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Abstract

Stationary time series show dependence across different time scales, which can be mod-
elled by the persistence-based Wold decomposition. This paper studies forecasting applica-
tions of this decomposition. We apply the methodology to forecast bond returns and realized
volatility, where we provide an adjustment of the used autoregressive model to provide bet-
ter estimation results for larger time horizons. We make a forecast combination with the
HAR-RV model to improve realized volatility forecasting and extend the analysis with a
high-frequency realized volatility data. The model does not show improvements for short-
term forecasting in terms of the RMSE and Mincer-Zarnowitz R2. For the long-term, the
error variance decreases slightly, which also applies for high-frequency data. We construct
portfolios with realized volatility forecasts and show that these results improve minimum
variance portfolios based on moving windows. We finally apply the decomposition on a
factor model. We show that for the chosen stock indices, the portfolio weights and spectral
betas do not change significantly, which indicates equal systematic risk across components.
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1 Introduction

A well-known characteristic of financial data is the complexity of its volatility, as this can be
related to multiple periods. Therefore, it is informative for investors to know whether pricing
depends on long-term relations, to avoid suffering from mispricings in the short term. Thus, time
series analysis based on long-term information is an important field of analysis in finance. Ortu
et al. [2020] propose a method to decompose a stationary time series into orthogonal components
of different durations: the persistence-based Wold decomposition (PWD). This decomposition
is an extension of the classical Wold decomposition, constructed by Wold [1938]. The PWD
is based on white noise processes and decompose them such that persistence components over
increasing time periods are created. This method can be used to investigate whether a certain
time series depends on long-term innovations and also provides a way to decompose the variance
of a time series into short-term and long-term scales. Ortu et al. [2020] use these scales to
construct a forecasting model with persistence scales. They compare their forecasts to another
volatility forecasting method, but do not investigate combinations of the methods. Also, this
volatility forecasting method can contain useful information for investment issues.

In this paper, we investigate in which ways PWD can be used to construct volatility
forecasts in different applications. We start by replicating some results of Ortu et al. [2020] and
perform a simulation, for which we show the reconstruction of a time series. Next, we apply
PWD to forecast bond returns and predict realized volatility. The forecasting method starts
by estimating an autoregressive model for the data, from which the coefficients and error terms
are used to construct the scales. We investigate if the forecasting performance is sensitive for
the choice of the autoregressive level and if the forecasting results can be improved by using
another criterion for the level choice.

Ortu et al. [2020] compare their realized volatility forecasts to the results of the Hetero-
geneous Autoregressive model of Realized Volatility (HAR-RV), proposed by Corsi [2009]. This
model forecasts realized volatility with different time period components, but uses, in contrast
to Ortu et al. [2020], aggregated realized volatilities of days, weeks, and months. This relatively
simple model shows reasonably good performance in forecasting. Ortu et al. [2020] find that the
models give different estimates and differ in positive and negative errors. Forecasts of models
can be combined, which can help to reduce the adverse effects of misspecification. Timmermann
[2006] remarks that especially models with different approaches can obtain diversification gains
from forecast combinations. Therefore, we compare PWD and HAR-RV in forecasting perfor-
mance and investigate if we can improve the performance of the single models by combining
both models, using the method of Timmermann [2006]. To investigate the forecasting perfor-
mance of the single models and forecast combination model for high-frequency RV, we apply
the models on two different RV data sets: one of 2-hour RV and one of 10-minute RV.

Furthermore, the volatility forecasts based on the PWD could also contain useful
information for the construction of portfolios. The estimation of realized volatility is useful in
portfolio selection, which is a famous research field in finance, founded by Markowitz [1952].
The estimation of asset volatilities is an essential element in determining asset weights for
a portfolio. Much literature has been written about this subject. Studies like De Pooter
et al. [2008] use high-frequency data for the covariance matrix and a simple estimation for the
expected return. Halbleib and Voev [2016] show that a mixed approach of high-frequency data
for the realized volatility and lower-frequency data for the returns performs well compared to
other high-frequency approaches, whereas a mixed approach has computational advantages. To
investigate if the realized volatility forecasts improve the performance of portfolios, we construct
a portfolio for stock indices where the volatility forecasts of the PWD are used to estimate the
covariance matrix by the mixed approach of Halbleib and Voev [2016], using high-frequency data
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and lower-frequency data. We also explore another way to estimate portfolio weights using scale
components and use the spectral factor model, described by Bandi et al. [2019]. This model
applies the multivariate form of the PWD to decompose a factor model. We use this model
to investigate if we can observe differences in systematic risk across scale components. We
summarize this all into the following research question: What is the added value of the
persistence-based Wold decomposition for forecasting?

This paper makes several contributions to the literature. The first contribution is the
replication of the research of Ortu et al. [2020] for the forecasting of bond returns and realized
volatility. We find in line with Ortu et al. [2020] that the bond returns can be predicted by short-
term level components and long-term slope components, and that the results for the realized
volatility are generally accurate. Our second contribution is that we show that forecasts by
PWD can be improved by using different criteria for different forecast horizons, to choose the
level of the autoregressive model on which the scale decomposition is based. Specifically, the
AIC turns out to be a good criterion for long-term forecasting. Our third contribution is that
we find that forecast combinations of the PWD and HAR-RV model do not improve forecasts
in the short term. However, forecast combinations for larger time horizons give indications they
can reduce the error variance. Our fourth contribution is that we show that the results of the
forecast combination for 10-minute RV data are generally similar to the 2-hour RV results. The
fifth contribution of this paper is a method to estimate portfolio weights for stock indices using
realized volatility forecasts by PWD. We show that we can improve minimum variance portfolios
by making use of realized volatility forecasts in a mixed approach. Our sixth contribution is that
we show in our application of the spectral factor model based on the PWD, that the systematic
risk of the portfolio is approximately equal across components for our stock index data. The
results show that the portfolio weights do not change significantly from a simple factor model
and the spectral betas are relatively constant over scale components.

This paper proceeds as follows. In Section 2, we present the methodology. Here we
describe the persistence-based Wold decomposition and reconstruction of a time series. Next, we
explain how this model can be used to construct forecasts, forecast combinations and portfolios
by realized volatility estimations and the spectral factor model. In Section 3, we describe the
used data sets for the applications. Section 4 presents the results of our empirical applications.
Section 5 concludes.

2 Methodology

2.1 The persistence-based Wold decomposition

Consider a weakly stationary stochastic process with zero-mean

xt =

∞∑
h=0

αhεt−h, t ∈ Z, (1)

where the process εt is white noise and denotes the so-called fundamental innovations. Assume
further that the coefficients αh = E[xtεt−h] are square-summable and independent from t. Ortu
et al. [2020] show that Equation 1 can be decomposed in the following way, that is called the
persistence-based Wold decomposition:

xt =

∞∑
j=1

∞∑
k=0

β
(j)
k ε

(j)

t−k2j , for j ∈ N. (2)
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This decomposition consists of two groups of terms. The first group is the detail process at

scale j , denoted by the white noise process ε
(j)
t , which is a MA(2j − 1) process with respect to

the fundamental innovations:

ε
(j)
t =

1√
2j

( 2j−1−1∑
i=0

εt−i −
2j−1−1∑
i=0

εt−k2j−1−i

)
, (3)

The second group of terms is formed by the scale-specific moving average coefficients β
(j)
k ,

that are also square-summable for all j ∈ N and independent of t, and are calculated by

