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Abstract

This research paper aims to critically evaluate the validity of clustering stability for the

selection of the number of clusters. By means of simulated examples it is shown that the

stability-based CVa, CVv (Wang, 2010) and CC (Monti, Tamayo, Mesirov, & Golub, 2003)

measures consistently outperform the popular non-stability-based KL, Silhouette, GAP and

JUMP measures. However, the objective of this paper is not to establish superiority for stability-

based selection measures, but to provide a complete picture of their strengths and weaknesses.

Theory highlights some potential pitfalls for the CVa, CVv and CC measures and for clustering

stability in general, which are confirmed in simulated examples. Most striking is the existence

of stable but meaningless clusters, indicating that a stable solution cannot be guaranteed to be

valid. It is concluded that, while there are compelling arguments for the use of stability-based

measures for the selection of the number of clusters, they alone are not sufficient to validate the

clustering. Therefore, they should be used as a part of a wider strategy for the identification of

the number of clusters. In case one decides to make use of stability-based selection measures,

the conditions at hand determine which of the measures, CVa, CVv or CC, should be employed.
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1 Introduction

Cluster analysis describes the task of grouping similar observations together in clusters.

The characteristics of these clusters may then yield valuable insight in the underlying distri-

bution of data. The formation of the clusters depends on the employed clustering algorithm.

A wide variety of clustering algorithms exist, utilizing various objective functions. Whether

a given algorithm is appropriate depends on the objective of the study and the structure of

the data. Moreover, the selection of the number of clusters remains a fundamental issue in

the field of cluster analysis. This is mainly attributed to the absence of an objective measure

for the comparison of different clusterings of the same data set (Wang, 2010). While some

heuristics exists, these methods remain subjective. One clustering might be better according

to one metric, while the reverse is true according to another metric. As there is no definite

answer for which metric is uniformly the best, it is important that measures for the selection

of the number of clusters are developed and evaluated against each other.

Wang (2010) proposed two selection methods based on the notion of clustering stabil-

ity, which builds on the idea that a valid clustering should be robust against randomness

in sampling. Such approaches are attractive as they can be applied to any type of cluster-

ing algorithm. While the idea is intuitively clear, theoretical and practical justification of

stability-based selection methods appear to be lacking. The question arises whether cluster-

ing stability is a valid tool for the selection of the number of clusters:

R1: To what extend is clustering stability a valid measure for the selection of the number of

clusters?

This research question is answered from a theoretical and empirical perspective. Firstly,

the theoretical background of clustering stability is examined to identify its main advantages

and pitfalls. To evaluate validity from an empirical perspective, the performance of several

stability-based methods is evaluated. Specifically, the cross validation measures CVa and

CVv (Wang, 2010) and consensus clustering (CC) (Monti et al., 2003) are considered.

To evaluate the competitiveness of the stability-based selection measures, I compare their

selection performance to that of several popular non-stability-based selection measures in

four simulated examples. These examples are taken from Wang (2010), who selected these
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examples to illustrate the competitiveness of his cross validation measures. Therefore, it is

expected that the stability-based selection measures perform well in these examples, providing

a biased view. The aim of this paper is not to establish superiority for stability-based selection

measures, but to provide a complete picture of their strengths and weaknesses. This allows

for a more considered use of the CVa, CVv and CC measures for the selection of the number of

clusters. Based on the theoretical pitfalls of clustering stability, new data sets are generated

on which the selection performance of the stability-based measures is evaluated. In this way,

the practical implications of their theoretical pitfalls can be assessed.

This research question is scientifically relevant, as it is yet unclear whether stability-based

measures should be used for the selection of the number of clusters. This paper aims to fill

this gap in the literature and provides a thorough picture of clustering stability as a measure

for the selection of the number of clusters. Existing research often failed to provide an

unbiased picture, by stressing either the advantages or the weaknesses of a certain selection

measure. It is important that researchers include both sides of the story in order to provide

an unbiased picture of the measure in question.

Even though the CVa, CVv and CC measures are all based on the notion of clustering

stability, they each take a different approach in computing and evaluating the stability scores.

One measure might be more suitable in a certain data set, while another measure is more

suitable in another. For a more considered use of the CVa, CVv and CC measures, it is

important that the circumstances in which one of the measures is preferred are identified.

Therefore, the second research question is posed:

R2: How do the CVa, CVv and CC measures compare to each other?

Again, this research question is answered from a theoretical and empirical perspective.

The methodology behind the measures is compared to highlight their differences. Based on

these theoretical differences, new data sets are generated. The performance of the stability-

based measures are then compared on these data sets to assess the practical implications of

their theoretical differences. This research question is scientifically relevant, as it is not yet

clear how clustering stability should be implemented in practice. To yield more insight in

this problem, stability-based measures should be critically evaluated against each other.
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On one hand, the results support the validity of clustering stability for the selection of the

number of clusters, as the stability-based measures consistently outperform the non-stability-

based measures. On the other hand, several circumstances were identified in which stability-

based selection measures produced misleading results. Most concerning is the existence of

stable but meaningless clusterings, which implies that stable solutions cannot be guaranteed

to be valid. This provides a counter example to the validity of clustering stability for the

selection of the number of clusters. Stability-based measures alone are thus not sufficient to

validate a clustering and they should be used as a part of a wider strategy for the identification

of the number of clusters. In case one chooses to utilize stability-based selection measures, the

conditions at hand determine which of the measures, CVa, CVv or CC, should be employed.

The remainder of this paper is structured as follows. The theoretical validity of clustering

stability and related literature are explored in Section 2. The methods of this paper are then

described in Section 3. This concerns the CVa, CVv and CC measures, the non-stability-

based measures and the employed clustering algorithms. Section 4 describes how the data sets

are simulated and is divided into two sub-sections, corresponding to the research questions.

This is followed by the results in Section 5, which follows the same structure as Section 4.

The practical implications of the results are then discussed in Section 6. Finally, a conclusion

and discussion are presented in Section 7.

