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Abstract

This paper revisits the 3-step tail dependence estimation method of Chabi-Yo et al. (2018), which
measures the crash sensitivity of individual stocks with the market return. With portfolio sorts
analysis on basis of Lower Tail Dependence we find that investors receive compensation for
holding crash-sensitive stocks, but on the other hand that holding weak LTD stocks protects
against a market crash. We observe difference in impact of LTD on future returns during a post
market crash period and the remaining years. We find that reducing the sample period on which
we estimate tail dependence does not improve the persistence of the model. Additionally using
kernels for estimating marginal distributions of return samples does not improve the model, but
we propose a heuristic that has a better fit in the presence of a substantial amount of duplicate
observations.
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1 Introduction

During a market crash investors are at risk to make big losses with the stocks in their portfolios.
Therefore crash-aversion prevails amongst investors, who want to hedge against this risk by holding
crash-insensitive stocks. Accordingly crash-sensitive stocks seem unattractive, as these stocks have
bad returns during a market crash. However, Chabi-Yo et al. (2018) show that holding crash-
sensitive stocks leads to compensation for the risk. We capture the crash sensitivity of assets with
a flexible copula framework that fits the dependence structure of the returns and measure it with
lower-tail dependence coefficient (LTD) that defines the probability that individual stocks will de-
crease in value given that the market returns are bad.

Although the groundwork for copula methods was done by Sklar (1959), the technique has become
increasingly popular since the nineties. According to Embrechts (2009) this can be contributed to
one sector: Finance, and in particular quantitative risk management. As investors discovered that
more accurate measurements of stock sensitivity to the market can prevent big losses. Nowadays
there is more awareness for market crash, since a market crash is again in our recent memory.

In this paper we investigate whether we can find the equivalent results as Chabi-Yo et al. (2018) for
our dataset: that stocks are persistent in lower tail dependence, holding strong LTD stocks yields
a return spread and that the impact of LTD differs from being in a post market crash period or
not. In addition to this, we research the impact of shortening the estimation period for the tail de-
pendence coefficient in persistence as well as the fit of alternative marginal distribution estimation
methods that could lead to a better fit. We apply our methods on 20 stocks from CRSP trading
from Jan 1, 1994 to Dec 31, 2019.

For estimating tail dependence we use the 3-step procedure as proposed by Chabi-Yo et al. (2018)
on a rolling window sample 12-months. This 3-step procedure uses a flexible copula framework
that is able to capture both lower tail dependence and upper tail dependence. We fit 64 different
copula combinations to the empirical marginal distributions of the stock and market returns with
a canonical-maximum likelihood procedure of Genest et al. (1995). For each month we select the
copula combination that has the smallest Integrated Anderson-Darling distance to its empirical
copula, as proposed by Ane & Kharoubi (2003). Then on basis of the tail dependence coefficients,
we analyze the future returns of univariate portfolio sorts. The difference between strong and weak
LTD portfolios gives us insight in the compensation that is received for holding crash-sensitive
stocks.

Next we analyze the persistence of stocks to observe if tail dependence at a given time indicates that
the stock will have similar tail dependence in the near future. We use a Fama-MacBeth regression
to investigate the impact of LTD on future returns during a post market crash period and in the
remaining years. We use Gaussian kernels and a heuristic to investigate whether we can improve
the non-parametrical estimation of marginal distributions, that was introduced by Charpentier et
al. (2007).

In this research paper we research the impact of using alternative methods for estimating the
marginal distribution, which could result in a better fit of the flexible copula framework to the
data. As our heuristic results in a strictly uniform U(0, 1) distributed marginal distributions for
every rolling window sample. Also we observe the impact of shortening the rolling window, to see
whether this is a valid alternative for the model.
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We report that for a 6-month rolling window model there is persistence in the extreme portfolios
that consist of stocks with very high LTD or very low LTD. However, for the portfolios in between
there is no certainty in where the stock is going to be located in the near future. Therefore we
prefer the 12-month rolling window model, that shows more persistence in the extreme portfolios
and also to a smaller extent in the portfolios in between.

Holding the strong LTD (crash-sensitive) stocks in our data yields return premium of 3.78% per
year over holding crash-insensitive stocks. In addition, we find that the impact of LTD differs over
time when it is measured in a post market crash period or remaining years. During a post market
crash period the enhanced awareness of investors results in a return premium of 7.80% per year
for holding strong LTD stocks, as investors are willing to pay and yield lower returns for crash-
insensitive stocks.

We find that the kernel method model does not improve fit of marginal distributions. On the other
hand the heuristic does lead to better fitting copula combinations when there are many duplicate
return observations in the rolling window sample. However, it is difficult to state that this is com-
pletely due to the ’cleaning’ effect of the heuristic.

The 3-step procedure of Chabi-Yo et al. (2018) that we pursue is unique in the sense that it uses
the best of 64 combinations of 16 unique copulas to estimate both lower, neutral and upper tail
dependence at a firm-month level. Hu (2006) used mixture copulas that combined two copulas
to capture dependence structures across stock markets and Zimmer (2012) used similar mixture
copulas on housing prices. It also corresponds with the theory of Gennaioli et al. (2012), that shows
that the awareness for a market crash differs over time.

In Section 2 we report the dataset for our research. In Section 3, we clarify the general framework
of copulas and explain the methods used for our research. The results of our research are presented
in Section 4. Lastly, the concluding remarks can be encountered in Section 5.

2 Data

The data used in this research consists of stocks from CRSP trading with share code 10 and 11
on the New York Stock Exchange (NYSE), American Stock Exchange (AMEX), and National As-
sociation of Securities Dealers Automated Quotations (NASDAQ) between Jan 1, 1994 and Dec
31, 2019. With a rolling window of 12 months, this leads to 300 estimations per stock. It is a
computationally heavy burden to replicate the results for all stocks. Therefore, we estimate our
results on a small representative sample.

To have stock sample that is as representative as possible, the stocks that were not on the market
throughout the whole sample period are filtered out. We do not want our results to be driven
by very small stocks. Therefore we do not consider stocks that belong to the lowest 1% market
capitalization at the beginning of our sample period (the first quarter of 1994). Hereafter, we split
all stocks into 3 groups based on market capitalization levels on the last trading day of the sample:
large cap (10 billion or more), medium cap (2-10 billion) and small cap stocks (300 million - 2
billion). To have a representative sample, we want to include small, medium and large sized stocks
pro ratio. These groups each account for around a third of stocks that suffice the filter condition.
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Therefore, we randomly picked 7 large cap, 7 medium cap and 6 small cap stocks from a pre-filtered
selection of stocks. (See Appendix.A-Table 11 for definitive selection of stocks). This gives us a
sample with 6, 000 firm-month observations in total.

