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Abstract

A method for the joint selection of the number of clusters, number of dimensions and α for

the clustering and dimension reduction method is proposed here. It can also be used for the

factorial k-means, the reduced k-means method and tandem analysis, as these are parts of the

general clustering and dimension reduction method. The Average Silhouette Width index and

the Calinski-Harabasz pseudo F index are used to assess the model performance for different

combinations of parameters. The method is helpful when there is no indication what the param-

eters should be in advance. This thesis contains a concise explanation of the clustering methods

and the two performance measures. Lastly, the performance of the clustering methods are shown

on the basis of a simulation study and the parameter selection is illustrated by an economic and

a biological example.

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University

Rotterdam.
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1 Introduction

After the collection of data, researchers and analysts are left with the task to give a valuable

interpretation which can be used for different purposes. Large data sets are often incomprehensible,

so the focus lies on the reduction of the size of the data. To extract the nontrivial information

out of the data set, dimension reduction methods are gaining in popularity (Vichi et al., 2019).

Data reduction can be applied on both ends of two-way data. On the one hand, the number of

objects can be reduced by various clustering methodologies, e.g. centroid clustering or distribution

clustering. On the other hand, dimension decreasing methods like Principal Component Analysis

(PCA) (Pearson, 1901) can be used to lower the number of dimensions if it is believed that not all

variables have a significant contribution to the interpretation (Vichi & Kiers, 2001).

A frequently chosen method is tandem analysis, described by Arabie & Hubert (1994). Here, the

dimensions are first reduced to a pre-selected number of dimensions through PCA. These reduced

dimensions are then used to cluster the objects, again in a pre-selected amount of clusters. However,

De Soete & Carroll (1994) show that the dimensions with the highest variance chosen in PCA not

necessarily contain the information about a possible clustering structure.

To overcome this issue, Vichi et al. (2019) suggest a generalized method of the factorial k -means

(FKM) described in Vichi & Kiers (2001), the reduced k -means (RKM) presented in De Soete &

Carroll (1994) and the tandem analysis of Arabie & Hubert (1994). This is called the clustering and

dimension reduction (CDR) model. An Alternating Least Squares method minimizes its objective

function, which depends on the weight of each of the methods in the generalized objective function.

Certain parameters have to be chosen in advance. These parameters are the desired number of

clusters, number of dimensions and the ratio of the tandem analysis and the FKM method. The

RKM method is a combination of these two, right in the middle. The Vichi et al. (2019) propose a

method to select these parameters through the Calinski-Harabasz pseudo F index. This method is

then only executed to find the optimal ratio. The choice of the number of clusters and dimensions

are not further investigated in that paper.

In this thesis, I focus on the question: ”How to jointly select all the parameters of the clustering

and dimension reduction method together?”. I first illustrate the different methodologies on the

basis of a simulated example with well-separated clusters. Afterwards, I apply the methods to real

data, given the parameter choices of Vichi & Kiers (2001). These results are compared to the results

when using a joint selection of the parameters through overall Average Silhouette Width (ASW)

index (Rousseeuw, 1987) and the Calinski-Harabasz pseudo F (pF) index (Calinski & Harabasz,

1974).

The motivation is to further develop the usage of FKM and RKM. Big data analysts can use this

research for the choice of the parameters when (a mix of) these methods are used. I use different

data sets to illustrate the performance of the methods. First, I simulate a data set with a clear

clustering structure and randomly generated masking variables, which is similar to what is done

in Gordon (1999). Next, I show an economic application with the same data set as in Vichi &
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Kiers (2001), which contains macroeconomic data of OECD countries. For a varying number of

dimensions, the optimal number of clusters is chosen. Lastly, I use a biological data set concerning

the milk composition of different mammals as presented in Spector (1956).

The remainder of this thesis is structured as follows. In Section 2, I discuss relevant literature

describing the clustering methods and the performance measures of the clustering structures. Sec-

tion 3 contains more details about the data that I use in this thesis. In Section 4, I then discuss the

methods used for the clustering and the performance measure of the resulting clustering structures.

Afterwards, I state and examine my main findings in Section 5. I conclude this thesis with remarks,

limitations and possibilities regarding improvement of the research in Section 6.

2 Literature review

The main idea of this research field is to reduce the data with a minimal loss of nontrivial informa-

tion. An intuitive and popular method is the tandem analysis. It is called tandem analysis because

it is a ’tandem’ of two different methods, PCA (Pearson, 1901) and k -means (MacQueen, 1967),

proposed by Arabie & Hubert (1994). The idea behind this analysis is to use the projection of the

objects on the components found in PCA. These projections are then used to cluster the data with

the k -means algorithm.

The tandem analysis can have poor performance, as PCA does not necessarily select the di-

mensions that contribute to the clustering structure most (Vichi & Kiers, 2001). Nevertheless, the

idea of reducing the dimensions and the clustering of the objects can still be successful. De Soete

& Carroll (1994) present a new clustering method, called the RKM method. Here the dimensions

and clustering are found simultaneously, in contrast to the tandem analysis. In this method, the

centroids of the clusters are considered and chosen in such a way that the distance between the

cluster points and the cluster centroids is minimized.

Later, Vichi & Kiers (2001) present a new method, FKM. This method is similar to RKM, with

a difference in the objective function. If there is a lot of variability in the directions orthogonal

on the information about the clustering, RKM fails to recover this important information (Vichi &

Kiers, 2001). To overcome this, the FKM method considers the projection of the objects on the

subspace. Now, the orthogonal distance is taken away when minimizing the distance between the

centroids and the objects. On the other hand, if there is a lot of subspace variance, RKM has a

better performance (Timmerman et al., 2010).

Vichi et al. (2019) present a mix of FKM, RKM and tandem analysis, a general method named

CDR. If there is reason to believe that a mix of the methods has a better performance, these can be

mixed through addition of the objective functions of tandem analysis and FKM. They both have a

weight between 0 and 1, summing up to 1. If the weight of both the objective functions is equal to

0.5, the CDR model is equal to the RKM model.

Extensive research has been conducted on parameter selection. Markos et al. (2018) show that
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both the ASW index as well as the pF index give valuable information on the selection of the number

of clusters and number of dimensions. The ASW index measures the similarity of an object to its

own cluster in comparison to the other clusters (Rousseeuw, 1987). The pF index is a measure of

the ratio of the between-cluster and the within-cluster variance (Calinski & Harabasz, 1974). Both

are used as a performance measure of cluster classifications.

3 Data

I use multiple data sets, each for a different purpose. First, the differences between the RKM and

FKM are shown through a simulated data set with three well-separated clusters (Gordon, 1999).

Secondly, the macroeconomic data about the OECD countries used in Vichi & Kiers (2001) are used

to first further describe the performance of FKM, and is afterwards used to illustrate the method of

parameter selection. Finally, biological data about the milk composition of 25 mammals illustrate a

more advanced application of the joint selection of the parameters for the CDR method. The data

about the countries and their macroeconomic variables and mammals and their milk composition

are included in Appendix A.

3.1 Simulated data

To illustrate the performance of the RKM and FKM methods, I construct a division of 42 objects

in three well-separated clusters (Gordon, 1999). This can be seen in Figure 1. I mask this structure

by adding four extra variables. The values of these variables are randomly generated by a normal

distribution with mean 0 and standard deviation 6. The centroids of the clusters are on the corners

of a equilateral triangle with side length 6. The idea behind this rather trivial example, is to test

the ability to recover the masked structure of the clustering methods.

Figure 1: 42 objects divided in three well-separated clusters.

4



3.2 Macroeconomic data OECD countries

The same macroeconomic data as in Vichi & Kiers (2001) are used for the application of the FKM

method in comparison to the outdated tandem analysis. There are 20 countries included in the data

set, together with six macroeconomic indicators (from the scenario in 1999). These six indicators

are: Gross Domestic Product (GDP), Leading Indicator (LI), Unemployment Rate (UR), Interest

Rate (IR), Trade Balance (TB) and Net National Savings (NNS). This data set is downloaded from

the clustrd package in R, named macro.

