difficult to assess, as different cluster algorithms give different partitions
(none of which have proven to be the ’best’) and there is the issue of the number of clusters in which
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the data should be split (Arbelaitz, Gurrutxaga, Muguerza, PéRez, & Perona, 2013). There has
been a lot of research on the quality of cluster analyses and algorithms to select a certain partition
’k’ (Milligan & Cooper, 1985; Dubes, 1987; Bezdek, Li, Attikiouzel, & Windham, 1997; Brun et al.,
2007; Arbelaitz et al., 2013). They show that there is no one method that always outperforms the
rest, it depends on the data and to which set the selection approach belong. For example, selection
procedures may focus on within-cluster dispersion relative to an expected distribution, minimizing
the distortion (average distance per dimension) or on a measure of cluster stability (Fu & Perry,
2020). Most research, comparing the performance of different algorithms, happens when a new
selection algorithm is proposed. This possibly creates a bias in the data selection and the choice
of rivalling selection procedures to compare with, such that their proposed method seems more
attractive. Arbelaitz et al. (2013) without introducing a new method, perform comparisons to test
multiple methods, which suggest which value for ’k’ to take when performing, for example, k-means.
Yet, they completely leave out algorithms focused on cluster stability, therefore we propose doing
their approach on algorithms that use stability as a metric.

By performing a similar study on several algorithms which try to minimize cluster instability
and create stable clusters as defined by Wang (2010), researchers can better assess which algorithm
to apply if a stability based validation is the appropriate goal. Especially if it turns out, as in the
paper by Arbelaitz et al. (2013) on their set of algorithms, which algorithm to use is dependent
on the characteristics of the data. This research, can then show which kind of algorithm to apply
on what kind of data. We use the results of this comparison part to determine which stability
algorithm we should use for our two-step approach.

Our two-step procedure is performed on economic data. The data consists of macro-economic
characteristics of the 28 European Union member states from 2000 to 2018. To our limited knowl-
edge there are only a few instances, Vichi and Kiers (2001) is one of them, in which cluster analysis
has been applied to cluster countries based upon economic data. We use the data from 2000 to
2016 to estimate the model and use 2017 and 2018 to forecast upon. Since our model is quite large
this is equivalent to a situation in which observations are scarce. Our focus is on predicting the
economic growth of countries. By comparing the forecasting results to those of other regressions
methods, such as the pooled regression and pooled mean group regression, we can assess if the
two-step method is appropriate to forecast after a structural change. In such a case one expects
the influence of variables to change and one has little data on the new situation (i.e. Brexit, eco-
nomic crises, pandemics, etc.). This paper is structured as follows; in the next chapter, the various
methods and procedures that we use are explained. Afterwards, we discuss in more detail the
datasets. In chapter 4, we discuss the results of both the cluster analysis and the two-step approach
on the economic data. Lastly, we dedicate a chapter on giving our concluding thoughts, areas of
improvement and possible interesting new paths to explore.
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2. Methodology

We describe the procedure and methods used in research. We start by going over the evaluation of
the stability algorithms for clustering, afterwards, we discuss the procedure applied to the economic
data of European Union member states. This, to investigate if clustering in combination with the
so-called joint lasso regression can improve forecasting performance compared to pooled regressions.

2.1 Cluster analysis

In cluster analysis, one tries to obtain a set of disjoint clusters or groups based on the features and
(hidden) patterns of the data. The objective is to make sure that the observations in one group are
similar while those between different partitions are different (Madigan, 2002). Different methods
exist to achieve clusters of data, they can be distanced or non-distanced based. In this paper, we
focus on k-means, a distance-based method, to cluster our data (Alsabti, Ranka, & Singh, 1997).
K-means works by finding the solution to the objective function J :

arg min
s

J = arg min
s

k∑
i=1

∑
xj∈Si

‖ xj − µi ‖2, (2.1)

where xj belongs to the set of observations (x1, x2, ..., xn), Si belongs to the set of clusters (S1, S2, ..., Sk)
with k ≤ n and µi is the center chosen for cluster i. The objective function is minimized for given
k, thus the number of clusters k is fixed and needs to be determined either by the investigator’s
(prior) knowledge or by an algorithm (e.g. a stability algorithm in our case). Equation 2.1 finds k
points (cluster center) and assigns each observation to the closest point of these k points such that
the total squared euclidean distance between the observations and their cluster center is minimized.
See algorithm 1 for a description of the algorithm that finds a solution for J .

Finding the minimum value of J is dependent on the initialization values, it is common to do
several replications, each with different values for the starting centers and then choose the clustering
that gives the lowest objective value. The solution the algorithm provides is dependent on the
initialization values because it can get stuck in a local minimum instead of the global minimum
that we look for. Wang (2010) suggests using 20 random starts, for our simulated data we use 30
different restarts and for our economic data 50. To further reduce the possibility to get stuck in a
local optimum instead of finding the global optimum. The difference (30 versus 50) is due to the
many datasets and algorithms to be tested in our simulation and thus the computation time would
get too large.

As stated, the number of clusters (k) needs to be specified beforehand. Our cluster analysis
focuses on evaluating the performance of stability based algorithms to determine the value of ’k’.
With this, we want to gain insight in the different algorithms and be able to justify the choice of a
particular stability based algorithm in combination with k-means to partition our economic data.
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We evaluate five different stability algorithms, which are mentioned and discussed at the end of
this section. We draw random samples from the dataset using a chosen method (e.g. k-means),
the clustering is called more stable if the partitions change less from one sample to another than
of another partitioning (Wang, 2010). Thus, it is a measure of cluster robustness produced by a
method over the randomness in a sample. A robust cluster should only contain observations that
always appear together regardless of the clustering analysis.

To gain the aforementioned insight we apply the stability algorithms in combination with k-
means to cluster simulated data (detailed description of the data can be found in the data chapter).
The stability algorithm suggests a value for ’k’ in k-means, to evaluate the suggestion by each
stability algorithm a metric has to be chosen. Normally, the correct value for ’k’, the correct
number of clusters, is compared with the value proposed by the algorithm and it is considered a
success if the algorithm chooses this correct ’k’ (Wang, 2010; Fu & Perry, 2020; Fang & Wang,
2012; Tibshirani & Walther, 2005). Thus, it is considered a success if the number of clusters into
which the data needs to be clustered as proposed by the stability algorithm matches the number of
correct number of clusters. The advantage of using simulated data is that beforehand it is known
what the actual clustering should be and thus also what the correct value for ’k’ is. However, the
limitation of this measure of success is that the correct number of clusters does not always align
with the ’best’ partition (Figure 2.1). Which is the partition that matches the correct partition the
most (following the construction of the simulation) (Arbelaitz et al., 2013). Therefore, Arbelaitz
et al. (2013) proposes a partition similarity measure, the one we use is the Adjusted Rand. And so
the stability algorithm has correctly partitioned the data in our approach when it chooses the value
’k’ with the greatest Adjusted Rand. The Rand index measures the extent of agreement between
two clusterings, where an agreement is seen as two observations being assigned to the same cluster
or different clusters in both clusterings. The Adjusted Rand index corrects the original Rand index
for chance (Hubert & Arabie, 1985):

Rand− Expected Rand
MaximumRand− Expected Rand

, (2.2)

where Rand stands for the Rand index and is calculated as:

RI =
Xss +Xdd

Xss +Xdd +Xsd +Xds
, (2.3)

here there are two partitions and Xss, Xdd, Xsd, Xds are the number of pairs of a set that are in
the same subsets in both partitions, different subsets in both partitions, in the same subset in the
first partition but not in the second and in different subsets in the first partition but in the same
subset for the second partition, respectively.