In Table 1, the summary statistics of the returns of the stocks in the considered sample, the total
market return (equal-weighted, excluding dividend) and the one month T-bill Rate are shown.

Table 1: Summary statistics of the stock returns, market return, one month T-bill Rate.

Mean 25% Quantile Median 75% Quantile Standard Deviation

Stock Returns 0.06% -1.04% 0.00% 1.06% 0.028
Total Market Return 0.06% -0.35% 0.13% 0.53% 0.010
T-bill rate 0.21% 0.04% 0.17% 0.40% 0.002

3 Methodology

In this section we explain what kind of econometric methods and statistical techniques we use to
research the problem. In Section 3.1, we explain the theoretical framework of copulas, based on the
papers Patton (2012) and Durante & Sempi (2010). Then, in Section 3.2, we discuss the estimation
method for tail dependence from Chabi-Yo et al. (2018). Subsequently, the alternative methods
for estimating the marginal distributions are considered in Section 3.3. At last, we discuss the
performance measures that we use in Section 3.4.

3.1 Theoretical framework of copulas

A copula C is a function that describes the dependence structure between random variables X =
(x1,x2, ...,xn). Sklar (1959) introduced the term copula by stating that an n-dimensional joint
distribution could be traced back to n univariate marginal distributions and a multi-dimensional
copula. As is presented in Equation 1, where Fi is the marginal distribution of xi for i ∈ {1, 2, ..., n}
and observations over time t (xi,1, ..., xi,t) are in R = [−∞,∞].

F (x) = C{F1(x1), ..., Fn(xn)}. (1)

In short, a copula C can be defined as C: [0, 1]n −→ [0, 1]. Where n univariate marginal cumulative
distributions U(0, 1) define a multivariate cumulative distribution. When the univariate marginal
distribution Fi is continuous for every i ∈ {1, ..., n}, the formula for copula C is unique and can be
defined as

C(u1, ..., un) = F (F−1
1 (u1), ..., F−1

n (un)), (2)

where F−1
i is the inverse of Fi and ui are random variables distributed U(0, 1).

In this paper we are interested in measuring the crash sensitivity of an individual stock during
extreme events as a market crash (Lower-left Tail Dependence) and a market boom (Upper-right
Tail Dependence). More theoretically defined, when we have two random variables (X1, X2), with
marginal cumulative distributions (Fx1 , Fx2), respectively. Then we can define Equation 3 as a
tail dependence measure for the left tail and Equation 4 for the right tail, with q being a random
quantile.

Pl(q) = Pr[X1 < F−1
x1 (q)|X2 < F−1

x2 (q)] (3)
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Pr(q) = Pr[X1 > F−1
x1 (q)|X2 > F−1

x2 (q)] (4)

We define LTD and UTD as,

LTD = lim
q→0+

Pl(q) and UTD = lim
q→1−

Pr(q) (5)

In simple terms, LTD (UTD) measures the probability that an extreme low (high) value for one
random variable coincides with an extreme low (high) value for the other.

Sensitivity to the market is most commonly measured with the βs in CAPM, where it represents
the linear correlation coefficient. This model does not suffice for our research problem as it can not
measure the sensitivity in the tails. Figure 1 shows that although the linear correlation is roughly
the same, the dependence structure can differ substantially. The advantage of a copula is that it
can capture tail dependence, because a copula is flexible and a valid tool for modelling the varying
behaviours of marginal distributions.

Figure 1: Three scatter plots with different measures of tail dependence where copula defines the dependence
structure on 3,000 random observations on bivariate copulas. All scatter plots have a linear correlation of
roughly 0.9. From left to right a.) Clayton copula that exhibits lower tail dependence b.) Gaussian copula
that exhibits no tail dependence c.) Gumbel copula that exhibits upper tail dependence.

In this paper we consider two random variables X1,s and X2 (the returns of individual stock s
and the market returns, respectively, in the sample period). A copula defines its dependence
structure from the univariate marginal distributions F1(x1,s) and F2(x2) of the bivariate distribution
F (x1,s, x2). Each copula has a dependence parameter θ that parameterizes the copula and thus
defines the bivariate distribution F (x1,s, x2),

F (x1,s, x2) = C(F1(x1,s), F2(x2); θ). (6)

With the dependence parameter θ, it is possible to compute the tail dependence coefficient.

3.2 3-step Tail Dependence Estimation Procedure

The main focus of the paper Chabi-Yo et al. (2018) is to research whether the stocks with strong
LTD have significantly higher return premia than weak LTD stocks. Therefore we need to com-
pute the tail dependence at firm-month level. The estimation of the LTD and UTD-coefficients in
Chabi-Yo et al. (2018) is done via a 3-step approach.

First, we estimate the marginal distributions F̂i(x) and F̂m(x). The marginal distributions of stock
return ri and market return rm are estimated non-parametrically by their scaled empirical distri-
bution functions, the formulas are provided in Equation 7 and 8. In these equations {ri,k, rm,k}nk=1

4



is the 12-month rolling window sample, that includes all daily individual stock returns and daily
market returns that have been registered in the prior year. This way the method accounts for the
time-varying dependence of a stock and the market, as the dependence measures will vary from
month to month.

F̂i(x)(1) =
1

n+ 1

n∑
k=1

1ri,k≤x (7)

F̂m(x)(1) =
1

n+ 1

n∑
k=1

1rm,k≤x (8)

Hereafter, we estimate the dependence parameters θi (also referred to as copula parameters) with
the canonical maximum-likelihood method, as proposed by Genest et al. (1995). Most copulas can
not measure both LTD and UTD, therefore we use a copula framework that allows for flexibility,
as is shown in Equation 9.

C(u1, u2,Θ) = w1×CLTD(u1, u2, θ1)+w2×CNTD(u1, u2, θ2)+(1−w1−w2)×CUTD(u1, u2, θ3) (9)

For each month we estimate 64 (=4x4x4) different convex copula combinations by considering four
copulas that allow for LTD (CLTD), four copulas that allow for UTD (CUTD) and four copulas
that exhibit no tail dependence (CNTD). The parametric forms of the copulas can be found in
the Internet Appendix Table IA.I of Chabi-Yo et al. (2018). This copula framework provides that
we can select the best copula combination by using weights w1 and w2, as shown in Equation
9. Therefore we estimate five copula parameters Θj (θ1, θ2, θ3, w1 and w2) simultaneously via the
canonical maximum-likelihood procedure of Genest et al. (1995), as shown in Equation 10. In this
step we fit the copula framework as good as possible to the dependence structure of the marginal
distributions F̂i(x) and F̂m(x) that are estimated in Equation 7 and 8.

Θ̂j = arg max
Θj

Lj(Θj) with Lj(Θj) =
n∑
k=1

ln(cj(F̂i,ri,k , F̂m,rm,k
; Θj)) (10)

Where Lj(Θj) is the log-likelihood function of copula combination j ∈ {1, ..., 64} and copula density
function cj(·, ·; Θj) is the pdf of the copula framework in Equation 9 for copula combination j.