3.3 Milk composition of mammals

Animals can be subdivided in different classes with similar traits. One of those classes are mammals

(Mammalia). These mammals have several things in common, for example that they feed their

young with milk. However, the composition of milk differs for the different species. I investigate

the constituents of the milk of 25 animals. There are 5 percentages of interest: water, protein,

fat, lactose and ash. This data set is downloaded from the cluster.datasets package in R, named

all.mammals.milk.1956.

4 Methodology

In this section I start with introducing the relevant terminology used in the rest of this thesis.

Afterwards, I present the technical aspects of the CDR method, which includes tandem analysis,

FKM and RKM. I conclude this section with the presentation of the ASW and pF index.

4.1 Terminology

For the remainder of this thesis, X denotes the (n × k) data set with n objects and k variables,

U the (n × c) matrix which indicates the allocation of the object to one of the c clusters, Y the

(c × m) matrix containing the m dimension coordinates for the cluster centroids, A the (k × m)

loading matrix with A′A = I, where I is equal to the identity matrix of order m and E the (n× k)

residual matrix.

4.2 Reduced k-means

The RKM method creates centroids for the clusters in a low-dimensional subspace. The method

then minimizes the distance between the objects from the full space and the ’quasi’ centroids in the

subspace, as stated in De Soete & Carroll (1994). They present the model given in Equation 1 as

the model fitted by the RKM model.

X = UYA′ + E. (1)

The loss function that is minimized to obtain the desired result is stated in Equation 2.
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fRKM (A,U,Y) = ||X−UYA′||2. (2)

Here, || · || denotes the Frobenius norm. Through minimizing Equation 2, I obtain values for the

loading matrix and the allocation of the objects to the different clusters. In practice, this method

is equivalent to maximizing the between variance of the clusters in the reduced space (Vichi et al.,

2019).

4.3 Factorial k-means

The FKM method projects all the objects on a low-dimensional subspace. From here, it minimizes

the distance from the centroids in this subspace to the projections (Vichi & Kiers, 2001). This is

unlike the RKM method, where only the centroids are in the subspace. An in-depth comparison

between the theoretical performance is out of the scope of this thesis, Timmerman et al. (2010)

discuss the similarities and the differences of RKM and FKM in more detail. FKM in essence fits

the model in Equation 3 (Vichi & Kiers, 2001).

XAA′ = UYA′ + E. (3)

The loss function, which again has to be minimized for the best fit in Equation 3, is given in

Equation 4 (Vichi & Kiers, 2001).

fFKM (A,U,Y) = ||XAA′ −UYA′||2= ||XA−UY||2. (4)

I derive the optimal fit of the loading matrix and the allocation of the objects to the clusters

through minimization of Equation 4. Effectively, the FKM method minimizes the sum of squared

distances of the projected data points to their respective centroids (Vichi et al., 2019).

4.4 Clustering and dimension reduction

The CDR method is a method which generalizes tandem analysis, FKM and RKM. The loss function

is given in Equation 5, as stated in Vichi et al. (2019).

fCDR(A,U,Y) = α||X−XAA′||2 + (1−α)||XA−UY||2. (5)

In essence, the CDR loss function is a combination of the loss function in tandem analysis and

the loss function of FKM. The loss function of FKM is stated in Equation 4. The loss function in

tandem analysis is equal to

fTandem(A,U,Y) = ||X− FA′||2, (6)

where the optimal F is equal to XA (Vichi et al., 2019).

For α = 0, the loss function of the tandem analysis drops out and the loss function is equal to
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the FKM loss function. For α = 1 the loss function of FKM drops out and that leaves us with the

tandem analysis loss function. A remarkable property of the CDR model is that if α = 0.5, the loss

function coincides with the RKM loss function (Equation 2). This is shown in Equation 7.

fCDR,α=0.5 = 0.5(||X−XAA′||2 + ||XA−UY||2)

= 0.5(||X||2 + 2tr(A′X′XA) + tr(A′X′XA)− 2tr(X′UYA) + ||UYA||2)

= 0.5(||X−UYA′||2) = 0.5fRKM .

(7)

The scalar multiplication of the RKM loss function has no influence on the optimal solution. The

model allows for variables to be nominal and/or ordinal, but as it is not used in this thesis, this is

omitted in the explanation. For more extensions to the CDR model, see Vichi et al. (2019).

4.5 Alternating Least Squares

Minimizing the loss function is done through the Alternating Least Squares (ALS) algorithm de-

scribed in Vichi & Kiers (2001) and in Vichi et al. (2019). Here, I present a compact overview of

the execution of the ALS algorithm for our purpose.

Initialization For the algorithm to commence, I choose initial values for A, U and Y. The values

for A and U can be chosen in a sensible way, or randomly if there is no indication of a good starting

point. They do have to satisfy the constraints. Every object has to be allocated to exactly one

cluster and A′A = I, as stated earlier. The value of Y follows from the choice of A and U, as

Y = (U′U)−1U′XA.

Step 1: Updating U The U is only present in the FKM part of the CDR loss function. This

means that optimizing U is equal in both the CDR method and the FKM method. The optimal

U minimizes the loss function of the FKM method (Equation 4) with respect to U. For now, we

leave the other variables constant. The optimal U is found through independently considering all

elements per row uij with i ∈ {1, .., n}, j ∈ {1, .., c}. We choose uij = 1 if min{f(A, [uij ])} =

min{f(A, [uik]) : k = 1, ..., c} and uij = 0 otherwise.

Step 2: Updating Y and A Now U is optimized, we are left with the task to optimize Y and

A. As Y can be expressed in U and A, we fill in Y = (U′U)−1U′XA and optimize A. In order to

do that, we minimize Equation 8.
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fCDR(A,U, Y ) = α||X−XAA′||2 + (1− α)||XA−UY||2

= α||X||2 − αtr(A′X′XA) + (1− α)||XA−U(U′U)
−1

U′XA||2

= α||X||2 − αtr(A′X′XA) + (1− α)tr(A′X′XA)− (1− α)tr(A′X′U(U′U)
−1

U′XA)

= α||X||2 + (1− 2α)tr(A′X′XA)− (1− α)tr(A′X′U′(U′U)
−1

U′XA)

= α||X||2 + tr(A′[(1− 2α)X′X− (1− α)X′U(U′U)
−1

U′X]A)

= α||X||2 + tr(A′X′[(1− 2α)In − (1− α)U(U′U)
−1

U′]XA)

(8)

Note that In is the identity matrix of order n. Effectively, it boils down to setting A equal to the

first m eigenvectors (ordered from high to low) of the matrix X′((1−α)U(U′U)−1U′−(1−2α)In)X

(Vichi et al., 2019).

Repeating these steps result in a monotonically decreasing loss function. There is no insurance

that the algorithm ends up in a global optimum. To overcome this, I use 100 different starting

values. Vichi & Kiers (2001) state that in practice this is sufficient.

4.6 Parameter selection

Before executing the aforementioned methods, I have to choose the value of certain parameters.

These parameters are the number of clusters c, number of dimensions m and value of α. In De Soete

& Carroll (1994) and Vichi & Kiers (2001), the values for c and m are fixed without further

substantiation. To select these parameters, I propose the ASW index and the pF index. When

choosing the parameters which are getting tested, Vichi & Kiers (2001) show that m should not be

larger than c− 1. This because the addition of extra dimensions has no contribution, where it does

increase the data size. This can be explained by the fact that one only needs n − 1 dimensions to

display n centroids.

4.6.1 Average Silhouette Width (ASW) index

The ASW index validates the consistency within clusters. It measures the similarity of every object

to its own cluster compared to the other clusters. The Silhouette Coefficient for object i is defined

in Equation 9 (Rousseeuw, 1987).