β
(j)
k =

1√
2j

( 2j−1−1∑
i=0

αk2j+i −
2j−1−1∑
i=0

αk2j+2j−1+i

)
. (4)

The PWD is split into persistence components at scale j , whose summation results in the
process xt. They are defined as

g
(j)
t =

∞∑
k=0

β
(j)
k ε

(j)

t−k2j . (5)

In practice, we also need a finite-scale version of the extended Wold decomposition, where
the maximum scale J is fixed. In this case, xt is decomposed as respectively the sum of the
persistent components at the scales j = 1, ..., J and a certain residual component. This results
in the following decomposition:

xt =
J∑

j=1

∞∑
k=0

β
(j)
k ε

(j)

t−k2j + π(J). (6)

2.2 Reconstruction of a time series from its components

Assume that for each scale j a detail process is driven by its underlying innovations as a
MA(2j − 1) process, as follows:

ε
(j)
t =

2j−1∑
i=0

δ
(j)
i εt−i, where all δ

(j)
i ∈ R. (7)

Consider a process xt, which is the sum of the stochastic processes g
(j)
t , that are built up from

coefficients β
(j)
k . Under some assumptions, for which we refer to Ortu et al. [2020], the process

xt is weakly stationary and can be decomposed as

xt =

∞∑
h=0

αhεt−h, where αh =

∞∑
j=1

β
(j)

b h

2j
cδ

(j)

h−2jb h

2j
c, (8)

where b h
2j
c returns the greatest integer less than or equal to h

2j
.

2.2.1 Simulation of a time series reconstruction

To illustrate the methodology of a multiscale construction, we perform in line with Ortu et al.

[2020], a simulation. We start with detail processes ε
(j)
t , j = 1, ..., J , with coefficients δ

(j)
i as

follows: 1√
2j

for 0 ≤ i ≤ 2j−1 − 1 and − 1√
2j

for 2j−1 − 1 ≤ i ≤ 2j − 1. We consider two weakly

stationary stochastic processes xt and yt, that are each defined by a sequence of scale-specific

5



moving average coefficients. We take the following extended Wold coefficients for the AR(1)
process xt with parameter ρx, where |ρx| < 1:

β
(j)
x,k =

ρk2
j

x√
2j

(1− ρ2j−1x )2

1− ρx
where j ∈ N, k ∈ N0. (9)

The scale-specific coefficients of yt, an AR(1) process with horizon 2J and parameter ρy, where
|ρy| < 1, are defined as

β
(j)
y,k =


0 for 1 ≤ j ≤ J

ρk2
j−J

y√
2j−J

(1− ρ2j−J−1y )2

1− ρy
for j ≥ J + 1

where j ∈ N, k ∈ N0. (10)

We construct the coefficients of the process zt as the sum of the coefficients of xt and yt, i.e.

β
(j)
z,k = β

(j)
x,k + β

(j)
y,k. Therefore, zt is expressed as follows:

zt =

∞∑
h=0

αhεt−h, where

αh =



∞∑
j=1

(ρk2jx√
2j

(1− ρ2j−1x )2

1− ρx

)
δ
(j)

h−2jb h

2j
c for 1 ≤ j ≤ J

∞∑
j=1

(ρk2jx√
2j

(1− ρ2j−1x )2

1− ρx
+
ρk2

j−J

y√
2j−J

(1− ρ2j−J−1y )2

1− ρy

)
δ
(j)

h−2jb h

2j
c for j ≥ J + 1

(11)

for j ∈ N, k ∈ N0. By construction, zt is also weakly stationary. In Section 4, we show
simulation results for some parameter choices and compare them to an AR(1) process.

2.3 Forecasting with the persistence-based Wold decomposition

2.3.1 Choice of autoregressive model

To construct forecasts from the PWD, we first approximate our data xt by an AR(M) model.
Ortu et al. [2020] use the Bayesian Information Criterion (BIC) to choose the autoregressive
level, assuming a Gaussian distribution for the errors to calculate the likelihood function. The
BIC is generally defined as

BIC(p) = p lnn− 2 ln L̂, (12)

where L̂ denotes the log-likelihood, p the number of parameters and n the sample size. We use
two alternative criteria to estimate the autoregressive level. Ortu et al. [2020] estimate the BIC
for a varying number of observations n = T − p, where T denotes the whole time series. As
this method can overestimate p, we also use a BIC based on the same number of observations.
For this purpose, we choose a maximum number of parameters P and calculate all BICs for
the same n = T − P observations. The second alternative criterion we use to determine the
autoregressive level is the Akaike Information Criterion (AIC):

AIC(p) =
2p

n
− 2

n
ln L̂. (13)

This criterion has the advantage that it aims to minimize prediction error and also tends to
estimate a higher autoregressive level than the BIC. Especially for long-term forecasting, this
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could give us better results. We evaluate the forecasting performance for all criteria in the
results. After determining the autoregressive order, we estimate the following linear regression
for a moving window:

xt =
M∑

m=1

bmxt−m + εt. (14)

2.3.2 Forecasting

The autoregressive model of Equation 14 allows us to construct coefficients and forecasts. In
line with Ortu et al. [2020], we iteratively construct the impulse response functions as described
by Di Virgilio et al. [2019]:

α0 = E
[
ε2t
]1/2

, αm =
m−1∑

h=max{m−M,0}

αhbm−h, ∀m ∈ N. (15)

From the estimated values of αh from Equation 15, we construct the moving average coefficients

β
(j)
k as described in Equation 4. With the values of β

(j)
k and the normalized εt obtained in

Equation 14 until time t, we construct the persistence components g
(j)
t , j = 1, ..., J , as described

in Equation 5.

Suppose we want to perform a p-step ahead forecast, where p ∈ N. We assume that the

relationship between the main process xt and the scale components g
(j)
t is constant over time in

the moving window. To estimate the dependence of the main process on the scale components,
we perform the following linear regression:

xt = a(0) +
J∑

j=1

a(j)g
(j)
t + νt. (16)

From the estimated coefficients â(j), we construct a forecast for xt. First, we estimate the
expected persistence components for time t+p. With the information at time t, the conditional
expectation of the persistence components for time t+ p are given by

Et[g
(j)
t+p] =

Kj−1∑
k=0

β
(j)
k,pε

(j)

t−k2j , (17)

where Kj denotes the number of moving average coefficients that are calculated for each scale
j. These coefficients are calculated by

β
(j)
k,p =

1√
2j

( 2j−1−1∑
i=0

αk2j+i+p −
2j−1−1∑
i=0

αk2j+2j−1+i+p

)
. (18)

Using the coefficients â(j) obtained in Equation 16, we obtain for xt+p the following forecast:

Et[xt+p] = â(0) +

J∑
j=1

â(j)Et[g
(j)
t+p]. (19)
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2.4 Forecast combination

We examine if forecasting by a combination of two models produces more accurate estimations.
First, we estimate two models for a comparison sample, using a moving window. With the
results of the errors for this comparison sample, we calculate the weights for which the variance
is minimized. Based on these weights, we estimate a combined model for the estimation sample,
again with a moving window. We combine the persistence-based Wold decomposition by Ortu
et al. [2020], described in Subsection 2.3, and the HAR-RV model by Corsi [2009]. This method
forecasts realized volatility (RV) in the following way:

x
(d)
t+1 = c+ β(d)x

(d)
t + β(w)x

(w)
t + β(m)x

(m)
t + ηt+1, (20)

where x
(d)
t denotes the RV of the current day, x

(w)
t denotes the average RV of the last 5 week

days (the current day included) and x
(m)
t denotes the average RV of the last 22 month days

(the current day included).