With the estimated copula parameters Θ̂j for copula combinations j = {1, ..., 64}, we can select the
best copula combination on basis of the Integrated Anderson-Darling test (IAD), as is proposed
in Ane & Kharoubi (2003). The IAD-test allows us to measure how well the estimated copula
combination Ĉj(·, ·; Θ̂j) distribution fits the empirical distribution, particularly in the tails. To
measure the goodness of fit of each copula combination, we use the empirical copula Ĉ(n) introduced
in Deheuvels (1980), as shown in Equation 11.

Ĉ(n)

(
ti
n
,
tm
n

)
=

1

n

n∑
k=1

1Ri,k≤ti × 1Rm,k≤tm (11)

Where Ri,k (Rm,k) stands for the rank statistic of stock (market) return observation ri,k (rm,k).
This means that largest individual stock return observation in the rolling window sample Ri,k = n
and for the smallest individual return Ri,k = 1. Hereafter, ti and tm are defined on the lattice
provided in Equation 12.

L =

[(
ti
n
,
tm
n

)
, ti = 0, 1, ..., n, tm = 0, 1, ..., n

]
(12)
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Ultimately, we select the copula combination Cj(·, ·; Θ̂j) that has the smallest IAD distance Dj,IAD

to the empirical copula Ĉ(n). The formula for the distance is provided in Equation 13.

Dj,IAD =
n∑

ti=1

n∑
tm=1

(
Ĉ(n)

(
ti
n ,

tm
n

)
− Cj

(
ti
n ,

tm
n ; Θ̂j

))2

Cj

(
ti
n ,

tm
n ; Θ̂j

)
×
(

1− Cj
(
ti
n ,

tm
n ; Θ̂j

)) (13)

With the knowledge of which copula combination Cj fits best for month l and the corresponding
copula parameters Θ̂j , we can calculate the tail dependence coefficients LTD (w1 × LTD(θ1)) and
UTD ((1−w1−w2)×UTD(θ3)). The formulas for LTD (UTD) of CLTD (CUTD), are displayed in
the Appendix.A-Table 12.

3.3 Alternative Estimation Methods for Marginals

In this section we explain the alternative methods that we use instead of Equation 7 and 8. First,
we propose the Duplicates Removing-Heuristic. Then we discuss the Kernel Method.

3.3.1 Duplicates Removing-Heuristic

From the scaled empirical marginal distribution in Equation 7 and 8, we expect the marginal distri-
bution functions F̂i(x) and F̂m(x) to be distributed uniformly on the interval (0, 1) (U(0, 1)). This
is a direct consequence if the condition that all {ri,k, rm,k}nk=1 in the rolling window sample have
unique values is suffice. Then stocks will be assigned to their quantile-’rank’ on the interval (0, 1).
However, we discovered that in the beginning of the sample period most stocks have a substantial
amount of duplicate observations. Between 1994 − 1997 the rolling window samples of the stocks
contain on average 75 duplicate values. Whereas the total market return in the sample period has
on average one duplicate value. Subsequently, there are extreme cases of 12-month rolling window
samples that consist of 100 unique return observations out of a total of 250 observations. This
is due to the less accurate storing of stock prices (less decimals) and less active trading in the
beginning of our sample period (1994− 2000). Chordia et al. (2011) demonstrated that number of
trades have increased over the years 1993− 2008 on the NYSE.

The duplicate observations are an obstruction for the marginal distribution function F̂i(x) of Equa-
tion 7 and 8 to estimate a strictly uniform marginal distribution, as in Figure 2b. The duplicate
observations are ranked with upward bias. For example, for observation ri,k = 0, the marginal

distribution function F̂i(ri,k) includes all other duplicate zero observations as smaller than ri,k in
Equation 7. Therefore all zero return observations get a higher quantile-rank in the marginal dis-
tribution than they would get if it was a unique value. This results in a marginal distribution that
is not uniformly distributed U(0, 1) (with distortion), as is shown in Figure 2a.
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Figure 2: From left to right a.) marginal distribution of stock returns for a rolling window sample as
proposed by Chabi-Yo et al. (2018) b.) the marginal distribution for the same rolling window computed
with the proposed duplicates-heuristic

To eliminate the distortion of the duplicate return observations we propose a heuristic, such that
the marginal distributions are strictly U(0, 1) distributed. First, we identify all days that have a
duplicate return ri,dj for stock i in the rolling window, where dj ∈ {1, ..., n} represents the duplicate
observations for each return value j. Next we collect the market returns rm,d for all days with du-
plicate individual stock returns. Subsequently, we compute the average market return rm for these
days such that we can construct a unique pair (ri,dj , rm,dj ) that represents the duplicate observa-
tions. Finally, we delete all duplicate return days from the rolling window sample {ri,k, rm,k}nk=1

and replace them with the unique pairs (ri,d, rm,d). Hereafter, we continue with the 3-step tail
dependence estimation procedure at Equation 7. One should note that the rolling window sample
with returns after this duplicates removing-procedure is also used for constructing the empirical
copula in Equation 11.

This heuristic results in a smaller rolling window sample, but the output of the duplicates removing-
heuristic is a strictly uniformly marginal distribution, as is exhibited in Figure 2b. If there are no
duplicate values in the rolling window sample, then the heuristic procedure is exactly equal to
the 3-step procedure in Chabi-Yo et al. (2018). From 2003 on we detect on average five duplicate
observations per rolling window sample, therefore we estimate tail dependence with this method
over the period 1995− 2005.

3.3.2 Kernel Method

Besides handling the distortion of duplicate values, we are also interested whether we can improve
the estimation of tail dependence by estimating the marginal distribution more accurately using
the Kernel Method. Charpentier et al. (2007) state that a well-specified marginal function can im-
prove the results, but also that misspecification causes deterioration. Ultimately, without valuable
prior information, non-parametric estimation should be used for the estimation of the marginal
distribution, such as the empirical distribution function in Equation 7 and 8 that is also introduced
by Charpentier et al. (2007).

Charpentier et al. (2007) also propose another method in their paper to estimate smooth marginal
CDF distributions non-parametrically. This is the Kernel Method that uses a univariate Gaussian
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kernel function K : R→ R,
∫
K = 1 as shown in Equation 14.

F̂k(x)(2) =
1

n

n∑
k=1

K

(
x− ri,k

h

)
(14)

Parameter h stands for the bandwidth of the kernel. This parameter is set by rule of thumb of
Scott (1992), which is optimal for normal distributions.