S(i) =
b(i)− a(i)

max{a(i), b(i)}
(9)

Here, a(i) is expressed as the average dissimilarity of the ith object to the other objects in the

same cluster. Specifically, this is equal to the mean intra-cluster distance. The parameter b(i) shows

the mean nearest-cluster distance. A higher ASW index corresponds with a better fit. The values

of S(i) lie in the interval [−1, 1]. The ASW index is then equal to the average value.
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4.6.2 Calinski-Harabasz pseudo F (pF) index

The proposed method to choose these parameters according Vichi et al. (2019) is through the

pF index (Calinski & Harabasz, 1974). This index provides a measurement of the quality of the

subdivision of the objects to the clusters. The statistic is given in Equation 10 (Vichi et al., 2019).

pF =
tr(A′X′U(U′U)−1U′XA)/db

tr(X′X)− tr(A′X′U(U′U)−1U′XA))/dw
(10)

The degrees of freedom in Equation 10 are given by db = (c− 1)m+ (k−m)m and dw = nk− cm−
(k−m)m. The pF index is in essence equal to the quotient of the between cluster variance and the

within cluster variance in XA, respectively weighted by their degrees of freedom. This implies that

the maximal index value is optimal. The index value can only be calculated after the partitioning is

found, which means that CDR has to be executed multiple times with different parameters in order

to compare the performance. The CDR method is computationally efficient, which makes this a

minor issue.

5 Results

This section shows the application of the discussed method on three data sets. The results are split

into three sections, one for each data set. With the data, I illustrate the strength of the clustering

methods and how to select the parameters. Both the macroeconomic and the biological variables

are standardized as proposed in Milligan & Cooper (1988). For the execution of the FKM, RKM

and CDR methods, I used the R package clustrd (Markos et al., 2018) in combination with my

own programming. This can be found in Appendix B.

5.1 Clustering structure recovery after masking

To test the performance of the tandem analysis, RKM and FKM, I use a simulated data set. Here,

two variables together construct three clear clusters and the remaining four variables are randomly

generated from the normal distribution to mask the structure. For all the methods, I fix c = 3,

and for RKM and FKM. I also fix m = 2, as in Vichi & Kiers (2001). As a baseline, I attempt

to recover the three well-separated clusters that are masked by four randomly generated variables

through k -means. The results are displayed in Figure 2. Here, the original clustering structure is

visualized and the displayed objects are labeled with the clustering results of the k -means clustering

algorithm.
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Figure 2: K -means partition of three well-separated clusters, masked by four
randomly generated variables, plotted on the underlying clustering structure.

Figure 2 shows that k -means partition is not powerful enough to separate the clustering structure

from the masking variables. It is not capable to recover more than half of the original classification.

This proves that the k -means algorithm is not fit to analyze data where the underlying structure is

masked by randomly generated variables.

5.1.1 Tandem analysis

As an attempt to improve the performance, I can use PCA first. This is equal to the tandem

analysis. In Figure 3, I used PCA with a different number of components, varying between 2 and

5. In Figure 3a, the objects are projected on the subspace of the first two principal components,

labeled with their original cluster allocation. In the remainder of Figure 3, the underlying clustering

structure is plotted and the labels correspond to the classification according to the tandem analysis.
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Figure 3: Tandem analysis applied on a varying number of principal components.

It is clear that the first two principal components are unable to find the clustering structure, as

there is no clear division of objects visible. This is explained using Table 1. Table 1 also confirms

the rest of the information Figure 3 presents. Namely, that the majority of the variance can not be

captured by a minimal number of principal components. The third principal component still covers

over 10% of the total variance. This can also be seen by the decreasing number of wrongly classified

objects when increasing the number of used principal components.
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Table 1: Captured variance by each of the principal components.

Component 1 2 3 4 5 6

Eigenvalue 1.2887 1.1619 1.1292 0.8447 0.7684 0.6403
Proportion of Variance 0.2768 0.2250 0.2125 0.1189 0.0984 0.0683
Cumulative Proportion 0.2768 0.5018 0.7143 0.8333 0.9317 1.0000

5.1.2 Reduced k-means

The tandem analysis appears to perform poorly in this application. I turn to the RKM method.

This allows the dimensions to adapt to the maximization of the between variance of the clusters.

The results of this method are visualized in Figure 4. The labels correspond to the original clustering

structure with the first two constructed dimensions on the axes.

Figure 4: Visualization of objects after reduced k -means. The objects are labeled with
their correct cluster classification.
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The RKM model also fails to distinctly divide the objects to the desired clusters. There are

no clear groups visible and objects with different labels are intertwined. This corresponds with

the earlier mentioned technical background of the method. Specifically, the performance of the

RKM method deteriorates when the data contains much variability in directions orthogonal to the

subspace of the data containing information about the clustering structure. This is indeed the case

with the randomly generated variables.

5.1.3 Factorial k-means

Lastly, we look at the FKM model. This model, theoretically, should have a better performance

in the circumstance of a clustering structure masked with variables orthogonal on the relevant

subspace. The performance can be seen in Figure 5, again with the constructed dimensions on the

axes.

Figure 5: Visualization of objects after factorial k -means. The objects are labeled with
their correct cluster classification.

Now we see that FKM is powerful enough to detect the underlying clustering structure. There

are three well-divided clumps of objects visible, where every object is classified in the correct cluster.

To further investigate the performance of FKM, I look at the correlation between the constructed

dimensions and the variables. These can be seen in Table 2.

The first two dimensions correlate highly with the variables that contain the information about

the clustering structure. We conclude that FKM indeed is the best performing method when han-
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Table 2: Correlation between the constructed dimensions of factorial k -means method and the six
variables.

Dimension 1 2

X-coordinate 0.94 -0.35
Y-coordinate -0.35 -0.93

Masking variable 1 0.03 0.01
Masking variable 2 -0.02 0.05
Masking variable 3 -0.00 0.03
Masking variable 4 0.00 -0.06

dling much variability orthogonal on the subspace of the original variables that define the clustering

structure. The excellent performance is conditional on the knowledge about the correct number of

clusters. To illustrate, I add an extra cluster and I apply FKM with c = 3 and c = 4. This is shown

in Figure 6.

Figure 6: Visualization of objects after factorial k -means. In (a), the method used
three clusters and in (b), the method used four clusters.

Not only does FKM miss an important facet of the underlying clustering structure if I use c = 3

instead of c = 4, namely an incorrect number of clusters, it also classifies multiple objects incorrectly

in the clusters it does detect. This issue can be remedied by detecting the correct number of clusters.

This can be done with the use of the ASW and/or the pF index. For the structure shown in Figure

6, the index values for both indices are graphically visualized in Figure 7.
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Figure 7: pF index and ASW index for a varying number of clusters with simulated
data.

For both indices, the highest index value corresponds with the model with four clusters. This

shows that the usage of these indices contribute to an optimal clustering strategy.

5.2 Economic application: macroeconomic scenario 1999

To show an application of the performance of FKM analysis, I exert this method on the macroe-

conomic scenario of 20 OECD countries in 1999. I first calculate the ASW and the pF indices to

determine the number of clusters and dimensions, where Vichi & Kiers (2001) assumes that c = 3

and m = 2. When the parameters are selected, I cluster the countries and try to retrieve the ground

of clustering structure that is detected. Vichi & Kiers (2001) also give the relative performance of

FKM in comparison to tandem analysis, where it is evident that the FKM method outperforms the

tandem analysis. From a theoretical perspective, the FKM method does not necessarily perform

better than the RKM, because it is unknown how the variables relate to each other. For further

analysis I use the CDR method, as it is a generalization of the methods. After the selection of the

parameters for FKM, I investigate whether the CDR method with a variable α obtains higher index

scores for α 6= 0, as α = 0 results in the FKM method.

5.2.1 Parameter estimation

To determine the values of the c and m, I calculate the ASW and pF indices. I test c for values

from 3 up to 10. I do not check higher values, as a higher number of clusters results in insufficient

reduction of data. For m, I check 2 and 3 dimensions. This again for sufficient reduction and also

to maintain a low number of dimensions for an interpretable visual display. The index scores are

shown in Figure 8.
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Figure 8: pF index and ASW index for a varying c from 3 to 10 and for m = 2 (blue
line) to m = 3 (black line) dimensions with macroeconomic data of 20 OECD

countries from 1999.