For the forecast combination, we use the method described by Timmermann [2006]
where the variance of the forecast errors is minimized. First we estimate xt with two different
models and obtain the forecasts x̂1,t+p|t and x̂2,t+p|t. Assume that the forecasts are unbiased
and the forecast errors have variance of σ21 and σ22, and a covariance of σ12 = ρ12σ1σ2. Then we
can combine forecasts in the form of

x̂ct+p|t = ωx̂1,t+p|t + (1− ω)x̂2,t+p|t, where ω ∈ R. (21)

Provided the assumptions are true, this forecast also has zero mean and a variance of

σ2c (ω) = ω2σ21 + (1− ω2)σ22 + 2ω(1− ω)σ12. (22)

Minimizing σ2c (ω) with respect to ω yields the following optimal weights:

ω∗ =
σ22 − σ12

σ21 + σ22 − 2σ12
, 1− ω∗ =

σ21 − σ12
σ21 + σ22 − 2σ12

. (23)

2.5 Portfolio selection

2.5.1 Realized volatility forecasting

We use the RV forecasts by PWD from Equation 19 for optimal portfolio construction. For this
purpose, we use daily reported stock index data. Let ri,t denote the close-to-close returns and
xi,t denote the 10-minute RV, for stock indices i = 1, ..., N and t in days. We first estimate
the daily return forecasts r̂i,t+1 by taking the mean of the assets using a short moving window.
Next, we forecast the RV of each stock index i using the method of Ortu et al. [2020] described
in Subsection 2.3, and obtain daily RV forecasts x̂i,t+1 as described in Equation 19. Here we
use a large moving window, that is updated every day.

We use these forecasts to construct the matrices in Equation 24. First, we construct
the diagonal matrix D̂t+1 for each predicted day, where the diagonal elements are the squared
roots of the predicted daily high-frequency-based RVs. Next, we estimate for each day in
the estimation sample the correlation matrix R̂t+1 of the stock index returns, where we use
a shorter moving window on each stock that is also updated every day. This results in the
following matrices, where ρX,Y = Corr(rX,t, rY,t):
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D̂t+1 =


√
x̂1,t+1 0 0

0
. . . 0

0 0
√
x̂N,t+1

 , R̂t+1 =


1 ρ1,2 . . . ρ1,N
ρ1,2 1 . . . ρ2,N

...
...

. . .
...

ρ1,N ρ2,N . . . 1

 . (24)

To estimate the covariance matrix, we use the Mixed Approach (MA), proposed by Halbleib
and Voev [2016]. This method is based on a decomposition of the covariance matrix, which is
used by Engle [2002]. In the MA, the covariance matrix is estimated as follows:

Σ̂MA
t+1 = D̂FD

t+1R̂
FR

t+1D̂
FD

t+1, (25)

where FD and FR denote two different information sets on which the forecasts are based. For
this purpose, we use the estimated matrices from Equation 24, that are indeed based on different
information sets. An advantage of using the diagonal matrix D̂t+1 in the Mixed Approach is
that we do not need covariance estimations from Ortu et al. [2020], such that we focus on the
performance of the RV estimations.

From the obtained estimations, we construct optimal portfolio weights. We consider
two methods: global minimum variance (GMV) and tangency. The portfolio weight vectors are
constructed as follows, where we denote r̂t+1 = (r̂1,t+1, ..., r̂N,t+1)

′ and ι as a vector of ones:

wtan =
(Σ̂t+1)

−1r̂t+1

ι′(Σ̂t+1)−1r̂t+1

, wGMV =
(Σ̂t+1)

−1ι

ι′(Σ̂t+1)−1ι
. (26)

As an unrestricted tangency portfolio can return very extreme weights, we rescale the tangency
portfolios on days where one or more weights wi are calculated for which |wi| > 1, for some
1 ≤ i ≤ N , as follows:

wnew
i =

wi − 1/N

max
1≤i≤N

|wi|
+ 1/N for i = 1, ..., N, (27)

such that the weights are bounded between 1 + 1/N and −1 + 1/N . To investigate the power
of using the RV estimations of Ortu et al. [2020], we compare the results with the portfolio
selection where Σ̂t+1 is calculated as the covariance matrix of the stocks based on a shorter
moving window (which we denote as MW):

Σ̂MW
t+1 =


Var(r1) Cov(r1, r2) . . . Cov(r1, rN )

Cov(r1, r2) Var(r2) . . . Cov(r2, rN )
...

...
. . .

...
Cov(r1, rN ) Cov(r2, rN ) . . . Var(rN )

 . (28)

Moreover, we use the 1/N portfolio as a benchmark. We compare the returns of the
methods with some performance measures: the mean return, the Sharpe Ratio, the Sortino
Ratio, the Value-at-Risk at 5% and the variance.

2.5.2 Spectral factor model

Next, we use the persistence-based Wold decomposition to construct portfolios by factor models.
We use the spectral factor model of Bandi et al. [2019], that is based on the multivariate form
of the PWD. We first construct a simple factor model. Assume that we have stock returns ri,t
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for stocks i = 1, ..., N and days t. The vector βi = (βi,1, ..., βi,M ) denotes the sensitivities of
asset i to the M factors ft = (f1,t, ..., fM,t). The standard factor decomposition of the asset
returns has the following form:

ri,t = αi + βif
′
t + ui,t. (29)

Here the covariance matrix of the returns is denoted as

Σr = BV B′ +D, (30)

where B is an N×M matrix of the factor betas that are obtained by a regression, V is the M×M
covariance matrix of the factors ft and D is assumed to be the diagonal matrix D = E[u′tut].

Now we construct a spectral factor model. First, we split both the returns and the
factors into J components by the multivariate form of the persistence-based Wold decompo-

sition. We obtain the scales r
(j)
i,t , for j = 1, ..., J + 1, i = 1, ..., N , and the scale vectors f

(j)
t ,

j = 1, ..., J + 1. We perform the following N(J + 1) linear regressions:

r
(j)
i,t = αi + β

(j)
i (f

(j)
t )′ + u

(j)
i,t , for j = 1, ..., J + 1 and i = 1, ..., N. (31)

Here scale J + 1 represents the residual component, such that f
(J+1)
t = ft −

∑J
j=1 f

(j)
t . Now,

the covariance matrices for scale j, denoted as V (j), are calculated as the M ×M covariance

matrices of f
(j)
t , the factor scale components at scale j. The matrices B(j), that are N ×M

matrices of the betas for scale j, and the N ×N matrices D(j) are calculated as

B(j) = (β
(j)′
1 , ..., β

(j)′
N )′, D(j) = E[u

(j)′
t u

(j)
t ]. (32)

The covariance matrix ΣR,s for the spectral factor model is calculated by constructing the
covariance matrices for each scale and calculate the sum of all scale covariance matrices:

Σr,s =
J+1∑
j=1

Σ(j), where Σ(j) = B(j)V (j)B(j)′ +D(j). (33)

Bandi et al. [2019] note that Σr = Σr,s if β
(j)
i = βi for all j. Therefore, we compare the spectral

factor model with the simple factor model as described in Equation 29, to investigate if the
systematic risk differs across the components and the decomposition better explains the returns
and factors. Also, we compare the results with the Moving Window method. For both the
MW and the simple factor model, we calculate the optimal portfolio weights by GMV and the
rescaled tangency. Again, the expected returns are estimated as the mean of a moving window
and the 1/N portfolio is used as a benchmark. We also use the mean return, Sharpe Ratio,
Sortino Ratio, 5% Value-at-Risk and variance as performance measures to evaluate the results.