3.4 Performance Measures

In this section we discuss the performance measures, persistence in LTD, Fama-MacBeth regression
and IAD-statistics, that we have use to research whether we have upgraded our model in persistence
and fit, and for investigating if we find the same phenomena for our dataset as Chabi-Yo et al. (2018).

3.4.1 Persistence in LTD

Risk-averse investors want to be protected against market crashes. Therefore, they might be inter-
ested in holding stocks with weak LTD in their portfolio. However, we first need to determine if
a stock that has weak LTD coefficients in month l will have weak LTD again in the future, before
investors are able to profit from holding weak LTD stocks when the market crashes.

We evaluate this persistence of stocks in LTD by constructing a Markov-chain-like matrix. This
matrix measures the relative frequency that a stock transitions from portfolio i in year t−1 (month
l−12) to portfolio j year t (month l). We study the transitions over a year, so the 12-month rolling
windows are disjoint. As the estimation of month l and l − 1 share eleven months of the same
observations. Consequently, the results would naturally show persistence in LTD. The model has
good persistence when there is a plausible likelihood that a stock will return in (or near) the same
portfolio and thus has equivalent LTD measurements.

With respect to the persistence in LTD we investigate the effect of shortening the 12-month rolling
window to a 6-month rolling window. This way only the return observations, ri and rm, in the
half-year prior influence the estimation of tail dependence coefficients. Therefore a 6-month rolling
window can be an advantage, as the considered sample consists of observations that are highly
relevant for the state of the stock. Whereas a 12-month rolling window can consist of observations
from a year prior that do not represent the current state of the stock. On the other hand, the
tail dependence measurements can be more volatile, because extreme observations will have more
influence on the average estimation.

3.4.2 Fama-MacBeth Regression

We use the Fama-MacBeth regression as introduced by Fama & MacBeth (1973) to explain the
influence of risk factors, such as LTD, on stock returns. First, we regress the stock returns against
factors LTD and UTD, see Equation 15. This measures to what extent each stock is exposed to a
factor for every period in T .

R1,t = α1 + β1,FLTD
FLTD,t + β1,FUTD

FUTD,t + ε1,t

R2,t = α2 + β2,FLTD
FLTD,t + β2,FUTD

FUTD,t + ε2,t
...

Rn,t = αn + βn,FLTD
FLTD,t + βn,FUTD

FUTD,t + εn,t (15)
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Where Ri,t is the return of stock i at time t. Fj,t is factor j at time t and βi,Fj is the factor exposure
of stock i to factor j. Then we regress the cross-section of stock returns Ri,t against the factor

exposures β̂i,F , that we computed in the previous step, see Equation 16. In this step we essentially
measure if a larger factor exposure leads to higher returns.

Ri,1 = γ1,0 + γ1,1β̂i,FLTD
+ γ1,2β̂i,FUTD

+ εi,1

Ri,2 = γ2,0 + γ2,1β̂i,FLTD
+ γ2,2β̂i,FUTD

+ εi,2
...

Ri,1 = γT,0 + γT,1β̂i,FLTD
+ γT,2β̂i,FUTD

+ εi,T (16)

The regression coefficients γ are then used to calculate the risk premium, by averaging γ over T .
The t-statistics are computed using the Newey & West (1986) standard errors with four monthly
lags.

3.4.3 Integrated Anderson-Darling Statistic

In Section 3.2 we demonstrated that we can measure the fit for each copula combination with the
IAD-test. We can use this performance measure to compare the Kernel Method with the Empirical
Distribution Method as proposed in Chabi-Yo et al. (2018), because we use the same rolling window
sample and construct the empirical copula on the same returns.

For the Duplicates Removing-Heuristic this is more complicated. It does consider the same rolling
window sample at the start of the 3-step procedure. However, the heuristic summarizes the du-
plicate observations into one observation. This means that if the 12-month rolling window sample
consists of d duplicates, the IAD-statistic is computed over approximately d2 less observations, such
that we can expect beforehand that the IAD-statistic will be smaller. Therefore we can not state
with certainty whether the Duplicate Removing-Heuristic has a better fit to the marginal distribu-
tions, because of the smaller amount of observations or because of a better fit. However it remains
interesting to observe if the IAD-statistic decrease is proportional to the decline in observations
used for computing the IAD-statistic.

4 Results

In this section we research if the phenomena that are demonstrated in Chabi-Yo et al. (2018) also
can be found for our data. Firstly, we present the statistics found for our data in Section 4.1.
Then we investigate persistence in LTD and the impact of shortening the rolling window on the
persistence in Section 4.2. In Section 4.3 we observe the difference in return premia for strong and
weak LTD stocks. Hereafter, we examine this difference after a market crash in Section 4.4. At last,
we consider the performance of the alternative methods for estimation the marginal distributions
in Section 4.5.

4.1 Sample results

We find that there is more LTD than UTD present in our data sample see Figure 3 (for underlying
statistics see Appendix.A-Table 13). We can also deduct from this table that the LTD coefficient
fluctuates more than UTD coefficient. Both coefficients do not show a trend. For LTD we observe
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a crash just before 2000 and high LTD from 2006 − 2012 which coincides with the financial crisis
of 2008. LTD and UTD seem to move in the same direction as they have a correlation of 0.4519.

Figure 3: Average Tail Dependence measured per month in sample period from January 1994 - December
2019.

Furthermore, the copula combinations are selected with roughly the same frequency, as there is
no dominant copula combination. In Appendix.A-Table 14 the percentages of selection frequency
per copula combination can be found, with the Rotated Galambos-Frank-Joe combination being
selected the most 4.22% and the Rotated Gumbel-FGM-Rotated Clayton combination the least
with 0.48%.

4.2 Persistence

The results of the LTD transition analysis are visualized in Figure 4 and the underlying numbers
are reported in Table 2 and 3. The matrices in Figure 4 show the relative frequency that a stock
in portfolio i in year t − 1 can be found in portfolio j in year t, with i, j ∈ {1, ...5} (where 1 (5)
represents the weakest (strongest) LTD portfolio). We can deduct that the LTD transition matrix
for the 6-month rolling window is flatter than the matrix for the 12-month rolling window.
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Figure 4: Visualizations of the LTD transition matrices, where the left matrix a.) exhibits the frequency
that stocks transition from portfolios on basis of LTD estimated on a 12-month rolling window. The right
matrix b.) exhibits the same transition-frequency based on LTD estimated on a 6-month rolling window.

Table 2 provides the relative frequency that stocks transition from portfolios, which are the under-
lying percentages of Figure 4a. Without persistence in LTD the transition probabilities would be
around 20% for all stocks and all years, because then the stock transitions randomly from portfolio.
Table 2 implies that there is persistence in LTD, because if a stock is in either the strongest or
the weakest LTD portfolio in year t − 1, it has a probability of 29.25% and 30.64%, respectively,
to appear in the same portfolio in year t. We also regressed the LTD in year t on the LTD in
year t − 1, with Newey & West (1986) standard errors (on four monthly lags). This resulted in
a coefficient 0.441 with t-statistic (3.81) (significant at 1% level), which confirms that the model
exhibits substantial persistence.