Both indices point towards the use of m = 2 and c = 3. The results of the FKM method with

the optimal parameters are shown in Figure 9a. To investigate the underlying clustering structure

that the FKM method has detected, I also look at the correlation between the two dimensions and

the macroeconomic variables. This is shown in Figure 9b.

Figure 9: 20 OECD countries divided in three clusters is shown in (a). In (b) the
macroeconomic variables are projected onto the plane spanned by the two dimensions.

16



When we look at Figure 9b, we see that GDP is relatively underrepresented in the correlation

with the dimensions, together with the unemployment rate. The leading indicator is heavily corre-

lated with the first dimension. The trade balance is strongly correlated with the second dimension.

The net national savings and interest rate are correlated with both. This gives information of

which variables are strongly involved in the construction of the dimensions and thus in the detected

clustering structure.

5.2.2 Application of CDR

The application of the FKM method on the OECD data as seen earlier is not automatically better

than the RKM method. It is proven that the FKM method performs well when the for the clustering

structure irrelevant data and the relevant data are orthogonal. In the simulated example, this is

obvious. For the macroeconomic data, this is unknown. To assess whether a mix of different

methods increases the index values, I evaluate the ASW and pF index for the CDR method for

a variable α. The parameters c = 3 and m = 2 remain unchanged. The results are visualized in

Figure 10.

Figure 10: pF index and ASW index for a varying α from 0 to 1 with steps of 0.05
with macroeconomic data of 20 OECD countries from 1999.

As seen in Figure 10, both indices point towards an α of 0.2. As 0.2 ∈ (0, 0.5), this means that

the index suggests a mix of the RKM and FKM method.

It now remains interesting whether the importance of the variables drastically changes when I

use CDR with α = 0.2. Figure 11a shows the resulting structure of the CDR method. In Figure

11b I visualize the correlation between the two dimensions and the macroeconomic variables.

17



Figure 11: 20 OECD countries divided in three clusters through CDR is shown in (a).
In (b) the macroeconomic variables are projected onto the plane spanned by the two

dimensions.

If we compare the clustering of FKM in Figure 9a with CDR in Figure 11a, we see some

similarities as well as some differences. Portugal and Greece are still close to each other and distant

from the majority of the countries. A difference is that Spain is closer to the majority of the

countries, where it lies closer to Greece and Portugal when I used FKM. This can be explained by

the slight differences in Figure 11b in comparison to Figure 9b. For example, the correlation between

the dimensions and the trade balance decreased, where the importance of the unemployment rate

increased. Overall, there are no major changes in the importance of the macroeconomic variables.

Another remarkable result is that the three clusters are better divided when I use the CDR method.

In the FKM method, classes 1 and 2 are close to each other. With the CDR method, we see a

clearer division between the countries in different clusters. This was also expected, as higher index

values correspond to a better division of the clusters.

5.3 Biological application: milk composition of mammals

It can be interesting to investigate whether a clustering method can detect a sensible clustering

structure for animals, based on their milk composition. I expect the animals with similar traits

close to each other. For this application, I only use the generalized CDR method, as it includes

all the other methods. To investigate whether the CDR model can detect a sensible clustering

structure for these animals, I first assess the parameters. I only consider the ASW index for a

consistent selection of the parameters. The reason I choose the ASW index and not the pF index,

is because the former has a better overall performance (Arbelaitz et al., 2013).
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We calculate the ASW index values for α varying between 0.05 and 1 with steps of 0.05, c from

3 to 10 and m for 2 and 3. I restrict the interval for the latter two parameters for the same reasons

as stated in Section 5.2.1. The results are shown in Figure 12.

Figure 12: ASW index for the CDR method with a varying α, number of clusters and
number of dimensions.

We observe that the maximum index value is equal to 0.496. This value is reached for m = 2,

c = 3 and α ∈ [0.45, 0.95]. This implies that for different values of α the same clustering structure

is detected. To find this clustering structure, we choose α = 0.45. The detected clustering structure

together with the correlation between the dimensions and the variables can be seen in Figure 13.

Figure 13: 25 mammals divided in three clusters through CDR is shown in (a). In (b)
the milk component variables are projected onto the plane spanned by the two

dimensions.
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If we look at Figure 13b, we see that all variables reasonably correlate with the dimensions, so

there are no variables of no influence. In Figure 13a, it is remarkable that the seals and dolphins

are close to each other, whereas the whale lies further from those two animals. This is remarkable,

because one would expect that the sea animals have similar milk just like the equines do. The model

also clearly captures the similarity between the orangutan and the monkeys, camels and llamas and

between a deer and a reindeer. Overall, the CDR model with α = 0.45, c = 3 and m = 2 can make

a sensible clustering structure of animals from their milk components.

6 Conclusion

In this thesis a method for the joint selection of parameters for the clustering and dimension re-

duction (CDR) model is proposed. This model is a generalization of tandem analysis, the FKM

method and the RKM method. Within these models, I have shown that the FKM model performs

best when it comes to a clustering structure which is masked by randomly generated variables,

due to the orthogonality of these variables on the variables that define the clustering structure.

Nevertheless, in practice these properties are usually unknown. This thesis shows that, with the

usage of the CDR method and thus allowing a mix of these method, the clustering performance is

better. This is measured by the Average Silhouette Width (ASW) index and the Calinski-Harabasz

pseudo F (pF) index. The parameters that are selected through these indices are the desired num-

ber of clusters, number of dimensions and constant α. This is helpful when the researcher has no

indication of what these parameters could be in advance. The parameters can be jointly selected,

through assessing the clustering performance for different parameter values. This is possible, be-

cause the the CDR method is computationally efficient. For future research, I suggest to further

assess the performance of the joint selection through the ASW and pF index. This can be done

by using a data set where the real values of the parameters are already known. This allows for a

comparison between the real clustering structure and the found clustering structure through the

proposed methods. Another possible extension would be to apply the joint selection on data sets

with categorical, nominal and/or ordinal variables. The CDR method can handle these variables,

but I chose not to include this for the sake of a simpler example where the selection methods are

exercised.
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Appendix

Appendix A Tables with data

Table 3: Macroeconomic indicators for 20 OECD countries in 1999.

GDP LI UR IR TB NNS

Australia 1.02 0.53 0.51 0.26 0.04 0.40
Canad 0.68 0.16 0.53 0.25 0.09 0.44

Finland 0.83 -0.06 0.75 0.18 0.50 0.65
France 0.49 0.04 0.74 0.18 0.22 0.62
Spain 0.77 0.16 1.20 0.24 0.07 0.81

Sweden 0.87 0.07 0.56 0.21 0.40 0.34
USA 0.87 0.09 0.28 0.28 -0.08 0.59

Netherlands 0.62 0.10 0.27 0.18 0.40 1.34
Greece 0.68 0.04 0.65 0.58 -0.47 0.68
Mexico 0.49 0.35 0.20 1.04 0.00 1.08

Portugal 0.60 -0.47 0.31 0.24 -0.50 1.19
Austria 0.23 0.04 0.30 0.19 -0.03 0.80

Belgium 0.30 -0.01 0.61 0.18 0.26 1.05
Denmark 0.21 0.09 0.34 0.20 0.19 0.42
Germany 0.17 -0.13 0.60 0.18 0.09 0.65

Italy 0.19 -0.03 0.78 0.30 0.25 0.69
Japan 0.02 0.34 0.27 0.04 0.07 1.28

Norway 0.30 0.06 0.21 0.22 0.41 1.28
Switzerland 0.23 0.13 0.24 0.09 0.25 1.12

UK 0.26 0.31 0.41 0.38 -0.03 0.41
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Appendix A Tables with data