3 Data

The first data set we use concerns treasury yield curve estimates of the Federal Reserve Board,
that is constructed by Gürkaynak et al. [2007]. This data set contains end-of-month data
from January 1962 until December 2016, that we retrieved from the Supplementary Material
of Ortu et al. [2020]. We use the period until September 1971 to initialize the components and
obtain the first innovation. Therefore, we restrict the regression data sample to the period from
September 1971 until December 2016. The yield-to-maturities in the data are calculated for 1
to 120 months in the future. In our application, we use the maturities for 12, 24, 36, 48, 60, 84
and 120 months.
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In line with Ortu et al. [2020], we further make use of daily realized volatility week-
day data from the USD/CHF exchange rate, constructed by Corsi [2009]. This data set is
constructed from tick-by-tick data from December 1989 to December 2003 and has been made
available by Ortu et al. [2020] in their Supplementary Material. The realized volatility is con-
structed as described in Andersen et al. [2003], based on time intervals of two hours. The
realized volatility in the weekend is excluded to avoid seasonal behaviour, which results in 3599
observations.

To investigate the performance of the forecast combination model for high-frequency
RV measures. For this purpose, we use daily weekday data of stock indices, containing returns
and 10-minute RV from a few markets, that we retrieved from Heber et al. [2009]. Again,
the realized volatility is calculated as in Andersen et al. [2003], with a higher amount of time
intervals. To test the forecast combination on high-frequency realized volatility data, we use
daily 10-minute RV of the AEX from January 2000 until May 2020, and annualize this data
by
√

RV · 252. We compare the RVs of the USD/CHF exchange rate and the AEX index in
Table 1. The RVs of USD/CHF and AEX have a similar mean and median, but the standard
deviation and the maximum of AEX are more than twice as high as the values of USD/CHF.
Therefore, we conclude that the RV of the AEX index, based on a higher frequency, is more
volatile. We investigate if this influences the forecasting performance.

Type of RV Obs. Mean Median St. Dev. Max. Skewness Kurtosis

USD/CHF 3599 12.39 11.59 3.90 41.95 1.59 8.07
AEX 5186 14.47 11.80 9.53 95.28 2.71 14.44

Table 1: Descriptive statistics of the RV of the USD/CHF exchange rate and the AEX index

We also use the data set made by Heber et al. [2009] to construct a portfolio. We
consider the close-to-close daily return and the 10-minute RV of a few stock indices, in the period
from January 2000 until February 2020. We use the following stock indices: All Ordinaries, CAC
40, DAX, Dow Jones and Nasdaq. As risk-free rate for performance measures, we use in line
with Fama and French [2015] the 1-month treasury bill rate, converted to daily rates, retrieved
from the website of Kenneth French at Dartmouth. For the factor model, we use the close-to-
close returns of Heber et al. [2009]. We model these indices by the five-factor model of Fama
and French [2015], containing the market portfolio (Mkt-RF), Small-minus-Big (SMB), High-
minus-Low (HML), Robust-minus-Weak (RMW) and Conservative-minus-Aggressive (CMA).
We use daily data for the appropriate period.

4 Results

4.1 Simulation

We start by presenting the results for the simulation described in Subsubsection 2.2.1. In
line with Ortu et al. [2020], we choose the parameter values ρx = 0.7, ρy = 0.9 and J = 3.
We simulate the processes xt and zt and plot them in Figure 1. The process xt is a simple
autoregressive model, which is shown in panel (a) of Figure 1. However, we see in panel (b)
for the process zt, where a persistent component has been added, that the process looks like a
mean reverting process.

Figure A.1 in the Appendix shows the autocorrelation function of process zt, as de-
scribed in Equation 11. This function is for some parts approximated by AR(1) processes for
values of the parameter φ = 0.9, 0.97, 0.98.
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(a) (b)

Figure 1: Comparison of the simulated paths for the basic autoregressive process xt in panel (a) and the
process zt in panel (b).

4.2 Yield-to-maturity data

In this application, we use the extended Wold decomposition to predict bond returns. We
follow Ortu et al. [2020] and fit a VAR(p) model on the yield-to-maturity data, where we

consider the yields y
(n)
t for the maturities of n = 1, 2, 3, 4, 5, 7, 10 years. Using the methodology

described in Subsection 2.1 for multivariate processes, we obtain the scale-specific innovations,
Wold coefficients and Wold yield components. We choose p = 24 and take a maximum scale of

J = 6. We calculate the level of the yield curve as L =
∑

n>1 y
(n)
t /6 and we compute the slope

as S = L− y(1)t .

We follow Ortu et al. [2020] and regress the average excess bond returns on the level
and its components, the slope and its components and some other predictors. We report the
parameter estimations, Newey-West corrected t-statistics and R2 values of the regressions. We
remark that a constant always is included in the regression. However, as these coefficients are
insignificant for all regressions (as expected), we decide to exclude them from the tables.

Table 2 shows the results for the regression on the level L, the level components
L(i), i = 1, ..., 6 and the residual component π(6). Model a) shows that the level is an insignificant
predictor for bond returns. However, model b) shows that the PWD detects multiple cycles in
the level that have significant power to predict bond returns. The results for model c) show that
ignoring the residual component does not affect the results significantly. Model d) is constructed
by dropping insignificant components. In model e), we regress the bond returns on one single
level cycle, that is calculated as L(1) +L(2) +L(3) +L(5), which turns out to produce almost the
same result.

The results for the regression on the slope S, the slope components S(i), i = 1, ..., 6
and the corresponding residual component π(6) are shown in Table 3. Model a) is the regression
of the average bond returns on the slope in model a). According to the t-statistic, the slope has
significant predictive power for the bond returns. Model b) shows that the slope contains cycles,
which results in an increase of the R2 in comparison to model a). However, only the t-statistics
of scale 5 and 6 are significant, so the scale components contain information on the long term,
which is remarkably different from the level. Using only scales 5 and 6 in a regression, we obtain
the surprising result that the R2 even rises by 0.01. Again, taking scales 5 and 6 in a single
slope cycle does not lead to a large accuracy decrease.

Table 4 compares the level and slope factors for the PWD with other factors that
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Predictors
Wold
Level

R2

L L(1) L(2) L(3) L(4) L(5) L(6) π(6)

a)
0.40

(1.46)
0.06

b)
3.40

(5.53)
3.57

(4.58)
4.21

(4.50)
1.66

(1.07)
5.91

(5.55)
-1.49

(-1.03)
0.29

(1.10)
0.29

c)
3.38

(5.45)
3.61

(4.39)
4.27

(4.20)
1.64

(1.04)
5.92

(5.28)
-1.15

(-0.75)
0.27

d)
3.37

(5.33)
3.54

(4.13)
4.18

(4.06)
5.86

(5.36)
0.26

e)
5.16

(6.49)
0.25

Table 2: Regression of average excess bond returns to the Level factor and its component. The Newey-
West t-statistics are reported between brackets.