Table 2: The empirical probabilities that a stock will be portfolio j in year t given that the stock was sorted
in portfolio i in year t− 1, where the LTD is estimated on basis of a rolling window of 12 months.

t

1 2 3 4 5

t-1

1 30.64% 22.22% 18.49% 17.19% 11.46%
2 22.22% 24.05% 19.36% 17.88% 16.49%
3 18.14% 21.88% 22.05% 21.27% 16.67%
4 16.32% 16.75% 20.49% 20.31% 26.13%
5 12.67% 15.10% 19.62% 23.35% 29.25%

The extreme portfolios show distinctly more LTD persistence, but in portfolios 2 and 4 we observe
a clear difference. When a stock is in a weak portfolio 2 in year t − 1 it has bigger probability to
be found in a weak/weaker portfolio ((1+2) = 46.27%) than in a strong/stronger portfolio ((4+5)
= 34.37%). The same holds for portfolio 4 in opposite reasoning. Nonetheless, this result also
displays that the LTD of stocks changes over time.

The results in Table 3 show that the extreme portfolios (the weakest (1) and strongest (5) LTD
portfolios) exhibit persistence in LTD, as the stocks in these portfolios have a higher likelihood
(26.56% and 26.22%) to be found in the same portfolio a year later. However, these probabilities
are lower than for the 12-month rolling window model. When we regress the LTD of year t on the
LTD of year t− 1, this gives a coefficient of 0.326 with t-statistic (2.69), which is significant at the
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10% level. This indicates persistence, but to a lesser extent. Furthermore, Table 3 demonstrates
that there is convincing lower probability for a stock in portfolio 1 (5) in year t− 1 to be found in
the other portfolio 5 (1) in year t (14.84% (13.63%)).

Table 3: The empirical probabilities that a stock will be portfolio j in year t given that the stock was sorted
in portfolio i in year t− 1, where the LTD is estimated on basis of a rolling window of 6 months.

t

1 2 3 4 5

t-1

1 26.56% 21.53% 19.01% 19.27% 13.63%
2 21.09% 21.44% 21.18% 16.93% 19.36%
3 19.88% 20.75% 18.49% 21.27% 19.62%
4 17.62% 17.71% 21.35% 22.14% 21.18%
5 14.84% 18.58% 19.97% 20.40% 26.22%

Besides the lower probabilities for the extreme portfolios, it is noticeable that the probabilities for
the portfolios with less tail dependence (2,3,4) differ less. For the 6-month rolling window model
the difference is around 3% for these portfolios. This means that when a stock is found in portfolio
i ∈ {2, 3, 4} in year t − 1, it appears in portfolio j ∈ {1, 2, 3, 4, 5} with approximately the same
probability. Therefore we prefer the 12-month rolling window model, as there is more persistence
present for portfolios 2 and 4.

The results for persistence in LTD encourage holding weak LTD stocks, as it indicates that the
stock will have weak LTD in the future. Table 4 shows that having strong LTD stocks pays off,
as it prevents investors from big losses during the Asian Crisis and the Dot-Com Bubble Burst.
During the Lehman Crisis there is no clear prevention of big losses on basis of LTD.

Table 4: Daily portfolio returns on crisis days (Asian Crisis (October 27th, 1997), Dot-Com Bubble Burst
(April 14th, 2000), Lehman Crisis (October 15th, 2008)), where portfolios are sorted on basis of the most
recent rolling window.

Asian Crisis Dot-Com Bubble Burst Lehman Crisis

5 Strongest LTD Portfolio -6.77% -6.79% -10.67%
4 Strong LTD Portfolio -8.60% -7.26% -11.48%
3 Neutral LTD Portfolio -6.39% -2.80% -7.99%
2 Weak LTD Portfolio -5.13% -5.09% -12.18%
1 Weakest LTD Portfolio -2.52% -1.81% -10.93%

Strongest - Weakest -4.25% -4.99% 0.27%

4.3 Weak vs. Strong LTD Stocks

We are interested in the difference in future return premia of individual stocks with strong tail
dependence and those with weak tail dependence. To measure this difference, we sort all the stocks
in our sample into five portfolios sorted on tail dependence (Strongest, Strong, Neutral, Weak and
Weakest Tail Dependence portfolio). As our sample consists of 20 stocks, this results in four stocks
per portfolio. Every month the stocks are redistributed based on their LTD and UTD-coefficient.
We assign the stocks with the highest (lowest) tail dependence coefficient to the strongest (weakest)
LTD/UTD portfolio. Then we collect the monthly returns of the stocks in next month l + 1, such
that we mimic a trading situation, where we know the tail dependence coefficients of all stocks at
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the end of month l. With these future monthly returns we compute the equal-weighted portfolio
returns. Hereafter, we subtract the monthly T-bill rate (the risk free rate) that can be found in
the Kenneth R. French Data Library, such that the results represent excess returns.

Table 5: Results of univariate equal-weighted portfolio sorts based on the LTD coefficients estimated on a
12-month rolling window for the 20 individual stocks in our sample in the sample period Jan. 1995 to Dec.
2019. All results in the second and third column are significant, unless the t-statistic is provided. We test
the significance with t-statistics (in parentheses), that are computed with Newey & West (1986) standard
errors with 4 monthly lags. *, ** and *** represent 1%, 5% and 10% significance respectively.

Portfolio LTD Return CAPM Alpha FF5 Alpha

5 Strongest LTD Portfolio 0.37 1.171% 0.490%* 0.301%
4 Strong LTD Portfolio 0.27 1.332% 0.674%* 0.623%
3 Neutral LTD Portfolio 0.20 1.060% 0.442% 0.157%
2 Weak LTD Portfolio 0.13 0.913% 0.407% 0.037%
1 Weakest LTD Portfolio 0.05 0.856% 0.363% -0.045%

Strongest - Weakest 0.32*** 0.315% 0.127% 0.347%
(19.20) (0.87) (0.36) (0.86)

In Chabi-Yo et al. (2018) the main focus lies on the results of value-weighted portfolios. This means
that the authors assign more weight to stocks with higher tail dependence coefficients within each
portfolio. We choose not to focus on these results, because our portfolios consist of four stocks.
When using value-weighted portfolios, this results in portfolios that are quickly driven by one or
two stocks with slightly higher tail dependence coefficients than the other stocks in that portfolio.