Table 4: Milk composition of 25 mammals

water protein fat lactose ash

Horse 90.10 2.60 1.00 6.90 0.35
Orangutan 88.50 1.40 3.50 6.00 0.24

Monkey 88.40 2.20 2.70 6.40 0.18
Donkey 90.30 1.70 1.40 6.20 0.40

Hippo 90.40 0.60 4.50 4.40 0.10
Camel 87.70 3.50 3.40 4.80 0.71
Bison 86.90 4.80 1.70 5.70 0.90

Buffalo 82.10 5.90 7.90 4.70 0.78
Guinea Pig 81.90 7.40 7.20 2.70 0.85

Cat 81.60 10.10 6.30 4.40 0.75
Fox 81.60 6.60 5.90 4.90 0.93

Llama 86.50 3.90 3.20 5.60 0.80
Mule 90.00 2.00 1.80 5.50 0.47

Pig 82.80 7.10 5.10 3.70 1.10
Zebra 86.20 3.00 4.80 5.30 0.70
Sheep 82.00 5.60 6.40 4.70 0.91

Dog 76.30 9.30 9.50 3.00 1.20
Elephant 70.70 3.60 17.60 5.60 0.63

Rabbit 71.30 12.30 13.10 1.90 2.30
Rat 72.50 9.20 12.60 3.30 1.40

Deer 65.90 10.40 19.70 2.60 1.40
Reindeer 64.80 10.70 20.30 2.50 1.40

Whale 64.80 11.10 21.20 1.60 0.85
Seal 46.40 9.70 42.00 0.00 0.85

Dolphin 44.90 10.60 34.90 0.90 0.53
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Appendix B R code

1 i n s t a l l . packages ( ” c l u s t r d ” )

2 l i b r a r y ( ” c l u s t r d ” )

3 i n s t a l l . packages ( ”Hmisc” )

4 l i b r a r y ( ”Hmisc” )

5 #i n s t a l l . packages (” fpc ”)

6 l i b r a r y ( fpc )

7 l i b r a r y ( c l u s t e r )

8

9 # reproduce the r e s u l t s g iven in the paper o f Vich i and Kiers

10

11 setwd ( ”˜/Documents/Erasmus U n i v e r s i t e i t / Econometrie & Operat ione l e

Research / Bachelor 3/ Thes i s / Reproducing ” )

12

13 s e t . seed (777)

14

15 # cons t ruc t the datapo int s

16 betweenpoints <− 1

17 betweencentro ids <− 6

18 centrex <− c (−1.5∗betweenpoints , −betweenpoints , −betweenpoints , −0.5

∗betweenpoints , −0.5∗betweenpoints , −0.5∗betweenpoints , 0 , 0 , 0 . 5 ∗
betweenpoints , 0 . 5 ∗betweenpoints , 0 . 5 ∗betweenpoints , betweenpoints

, betweenpoints , 1 . 5 ∗betweenpoints )

19 centrey <− c (0 , betweenpoints , −betweenpoints , 2∗betweenpoints , 0 , −2

∗betweenpoints , betweenpoints , −betweenpoints , 2∗betweenpoints , 0 ,

−2∗betweenpoints , betweenpoints , −betweenpoints , 0)

20 centrey <− centrey − 2

21 i c l u s <− cbind ( centrex , cent rey )

22 a n g l e s i n <− s i n (60 ∗ 0 .0174532925)

23 l e f t c l u s <− i c l u s

24 r i g h t c l u s <− i c l u s

25 upc lus <− i c l u s

26

27

28

29

30 r i g h t c l u s [ , 1 ] <− i c l u s [ , 1 ] + betweencentro ids

31 upc lus [ , 1 ] <− i c l u s [ , 1 ] + ( betweencentro ids / 2)

24



32 upc lus [ , 2 ] <− s i n (60 ∗ 0 .0174532925) ∗ betweencentro ids+ i c l u s [ , 2 ]

33 upclus2 <− upc lus

34 upclus2 [ , 1 ] <− upc lus [ , 1 ] + betweencentro ids

35 #upclus2 [ , 2 ] <− upc lus [ , 2 ] + betweencentro ids

36

37

38 datapo int s <− rbind ( l e f t c l u s , r i g h t c l u s , upc lus )

39 datapo ints2 <− rbind ( l e f t c l u s , r i g h t c l u s , upclus , upc lus2 )

40 #datapo int s <− read . csv (” datapo int s . csv ” , header = FALSE)

41 maskingpoints <− as . data . frame ( matrix ( rnorm (42 ∗ 4 , mean = 0 , sd = 6) ,

nco l = 4) )

42 maskingpoints2 <− as . data . frame ( matrix ( rnorm (56 ∗ 4 , mean = 0 , sd = 6) ,

nco l = 4) )

43 t e s t c l u s t e r s <− cbind ( datapoints , maskingpoints )

44 t e s t c l u s t e r s 2 <− cbind ( datapoints2 , maskingpoints2 )

45

46

47

48 #f i g u r e 1

49

50 t e s t f i g 1 <− kmeans ( t e s t c l u s t e r s , 3)

51 jpeg ( ” f i g 1 . jpg ” )

52 p lo t ( t e s t c l u s t e r s $ centrex , t e s t c l u s t e r s $ centrey ,

53 pch = 16 ,

54 xlab =”” , ylab = ”” ,

55 xlim = c (−2 ,8) , yl im = c (−6 ,6) )

56 t ex t ( t e s t c l u s t e r s $ centrex , t e s t c l u s t e r s $ centrey , l a b e l s = t e s t f i g 1 $

c l u s t e r , pos = 3)

57 t ex t (0 , −5, l a b e l s = ” c l u s t e r 1” )

58 t ex t (3 , 0 . 4 , l a b e l s = ” c l u s t e r 2” )

59 t ex t (6 , −5, l a b e l s = ” c l u s t e r 3” )

60 dev . o f f ( )

61

62

63

64

65 #f i g u r e 2

66 i n i t c l u s <− c
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( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 )

67 t e s tpca <− prcomp ( t e s t c l u s t e r s , s c a l e = TRUE, cente r = TRUE)

68 t e s t f i g 2 a <− kmeans ( t e s tpca $x [ , 1 : 2 ] , 3)

69 t e s t f i g 2 b <− kmeans ( t e s tpca $x [ , 1 : 3 ] , 3)

70 t e s t f i g 2 c <− kmeans ( t e s tpca $x [ , 1 : 4 ] , 3)

71 t e s t f i g 2 d <− kmeans ( t e s tpca $x [ , 1 : 5 ] , 3)

72 jpeg ( ” f i g 2 . jpg ” , width = 800 , he ight = 800)

73 par ( mfrow=c (2 , 2 ) )

74 p lo t (− t e s tpca $x [ , 2 ] , −t e s tpca $x [ , 1 ] , main=” ( a ) f i r s t two p r i n c i p a l

components” ,

75 xlim = c (−4 ,3) , yl im = c (−6 ,8) ,

76 pch = 16 ,

77 xlab =”” , ylab = ”” )

78 t ex t (− t e s tpca $x [ , 2 ] , −t e s tpca $x [ , 1 ] , l a b e l s = i n i t c l u s , pos = 3)

79

80 p lo t ( t e s t c l u s t e r s $ centrex , t e s t c l u s t e r s $ centrey , main=” (b) f i r s t

three p r i n c i p a l components” ,

81 xlim = c (−2 ,8) , yl im = c (−6 ,6) ,

82 pch = 16 ,

83 xlab =”” , ylab = ”” )

84 t ex t ( t e s t c l u s t e r s $ centrex , t e s t c l u s t e r s $ centrey , l a b e l s = t e s t f i g 2 b $

c l u s t e r , pos = 3)

85

86 p lo t ( t e s t c l u s t e r s $ centrex , t e s t c l u s t e r s $ centrey , main=” ( c ) f i r s t f our

p r i n c i p a l components” ,

87 xlim = c (−2 ,8) , yl im = c (−6 ,6) ,

88 pch = 16 ,

89 xlab =”” , ylab = ”” )