Predictors
Wold
Slope

R2

S S(1) S(2) S(3) S(4) S(5) S(6) π(6)

a)
2.09

(2.67)
0.10

b)
-0.99

(-0.71)
-1.12

(-0.69)
-0.87

(-0.42)
-0.53
(0.33)

5.04
(3.00)

2.49
(2.65)

0.10
(0.05)

0.15

c)
-0.99

(-0.71)
-1.12

(-0.69)
-0.87

(-0.42)
-0.53

(-0.33)
5.04

(3.00)
2.49

(2.63)
0.15

d)
5.01

(2.96)
2.48

(2.64)
0.16

e)
3.02

(3.11)
0.14

Table 3: Regression of average excess bond returns to the Slope factor and its component. The Newey-
West t-statistics are reported between brackets.

have been proposed in earlier literature to estimate bond returns. Model a) shows the model
where the Wold level from Table 2, model e) and the Wold slope from Table 3, model e) are
used. We observe that the coefficients in the multiple regression just decline a little. The R2

for the multiple regression is approximately equal to the sum of the R2s from the single models.
Therefore, the level and slope seem to be almost orthogonal. Model b) shows the performance
of the model proposed by Cochrane and Piazzesi [2005], where we regress the bond returns on
a linear combination of the forward rates. The R2 of their model is clearly lower, so the PWD
fits the data better. Model c) is related to the level factor of Cieslak and Povala [2015], where
we remove the inflation trend from the level curve. However, model d) shows that after adding
the Wold level factor, the level factor of Cieslak and Povala [2015] becomes insignificant. Model
e) uses the level factor and slope factor from Cieslak and Povala [2015]. Despite a different
built-up of the models a) and e), as the PWD does not use long term inflation, the models have
equal fit according to the R2.
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Wold factors Ci&Po (2015) Co&Pi (2005) R2

Level Slope Level Slope f1t f2t f3t f4t f5t

a)
5.04

(6.25)
2.89

(3.35)
0.38

b)
-3.35

(-3.44)
6.69

(0.90)
-6.15

(-0.27)
-1.27

(-0.04)
4.88

(0.37)
0.26

c)
1.41

(3.45)
0.10

d)
4.61

(5.56)
0.56

(1.56)
0.27

e)
2.72

(6.50)
4.06

(6.45)
0.38

Table 4: Comparison of the PWD with other bond return estimation methods

4.3 Realized volatility of USD/CHF exchange rate

4.3.1 Decomposition and forecasting

In this subsection, we analyze the realized volatility of the daily USD/CHF exchange rate and
start by estimating an autoregressive model. The BIC that is used by Ortu et al. [2020] suggests
an AR(25) model. Using the corrected BIC for the number of parameters, we obtain an AR(10)
model. The AIC suggests an AR(41) model.

We compute the innovations, scale-specific coefficients and components as described
in Section 2.1. For the maximum scale, we choose J = 10. We compute the explained variance

per scale j, given by
∑

k(β
(j)
k )2, and calculate the fraction in terms of the total sample variance.

Figure 2 shows the results for AR(25) and AR(41). We observe that for AR(25) the variance
is mainly explained by scales j = 7, 8, 9, that correspond to shocks that involve up to 512
workdays. The relative variance per scale for AR(41) gives the same conclusion. The results
for AR(10) are shown in Figure A.2 in the Appendix. In this model, the variance is mainly
explained by the scales j = 6, 7, 8.

(a) (b)

Figure 2: Variance ratios of the total variance that is explained by each scale for the PWD, based on an
AR(25) model for panel (a) and on an AR(41) model for panel (b).
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We forecast the realized volatility as described in Subsection 2.3, deviating a little of
this methodology. We start by regressing the RV on the component that explains the largest
part of the variance, and forecast the RVs with one component. Next, we add one component at
a time, again based on the explained variance. We end up with results from models with 1 to 10
components and calculate some performance measures; the Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE) and the R2 of a Mincer-Zarnowitz regression. The results for
AR(25) and AR(41) are shown in Figure 3. For the AR(25) model, we conclude from all three
performance measures that the prediction does not improve significantly after including the first
three scales, j = 7, 8, 9. For the AR(41) model, we observe that especially the scales j = 8, 9
improve the predictions and the contribution of scale j = 7 is relatively small. The forecast
error measures for the AR(10) are shown in Figure A.2 in the Appendix. For this model we
observe for the first, second and sixth added scale a big increase in the performance of the
models, that correspond to the scales j = 7, 8, 9. This indicates that the decompositions based
on the AR(25) and AR(41) models make more sense in practice. Therefore, we use the model
with scales j = 7, 8, 9 to construct forecasts.

(a) (b)

Figure 3: Panel (a) shows the performance measures for PWD on an AR(25) model, panel (b) for PWD
on an AR(41) model. RMSE denotes the Root Mean Squared Error, MAE the Mean Absolute Error and
R2 is obtained from a Mincer-Zarnowitz regression.

Table 5 evaluates the performance of the PWD forecasts for 3 scales by an AR(25)
model and compares the results with the HAR-RV model by Corsi [2009]. The forecasts are
daily re-estimated on a moving window of 2600 observations and are compared over two different
time horizons: 1 day and 3 months. The performance of the PWD forecasts with 9 scales is
evaluated. Scale 10 is excluded, because this scale requires a very large estimation window.
With 2600 observations, we can construct 4 coefficients for scale j = 9 and we can build 528

realizations of g
(j)
t . We see that the PWD with 3 scale components in the long term performs

approximately equal to HAR-RV for the performance measures and the PWD with 9 scale
components shows a clearly higher R2.

To investigate the influence of the choice of autoregressive lags, we forecast the ex-
change rate using m = 1, ..., 50 autoregressive lags and calculate the performance measures.
Again, we use the time horizons of p = 1, 66 days and scales j = 7, 8, 9. Figure 4 shows the
results. The performance measures indicate that estimations for a larger time horizon are im-
proved by a higher autoregressive level. For p = 1, the forecasts are approximately constant
and high for the levels 15 up to 24. Therefore, the BIC used by Ortu et al. [2020] seems to be
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Panel A: 1-day-ahead

RMSE MAE R2

HAR-RV 2.144 1.548 0.658
PWD (3 components) 2.449 1.873 0.561
PWD (9 components) 2.300 1.705 0.627

Panel B: 66-day-ahead

RMSE MAE R2

HAR-RV 2.110 1.693 0.523
PWD (3 components) 2.125 1.646 0.530
PWD (9 components) 2.106 1.620 0.602

Table 5: Forecasting performance of the HAR-RV and PWD with 3 and 9 components, based on an
AR(25) model. RMSE denotes the Root Mean Squared Error, MAE denotes the Mean Absolute Error
and the R2 is obtained from a Mincer-Zarnowitz regression.

a suitable criterion for 1-day-ahead prediction. The forecasts for p = 66 are optimal around
the autoregressive level of 41. This level was suggested by the AIC, which indicates that the
AIC gives better estimation results for long-term prediction. These results support the earlier
statement that the AR(25) and AR(41) model are more appropriate than the AR(10) model. In
our next applications, we use therefore the BIC for p = 1 and the AIC for p = 66 to construct
the coefficients for the decomposition.

(a) (b)

Figure 4: Panel (a) shows the performance measures for 1-day-ahead forecasts for the number of au-
toregressive lags. Panel (b) shows the performance measures for 66-day-ahead forecasts. For clarity, the
MAE is excluded from this graph, as it follows the same pattern as the RMSE.

