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1 Introduction

Short haul transportation plays a crucial role in the global economy. It is estimated that around e70

billion was spent on last mile transportation in 2016 (Joerss, Schröder, Neuhaus, Klink, & Mann,

2016), which refers solely to delivering parcels from a warehouse. Joerss et al. (2016) also indicate

that the industry of last mile transportation expands over time. In such an extensive industry,

efficient planning can lead to substantial reductions in terms of costs and greenhouse gas emissions,

even if they only lead to minor reductions on a per parcel basis. Hence, finding efficient algorithms

to increase the efficiency of parcel delivery can have a massive economic and environmental impact.

Examples thereof in earlier research are provided by, among others, Figliozzi (2010).

This thesis focuses on efficient parcel delivery planning in urban environments, since rising

urbanisation was found in several studies (Angel, Parent, Civco, Blei, & Potere, 2011; Jiang &

O’Neill, 2017). This focus is further motivated by the fact that large cities often have high conges-

tion (Schrank & Lomax, 2009), causing relatively high greenhouse gas emissions (Stopher & Stanley,

2014), as well as other (economic) costs. This thesis shows that government intervention (e.g., via

the utilization of taxation) can stimulate the usage of smaller vehicles in urban environments.

Traditionally, urban parcel delivery is often performed using delivery vans. Due to rising envi-

ronmental awareness and urban congestion, the parcel delivery industry diverges to different modes

of transport, such as delivery bicycles, which have smaller transport capacities but experience less

congestion and emit less greenhouse gasses than delivery vans. In particular for such small vehicles,

vehicle capacity often plays a crucial role in planning delivery routes.

An efficient branch-and-cut algorithm to solve capacitated vehicle routing problems (CVRP)

was presented by Achuthan, Caccetta and Hill (2003). In CVRPs, one is given n − 1 potential

clients, each with known locations and demand for a commodity, that must be served from a depot

using (at most) m vehicles and tasked to find the minimum cost routes to do so. Each of these

vehicles has a capacity to transport the commodity that may not be exceeded.

Since the paper by Achuthan et al. (2003) is over fifteen years old, it is time to re-evaluate

the algorithm’s efficiency using modern equipment. Furthermore, Achuthan et al. (2003) present

an algorithm that relies on a homogeneous delivery vehicle fleet, in which all vehicles have the

same capacity. This thesis will relax that assumption and extend the aforementioned branch-and-

cut algorithm to heterogeneous fleets, in which varying vehicle capacity plays a major role. The

algorithm’s relative performance for heterogeneous and homogeneous fleets will then be analyzed.
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A further intention of this extension is to analyze the effects of taxation to reduce the usage of large

delivery vehicles in or near city centers. In Section 2, the economic background to this problem is

defined more extensively.

The computational results presented by Achuthan et al. (2003) are based on 1620 test problems

and 24 literature problems. In this thesis, the data will solely be derived from simulated problems,

which include most settings applied by Achuthan et al. (2003), while also covering a variety of

other settings. The details hereof are outlined in Section 6.

The remainder of this thesis is structured as follows: In Section 2, the economic background

to the (potential) influence of taxation of the downtown usage of large vehicles is outlined. In

Section 3, the literature related to capacitated and heterogeneous fleet vehicle routing problems

is discussed, followed by a translation of these problems into a mathematical model in Section 4.

Then, Section 5 presents the techniques implemented to solve the problems, which are simulated

according to the details provided in Section 6. Then, the (computational) results are shown in

Section 7. Finally, Section 8 provides the conclusions of this thesis along with a discussion thereof.

2 Economic background

2.1 The economics of externalities

Neoclassical economics relies on the assumption that each individual makes his or her choices such

as to maximize individual well-being, which is commonly referred to as utility. Generally, such

choices made by one individual influence the utility of another, be it positively or negatively. Such

externalities exist in urban traffic too. Particularly, the choice of some individuals and companies

to engage in urban traffic induces the negative externalities of congestion (Schrank & Lomax, 2009;

Qingyu, Zhicai, Baofeng, & Hongfei, 2007) and discomfort (Ossokina & Verweij, 2005).

Obviously, people and companies can take others’ preferences into account, but the aforemen-

tioned existence of externalities in urban traffic shows that this is generally insufficient to lead

to efficient outcomes. According to the Coase theorem, assigning property rights will lead to an

efficient distribution of resources, provided that parties can freely negotiate (Coase, 1960). An

alternative thereof is taxation, which forces both individuals and companies to take the effects they

have on others into account. Such taxes are known as Pigouvian taxes (Pigou, 1932). This thesis

offers an analysis of the effects induced by governments imposing such taxes on companies driving

with large vehicles in or near the city center, as opposed to having equal costs of driving with larger
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or smaller vehicles to the preference of the company. On the one hand, such taxes can contribute

to achieving more efficient infrastructure usage in or near the city center as they likely lead to a

reduction of negative externalities. On the other hand, such taxes can be (perceived) ‘unfair’ if the

magnitude thereof is too large due to which the government massively obstructs the free market.

The focus on traffic in or near the city center is explained in Section 2.2.

2.2 Varying urban density

A typical city has higher density near its center(s) than in its suburbs. This principle can be

explained from basic economic theory, such as the Von Thünen model which states that land

near the city center is more productive than land further away from the city center (Warf, 2010).

Furthermore, it can be explained from Christaller’s theory, which states that different goods and

services require service areas of different sizes. It can also be explained via polarization theory and

arguments related to agglomeration benefits, since all of these theories show that it is beneficial for

companies to be clustered together in a central business district (CBD) (Wegener, 2013).

Related to these models, it can be argued that land is used at high density near the CBD and

other business districts while land close to the edge of cities can be dedicated to (large) suburban

gardens as it has a lower opportunity cost. This leads to an inverse relationship between distance

from the (central) business district and urban density.

Partially due to the high densities in the city centers, the downtown infrastructure is not built

as to accommodate high-intensity parcel delivery with larger delivery vans. For example, in the

Dutch city Delft (with approximately 100,000 citizens), it is seemingly infeasible to arrange down

town parcel delivery using delivery vans. Also in Rotterdam, a Dutch city with over half a million

citizens, parcel delivery near the city center is frequently performed using delivery bicycles rather

than delivery vans. Contrarily, it seems acceptable to utilize delivery vans for suburban parcel

delivery. As the primary reason thereof, the urban density in the suburbs is likely to be substantially

lower than in the CBD, as argued above. Therefore, the infrastructure is likely to be less occupied.

This is amplified by the fact that the infrastructure is used by individual households rather than

by organized business people.

When multiple distinct types of vehicles are used for parcel delivery, this leads to the Hetero-

geneous Fleet Vehicle Routing Problem (HVRP). The HVRP is defined similarly to the CVRP,

except for a set of vehicle types with a distinct capacity for each vehicle type. In the HVRP, all

customers’ demand must be satisfied using (at most) mk vehicles of type k.
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3 Literature review

3.1 Capacitated vehicle routing problem

The capacitated vehicle routing problem (CVRP) is an NP-hard problem, since it is an extension

of the NP-hard Traveling Salesman Problem. For the CVRP, many formulations exist. Some rely

on flow conservation and subtour elimination constraints of some sort (e.g., Achuthan et al., 2003),

whereas others rely on a modification of the Miller–Tucker–Zemlin-constraints (MTZ-constraints).

An example thereof is provided by Solano-Charris, Prins, and Santos (2015). Finally, a set-covering

formulation for the CVRP is often used (e.g., Balinski and Quandt, 1964).

Furthermore, there exists a diversity of exact and heuristic solution methods for the CVRP. La-

porte (2009) offers a clear overview thereof. He points to exact branch-and-bound or dynamic pro-

gramming algorithms as well as a diversity of heuristics, including the savings heuristic (Paessens,

1988), sweep heuristics and some local search (meta)heuristics. Another example is provided by

Ralphs, Kopman & Pulleyblank (2003), who provide a branch-and-cut algorithm to solve the CVRP.

3.2 Heterogeneous fleet vehicle routing problem

The heterogeneous fleet vehicle routing problem (HVRP) extends the CVRP by allowing route

scheduling of vehicles with varying capacities. Therefore, the HVRP is also NP-hard. Also for

the HVRP, multiple formulations exist. Some formulations are based on flow conservation and

subtour elimination constraints, while others rely on a modification of the MTZ-constraints (see,

for example, Yaman, 2006). Apart from that, a variety of heuristics exist, most of which are based

on local search or tabu search procedures (e.g., Gendreau, Laporte, Musaraganyi, and Taillard,

1999; Penna, Subramanian, and Ochi, 2013). Also, there exists a sweep heuristic for the HVRP

(Renaud & Boctor, 2002), but it does not account for varying relative edge weights. Taxation of

the usage of large vehicles in and near the city center would, in fact, ask for such edge weights to

be taken into account in the heuristic.

Exact algorithms

Most closely related to this research are the diverse branch-and-cut algorithms for the HVRP

presented in the literature. Yaman (2005) introduced diverse inequalities based on the HVRP’s

MTZ-formulation, but he did not implement a branch-and-cut algorithm. Others derived a branch-

and-cut algorithm for which the cuts were based on feasibility requirements (see, for example,
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Baldacci, Battarra, and Vigo, 2009). Furthermore, the literature offers diverse column generation

implementations to find lower bounds to the HVRP (e.g., Choi and Tcha, 2007), or to derive

branch-and-price-and-cut algorithms (see, for example, Betinelli, Ceselli, and Righini, 2011; Pessoa,

Sadykov, and Uchoa, 2018; Pessoa, Uchoa, and Poggi de Aragão, 2009). Notably, none of these

algorithms rely on cuts based on optimality considerations, which are, in fact, offered by Achuthan

et al. (2003) for the CVRP. Rather, feasibility cuts are applied. To the best of my knowledge,

there do not exist exact algorithms for the HVRP that use cutting planes based on optimality

considerations. This thesis fills that gap in the literature. To that extent, the general purpose of

cutting planes is explained in Section 4, where new cutting planes for the HVRP are introduced.

4 Model

This section offers the mathematical model and cutting planes used in the branch-and-cut algorithm,

which is introduced in Section 5. Throughout this section, the mathematical model and cutting

planes for the heterogeneous fleet vehicle routing problem are taken as the basis. The mathematical

model and cutting planes for the capacitated vehicle routing problem are simply a subclass thereof

in which only one type of vehicle is available. Nonetheless, the cutting planes and constraints are

also provided for the CVRP as to increase the readability of the remainder of this thesis.

4.1 Mathematical model

As indicated above, many formulations for the HVRP and CVRP exist. In analogy to the model for

the CVRP used by Achuthan et al. (2003), define graph G = (V,E), in which V = {0, . . . , n− 1}

and E = {(i, j)|0 ≤ i 6= j ≤ n− 1}. Furthermore, L = {1, . . . , n− 1} ⊂ V is used to represent the

set of customers, each associated with a given demand qj . Finally, 0 is used to denote the depot.

Now, the set of available vehicle types is denoted by K = {0, 1, . . . , t− 1} and for each vehicle

k ∈ K, mk represents the number of available delivery vehicles of that type. Also, each vehicle has

a capacity Qk ∈ N to transport the commodity. Here, it is required that max{Qk} ≥ max{qj} in

order to preserve that all customers can be brought their demand by some vehicle. Finally, `k(S)

denotes the greatest lower bound on the number of vehicles of type k ∈ K required to visit all

locations of S in an optimal solution, for S ⊆ L such that max
j∈S

qj ≤ Qk, for a vehicle of type k

cannot be used to serve customers with a demand larger than Qk.

For the CVRP, |K| = 1 and the subscript k is redundant for mk, Qk and `k(S).
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For any pair of vertices i, j ∈ V and each vehicle k ∈ K, the ‘relative’ distance between i and

j using vehicle k is denoted by cijk. These distances are assumed to satisfy the triangle inequality.

That is, it is assumed that cijk ≤ cihk + chjk, ∀k ∈ K; i, j ∈ V . For the CVRP, the subscript k is

again redundant. Now, the HVRP relies on the following decision variables for i < j and k ∈ K:

xijk =


1 if a vehicle of type k visits both i and j on a single trip;

2 if i = 0 and (0, j, 0) is a route for a vehicle of type k;

0 otherwise.

Since a pair of customers cannot be served by the same vehicle of type k if their joint demand

exceeds Qk, these decision variables are only defined when qi + qj ≤ Qk. Furthermore, the binary

decision variables yik are introduced, indicating whether a vehicle of type k serves customer i ∈ L.

Apart from the notation introduced above, S is used to denote the complement of S with respect

to L. Hence, S = L\S. Also, E[S, T ] is used to denote the total edge flow between S and T . More

formally, E[S, T ] = {(i, j)|i < j and i ∈ S, j ∈ T} ∪ {(i, j)|i < j and j ∈ S, i ∈ T}. An overview of

all notation used throughout this thesis is provided in Appendix A.

These definitions bring about the Integer Linear Program (ILP) formulation introduced below,

which can be interpreted in analogy to the CVRP formulation provided by Achuthan et al. (2003):

minimize
x

∑
k∈K

∑
i<j∈V

cijkxijk (1a)

subject to
∑
j∈L

x0jk = 2mk ∀k ∈ K (1b)

∑
i<h∈V

xihk +
∑

j>h∈V
xhjk = 2yhk ∀h ∈ L, ∀k ∈ K (1c)

∑
k∈K

yik = 1 ∀i ∈ L (1d)

∑
i,j∈S

xijk ≤ |S| − `k(S) ∀S ⊆ L for which 3 ≤ |S| ≤ n− 1, ∀k ∈ K (1e)

x0jk ∈ {0, 1, 2} ∀j ∈ L, ∀k ∈ K (1f)

xijk ∈ {0, 1} ∀i, j ∈ L, ∀k ∈ K (1g)

mk ∈ N ∀k ∈ K (1h)

yik ∈ {0, 1} ∀i ∈ L, ∀k ∈ K (1i)
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The objective (1a) of this Integer Linear Program (ILP) is to minimize the total (weighted) distance

driven. Constraints (1b) preserve that all vehicles used in a feasible solution of the HVRP enter

and leave the depot, whereas Constraints (1c) and (1d) jointly guarantee that each other node is

entered and left exactly once by a vehicle of the same type. Constraints (1e) preserve that subtours

cannot exist and that the vehicle capacity is not exceeded by limiting the number of connections

within S ⊆ L. This guarantees that the Constraints (1b) can only be satisfied if a sufficient

number of vehicles is used and there are (eventually) connections to the depot. The last four sets

of Constraints (1f-1g) are required to preserve the variable domains.

In this formulation, mk can be variable or fixed by additional constraints for all vehicle types.

In this thesis, however, mk is variable throughout. Furthermore, lk(S) needs only be calculated in

the cases where it is required1 (Achuthan et al., 2003). It can be computed as `k(S) =

⌈∑
j∈S qj

Qk

⌉
.

For the CVRP, this model simplifies to the model provided by Achuthan et al. (2003):

minimize
x

∑
i<j∈V

cijxij (2a)

subject to
∑
j∈L

x0j = 2m (2b)

∑
i<h∈V

xih +
∑

j>h∈V
xhj = 2 ∀h ∈ L (2c)

∑
i,j∈S

xij ≤ |S| − `(S) ∀S ⊆ L for which 3 ≤ |S| ≤ n− 1 (2d)

x0j ∈ {0, 1, 2} (2e)

xij ∈ {0, 1} for i ∈ L (2f)

m ∈ N+ (2g)

For both models, specific vehicles are not assigned to routes because vehicles of the same type can

be used interchangeably.