Table 5 shows that the portfolio with strongest LTD has 0.32 more LTD than the portfolio with
the weakest lower tail dependence. In the third column, the excess returns of the portfolios are
exhibited. The return spread between the strongest LTD portfolio and the weakest LTD portfolio
is 0.315% per month (3.78% per year), which is not significant. This is due to the high standard
errors for the portfolio returns, which is a consequence of having small portfolios consisting of four
stocks. However, this result confirms the intuition that investors receive a compensation for holding
stocks with strong LTD.

One should note that the returns do not decrease monotonically as the strong LTD portfolio (4)
has higher monthly return than the strongest (5) LTD portfolio. In the fourth and fifth column
the average monthly alpha in the CAPM of Sharpe (1964) and the Fama & French (2015) 5-factor
model, respectively, are presented. These results are coherent with the findings of the ’Return’
column. The strongest LTD portfolio has higher returns than the weakest LTD portfolio in 0.127%
and 0.347% per month (1.52% and 4.16% per annum), but that these return spreads are also not
significant.
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Table 6: Results of univariate equal-weighted portfolio sorts based on the UTD coefficients estimated a
12-month rolling window for the 20 individual stocks in our sample in the sample period Jan. 1995 to Dec.
2019. All results in the second and third column are significant, unless the t-statistic is provided. We test
the significance with t-statistics (in parentheses), that are computed with Newey & West (1986) standard
errors with 4 monthly lags. *, ** and *** represent 1%, 5% and 10% significance respectively

Portfolio UTD Return CAPM Alpha FF5 Alpha

5 Strongest UTD Portfolio 0.28 0.976% 0.321% 0.134%
4 Strong UTD Portfolio 0.19 1.046% 0.471% 0.199%
3 Neutral UTD Portfolio 0.12 0.892% 0.305% 0.122%
2 Weak UTD Portfolio 0.06 1.126% 0.603%* 0.263%
1 Weakest UTD Portfolio 0.01 1.295% 0.676% 0.356%

Strongest - Weakest 0.27*** -0.319% -0.355% -0.221%
(11.24) (-1.15) (-1.24) (-0.75)

The results of Table 6 suggest that investors pay a premium for holding the strongest UTD stocks,
as these stocks are more attractive due to the fact that they are more likely to increase in value
during a market boom. The difference between the strongest UTD Portfolio return and Alphas and
the weakest LTD Portfolio return and Alphas are substantial at −0.319%,−0.355 and −0.221% per
month (−3.83%,−4.25% and −2.66% per annum) for the excess returns, CAPM Alpha model and
FF5 Alpha model, respectively. However, alike the LTD results in Table 5 the return and Alpha
spreads are not significant.

4.4 Time Varying Fear of Investors

In this section we investigate the phenomenon that during a post market crash, investors are more
risk-averse. Gennaioli et al. (2012) show that investors structurally underestimate the risk of a
market crash, when there has not been a big crash in recent memory. On the other hand, it is also
found that investors change their perspective and enhance their awareness of bad news after a crisis.

We conduct two Fama-MacBeth regressions that measure the impact of LTD on returns in a post
market crash period and the remaining years (see Table 7). For the post market crash period we
consider 5 years after the three most relevant crises in our sample on October 27th, 1997 (Asian
Crisis), April 14th, 2000 (Dot-Com Bubble Burst) and October 15th, 2008 (Lehman Crisis). This
divides the sample in two halves: 150 month observations per stock in the Post Market Crash
periods and 150 observations per stock in the remaining years.

Table 7: Fama-MacBeth regression of monthly future excess returns over the risk-free rate on LTD and UTD.
Post Market Crash period is October 1997-March 2005 and October 2008-September 2013. In parentheses
the t-statistics are presented computed on Newey & West (1986) standard errors with four monthly lags.
*,**, and *** stand for 10%, 5% and 1% level of significance, respectively.

Post Market Crash Remaining Years

Constant 0.0111*** 0.0079***
(3.298) (3.042)

LTD 0.0248 -0.0882***
(0.748) (-2.815)

UTD -0.0352 -0.0277
(1.306) (-1.193)
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Table 7 shows that during a post market crash period the impact of LTD is positive on returns,
whereas for the remaining years we observe a significant negative impact. This suggests that the
occurrence of a market crash does increase the LTD premium and that the fading of crash aware-
ness amongst investors in the remaining years decreases the LTD premium. It does imply that the
impact of LTD differs between the a post market crash period and the remaining years.

The results in Table 8 show that there is a significant return spread during the post market crash
between the Strong LTD portfolio and the Weak LTD portfolio of 0.66% per month (7.80% per
annum). This indicates that investors are willing to pay a risk premium for weak LTD stocks in
the aftermath of a market crash. In the remaining years there is no clear distinction in portfolio
returns based on LTD sorts. This could indicate that the awareness for market crashes decreased
in the remaining years.

Table 8: Results of univariate equal-weighted portfolio sorts based on the LTD coefficients estimated on a
12-month rolling window for the 20 individual stocks in our sample, where we divide the sample period in
the Post Market Crash period is October 1997 - March 2005 and October 2008 - September 2013 and the
Remaining Years. The t-statistics are based on Newey & West (1986) standard errors with four monthly
lags.

Portfolio Post Market Crash Remaining Years

5 Strongest LTD Portfolio 0.36 1.26% 0.37 1.08%
4 Strong LTD Portfolio 0.27 1.18% 0.28 1.49%
3 Neutral LTD Portfolio 0.20 0.67% 0.21 1.46%
2 Weak LTD Portfolio 0.11 1.06% 0.14 0.77%
1 Weakest LTD Portfolio 0.03 0.60% 0.06 1.11%

Strongest - Weakest 0.31*** 0.66%* 0.33*** -0.03%
(11.99) (1.72) (15.12) (-0.06)

4.5 Alternative Methods for Empirical Marginal Distribution Functions

In this section we examine the performance of alternative marginal distribution estimation methods.
First we present the results of the Duplicates Removing-Heuristic. Lastly we discuss the results of
the Kernel Method.

4.5.1 Duplicates Removing-Heuristic

For the application of this heuristic it is most interesting to focus on the period between 1995 and
2000, because in that period the rolling windows consider a substantial amount of duplicate return
days, in particular zero return observations (ri,k = 0). This means that for that period the heuristic
differs convincingly from 12-month rolling window model.

In Figure 5 we observe that the average IAD-statistic for the Duplicates Removing-Heuristic is
constant around 25 and substantially smaller than that of the 12-month rolling window model.
One should note that the heuristic model also has a better fit than the ’distorted’ 6-month rolling
window model, although the heuristic model considers roughly 50 observations more in its rolling
window sample (170 vs. 125 of 6-month rolling window model). This indicates that also for the
6-month rolling window model the distortion disturbs the fitting of the copula framework on the
observations and that the improvement of fit by the heuristic model can not solely be contributed
to the decrease in the amount of observations over which the IAD-statistic is estimated.
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Figure 5: IAD-statistics of the different models over time, where IAD for Duplicates Removing-Heuristic
observations run from Jan 1995 to Dec 2004. The other IAD graphs run over the sample period Jan 1995
to Dec 2019. The average number of unique observations per rolling window sample of the 20 stocks does
correspond to the scaling of the y axis (not to the label).