We conclude that our results validate the findings of Ortu et al. [2020] for the AR(25)
model. In Figure 4, we observe that the results of the PWD for 3 components are also accurate
for 1-day-ahead forecasting. However, we observe for 66-day-ahead forecasts that we can improve
the performance measures. Choosing an AR(41) model by AIC, the PWD with 3 components
returns better results than the HAR-RV model, especially for the R2.
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4.3.2 Forecast combination

We start the forecast combination by constructing p-ahead forecasts by PWD and HAR-RV for
the RV of the USD/CHF exchange rate. For the comparison step, we use a moving window of
2500 observations. We choose maximum scale J = 9 to construct forecasts, such that we can

estimate 4 coefficients β
j)
k for j = 9 for the PWD. We estimate 529− p daily realized volatilities

for the moving window with HAR-RV and PWD. According to those estimations, we construct
weights to estimate the second estimation sample. This sample includes 528 − p estimations,
again obtained by a moving window of 2500 observations. We use for PWD an AR(25) model
for the 1-day-ahead estimations and an AR(41) model for the 66-day-ahead estimations.

The results are shown in Table 6. To compare the models for the 66-day-ahead fore-
casts, we add two other measures: the Mean Error (ME) and Error Variance (EV). We observe
that for the 1-day-ahead forecasts, the PWD is not able to improve the results of the HAR-RV
model. The forecasts of PWD have higher bias and are more volatile. For the 66-day-ahead
forecasts, only the R2 is slightly increasing, which indicates a little improvement. According to
the ME and EV, this comes from a decreasing error variance. However, the improvements are
not clear, as the RMSE and MAE do not show improvements.

Panel A: 1-day-ahead (ωPWD = 0.919, ωHAR = 0.081)

RMSE MAE R2

HAR-RV 1.816 1.376 0.763
PWD (3 components) 2.342 1.853 0.669
Combined model 2.279 1.796 0.686

Panel B: 66-day-ahead (ωPWD = 0.465, ωHAR = 0.535)

RMSE MAE R2 ME EV

HAR-RV 2.655 2.280 0.666 -1.983 3.123
PWD (3 components) 2.771 2.350 0.665 -2.140 3.107
Combined model 2.700 2.309 0.679 -2.056 3.070

Table 6: Performance for the USD/CHF exchange rate RV of the forecast combination of PWD and
HAR-RV, compared with the forecasts made by the single models.

4.4 Realized volatility of AEX index

4.4.1 Decomposition and forecasting

We apply the PWD for the realized volatility of the AEX index, for which the 10-minute RV
is reported. The BIC used by Ortu et al. [2020] suggests an AR(20) model, while the AIC
suggests an AR(36) model. We compute the innovations and the scale-specific coefficients and
components. As our data set is larger, we can choose J = 11 as maximum scale. The explained
variance per scale j is shown in Figure 5. We observe that the variance is especially explained
in the scales j = 6, ..., 10. Again, we add the scales one at a time and calculate each time
performance measures. We observe that the performance measures do not improve very much
after having added 5 scales. Therefore, we prefer a model including the scales j = 6, ..., 10.
However, choosing maximum scale J = 10 for forecasting, provided that we can estimate 4

coefficients β
(j)
k , requires at least 4096 observations and, in addition, also about 500 realizations.

As this window would be large in comparison to the estimation sample and we need even more
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observations for forecast combination, we choose to drop scale j = 10 for forecasting.

(a) (b)

Figure 5: Panel (a) shows the percentage of the variance explained by each scale for the daily 10-minute
RV of the AEX index. Panel (b) shows the performance measures for all numbers of scales in the model.
These figures are based on an AR(20) model.

Table 7 compares the performance of the HAR-RV model to the forecasts of the PWD
with 4 and 9 scales included. The forecasts are estimated on a moving window of 4100 ob-
servations. The full data set contains 5186 observations, where the observations from March
up to May 2020 concern data of the starting coronavirus recession. We observe that the 1-
day-ahead forecasts are not influenced, but the 66-day-ahead forecasts show a clear decrease in
performance. We conclude that the HAR-RV and PWD at least for long-term estimations are
sensitive for large changes in realized volatility. The forecasts for 5130 observations show results
that are, especially for 66-day-ahead estimations, easier to compare. Therefore, we decide to
use 5130 observations for the forecast combination and leave the performance of RV prediction
in a recent crisis for further research. For the data set of 5130 observations, we again observe

Panel A: 1-day-ahead

N = 5130 N = 5186

RMSE MAE R2 RMSE MAE R2

HAR-RV 3.280 2.280 0.361 4.489 2.681 0.705
PWD (4 components) 4.092 3.148 0.138 5.719 3.720 0.533
PWD (9 components) 4.022 3.102 0.176 5.332 3.503 0.596

Panel B: 66-day-ahead

N = 5130 N = 5186

RMSE MAE R2 RMSE MAE R2

HAR-RV 2.764 2.325 0.266 4.139 2.816 0.022
PWD (4 components) 2.763 2.308 0.112 4.261 2.831 0.0001
PWD (9 components) 2.717 2.277 0.140 4.241 2.803 0.0004

Table 7: Forecasting performance of the HAR-RV and PWD with 4 and 9 components for the AEX index
realized volatility. Both the results for the full sample and the restricted sample of 5130 observations are
reported.
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that the RMSE and MAE differ for 1-day-ahead forecasts and the models converge to each
other in the long term in performance. The R2 for the 66-day-ahead forecasts is for this data
set still low, which differs from the analysis of the USD/CHF exchange rate. This shows that
the high-frequency RV is more difficult to forecast. This can be explained by Table 1 in Section
3, where was shown that the RV of the AEX index is more volatile.

4.4.2 Forecast combination

We investigate if forecast combinations of HAR-RV and PWD are useful for high-frequency RV.
We use a moving window of 3400 observations for the comparison step and choose maximum
scale J = 9 to construct forecasts. In the first step, we estimate 829−p daily realized volatilities
with HAR-RV and PWD. The second estimation sample includes 859 − p estimations, where
again a moving window of 3400 observations is used. We use an AR(20) model for the 1-day-
ahead estimations and an AR(36) model for the 66-day-ahead estimations.

Table 8 shows the results. For 1-day-ahead estimations, we again observe no improve-
ments from the HAR-RV model, as PWD performs clearly worse than HAR-RV. However, for
66-day-ahead estimations, we observe again that the MAE and R2 are slightly improved. The
ME and EV show again that these improvements can be explained by the decreased error
variance. We conclude that forecast combination does not solve bias, but is able to decrease
the prediction error variance. This is in line with the analysis of the 2-hours RV from the
USD/CHF exchange rate. In that sense, the frequency of the realized volatility does not affect
the conclusions.

Panel A: 1-day-ahead (ωPWD = 0.864, ωHAR = 0.136)

RMSE MAE R2

HAR-RV 2.984 2.160 0.314
PWD (4 components) 3.926 3.172 0.141
Combined model 3.690 2.949 0.173

Panel B: 66-day-ahead (ωPWD = 0.830, ωHAR = 0.167)

RMSE MAE R2 ME EV

HAR-RV 2.592 2.235 0.121 1.911 3.070
PWD (4 components) 2.794 2.225 0.209 2.065 3.548
Combined model 2.672 2.171 0.224 2.038 2.985

Table 8: Performance for the AEX index RV of forecast combination of PWD and HAR-RV, compared
with the forecasts made by the single models. ME denotes the mean error, EV denotes the error variance.