In model (1), the subtour elimination constraints (1e) can be replaced by Constraints (3). A

proof of this equivalence is provided in Appendix C.

∑
h∈K

∑
i,j∈S

xijh−
∑

h6=k∈K

∑
i,j∈S

xijh+
∑
h∈K

∑
j∈S

x0jh −mh

 ≤ |S|−l(S) ∀S ⊆ L for which 1 ≤ |S| ≤ n−2, ∀k ∈ K

(3)

1Note that the problems introduced by Achuthan, Cacetta and Hill (1996) do not apply here, because there is no

limit on the length of routes driven by vehicles.
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For the CVRP, these Constraints reduce to (4), which can be used to replace Constraints (2d):

∑
i,j∈S

xij +
∑
j∈S

x0j −m ≤ |S| − l(S) ∀S ⊆ L for which 1 ≤ |S| ≤ n− 2 (4)

Both sets of constraints limit the number of edges within a subset to the number of nodes thereof

plus the number of vehicles available to service that subset, which are all vehicles that need not be

reserved to deliver parcels in S. It follows from elementary graph theory that disconnected cycles

cannot exist with this number of edges for S ⊆ L. Furthermore, since the equation holds for all

such subsets S, the capacity of vehicles is not exceeded. For the HVRP, the interpretation is similar

but slightly more complicated due to the additional terms that appear in the equation.

4.2 Cutting planes

Apart from the aforementioned sets of constraints, Achuthan et al. (2003) introduce cutting planes

for the CVRP. Such cutting planes are valid inequalities that can be added to the model with

the purpose of reducing the size of the search tree and hence, of boosting the performance of the

branch-and-cut algorithm as compared to a ‘standard’ branch-and bound algorithm. Namely, such

cutting planes reduce the problem’s feasible region, without eliminating all optimal solutions.

For each of the aformentioned cutting planes for the CVRP (Achuthan et al., 2003), there exists

similar cutting planes for the HVRP that can be interpreted analogously. These cutting planes are

presented in this section and a proof of the validity thereof is presented in Appendix C.

First, Achuthan et al. (2003) argue that it can occur that a Constraint of type (1e) (2d for the

CVRP) is not violated for a set S ⊂ L while it is violated for P ⊂ S. In such a case, the following

provides a valid cutting plane for S\P :

∑
h∈K

∑
i,j∈P

xijh−
∑

h6=k∈K

∑
i,j∈S\P

xijh+
∑
h∈K

∑
i,j∈S

xijh +
∑
j∈P

x0jh +
∑
E(P,S)

xijh

 ≤ t|S|+ |P |− `k(S\P )

(5)

For the CVRP, this cutting plane reduces to the following:

∑
j∈P

x0j +
∑
i,j∈P

xij +
∑
i,j∈S

xij +
∑
E[P,S]

xij ≤ |S|+ |P | − `(P ) (6)

These sets of cutting planes can be interpreted fairly similarly to Constraints (3) and (4), respec-

tively. Namely, consider S as the set of customers to be served from the ‘virtual depot’, which is

everything outside of S. Then, a valid inequality for P can be derived, similar to Constraints (3)
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and (4). These inequalities can be rewritten into Cutting Planes (5) and (6), respectively. For that

reason, these cutting planes can be interpreted in analogy to Constraints (3) and (4).

For the CVRP, Achuthan et al. (2003) provide a further set of valid inequalities, which is

outlined in Theorem 1 below, along with its HVRP equivalent that is proven in Appendix C:

Theorem 1. For any vehicle type k ∈ K, let D0, D1, D2, . . . , Dr ⊆ L with the properties 1 - 3:

1. r ≥ 2 and
∑

i∈D0∪Dp∪Dq

qi > Qk ∀p, q ∈ {1, . . . , r} such that p 6= q;

2. ∀i, j ∈ {0, . . . , r} such that i 6= j, Di and Dj are disjoint. That is, Di ∩Dj = ∅;

3. D = ∪ri=1Di.

Then, any feasible solution of the HVRP satisfies:

3
∑
i,j∈D0

xijk +
∑

E[D0,D]

xijk +
r∑
p=1

∑
i,j∈Dp

xijk ≤ 3|D0|+ |D| − (r + 2) (7)

For the CVRP, this simplifies to:

3
∑
i,j∈D0

xij +
∑

E[D0,D]

xij +
r∑
p=1

∑
i,j∈Dp

xij ≤ 3|D0|+ |D| − (r + 2) (8)

This theorem relies on the fact that there cannot be cycles in the subgraph of G that is defined by

the node set D0 and the edges chosen accordingly, because of the subtour elimination constraints.

Furthermore, it uses the property that the number of cross-edges from D to Di is limited as a

consequence of Constraints (1d) (2c for the CVRP), for i ∈ {1, . . . , r}. This leads to an effective

upper bound on the number of traversed edges in D0 ∪D.

For r = 3, Cutting Planes (7) can be rewritten into Cutting Planes (9):

2
∑
i,j∈D0

xijk +
∑

E[D0,D]

xijk +
3∑
p=1

∑
i,j∈Dp

xijk ≤ 2|D0|+ |D| − 4 ∀k ∈ K (9)

Similarly, for the CVRP, Cutting Planes (8) simplify to (10), as provided by Achuthan et al. (2003):

2
∑
i,j∈D0

xij +
∑

E[D0,D]

xij +
3∑
p=1

∑
i,j∈Dp

xij ≤ 2|D0|+ |D| − 4 (10)

All cutting planes presented thus far are based on the required feasibility of the CVRP and HVRP.

Apart from these cutting planes, Achuthan et al. (2003) also present two sets of cutting planes that

are based on optimality considerations. Namely, they show that there exists an optimal solution to
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the CVRP that satisfies the criteria in Cutting Planes (12) and (13). These are introduced below

along with their respective HVRP equivalents, Cutting Planes (11) and (15).

For the HVRP, there exists an optimal solution which satisfies:

∑
h≤k∈K

∑
i,j∈S

xijh +
∑
j∈S

x0jh

 ≤ |S|+ 1 ∀k ∈ K, ∀S ⊆ L such that 2 ≤ |S| ≤ |L| and
∑
i∈S

qi ≤ Qk

(11)

This reduces to the following for the CVRP:∑
i,j∈S

xij +
∑
j∈S

x0j ≤ |S|+ 1 ∀S ⊆ L such that 2 ≤ |S| ≤ |L| and
∑
i∈S

qi ≤ Q (12)

Namely, if this were not the case, there must be multiple vehicles that start and end at the depot

and that visit only customers in S. Therefore, a cost reduction can be achieved by merging these

vehicles’ routes. This leads to a feasible solution to the CVRP because the total demand in S does

not exceed the vehicle capacity and to a cost deduction because the distances satisfy the triangle

inequality for all vehicle types.

Furthermore, Achuthan et al. (2003) prove that there exists an optimal solution of the CVRP

with variable m which satisfies Cutting Planes (12) and the condition in equation (13).∑
i,j∈S

xij +
∑
i∈S

x0i ≤ |S|+
⌊

2(
∑

i∈S qi + δ)

Q+ 1 + δ

⌋
∀S ⊆ L such that 2 ≤ |S| ≤ |L| and

∑
i∈S

qi > Q.

Furthermore, δ = 0 if Q is odd or δ = 1 if Q is even. (13)

This equation follows from algebraic manipulation of a solution that satisfies equation (12). For

the cases in which m is variable, Cutting Planes (13) lead to an upper bound on m (Achuthan et

al., 2003). Namely:

m ≤


1, if

∑
i∈L

qi ≤ Q

min

(
n,

⌊
2(
∑

i∈S qi + δ)

Q+ 1 + δ

⌋)
otherwise.

(14)

In equation (14), δ is defined as in Cutting Planes (13). Along with this upper bound, a lower

bound on m can be introduced, which is equal to

⌈∑
i∈L qi

Q

⌉
.

Analogously, for the HVRP, there exists an optimal solution which satisfies Cutting Planes (11)

and the Cutting Planes presented in (15), for all vehicle types k ∈ K:∑
i,j∈S

xijk +
∑
i∈S

x0ik ≤ |S|+
⌊

2(
∑

i∈S qi + δ)

Qk + 1 + δ

⌋
∀S ⊆ L such that 2 ≤ |S| ≤ |L| and

∑
i∈S

qi > Qk.

Furthermore, δ = 0 if Qk is odd or δ = 1 if Qk is even. (15)
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Again, these cutting planes lead to upper bounds on variable mk. However, these upper bounds

are not as strong as they are for the CVRP in general, since fewer vehicles of one type will be used

if vehicles of another type are used. Nonetheless, the following set of upper bounds can be found:

mk ≤


1, if

∑
i∈L

qi ≤ Qk

min

(
n,

⌊
2(
∑

i∈S qi + δ)

Qk + 1 + δ

⌋)
otherwise.

(16)

In equation (16), δ is defined as in Cutting Planes (15). As mentioned above, this upper bound

is less tight than the upper bound for the CVRP. A similar argument goes for the lower bound.

As vehicles of different types can be used interchangeably, it is possible to use only vehicles of the

largest type and no other vehicle. In certain cases, it is also possible to use no vehicles of the largest

type. Therefore, the lower bound on mk must be set to its trivial value, 0, for all vehicle types.

5 Methodology

5.1 Branch-and-cut algorithm

Throughout this section, a branch-and-cut algorithm for the HVRP is outlined, which simplifies to

a corresponding branch-and-cut algorithm for the CVRP for |K| = 1. The algorithm for the CVRP

is the algorithm provided by Achuthan et al. (2003), whereas the algorithm for the HVRP is an

extension thereof. Both the structure of the algorithm in its entirety as well as the structure of its

components must be attributed to the work of Achuthan et al. (1996, 2003), or even to Laporte et

al. (1985). The modifications made to that algorithm are first presented in this thesis.

Generally, branch-and-cut algorithms extend branch-and-bound algorithms in the sense that

cutting planes are used to reduce the number of branches needed. In particular, pseudocode for

this branch-and-cut algorithm is presented in Algorithm 1 in Appendix B or as a flowchart by

Achuthan et al. (1996). In this algorithm, Z∗ is used to denote the current best-known objective

value and Z denotes the objective value of the current linear programming relaxation.

Fixing forced variables

Evidently, for each subproblem there can exist constraints on edges that must or may not be

included in the solution, for example because the corresponding variables xijk are fixed due to

branches that were created in the algorithm’s branching fase. Similarly, there may exist constraints

on the binary decision variables yih, forcing them to be equal to 0 or 1.
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Both for the HVRP and for the CVRP, requiring one or multiple edges to be included in a

subproblem’s solution can force other edges to be excluded. Such situations are incorporated as

subtour prevention constraints in the following manner:

For each vehicle type k ∈ K, consider the graphs H = (VH , EH) and H ′ = (VH′ , EH′) such that

VH = VH′ = V , EH = {(i, j)|xijk is a free variable} and EH′ = {(i, j)|xijk = 1}. By definition, H ′

is a union of paths. Now, let P1 = {i1, . . . , ir} and P2 = {j1, . . . , js} be any pair of paths in H ′.

• If
r∑

u=1

qiu +
s∑

u=1

qju > Qk, any free variable involving the end vertices of P1, P2 and vehicle k

is set to 0, since one vehicle of type k cannot serve all customers in these paths.

• No vehicle h 6= k can visit any vertex i ∈ P1 ∪ P2 unless i is the depot. That is, yih = 0 for

all h 6= k ∈ K. As a direct consequence thereof, it follows that yik = 1 by Constraints (1d).

Furthermore, all edges involving any vertex of P1 or P2 are forbidden to be driven with any

vehicle h 6= k ∈ K, unless the vertex is the depot.

• If r ≥ 3, the edge (i1, ir) cannot be driven with vehicle k unless i1 or ir is the depot and if

s ≥ 3, (j1, js) is forbidden to be driven with vehicle k unless j1 or js is the depot.

• Any free variable involving internal vertices of P1 or P2 is set to 0.

Even though none of these situations can arise in the presence of the constraints presented in

model 1 (or model 2 for the CVRP), it is computationally more efficient to force the corresponding

variables to be equal to 0 ex ante (Achuthan et al., 1996).

Finally, if a vehicle of type k visits customer i (i.e., yik = 1) for some i ∈ L, k ∈ K, it is known

that no other vehicle can visit this customer. Therefore, yih is set to 0 for any h 6= k ∈ K. This is

a consequence of Constraints (1d).

Purging ineffective constraints

For the case at hand, Constraints 1e and 3 as well as Cutting Planes 5, 7, 9, 11 and 15 (or

Constraints 2d and 4 as well as Cutting Planes 6, 8, 10, 12 and 13 for the CVRP) are ineffective

if their corresponding slack variable is a basic variable. If that is the case, the constraint is not

binding and hence, does not influence the current solution. It is computationally efficient to remove

such constraints from the problem, even if they must be reintroduced in a later stage (Achuthan

et al., 1996). It may be noted that the Constraints 1b, 1c and 1d (or 2b and 2c for the CVRP) are

always tight as they must hold at equality.
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Searching capacity constraint violations

For any solution to the current linear program of the HVRP and the CVRP, it must be verified

whether none of the constraints or cutting planes are violated. Since constraints are only added

when they are violated and removed from the program when they are no longer necessary to

maintain, one or multiple constraint violations can exist, after which these violated constraints are

added to the (linear) program. The algorithm to find violated constraints and cutting planes is

valid both for the HVRP as for the CVRP for which the procedure was originally developed.

Initially, a set Sk = {S1k . . . Smkk} of the mk tours in the current solution is defined for each

vehicle type. Each of these tours is connected internally but none are connected to other tours,

except possibly via the depot. Two points i and j are considered to be connected for vehicle k ∈ K

if xijk > 0 (Achuthan et al., 1996). If such a tour Slk is not connected to the depot, it will violate

a Constraint of type 1e (2d for the CVRP) since it must adhere to Constraints 1d and 1c (2c for

the CVRP), for all vertices in the tour so that a Constraint of type 1e (2d) can be added for Slk.

Before the (remaining) search procedures are introduced, it is worth noting that Constraints 1e

(2d) are equivalent to Constraints 3 (4), as was outlined in Section 4. Nonetheless, searching for

violations of both types of constraints can reduce the number of branches substantially (Achuthan

et al., 1996). This is similar to the reduction of the number of branches that can be achieved

by adding suitable cutting planes, which is the core of any branch-and-cut algorithm. Because

the HVRP extends the CVRP, this is assumed to be valid for the HVRP too. Finally, it can be

noted that any integer solution for which no violation for Constraints 1e (2d) are found, is feasible.

Namely, each tour is then connected to the depot and vehicle capacity is never exceeded. All other

constraints and cutting planes are added solely to gain computational efficiency.

For the reason described above, it is only necessary to verify whether a direct violation of

Constraints 1e (2d) exists for integer valued solutions. If this is the case, the constraint can be

added and it is verified whether the solution is now infeasible, or not. If such a violation does not

exist, the solution is feasible and hence optimal for the subproblem. Therefore, the following, more

complicated search procedures are only executed if the current solution is fractional.

For tours Slk that are connected to the depot, the primary focus is on direct violations of

Constraints 1e, 3 and Cutting Planes 11 (2d, 4 and 12 for the CVRP) for Slk and proper subsets

thereof. The following steps are taken to search for such violations for the HVRP, with the CVRP

equivalent in parentheses. This is analogous to the procedure defined by Achuthan et al. (2003):
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1. A direct violation of Constraints 1e (2d) for Slk;

2. A violation of Constraints 1e (2d) for a proper subset of Slk using search 1 as defined below;

3. A direct violation of Constraints 3 (4) or Cutting Planes 11 (12) for Slk;

4. A violation of Cutting Planes 5 (6) or 11 (12) for a proper subset of Slk using search 2 as

defined below.