2 The validity of clustering stability

The general idea behind clustering stability is that a good clustering should be robust

against randomness in sampling. When random samples from a population result in similar

clusterings, it can be concluded with more confidence that these clusterings represent the

actual structure of the data (Monti et al., 2003). Various implementations exist for the

selection of the number of clusters based on an algorithm’s stability. These approaches differ

in the way they generate perturbed samples and how they compute and evaluate the stability

scores. In general, stability-based methods select the number of clusters, k, by minimizing the

estimated instability. Instability increases when the incorrect number of clusters is chosen.

When k is set too high, the true clusters are randomly split. When k is set too low, the true
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clusters are randomly merged. This induces instability. Intuitively, the use of stability-based

selection methods seems compelling. Furthermore, clustering stability is flexible and can be

applied to any type of clustering algorithm. Amongst others, Ben-Hur, Elisseeff, and Guyon

(2001), Lange, Roth, Braun, and Buhmann (2004) and Wang (2010) have found promising

results for their proposed stability-based measures for the selection of the number of clusters

in both simulated and real life examples.

The use of stability-based selection measures is not without challenges. While it is true

that an unstable solution is “bad”, it is not necessarily true that a stable solution is “good”.

A simple example illustrates that a stable solution could be meaningless: a clustering in

which each cluster contains a single observation is perfectly stable, yet completely mean-

ingless. Furthermore, a clustering may sometimes only be stable due to the inflexibility of

the employed clustering algorithm (Hennig, 2007). This is in line with the findings of Handl,

Knowles, and Kell (2005), who found that the tendency of the k-means algorithm to construct

spherical clusters lead to a stable but meaningless clustering of a data set with elongated

clusters. The existence of stable but meaningless clusterings implies that clustering stability

alone is not enough to validate the clustering and thus cannot reliably be used to select the

number of clusters. On the other hand, Von Luxburg (2010) found, for the k-means algo-

rithm, that the values of k that lead to stable solutions have desirable properties, such that

stability-based methods can be used to identify the number of clusters. These contrasting

conclusions highlight the importance for further research in this field.

Research has highlighted several circumstances in which stability-based measures, previ-

ous to the CVa, CVv and CC measures, produced misleading results. For example, previ-

ous stability-based selection measures were found to perform badly when cluster sizes were

unequally distributed and when the features exhibited high correlations (Krieger & Green,

1999). Furthermore, when the true number of clusters was relatively large, previous stability-

based measures were found to be biased towards fewer clusters (Breckenridge, 2000). As it

is not uncommon for real data sets to exhibit these features, it is important that selection

measures can deal with them. The question arises whether more recently proposed stability-

based selection measures, such as CVa, CVv and CC, can deal with such features in the data

or whether stability-based measures are in general inappropriate in this context.
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Ben-David, Von Luxburg, and Pál (2006) found that the stability of a given algorithm is

not determined by clustering parameters. Instead, stability depends only on the algorithm’s

objective function and in case it has a unique global optimum the algorithm is asymptotically

stable. The stability of the algorithm thus does not depend on the correctness of the selected

k and a stable clustering could be constructed with the wrong number of clusters. This casts

some serious doubt on the validity of clustering stability for the selection of the number of

clusters. However, the mean of the limiting distribution of the re-scaled instabilities can

be shown to be dependent on k (Shamir & Tishby, 2008). This implies that, in the limit,

different values of k lead to different values of re-scaled instabilities. Hence, if the sample

size is large enough, clustering stability could be used to identify the number of clusters.

From a theoretical point of view, there are compelling arguments for clustering stability

as a measure for the selection of the number of clusters. Yet, many potential pitfalls have

been identified that suggest that clustering stability alone is not sufficient to determine the

number of clusters. While stability-based selection measures may perform well under certain

conditions, a stable solution cannot be guaranteed to be valid. Clustering stability should

therefore not be used in isolation, but as a component in a broader strategy for the selection

of the number of clusters. In this way, the risk of accepting false outcomes is minimized.

3 Methodology

The following notation is used throughout the text. Data sets contain N observations,

which have to be grouped into k = {2,3,...,K} clusters. K is some pre-specified maximum

and individual clusters are denoted by h = {1,2,...,k}.

3.1 Cross validation measures

CVa and CVv select the number of clusters by minimizing the algorithm’s instability.

The data set is partitioned into three equal-sized subsets: two training sets (Z1 and Z2)

and a validation set (Z3). Cluster analysis is performed on Z1 and Z2, resulting in two

clusterings. Z3 is then used to validate the performed analysis by measuring the agreement

between the two clusterings. Let ψ(i,Z) denote a classifier that is trained on Z ∈ {Z1, Z2}
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and that assigns observation i in Z3 to cluster h. For each combination of observations i

and j in Z3, I compare ψ(i,Z1) with ψ(j,Z1) and ψ(i,Z2) with ψ(j,Z2). Such predictions

of cluster membership are easily obtained for k-means clustering. For spectral clustering,

however, cluster membership must be computed via the k-nearest neighbours algorithm.

This algorithm assigns the observation to the cluster that is most common among its k

nearest neighbours. In the following, the number of nearest neighbours is set to 10. Other

values are possible, but this is not expected to have a significant influence on the selection

performance (Wang, 2010). A stable clustering algorithm should then either assign i and j to

the same cluster or to different clusters according to both classifiers, such that the clusterings

are similar. When the clusterings are not in accordance, the estimated instability score is

increased with one point. An instability score is computed for all possible values of k and

the number of clusters is selected by minimizing the instability over k.