4.5 Portfolio selection

4.5.1 Realized volatility forecasting

For the portfolio selection, we use the close-to-close returns and 10-minute RVs of five stock
market indices. We apply PWD for the stock indices mentioned in Section 3. We choose
a maximum scale of J = 9 and use a moving window of 3400 observations. For the MW
estimation of the mean returns and covariance matrix of the returns, we use a moving window
of 500 days. The RVs of the stock indices are estimated over a horizon of 1 day. We construct
portfolios for 1500 days.
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The results are presented in Table 9. We observe that the RV forecasts by the PWD
improve the results of global minimum variance portfolios, such that it outperforms the other
portfolios for the mean return, the Sharpe Ratio and the Sortino Ratio. The VaR 5% for
the PWD-GMV portfolio is lower than the values of the MW-GMV and 1/N portfolios, which
indicates that the risk also increases slightly. The mean daily return of 0.046% is rather good, as
this corresponds to an annual return of 12.29%. The tangency portfolio is slightly improved by
the PWD, as the mean return, Sharpe Ratio and Sortino Ratio increase. However, the risk also
increases, according to the Value-at-Risk and variance. Also, the PWD-Tangency portfolio still
does not outperform the 1/N portfolio. We conclude that the use of realized volatility forecasts
mainly improves the GMV portfolio returns, while keeping the risk on a reasonably good level.
In addition, it is also a consistent method, as it beats the 1/N portfolio on different subsamples
(excluded for the Value-at-Risk and variance). For the tangency portfolio, we observe some
improvements, but they are less clear.

Portfolio Mean return (%) Sharpe Ratio Sortino Ratio Value-at-Risk Variance

PWD-Tangency 0.030 0.474 0.607 -1.744 1.012
PWD-GMV 0.046 0.863 1.159 -1.444 0.704
MW-Tangency 0.024 0.441 0.552 -1.488 0.754
MW-GMV 0.018 0.491 0.655 -0.945 0.345
1/N 0.030 0.648 0.829 -1.245 0.534

Table 9: Performance measures for portfolios of PWD, Moving Window and 1/N , based on RV forecasts.
For the mean return, Value-at-Risk and the variance, the daily returns in percents are used. The Sharpe
Ratio and Sortino Ratio are annualized by multiplication with

√
252.

4.5.2 Spectral factor model

For the prediction of the spectral factor model, we first determine the scales of both the stock
index returns and the five Fama-French factors, using in line with Bandi et al. [2019] as maximum
scale J = 6. To determine the scale components of the stock indices and factors, we use
a VAR(p) model with level p = 9, where we note that the results are robust for choices of
higher p. We use a moving window of 700 observations to estimate the index returns and the
covariance matrix. From these estimations, we determine the portfolio weights and re-estimate
them for computational reasons every year (i.e. every 252 days). In addition, we use the first
100 observation days to initialize the scale components. We thus construct portfolios for 4075
observations. Again, we estimate the 1/N portfolio as a benchmark. Also, we compare the
performance of the model with moving window portfolios and investigate the systematic risk
across portfolios by estimating the simple factor model, using the same moving window. We
use as well for these models a moving window of 700 observations, use the first 100 observations
for initialization and re-estimate the weights every year.

The results are shown in Table 10. We observe that the GMV portfolios have ap-
proximately equal performance. For the comparison between the spectral factor model and
the simple factor model, this means that the systematic risk does not differ significantly across
components. Therefore, we conclude that the risk and dependence between stock indices and
that the variance is not explained better by larger time spans of the returns. In comparison
with the 1/N portfolio, we see that the minimum variance portfolios succeed in keeping the risk
low, as the GMV portfolios have a higher Value-at-Risk than the 1/N portfolio. However, the
GMV portfolios suffer from a low expected return. Therefore, the Sharpe Ratio and Sortino
Ratio are lower for the global minimum variance portfolios. For the tangency portfolios, we also
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observe that the difference between the spectral factor model and the simple factor model is
relatively small. Interestingly, the moving window method for the tangency scores even better
and outperforms all other methods for the mean return, the Sharpe Ratio and the Sortino Ratio.
The mean return of 0.042% corresponds to an annualized return of 11,16%.

Portfolio Mean return (%) Sharpe Ratio Sortino Ratio Value-at-Risk Variance

SFM-Tangency 0.032 0.474 0.628 -1.761 1.168
SFM-GMV 0.018 0.384 0.485 -1.184 0.582
MW-Tangency 0.042 0.600 0.803 -1.770 1.260
MW-GMV 0.018 0.370 0.471 -1.120 0.598
Fac-Tangency 0.033 0.467 0.609 -1.811 1.230
Fac-GMV 0.017 0.340 0.430 -1.208 0.625
1/N 0.027 0.462 0.593 -1.463 0.849

Table 10: Performance measures for the spectral factor model (SFM), compared with the model where
the returns and variance are based on a moving window (MW), the simple factor model (Fac) and the
1/N portfolio. For the mean return, Value-at-Risk and the variance, the daily returns in percents are
used. The Sharpe Ratio and Sortino Ratio are annualized by multiplication with

√
252.

The performance measures for our data show that the portfolio returns do not improve
by allowing different levels of systematic risk over scales. A possible reason is that stock indices
are already diversified, such that the systematic risk is already more stable. To get more insight
in this result, we regress for the full data set the scales j = 1, ..., 6 of the stock index returns
on the scales of the factors. These results show indeed that the spectral betas do not show
large differences across scales, which supports the conclusion that the risk is equal across the
scale components. In general, we observe that the stock indices have a high dependency on the
Mkt-RF, except for the first scale components. All other scale components show very similar
results. The details of the spectral betas estimations for the scale components are shown in
the Appendix in Figure A.3. From both the performance measures and the spectral betas, we
conclude that the performance of the portfolios for the used stock index data is not clearly
improved by the spectral factor model.

5 Conclusion

In this paper, we investigated the forecasting power of the persistence-based Wold decomposition
and explored several forecasting applications. We started by applying the PWD to bond return
forecasting and found, in line with the findings of Ortu et al. [2020], that short-term level scales
and long-term slope scales have good predicting power for bond returns. Next, we applied the
PWD on the realized volatility of the USD/CHF exchange rate and compared the results with
the HAR-RV model of Corsi [2009]. Here we observed convergence between the two models
for forecasting on a long time horizon. We investigated the robustness of the PWD for the
autoregressive model on which the coefficients are based. An important finding is that we can
improve predictions for a large time horizon by choosing a high autoregressive level, for which
the AIC is a suitable criterion. We also applied the PWD on 10-minute RV data of the AEX
index. A remarkable result is that both the HAR-RV and PWD models show a clear decrease
in forecasting performance for the recent coronavirus recession. For further research, it is useful
to investigate methods to mitigate this problem.

Next, we made forecast combinations between the PWD and HAR-RV model. To
investigate if the performance of RV forecasting depends on frequency, we applied the PWD
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on on 2-hour realized RV data and 10-minute RV data. We concluded for both data sets that
forecast combinations of the PWD and HAR-RV for short-term forecasting do not improve
the results, mainly because the PWD performs poor in comparison to the HAR-RV model,
having a larger bias and more error variance. For further research of short-term forecasting, it
is useful to combine two forecasting methods with approximately equal predicting power. For
the 66-day-ahead estimations, we observe slight improvements for the error variance, but those
improvements are currently not clearly better. Again, combining forecast methods that have
similar performance would shed some light on the value of forecast combinations. In addition,
a larger data set of realized volatility would also allow to choose a larger scale, which could
capture more information in the model.