If the total demand of all customers in the tour exceeds the capacity of vehicle k, (i.e.,
∑
j∈Slk

qj > Qk),

the order above is adhered to. Otherwise, the order 3, 4, 1, 2 is chosen, because Constraints 1e and

2d relate to the number of vehicles needed to satisfy the demand in Slk and Constraints 3 and 4 to

the number of vehicles needed to satisfy the demand of customers that are not in Slk. Therefore,

these orderings generally increase the algorithm’s computational performance (Achuthan et al.,

2003). Furthermore, violated constraints evidently are only added if Slk satisfies the requirements

for the validity thereof. Finally, at most one constraint or cutting plane is added for each tour Slk.

Direct violations of any constraint by any tour Slk are easily found by computing the left hand

side and right hand side of the constraint. However, it is computationally inefficient to do so for all

R ⊂ Slk since many such subsets will not yield violated constraints. Therefore, search heuristics

are implemented, which offer a more adequate trade-off between yielding a reduction in the size of

the search tree on the one hand and computation time on the other.

In the remainder of this subsection, six such search procedures are introduced by explaining the

intuition behind them. Appendix B offers detailed pseudocode for each of these search procedures.

Search 1 mentioned above considers slack functions ZHV RP1 (R) for Slk\R ⊆ Slk, as follows:

ZHV RP1 (R) = |Slk\R| − `(Slk\R)−
∑

i,j∈Slk\R

xijk (17)

For the CVRP this reduces to the slack function Z1(R), as provided by Achuthan et al. (2003):

Z1(R) = |Slk\R| − `(Slk\R)−
∑

i,j∈Slk\R

xij (18)

The search procedure incrementally adds elements from Slk to R to construct a subset R ⊂ Slk.

Then, the slack on the Constraint of type 1e (or 2d) is computed for Slk\R. If this slack does not

decrease after an iteration, the search is terminated since it is unlikely to find a violated constraint

(Achuthan et al., 1996) and hence, the computational cost of continuing the search outweighs the
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expected advantage of reducing the size of the search tree. If negative slack is found after an

iteration, the violated constraint is added to the model and the search is terminated.

Search 2 relies on a procedure that is only marginally different from Search 1. In particular,

search 2 relies on ZHV RP2 (R) and ZHV RP3 (R), which are the slack functions for Cutting Planes (5)

and (11) as defined below:

ZHV RP2 (R) = t|Slk|+|R|−`k(Slk\R)−
∑
h∈K

∑
i,j∈R

xij +
∑
j∈R

x0j +
∑

i,j∈Slk

xij +
∑

E[R,Slk]

xij

+
∑

h6=k∈K

∑
i,j∈P

xijh

(19)

ZHV RP3 (R) =


|R|+ 1−

∑
h≤k∈K

∑
i,j∈R

xijh −
∑

h≤k∈K

∑
j∈R

x0jh if
∑
j∈R

qj ≤ Qk;

∞ otherwise.

(20)

These slack functions reduce to the slack functions Z2(R) and Z3(R) as they were introduced by

Achuthan et al. (2003). These slack functions provide the slack on Cutting Planes (6) and (12),

respectively.

Z2(R) = |Slk|+ |R| − `(Slk\R)−
∑
j∈R

x0j −
∑
i,j∈R

xij −
∑

i,j∈Slk

xij −
∑

E[R,Slk]

xij (21)

Z3(R) =


|R|+ 1−

∑
i,j∈R

xij −
∑
j∈R

x0j if
∑
j∈R

qj ≤ Q;

∞ otherwise.

(22)

Apart from the slack functions, the procedure of search 2 differs from that of search 1, because the

search continues to expand R as long as this does not lead to an increase of the slack function.

Afterwards, a violated constraint is added if the slack found is negative. Here, a Constraint of

type 1e (2d) is added for Slk\R when negative slack is found on Cutting Planes 5 (6), since both

equations are equivalent but the former contains fewer terms than the latter (Achuthan et al.,

2003). When negative slack is found on Cutting Planes 11 (12), a Cutting Plane of this type is

added to the model instead when it has smaller slack than 5 (6).

After steps 1-4 are executed, it is likely that there exist tours for which no violations have

been found thus far. Assume, without loss of generality, that this set is S ′k = {S1k . . . Spkk}, with

pk < mk. Moreover, define the following (non-negative2) weight for each Sik ∈ S ′k:

αk(Sik) =
∑
h∈K

∑
i,j∈Sik

xijh +
∑
j∈Sik

x0jk − |Sik| − `(Sik) (23)

2A proof thereof is provided in Appendix C
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Again, these weights extend the definition of the weights α(Si) assigned to Si ∈ S ′ for the CVRP

(Achuthan et al., 2003) which are provided in equation (24):

α(Si) =
∑
i,j∈Si

xij +
∑
j∈Si

x0j − |Si| − `(Si) (24)

It is now assumed, without loss of generality, that S ′k is sorted such that αk(Sik) ≤ αk(Sjk),

whenever i > j. Over this set, a third search procedure is executed. This search procedure is based

on ZHV RP3 (R) (Z3(R)) as defined in equation 20 (22) and ZHV RP4 (R) (Z4(R)) as defined below,

which represents the slack on Constraints 3:

ZHV RP4 (R) = |R| − `k(R)−
∑
h∈K

∑
i,j∈R

xijh +
∑
j∈R

x0j −mh

+
∑

h6=k∈K

∑
i,j∈R

xijh (25)

This simplifies to the following for the CVRP, representing the slack on Constraints (4) which is

also provided by Achuthan et al. (2003):

Z4(R) = |R|+m− `(R)−
∑
i,j∈R

xij −
∑
j∈R

x0j (26)

This search procedure adds entire sets Sik to an initially empty set R. Sets with the largest weight

αk(Sik) are likely to have low values ZHV RP3 (Sik) and ZHV RP4 (R) since terms that appear with a

positive sign in equation (23) appear with negative signs in equations (20) and (25) and vice-versa,

which holds for the CVRP analogously. Therefore, this ordering increases the chance to merge sets

that jointly provide a violated constraint or cutting plane. As for search 2, this search procedure

continues to add sets Sik to R while this does not cause the slack function to increase (Achuthan et

al., 1996). If negative slack is found, the constraint or cutting plane that yields the smallest slack

is added to the model.

After Search 1, 2 and 3 have been executed for all Sik ∈ Sk, one can distinguish sets C1k . . . Cpk

which violated Constraints 1e (2d) and sets D1k . . . Dqk which violated Constraints 3 or Cutting

Planes 11 (4 and 12, respectively). For these sets, define W = ∪pi=1Cik and W ′ = ∪qi=1Dik. If

p ≥ 2, q ≤ 1 and |W| ≤ |W ′| or if p, q ≥ 2 and |W| ≤ |W ′|, an additional Constraint of type 1e

(2d) is added to the model. Likewise, if p ≤ 1, q ≥ 2 and |W| > |W ′| or if p, q ≥ 2 and |W| > |W ′|,

an additional Constraint of type 3 (4) or an additional Cutting Plane of type 11 (12) is added

to the model. For the HVRP, a Constraint of type 3 is added if ZHV RP4 (W ′) < ZHV RP3 (W ′) as

defined in equations (20) and (25). A Cutting Plane of type 11 is added otherwise. Likewise, for

the CVRP, a Constraint of type 4 is added if Z4(W ′) < Z3(W ′) and a Cutting Plane of type 12 is

added otherwise. Here, all constraints are added over W or W ′ in its entirety.
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Achuthan et al. (2003) introduce these additional constraints, that need not be violated, for

the CVRP because Laporte et al. (1985) have shown that this substantially reduces the size of the

search tree. For the HVRP, analogous additional constraints are added to the model. Namely, the

HVRP extends the CVRP and hence, it is reasonably likely that the search tree reduction can also

be achieved for the HVRP. Note that these constraints can be purged later in the algorithm.

After this point, the search for violated constraints is only continued if no violated constraints

were identified thus far, for any of the vehicle types. Otherwise, it is computationally more efficient

to resolve the model and re-apply searches 1, 2 and 3 before (potentially) continuing towards

searches 4, 5 and 6, which aim to identify further violations of Constraints 1e and 3 and Cutting

Planes 5, 7 and 9 (or, for the CVRP, 2d and 4 and Cutting Planes 6, 8 and 10). Violations for

Cutting Planes 15 (13) are not incorporated in any search procedure, since Achuthan et al. (2003)

noted that this constraint is hardly ever violated for the CVRP. Again, this is assumed to be valid

for the HVRP analogously. This is likely to be partially caused by the tight upper bound imposed

on the number of vehicles used (mk) that is introduced in equation 16 (14), which provides a further

reason not to search for violations of Cutting Planes 15 (13).

If we continue towards searches 4, 5 and 6 (and hence, no violated constraints were found yet),

searches 4 and 5 are executed for all vehicle types k ∈ K first and search 6 is only executed if

searches 4 and 5 do not yield any violated constratins for any of the vehicle types. Now, define

xαβk = max [xijk|i < j ∈ L]. If this maximum is attained for multiple pairs of customers, the pair

with the largest aggregate demand is chosen. Search 4 is executed if xαβk = 1 and Search 5 is

executed otherwise. If either of these searches fails to introduce a violated constraint, the other

search procedure is executed, in analogy to search procedures 4 and 5 for the CVRP as defined by

Achuthan et al. (2003).

Search 4 relies on another definition of the slack3 on Constraints 1e for R ⊂ L:

Z ′HV RP1 (R) =
∑
h∈K

∑
j∈R

x0jh +
∑
E[R,R]

xijh

+ 2
∑

h6=k∈K

∑
i,j∈R

xijh − 2`k(R) (27)

For the CVRP, this slack function simplifies to the following (Achuthan et al., 2003):

Z ′1(R) =
∑
j∈R

x0j +
∑
E[R,R]

xij − 2`(R) (28)

This search procedure relies on the argument that a subtour elimination constraint over two sets

that are directly connected, meaning that the edge flow between them sums to (at least) 1, is as

3The validity thereof is shown in Appendix C
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valid as two seperate subtour elimination constraints (Crowder & Padberg, 1980). Following this

argument, the search defines adequate sets D′l over which a potential violation of such subtour

elimination constraints must be verified. However, to preserve the validity of this argument, it is

required that both sets are directly connected by vehicles of the same type.

If search 4 fails to produce any violated constraint for the CVRP,
∑
i,j∈D′l

xij = |D′l| − 1 for all D′l

(Achuthan et al., 2003). The HVRP equivalent reads:
∑
i,j∈D′l

xijk = |D′l| − 1, which is also valid. If

this were not the case, either
∑
i,j∈D′l

xijk < |D′l|−1 or
∑
i,j∈D′l

xijk > |Di|−1. In the first case, a merge

occurred that was not allowed since the internal edge flow must be at least equal to the number

of merges that occurred, which is |D′l| − 1. In the second case, there must be a subtour so that a

Constraint of type 1e was violated. For that reason, D′ = {D′l} as the output of search 4 can be

taken as input to search 5. Otherwise, search 5 is initiated with Di = {i}, ∀i ∈ L.

The fifth search procedure merges sets with positive edge flows for vehicle type k until its

capacity is exceeded. Namely, if there is a positive edge flow between customers, they must be

served using the same vehicle and hence, the aggregate demand cannot exceed the vehicle capacity.

At this point, it is again evaluated whether constraints have been added to the model. If so,

the linear program is resolved. Otherwise, a final search is performed. This search aims to find

violations for Cutting Planes 11 (12) or Constraints 3 (4). To this extent, different slack functions

for Cutting Planes 11 (12) and Constraints 3 (4) are introduced4:

Z ′HV RP3 (R) =


∑
h∈K

∑
E(R,R)

xijh −
∑

h≤k∈K

∑
j∈R

x0jh +
∑

h>k∈K

2
∑
i,j∈R

xijh +
∑
j∈R

x0jh

+ 2 if
∑
i∈R

qi ≤ Qk

∞ otherwise

(29)

Z ′HV RP4 (R) =
∑
h∈K

2mh −
∑
j∈R

x0jh +
∑

E(R,R)

xijh

− 2`k(R) + 2
∑

h6=k∈K

∑
i,j∈R

xijh (30)

For the CVRP, these alternative slack functions reduce to the versions thereof as provided by

Achuthan et al. (2003):

Z ′3(R) =


∑

E(R,R)

xij −
∑
j∈R

x0j + 2 if
∑
i∈R

qi ≤ Q

∞ otherwise

(31)

4A proof of the validity of these slack functions is provided in Appendix C.
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Z ′4(R) = 2m− 2`(R) +
∑

E(R,R)

xij −
∑
j∈R

x0j (32)

Now, define Z(D) = min[Z ′HV RP3 (D), Z ′HV RP4 (D)] (or Z(D) = min[Z ′3(D), Z ′4(D)] for the CVRP).

To initiate the search procedure, define Di = {i}, ∀i ∈ L\P , where P is the set of single-customer

tours for vehicle k. Finally, let T = ∪i∈L\PDi ∪ P .

The procedure for this search is similar to that of search 4. Here, a violated Constraint of type

11 (12) is added when Z(Di) = Z ′3(Di) and a violated Constraint of type 3 (4) is added otherwise.

Hence, the constraint with the smallest slack is added.

Applying Gomory cuts

Ultimately, the goal of a branch-and-cut algorithm is to yield an integer valued optimal solution.

Generally, this cannot be achieved solely by solving a linear program (LP) as the solutions thereof

are often fractional. Gomory cuts intend to cut off some fractional solutions that include the current

optimal LP-solution without eliminating any feasible integral solution. The rationale is described

below and a mathematical argumentation is outlined in Appendix D.

For any solution to a linear program, satisfying all constraints thereof in standard form (i.e.,

including slack variables, yielding constraints Ax = b), a Constraint of type (33) can be added to

the model to cut-off some non-integral solutions while preserving all feasible integral solutions:

∑
j

(A∗ij −
⌊
A∗ij
⌋
)xj ≥ (b∗i − bb∗i c) (33)

If x∗ is an integer-valued solution to the linear program, namely, the fractional aspects of the right

hand side of the equation b∗i must be caused by the fractional part of the coefficients as x∗j is not

fractional for any j. This implies the validity of Constraints (33).

Generally, multiple Gomory cuts can be added to a model. However, Laporte, Nobert and

Desrochers (1985) argue that one should not add more than five Gomory cuts for CVRPs. Fur-

thermore, they argue that it is computationally inefficient to add Gomory cuts in other nodes

than the root node. Such cuts, namely, are only valid below the node in which they are added.

Hence, adding Gomory cuts in other nodes in the search tree leads to an iterative procedure, of

which the benefits generally do not outweigh the disadvantages (Laporte et al., 1985). Therefore,

maximally five Gomory cuts are added in the root node of the search tree. This is similar to the

implementation by Achuthan et al. (2003). For the HVRP, this principle is adhered to analogously.
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Identifying branching variables

Generally, Achuthan et al. (2003) use the Land-Powell rule to determine the variable to branch

upon. According to this rule, one selects the xijk variable with the potential to produce the largest

increase in the LP-objective function value and hence, one selects the variable that is most likely to

generate the largest optimality gap decrease. Decision variables that include the depot are excluded

from this search as this strategy is found to be likely to force more variables to zero, via subtour

prevention constraints (Achuthan et al., 1996). When a branching variable is identified, Achuthan

et al. (2003) opt to branch in the direction opposite to the direction that leads to the maximum

objective function increase since this leads to an increased likelihood of finding a good feasible

solution and hence, to a good upper bound. Therefore, branches are cut off more easily in later

stages of the algorithm.