The clusterings and the estimated instability depend on how the data are split. To reduce

the variability in estimation, 100 random splits are considered. There are two approaches

for summarizing the results over the 100 splits: cross validation with voting (CVv) and cross

validation with averaging (CVa). Cross validation with voting considers each split of the

data individually. For each split, CVv casts a vote on the k that minimizes instability. The k

that receives the most votes is selected. Cross validation with averaging, on the other hand,

computes the average instability over all splits for each k. k can then be selected by simply

minimizing the average instability, resulting in CVa1. For a finer evaluation of the differences

in average instability, one could compute the standard deviations. k is then selected as the

largest k for which the average instability minus twice the standard deviation is smaller than

all average instabilities of k′ < k, resulting in CVa2. A consequence is that CVa2 selects

larger k’s than CVa1 when the magnitudes of the average instabilities are comparable.

Wang (2010) showed that both CVa and CVv reach asymptotic selection consistency, such

that the probability of selecting the optimal number of clusters converges to one, when the

data are properly split. This result, however, depends on how Wang (2010) defined “the

optimal number of clusters”. He defined it as the number of clusters that minimizes the

algorithm’s instability. As this is precisely the objective of the cross validation measures, the

result merely implies that the measures converge to the global optimum. This result favours
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the use of CVa and CVv over other selection measures that could terminate at local optima.

However, it does not say anything about their ability to select the true number of clusters as

a stable clustering may not necessarily be meaningful.

3.2 Consensus clustering

Consensus clustering (CC) assesses the agreement, or consensus, between clusterings of

perturbed samples of the data set. This paper considers 100 perturbed samples, correspond-

ing to the 100 splits for the cross validation measures. The perturbed samples are created by

randomly taking 70% of the observations. While sub-sampling leads to smaller data sets, no

significant adverse effect has been found on the selection performance of consensus clustering

(Monti et al., 2003). The consensus between the clusterings is assessed by means of the

consensus matrix M . M is a symmetric N X N matrix with elements M(i,j) that represent

the proportion of clusterings in which observations i and j are assigned to the same cluster.

M(i,j) is referred to as the consensus index of pair (i, j) and takes values between zero and

one. Perfect consensus then corresponds to all elements of M being either zero or one. The

rows and columns of M are arranged such that observations that belong to the same cluster

are adjacent. In case of perfect consensus, M is a block-diagonal matrix in which each block

of ones represents a cluster and is surrounded by zeros.

The consensus matrix M can be used to visualize the clusterings. So-called heat maps

are created by applying a color gradient to the zero to one range of real numbers, in which

zero corresponds to white and one corresponds to dark red. In practice cluster membership

is often unknown in advance, such that the order of the rows and columns in M is unknown.

Hierarchical clustering with M as the similarity matrix can be used to find the ordering of the

observations. In particular, this paper employs the optimal leaf-ordering algorithm that was

proposed by Bar-Joseph et al. (2003). The resulting dendogram ensures that observations

with the highest consensus indices are adjacent such that the block-diagonal nature of the

heat map is maximized. In addition, the consensus matrix can be used to compute stability

scores for components, groups of observations that may or may not correspond to the clusters.

These scores are computed as the average consensus indices of all pairs of observations that

belong to the component. This is particularly useful in the context of overlapping clusters.
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To select the number of clusters, a consensus matrix is constructed for each k, resulting in

M(k). Recall that perfect consensus corresponds to all elements of M being zero or one. The

best k then corresponds to the “cleanest” matrix M(k). This is formally evaluated by the

consensus distribution, which asses how the values M(k)(i,j) are distributed on the zero to one

range. For this reason, the empirical cumulative distribution function Fe() is constructed.

Fe(t) is computed as the proportion of consensus indices that are smaller or equal to t, for

0 ≤ t ≤ 1. In case of perfect consensus Fe() resembles a step function. A gradually climbing

Fe() reflects the lack of consensus, as it demonstrates the many fractional elements in M . To

quantify the difference in the shapes of Fe() for the different k, the area below the curves,

A(k), is considered. Before reaching the true k, increasing k leads to an increase in A(k)

as M will contain more zero elements. This is because observations, that were previously

wrongfully put in the same cluster, are now separated into their true clusters. However, after

reaching the true k, increasing k will not lead to any further increase in A(k) as this causes

the true clusters to be randomly split. This leads to more fractional elements in M . This

behaviour is summarized by ∆(k) which denotes the relative increase in A(k) with respect to

the largest A(k′) for k′ < k. The number of clusters is then chosen as the largest k for which

∆(k) is significantly larger than zero. This may provide a range of possible k’s. However,

with the inspection of the heat maps it is often possible to select the single best k.

3.3 Cross validation measures versus consensus clustering

This paper considers two approaches for the selection of the number of clusters based on

clustering stability: the cross validation measures and consensus clustering. This choice is

motivated by their different approaches for the computation and assessment of the stabil-

ity scores. The cross validation measures estimate the algorithm’s instability and minimize

this. Consensus clustering evaluates the instability scores of all pairwise observations simul-

taneously by means of the consensus distribution. Conventional stability-based measures

often take a similar approach as the cross validation measures, such that the results can be

generalised to a wide range of stability-based selection measures.

The cross validation measures compute a single instability score for the entire clustering

and can therefore not be used to evaluate the stability of components of the data. Consensus
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clustering, on the other hand, can be used to identify unstable components. This is useful

in the context of overlapping clusters, as observations on the border are often found to be

less stable. Lord, Willems, Lapointe, and Makarenkov (2017) found that the removal of such

unstable observations lead to a better recovery of the true number of clusters, advocating

the use of consensus clustering.

Another advantage that consensus clustering has over the cross validation measures is that

it can be used to produce a visualisation of the clustering, thereby yielding more insights.

However, the inspection of the heat maps is also often needed to select k, as the decision

rule of consensus clustering can be vague. The decision rules for CVa and CVv, on the other

hand, are stricter. They select k by minimizing the estimated instability, but do not take

into account the sizes, shapes and boundaries of the clusters. Even though not formally,

consensus clustering does account for these features in the heat maps. A distinction can also

be made between the decision rules of CVa and CVv. The first makes use of averaging, while

the latter makes use of voting to summarize the results over the splits. A deviant value for

the estimated instability in a single split is more likely to affect the result of CVa than that

of CVv. The latter is thus more robust against outlying clusterings.