90 t ex t ( t e s t c l u s t e r s $ centrex , t e s t c l u s t e r s $ centrey , l a b e l s = t e s t f i g 2 c $

c l u s t e r , pos = 3)

91

92 p lo t ( t e s t c l u s t e r s $ centrex , t e s t c l u s t e r s $ centrey , main=” (d) f i r s t f i v e

p r i n c i p a l components” ,

93 xlim = c (−2 ,8) , yl im = c (−6 ,6) ,

94 pch = 16 ,

95 xlab =”” , ylab = ”” )

96 t ex t ( t e s t c l u s t e r s $ centrex , t e s t c l u s t e r s $ centrey , l a b e l s = t e s t f i g 2 d $
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c l u s t e r , pos = 3)

97 dev . o f f ( )

98 par ( mfrow=c (1 , 1 ) )

99

100

101

102

103

104 # t a b l e 1

105

106 s ink ( ” tab l e1 . txt ” )

107 pr in t ( summary( t e s tpca ) )

108 s ink ( )

109 pr in t ( x tab l e ( summary( t e s tpca ) , type = ” l a t e x ” ) , f i l e = ” tab l e1 . tex ” )

110

111

112

113

114 #f i g u r e 3

115 outrkm <− c lu spca ( t e s t c l u s t e r s , 3 , 2 , seed = 27 , s c a l e = FALSE,

cente r = FALSE)

116

117 jpeg ( ” f i g 3 . jpg ” , width = 800 , he ight = 800)

118 p lo t ( outrkm$ obscoord [ , 1 ] , outrkm$ obscoord [ , 2 ] , main=”k−means

c l u s t e r i n g in low dimens iona l space ” ,

119 #xlim = c (−2 ,3) , yl im = c (−2 ,3) ,

120 pch = 16 ,

121 xlab =”Dimension 1” , ylab = ”Dimension 2” )

122

123 t ex t ( outrkm$ obscoord [ , 1 ] , outrkm$ obscoord [ , 2 ] , l a b e l s = i n i t c l u s , pos

= 3)

124 dev . o f f ( )

125

126

127

128 #t a b l e 2

129 outfkm <− c lu spca ( t e s t c l u s t e r s , 3 , 2 , method = ”FKM” , r o t a t i o n = ”

varimax” , seed = 1 , s c a l e = F, cente r = F)
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130 s ink ( ” tab l e2 . txt ” )

131

132 pr in t ( outfkm$ attcoord )

133 s ink ( )

134 pr in t ( x tab l e ( outfkm$ attcoord , type = ” l a t e x ” ) , f i l e = ” tab l e2 . tex ” )

135

136

137

138

139

140 #f i g u r e 4

141

142 jpeg ( ” f i g 4 . jpg ” , width = 800 , he ight = 800)

143 p lo t ( outfkm$ obscoord [ , 1 ] , outfkm$ obscoord [ , 2 ] , main=” f a c t o r i a l k−
means” ,

144 # xlim = c (−2 ,2) , yl im = c (−2 ,6) ,

145 pch = 16 ,

146 xlab =”Dimension 1” , ylab = ”Dimension 2” )

147

148 t ex t ( outfkm$ obscoord [ , 1 ] , outfkm$ obscoord [ , 2 ] , l a b e l s = outfkm$

c l u s t e r , pos = 3)

149 dev . o f f ( )

150

151 # st and a rd i z a t i on and c o r r e l a t i o n

152 data ( ”macro” )

153 wr i t e . csv ( macro , ’ macrodata . csv ’ , row . names = TRUE)

154 z macro <− macro

155 c o r r e l a t i o n <− r c o r r ( as . matrix ( z macro ) )

156 s ink ( ” c o r r e l a t i o n . txt ” )

157 pr in t ( c o r r e l a t i o n )

158 s ink ( )

159

160

161

162

163 #t a b l e 3

164

165 macrofkm <− c lu spca ( macro , 3 , 2 , method = ”FKM” , s c a l e = TRUE, cente r
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= TRUE, seed = 39 , alpha = 0)

166 z macro2 <− z macro

167 z macro$ c l u s t e r <− macrofkm$ c l u s t e r

168 z macro <− z macro [ order ( z macro$ c l u s t e r ) , ]

169 s ink ( ” tab l e3 . txt ” )

170 pr in t ( z macro )

171 s ink ( )

172 pr in t ( x tab l e ( z macro , type = ” l a t e x ” ) , f i l e = ” tab l e3 . tex ” )

173

174

175

176

177 #t a b l e 4

178

179 s ink ( ” tab l e4 . txt ” )

180 pr in t ( macrofkm$ attcoord )

181 s ink ( )

182 pr in t ( x tab l e ( macrofkm$ attcoord , type = ” l a t e x ” ) , f i l e = ” tab l e4 . tex ” )

183

184 #f i g u r e 5

185 jpeg ( ” f i g 5 . jpg ” , width = 1400 , he ight = 700)

186 par ( mfrow=c (1 , 2 ) )

187 p lo t ( macrofkm$ obscoord [ , 1 ] , macrofkm$ obscoord [ , 2 ] , main=” ( a ) OECD

with f a c t o r i a l k−means” ,

188 xlim = c ( −2 .5 ,2 .5 ) , yl im = c (−2.5 ,2) ,

189 pch = 16 ,

190 c o l = i f e l s e ( macrofkm$ c l u s t e r ==1,” red ” , i f e l s e ( macrofkm$ c l u s t e r

==2,” blue ” , ” green ” ) ) ,

191 xlab = ”Dimension 1” , ylab = ”Dimension 2” )

192 l egend ( ” bottomright ” , pch=16, c o l = c ( ” red ” , ” blue ” , ” green ” ) , c ( ”

Class 1” , ” Class 2” , ” Class 3” ) , bty=”o” , cex =.8)

193 oecd <− rownames ( macrofkm$ obscoord )

194 macrofkm$ le f tnames <− oecd

195 macrofkm$ rightnames [ 2 0 ] <− ’ ’

196 macrofkm$ rightnames [ c (10 ,13 ,15 ,18 ,19 ) ] <− macrofkm$ le f tnames [ c

(10 ,13 ,15 ,18 ,19 ) ]

197 macrofkm$ le f tnames [ c (10 ,13 ,15 ,18 ,19 ) ] <− ’ ’

198 t ex t ( macrofkm$ obscoord [ , 1 ] , macrofkm$ obscoord [ , 2 ] , l a b e l s = macrofkm$
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l e f tnames , pos = 2)

199 t ex t ( macrofkm$ obscoord [ , 1 ] , macrofkm$ obscoord [ , 2 ] , l a b e l s = macrofkm$

rightnames , pos = 4)

200

201 p lo t ( macrofkm$ attcoord ,

202 main = ” (b) Cor r e l a t i on between the dimensions and the v a r i a b l e s

” ,

203 xlim = c ( −0 .6 ,0 .7 ) ,

204 xlab = ”Dimension 1” ,

205 ylab = ”Dimension 2” ,

206 pch = 16)

207 t ex t ( macrofkm$ attcoord [ , 1 ] , macrofkm$ attcoord [ , 2 ] , l a b e l s = c ( ”GDP” ,

”LI” , ”UR” , ”IR” , ”TB” , ”NNS” ) , pos = 4)

208

209 dev . o f f ( )

210

211

212 #t a b l e 5

213 macropca <− prcomp ( macro , s c a l e = TRUE, cente r = TRUE)

214 s ink ( ” tab l e5 . txt ” )

215 pr in t ( macropca$ r o t a t i o n [ , 1 : 2 ] )

216 s ink ( )

217 pr in t ( x tab l e ( macropca$ r o t a t i o n [ , 1 : 2 ] , type = ” l a t e x ” ) , f i l e = ” tab l e5

. tex ” )

218

219

220 #f i g u r e 6

221 jpeg ( ” f i g 6 . jpg ” , width = 800 , he ight = 800)

222 macrotkm <− kmeans ( macropca$x [ , 1 : 2 ] , 3)