2.1.1 Stability

Before we delve into the five stability clustering algorithms that we compare, it is first necessary to
more precisely define clustering stability. Given a set of observations X = {x1, x2, ..., xn} residing in
a p-dimensional space, X ∈ Rp, a cluster algorithm, Ψ(X, k), creates a mapping ψ : X 7→ {1, 2, ..., k}
with k ≥ 2. The distance between two clusters ψ1(X) and ψ2(X) can be calculated with:

d(ψ1(X), ψ2(X)) = P(ψ1(X) = ψ1(Y ), ψ2(X) 6= ψ2(Y )) + P(ψ1(X) 6= ψ1(Y ), ψ2(X) = ψ2(Y ))
(2.4)
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(a) ’correct’
This is the original: two overlapping circular

clusters and one elongated cluster.

(b) ’incorrect’
Same cluster figure partitioned differently,
due to the overlapping being considered as

one cluster

Figure 2.1: Two different partitions into three clusters
(a), is seen as correct as the data is simulated by two spheres (blue and yellow) which overlap and one ellipse (red).

It, thus, consists of three bodies (e.g. clusters). (b) applies a cluster algorithm to divide the data into three
clusters. However it splits the ellipse and combines the overlapping spheres. Many observations are now taken

together that should not be together or are split while you want them to be seen as the same. Splitting into two
cluster (ellipse as one cluster and overlapping sphere as the other) would cause observations to be taken together

that you might not want but at least observations that do belong together will be taken together.

where X and Y are independently drawn from X, hence this distance can be seen as the proba-
bility of disagreement between the two clusters. Using this definition of distance the instability can
be calculated as:

s(Ψ, k, n) = E[d{Ψ(Zn; k),Ψ(Zn∗; k)}], (2.5)

where Ψ(·, k) is applied to two independent samples Zn and Zn∗ of size n from X and the expectation
is taken with respect to these samples.

This metric for stability is small for a stable clustering (s(Ψ, k, n) lies between 0 and 1). An
incorrect number for the amount of clusters leads to an unstable clustering. With a value for ’k’
larger than the correct ’k’, the ’true’ clusters split into smaller ones that change between samples.
For example, one of the ’true’ clusters is forcefully split into two clusters, while there is no pattern
that determines which of the two new clusters an observation belongs. In this case, an observation
will randomly be assigned to one of the new clusters. A similar issue holds for a ’k’ smaller than
the correct ’k’ since true clusters get clumped together and this most likely also changes from one
sample to another. Even in asymptotically large samples where convergence happens to a stable
clustering, the rate of conversion is a tell since clustering algorithms with the correct value for ’k’
converges faster as shown by Wang (2010).

2.1.2 Prediction strength algorithm

One of the first algorithms associated with cluster stability is called the Prediction Strength al-
gorithm (Ps) by Tibshirani and Walther (2005). The method uses the following principle: first,
divide the data into a training set and a test set to be divided into ’k’ clusters; second apply the
cluster method to the training set (e.g. k-means: Ψ(Ztraining; k)); then apply the same method
to the test set (Ψ(Ztest; k)), lastly the established cluster centers from Ψ(Ztraining; k) are used to
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assign the test data to the training clusters (an observation is assigned to the cluster which center
is most near).

Now define an n × n matrix (C[Ψ(Ztraining; k), Ztest]), where n is the amount of observations
in Ztest. Entry ii′ is 1 if observation i and observation i′ are in the same cluster in both the
prediction clustering as well as the test clustering. Thus, for each pair of observation in the test
set we determine if the training clustering puts them in the same cluster if the test cluster did so
as well. Putting this together Tibshirani and Walther (2005) gives us the following metric:

Ps(k) = min
1≤j≤k

1

nj(nj − 1)

∑
i 6=i′∈Aj

C[Ψ(Ztraining; k), Ztest]ii′ , (2.6)

with k being the number of clusters, Aj being cluster j and nj being the amount of observations
inside cluster Aj . Thus, the prediction strength is the minimum proportion of observation pairs
inside a test cluster that are also assigned to the same cluster by the training cluster centers over
each test cluster. From experiments Tibshirani and Walther (2005) suggests taking the largest k∗
over a set of ’k’ values such that Ps is above the 0.8-0.9 threshold of a scale from 0 to 1.

The final thing to be mentioned is how the training and test set should be chosen from the
data. The method chosen for this is cross-validation, more specifically two-fold cross-validation to
avoid bias and overfitting on the training set. R-fold cross-validation entails that the data is split
into r equally sized proportions, of which r-1 proportions (or blocks) are used as training set and
the remaining r’th block is used as test test. Every proportion is once used as test set, while the
remaining are used as training set, doing this ensures that the results are not biased due to the
chosen block. Of all the combinations of training/test blocks the results are gathered and combined
and will count as Ps for that particular value of ’k’.

2.1.3 Cross-Validation algorithms

The two Cross-Validation algorithms by Wang (2010) are called Cross-Validation with voting (CVv)
and Cross-Validation with averaging (CVa) (Wang, 2010). Instead of using r-fold cross-validation
they are based on a leave-many-out cross-validation method (which in this case is a set of splittings
with the same splitting ratio) and it works with an estimated version of equation 2.5. The data is
split into three sets: two equally sized training sets and one test set. Then the two training sets
are used to construct two clusterings via Ψ(Xt1; k) and Ψ(Xt2; k) (k-means in our case). These two
clusterings are used to predict the test set and then the similarity distance (equation 2.5) between
these two predictions is measured.

Method for CVv (Wang, 2010):

1. Permutate the data X = {x1, ..., xn} into Z∗c = {x∗c1 , ..., x∗cn }

2. Split Z∗c into three parts with m, m and n−2m observations, respectively (we set m = n/3):
Z∗c1 = {x∗c1 , ..., x∗cm}, Z

∗c
2 = {x∗cm+1, ..., x

∗c
2m} and Z∗c3 = {x∗c2m+1, ..., x

∗c
n }

3. V ∗cij (Ψ, k,Z∗c1 ,Z
∗c
2 ) = I[I[ψ∗c1 (x∗ci ) = ψ∗c1 (x∗cj )] + I[ψ∗c2 (x∗ci ) = ψ∗c2 (x∗cj )] = 1]

here ψ∗c1 = Ψ(Z∗c1 ; k) and ψ∗c2 = Ψ(Z∗c2 ; k). This equation gives 1 if the two clustering do not
agree on whether x∗ci and x∗cj should be in the same cluster (i.e. instability).
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4. Now the estimation of equation 2.5 based on this c’th permutation becomes:

ŝ∗c(Ψ, k,m) =

n∑
j=i+1

j∑
i=2m+1

V ∗cij (Ψ, k,Z∗c1 ,Z
∗c
2 ) k = 2, ...,K

5. Compute
k̂∗c = arg min

2≤k≤K
ŝ∗c(Ψ, k,m)

6. Repeat steps 1-5 for c = 1, ..., C and compute k̂ as the mode of {k̂∗1, ..., k̂∗C}.

Method for CVa (Wang, 2010):

1. Step 1-4 are the same as in CVv

2. Repeat steps 1-4 for c = 1, ..., C and compute

ŝ(Ψ, k,m) =

∑C
c=1 ŝ

∗c(Ψ, k,m)

C

3. Compute
k̂∗c = arg min

2≤k≤K
ŝ(Ψ, k,m)

.