The estimation of instability by means of cross validation presents another issue. Firstly,

the splitting of the data causes the data set for the cluster analysis to be three times as small

as the original data set. As the selected k is dependent on sample size, the selection of k

based on the estimated instability of the sub-samples is questionable. An additional problem

is introduced when the sample size becomes too small. In this case, taking small subsets

may come at the cost of the underlying data structure. Consensus clustering avoids both

problems as it takes sub-samples containing 70% of the observations of the original data set,

which is considerably more than a third.

Lastly, while asymptotic selection consistency is established for the cross validation mea-

sures, such a result lacks for consensus clustering. The latter may thus terminate at a local

optimum.
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3.4 Non-stability-based selection measures

To evaluate the competitiveness of the stability-based measures, their selection perfor-

mance is compared to that of several popular non-stability-based measures. The following

presents a an overview of the non-stability-based measures that are employed in this paper.

The Silhouette measure (Rousseeuw, 1987) evaluates how similar an observation is to the

cluster that it belongs to compared to other clusters. The higher the Silhouette score, the

more similar the observations are to the cluster they belong to. The number of clusters is

then selected by maximizing the Silhouette score. This measure is often used as a benchmark

for newly proposed selection measures. The KL measure (Krzanowski & Lai, 1988) is based

on the within-group sum-of-squares objective function. The authors find promising results

for their criterion but note that its performance is limited to distance-based data sets, for

which the sum-of-squares objective function is appropriate. Furthermore, the criterion might

terminate at a local optimum. The GAP measure (Tibshirani, Walther, & Hastie, 2001) is

based on the deviation of the within-cluster sum of squares with the expected value under the

null hypothesis of no obvious clustering. The number of clusters is selected as the smallest

k for which the GAP(k) ≥ GAP(k + 1) − sk+1, where sk+1 denotes the sample standard

deviation. When this condition is not satisfied, the algorithm selects k = 1. The authors find

that the GAP measure performs well when the uniform reference in the principal component

orientation is used. This is the approach that is employed in this paper. Lastly, the JUMP

measure (Sugar & James, 2003) minimizes the average distance between an observation and

the closest cluster center, also known as the distortion. The JUMP score captures the change

in distortion when k is reduced by one and selects the number of clusters by maximizing

the JUMP score. The authors find promising results for their measure but note that the

distortion curve may be monotone. In this case, optimization is not sensible as it selects a

corner solution. Both the GAP and JUMP measures employ bootstrap estimation techniques,

which means that they generate perturbed samples by randomly sampling observations with

replacement from the original data set.

Each of the authors have illustrated great selection performance for their proposed mea-

sures, which is why these measures were chosen as benchmarks for the stability-based mea-

sures. To allow for a fair comparison between the selection measures, the number of bootstrap
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samples for the GAP and JUMP measures is set to 100. This corresponds to the 100 splits

for the cross validation measures and the 100 sub-samples for consensus clustering.

3.5 Clustering algorithms

Two clustering algorithms are employed in this paper: a distance-based algorithm and a

non-distance-based algorithm. K-means clustering is distance-based and starts with k random

observations as starting points. The algorithm then assigns the remaining observations to

the cluster whose center is the closest. The resulting clusters have the property that the

sum of squares from the observations to their assigned cluster centers is minimized. Due

to its simplicity and efficiency, k-means has become a popular clustering method and many

variations have been developed. This paper utilizes the algorithm proposed by Hartigan and

Wong (1979), which is superior to other k-means algorithms. However, as it is a greedy

heuristic approach, it may terminate at a local optimum. Therefore, 20 random restarts for

the starting points are considered.

Spectral clustering is not based on distance, but based on the connectivity of the obser-

vations. The observations are connected by edges to form a similarity graph, which models

the local neighbourhood relationships between the observations. The similarity graph is then

used to compute the graph Laplacian, a lower-dimensional representation of the similarity

graph. Finally, a standard clustering algorithm is applied to the eigenvectors of the graph

Laplacian. An advantage of spectral clustering is that it makes no assumptions on the statis-

tics of the clusters. It can therefore successfully find clusters with non-convex shapes, in

contrast to k-means. Various spectral algorithms exist, but the majority of these algorithms

have no theoretical backbone for their validity. This paper utilizes the algorithm proposed

by Ng, Jordan, and Weiss (2002), which is supported by both theory and practice.

Agglomerative hierarchical clustering is used to determine the optimal order of the rows

and columns of the consensus matrix M . The algorithm starts with each observation as a

cluster. In each iteration, the most similar clusters are merged until all observations belong

to the same cluster. In this paper, M is used as the similarity matrix. Furthermore, average

linkage is used, such that the similarity between two clusters is computed as the average

similarity between the pairs of observations. The algorithm returns a dendogram with ordered
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observations. However, many possible orderings exist, as the algorithm is sensitive to noise.

The optimal leaf ordering algorithm (Bar-Joseph et al., 2003) is employed to find the single

best ordering of the observations. It ensures that the most similar observations are adjacent,

such that the most diagonal heat map can be attained.

4 Experimental design

4.1 The validity of clustering stability

4.1.1 Four simulated examples (Wang, 2010)

To evaluate the competitiveness of the stability-based measures, their selection perfor-

mance is compared to that of several non-stability-based measures in four simulated examples.

The true number of clusters is known such that the performance of the measures can be com-

pared objectively. To illustrate the flexibility of the selection measures, both distance-based

and non-distance based data sets are considered. This distinction regards the structure of

the data. In distance-based data sets clusters are based on the proximity of the observations.

In non-distance-based data sets clusters are based on the connectivity of the observations.

The distinction is clear from Figures 4 and 5 of Appendix A.1.