The aforementioned potential change in objective value is found by resolving the model with

an additional (temporary) constraint on the decision variable. Such a solve preferably occurs using

the dual simplex method since a dual feasible solution already exists. If the potential change is at

least Z∗ − Z, no branch is needed since a branch going in this direction can never yield a better

solution than the solution that is currently available. Therefore, if such a situation occurs, the

variable is fixed in the opposite direction and a branch is prevented.

Furthermore, if the potential increase is smaller than Z∗ − Z for all variables and Z ≥ 0.95Z∗,

all non-basic variables that are not fixed are considered. If the cost of fixing such a variable at a

different value than its current value equals at least Z∗ − Z, it is never optimal to fix the variable

at a different value and hence, we fix it at its current value.

It must be noted that Laporte et al. (1985) found this to be ineffective and they opted to branch

at all times as to reduce the time necessary to search for situations in which branching could be

prevented. Achuthan et al. (1996, 2003) chose differently and their choice is followed in this thesis.

Apart from these branches, the variables yik need to be integer valued, for the xijk can be

integer valued even when yik are not. The branching procedure for these variables is similar to

the branching procedure for the xijk variables. However, the search for potential branches on yik

variables is only executed when all xijk are integer valued and when no variable xijk can be fixed

without creating a branch. This order is chosen, because fixing a variable xijk is more likely to

introduce a large number of subtour prevention constraints and to fix variables yik than fixing a

variable yik. Therefore, this order is more likely to reduce the computation time of the algorithm.
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Backing up in the search tree

As was noted by Achuthan et al. (1996), all vehicle capacity constraints that were added as a

consequence of an earlier violation can be kept in the model. Namely, these constraints are valid

throughout the search tree. Obviously, if these constraints become redundant at a later stage, they

can be removed from the model when ineffective constraints are purged.

5.2 Sweep heuristic

Since a potential tax causes larger vehicles to be expensive to drive in or near the city center and

relatively cheap further away from the city center, it seems appropriate to first define the vehicle

to serve each customer and the routes afterwards. To this extent, compute the weight of driving

with a vehicle of each type near each customer i ∈ L. Denote this weight by cik. Evidently, such

weights exist for each arbitrary pair of a customer and a vehicle. Furthermore, each vehicle has

a capacity, Qk. Now, one can define the relative weight of transporting one unit of cargo with a

vehicle of type k near customer i as
cik
Qk

. Finally, one selects the vehicle with the lowest relative

weight to serve each customer with. However, when another vehicle has a relative weight to serve a

particular customer that is at most 100∗γ percent5 larger than the minimum weight, both scenarios

are considered separately. This leads to (at least) |K| CVRP problems that are solved to optimality

using the branch-and-cut algorithm. Pseudocode for this heuristic is included in Appendix B.

In the presence of taxation, this procedure likely causes small vehicles to drive towards the

city center, have a route there and drive back to the depot. Slightly larger vehicles will drive

routes surrounding the center while the largest vehicles will have an encircling route. Each of these

sub-CVRPs is relatively small in size and can be solved to optimality rapidly.

Finally, it must be noted that it might be more efficient to merge routes and drive them with

a larger vehicle than originally scheduled or to split routes and serve them with smaller vehicles.

Therefore, there will be a quick search to see whether routes can be merged to gain a total cost

decrease. This search will consider merging the start of one route to the end of another, splitting

existing routes, allowing one customer to switch routes and the switch of the order of customers

within a route6. In each iteration, the cheapest vehicle is selected to drive each route. The search

terminates as soon as a local optimum is identified, meaning that no cheaper HVRP solution can

be found in the neighbourhood of the current solution.

5In this thesis, a value γ = 0.1 is chosen arbitrarily.
6Pseudocode of this local search is included in Appendix B.
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6 Simulated problem instances

Achuthan et al. (2003) test their algorithm on 1620 simulated problems and 24 literature problems.

In this thesis, the main focus will be on simulated problems of which the details are outlined below.

Capacitated vehicle routing problem instances

For the capacitated vehicle routing problem, Achuthan et al. (1996, 2003) generate problems with

15, 20, . . . , 100 customers. Each of these customers is defined by two coordinates x and y, such that

x, y are drawn uniformly from {0, . . . , 1000} and the distance between two customers is given by

the Euclidean distance between them. Furthermore, each customer has a demand of q units, where

q is drawn uniformly from {1, . . . , 100}. Finally, Achuthan et al. (1996, 2003) use the following

vehicle capacity, Q (Laporte et al., 1985), for α ∈ {0; 0.33; 0.67; 1}:

Q = (1− α) max
i∈L

qi + α
∑
i∈L

qi

In this thesis, the depot will be located at (500, 500) for the ‘standard’ CVRP to generate results

that can be used to compare the results presented in this thesis with the results found by Achuthan

et al. (2003). The results found by Achuthan et al. (2003) will also be compared to those of a

CVRP with a depot that is non-centered. The details thereof are explained below.

Heterogeneous fleet vehicle routing problem instances

For the HVRP, the customers are simulated as described above. However, the depot is located

with coordinates x0, y0 drawn uniformly from {0, . . . , 150}, as a depot at or near (500, 500) cannot

help reducing traffic near the virtual city center for this location is likely to be very close to that

city center. Furthermore, this definition allows for customers to be further removed from the city

center than the depot, which can be seen to represent customers in an agricultural area.

For the HVRP, the problems are considered with three vehicle types: {0, 1, 2}. The capacity of

a vehicle of type k is taken as Qk =
Q

k + 1
. Initially, these problems will be solved using Euclidean

distances, as a standard CVRP. Then, weights for all edges are computed as follows:

Let cvk be the marginal cost of driving vehicle k ∈ K at point v = (x, y), µ the distance between

the depot and the centre of gravity and d(g, v) the distance between v and the center of gravity c,

and define the following relationship7:

7Appendix E provides a graphical indication of this relationship.
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cvk = max

(
1,

[
(
Qk
Q2

)2 − βk
d(g, v)

µ

])
(34)

In this equation βk is the slope, which is chosen such that the medium vehicle has relative costs

cv1 = 1 when
d(g, v)

µ
≥ 0.2 and the largest vehicle has relative costs cv0 = 1 when

d(g, v)

µ
≥ 0.5.

Finally β2 = 0 since no additional tax is levied on driving with the smallest vehicle. Appendix E

provides a graphical indication of this relationship

To assign these weights to edges, three reference points of each edge are chosen: One at both

end-points and one at the bottleneck, which is the point closest to the center of gravity representing

the city center, where the externalities of urban traffic are most likely to be large. The weight

assigned to each edge is the average of those three weights. This definition may lead to violations

of the required triangle inequality for any vehicle except the smallest. If such a violation occurs,

so that cipk + cpjk < cijk for some i, j, p ∈ V and some k ∈ K, we set cijk = cipk + cpjk, since it is

possible to drive from i to j via p. This procedure is repeated until all such violations are resolved.

Finally, the problems are solved as HVRP and as CVRP with the additional weights to compute

the direct differences in the costs that can be associated to the ‘tax’ in case the company opts to

keep using the larger vehicle.

7 Results

The algorithms described in this thesis were implemented on a dual core HP laptop with an Intel

Core i7-6500U processor operating at 3.0 GHz. It was implemented in Java, using CPLEX 12.6.3.0

only to solve linear programs. Furthermore, the Jama package that has been released to the public

domain has been used for the computation of matrix inverses to generate Gomory cuts and a binary

linked tree implementation by Goodrich, Tamassia and Goldwasser has been used as the framework

for the search tree under the GNU General Public License. Throughout, it seemed reasonable to

run two sets of problems simultaneously without structurally influencing the results.

7.1 The capacitated vehicle routing problem

First, Table 1 introduces the results of the ‘standard’ CVRP with a depot at (500, 500) and below,

those results are compared to the results found by Achuthan et al. (2003). Here, the algorithm was

terminated after 3600 seconds of computation time. This convention was taken from Achuthan et

al. (2003). If more problems were solved now than in 2003, the table shows the result on the fastest
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x runs in parentheses, corresponding to the number of problems solved by Achuthan et al. (2003).

Furthermore, details regarding the search procedures are shown in Table 2 for the CVRP instances

with a centered depot. Those settings are likely similar to the settings Achuthan et al. (2003)

used to generate their results. For smaller instances, the current implementation of the algorithm

outperforms the original implementation, while the original algorithm was generally faster for larger

problems. Obviously, a substantial part of this first observation must be attributed to an increase

in computer speed since 2003. This, in particular, makes the second observation more striking.

First, it is noted that the difference between the linear programming relaxation in the root node

and the final objective of the CVRP is similar in both implementations of the algorithm. Second,

the number of Gomory cuts added to the model is slightly larger in the current implementation,

which is probably caused by the fact that a minimum improvement in the linear programming

objective was not implemented. On the contrary, the number of child nodes found in the current

implementation of the algorithm was generally smaller than that of the original implementation.

This is partially caused by a larger number of saved branches, but it could also point towards a

more efficient cutting procedure. Here, one should mostly consider smaller problem instances as

the results of the larger instances are biased towards ‘easier’ problems.

Nevertheless, the number of constraints and cutting planes added in the current implementation

is well below that of Achuthan et al. (2003). The reason thereof is probably twofold. First, the

implementation of Gomory cuts for this thesis required explicit slack variables to be included in the

model, for all constraints and cutting planes added before the inclusion of the Gomory cuts. Such

slack variables can be incorporated in the Gomory cuts and for simplicity reasons, these variables

were not rewritten into their original constraints. Therefore, all constraints and slack variables that

were added before the Gomory cuts were defined needed to be kept in the CPLEX model. This

leads to a situation in which certain constraints are kept throughout, rather than being constantly

removed and re-added to the model, hence reducing double counting of such constraints. Note that

these constraints were valid in the root node and that they are thus probably valid in large part

of the search tree. Therefore, if they would be removed from the model at some stage, they are

probably added back fairly quickly. Second, it was mentioned in Section 5 that constraints were

added when slack was negative. However, CPLEX does not offer exact results, but it provides

results with a rounding margin of 1.0 ∗ 10−5. In this thesis, constraints and cutting planes were

added whenever slack was smaller than −1.0 ∗ 10−5. Not taking this factor into account leads

to the inclusion of more (acutally redundant) constraints and a higher success rate on the search
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procedures, while also leading to multiple iterations in which the LP-objective does not increase

and hence, to a larger number of branches. Namely, after 6 iterations in which the LP-objective

does not increase sufficiently, one branches rather than continuing the search. In this thesis, this

situation was very uncommon, but Achuthan et al. (2003) did not make any such claim. A different

choice with respect to handling CPLEX rounding can also have an influence on both the efficiency

of the search procedures and the generated number of child nodes. Finally, the constraints added

after searches 1, 2 and 3 (as described on pages 16 and 17) could be purged. In contrast to the

results described above, this would hinder the intended reduction in the search tree size.

Since more constraints are kept in the model throughout, the overall computation time may

increase. First, the linear program that is solved repeatedly will generally have more constraints

and hence, take slightly longer to solve. Second, the search procedures become less efficient and

hence, are run with less purpose. This likely contributes to the decreased efficiency of the algorithm

for larger problem instances. Because Achuthan et al. (1996, 2003) offer detail pseudocode for each

of the search procedures, these procedures are probably implemented similarly for this thesis and by

the original authors. Since the success rate is fairly low, it is thus relatively likely that the search

procedures are run more often than necessary. Finally, the problems are simulated and hence,

there may be some stochastic influence on the results. However, the aforementioned pattern in the

differences seems too structural to search for an explanation of those differences in this direction.

For 20 problems with a non-centered depot, the results are presented in Table 3. Here, not all

original settings for n and α have been considered, due to the limited time available to write this

thesis. On average, the objective value has increased, which follows from the depot being further

away from the ‘average’ customer. This effect diminishes when vehicle capacity increases. Then,

less vehicles are needed to serve all customers, which leads to a larger influence of the routes driven

between customers and a smaller influence of driving from and to the depot. Notably, the number

of child nodes and branches saved have slightly increased as compared to the ‘standard’ CVRP.

Probably, these problems are more difficult as most customers are on ‘the same side of the depot’.

For a centered depot, namely, it is intuitively plausible that one vehicle serves customers on one

side of the depot, while another serves customers on the other side. When the depot is located

outside of the center, this simplification is no longer present and hence, the number of branches

needed is slightly larger, along with the number of branches saved and the computation time. Table

4 shows the specific details on the search procedures, which do not structurally deviate from the

results in Table 2, indicating that the search procedures are equally efficient for both scenarios.
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Table 1: CVRP computational results with a centered depot

CPU time Average number

Number of Average Root Elimination Child Gomory’s Problems Branches

customers α objective (%) Average Minimum Maximum constraints nodes cuts solved saved

15 0.00 8889.9 98.8 0.2 0.0 1.3 3.6 11.5 1.9 30 1.9

0.33 4281.1 99.7 0.1 0.0 3.1 1.1 3.1 0.3 30 0.6

0.67 3803.4 99.8 0.0 0.0 0.1 0.1 1.1 0.9 30 0.0

1.00 3451.8 99.9 0.0 0.0 0.1 0.0 0.7 0.5 30 0.0

20 0.00 10706.1 97.6 5.4 0.1 38.0 12.0 49.7 3.3 30 20.1

0.33 4761.3 99.3 0.3 0.0 3.0 1.4 3.9 1.9 30 0.3

0.67 4135.1 99.4 0.1 0.0 0.4 0.7 4.2 1.5 30 0.4

1.00 4011.5 99.6 0.3 0.0 9.1 0.0 2.1 0.7 30 0.2

25 0.00 12688.1 97.0 115.4 0.3 1755.3 23.6 505.7 4.0 30 249.5

(12817.6) (97.6) (24.8) (0.3) (128.2) (21.5) (133.8) (3.8) (24) (70.0)

0.33 5090.2 98.6 11.7 0.0 142.3 6.5 45.8 3.1 30 19.4

0.67 4608.8 99.6 0.1 0.0 0.7 1.3 3.9 1.9 30 0.2

1.00 4303.5 99.5 0.7 0.0 12.6 0.0 5.1 0.7 30 1.7

30 0.00 15409.6 95.7 783.8 0.7 3490.9 45.9 1791.9 4.3 28 936.5

(16222.6) (97.5) (67.5) (0.7) (243.1) (38.9) (188.2) (4.2) (10) (97.7)

0.33 5454.8 98.3 37.8 0.0 433.6 9.0 48.4 3.5 30 28.6

0.67 4982.0 99.7 0.1 0.0 0.3 0.2 3.1 0.8 30 0.2

1.00 4634.4 99.5 0.6 0.0 8.9 0.0 5.5 1.0 30 1.5

35 0.00 19192.5 95.2 1327.0 82.3 3411.0 63.3 2156.3 4.3 7 948.9

(18985.6) (96.7) (321.1) (82.3) (559.9) (33.5) (438.0) (2.5) (2) (290.5)