Thus, with voting the value for ’k’ is determined by the k that most of the time gives the least
amount of instability, while for averaging it is determined by the k that over all permutations gives
the lowest average instability. In both cases when there is a tie in step 5 or 6 of CVv or in step
6 of CVa the largest value of ’k’ is chosen as tie-breaker. For our research we set the number of
permutations (C ) equal to 25.

2.1.4 Bootstrap validation algorithm

The method proposed by Wang (2010) was supposed to result in better cluster partitions (i.e. more
stable) and be computationally faster than previous suggested cross-validation algorithms by Wang
(2010). However, CVv and CVa split the data into three sets, two training sets and one test set. The
use of only one-third of the dataset to train k-means causes inefficiencies, thus a new variant was
proposed that relies on bootstrapping (Fang & Wang, 2012). Bootstrapping relies on drawing with
replacement from the sample to create more simulated samples without knowledge of the underlying
distribution. This way the training set is of the same size as of the original dataset. Thus, instead
of taking permutations and splitting the data, observations are randomly drawn (with replacement)
from the original dataset until there are two additional datasets with the same length as the original
dataset.

Bootstrap Validation algorithm (Bv):

1. Generate B independent bootstrap sample-pairs (Xb1,Xb2) with b = (1, ...B). Each sample
consists of n observations drawn with replacement from the original dataset of size n.
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2. Create the clusterings Ψ(Xb1; k) and Ψ(Xb1; k) for all b = (1, ...B)

3. For each bootstrap sample-pair calculate:

ŝb (Ψ(Xb1; k),Ψ(Xb2; k)) =

1

n2

n∑
i=1

n∑
j=1

∣∣I {ΨXb1,k (xi) = ΨXb1,k (xj)} − I
{

ΨX̄b2,k (xi) = ΨX̄b2,k (xj)
}∣∣

4. Compute the cluster instability as

ŜB(Ψ, k, n) =
1

B

B∑
b=1

ŝb (Ψ(Xb1; k),Ψ(Xb2; k))

5. Compute
k̂ = arg min

2≤k≤K
ŝ(Ψ, k, n)

Fang and Wang (2012) propose to increase the set of values ’k’, (k = 1,...,K), if the algorithm

in step 5 suggests to take ’K’ as the value for k̂.

2.1.5 Gabriel cross-validation algorithm

The Gabriel cross-validation algorithm (Gc) is based on a form of cross-validation in which both
the columns and rows are permuted (Fu & Perry, 2020). In the stability algorithms, clusters
are considered useful if in multiple independent samples from the same population the clustering
arises. The Gc uses a different approach, but is still inspired by the stability algorithms and thus
we gather it under the stability algorithms. The stability comes from using both the dimensions of
an observation and the cross-validation of the observations themselves to create meaningful clusters
that manifest themselves in independent samples.

Method for Gc:

1. Divide the sample matrix into a

X =

[
Xtrain Ytrain
Xtest Ytest

]
where Xtrain ∈ Rn×p, Ytrain ∈ Rn×q, Xtest ∈ Rm×p, and Ytest ∈ Rm×q

Using a K × L fold with K = 5 and L = 2

2. Cluster the rows of Ytrain with k-means yielding ’k’ cluster centers

3. Use the rows ofXtrain as predictors and the cluster labels of the rows of Ytrain as corresponding
labels. Use these pairs to fit a model that can predict the label of the rows of Xtrain. This
can be done by computing the mean value of X for each class; we assign an observation to
class ’i’ if that class has the closest mean.
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4. Apply this model to the rows of Xtest, thus for every row you obtain a label. Then assign
these labels to the rows of Ytest.

5. Each row of Ytest is now related to a cluster center µŶ i where i is the row of Ytest. Calculate
the metric Gc(k) as:

Gc(k) =
1

m

n+m∑
i=n+1

(Yi − µŶ i)
2

The average Gc(k) over the folds will be calculated and the value of ’k’ corresponds to the one
minimizing the average value. In the case of a tie, choose the smallest ’k’.

Thus, to summarize our approach: we apply k-means to simulated data with ’k’ ranging from
2 to 10. Then we let the 5 stability algorithms determine which value for ’k’ they propose. An
algorithm will be counted as a success if it chooses the ’k’ that maximizes the Adjusted Rand. The
simulated data consists of 640 different datasets, which contain 64 combinations of six different
characteristics and each combination has 10 replications. The exact details and explanations of
this data can be found in the data section. Based on the results the algorithm which has the most
successes is chosen as algorithm to determine the amount of clusters for the economic data.

2.2 Regressions & Forecasting

This section explains the methods and modelling strategy for the economic data. The goal of
this section is to gauge the effect clustering has (via k-means and the stability algorithm) on the
performance of forecasting via the joint lasso regression (Dondelinger et al., 2020) when there is
a limited amount of observations. We compare the forecasting performance of this joint lasso
regression with the traditional methods used on this kind of dataset. We first explain the methods
used and how they are implemented before we delve into the procedure used.

2.2.1 Pooled regression

The data that we use consists of European Union member states in the period 2000-2017. This
means it consists of 28 countries (cross-sectional data, denoted by subscript ’i’) and 18 years (time
serial data, denoted by subscript ’t’) of which the years 2016 and 2017 will be left out and be
forecasted upon. Data with both a cross-sectional and time serial component are called panel data.
In our panel data, we use growth in GDP per capita as the dependent variable (∆ ln(y)i,t). Where
∆ stands for the first difference and y stands for GDP per capita. The independent variables are
GDP per capita in the previous year (ln(y)i,t−1), capital accumulation (ln(Kap)i,t), human capi-
tal (ln(H)i,t), population growth (Popi,t), annual inflation percentage (Fli,t), general government
revenue (ln(Govrev)i,t), general government consumption expenditure (ln(Govexp)i,t), government
capital formation (ln(Govcap)i,t), R&D expenditure (ln(RD)i,t), trade exposure (Txpi,t), and a
time trend (T ). For more details on how these variables are actually defined and measured we refer
to the data chapter.

One way to deal with panel data is to ignore the time dimension and view all observations as
part of one big cross-section. In the style of Bassanini and Scarpetta (2002) we achieve the following
model:
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∆ ln(y)i,t = β0 + β1∆ ln(Kap)i,t + β2∆ ln(H)i,t + β3∆Popi,t + β4∆Fli,t

+ β5∆ ln(Govrev)i,t + β6∆ ln(Govexp)i,t + β7∆ ln(Govcap)i,t

+ β8∆ ln(RD)i,t + β9∆Txpi,t + θ1 ln(y)i,t−1 + θ2 ln(Kap)i,t

+ θ3 ln(H)i,t + θ4Popi,t + θ5Fli,t + θ6 ln(Govrev)i,t + θ7 ln(Govexp)i,t

+ +θ8 ln(Govcap)i,t + θ9 ln(RD)i,t + θ10Txpi,t + θ11T + εi,t, (2.7)

the ∆ sign in front of variables means that the first difference was taken. In this model the
usual OLS properties hold, the estimators are unbiased and consistent. The advantage of using this
model is that in the case of limited observations, which we try to investigate, all the observations
are ’pooled’ together to estimate the parameters. In other words, these observations have the same
coefficient. However, the downside is that all the coefficients are the same for all countries and
across time. This is not very realistic, thus (Bassanini & Scarpetta, 2002) proposes the pooled
mean group estimation (PMG).