223

224 p lo t (−macropca$x [ , 2 ] , −macropca$x [ , 1 ] , main=”OECD with tandem

a n a l y s i s ” ,

225 xlim = c (−4 ,2) , yl im = c ( −2 .5 ,2 .5 ) ,

226 pch = i f e l s e ( macrotkm$ c l u s t e r ==1,23 , i f e l s e ( macrotkm$ c l u s t e r

==2 ,22 ,24) ) ,

227 xlab =”” , ylab = ”” )

228 l egend ( ” bottomright ” , pch=c (23 ,22 ,24) , c ( ” Class 1” , ” Class 2” , ” Class

3” ) , bty=”o” , cex =.8)
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229 macrotkm$ le f tnames <− oecd

230 macrotkm$ rightnames [ 2 0 ] <− ’ ’

231 macrotkm$ rightnames [ c (4 , 6 , 8 , 10 , 13 , 15 , 19 ) ] <− macrotkm$ le f tnames [ c

(4 , 6 , 8 , 10 , 13 , 15 , 19 ) ]

232 macrotkm$ le f tnames [ c (4 , 6 , 8 , 10 , 13 , 15 , 19 ) ] <− ’ ’

233

234

235

236 t ex t (−macropca$x [ , 2 ] , −macropca$x [ , 1 ] , l a b e l s = macrotkm$ le f tnames ,

pos = 2)

237 t ex t (−macropca$x [ , 2 ] , −macropca$x [ , 1 ] , l a b e l s = macrotkm$ rightnames ,

pos = 3)

238 dev . o f f ( )

239

240 #example with 4 s imulated c l u s t e r s

241 jpeg ( ” f i g 4 c l u s . jpg ” , width = 800 , he ight = 400)

242 par ( mfrow=c (1 , 2 ) )

243 outfkm2 <− c lu spca ( t e s t c l u s t e r s 2 , 3 , 2 , method = ”FKM” , r o t a t i o n = ”

varimax” , seed = 1 , s c a l e = F, cente r = F)

244 p lo t ( t e s t c l u s t e r s 2 $ centrex , t e s t c l u s t e r s 2 $ centrey , main=” ( a )

f a c t o r i a l k−means , c = 3” ,

245 xlim = c (−2 ,11) , yl im = c (−4 ,7) ,

246 pch = 16 ,

247 xlab =”” , ylab = ”” )

248

249 t ex t ( t e s t c l u s t e r s 2 $ centrex , t e s t c l u s t e r s 2 $ centrey , l a b e l s = outfkm2

$ c l u s t e r , pos = 3)

250

251

252 outfkm3 <− c lu spca ( t e s t c l u s t e r s 2 , 4 , 2 , method = ”FKM” , r o t a t i o n =

”varimax” , seed = 1 , s c a l e = F, cente r = F)

253 p lo t ( t e s t c l u s t e r s 2 $ centrex , t e s t c l u s t e r s 2 $ centrey , main=” (b)

f a c t o r i a l k−means , c = 4” ,

254 xlim = c (−2 ,11) , yl im = c (−4 ,7) ,

255 pch = 16 ,

256 xlab =”” , ylab = ”” )

257 t ex t ( t e s t c l u s t e r s 2 $ centrex , t e s t c l u s t e r s 2 $ centrey , l a b e l s = outfkm3

$ c l u s t e r , pos = 3)
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258 dev . o f f ( )

259

260 jpeg ( ”4 c lu s i ndex . jpg ” , width = 800 , he ight = 400)

261 par ( mfrow=c (1 , 2 ) )

262 numclus <− c ( 3 : 1 0 )

263 pf = tunec lu s ( t e s t c l u s t e r s 2 , 3 : 10 , 2 : 2 , method = ”FKM” , c r i t e r i o n

= ”ch” , dst = ” f u l l ” )

264 p l o t p f <− cbind ( numclus , as . numeric ( data . matrix ( pf $ c r i t g r i d $X2) ) )

265 p lo t ( p lo tp f , main = ” Cal insk i−Harabasz pseudo F index ” , type = ”o” ,

pch = 16 , xlab = ”number o f c l u s t e r s ” , yaxt = ”n” )

266

267 asw = tunec lu s ( t e s t c l u s t e r s 2 , 3 : 10 , 2 : 2 , method = ”FKM” ,

c r i t e r i o n = ”asw” , dst = ” f u l l ” )

268 plotasw <− cbind ( numclus , as . numeric ( data . matrix ( asw$ c r i t g r i d $X2) ) )

269 p lo t ( plotasw , main = ”Average S i l h o u e t t e Width index ” , type = ”o” ,

pch = 16 , xlab = ”number o f c l u s t e r s ” , yaxt = ”n” )

270

271

272

273

274 dev . o f f ( )

275 par ( mfrow=c (1 , 1 ) )

276

277

278 # parameter s e l e c t i o n f o r OECD 1999

279 jpeg ( ”oecdparam . jpg ” , width = 800 , he ight = 400)

280 par ( mfrow=c (1 , 2 ) )

281

282 oecdpf = tunec lu s ( macro , 3 : 10 , 2 : 3 , method = ”FKM” , c r i t e r i o n = ”

ch” , dst = ” f u l l ” )

283 p lo toecdp f <− cbind ( numclus , as . numeric ( data . matrix ( oecdpf $ c r i t g r i d

$X2) ) , as . numeric ( data . matrix ( oecdpf $ c r i t g r i d $X3) ) )

284 p lo t ( cbind ( numclus , p l o toecdp f [ , 2 ] ) , type = ”o” , pch = 18 , c o l = ”

blue ” , xlab = ”number o f c l u s t e r s ” , main = ” Cal insk i−Harabasz

pseudo F index ” , yaxt = ”n” )

285 l i n e s ( cbind ( numclus , p l o toecdp f [ , 3 ] ) , type = ”o” , pch = 18 , c o l = ”

black ” )

286 t ex t (10 , p l o toecdp f [ 8 , 2 ] , ”m = 2” , pos = 2 , c o l = ” blue ” )
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287 t ex t (10 , p l o toecdp f [ 8 , 3 ] , ”m = 3” , pos = 2 , c o l = ” black ” )

288

289

290 oecdasw = tunec lu s ( macro , 3 : 10 , 2 : 3 , method = ”FKM” , c r i t e r i o n =

”asw” , dst = ” f u l l ” )

291 plotoecdasw <− cbind ( numclus , as . numeric ( data . matrix ( oecdasw$

c r i t g r i d $X2) ) , as . numeric ( data . matrix ( oecdasw$ c r i t g r i d $X3) ) )

292 p lo t ( cbind ( numclus , plotoecdasw [ , 2 ] ) , type = ”o” , pch = 18 , c o l = ”

blue ” , xlab = ”number o f c l u s t e r s ” , main = ”Average S i l h o u e t t e

Width index ” , yaxt = ”n” )

293 l i n e s ( cbind ( numclus , plotoecdasw [ , 3 ] ) , type = ”o” , pch = 18 , c o l =

” black ” )

294 t ex t (10 , plotoecdasw [ 8 , 2 ] , ”m = 2” , pos = 2 , c o l = ” blue ” )

295 t ex t (10 , plotoecdasw [ 8 , 3 ] , ”m = 3” , pos = 2 , c o l = ” black ” )

296

297

298 dev . o f f ( )

299 par ( mfrow=c (1 , 1 ) )

300

301

302 # v a r i a b l e alpha

303 aswval <− matrix (0 , nrow = 20 , nco l = 1)

304 p f v a l <− matrix (0 , nrow = 20 , nco l = 1)

305 f o r (p in seq ( from = 0 .05 , to = 1 , by = 0 . 0 5 ) ) {
306 tunec lu sa lphap f <− tunec lu s ( macro , nc lus range = 3 , ndimrange = 2 ,

alpha = p , c r i t e r i o n = ”ch” )

307 tunec lusa lphaasw <− tunec lu s ( macro , nc lus range = 3 , ndimrange =

2 , alpha = p , c r i t e r i o n = ”ch” )