0.33 5822.5 97.7 196.5 0.0 732.7 13.0 182.5 3.3 30 70.9

0.67 5184.1 99.6 5.3 0.0 73.1 1.2 10.7 2.5 30 1.3

1.00 4937.3 99.5 1.3 0.0 17.6 0.0 6.9 1.2 30 0.8

40 0.33 6063.2 97.7 440.7 0.0 2018.9 12.8 205.0 4.0 30 80.3

(6064.1) (98.0) (228.6) (0.0) (855.7) (10.4) (132.2) (3.8) (25) (38.2)

0.67 5456.6 99.2 33.0 0.0 311.9 2.2 27.7 3.0 30 8.4

1.00 5240.8 99.3 8.0 0.0 98.4 0.0 9.4 1.8 30 3.6

45 0.33 6257.1 98.1 712.4 0.0 2493.5 12.7 154.5 4.2 26 80.3

(6224.7) (98.4) (225.7) (0.0) (1365.4) (9.8) (67.6) (3.9) (19) (33.9)

0.67 5692.4 99.1 26.2 0.0 430.3 2.4 21.9 3.3 30 4.1

1.00 5512.1 99.3 19.3 0.0 169.6 0.1 13.8 1.7 30 4.5

50 0.33 6514.4 98.4 985.3 0.2 2672.7 12.4 177.3 4.4 18 79.4

(6528.9) (98.5) (567.3) (0.2) (2174.3) (8.7) (82.3) (4.3) (14) (43.5)

0.67 5955.0 99.2 72.2 0.0 1076.6 2.3 27.1 3.2 30 10.5

1.00 5707.2 99.3 14.1 0.0 262.9 0.0 15.9 2.0 30 3.8

55 0.33 6632.9 98.6 594.2 0.7 3557.3 10.9 109.6 4.3 14 29.3

(6711.8) (99.0) (17.2) (0.7) (106.3) (6.9) (25.5) (4.4) (8) (5.9)

0.67 6252.3 99.2 189.3 0.0 1366.9 2.0 33.6 2.8 30 14.3

1.00 6030.3 99.4 94.1 0.0 1434.8 0.0 14.9 3.0 30 3.8

60 0.33 6835.2 97.9 1084.5 53.6 2296.9 19.5 180.5 5.0 4 39.5

0.67 6307.0 99.2 368.7 0.1 3471.9 2.6 49.2 3.7 26 12.5

1.00 6270.2 99.2 285.7 0.0 2227.9 0.1 22.6 3.3 29 12.3

65 0.67 6672.0 99.1 667.3 0.5 3125.8 3.0 53.5 3.8 24 16.9

1.00 6386.4 99.4 278.4 0.2 3400.1 0.1 19.9 3.0 28 8.1

70 0.67 6874.0 99.4 455.3 0.1 3436.3 1.2 27.6 4.1 22 9.6

1.00 6684.9 99.4 384.2 0.1 3267.1 0.0 20.5 2.4 25 7.4

75 0.67 7071.4 99.4 534.0 0.7 3510.9 1.9 37.7 4.0 20 7.0

1.00 6946.0 99.4 463.8 0.4 3384.8 0.1 17.5 3.5 26 6.0

80 0.67 7245.4 99.5 122.7 2.4 2017.8 2.3 24.3 3.8 20 5.7

1.00 7049.4 99.6 241.0 1.1 3154.8 0.0 19.3 3.8 25 3.1

85 0.67 7346.1 99.4 402.2 3.7 3526.3 1.5 29.6 4.4 16 8.1

1.00 7102.9 99.4 220.7 6.0 3010.7 0.0 26.2 4.5 19 7.7

90 0.67 7583.2 99.3 31.3 1.8 106.3 1.8 21.5 4.6 12 8.3

1.00 7417.0 99.6 16.5 3.6 47.6 0.2 13.3 4.7 16 2.6

100 0.67 7921.0 99.5 36.6 7.6 78.7 1.4 24.9 4.7 16 2.3

1.00 7803.3 99.5 43.9 9.3 157.1 0.0 24.0 4.0 21 6.9
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Table 2: CVRP search procedure results with a centered depot

Number of Problems Average number of constraints added % Succes of searches

customers α solved 1.4 and 1.7 2.3 and 2.8 2.9 1-3 4 5 6

15 0.00 30 52.5 4.0 1.4 23.6 0.2 21.9 0.3

0.33 30 23.5 4.0 0.1 13.5 1.0 18.8 0.2

0.67 30 8.2 0.1 0.0 28.5 5.7 8.0 0.0

1.00 30 5.5 0.0 0.0 3.4 13.0 0.0 0.0

20 0.00 30 376.1 68.2 7.7 13.7 0.2 29.7 0.2

0.33 30 27.8 3.0 0.0 11.3 3.0 15.2 2.6

0.67 30 12.6 1.0 0.0 15.9 3.9 22.1 4.3

1.00 30 8.5 0.0 0.0 0.4 1.2 0.0 0.0

25 0.00 30 (24) 5141.4 (1160.9) 1413.7 (194.4) 96.6 (28.3) 11.7 (14.6) 0.5 (0.3) 31.5 (24) 0.0 (0.0)

0.33 30 131.4 55.8 0.1 2.7 1.5 10.1 0.6

0.67 30 14.4 2.2 0.0 12.2 14.1 37.0 2.9

1.00 30 11.0 0.0 0.0 0.3 0.9 0.0 0.0

30 0.00 28 (10) 20238.4 (1885.9) 5293.3 (810.3) 556.8 (45.2) 10.9 (11.4) 0.5 (0.4) 26.7 (47) 0.0 (0.0)

0.33 30 129.7 74.5 0.1 1.4 1.2 7.8 0.4

0.67 30 15.6 0.2 0.0 15.0 12.8 9.5 3.5

1.00 30 14.7 0.0 0.0 0.5 4.0 0.0 0.0

35 0.00 7 (2) 33278.4 (4549.0) 7765.7 (1458.5) 730.1 (137.5) 12.8 (10.1) 0.2 (0.4) 33.6 (29) 0.0 (0.0)

0.33 30 377.7 204.1 4.7 1.4 1.0 6.1 0.4

0.67 30 23.0 5.7 0.0 0.9 1.7 4.4 0.5

1.00 30 16.7 0.0 0.0 0.2 2.7 0.5 0.0

40 0.33 30 (25) 438.9 (234.3) 271.6 (124.0) 0.2 (0.2) 1.0 (0.7) 1.1 (1.1) 5.3 (4) 0.3 (0.3)

0.67 30 41.5 12.4 0.0 0.3 1.1 2.3 0.3

1.00 30 20.1 0.0 0.0 0.1 1.8 0.0 0.0

45 0.33 26 (19) 327.7 (176.7) 207.0 (90.9) 0.1 (0.1) 0.6 (0.7) 0.9 (1.1) 4.3 (5) 0.2 (0.3)

0.67 30 36.1 6.4 0.0 0.5 1.6 3.0 0.2

1.00 30 23.0 0.1 0.0 0.1 1.5 0.1 0.0

50 0.33 18 (14) 604.6 (208.4) 254.1 (109.4) 0.8 (0.4) 0.7 (0.7) 1.1 (0.9) 10.7 (4) 0.3 (0.2)

0.67 30 41.5 8.6 0.0 0.3 0.8 1.5 0.2

1.00 30 25.6 0.0 0.0 0.1 2.7 0.0 0.0

55 0.33 14 (8) 181.2 (71.9) 102.2 (16.6) 0.6 (0.0) 0.5 (3.5) 1.1 (8.7) 4.3 (20) 0.2 (2.2)

0.67 30 48.1 10.9 0.0 0.1 0.7 1.1 0.1

1.00 30 30.0 0.0 0.0 0.0 1.1 0.6 0.0

60 0.33 4 251.8 138.8 0.0 0.6 1.5 4.9 0.3

0.67 26 59.2 10.3 0.0 0.1 0.6 0.9 0.1

1.00 29 37.3 0.1 0.0 0.0 0.6 0.0 0.0

65 0.67 24 67.3 14.1 0.0 0.1 0.6 0.8 0.1

1.00 28 33.3 0.1 0.0 0.0 0.7 0.0 0.0

70 0.67 22 44.1 5.0 0.0 0.1 0.7 0.5 0.1

0.67 22 44.1 5.0 0.0 0.1 0.7 0.5 0.1

75 0.67 20 57.7 5.3 0.0 0.1 0.9 0.7 0.1

1.00 26 37.6 0.1 0.0 0.0 0.8 0.1 0.0

80 0.67 20 52.7 4.4 0.0 0.3 3.5 2.5 0.5

1.00 25 35.0 0.0 0.0 0.0 2.0 0.0 0.0

85 0.67 16 57.3 3.4 0.0 0.4 2.0 0.9 0.1

1.00 19 42.2 0.0 0.0 0.1 3.4 0.0 0.0

90 0.67 12 53.8 3.8 0.0 2.7 26.3 15.2 4.0

1.00 16 39.9 0.2 0.0 0.8 34.5 1.8 0.0

100 0.67 16 51.9 2.1 0.0 2.5 25.0 12.8 1.2

1.00 21 50.8 0.0 0.0 0.4 27.6 0.0 0.2
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Table 3: CVRP computational results with a non-centered depot

CPU time Average number

Number of Average Root Elimination Child Gomory’s Problems Branches

customers α objective (%) Average Minimum Maximum constraints nodes cuts solved saved

15 0.33 5737.6 97.7 2.5 0.0 38.8 5.9 39.3 1.4 20 20.5

0.67 4663.2 99.4 0.0 0.0 0.2 0.6 3.3 0.9 20 0.1

1.00 3502.8 100.0 0.0 0.0 0.0 0.0 0.0 0.0 20 0.0

20 0.33 6076.6 97.0 9.0 0.0 25.6 14.2 68.2 3.7 20 21.5

0.67 4700.8 98.8 0.6 0.0 4.5 1.9 9.6 0.8 20 1.0

1.00 4113.7 99.8 0.0 0.0 0.1 0.0 0.6 0.5 20 0.1

25 0.33 6531.7 96.3 94.1 0.2 501.9 19.1 265.8 3.6 20 121.4

0.67 5277.1 98.6 1.0 0.0 8.5 2.4 12.1 2.8 20 3.5

1.00 4426.6 99.8 0.0 0.0 0.1 0.0 1.6 1.3 20 0.0

30 0.33 6248.7 95.6 608.9 0.3 2659.1 28.6 673.3 3.7 18 391.3

0.67 5509.6 98.2 8.0 0.0 61.5 2.7 24.2 2.3 20 4.8

1.00 4731.8 99.4 1.3 0.0 12.4 0.0 6.5 1.8 20 1.6

40 0.67 5976.5 98.3 89.7 0.0 882.1 2.8 64.3 3.6 20 24.7

1.00 5329.8 99.1 5.5 0.0 101.4 0.0 10.3 3.3 20 5.8

50 0.67 6416.4 98.9 371.2 0.0 2686.5 4.4 80.2 3.0 20 35.0

1.00 5789.7 99.4 9.7 0.0 176.3 0.1 12.8 2.8 20 3.2

60 0.67 4419.1 98.5 618.0 0.4 2671.8 4.3 121.1 3.5 13 27.8

1.00 6252.9 99.4 311.2 0.1 3136.1 0.1 18.2 2.0 20 9.7

70 1.00 6350.6 99.4 160.2 0.8 2176.2 0.3 22.0 3.4 19 8.1

7.2 The heterogeneous fleet vehicle routing problem

As mentioned above, Table 4 holds data on the search procedures for the CVRP, but it also contains

results on the solutions generated by the sweep heuristic. First, it shows that the heuristic is fast

in computing a solution, in which (on average) roughly 2.5 vehicle types are used. This shows that

taxation can, in fact, reduce the usage of large vehicles near the city center. Next, the column

‘Relative savings’ shows the number of times the heuristic objective value was saved by using a

heterogeneous fleet of vehicles, rather than solving a CVRP while taxes must be paid. This shows

that the usage of different vehicle types substantially reduces the costs of parcel delivery under such

taxes. These savings correspond to (roughly) 40 to 67 percent of the original CVRP costs, which are

achieved even though the routing of the vehicles is less efficient. Namely, the CVRPs were solved

to optimality, which is not the case for the heuristically solved HVRPs. Nonetheless, the costs to

deliver all parcels under such taxes is substantially larger than that of delivering all parcels with

larger vehicles in the absence of taxation. In particular, those costs roughly double. The reason

thereof is twofold. First, delivering parcels using smaller vehicles evidently causes more vehicles to

be needed and hence, by the triangle inequality, larger distances to be driven. Second, taxes must

be paid on some edges included in the final solution. Hence, taxation can reduce the usage of large

vehicles near the city center, but it comes at a large costs for parcel delivery companies.
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Table 4: CVRP search procedure results with a non-centered depot and the influence of taxation

Number of Problems Average number of constraints added % Succes of searches Heuristic Number of Relative Computation

customers α solved 1.4 and 1.7 2.3 and 2.8 2.9 1-3 4 5 6 objective vehicles savings time heuristic (s)

15 0.33 20 182.4 88.7 0.2 7.5 1.5 29.3 0.3 10525.2 2.7 0.8 0.4

0.67 20 15.0 0.8 0.0 16.8 11.1 19.4 1.7 8821.5 2.6 1.2 0.2

1.00 20 7.3 0.0 0.0 6.0 25.9 0.0 0.0 7983.8 1.9 1.3 0.2

20 0.33 20 215.7 133.6 1.0 4.8 2.1 20.8 0.8 12293.5 2.6 1.0 0.1

0.67 20 26.6 4.3 0.0 2.4 1.8 8.1 1.2 9957.3 2.6 1.4 0.1

1.00 20 8.2 0.0 0.0 3.3 9.7 0.0 0.0 10178.9 2.1 1.2 0.0

25 0.33 20 799.9 568.3 0.3 3.2 1.9 16.4 0.6 14511.3 2.7 1.2 1.4

0.67 20 34.3 7.1 0.0 1.5 5.0 11.5 1.0 11984.6 2.4 1.4 0.9

1.00 20 12.0 0.0 0.0 2.1 23.4 0.0 0.0 11307.7 2.2 1.5 0.6

30 0.33 18 2322.4 2164.4 1.4 2.3 2.5 16.9 0.4 16492.9 2.9 1.1 1.0

0.67 20 48.8 8.1 0.0 0.7 2.1 3.3 0.5 14413.0 2.8 1.4 0.5

1.00 20 14.9 0.0 0.0 0.0 3.4 0.0 0.0 12993.1 2.0 1.6 0.5

40 0.67 20 98.3 25.9 0.0 0.3 1.6 2.3 0.2 17093.6 2.6 1.6 8.0

1.00 20 23.0 0.0 0.0 0.1 3.3 0.3 0.1 16485.1 2.1 1.7 4.9

50 0.67 20 151.4 65.5 0.0 0.1 1.1 3.0 0.1 20498.3 2.8 1.7 1.7

1.00 20 25.7 0.1 0.0 0.1 3.6 0.1 0.1 17987.2 2.1 2.0 25.7

60 0.67 13 120.3 35.1 0.0 0.1 1.4 2.0 0.1 25560.9 2.8 0.9 36.2

1.00 20 34.6 0.2 0.0 0.0 0.4 0.0 0.0 23457.7 2.1 1.8 40.6

70 1.00 19 39.4 0.5 0.0 0.0 1.8 0.2 0.0 28799.1 2.1 1.5 38.0

The branch-and-cut algorithm for the HVRP failed to solve all 60 problem instances with 15

customers. Primarily, this occurs because the constraints and cutting planes for the HVRP are

less tight than those of the CVRP, in particular when some yik are still fractional. Then, namely,

‘tours’ exist that are driven partially by a vehicle of one type and partially by a vehicle of another.