2.2.2 Pooled mean group estimation

PMG is a regression model that allows for the short-run coefficients to be different per country
while imposing the long-run coefficients to be equal for each country. This model thus fits economic
theory which tells that there is a common (conditional) steady-state to which economies converge
in the long-run. Another advantage of the model is the gained efficiency in small sample size
since outliers have limited influence on the countries coefficients in contrast to a model in which all
coefficients are country-specific (Bassanini & Scarpetta, 2002). This leads to the following equation:

∆ ln(y)i,t = β0 + β1∆ ln(Kap)i,t + β2∆ ln(H)i,t + β3∆Popi,t

+β4∆Fli,t + β5∆ ln(Govrev)i,t + β6∆ ln(Govexp)i,t + β7∆ ln(Govcap)i,t

+β8∆ ln(RD)i,t + β9∆Txpi,t

 short-run

+θ1 ln(y)i,t−1 + θ2 ln(Kap)i,t + θ3 ln(H)i,t + θ4Popi,t + θ5Fli,t

+θ6 ln(Govrev)i,t + θ7 ln(Govexp)i,t + θ8 ln(Govcap)i,t

+θ9 ln(RD)i,t + θ10Txpi,t + θ11T + εi,t.

 long-run

(2.8)

The PMG allows for short-run coefficients, intercepts and the error variances to differ across
the countries. It could also allow for a convergence parameter to differ across countries as in the
paper of Bassanini and Scarpetta (2002). We, however, choose the convergence parameter to be
equal across the countries considering that the European Union member states are more similar
and according to economic theory should converge quicker than the OECD countries. The faster
and similar convergence can be attributed to an intensive intra-trade, an overarching governmental
body, a common currency for most countries (even in the case of countries with a different currency
there is still a peg or tie to the Euro) and a high level of (economic) integration. The common
convergence parameter also allows for easier implementation of the lasso and joint lasso.
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2.2.3 Lasso and joint lasso

The lasso regression is a method that introduces a bit of bias into the estimation of the parameters
in order to reduce the overfitting and enhance the forecasting ability (Tibshirani, 1996). In machine
learning this is called the bias versus variance trade-off, because you fit the training data less well
(higher bias) in order to reduce the error between the test data and the predicted values for the test
data (lower variance). Another benefit of using a lasso term is that it allows for variable selection
because it is able to put the value of coefficients to zero if their effect is small. The closely related
ridge regression (another regularization technique) lets such coefficients asymptotically shrink to
zero but they will never actually get to zero. The lasso form is:

B̂ = arg min
β∈Rp

{
1

N
‖y −Xβ‖22 + λ‖β‖1

}
(2.9)

where ‖ · ‖q denotes the lq-norm 1 and λ is a tuning parameter which follows from cross-validation.
The larger the λ the larger the bias, will be and thus the poorer the training sample fit. Furthermore,
if λ becomes bigger the parameters, which do not add (much) to the prediction of the dependent
variable go to zero. The downside of the lasso regression (i.e. including a lasso term) is that
obtaining the standard errors and thus determining the statistical significance of the coefficients is
still an unresolved issue (Tibshirani, Hoefling, Wang, & Witten, 2011).

The lasso forms the basis for the joint lasso, this technique allows groups of observations to
be pooled together to increase the predictive ability and the efficiency to estimate the coefficients,
whilst at the same time introducing similarity instead of equality between the coefficients of groups
(Dondelinger et al., 2020). By jointly estimating the groups this way, information between groups
can be shared. This approach is beneficial for problems in which the sample size per group is small,
a high number of coefficients have to be estimated and/or one expects group-specific coefficients
to be similar but not identical. In our case, we can view countries that are clustered together as
one group and since they are all EU member states we expect the coefficients do not differ greatly
between groups. Thus the introduction of a penalty to obtain similarity between groups makes
sense. For example, the effect a growth in population for Poland will not be the same as for the
Netherlands on the growth of the economy but one does not expect a huge difference, especially
not considering the free movement of labour in the EU. The joint lasso is of the form:

B̂ = arg min
B=|β1···βk|

K∑
k=1

{
1

nk
‖yk −Xkβk‖22 + λ ‖βk‖1 + γ

∑
k′>k

τk,k′ ‖βk − βk′‖22

}
(2.10)

,
in which τk,k′ , λ and γ are called tuning parameters. As can be seen, λ and γ are considered to

be equal across the groups whilst τ differs and can be changed to determine the degree of similarity
between certain subgroups. The λ and γ are determined by cross-validation, whilst τk,k′ is set at
unity as done by Dondelinger et al. (2020). The index ’k’ refers to the different clusters in our
setting.

2.2.4 Procedure & implementation

To test if the joint lasso can improve the forecasting performance on this economic dataset, we first
use k-means in combination with the ’best’ stability method chosen from the previous section to get

1‖(x1, x2, . . . , xn)‖q = (|x1|q + |x2|q + . . . + |xn|q)1/q
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meaningful (in our case stable) groupings. The clusters proposed by the stability algorithm forms
the K groupings in the joint lasso regression. The forecasting performance is measured by the mean
standard prediction error (MSPE ) over the period 2017-2018 and compared with the forecasting
performance of the pooled regression (equation 2.7), PMG (equation 2.8) and the joint lasso for K
equals two. The reason behind the pooled regression (no groupings) is that Dondelinger et al. (2020)
show that their method has mixed results and does not always beat the pooled regression. While we
choose MSPE because it fits economic theory and it is tailored for this dataset, also if the joint lasso
terms are added then it is the same as seeing every country as a grouping. Moreover, by choosing
K=2 we evaluate if the joint lasso improves forecasting performance but that the groupings chosen
by the stability algorithm are not useful. The choice for K=2 is because this is the simplest partition
(ignoring the trivial K=1) and results, most likely (due to using mostly economic parameters) in a
division between rich and poor countries which is an intuitive partition. Lastly, we would like to
stress that besides the clustering into two clusters (K=2) and the number of clusters proposed by
the chosen stability algorithm, we also automatically include no groupings (K=1) and all countries
belonging to a separate group (K=28) by using the pooled regression and PMG, respectively.

The implementation is based on the optimization method of Dondelinger et al. (2020), however,
to be applicable to our work it has to be augmented. In our research, some coefficients do not
change per country (long-run coefficients) and thus only part of the coefficients need to obtain
the joint lasso penalty (the third part of equation 2.10). We start by first neglecting the long-run
part such that we get an equation that is similar to the one of Dondelinger et al. (2020). If we
define Xsdiag as a block-diagonal n× pK matrix with Xsk along the diagonals we get the short-run
equation (equation 2.8). Here Xsk is the ’kth’ group of short-run observations, n stands for the
total number of observations, p for the number of short-run coefficients and K for the number of
groups. Thus, we obtain ys −Xsdiagbs with:

Xsdiag =

 Xs1

. . .

XsK

 bs =

 bs1
...
bsK

 ys =

 y1

...
yK .