Examples 1 and 2 are distance-based. Example 1 consists of two elongated clusters of

100 observations in a three-dimensional space. It is generated by setting x1 = x2 = x3 = t,

where t takes 100 equally spaced values between -0.5 and 0.5. Gaussian noise with mean 0

and standard deviation 0.1 is then added to all three features. This is the first cluster. The

second cluster is created in the same way but adds a value of 10 to each feature at the end.

Example 2 consists of four non-Gaussian clusters of 100 observations in a ten-dimensional

space. The first two dimensions of the clusters are sampled from four bi-variate exponential

distributions with location parameters (4,4), (4,-4), (-4,4) and (4,4). The distributions have

scale parameter 1 and are independent. The remaining eight dimensions are noises sampled

from a standard exponential distribution. Plots of the two examples can be found in Figure

4 of Appendix A.1.

Examples 3 and 4 are non-distance-based. Example 3 is the two moon example, which
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consists of two clusters of 100 observations in a two-dimensional space. The shapes of the

clusters are similar to that of a waxing and waning crescent moon. The data set is constructed

with the shapes.two.moon() function in the clusterSim package in R, with shape parameters

0 and 2 and radii between 1.9 and 2. Example 4 is the bull’s eye example, which consists of

two clusters in a two-dimensional space. The data resemble a bull’s eye with an inner and an

outer ring. The first consists of 80 observations, the latter of 240 observations. The BullsEye

data set can be found in the Mixall package in R. Plots of the two examples can be found

in Figure 5 of Appendix A.1.

Note that these data sets are not exact replications of those that appeared in Wang

(2010). Important information such as the number of observations, shape parameters and

the dependence in the features was missing. Especially for examples 3 and 4 much information

was missing. Yet, the main characteristics of the data are the same.

4.1.2 Unequal cluster sizes and correlated features

Krieger and Green (1999) found that previous stability-based measures performed badly

when cluster sizes were unequally distributed and when features exhibited high correlations.

To evaluate whether the more recent CVa, CVv and CC measures also suffer from these

pitfalls, new data sets are generated. These data sets consist of 192 observations in four

clusters in a ten-dimensional space. The cluster means2 are chosen such that their pairwise

Euclidean distances are larger than ten. This ensures that the clusters are well-separated.

The observations are generated as µi + σSiεi for cluster i = {1, 2, 3, 4}. σ is a vector of

scaling constants that are set to 0.7, S governs the correlation between the features and ε are

independent samples from N(0, 1). In the base case, clusters are of equal size and features are

uncorrelated, such that S is set to the identity matrix. In the case of unequal cluster sizes,

the first cluster contains 114 observations, while the three remaining clusters each contain 26

observations. In the case of correlated features, S is a matrix with ones on the diagonal and

off-diagonal elements sampled from N(1, 1). Plots of these data sets can be found in Figure

6 of Appendix A.1.

2µ1 = [1,1,1,1,1,1,1,1,1,1], µ2 = [2,3,2,2,5,7,2,2,8,2], µ3 = [0,-2,8,4,5,1,6,0,2,3], µ4 = [-1,6,-3,2,6,5,4,0,0,-1]
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4.1.3 More clusters

Breckenridge (2000) found that previous stability-based measures were biased towards

fewer clusters when the true number of clusters was large. To evaluate whether the more

recent CVa, CVv and CC measures also suffer from these pitfalls, new data sets are generated.

These data sets consist of m = {5, 6, 7, 8, 9, 10} equally sized clusters with uncorrelated

features. To allow for a fair comparison, the number of observations is fixed at 400. The

clusters thus contain 80, 67, 57, 50, 44, and 40 observations, respectively. The clusters are

generated in a similar manner to example 1. Set x1 = x2 = x3 = t, where t takes equally

spaced values between -0.5 and 0.5. Gaussian noise with mean 0 and standard deviation 0.1

is then added to the three features. These clusters are then moved by adding or subtracting

5, 10 or 15 to or from the features, such that the clusters are well-separated. Figure 7 of

Appendix A.1 illustrates where the clusters are located in the first two dimensions.

4.1.4 A stable but meaningless clustering

Handl et al. (2005) and Hennig (2007) found that previous stability-based measures pro-

duced misleading results when the shape of the data caused the clustering algorithm to

converge to sub-optimal solutions. Handl et al. (2005) showed that the k-means algorithm

constructed a stable but meaningless clustering of a data set with elongated clusters. The

authors concluded that this was the result of k-means’ tendency to form spherical clusters.

To evaluate the validity of this criticism, a new data set with elongated clusters is generated.

Recall that example 1 also contains elongated clusters. However, from the left plot in Figure

4 of Appendix A.1 it is clear that these clusters are far apart such that their shapes become

negligible. The new data set consists of two elongated clusters with little spatial separation

such that their shapes are more influential. The clusters reside in a two-dimension space and

each contain 100 observations. This data set is generated as follows: for the first feature, 200

independent values are sampled from N(0, 2). The second feature is set to 1 for the first 100

observations and set to 0 for the second 100 observations. The values of the second feature

are then jittered to induce some randomness. A plot of this data set can be found in Figure

8 of Appendix A.1.
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4.2 Cross validation measures versus consensus clustering

4.2.1 Stability scores for components

Theory highlights that consensus clustering can be used to compute stability scores for

components of the data. This is particularly useful when clusters are overlapping, which

is the case in the Iris data set. The Iris data set is available in R and consists of 150

observations that are recorded in four dimensions: sepal width, sepal length, petal width and

petal length. The three species of irises, setosa, versicolor and virginica, are each represented

with 50 observations. The true number of clusters is three, but as the second and third

species are overlapping, many selection methods fail to distinguish the two (Sugar & James,

2003). A plot of the Iris data set can be found in Figure 10 of Appendix A.2.

4.2.2 Visualisation by heat maps

An advantage that consensus clustering has over the cross validation methods is that

it can be used to produce a visualisation of the clustering. This is particularly useful in

the context of high-dimensional data sets, for which the structure of the data might not

be immediately clear from plotting the data. Heat maps then provide an intuitive two-

dimensional visualisation of the clustering, irrespective of the dimensionality of the data.