Subsidiary, the branch-and-cut algorithm for the CVRP was transformed for the HVRP in its

entirety, while certain components may be less good a fit. Both aspects may compromise the

computational performance of the HVRP algorithm. Now, the maximum computation time for

the algorithm was set to 4 hours and ‘unstructured’ problems were simulated, in which both the

number of customers and α are randomly drawn from a uniform distribution, with a maximum of

50 customers. The specific results thereof are found in Appendix F. None of these problems were

solved to optimality within 4 hours. However, the results indicate that the search procedures for the

HVRP were less effective than for the CVRP, which was anticipated as the cutting planes for the

HVRP are less tight. Furthermore, these results stipulate that the the heuristic’s performance varies

substantially. Occasionally, it outperforms the exact algorithm after 4 hours. At other times, the

exact algorithm produces substantially better results. Nonetheless, there is no structural pattern

indicating that the heuristic uses more or less vehicle types than the exact algorithm. This reinforces

the conclusion that taxation can reduce the usage of large vehicles near the city center. Meanwhile,

it expounds on the remark that the additional costs thereof are prohibitively unfair as adequate

routing seems capable to further reduce the costs of parcel delivery with a heterogeneous fleet.
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8 Conclusion and discussion

In summary, this thesis shows that taxation can help to reduce the usage of large vehicles in

downtown parcel delivery, which leads to an increase in the (economic) efficiency of urban traffic

by reducing the negative externalities thereof. Nonetheless, the introduction of such taxes leads

to a heavy burden on parcel delivery companies by substantially increasing the costs of their daily

operations. On the one hand, it must be noted that the specifics of the simulated data contribute

largely to the size of this burden. Therefore, further research into a specific tax structure on (large)

vehicle usage near the city center is recommended. On the other hand, governments can offer a lump

sum compensation to parcel delivery companies, which would offset the financial unfairness while

maintaining the motivation to use smaller rather than larger vehicles for downtown parcel delivery.

Such a compensation can, for example, be offered as lump sum or as a subsidy on the purchase of

smaller delivery vehicles. Finally, it must be noted that the customers’ location coordinates and

demands were drawn from a uniform distribution, which needs not adequately reflect a realistic

setting for urban parcel delivery and hence, may influence the effect of taxation on vehicle usage.

Furthermore, this thesis offers new cutting planes for the HVRP. However, the branch-and-cut

algorithm based on those cutting planes fails to produce optimal solutions within a reasonable

computation time. This is partially caused by a suboptimal implementation of the algorithm, a

presumption supported by the fact that the corresponding branch-and-cut implementation for the

CVRP was seemingly suboptimal too. Meanwhile, the complexity of the HVRP also contributes

heavily to the computation time of any exact solution algorithm thereof. Nonetheless, these cutting

planes provide a genesis for future research, which can identify the extent to which the cutting planes

presented in this thesis can contribute to an adequate exact or heuristic algorithm for the HVRP.

Finally, this thesis offers a sweep heuristic to solve the HVRP, in which clusters are based largely

on the customers’ relative distance to a virtual city center. For each cluster, a CVRP arises that

is solved using the corresponding branch-and-cut algorithm. This heuristic is quite fast, because

the CVRPs that arise generally have relatively few customers to be served using relatively large

vehicles. Even though the heuristic’s solution quality has not been adequately determined, it can

potentially be improved upon by solving the CVRP is to optimality in each iteration. Since the

heuristic generates solutions rapidly, such a modification probably does not lead to prohibitive

computation times, while it may substantially improve the heuristic’s results.
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Joerss, M., Schröder, J., Neuhaus, F., Klink, C., & Mann, F. (2016). Parcel delivery the future of

last mile (Tech. Rep.). McKinsey & Company.

31



Laporte, G. (2009). Fifty years of vehicle routing. Transportation science, 43 , 408-416.

Laporte, G., Nobert, Y., & Desrochers, M. (1985). Optimal routing under capacity and distance

restrictions. Operations research, 33 , 1050-1073.

Ossokina, I., & Verweij, G. (2005). Urban traffic externalities: Quasi-experimental evidence from

housing prices. Regional Science and Urban Economics, 55 , 1-13.

Paessens, H. (1988). The savings algorithm for the vehicle routing problem. European Journal of

Operational Research, 34 , 336-344.

Penna, P., Subramanian, A., & Ochi, L. (2013). An iterated local search heuristic for the hetero-

geneous fleet vehicle routing problem. Journal of Heuristics, 19 , 201-232.

Pessoa, A., Sadykov, R., & Uchoa, E. (2018). Enhanced branch-cut-and-price algorithm for het-

erogeneous fleet vehicle routing problems. European Journal of Operational Research”, 270 ,

530-543.

Pessoa, A., Uchoa, E., & Poggi de Aragão, M. (2009). A robust branch-cut-and-price algorithm

for the heterogeneous fleet vehicle routing problem. Networks: An International Journal , 54 ,

167-177.

Pigou, A. (1932). The economics of welfare (4th ed.). London: Macmillan.

Qingyu, L., Zhicai, J., Baofeng, S., & Hongfei, J. (2007). Method research on measuring the

external costs of urban traffic congestion. Journal of Transportation Systems Engineering

and Information Technology , 7 , 9-12.

Ralphs, T., Kopman, L., Pulleyblank, W., & Trotter, L. (2003). On the capacitated vehicle routing

problem. Mathematical programming , 94 , 343-359.

Renaud, J., & Boctor, F. (2002). A sweep-based algorithm for the fleet size and mix vehicle routing

problem. European Journal of Operational Research, 140 , 618-628.

Schrank, D., & Lomax, T. (2009). 2009 urban mobility report (Tech. Rep.). U.S. DEPARTMENT

OF TRANSPORTATION.

Solano-Charris, E., Prins, C., & Santos, A. (2015). Local search based metaheuristics for the robust

vehicle routing problem with discrete scenarios. Applied Soft Computing , 32 , 518-531.

Stopher, P., & Stanley, J. (2014). Introduction to transport policy – a public policy view. Edward

Elgar Publishing.

Warf, B. (2010). Thünen model. In B. Warf (Ed.), Encyclopedia of geography (p. 2833-2834).

Thousand Oaks, CA: SAGE Publications, Inc. doi: 10.4135/9781412939591.n1138

Wegener, M. (2013, June). Polycentric europe: More efficient, more equitable and more sustainable

32



(Vol. 7). International seminar on welfare and competitiveness in the European polycentric

urban structure.

Yaman, H. (2006). Formulations and valid inequalities for the heterogeneous vehicle routing

problem. Mathematical Programming , 106 , 365-390. doi: 10.1007/s10107-005-0611-6

33



Appendix A: Overview of notation

Table 5 provides an overview of the mathematical notation used in this thesis. The diverse symbols

are introduces on a per topic basis and presented where that is most appropriate.

Table 5: CVRP computational results centered depot

Symbol Definition

General graph and set notation

H = (VH , EH) A graph with vertex set VH and edge set EH .

E[S, T ] The set of all edges that start in S and end in T , or vice-versa.

S = L\S The complement of set S with respect to L.

Problem definition

V = {0, . . . , n− 1} The set of vertices, representing the customers and the depot.

0 ∈ V The depot vertex.

L = {1, . . . , n− 1} ⊂ V The set of n− 1 customers.

qj The demand of customer j ∈ L.

E = {(i, j)|0 ≤ i 6= j ≤ n− 1} The set of edges.

K = {0, . . . , t− 1} The set of t vehicle types.

mk The number of vehicles of type k used.

Qk The capacity of vehicle k.

`k(S) The greatest lower bound on the number of

vehicles of type k to serve all customers in S.

cijk The ‘relative’ distance between vertices

i, j ∈ V for a vehicle of type k.

xijk A decision variable indicating whether edge

(i, j) ∈ E is used by a vehicle of type k.

yik A decision variable indicating whether a vehicle

of type k serves customer i ∈ L.

cik The weight of driving vehicle k near customer i.

Table continues on the next page.
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Symbol Definition

Branch-and-cut

Z∗ The best upper bound known in the algorithm.

Z The LP-relaxation of the current subproblem.

Sk = {S1k, . . . , Smkk} The set of tours driven with vehicle k.

Slack functions

ZHV RP1 (R) The slack on Constraints (1e).

Z1(R) The slack on Constraints (2d).

ZHV RP2 (R) The slack on Cutting Planes (5).

Z2(R) The slack on Cutting Planes (6).

ZHV RP3 (R) The slack on Cutting Planes (11).

Z3(R) The slack on Cutting Planes (12).

ZHV RP4 (R) The slack on Constraints (3).

Z4(R) The slack on Constraints (4).

Z ′HV RP1 (R) An alternative slack function for Constraints (1e).

Z ′1(R) An alternative slack function for Constraints (2d).

Z ′HV RP3 (R) An alternative slack function for Cutting Planes (11).

Z ′3(R) An alternative slack function for Cutting Planes (12).

Z ′HV RP4 (R) An alternative slack function for Constraints (3).

Z ′4(R) An alternative slack function for Constraints (4).

General graph and set notation
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Appendix B: Algorithm pseudocode

Branch-and-cut algorithm

Pseudocode of the branch-and-cut algorithm for the HVRP and CVRP is provided in Algorithm 1.

Algorithm 1 Branch-and-cut

1: Initialize L as a list of active (sub)problems.

2: Add the original model (2) to L.

3: Initialize x∗ as the solution found using the savings heuristic for the vehicle routing problem

(Paessens, 1988) (CVRP), or for each of the clusters generated according to steps 1-6 of Algo-

rithm 7 (HVRP); Also, initialize Z∗ as the costs of this initial solution and Z as the objective

value of the LP-relaxation of the original model (1 for the HVRP and 2 for the CVRP).

4: while L is not empty do

5: Select P as a problem from L.

6: Remove P from L.

7: Define and fix the forced variables.

8: Solve the model (for example using CPLEX).

9: if z̄ ≥ Z∗ then

10: This branch cannot yield an optimal solution. Thus, go to Step 4.

11: end if

12: Purge ineffective constraints.

13: if There exists a capacity constraint violation then

14: Add the violated constraint to the model and go back to Step 8.

15: end if

16: if |L| = 1 and no Gomory cuts were added yet then

17: Add at most 5 Gomory’s cuts to the model and go back to Step 8.

18: end if

19: if The solution x is integer valued then

20: The solution is feasible and better than Z∗. Thus, update Z∗ and store the solution.

21: Go to Step 4.

22: end if

23: Identify the next branching variable, generate two new subproblems and add them to L.

24: end while
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Identifying violated constraints

Search 1 is executed according to the following pseudocode (Achuthan et al., 1996, 2003), in which

Z(R) represents Z1(R) as defined in equation (18) for the CVRP and in equation (17) for the

HVRP:

Algorithm 2 Search 1

1: Initialize R = ∅

2: while |R| < |S| − 2 do

3: Select r ∈ S\R such that Z(R ∪ {r}) is minimized.

4: if Z(R ∪ {r}) ≥ Z(R) then

5: Stop the search.

6: end if

7: if Z(R ∪ {r}) < 0 then

8: Add a Constraint of type 1e (or 2d for the CVRP) for S\R and stop the search.

9: end if

10: Set R = R ∪ {r}.

11: end while

Search 2 is executed as detailed in Algorithm 3 (Achuthan et al., 1996, 2003), in which Z(R) =

min [Z2(R), Z3(R)] for the CVRP and Z(R) = min
[
ZHV RP2 (R), Z3(R)HV RP

]
for the HVRP. Z2(R)

and Z3(R) are defined in equations (21) and (22), while ZHV RP2 (R) and Z3(R)HV RP are defined in

equations (19) and (20).

Search 3 is executed based on Z(R) = min [Z3(R), Z4(R)] for the CVRP. For the HVRP, it

is based on Z(R) = min
[
ZHV RP3 (R), ZHV RP4 (R)

]
. The search is executed according to the pseu-

docode introduced in Algorithm 4 (Achuthan et al., 1996, 2003). Again, Z3(R)HV RP and Z2(R)

are defined in equations (20) and (22), while ZHV RP4 (R) and Z4(R) are defined in equations (25)

and (26), respectively. Note that S = {Si} is assumed to be sorted as described in Section 5.
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Algorithm 3 Search 2

1: Initialize R = ∅ and MIN =∞.

2: while |R| < |S| − 1 do

3: Select r ∈ S\R such that Z(R ∪ {r}) is minimized.

4: if Z(R ∪ {r}) ≤MIN then

5: MIN = Z(R ∪ {r}) and R = R ∪ {r}.

6: else

7: break

8: end if

9: end while

10: if MIN < 0 then

11: Add a Constraint of type 1e (2d for the CVRP) for R if Z(R) = ZHV RP2 (R) (Z(R) = Z2(R))

or a Cutting Plane of type 11 (12 for the CVRP) if Z(R) = ZHV RP3 (R) (Z(R) = Z3(R)).

12: end if

Algorithm 4 Search 3

1: Initialize R = ∅, i = 1 and MIN =∞.

2: while i < l do

3: Set R = R ∪ Si and MIN = Z(R).

4: if MIN < 0 then

5: if Z(R) = ZHV RP3 (R) (Z(R) = Z3(R) for the CVRP) then

6: Introduce the violated Cutting Plane of type 11 (12) for R.

7: Set R = ∅ and MIN =∞.

8: else

9: Introduce a violated Constraint of type 3 (4) for R.

10: Set R = ∅ and MIN =∞.

11: end if

12: end if

13: i=i+1.

14: end while

With slack function Z ′1 for the CVRP and Z ′HV RP1 for the HVRP (as defined in equations (28) and

(27), respectively), search 4 is executed as outlined in Algorithm 5 (Achuthan et al., 2003).
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Algorithm 5 Search 4

1: Initialize Ti = {i}, ∀i ∈ L and initialize succesfulMerge=true.

2: If xαβ < 1, let Tα = {α, β} and remove Tβ.

3: while succesfulMerge do

4: if ∃(r, s) such that
∑

E[Ts,Tr]

xij ≥ 1 then

5: Merge sets Tr and Ts into one set Trs
8.

6: else

7: Set succesfulMerge=false.

8: end if

9: end while

10: Define T ′ = {T ′1 . . . T ′k} as the set of sets found following this merge procedure.

11: for T ′i ∈ T ′ do

12: if Z ′1(T
′
i ) < 0 then

13: Add a violated constraint for T ′i .

14: end if

15: end for

Search 5 is implemented as outlined in Algorithm 6, based on an initial set T = {T1 . . . Tp}

(Achuthan et al., 2003).

Finally, search 6 is implemented in a manner similar to search 4 (Achuthan et al., 2003).

However, when there exist multiple pairs (r, s) for which Z(Tr ∪ Ts) is minimized, a pair (r∗, s∗) is

chosen for a merge such that Z(Tr∗ ∪ Ts∗) = Z ′3(Tr∗ ∪ Ts∗) and subsidiary a pair that maximizes

1

Q

∑
i∈Tr∗∪Ts∗

qi −

 1

Q

∑
i∈Tr∗∪Ts∗

qi


The search procedure is based on ZHV RP (R) = min

[
Z ′HV RP3 (R), Z ′HV RP4 (R)

]
for the HVRP and

Z(R) = min
[
Z ′3(R), Z ′4(R)

]
for the CVRP. Z ′HV RP3 (R) and Z ′3(R) are defined in equations (29)

and (31), respectively. Furthermore, Z ′HV RP4 (R) and Z ′4(R) are defined in equations (30) and (32),

respectively.