 (2.11)

We define the l2 penalty in such a way that we can move it into the squared term. The Γ matrix
is a pK(K − 1)/2× pk matrix containing the pair-wise constraints belonging to a pK(K − 1)/2× 1

vector of zeros (
−→
0 ). Γ consists of p-row blocks Γk,k′ , k, k

′ ∈ [1,K], k < k′ that entail the constraint
between two coefficient vectors βsk and βsk′ . Γk,k′ is filled with2:

Γk,k′(l,m) =

 γτk,k′ if l = −p(k − 1) +m
−γτk,k′ if l = −p (k′ − 1) +m
0 otherwise .

(2.12)

We now obtain: b̂augs = arg min
baug
s

∥∥∥yaugs −Xaug
sdiagb

aug
s

∥∥∥2

2
+ λ ‖baugs ‖1, with

Xaug
sdiag =

(
Xsdiag

Γ

)
yaug

s =

(
ys−→
0

)
. (2.13)

2There seems to a mistake in the way Dondelinger et al. (2020) defines Γk,k′ . Fortunately, they made their
package available for us to check and it seems that the matrix should indeed be filled as we propose. Thus, their
package fills it the same way as mentioned here and not as defined in their paper.
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Lastly, we incorporate the long-run variables without the l2 penalty, but they can have a lasso
term. To do this we introduce the n ×m matrix Xl in which m are the long-run coefficients and
the rows are in the same order as the rows of Xsdiag. Furthermore, we need the bl m× 1 vector of
long-run coefficients. Now we can use the glmnet package with:

Xfinal =

(
Xl Xsdiag

0 Γ

)
bfinals =

(
bl
bs

)
yaug

s =

(
ys−→
0

)
, (2.14)

for it is now a classic lasso problem.

3. Data

In this chapter, we describe the data used for our experimental setups. First, the simulated datasets
which are used to evaluate the different stability algorithms are covered. Afterwards, the economic
data are specified, these are used to cluster the countries using k-means with the help of the stability
algorithm. As previously mentioned, the stability algorithm to be used is determined by evaluating
the results from the simulated dataset.

3.1 Simulated data

A synthetic dataset is chosen since it has several advantages over real data: characteristics can eas-
ily be controlled by the researcher, the correct partition is known and independent of the knowledge
of the researcher. Of equal importance is the fact that many of the real datasets used for evalua-
tion of cluster analysis are designed for supervised learning, and thus are not always adapted for
unsupervised techniques such as clustering. This leads to problems such as identifying the correct
partition (Arbelaitz et al., 2013).

The simulated data follows the design of Arbelaitz et al. (2013), however, some changes are made
(an extra characteristic added being the largest), all of which are discussed. The characteristics are:
the number of clusters (K ), number of explanatory features of a datapoint (Exp), degree of cluster
overlap (Ov), ratio of the density of the first cluster with respect to the other clusters (Den), level
of noise (Lon) and extra noise-dimensions of a datapoint (Dim). Lon represent observations that
contain cluster related variables, however, the observations do not belong to any cluster (e.g. the
variables are measured wrongly). Whereas Dim represents variables that are not cluster related.

In the original setup, K and Exp have three possible states and the rest have two, however, in our
setup, all characteristics have two possible states (Table 3.1). Since all possible combinations of the
characteristics will be used, the addition of the characteristic Dim quickly leads to a combinatorial
explosion if some characteristics have three possible states. As all possible configurations will be
randomly created 10 times, there will be 640 datasets.

With these six characteristics, the common aspects and problems of datasets and clustering are
examined. Especially, the amount of cluster overlap is a problem for clustering analyses and can
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Table 3.1: Characteristics and possible states

Characteristic Possible States
nmin 100
K 2, 4
Exp 2, 8
Ov 1.5 (strict), 5 (bounded)
Den 1, 4
Lon 0, 0.1
Dim 0, 2

lead to incorrect partitions (most common is that the overlapping clusters are counted as one or
are separated incorrectly). By setting strict Ov we make sure that the overlap distance is strictly
adhered meaning every cluster overlaps with at least one other cluster. While using a bounded
Ov ensures there is a maximum allowed overlap. The level of Den allows for one cluster to have
significantly more observations than the rest, due to the approximate cluster volume to be the same
but the densities being different. This difference can cause trouble when clustering with k-means
(Raykov, Boukouvalas, Baig, & Little, 2016). Lon determines if the simulated data should contain
any noise which in this case refers to data points which do not belong to any cluster and may
represent errors induced while gathering or processing the data. Dim is added as a characteristic
and determines if the data is captured in a subspace of the total amount of dimensions (i.e. variables
are included that do not contain any information or are not cluster related). This characterizes a
common phenomenon in econometrics, namely that insignificant explanatory variables are included.
Lastly, by allowing for different values of K and Exp, we examine if the mutual relation between these
two characteristics matters (smaller, equal or greater). Thus, with all possible configurations, we
can examine which stability algorithm combined with k-means generally leads to the best outcome
and if there are subsets in which a certain stability algorithm achieves superior results. This allows
for adjusting the combination based on the characteristics of the dataset to be used. For example,
the noise in social sciences is generally larger than in the natural sciences.

The procedure to create the clusters follows Arbelaitz et al. (2013) which we now outline.
First, we define a sampling window that is used for all the datasets: a hypercube contained in
the coordinates [0,0,0,0,...,0] and [50,50,50,50,...,50]. Within this hypercube we define a reduced
sampling window ( [3,3,3,3,...,3] and [47,47,47,47,...,47] ) and in this reduced sampling window, all
the cluster centers are drawn with a uniform distribution. The data points belonging to the same
cluster are drawn from a multivariate normal distribution with its respective cluster center as mean
and the identity matrix as a covariance matrix.

The first cluster, with center c1, will have nmin ∗ den data points and creates a density asym-
metry if den 6= 1. Since all the remaining clusters will have nmin points, while all clusters have
approximately the same volume. Afterwards for the other K − 1 clusters, a center ci is drawn, this
cluster center should adhere to the following property: ‖ ci − cj ‖≥ 2 ∗ Ov ∀ci 6= cj , else a new
center should be drawn. In the case of a strict overlap, on top of the former restriction, another
restriction should hold, namely, a random cluster center that already exists should be chosen ran-
domly and the distance to this center should be 2 ∗Ov. After all the cluster have been created, the
noise is created with a uniform distribution inside the sampling window and the number of points
being Lon ∗ nmin ∗ (Den+K − 1).

Then if Dim 6= 0, for every point, an extra dimensions is created (thus the hypercube space
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is expanded by the number of extra dimensions). These extra dimensions are drawn from the
exponential distribution, with λ = 10 If the coordinate of the new dimension is outside the reduced
sampling window then a new coordinate has to be drawn. Finally, if any point of any cluster is
outside the sampling window a new point has to be drawn from the multivariate normal distribution
belonging to that cluster.

3.2 Economic data

The dataset which is used for the regressions and forecasting analysis, after first being clustered,
is now discussed in detail. As the model is, at its core, inspired by Bassanini and Scarpetta
(2002), consequently so are the variables. This means that the variables are a combination of the
determinants of the Solow growth model and policy-related variables. The data are gathered of
the 28 European Union member states (United Kingdom was still part of the EU during the time
period under investigation) from 2000 to 2018. There are differences between the data used by
Bassanini and Scarpetta (2002) and the ones in this paper (the different time period and countries
is a trivially obvious one). The differences are due to: 1. availability of better proxies for the
variables, 2. lack of the data for all of the EU member states and 3. a selection had to be made,
for Bassanini and Scarpetta (2002) also do not use all the variables at once. Rather they chose
subsets at a time, thus avoiding multicollinearity issues. The selection was made based upon their
most significant findings and economic theory (Burda & Wyplosz, 2013). Now follows a discussion
of the variables and the most paramount differences.