As an illustration, the data set with the four equally sized clusters in ten dimensions and

uncorrelated features, described in section 4.1.2, is considered. From the left plot in Figure

6 of Appendix A.1, it is clear that plotting the data yields little insight into the underlying

structure of the data.

4.2.3 Small sample size

Some concerns were raised about the use of cross validation estimation techniques in

small samples. To evaluate the empirical validity of this concern, some variations of example

2 are considered. Example 2 consists of 400 observations in four equally sized clusters.

Sub-samples are then taken to construct three data sets with 200, 100 and 48 observations,

respectively. The clusters are assumed to be of equal size, such that they each contain 50, 25

or 12 observations. Plots of the three data sets can be found in Figure 9 of Appendix A.2.
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4.3 Data pre-processing

Before clustering, the data sets must be checked for missing values, errors and outliers. In

the Iris data set no missing values, errors or outliers were detected. For the simulated data

sets such issues are absent by construction. Secondly and more importantly, the features

are re-scaled to ensure that they receive equal weights in the clustering solution. For each

data set in this paper, it is assumed that the features are of equal importance such that

re-scaling is imperative. Otherwise, large-scaled features wrongfully receive higher weights.

Several re-scaling methods exist, but those that divide by the range have been found to yield

the best recovery of the data structure (Milligan & Cooper, 1988). For each data set, the

features are re-scaled as follows:

X −min(X)

max(X)−min(X)
(1)

5 Results

5.1 The validity of clustering stability

5.1.1 Four simulated examples (Wang, 2010)

The selection performance of the stability-based CVa, CVv and CC measures is compared

to that of the non-stability-based Silhouette (SIL), KL, GAP and JUMP measures in four

simulated examples to evaluate the competitiveness of clustering stability for the selection of

the number of clusters. Each of the examples is repeated 50 times. For the distance-based

examples, k-means clustering is employed. These results are summarized in Table 1. For the

non-distance-based examples, spectral clustering is employed. These results are summarized

in Table 2. The tables illustrate how often the proposed measures select a specific k in the

50 runs. The true number of clusters is marked in bold.

Example 1 illustrates a low-dimensional data set with well-separated elongated Gaussian

clusters. From Table 1a it is clear that all proposed measures, with the exception of the

JUMP measure, consistently select the correct number of clusters. It is likely the elongated

nature of the clusters that hinders the JUMP measure from selecting the correct k. Example 2
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Table 1: Number of selected clusters for the distance-based examples

k 2 3 4 5 6 7 8 9 10

SIL 50 0 0 0 0 0 0 0 0

KL 50 0 0 0 0 0 0 0 0

GAP 50 0 0 0 0 0 0 0 0

JUMP 0 0 0 0 31 1 15 1 2

CC 50 0 0 0 0 0 0 0 0

CVa1 50 0 0 0 0 0 0 0 0

CVa2 5 15 27 2 1 0 0 0 0

CVv 50 0 0 0 0 0 0 0 0

(a) Example 1

k 2 3 4 5 6 7 8 9 10

SIL 0 0 49 1 0 0 0 0 0

KL 0 0 46 2 0 0 0 0 2

GAP 0 15 35 0 0 0 0 0 0

JUMP 0 0 48 0 0 0 0 0 2

CC 0 0 50 0 0 0 0 0 0

CVa1 1 0 49 0 0 0 0 0 0

CVa2 0 0 32 18 0 0 0 0 0

CVv 0 0 50 0 0 0 0 0 0

(b) Example 2

is slightly more complex and illustrates a high-dimensional data set with well-separated non-

Gaussian clusters. The GAP measure diminishes in selection performance, while the other

measures perform well. The stability-based measures perform well in both distance-based

examples, suggesting that clustering stability is a competitive measure for the selection of

the number of clusters. From the distance-based examples it is clear that the stability-based

measures are most competitive with the Silhouette and KL measures.

Table 2: Number of selected clusters for the non-distance-based examples

k 2 3 4 5 6 7 8 9 10

SIL 0 0 0 0 0 0 50 0 0

KL 0 0 0 0 0 0 0 50 0

GAP 50 0 0 0 0 0 0 0 0

JUMP 45 0 5 0 0 0 0 0 0

CC 49 1 0 0 0 0 0 0 0

CVa1 50 0 0 0 0 0 0 0 0

CVa2 47 3 0 0 0 0 0 0 0

CVv 50 0 0 0 0 0 0 0 0

(a) Example 3

k 2 3 4 5 6 7 8 9 10

SIL 0 0 0 0 0 0 0 50 0

KL 0 0 0 1 0 0 0 49 0

GAP 0 0 0 0 0 0 0 0 0

JUMP 50 0 0 0 0 0 0 0 0

CC 50 0 0 0 0 0 0 0 0

CVa1 50 0 0 0 0 0 0 0 0

CVa2 50 0 0 0 0 0 0 0 0

CVv 50 0 0 0 0 0 0 0 0

(b) Example 4

Examples 3 and 4 are non-distance-based and concern low-dimensional data sets with
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non-Gaussian clusters that take unconventional shapes such as half moons and annuli. The

KL and Silhouette measures now fail to select the correct number of clusters and lose their

competitive edge. This was expected as they select k based on the optimization of some

within-cluster similarity measure, which is inappropriate for non-distance-based data sets.

While the GAP and JUMP measures perform reasonably well in example 3, their performance

degrades in example 4. The GAP measure consistently fails to detect a clustering, selecting

k = 1. Moreover, the distortion curve for example 4, depicted in Figure 1, is monotonically

decreasing. As Sugar and James (2003) pointed out, optimizing the JUMP measure may not

be sensible in this case. Therefore, the JUMP measure may have only accidentally selected

two clusters as it happens to be a corner solution.