308 va l <− 20∗p
309 p f v a l [ val , 1 ] <− tunec lu sa lphap f $ c r i t b e s t

310 aswval [ val , 1 ] <− tunec lusa lphaasw $ c r i t b e s t

311

312 }
313

314 jpeg ( ” oecdalpha . jpg ” , width = 800 , he ight = 400)

315 par ( mfrow=c (1 , 2 ) )

316 chval2 <− rbind (43 , chval )

317 aswval2 <− rbind ( 0 . 0 9 4 , aswval )
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318 p lo t ( cbind ( seq ( from = 0 .00 , to = 1 , by = 0 . 0 5 ) , chval2 ) , type = ”o”

, pch = 16 ,

319 xlab = ” ” , ylab = ”” , main = ” Cal insk i−Harabasz pseudo F

index ” , yaxt = ”n” )

320 p lo t ( cbind ( seq ( from = 0 .00 , to = 1 , by = 0 . 0 5 ) , aswval2 ) , type = ”o

” , pch = 16 ,

321 xlab = ” ” , ylab = ”” , main = ”Average S i l h o u e t t e Width index

” , yaxt = ”n” )

322 dev . o f f ( )

323 par ( mfrow=c (1 , 1 ) )

324

325

326 #CDR macro data alpha = 0 .2 c = 3 m = 2

327

328 oecdcdr <− c lu spca ( macro , 3 , 2 , alpha = 0 . 2 , c en t e r = T, s c a l e = T,

seed = 31101998)

329

330 jpeg ( ” oecdcdr . jpg ” , width = 1400 , he ight = 700)

331 par ( mfrow=c (1 , 2 ) )

332 p lo t ( oecdcdr $ obscoord [ , 1 ] , oecdcdr $ obscoord [ , 2 ] , main=” ( a ) OECD

with c l u s t e r i n g and dimension reduct ion ” ,

333 #xlim = c ( −2 .5 ,2 .5 ) , yl im = c (−2.5 ,2) ,

334 pch = 16 ,

335 c o l = i f e l s e ( oecdcdr $ c l u s t e r ==1,” red ” , i f e l s e ( oecdcdr $ c l u s t e r

==2,” blue ” , ” green ” ) ) ,

336 xlab = ”Dimension 1” , ylab = ”Dimension 2” )

337 l egend ( ” bottomright ” , pch=16, c o l = c ( ” red ” , ” blue ” , ” green ” ) , c ( ”

Class 1” , ” Class 2” , ” Class 3” ) , bty=”o” , cex =.8)

338 oecdcdr2 <− rownames ( oecdcdr $ obscoord )

339 oecdcdr $ l e f tnames <− oecdcdr2

340 oecdcdr $ rightnames [ 2 0 ] <− ’ ’

341 oecdcdr $ rightnames [ c (3 , 9 , 13 , 16 ) ] <− oecdcdr $ l e f tnames [ c (3 , 9 , 13 , 16 ) ]

342 oecdcdr $ l e f tnames [ c (3 , 9 , 13 , 16 ) ] <− ’ ’

343 t ex t ( oecdcdr $ obscoord [ , 1 ] , oecdcdr $ obscoord [ , 2 ] , l a b e l s = oecdcdr $

le f tnames , pos = 2)

344 t ex t ( oecdcdr $ obscoord [ , 1 ] , oecdcdr $ obscoord [ , 2 ] , l a b e l s = oecdcdr $

rightnames , pos = 4)

345
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346 p lo t ( oecdcdr $ attcoord ,

347 main = ” (b) Cor r e l a t i on between the dimensions and the

v a r i a b l e s ” ,

348 #xlim = c ( −0 .6 ,0 .7 ) ,

349 xlab = ”Dimension 1” ,

350 ylab = ”Dimension 2” ,

351 pch = 16)

352 t ex t ( oecdcdr $ at tcoord [ , 1 ] , oecdcdr $ at tcoord [ , 2 ] , l a b e l s = c ( ”GDP” ,

”LI” , ”UR” , ”IR” , ”TB” , ”NNS” ) , pos = 4)

353

354 dev . o f f ( )

355

356

357 # mammals

358 help <− rep (0 , 20∗2∗ 8)

359 mammalsindex <− array ( help , c (8 , 2 , 20 ) )

360

361 f o r ( q in seq ( from = 0 .05 , to = 1 , by = 0 . 0 5 ) ) {
362 milkasw <− tunec lu s (mammals , nc lus range = 3 :10 , ndimrange = 2 : 3 ,

alpha = q , c r i t e r i o n = ”asw” , method = ”FKM” )

363 v a l l i e <− 20∗q
364 mammalsindex [ , 1 , v a l l i e ] <− as . numeric ( data . matrix ( milkasw$ c r i t g r i d $

X2) )

365 mammalsindex [ , 2 , v a l l i e ] <− as . numeric ( data . matrix ( milkasw$ c r i t g r i d $

X3) )

366

367

368 }
369 mi lkc lu s <− c lu spca (mammals , 3 , 2 , alpha = 0 .45 , seed = 1)

370

371 jpeg ( ” mi l k c lu s . jpg ” , width = 1400 , he ight = 700)

372 par ( mfrow=c (1 , 2 ) )

373 p lo t ( mi l k c lu s $ obscoord [ , 1 ] , m i l k c lu s $ obscoord [ , 2 ] , main=” ( a )

Mammals ’ milk components with c l u s t e r i n g and dimension reduct ion

” ,

374 xlim = c (−5 ,3) ,

375 #ylim = c (−2.5 ,2) ,

376 pch = 16 ,
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377 c o l = i f e l s e ( m i l k c lu s $ c l u s t e r ==1,” red ” , i f e l s e ( m i l k c lu s $ c l u s t e r

==2,” blue ” , ” green ” ) ) ,

378 xlab = ”Dimension 1” , ylab = ”Dimension 2” )

379 l egend ( ” bottomright ” , pch=16, c o l = c ( ” red ” , ” blue ” , ” green ” ) , c ( ”

Class 1” , ” Class 2” , ” Class 3” ) , bty=”o” , cex =.8)

380 mi lkc lu s2 <− rownames ( mi l k c lu s $ obscoord )

381 mi lkc lu s $ l e f tnames <− mi lkc lu s2

382 mi lkc lu s $ rightnames <− ’ ’

383 mi lkc lu s $ rightnames [ c (1 , 3 , 17 , 21 , 24 , 25 ) ] <− mi lkc lu s $ l e f tnames [ c

(1 , 3 , 17 , 21 , 24 , 25 ) ]

384 mi lkc lu s $ l e f tnames [ c (1 , 3 , 17 , 21 , 24 , 25 ) ] <− ’ ’

385 t ex t ( mi l k c lu s $ obscoord [ , 1 ] , m i l k c lu s $ obscoord [ , 2 ] , l a b e l s =

mi lkc lu s $ le f tnames , pos = 2)

386 t ex t ( mi l k c lu s $ obscoord [ , 1 ] , m i l k c lu s $ obscoord [ , 2 ] , l a b e l s =

mi lkc lu s $ rightnames , pos = 4)

387

388 p lo t ( mi l k c lu s $ attcoord ,

389 main = ” (b) Cor r e l a t i on between the dimensions and the

v a r i a b l e s ” ,

390 #xlim = c ( −0 .6 ,0 .7 ) ,

391 xlab = ”Dimension 1” ,

392 ylab = ”Dimension 2” ,

393 pch = 16)

394 t ex t ( mi l k c lu s $ at tcoord [ , 1 ] , m i l k c lu s $ at tcoord [ , 2 ] , l a b e l s = c ( ”

Water” , ” Prote in ” , ”Fat” , ”” , ”Ash” ) , pos = 4)

395 t ex t ( mi l k c lu s $ at tcoord [ , 1 ] , m i l k c lu s $ at tcoord [ , 2 ] , l a b e l s = c ( ”” , ”

” , ”” , ” Lactose ” , ”” ) , pos = 2)

396

397

398 dev . o f f ( )
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