3.2.1 Solow growth model variables

In the model of Solow, economic growth as the dependent variable is linked to three main factors:
capital accumulation, population size and technological advancement. In our model, the dependent
variable, economic growth, is proxied by the growth in real GDP per capita. The relation with
capital accumulation follows from one of Kaldor’s stylized facts which links output per hour to
capital per hour (Burda & Wyplosz, 2013). This lead to the neoclassical theory that the expansion
of production capacity increases output. In our study, the ratio of real private physical capital
formation to real GDP (i.e. private investment share) acts as the propensity to accumulate fixed
capital. From this same neoclassical theory, it follows that a steady-state transition happens due
to the law of diminishing returns kicking in. One of the factors allowing for a sustained long-run
growth in both the capital stock and output is the growth in the employed labour force. We measure
this with the percentage growth in population between the ages of 15 and 64. The other ingredient
allowing for this long-run growth is the technological progress, on top of that, it is the factor that
allows for the permanent growth in per capita output. We decompose technological progress into
an increase in knowledge and innovations, the former is proxied by the average number of years
of schooling of the population age 24-64 (human capital) while the latter is estimated by gross
expenditure on R&D as a percentage of GDP.

It is worth noting that some of the proxies are rather crude and critique on the accounting of
these variables have been made. For instance when it comes to calculating the GDP and growth in
GDP, a rise in these does not automatically mean a richer country or even an increase in output and
some strange phenomenon can occur due to the mix of globalization,(intangible) resource allocation
and accounting rules as is seen by the rise of Ireland’s GDP by 26% in 2015 (OECD, 2016). Another
example of a crude and narrow proxy is that of human capital since it does not take into account
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other dimensions of human development nor the quality of the education. However, the way it
is obtained is less crude than that of Bassanini and Scarpetta (2002). For they approximate the
number of years of education by first dividing every countries education system into three levels, use
the cumulative years to obtain the education level and multiply this by the ratio of the population
that falls into one of these three levels. While our research directly takes mean years of schooling
as input. For details on the source of the variables see appendix B.

3.2.2 Policy variables

The Solow growth model advocates convergence of countries in terms of wealth and growth, however,
the evidence for this unconditional convergence is lacking. Instead, the model has been adjusted that
supports conditional convergence (Bassanini & Scarpetta, 2002). By controlling for policy variables
and including initial conditions, conditional convergence can be achieved. We propose the following
variables for the conditions: GDP per capita in the previous year, a country-specific constant and
trade exposure (Txp). The trade exposure is translated into a weighted average of export exposure
and import penetration adjusted for country size. First, the export exposure (Ex ) is measured by
the export to GDP and import penetration (Mp) by import to consumption penetration (domestic
production minus exports plus imports). Then, the trade exposure is measured as Ex+(1−Ex)∗Mp
(Bassanini & Scarpetta, 2002). Lastly, this trade exposure is regressed on the population size of
the countries and the residuals are then used as Txp. This way a measure independent of country
size is obtained.

General government revenue to GDP (Govrev), the ratio of general government final consump-
tion expenditure to GDP (Govexp) and government capital formation (Govcap, proxied by gov-
ernment real fixed capital accumulation to GDP) are measures that relate to government size and
financing. In economics, it is known that the size of government matters since the government can
provide public goods, taxes and subsidies can distort the functioning of the market and government
loans and investments can cause the crowding-out effect. Furthermore, positive external effects
such a spillover can be under the social optimum due to individual agents having a utility function
different from that of society as a whole. The government can then step in and provide incentives
to achieve this social optimal level (in case of negative external effects the reverse will hold). These
factors thus influence the market and economic growth. Naturally, the way it is financed (tax versus
non-tax revenue or even direct or indirect tax receipts) also matters, however due to the lack of
data for all the countries and for all the years this could not be included. Measures of financial
development in the form of market capitalization and credit deposits by banks to the private sector
as a percentage of GDP are included by Bassanini and Scarpetta (2002), however Leahy, Schich,
Wehinger, Pelgrin, and Thorgeirsson (2001) conclude that these measures are too crude, the effect
too small and that they mostly work indirectly via capital investments (which are already included)
on the growth of a country. Thus we leave them out.

The final variable to be included is the annual percentage of the GDP deflator as a measure
for inflation (Fl). The level and stability of inflation affect many economic processes, if it has a
low level and it is stable it will reduce economic uncertainty and raise the efficiency of the price
mechanisms. Also, due to the strong tie with interest rates it has an effect on the willingness of
companies to take risks and invest in long-run investment decisions.

Bassanini and Scarpetta (2002) in their paper take the natural logarithm of each variable, this
is however, not possible for some variables (trade exposure, inflation and population growth) are
not always positive. One can argue that in the countries that they observe and for their time-span
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they are always positive, however trade exposure can never be always positive for every country (it
is easy to show that some residuals have to be negative). Thus, either they made a mistake, took
the absolute value without mentioning it or used complex numbers. In our case, we will take the
natural logarithm for every variable except the above three mentioned. As mentioned earlier, we
investigate the time period 2000 to 2018 but a few things are noteworthy. Firstly, as we take the first
difference for the short-run part of the equations (see equation 2.8) we have one-time observation
less. Secondly, we take 2000-2016 as the hold-out or training set and 2017-2018 as the test to
evaluate the forecasting performance of the regressions. Since our method is a two-step procedure
to increase the forecasting performance (first clustering and then applying the joint lasso method)
we will also only use 2000-2015 as the data for clustering. Lastly, when it comes to preprocessing
the data for cluster analysis there is no consensus on the procedure. Milligan and Cooper (1988)
advocate normalization before performing a cluster analysis. Therefore, we perform cluster analysis
on the normalized data combined with principal component analysis. Milligan and Cooper (1988)
proposes the following normalization method,

Z =
X −Min(X)

Max(X)−Min(X)
(3.1)

For the normalized data, we let the chosen stability algorithm choose the ’k’ in k-means for ten
replications each and then make a decision which cluster partition (which ’k’ in k-means) to use
based on which ’k’ value is recommended most often.

4. Results

We first discuss the results of the simulation study and then proceed to the results of the two-step
procedure.

4.1 Simulation results

Figure 4.1 shows the total number of correct proposals (according to the rand Index) for ’k’ in k-
means by each algorithm as a ratio of the total number of simulations. As mentioned earlier, since we
have all combinations of six characteristics, each characteristic has two states and each combination
is replicated ten times, we get a total number of 640 simulations. Clearly, the two methods designed
by Wang (2010) together with the method designed by Fang and Wang (2012) perform significantly
better. These three methods (Bv, CVa, CVv) outperforming the Ps -method is logical in the sense
that this is one of the first stability algorithms and proposing a new algorithm only makes sense
if it contains an advantage. The advantage here is clearly its effectiveness (Wang, 2010). A major
surprise to us is the relatively bad performance of Gc, not only has it been introduced very recently.
But in the paper Fu and Perry (2020) show very good results for this method, hence we considered
it as a possible candidate to cluster our economic data and thus we included it in our evaluation.