Figure 1: Monotone distortion curve for example 4 (JUMP measure)

The stability-based measures consistently select the correct number of clusters in both

the distance-based and the non-distance-based examples, demonstrating their flexibility. The

non-stability-based methods seem to be less robust. From the results it is clear that the

stability-based measures outperform the already established and generally accepted non-

stability-based selection measures. While no formal conclusions about the validity of clus-

tering stability can be drawn from these results, they do suggests that clustering stability is

a good, or at least a competitive, measure for the selection of the number of clusters. Fur-

thermore, it is noted that CVa2 seems to be biased towards more clusters. This is a natural

consequence of its decision rule. The more simplistic CVa1 seems to be preferred.

Recall that the examples are not exact replications of those that appeared in Wang (2010).

Consequently, the results are not exactly the same. The slight variation in data sets reveals

features of the selection measures that were previously left uncovered. For instance, example
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4 illustrates one of the major pitfalls of the JUMP measure. Namely that its distortion

function may be monotone, in which case a corner solution is selected. Nonetheless, as the

key characteristics of the data sets were preserved, the main conclusion remains the same. The

stability-based measures outperform the non-stability-based measures in all four simulated

examples. These results support the validity of clustering stability for the selection of the

number of clusters. They do not, however, imply that stability-based measures are always

appropriate for the selection of the number of clusters. Considering that the examples were

taken from Wang (2010), who selected them to illustrate the competitiveness of his cross

validation measures, it is not surprising that the stability-based measures perform well. The

results paint a too optimistic picture that cannot necessarily be generalized to other data

sets. To provide an unbiased picture of clustering stability as a measure for the selection of

the number of clusters, some cases in which previous stability-based selection measures failed

to select the correct number of clusters are considered

5.1.2 Unequal cluster sizes and correlated features

Previous stability-based measures were found to perform badly when cluster sizes were

unequally distributed or when features were correlated (Krieger & Green, 1999). To evaluate

whether this is also the case for the CVa, CVv and CC measures, new data sets were generated.

These data sets consist of 192 observations in four clusters in a ten-dimensional space. The

data sets are distance-based and k-means is employed as the clustering algorithm. Note that

the differences in cluster size only concern the number of observations that they entail and

not the area that they take up. As the k-means algorithm is concerned with the distance

between the observations (Hartigan & Wong, 1979), the clustering solution is not likely to be

affected by the differences in the cardinalities of the clusters or the correlation between the

features. The differences in the performance of the selection measures can thus be entirely

contributed to the features of the data. Each of the examples is repeated 50 times. Table 3

summarizes the hit rates of the stability-based measures, i.e. the proportion of runs in which

they select the correct number of clusters.

All three measures perform well in the case of equal cluster sizes and uncorrelated features.

When the cluster sizes are unequally distributed, all three measures degrade in selection
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Table 3: Hit rates of the stability-based measures for three data sets

Equal cluster sizes & Uncorrelated features Unequal cluster sizes Correlated features

CC 1.00 0.00 1.00

CVa1 1.00 0.80 0.00

CVv 1.00 0.86 0.00

performance. CVa1 and CVv still perform reasonably well, but CC consistently fails to

detect the correct number of clusters. On the other hand, when the features are correlated,

CC performs well, while CVa1 and CVv perform badly. The results highlight that each

approach has its own strengths. Future research should look into the precise characteristics

of each of the measures that allows them to perform well in these circumstances.

The results for the cross validation methods are consistent with those of Krieger and

Green (1999). However, CC performs differently than expected. A possible explanation is

that consensus clustering takes a different approach in computing and evaluating stability

scores compared to conventional stability-based measures. Conventional methods tend to

estimate some instability score and minimize this, like the cross validation measures do. As

Krieger and Green (1999) employ a rather conventional method, their results are expected

to be more in line with those of CVa1 and CVv.

5.1.3 More clusters

To evaluate whether CVa, CVv and CC are biased towards fewer clusters when the true

number of clusters is large, data sets with m = {5, 6, 7, 8, 9, 10} equal-sized clusters are

considered. The data sets are distance-based and k-means clustering is used. Each case is

repeated 50 times. The hit rates of each of the measures, i.e. the proportion of runs in which

they select the correct number of clusters, can be found in Table 4.

For h = 5 all measures consistently select the correct number of clusters. However, as

h increases the performance of CC starts to worsen, followed by that of CVa2, CVa1 and

CVv. The measures fail to select the correct number of clusters and are biased towards fewer

clusters, which is in accordance with the results of Breckenridge (2000). Even CVa2 which

was previously biased towards more clusters is now biased towards fewer clusters.

20



Table 4: Hit rates of the stability-based measures for various numbers of clusters

m 5 6 7 8 9 10

CC 1.00 0.30 0.00 0.00 0.00 0.00

CVa1 1.00 1.00 1.00 0.04 0.00 0.00

CVa2 1.00 0.80 0.22 0.00 0.00 0.00

CVv 1.00 1.00 1.00 1.00 0.98 0.00

Intuitively, these results make sense. When the true number of clusters is large, the clus-

tering algorithm may consistently merge the same clusters together, such that a clustering

with less clusters appears to be stable. Moreover, instability scales with k (Von Luxburg,

2010). As the number of clusters increases, there are more possibilities of assigning each

observation to a cluster. More possibilities lead to more uncertainty and thus higher insta-

bility. Therefore, lower values of k may result in less instability. As none of the measures

normalize the instability scores prior to optimizing over k, they are expected to be biased

towards fewer clusters. Normalization of the instability scores is thus important, especially

when the number of clusters is potentially large. Researchers have however not yet reached

consensus on how normalization should be implemented in practice (Von Luxburg, 2010),

highlighting the importance of further research on this matter.

5.1.4 A stable but meaningless clustering

A data set with two elongated clusters with little spatial separation was generated to

evaluate the criticism of Handl et al. (2005). This data set is distance-based and k-means

clustering is used. The example is repeated 50 times. Table 5 summarizes how often each

measure selected a specific value of k. The true number of clusters is marked in bold.