In the years following 1997, we observe the movement in opposite directions as the average number
of unique values in the rolling window sample increases, the difference between heuristic model and
the 12-month rolling window model disappears. The IAD-statistic for the heuristic on the sample
period 1995 − 2005 is strictly smaller than the 12-month rolling window. We are required to do
further research to state with certainty that the Duplicates-Heuristic outperforms the 12-month
rolling model.

In the period 1995−2005 that the Duplicates Removing-Heuristic differs from the 12-month rolling
window, two financial crises (the Asian Crisis and the Dot-Com Bubble Burst) take place. In Table
9 we observe that the LTD levels for portfolios of both models are similar. Over the whole period
we see that the heuristic model has a higher monthly return spread of 0.85% than the 12-month
rolling window model with 0.41%, which suggests that the heuristic measures a more direct impact
from LTD on the future returns.

We observe that for the Asian Crisis the Duplicate-Heuristic offer slightly less protection against
wealth destruction (−3.79% against −4.25%). However during the Dot-Com Bubble Burst crisis
the Duplicate Removing-Heuristic model prevents the weakest LTD portfolio for bigger losses than
the 12-month rolling window model,as the losses for the portfolios based on LTD estimated by the
heuristic model increase monotonically with the level of LTD.
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Table 9: Results for univariate portfolio sorts based on LTD for the period Jan 1995 to Dec 2004. On the left
the results for the model with Duplicates Removing-Heuristic and on the right the results for the 12-month
rolling window. The daily returns on crisis days in the sample period: the Asian Crisis and the Dot-Com
Bubble Burst (D-C Bubble).

Portfolio LTD Return Asian Crisis D-C Bubble LTD Return Asian Crisis D-C Bubble Burst

5 Strongest LTD portfolio 0.31 2.28% -6.77% -8.03% 0.30 2.04% -6.77% -6.79%
4 Strong LTD portfolio 0.21 1.61% -9.47% -5.34% 0.21 1.34% -8.60% -7.26%
3 Neutral LTD portfolio 0.15 1.00% -4.90% -4.72% 0.14 1.92% -6.39% -2.80%
2 Weak LTD portfolio 0.09 1.66% -5.29% -4.46% 0.08 1.04% -5.13% -5.09%
1 Weakest LTD portfolio 0.03 1.43% -2.98% -1.20% 0.03 1.64% -2.52% -1.81%

Strongest - Weakest 0.28 0.85% -3.79% -6.83% 0.27 0.41% -4.25% -4.98%

4.5.2 The Kernel Method

In this section, we further analyze the empirical marginal distribution function of the 12-month
rolling window model with the Kernel Method. As is clear from Figure 5, the model for the
Kernel Method has equivalent IAD-statistics as the 12-month rolling window model. In Table 10,
it is reported that the kernel method has a higher IAD-statistic on average, that implies that the
Replication Method of Chabi-Yo et al. (2018) has our preference.

Table 10: IAD-statistics comparison between Replication Method and Kernel Method over the sample period
from Jan 1995 to Dec 2019.

Mean Median

Replication Method 56.38 45.83
Kernel Method 58.43 48.10

Difference 2.04 2.27

When analyzing the IAD-statistics per individual stock, the same case can be made, as each stock
has on average a lower IAD-statistic. In total 761 of 6, 000 observations had smaller IAD-statistics
for the Kernel Method than for the 12-month rolling window model.

The portfolio returns of the Kernel Method are exhibited in the Appendix.A-Table 16. The returns
do not differ from the portfolios sorts returns in Table 5 of the 12-month rolling window model.
This implies that the LTD coefficients do not differ per individual stock per month, such that a
stock is sorted to an other portfolio in any month.

5 Conclusion

The use of copulas has increased in popularity in the field of risk management since the nineties.
Chabi-Yo et al. (2018) introduced a 3-step procedure that fits a flexible copula framework on a
rolling window sample of returns that measures both lower tail dependence and upper tail depen-
dence of stock returns with the market returns. They conclude that holding stocks with high LTD,
that are thus crash-sensitive, yields a return premium. Therefore we question whether we can find
the same results for our dataset. Additionally, we investigate the impact of shortening the rolling
window on the persistence in LTD and research whether alternative methods for the empirical
distribution in the 3-step procedure can improve the fit of the copulas to the returns.
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After implementing the 3-step procedure of Chabi-Yo et al. (2018) we find that for our dataset
strong LTD stocks in the equal-weighted strongest LTD portfolio yield an average return 3.78% per
year over the weakest LTD portfolio. This is coherent with the idea that investors are willing to pay
higher prices and yield lower returns for weak LTD stocks. However, we learn that this depends on
the economic state, as we find that during a post market crash period LTD has a positive impact
on future returns, while LTD has a negative impact in the remaining years. This suggests that the
fear of a market crash is time-varying amongst investors, as we do not find a difference between
strong and weak LTD stocks in returns during the remaining years.

Reducing the sample on which we estimate tail dependence to a 6-month rolling window model
shows that the model still exhibits persistence. However to a lesser extent than the 12-rolling
window model. For the alternative methods for empirical distribution functions we find that the
Kernel Method does not improve the fit of the copula framework on the returns. However, for the
proposed Duplicates Removing-Heuristic we do find better results, when the rolling window sample
has a substantial amount of duplicate observations. Although we can not contribute solely to the
fit of the model, as we measure the performance on a smaller summarized sample. With the rise of
the amount of unique values in the rolling window sample, we find that the results of the heuristic
model converge to the original 12-month rolling window model.

For further research we suggest to investigate if there is a performance measure that can measure
the improvement of fit better for the heuristic, that is not biased by the difference in considered
observations. Also we would like to dive in the other methods that already exist for coping with
infrequent trading, which indirectly leads to duplicate observations. We could try other kernels
with different bandwidths, however our results do not indicate much room for improvement.
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6 Appendix

A Additional Graphs and Tables

Table 11: List of the twenty individual stocks in our data sample. Sorted on basis of the market capitalization
on the most recent day of our sample period 31 Dec. 2019.