8If multiple such sets exist, pick the pair (r, s) that minimizes Z′1(Tr ∪ Ts).
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Algorithm 6 Search 5

1: for i=1 . . . p do

2: Let S = Ti, R = {T1 . . . Ti}\S, TFound=true and Q = ∅.

3: while TFound do

4: Find Tr ∈ R such that
∑

E[S,Tr]

xrs > 0 and max
Tl∈R

∑
l∈Tl

ql is attained for Tr. In case of a tie,

opt Tr that maximixes
∑

E[S,Tr]

xrs.

5: if Tr was found then

6: Add Tr to T .

7: elseSet TFound=false.

8: end if

9: end while

10: if
∑
Tj∈T

∑
i∈Tj

qi > Q then

11: if
∑
E[S,T ]

xrs > 1 then

12: Add the violated Cutting Plane of type 7 or 9 (or 8 or 10 for the CVRP) or the

violated Constraint of type 1e (2d) for T if |T | > 3, |T | = 3 or |T | = 2, respectively.

13: end if

14: end if

15: end for
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Sweep heuristic

The general pseudocode for the sweep heuristic is introduced in Algorithm 7, while the local search

procedure is outlined in Algorithm 8. In the implementation of the sweep heuristic in this thesis,

γ = 0.1.

Algorithm 7 Sweep heuristic

1: for Customer i ∈ L do

2: Add i to the cluster of vehicle k ∈ K such that k = arg min
k∈K

cik
Qk

.

3: if ∃h 6= k ∈ K such that
cih
Qh
≤ (1 + γ) ∗ cik

Qk
then

4: Generate a new set of clusters in which i is added to the cluster of vehicle h instead of

vehicle k and treat both sets separately.

5: end if

6: end for

7: for Vehicle k ∈ K do

8: Solve the CVRP for the cluster associated with k.

9: end for

10: Apply local search to (potentially) improve upon this solution.
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Local search

Algorithm 8 Local search sweep heuristic

1: Define CurrentCost to be the current cost of the HVRP solution CurrentSolution, as found

after step 6 in Algorithm 7. Set Improved to true.

2: while Improved do

3: Get the neighbourhood of CurrentSolution as defined below.

4: Find the neighbourhood element (x) with lowest costs, c(x).

5: if c(x) <CurrentCost then

6: Set CurrentSolution = x and CurrentCost = c(x).

7: else

8: Set Improved to false.

9: end if

10: end while

11: After the local search, CurrentSolution is found to be the local optimum with corresponding

cost CurrentCost.

In the pseudocode above, the neighbourhood of CurrentSolution is needed. For any feasible solution

of the HVRP, the neighbourhood thereof consists of any element that can be found by applying

one of the following actions to one (pair of) route(s) of that solution.

1. Merge two routes, which is allowed if the largest vehicle available can serve the aggregate

demand of the original two routes.

2. Split one route into two routes, provided that (at least) one of the emerging routes can be

served by a smaller vehicle than the vehicle used to serve the original route. Otherwise,

namely, the new solution can never lead to a cost decrease (as follows from the interpretation

of Cutting Planes 11).

3. Swap two customers within their current route.

4. Add one customer to a different route.

For simplicity of the local search procedure, scenarios in which multiple modifications are made

simultaneously are excluded from this local search.
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Appendix C: Cutting plane validity

Cutting planes for the CVRP

In this Appendix, the validity of each of the cutting planes is proven, except for the cases in which a

direct proof is provided by Achuthan et al. (2003). That is the case for Constraints (4) and Cutting

Planes (8), (10), (12) and (13). Also, slack functions (18), (21), (22) and (26) follow trivially from

the constraints. However, this is not necessarily the case for slack functions (28), (31) ad (32). The

validity of these slack functions is also shown in this Appendix.

Throughout this (sub)section, the following property, that holds for all S ⊆ L in a feasible

solution of the CVRP, is of much importance:

2|S| = 2
∑
i,j∈S

xij +
∑
E(S,S)

xij +
∑
i∈S

x0j (35)

This property is found by summing Constraint (2c) over all vertices i ∈ S.

The validity of Constraints (4)

Even though the validity of these Constraints is also proven in (Achuthan et al., 1996), I opt to

provide a proof for this validity in this appendix too. The proof, namely, contains one equivalence

that is also highly relevant in other proofs in this section.

As a starting point, take a set S such that 1 ≤ |S| ≤ n − 2 and S = L\S, which implies that

1 ≤ |S| = n − 1 − |S| ≤ n − 2. Therefore, the Constraint of type (2d) must be satisfied for S for

each feasible solution of the CVRP, either because 3 ≤ |S| ≤ n − 2, or trivially if |S| < 3. Hence,

for S, we have ∑
i,j∈S

xij ≤ |S| − `(S)

By the property in equation (35), this is equivalent to

∑
i,j∈S

xij ≤
∑
i,j∈S

xij +
1

2

 ∑
E(S,S)

xij +
∑
i∈S

x0j

− `(S)

Deducting
∑
i,j∈S

xij on both sides, multiplying the entire equation by 2 and rearranging the terms

yields the identity:

∑
E(S,S)

xij +
∑
i∈S

x0j ≥ 2`(S) ∀S such that 1 ≤ |S| ≤ n− 2 (36)
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Adding 2
∑
i,j∈S

xij +
∑
i∈S

x0i to both sides of the equation and applying property (35) yields:

2|S|+
∑
j∈S

x0j ≥ 2`(S) + 2
∑
i,j∈S

xij +
∑
j∈S

x0j

Evidently, this is equivalent to:

∑
i,j∈S

xij +
1

2

∑
j∈S

x0j −
∑
j∈S

x0j

 ≤ |S| − `(S)

Now, since S ∪S = L by definition and 2m =
∑
i∈L

x0j per Constraints (2b) for the CVRP, we have:

∑
i,j∈S

xij +
1

2

∑
j∈S

x0j − (2m−
∑
j∈S

x0j)

 ≤ |S| − `(S) ∀S ⊂ L such that 1 ≤ |S| ≤ n− 2

This, trivially, is equivalent to Constraints (4), which concludes the proof.

The validity of Cutting Planes (6)

Cutting Planes (6) are fairly similar to Constraints 4. To prove the validity of these Cutting

Planes, consider S to be the set of customers whose demand must be satisfied and do not consider

the customers in S = L\S. Then, the virtual depot ‘for this subset’ 0S = {0} ∪ S consists of the

actual depot and all vertices outside of S. Namely, vehicles that enter S from 0 or S can be treated

similarly when one only focusses on serving the customers in S. Defining mS as the number of

vehicles visiting S, Constraints (4) can be written as follows, for P ⊂ S:

∑
i,j∈P

xij +
∑

i∈0S ,j∈P
xij −mS ≤ |P | − `(S\P ) ⇐⇒

∑
i,j∈P

xij +

∑
j∈P

x0j +
∑
E(P,S)

xij

−mS

≤ |P | − `(S\P )

Since the Constraint of type (2d) is not violated for S, we can safely add
∑
i,j∈S

xij + s to the left

hand side of the inequality and |S| − `(S) to the right hand side, where s ≥ 0 equals the slack

variable for the Constraint of type (2d). This yields:∑
i,j∈P

xij +
∑
i,j∈S

xij +
∑
j∈P

x0j +
∑
E(P,S)

xij + s ≤ |S|+ |P | − `(S\P ) +mS − `(S)

If mS = `(S), the Constraint of type (2d) holds at equality (s = 0) so that this equation reduces to

a Cutting Plane of type (6). If mS > `(S), there is slack on the Constraint of type (2d) since less

cross-edges are used for S and more edges that enter/leave S are used. In that case s = mS − `(S),

so that the Cutting Plane of type (6) still follows from this inequality.
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The validity of slack function (28)

As per identity (36), the following two equations are equivalent, for all S such that 3 ≤ |S| ≤ n−2:

|S| − `(S)−
∑
i,j∈S

xij ≥ 0

∑
E(S,S)

xij +
∑
i∈S

x0j − 2`(S) ≥ 0

This directly shows why equation (28) is an adequate slack function for Constraints (2d).

The validity of slack function (31)

The trivial slack function on Cutting Planes (12) for set T with 2 ≤ |T | ≤ n − 1 and
∑
i∈T

qi ≤ Q

reads:

Z3(T ) = |T |+ 1−
∑
i,j∈T

xij −
∑
j∈T

x0j ≥ 0

For other sets T , such a cutting plane is not defined and hence, it cannot be violated.

Multiplying this function by 2 and applying property (35) for T yields an equivalence with

Z ′3(T ) = 2
∑
i,j∈T

xij +
∑

E(T,T )

xij +
∑
j∈T

x0j + 2− 2

∑
i,j∈T

xij −
∑
j∈T

x0j

 ≥ 0

After cancelling out the duplicate terms, this yields equation (31) and hence, it shows the validity

thereof.

The validity of slack function (32)

For Constraints (4), the regular slack function reads:

Z4(T ) = |T |+m− `(T )−
∑
i,j∈T

xij −
∑
j∈T

x0j

Multiplying this function by two and applying property (35) for T yields an equivalence with

Z ′4(T ) = 2
∑
i,j∈T

xij +
∑

E(T,T )

xij +
∑
j∈T

x0j − 2`(T ) + 2m− 2

∑
i,j∈T

xij −
∑
j∈T

x0j


After cancelling out the duplicate terms, this yields equation (32) and hence, it shows the validity

thereof.
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Proof α(S) ≥ 0

Since S is one of the connected components of the resulting graph, and the Constraint of type

(2d) is not violated for S, it must be true that all customers in S can be served by one vehicle.

Furthermore, for i ∈ S, Constraints (2c) must be satisfied and hence, it can be concluded that∑
i,j∈S

xij = |S| − 1. Therefore,

α =
∑
i,j∈S

xij +
∑
j∈S

x0j − |S| −
1

Q

∑
j∈S

qj ≥
∑
i,j∈S

xij +
∑
j∈S

x0j − |S| − `(S)

=
∑
i,j∈S

xij +
∑
j∈S

x0j − |S| − 1 =
∑
j∈S

x0j ≥ 0

Here, the last inequality is valid since x0i ∈ {0, 1, 2} for all i ∈ L.

Cutting planes for the HVRP

In the remainder of this appendix, the validity of all cutting planes for the HVRP is proven, along

with a proof of the validity of Constraints (3) and slack functions (27), (29) and (30), which are the

only slack functions whose validity does not directly follow from the constraints or cutting planes

they refer to. Finally, a proof that αk(Sik) ≥ 0 is provided. It must be noted that most of these

proofs are very similar to/rely heavily on the proofs provided by Achuthan et al. (1996, 2003) for

the analogous CVRP cutting planes and constraints.

To start, identify the following property for any S ⊆ L in a feasible solution of the HVRP,

which is of high importance in some proofs:

2|S| =
∑
h∈K

2
∑
i,j∈S

xijh +
∑
E(S,S)

xijh +
∑
i∈S

x0jh

 (37)

This property follows from summing Constraints (1c) for all vertices i ∈ S along with Constraints

(1d).

The validity of Constraints (3)

To start, pick an arbitrary vehicle type k ∈ K and define a set S such that 1 ≤ |S| ≤ n − 2 and

S = L\S, implying that 1 ≤ |S| ≤ n− 2. Therefore, Constraints (1e) must be satisfied for S for all

feasible solutions of the HVRP, either since 3 ≤ |S| ≤ n− 2, or trivially when |S| < 3. Therefore,

for S, it must hold that: ∑
i,j∈S

xijk ≤ |S| − `k(S)
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By the property in equation (37), this is equivalent to:

∑
i,j∈S

xijk ≤
∑
h∈K

∑
i,j∈S

xijh +
1

2

∑
h∈K

∑
E(S,S)

xijh +
1

2

∑
h∈K

∑
i∈S

x0jh − `k(S)

This is trivially equivalent to:

2
∑

h6=k∈K

∑
i,j∈S

xijh +
∑
h∈K

∑
E(S,S)

xijh +
∑
h∈K

∑
i∈S

x0jh ≥ 2`k(S) (38)

Adding 2
∑
h∈K

∑
i,j∈S

xijh +
∑
h∈K

∑
j∈S

x0jh to both sides and using identity (37) for S, this yields:

2|S|+ 2
∑

h6=k∈K

∑
i,j∈S

xijh +
∑
h∈K

∑
i∈S

x0jh ≥ 2`k(S) + 2
∑
h∈K

∑
i,j∈S

xijh +
∑
h∈K

∑
j∈S

x0jh

Rearranging the terms and dividing both sides of the equation by 2 gives:

∑
h∈K

∑
i,j∈S

xijh +
1

2

∑
h∈K

∑
j∈S

x0jh −
∑
h∈K

∑
j∈S

x0jh

− ∑
h6=k∈K

∑
i,j∈S

xijh ≤ |S| − `k(S)

Now, since S ∪ S = L and because
∑
i∈L

x0ih = 2mh, for all h ∈ K per Constraints (1b), this can be

rewritten into:

∑
h∈K

∑
i,j∈S

xijh +
1

2

∑
h∈K

∑
j∈S

x0jh −
∑
h∈K

(2mh −
∑
j∈S

x0jh)

− ∑
h6=k∈K

∑
i,j∈S

xijh ≤ |S| − `k(S)

Constraints (3) are easily obtained from this expression by rearranging the terms of this expression.

The validity of Cutting Planes (5)

As for the proof of Cutting Planes (6) for the CVRP, we must define S as the set of customers

whose demand must be satisfied and exclude the customers in S = L\S from consideration. Now,

S has virtual depot 0S = {0} ∪ S, which is identical to the definition of 0S in the proof of Cutting

Planes (6) as derived above. Defining mk(S) as the number of vehicles of type k ∈ K used to serve

S, one can write Constraints (3) for all P ⊂ S as follows:

∑
h∈K

∑
i,j∈P

xijh −
∑

h6=k∈K

∑
i,j∈S\P

xijh +
∑
h∈K

∑
i∈0S

∑
j∈S

xijh −mh(S)

 ≤ |P | − `(P ) ⇐⇒

∑
h∈K

∑
i,j∈P

xijh −
∑

h6=k∈K

∑
i,j∈S\P

xijh +
∑
h∈K

(
∑
j∈S

x0jh +
∑
E(P,S)

xijh)−mh(S)

 ≤ |P | − `(P )
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Since the Constraint of type (1e) is not violated for S for any vehicle type k ∈ K, it is safe to

add
∑
i,j∈S

xijh + sh to the left hand side of the equality and |S| − `h(S) to the right hand side of

the inequality, for all h ∈ K. Here, sh ≥ 0 represents the slack on the Constraint for vehicle type

h ∈ K. This yields the following expression:

∑
h∈K

∑
i,j∈P

xijh −
∑

h6=k∈K

∑
i,j∈S\P

xijh +
∑
h∈K

∑
j∈S

x0jh +
∑
E(P,S)

xijh +
∑
i,j∈S

xijh + sh −mh(S)


≤
∑
h∈K

(|S| − `h(S)) + |P | − `(P )

Rearranging these terms yields:

∑
h∈K

∑
i,j∈P

xijh −
∑

h6=k∈K

∑
i,j∈S\P

xijh +
∑
h∈K

∑
j∈S

x0jh +
∑
E(P,S)

xijh +
∑
i,j∈S

xijk


≤ t|S|+

∑
h∈K

(mh(S)− `h(S)− sh) + |P | − `(P )

Now, either mh ≤ `h(S), so that vehicles of other vehicle types are also used to satisfy the aggregate

demand in S. Then, (mh(S) − `h(S) − sh) ≤ 0 (as sh ≥ 0 so that it can safely be left out of the

inequality as it does not harm the validity thereof. If, however, mh > `h(S), the slack on the

Constraint of type(1e) for set S and vehicle type h is (at least) equal to mh(S)− `h(S) and hence,

(mh(S)− `h(S)− sh) ≤ 0. Therefore,
∑
h∈K

(mh(S)− `h(S)− sh) ≤ 0 can be left out of this equation,

proving the validity of the cutting planes.