19 Chapter 4 Patrick Sassenus



Forecasting via cluster analysis

Figure 4.1: Overall results where the percentage of success rate is highlighted

To make sure we did not make a mistake in our programming/implementation, we redid the
procedure using the R package of the paper. We got similar results and only a small improvement
when using their correlation correction version (these are also the results we publish here). Further
investigation shows that the Gc does perform well with the simple simulations. For instance when
there is limited to no overlap or when the amount of clusters is small relative to the amount of
explanatory dimensions. The results quickly deteriorate when the datasets become more complex,
more so than the other algorithms. For example, when two characteristics are combined (noise
and strict overlap) it rarely correctly picks the correct partition. While we do use the Rand Index
to measure a success and not the number of simulated clusters as Fu and Perry (2020) does,
which does drop the rate of success (see Appendix C), it does not explain the underperformance.
When we count a success as finding the number of clusters corresponding to the simulated number
of clusters, then still it underperforms by about 30% on average. One of the reasons is that the
algorithm uses a more complex relationship to determine clusters. It looks for patterns and relations
between the different explanatory variables and not just between the different observations within
one explanatory variable. Since in our simulation we use the identity matrix for the covariance
structure, there is no such relation between the variables. Another possible explanation is that Fu
and Perry (2020) proposes to break ties by choosing the smallest ’k’. While it is difficult to retrieve
the intermediate steps with the R package, we see that in some instances the largest ’k’ proposed
by the algorithm was correct. CVa and CVv propose selecting the largest number of clusters in case
of a tie and this procedure in many ties meant selecting the correct partition.

Of course, the results for CVa and CVv are not even close to the 100 % success rate reported in
Wang (2010). However, that is solely due to our more complex simulated examples. The examples
used by Wang (2010), especially regarding the distance-based simulations, are quite simple and
more of a toy example. When we focus solely on the same kind of dataset (no overlap, no noise,
no density difference, the number of explanatory variables equal or higher than the number of
clusters and only the possibility of extra noise-dimensions is included), then we also get a perfect
result. According to Figure 4.1, CVa has the best overall score and similar to the best performing
algorithms in Arbelaitz et al. (2013). While a one-to-one comparison is not possible due to our
slightly different simulations it does give an indication. Namely, CVa is on par and could even be
better than their best-tested method.
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(a) number of clusters (b) number of explanatory variables (c) degree of overlap

(d) density (dis)similarity (e) level of noise (f) number of noise dimensions

Figure 4.2: Success rate broken down by characteristics

In Figure 4.2 the success rate is broken down into subsets. For each characteristic, we display
what happens if only the value for that characteristic is changed while we keep the other char-
acteristics fixed. From, Figure 4.2 we clearly see that all algorithms have trouble when there is
strict overlap (Figure 4.2c). The difference between the two states of this characteristic is also the
largest for all algorithms except for Ps which has the largest gap in success rate when the number
of clusters is varied. Across all characteristics and broken down into their states, we can see that
CVa has the highest number of successes in almost all the subsets. The cases when it is not the
’best’ is usually when it is beaten by Bv (Figure 4.2b, dim = 2), but in such cases, it is still the
second ’best’. Only when there are four clusters (Figure 4.2a) or when the overlap is strict (Figure
4.2c) is neither Bv nor CVa on top. Lastly, we want to mention that the prediction: CVa will
outperform Bv when the sample gets larger, by Fang and Wang (2012) seems to hold. In their
simple simulations Bv slightly outperforms CVa, which they suspect comes from the small number
of observations per cluster.

4.2 Two step procedure

As CVa performs best overall and in the majority of subsets, we choose this stability algorithm to
determine the number of clusters. The performance of the algorithms in the categories concerning
a high number of clusters, a large number of explanatory variables, strict overlap, a difference in
density and extra dimensions were especially looked at (Figure 4.2). We expect that these features
are in our economic data, for example, the countries in the EU have to adhere to strict rules before
even considered to enter the EU, thus they are already similar and the policies from the member
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states and the EU try to close this (economic and political) distance even further. In other words,
we suspect that countries in different clusters still share a lot of similarities. Likewise, we expect
clusters to differ in the number of countries due to countries widely differing in the number of
years they are a member. Some countries like Belgium are more integrated and dependent on other
countries then newer members or member that have not adopted the Euro. While we take extra
dimension into extra account since we do not know if all variables are cluster related (i.e. will
help in finding clusters). Finally, we looked at the high number of clusters because we are already
including the situation with only two clusters.

CVa outperforms the other algorithms in all of these categories except for the strict overlap.
Here Ps outperforms the other algorithms by quite a bit, however since the Ps-algorithm performs
poorly in the other situations we choose the CVa-algorithm. The values for ’k’ range from 2 to 9
and CVa then recommends 9 as the value for ’k’. When CVa recommends the largest value for ’k’
that you allow for, Fang and Wang (2012) suggest increasing the range of ’k’. However, this is not
possible since the observations (28 countries) are randomly assigned to three different samples of
equal size by the algorithm. Thus, ’k’ cannot have a value greater than 9. This leads us to use
Bv as the stability algorithm. Bv can compute the stability for values of ’k’ up to the number of
observations and it is the second-best algorithm overall (Figure 4.1). We increase the values ’k’
can assume from 9 to 20, Table 4.1 shows the results. Since the algorithm suggests ’k’ = 15 the
majority of the time, we cluster the countries over 15 groups.

Table 4.1: Ten replications of Bv over the macro-economic data

Value for ’k’ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of times

suggested
0 0 0 0 0 0 0 0 0 0 0 0 2 7 1 0 0 0 0

Thus, we apply k-means to our economic data with ’k’ = 15 as part of our two-step procedure
and ’k’ = 2 for comparison. Partitioning the normalized data in 15 cluster leads to the groups in
Table 4.2. While we do not mean to analyze the clustering, we do note some strange groups. Such as
Cyprus and Spain being grouped or Malta, Portugal and Slovenia in one group. On the other hand,
there are groups that make sense especially historically and geographically which naturally lead to
similar economies and economic policies. For example, Belgium and Germany or Latvia, Lithuania
and Poland or Bulgaria and Romania. Lastly, Austria and Finland or Ireland, Netherlands and
Sweden while geographically far apart, in terms of the EU terms, they can be justified as their
governments on many occasions band together on EU level signalling their similar interests and
policies (also in the case of the latter group they are often criticized for being tax havens).

When we apply k-means with ’k’ = 2 to the same data we achieve the split in Table 4.3.
Interestingly there seems an East-West divide instead of the infamous North-South divide in the
European Union when it comes to their economies and governmental policies (Appendix D). Also,
Spain and Portugal do not belong to this richer and more developed first class. This makes sense
since both countries were hit hard by the financial crises and seem to struggle more still by the
after-affects than countries like Ireland.