Large Cap Stocks PERMNO Company Name Market Capitalization

21178 LOCKHEED MARTIN CORP $ 110,543,622,079
72726 STATE STREET CORP $ 29,046,205,240
22517 P P L CORP $ 25,790,587,110
58246 NORTHERN TRUST CORP $ 22,527,294,240
10933 MARKEL CORP $ 15,745,680,000
46674 GENUINE PARTS CO $ 15,403,963,860
12650 KANSAS CITY SOUTHERN $ 15,174,280,800

Medium Cap Stocks PERMNO

53065 INTERPUBLIC GROUP COS INC $ 8,948,854,560
36281 SEABOARD CORP $ 4,898,825,000
15456 FOOT LOCKER INC $ 4,177,732,170
13507 AMERICAN NATIONAL INS CO $ 3,148,467,700
88197 FULTON FINANCIAL CORP PA $ 2,883,623,540
24328 E Q T CORP $ 2,720,041,520
58334 NORTHWEST NATURAL HOLDING CO $ 2,224,567,240

Small Cap Stocks PERMNO

75320 UNITED STATES CELLULAR CORP $ 1,878,002,940
76573 MUELLER INDUSTRIES $ 1,816,768,800
77519 TRUSTCO BANK CORP NY $ 845,116,240
13777 AMERICAN SOFTWARE INC $ 443,175,000
11267 CATO CORP NEW $ 399,133,850
18403 PENNEY J C CO INC $ 355,200,000

Table 12: The copulas that are included in fitting copula combinations. The third and fourth column show
the formulas for calculating the tail dependence. The last column states the domains of the dependence
parameter θ.

Tail Dependence Copula LTD UTD θ domain

Lower Tail Dependence Clayton 2−1/θ - [0,∞)

Rotated-Gumbel 2− 2−1/θ - [1,∞)

Rotated-Joe 2− 2−1/θ - [1,∞)

Rotated-Galambos 2−1/θ - [0,∞)

Neutral Tail Dependence Gauss - - [− 1.1]
Frank - - (−∞,∞)
Plackett - - (0,∞)
F-G-M - - [− 1.1]

Upper Tail Dependence Joe - 2− 2−1/θ [1,∞)

Gumbel - 2− 2−1/θ [1,∞)

Galambos - 2−1/θ [0,∞)

Rotated-Clayton - 2−1/θ [0,∞)
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Table 13: Summary statistics of LTD and UTD coefficients that are estimated with the 12-month rolling
window model.

Mean 25% Quantile Median 75% Quantile Standard Deviation

LTD 0.20 0.09 0.19 0.30 0.140
UTD 0.13 0.03 0.12 0.21 0.116

Table 14: The frequency that each copula combination is selected with the the 12-month rolling window
model.

Copula Percentage Copula Percentage Copula Percentage Copula Percentage

Clayton-Gaussian-Joe 2.50% RGumbel-Gaussian-Joe 1.23% RJoe-Gaussian-Joe 3.92% RGalambos-Gaussian-Joe 1.93%
Clayton-Gaussian-Gumbel 1.08% RGumbel-Gaussian-Gumbel 0.87% RJoe-Gaussian-Gumbel 1.48% RGalambos-Gaussian-Gumbel 1.33%
Clayton-Gaussian-Galambos 1.43% RGumbel-Gaussian-Galambos 0.87% RJoe-Gaussian-Galambos 2.58% RGalambos-Gaussian-Galambos 1.25%
Clayton-Gaussian-RClayton 2.13% RGumbel-Gaussian-RClayton 1.00% RJoe-Gaussian-RClayton 2.85% RGalambos-Gaussian-RClayton 1.37%
Clayton-Frank-Joe 1.87% RGumbel-Frank-Joe 1.32% RJoe-Frank-Joe 3.40% RGalambos-Frank-Joe 4.22%
Clayton-Frank-Gumbel 1.67% RGumbel-Frank-Gumbel 0.85% RJoe-Frank-Gumbel 2.53% RGalambos-Frank-Gumbel 2.48%
Clayton-Frank-Galambos 2.20% RGumbel-Frank-Galambos 1.47% RJoe-Frank-Galambos 3.28% RGalambos-Frank-Galambos 3.13%
Clayton-Frank-RClayton 1.40% RGumbel-Frank-RClayton 1.17% RJoe-Frank-RClayton 1.47% RGalambos-Frank-RClayton 2.12%
Clayton-Plackett-Joe 1.32% RGumbel-Plackett-Joe 0.87% RJoe-Plackett-Joe 2.33% RGalambos-Plackett-Joe 2.17%
Clayton-Plackett-Gumbel 0.83% RGumbel-Plackett-Gumbel 0.57% RJoe-Plackett-Gumbel 1.00% RGalambos-Plackett-Gumbel 0.93%
Clayton-Plackett-Galambos 1.02% RGumbel-Plackett-Galambos 0.77% RJoe-Plackett-Galambos 1.77% RGalambos-Plackett-Galambos 1.37%
Clayton-Plackett-RClayton 0.92% RGumbel-Plackett-RClayton 0.45% RJoe-Plackett-RClayton 0.87% RGalambos-Plackett-RClayton 1.28%
Clayton-FGM-Joe 1.38% RGumbel-FGM-Joe 1.25% RJoe-FGM-Joe 2.22% RGalambos-FGM-Joe 2.43%
Clayton-FGM-Gumbel 0.75% RGumbel-FGM-Gumbel 0.48% RJoe-FGM-Gumbel 1.50% RGalambos-FGM-Gumbel 0.97%
Clayton-FGM-Galambos 1.30% RGumbel-FGM-Galambos 0.58% RJoe-FGM-Galambos 1.72% RGalambos-FGM-Galambos 1.55%
Clayton-FGM-RClayton 0.73% RGumbel-FGM-RClayton 0.58% RJoe-FGM-RClayton 0.75% RGalambos-FGM-RClayton 0.95%

Table 15: Returns of value-weighted LTD portfolios.

Value-Weighted Portfolio Return

5 Strongest LTD portfolio 6.38%
4 Strong LTD portfolio 1.12%
3 Neutral LTD portfolio -2,42%
2 Weak LTD portfolio -0,41%
1 Weakest LTD portfolio 2,83%

Table 16: Results of univariate equal-weighted portfolio sorts based on the LTD coefficients estimated with
the Kernel method for the 20 individual stocks in our sample in the sample period Jan. 1995 to Dec. 2019.

Portfolio LTD Return

5 Strongest LTD Portfolio 0.37 1.17%
4 Strong LTD Portfolio 0.27 1.33%
3 Neutral LTD Portfolio 0.20 1.06%
2 Weak LTD Portfolio 0.13 0.91%
1 Weakest LTD Portfolio 0.05 0.86%

Strong - Weak 0.32*** 0.32%
(0.881)

B MATLAB Code Files

B.1 CopulaMethods General.m

This code estimates all tail dependence coefficients for each stock. Within the code we explain how
it runs for all different models.
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B.2 Result Finalizer.m

This program computes portfolio sorted returns on basis of the tail dependence that is computed
in CopulaMethods.m.

B.3 Rates and Market Return.data

The returns of the individual stocks and market on which we estimate the tail dependence.
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