The validity of Cutting Planes (7) and (9)

For the CVRP, Achuthan et al. (2003) prove the validity of Cutting Planes (8) and (10). The

following proof of the validity of these cutting planes for the HVRP is very similar to that proof

for the CVRP. For the validity of this cutting plane, the following is, again, required:

Let S,D1, D2, . . . , Dr be given such that

• r ≥ 2 and
∑

i∈S∪Dp∪Dq

qi > Qk, for all 1 ≤ p 6= q ≤ r;

• Di ∩Dj = ∅ for i 6= j;

• S ∩Di = ∅, ∀i ∈ {1, . . . , r}.
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The proof is as follows: First, define D = ∪ri=1Di. Then, take (xijk) as a the component of the

feasible solution of the HVRP for vehicle k ∈ K and consider the subgraph H = G(S), with vertices

i ∈ S and edges {(i, j) ∈ E|xijk = 1}. Obviously, H consists of a number of components (p), each

of which is a path. Per elementary graph theory, it follows that:∑
i,j∈S

xijk = ε(H) ≤ |S| − p

By a similar argument, it must hold that:

r∑
s=1

∑
i,j∈Ds

xijk ≤ |D| − r

Here, equality is only possible if the subgraph G(Ts) is a path for all s.

Furthermore, If p = 1, S is served by one vehicle of type k and hence,
∑
E(S,T )

xijk ≤ 2.

When these latter two identities hold simultaneously, S and two sets Ts, Ts′ are all served by

the same vehicle of type k, which is not possible since
∑

i∈S∪Dp∪Dq

qi > Qk, for all 1 ≤ p 6= q ≤ r. In

analogy to the argument by Achuthan et al. (2003) for the CVRP, this yields:

3
∑
i,j∈S

xijk +
∑

E(S,D)

xijk +
r∑
s=1

∑
i,j∈Ds

xijk ≤ 3(|S| − 1) + |D| − k + 1

If p ≥ 2, the number of edges between D and each component of S is at most 2p since all components

in S are served by one vehicle and subtours are not allowed. Therefore,
∑
E(S,T )

xijk ≤ 2p.

This shows the validity of Cutting Planes (7), of which Cutting Planes (9) are a special case.

The validity of Cutting Planes (11)

The proof of the validity of these Cutting Planes are very similar to the proof of the validity of

Cutting Planes (12) for the CVRP that is provided by Achuthan et al. (2003). As it is slightly

different, the proof is provided below.

Consider X1 = [xijk] to be an optimal solution of the HVRP with cost Z1. Suppose, for the

sake of contradiction, that the Cutting Plane of type (11) is not satisfied, and hence that there

exists an arbitrary vehicle k and an arbitrary customer set S whose aggregate demand is, at most,

Qk, for which:

∑
h≤k∈K

∑
i,j∈S

xijh +
∑
j∈S

x0jh

 > |S|+ 1

49



Now, consider G to be the graph formed by taking the edges given by the solution X1. Clearly, G

consists of
∑
k∈K

mk cycles, with the depot vertex 0 appearing in every cycle. Consider, in particular,

the subgraph H which consists of the vertices {0} ∪ S and any edge between two of those vertices

that is assigned to a vehicle h ≤ k ∈ K. Evidently, H will be a union of cycles and paths.

Since the Cutting Plane of type (11) is violated, H contains at least two and at most S cycles.

Let τ1 = (0, i1, . . . , iu, 0) and τ2 = (0, j1, . . . , jv, 0) be two arbitrary cycles in H, driven with a

vehicle of an arbitrary type h ≤ k ∈ K. It may be noted that u or v can be 1. Now, consider

route τ = (0, i1, . . . , iu, j1, . . . , jv, 0). This route can be driven with a vehicle of type k, since the

aggregate of all customers within the route does not exceed this vehicle’s capacity (
∑
j∈S

qj ≤ Qk),

while the original routes were driven with vehicles of type k or larger vehicles.

Define the costs of driving route τ1 to be driven with its current vehicle c(τ1) and the costs of

driving route τ2 to be driven with is current vehicle c(τ2).

Therefore, driving route τ with a vehicle of type k is feasible and it has the following costs:

ck(τ) = ck(τ1) + ck(τ2)− c0iuk − c0jvk + ciuj1k ≤ c(τ1) + c(τ2)− c0iuk − c0jvk + ciuj1k ≤ c(τ1) + c(τ2)

The first inequality follows since the routes were driven by vehicle k or a larger vehicle and driving

a route with a smaller vehicle is never more expensive than driving it with a larger vehicle. The

second inequality follows from the triangle inequality.

Now, replacing τ1 and τ2 by route τ , driven with vehicle k leads to a solution X2 that is feasible

and has costs at most equal to the costs of X1. If a Cutting Plane of type (11) was satisfied for any

S ⊆ L, it is also satisfied with reference to X2. This procedure can be repeated until all customers

of S are grouped under one tour, if necessary. Repeating this procedure for all S ⊂ L that violate

Cutting Planes (11) shows that an optimal solution satisfying these Cutting Planes must exist.

The validity of Cutting Planes (15)

The proof of the validity of these Cutting Planes follows directly from the proof of the validity of

Cutting Planes (13) for the CVRP that is provided by Achuthan et al. (2003). It follows from

considering the proof provided for all vehicle types k ∈ K separately.

The validity of slack function (27)

It was already shown that inequality (38) is equivalent to Constraints (1e). From this equivalence,

it follows that the slack on Constraints (1e) can be rewritten into the slack on inequality (38).
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It may be noted that the latter corresponds to the former multiplied by a factor 2. This is not

problematic, since we are only interested in the question whether the slack is negative, or not.

Therefore, (27) can adequately be used as a slack function for Constraints (1e).

The validity of slack function (29)

The trivial slack function on Cutting Planes (11) for any set S such that
∑
i∈S

qi ≤ Qk is given by:

Z3(S) = |S|+ 1−
∑

h≤k∈K

∑
i,j∈S

xijh −
∑

h≤k∈K

∑
i∈S

x0ih

Applying identity (37) shows the equivalence to:

Z ′3(S) =
∑
h∈K

∑
i,j∈S

xijh +
1

2
(
∑
E(S,S)

xijh +
∑
i∈S

x0ih)

+ 1−
∑

h≤k∈K

∑
i,j∈S

xijh −
∑

h≤k∈K

∑
i∈S

x0ik

Canceling out opposite terms shows that this is equivalent to the following:

Z ′3(S) =
∑

h>k∈K

∑
i,j∈S

xijh +
1

2

∑
i∈S

x0ih

+
1

2

∑
h∈K

∑
E(S,S)

xijh + 1− 1

2

∑
h≤k∈K

∑
i∈S

x0ik

Since it is only of interest whether this slack is negative, or not, this slack function can be multiplied

by 2 to yield the desired result.

The validity of slack function (30)

The trivial slack function for Constraints (3) for a given set S reads:

Z4(S) = |S| − `k(S)−
∑
h∈K

∑
i,j∈S

xijh +
∑
j∈S

x0jh −mh

+
∑

h6=k∈K

∑
i,j∈S

xijh

Applying identity (37), gives:

Z ′4(S) =
∑
h∈K

∑
i,j∈S

xijh +
1

2
(
∑
E(S,S)

xijh +
∑
i∈S

xoih)

− `k(S)

−
∑
h∈K

∑
i,j∈S

xijh +
∑
j∈S

x0jh −mh

+
∑

h6=k∈K

∑
i,j∈S

xijh

After canceling out the opposite terms, this reduces to the following:

Z ′4(S) =
∑
h∈K

1

2
(
∑
E(S,S)

xijh −
∑
j∈S

x0jh) +mh

− `k(S) +
∑

h6=k∈K

∑
i,j∈S

xijh

Since, again, it is only of interest whether this slack function is negative, the function can be

multiplied by 2 in its entirety, giving the desired result.
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Proof αk(Slk) ≥ 0

Since Slk is one of the connected components of the resulting graph for vehicle k ∈ K, and Con-

straint (1e) are not violated for Slk, it must be true that the aggregate demand in Slk can all be

served by one vehicle. Namely, i ∈ Slk with qi > Qk cannot exist since the decision variables on the

edges incident to i are not defined for vehicle k. Furthermore, for i ∈ Slk, Constraints (1d) must

be satisfied and hence, it can be concluded that
∑
h∈K

∑
i,j∈S

xijh = |S| − 1. Therefore,

αk(Slk) =
∑
h∈K

∑
i,j∈Slk

xijh+
∑
j∈Slk

x0jk−|Slk|−
1

Qk

∑
j∈Slk

qj ≥
∑
h∈K

∑
i,j∈Slk

xijh+
∑
j∈Slk

x0jk−|Slk|−`k(Slk)

=
∑
h∈K

∑
i,j∈Slk

xijh +
∑
j∈Slk

x0jk − |Slk| − 1 =
∑
j∈Slk

x0jk ≥ 0

Here, the last inequality is valid since x0ih ∈ {0, 1, 2} for all i ∈ L and for all h ∈ K.

It may be noted that a similar argument can be generated for α′k(Slk) defined below:

α′k(Slk) =
∑
h∈K

∑
i,j∈Slk

xijh +
∑
j∈Slk

∑
h∈K

x0jh − |Slk| −
1

Qk

∑
j∈Slk

qj

However, if multiple vehicles of different types enter Slk, Slk is less likely to contribute to a violated

constraint or cutting plane. Therefore, αk(Slk) is preferred to define the order of sets added in

search 3.

52



Appendix D: Gomory cut validity

Suppose that a linear program is given as follows:

minimize
x

cTx (39a)

subject to Ax = b (39b)

x ≥ 0 (39c)

Note that this program is written in a standard form, in which all variables are required to be non-

negative and in which artificial and slack variables are added to constraints to generate constraints

that must hold at equality. Note that [A|b] represents a simplex tableau in standard form, for

which A = [N I] is the initial coefficient matrix and b represents the column vector of right hand

side coefficients. Selecting the columns from A corresponding to the basic variables in the optimal

LP-solution and merging those into an invertible matrix B, one can now write B−1A = B−1b to

derive an optimal simplex tableau for the linear program, in which A∗ = B−1A represents the

coefficient matrix and b∗ = B−1b is a column vector of right hand side coefficients. Even if the

original coefficients were integers, the coefficients in the final simplex tableau are often fractional.

Take a row A∗i in which fractional coefficients appear such that b∗i is fractional too. Since the

constraints hold at equality, for the optimal LP-solution x∗, it must hold that

∑
j

⌊
A∗ij
⌋
xj +

∑
j

(A∗ij −
⌊
A∗ij
⌋
)xj =

∑
j

A∗ijx
∗
j = b∗i = bb∗i c+ (b∗i − bb∗i c) (40)

If one now enforces that x∗j ∈ N, ∀j, this means that
∑
j

⌊
A∗ij
⌋
xj is integer valued. Therefore,∑

j

(A∗ij−
⌊
A∗ij
⌋
)xj is the fractional part of the left hand side, which must be at least as large as the

fractional part of the right hand side: b∗i − bb∗i c (Gomory, 1958). These need not be equal, since∑
j

(A∗ij −
⌊
A∗ij
⌋
)xj may be larger than 1 and exceed b∗i − bb∗i c, which is always smaller than 1.

Since the ultimate goal is to derive an optimal solution x∗ ∈ N, the Constraints (41) can

be added to the linear program, which eliminate some fractional solutions, but which does not

eliminate any feasible solution from consideration.

∑
j

(A∗ij −
⌊
A∗ij
⌋
)xj ≥ (b∗i − bb∗i c) (41)

This procedure can be repeated if that if perceived to be beneficial.
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Appendix E: Edge weight interpretation

A graphical representation of the edge weight function is provided in Figure 1. Here, d(u) represents

to the distance any point u to the center of gravity and d(0) represents the distance of the depot to

the center of gravity. It shows that driving a large vehicle near the city center is relatively expensive

and decreasing gradually until the costs of ‘merely’ driving the actual distance, represented by a

multiplication factor equal to 1.

Figure 1: The relative weight of driving any vehicle for a given point v.
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Appendix F: Specific results Heterogeneous Fleet Vehicle Routing

Problem

In Table 6, the results for the randomly generated HVRP problems are presented. These HVRPs

are solved using the exact HVRP branch-and-cut algorithm, which was terminated after 4 hours of

computation time. Furthermore, they are solved heuristically, using the sweep heuristic presented

in this thesis. Finally, Table 7 contains the success rates of the search procedures.

In both tables, an asterisk (*) is placed in the column ‘Number of customers’ when a problem

was not solved to optimality within these 4 hours. Furthermore, α is rounded to two decimals and

the remaining values are rounded to one decimal.

Table 6: Specific results for the HVRP

Number of Computation time Objective value Computation time Objective value Optimality Vehicle types Vehicle types

customers α branch-and-cut (s) branch-and-cut heuristic (s) heuristic gap (%) branch-and-cut heuristic

13
∗

0.58 NA 7045.3 0.0 7938.6 12.7 2 2

15
∗

0.30 NA 8817.2 0.0 9761.7 10.7 3 2

16
∗

0.47 NA 8381.5 0.0 9301.4 11.0 3 3

19
∗

0.73 NA 8693.4 0.0 12318.3 41.7 2 3

26
∗

0.12 NA 25355.7 1.3 22502.3 -11.3 3 3

26
∗

0.13 NA 18399.1 0.1 25196.4 36.9 3 3

28
∗

0.79 NA 12318.6 0.1 13743.8 11.6 3 3

32
∗

0.68 NA 10537.5 0.0 16098.9 52.8 3 3

35
∗

0.11 NA 21170.4 355.8 30049.8 41.9 3 3

35
∗

0.61 NA 11050.1 0.1 14684.8 32.9 2 2

35
∗

0.70 NA 12206.9 13.1 12077.7 -1.1 1 3

40
∗

0.37 NA 14541.4 401.7 22170.9 52.5 3 3

50
∗

0.37 NA 16716.6 0.8 24295.7 45.3 2 3

Table 7: Success rates search procedures HVRP

Number of Success rate Success rate Success rate Success rate

customers α search 1-3 (%) search 4 (%) search 5 (%) search 6 (%)

13
∗

0.58 0.2 0.0 0.5 0.0

15
∗

0.30 0.2 0.0 0.5 0.0

16
∗

0.47 0.1 0.0 4.1 0.0

19
∗

0.73 0.1 0.1 0.2 0.0

26
∗

0.12 0.1 0.0 0.4 0.0

26
∗

0.13 0.0 0.0 1.0 0.0

28
∗

0.79 0.0 0.0 0.1 0.0

32
∗

0.68 0.1 0.1 0.4 0.0

35
∗

0.11 0.1 0.0 1.2 0.0

35
∗

0.61 0.0 0.0 0.4 0.0

35
∗

0.70 0.2 0.1 1.9 0.0

40
∗

0.37 0.0 0.1 1.0 0.0

50
∗

0.37 0.1 0.3 6.1 0.0
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