Table 4.4 shows the results of the forecasts. We notice that going from pooled regression
to the PMG (i.e. country-specific short-run coefficients) decreases the forecasting performance.
This is in line with our suspicion that there are not enough observations per country to estimate
accurately. When we split the countries into two groups and incorporate the joint lasso terms
we get a similar forecasting performance as the pooled regression. However, when we apply the
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Table 4.2: EU member states into fifteen class memberships

First class Austria, Finland Ninth class Ireland, Netherlands, Sweden
Second class Latvia, Lithuania, Poland Tenth class Italy
Third class Estonia, Slovakia Eleventh class France, United Kingdom
Fourth class Luxembourg Twelfth class Croatia, Hungary
Fifth class Cyprus, Spain Thirteenth class Belgium, Germany
Sixth class Bulgaria, Romania Fourteenth class Greece
Seventh class Malta, Portugal, Slovenia Fifteenth class Czech Republic
Eight class Denmark

Table 4.3: EU member states into two class memberships

First class
Austria, Belgium, Denmark, Estonia, Finland, France, Germany, Ireland, Italy,
Luxembourg, Netherlands, Sweden, United Kingdom

Second class
Bulgaria, Croatia, Cyprus, Czech Republic, Greece, Hungary, Latvia, Lithuania,
Malta, Poland, Portugal, Slovenia, Slovakia, Spain

two-step procedure and thus increase the number of groups to 15 we do get an improvement in the
forecasting performance. Thus, our two-step procedure performs best in terms of forecasting.

Table 4.4: Forecast results

Pooled regression PMG
Joint lasso

(two groups)
Two-step procedure

Number of clusters 1 28 2 15

Lasso term (λ) - - 1.46 ∗ 10−4 1.86 ∗ 10−5

Joint lasso penalty (γ) - - 0.1 2.0

MSPE 0.0161 0.0233 0.0161 0.0121

Improvement wrt
pooled regression (%)

0 -44.5 0.12 24.9

Standardized RMSPE 1.25 1.50 1.25 1.08

The RMSPE is the root of the MSPE as such the scale is equal to that of the dependent variable.
We divide this by the standard error of the dependent variable (in the forecasting period) to obtain
a standardized version.
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5. Conclusion & Discussion

Our goal was to increase the forecasting performance of economic models when there is little data.
For example, the data needed to forecast is only recently being measured or collected. Or a dis-
rupting event has happened which is likely to change the estimators and/or the model. In which
case the desire is to not use the data from before the event or at least limit the need for it. Our
work is inspired by Dondelinger et al. (2020) in which a high-dimensional regression is applied to
group structured data. We used their joint lasso regression to increase the forecasting performance
of a model used to determine the economic growth of countries.

As the method requires to group the data beforehand, we had to establish a group structure. We
decided to use k-means in combination with a stability algorithm to cluster the countries. To decide
upon the stability algorithm to use, we first evaluated five methods and then made our decision
based on the results. No algorithm outperformed the other algorithms in every possible combination
of the six characteristics. However, the cross-validation with averaging algorithm performed best
in most of our simulated cases. This algorithm was used as an initial attempt to cluster the data.
The algorithm could only cluster the data into a maximum of 9 clusters due to the limited sample
size. As it suggested this maximum number of clusters there were probably more than 9 clusters.
This forced us, to move onto the bootstrap validation algorithm, which performed second-best in
most of our simulated sets.

Seven out of ten times, the bootstrap validation algorithm suggested partitioning the countries
in 15 clusters. These groupings incorporated with the economic growth model and the joint lasso
method were put against three other methods. Namely, a pooled regression of the economic growth
model, a pooled mean grouped regression of the economic growth model and against the same
economic growth model in combination with the joint lasso method but with two groupings. These
two groupings were made by applying k-means with ’k = 2’. The values of γ and λ in the joint
lasso were set by cross validation. We compared the predictive performance of these four methods
and found that the pooled mean group estimator performed the worst. The pooled regression and
the joint lasso on two groups performed a lot better. The difference in the mean squared prediction
error was too small, between the pooled regression and the joint lasso on two groups, to declare one
outperforming the other in terms of forecasting performance. Our two-step procedure, however,
did outperform all the other methods and performed the best in terms of forecasting.

This does not mean that our two-step procedure is guaranteed to work. It needs to be tested
further on different datasets, to investigate in which cases it does perform well. And to make sure
it does not only outperform in this particular research. In their paper, Dondelinger et al. (2020),
get mixed results and do not always outperform the pooled regression. Thus further emphasizing
the need to investigate if the problem is finding the ’correct’ partition or if the joint lasso itself
is situational in its performance. Furthermore, it is interesting to further research if the two-step
procedure works better with other cluster selection algorithms (which determine the number of
clusters) or with other clustering methods then k-means. We have used the stability algorithms
but perhaps the stability property is not the best method for dividing the data into groups for
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the joint lasso. Lastly, we set the τk,k′ to unity in our research, which determines the similarity
estimators should have between groups. However, a better approach could be to create a weighted
version based on the distance between the cluster centers of the groups. This not only allows for
the amount of similarity to differ between different groups, but it also allows the similarity to be
stronger the closer the groups are according to the clustering method.
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Appendices
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A. K-means algorithm

Algorithm 1: K-means

Data: A set of n observations xj and integer k
Result: k number of cluster centers µi and which observation belongs to which cluster

Initialize k centers (µ1, µ2, ..., µk) such that µi = xj for i ∈ k and j ∈ n
while J does not change significantly do

for ( each vector xj ) {
Assign xj to the nearest cluster center µc
(i.e. ‖ xj − µc ‖2≤‖ xj − µi ‖2 for i ∈ k)

}
for ( each Cluster with center µi ) {

calculate the new center µ∗i of each cluster by calculating the centroid of all xi
belonging to the current cluster

}
compute the new J =

∑k
i=1

∑
xj∈Si

‖ xj − µ∗i ‖2

end

B. Economic data sources

Variable Source Location
Real GDP per capita (y) Eurostat https://ec.europa.eu/eurostat/web/products-datasets/-/sdg 08 10
Capital accumulation (Kap) Eurostat https://ec.europa.eu/eurostat/web/products-datasets/product?code=sdg 08 11
Human capital (H) United Nations http://www.hdr.undp.org/en/data
Population growth (Pop) World Bank https://data.worldbank.org/indicator/SP.POP.1564.TO?end=2018&locations=EU&most recent value desc=false&start=2000
GDP deflator (Fl) World Bank https://data.worldbank.org/indicator/NY.GDP.DEFL.KD.ZG.AD?end=2018&start=2001
Government revenue (Govrev) Eurostat https://ec.europa.eu/eurostat/web/products-datasets/-/gov 10a main
Government expenditure (Govexp) Eurostat https://ec.europa.eu/eurostat/web/products-datasets/-/gov 10a main
Government capital formation (Govcap) Eurostat https://data.worldbank.org/indicator/NE.CON.GOVT.ZS?end=2018&start=2000
R&D (RD) Eurostat https://ec.europa.eu/eurostat/web/products-datasets/product?code=tipsst10
Exports of goods and services World Bank https://data.worldbank.org/indicator/NE.EXP.GNFS.ZS?end=2018&start=2000
Imports of goods and services World Bank https://data.worldbank.org/indicator/NE.IMP.GNFS.ZS
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C. Number of clusters as measure of success

A success is defined as the stability algorithm suggesting the value for ’k’ to be the number of clusters
corresponding to the simulated number of clusters. Instead of the value for ’k’ that corresponds to
the largest Rand index.

Figure A1: Overall results where the percentage of success rate is highlighted

(a) number of clusters
(b) number of explanatory vari-
ables

(c) degree of overlap

(d) density (dis)similarity (e) level of noise (f) number of noise dimensions

Figure A2: Success rate broken down by characteristics
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D. Map of the cluster memberships

Figure A1: EU member states divided into two clusters.
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Figure A2: EU member states divided into fifteen clusters.
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