Considering the outcomes for the data of 2-hour RV and 10-minute RV, we observe
that the used 10-minute RV data is more difficult to predict. However, we found that the
performances for the PWD forecasts and the forecast combination still show a similar pattern.
Both data sets contain daily reported RVs. For future research, one could investigate how the
PWD and forecast combinations perform for predicting realized volatilities that are calculated
for a lower frequency, for example, weekly or monthly.

We applied estimations of realized volatility by the PWD to portfolio selection and
show that a simple moving window portfolio construction is improved for minimum variance
portfolios, so forecasting by the PWD is certainly useful here. For this application, we used
stock indices, which are in general relatively stable. An interesting extension is to apply the
PWD to the RV of single stocks, to investigate the performance on these assets. We adjusted
the tangency portfolios by a simple rescaling method to avoid extreme weights. An alternative
way is to solve a quadratic programming problem with restrictions for the weights. Finally,
we estimated a factor model with scale components. Here we concluded from the performance
measures and spectral betas that the systematic risk is approximately equal across the scales.
Also here it would be interesting to investigate the performance of this model for single stocks,
for which the risk often more fluctuates over time, such that the systematic risk is more likely
to vary across scales.
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A Additional figures

A.1 Autocorrelation function of simulation

(a) (b)

(c)

Figure A.1: Comparisons between the autocorrelation function of zt with ρx = 0.7, ρy = 0.9, J = 3 and
the autocorrelation function of an AR(1) process with parameter φ = 0.9 in panel (a), 0.97 in panel (b)
and 0.98 in panel (c).
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A.2 Results for the USD/CHF realized volatility with AR(10)

(a) (b)

Figure A.2: Panel (a) shows the relative variance of the daily RV, based on the AR(10) model. Panel
(b) shows the performance measures for the PWD on an AR(10) model. RMSE denotes the root mean
squared error, MAE the mean absolute error and R2 is obtained from a Mincer-Zarnowitz regression.

25



A.3 Spectral betas per scale in the spectral factor model

(a) Betas at scale j = 1, β
(1)
i . (b) Betas at scale j = 2, β

(2)
i .

(c) Betas at scale j = 3, β
(3)
i . (d) Betas at scale j = 4, β

(4)
i .

(e) Betas at scale j = 5, β
(5)
i . (f) Betas at scale j = 6, β

(6)
i .

Figure A.3: Spectral betas for each scale. Each figure shows the betas for the regression where scale j
of a certain stock index is regressed on all scales j of the factors.
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B Description of used MATLAB code

The following MATLAB files are used for this thesis, that are included in the zip-file.

The folder 1 Simulation contains the code used for Subsection 4.1, where the simulation
of Ortu et al. [2020] is replicated. These files are made by Ortu et al. [2020].

• The file MainCodeFigure1andA1 performs the simulation and returns Figure 1b and
Figure A.1. By adjusting a parameter, Figure 1a is obtained.

• The folder LibOSTT contains the used functions in the code of Figure 1 and A.1.

The folder 2 Bond returns contains the code that produces the results for Subsection 4.2,
where the results for the bond returns are replicated. The codes are made by Ortu et al. [2020].

• The file ReplicationBondReturnsTable2 3 4 returns the output for Table 2, 3 and 4.
This code is written by Ortu et al. [2020].

• The main replication code uses the functions of the folder LibraryWoldComponents.
This folder contains the functions to perform the multivariate form of the PWD.

• The data file YieldGSWDataSet contains the yield-to-maturity data that is used.

• The data file CPoTrendforRebonato contains the CPI data that is used to construct
the model of Cieslak and Povala [2015], where the bond returns are regressed on the
inflation.

The folder 3 4 RV Forecasting contains the code to produce the figures and tables for Sub-
section 4.3 and 4.4, for the USD/CHF exchange rate RV and AEX index RV.

• The file CodeTable1 contains the code for Table 1.

• The file USDCHFCodeFig2 3 A2 produces Figure 2, 3 and A.2. The code is made by
Ortu et al. [2020]. We added two alternative criteria to determine the autoregressive level.

• The file USDCHFCodeTable5 produces Table 5, that replicates the results of the RV
forecasting for the USD/CHF exchange rate. This file is made by Ortu et al. [2020].

• The file USDCHFCodeTable6 contains the code to produce Table 6, where the forecast
combination for the USD/CHF exchange rate RV is displayed.

• The file USDCHFCodeFigure4 produces Figure 4. The first part of the code is from
the file that produces Table 5 and is made by Ortu et al. [2020], which is adjusted for
the loop over the autoregressive lags. The second part makes the figures to visualize the
performance measures.

• The file AEXCodeFigure5 produces Figure 5, where the relative variance and perfor-
mance measures per scale for the AEX index RV is displayed. The code is based on the
code of USDCHFCodeFig2 3 A2, that is made by Ortu et al. [2020] and adjusted for
the new data set.

• The file AEXCodeTable7 produces the estimations of the HAR-RV model and PWD (4
and 9 components). It is based on the code of Table 5.
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• The file AEXCodeTable8 contains the code to produce Table 8, where the performance
measures of the forecast combination for the AEX index RV are shown.

• The data files USD CHF RV 89 93 and AEXindices contain the realized volatilities
of respectively the USD/CHF exchange rate and the AEX index.

• The functions IRFforecast, IRFforecast horizon and IRFscale are made by Ortu
et al. [2020] and are used in the files to construct scales and forecasts for the PWD.

• The following functions are used in the file USDCHFCodeTable6 and AEXCodeTable8:

– The function OrtuCorsiWeights estimates the weights for the HAR-RV and PWD
based on the first estimation round.

– The function OrtuCorsiWeightsRound2 makes the forecast combination for the
second subsample.

– The function out of sample forecasting horizon rounds USDCHF estimates
HAR-RV and PWD, for the subsample that is chosen. This function is based on the
file made by Ortu et al. [2020] that produces Table 5.

– The function out of sample forecasting horizon rounds AEX is the same func-
tion, adjusted for the application on the AEX RV.

The folder 5 Portfolio selection contains the codes used for the portfolio selections in Sub-
section 4.5.

• The file MainPortfolioSelectionTable9 is used to produce Table 9 and selects portfolios
based on realized volatility estimates.

• The file MainBandiTable10 FigA3 produces Table 10 and estimates portfolio weights
based on the spectral factor model. It also produces Figure A.3, where the spectral betas
for the whole data set are reported.

• The data files AORDrate, DJIrate, FCHIrate, GDAXIrate and IXICrate are the
close-to-close returns of five stock indices, respectively All Ordinaries, Dow Jones, CAC
40, DAX and Nasdaq.

• The data files FF5factors and rf rate are the five Fama-French factors and the riskfree
rate, retrieved from the website of Kenneth French at Dartmouth.

• The functions IRFforecast horizon and IRFscale are made by Ortu et al. [2020] and
are used in the files to make scales and forecasts.

• The function performanceMeasures calculates some performance measures for the port-
folio excess returns and is used in the files that produce Table 9 and 10.

• The function out of sample forecasting horizon is based on the code of Table 5, that
is made by Ortu et al. [2020] and is used to predict the RVs to construct portfolios for
Table 9.

• The folder LibraryWoldComponents, that contains the functions to perform the mul-
tivariate form of the PWD, is used to construct the spectral factor model for Table 9.
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