Contrary to what is expected from earlier results, all three stability-based measures per-

form well in the data set with elongated clusters. The disparity in results follows from the

fact that Handl et al. (2005) did not re-scale the data prior to clustering, causing k-means

to falsely assign more weight to the large-scaled feature. The resulting clustering was thus

invalid. However, it was stable as the same incorrect clustering was formed in each perturbed

sample. When the re-scaling step is omitted, the CVa, CVv and CC measures also fail to
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Table 5: Number of selected clusters in the data set with two elongated clusters

k 2 3 4 5 6 7 8 9 10

Re-scaled CC 50 0 0 0 0 0 0 0 0

CVa1 50 0 0 0 0 0 0 0 0

CVv 50 0 0 0 0 0 0 0 0

Not re-scaled CC 0 2 13 24 11 0 0 0 0

CVa1 7 2 0 0 0 0 0 0 41

CVv 22 4 0 0 0 0 0 0 24

select the correct number of clusters and choose k = 10 or k = 5 instead.

Figure 2 illustrates the cluster membership of the not re-scaled observations for k =

10. Each colour corresponds to a cluster that is formed by the k-means algorithm. The

true clusters correspond to the two horizontally elongated shapes. Clearly, k-means assigns

more weight to the horizontal axis as it is recorded on a larger scale. As a result spherical

clusters are formed. The outer orange, blue, dark green and violet clusters are particularly

problematic as they contain observations from both elongated shapes. These clusters make

it impossible to recover the true structure of the data, even when the characteristics of the

formed clusters are inspected. This example illustrates how clustering stability could produce

misleading results. The clustering is stable but meaningless.

Figure 2: Cluster membership for k = 10

This result is not attributed to the fact that clustering stability is bad in itself. Instead,

it is the lack of adequate data pre-processing steps that cause the measures to select the

wrong number of clusters. This highlights the importance of making the right choices in
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each step of the model selection process. The right conditions are crucial for the selection

performance of the stability-based selection measures (Von Luxburg, 2010). Nonetheless, this

result still presents a counter example for the validity of clustering stability for the selection

of the number of clusters. It shows that a stable solution cannot be guaranteed to be valid

and may thus not correspond to the structure of the data. While something can be said for

the use of stability-based selection methods, it is clear that they alone are not sufficient for

the selection of the number of clusters. It is therefore recommended that the stability-based

analysis is complemented by other selection methods.

5.2 Cross validation measures versus consensus clustering

5.2.1 Stability scores for components

The Iris data, in which the versicolor and virginica species are overlapping, is used to

illustrate why it is useful to compute stability scores for components of the data. The data set

is distance-based and k-means is used as the clustering algorithm. The example is repeated

50 times. The choices of the stability-based selection measures are summarized in Table 6.

The true number of clusters is marked in bold.

Table 6: Number of selected clusters in the Iris data set

k 2 3 4 5 6 7 8 9 10

CC 0 50 0 0 0 0 0 0 0

CVa1 50 0 0 0 0 0 0 0 0

CVv 50 0 0 0 0 0 0 0 0

CC consistently selects the correct number of clusters, while CVa1 and CVv select two

clusters, thereby merging the two overlapping species. In an effort to improve the selection

performance of the cross validation measures, the stability score of each species is computed.

The setosa species exhibit the highest stability, with an average consensus score of 1. This is

expected as the setosa species is distinct from the other two species. For the versicolor and

virginica species the stability scores are 0.8533 and 0.6176, respectively.

17 observations are found on the boundary of the versicolor and virginica clusters. These
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observations induce instability as the algorithm is unable to detect to which species they truly

belong. When these 17 observations are isolated as a separate component, the versicolor

and virginica species become much more stable with stability scores of 0.9559 and 0.9485,

respectively. On the other hand, the component of 17 observations has a mere score of 0.6231.

Following Lord et al. (2017) these 17 observations are removed from the data. As expected,

the selection performance of the cross validation measures improves. From Tables 6 and 7 it

is clear that the hit rates of CVa1 and CVv increase from 0.00 to 0.28 and 0.76, respectively.

Table 7: Number of selected clusters in the Iris data set after removing the 17 observations

k 2 3 4 5 6 7 8 9 10

CVa1 36 14 0 0 0 0 0 0 0

CVv 13 37 0 0 0 0 0 0 0

5.2.2 Visualisation by heat maps

Consensus clustering can be used to visualise the clustering, irrespective of the dimen-

sionality of the data. The data set with four equally sized clusters in ten dimensions is used

as an illustration. The heat maps corresponding to k = 2, 3, 4 and 5 are displayed in Figure

3. Recall that the rows and columns of the heat maps correspond to the observations, for

which the ordering is determined by the dendogram to achieve the most diagonal heat map.

Figure 3: Heat maps of M(2), M(3), M(4) and M(5)

From Figure 3 it is clear that four clusters should be chosen, as M(4) produces the

“cleanest” heat map. The diagonal blocks that correspond to the four clusters are opaque

and little to no noise is detected on the off-diagonal elements. The heat map shows that the
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four clusters are of equal size and that they exhibit equal instabilities. Each of the clusters

is identified, such that they must be well-separated. From the remaining heat maps it is

clear that the true clusters are merged or split, when the wrong number of clusters is chosen.

In M(2) the last three clusters are merged, in M(3) the last two clusters are merged, and

in M(5) the second cluster is split. Each of these operations induce instability, resulting in

more noise on the off-diagonal elements.

From this illustration it is clear that heat maps can provide a visualisation of high-

dimensional clusterings. This is not to say that heat maps are not useful for low-dimensional

clusterings. Even if the data structure is apparent from plotting, heat maps may help in the

decision of the number of clusters, yield insight on how the clusterings evolve as k increases

and illustrate the instabilities of individual clusters.

5.2.3 Small sample size

To evaluate whether cross validation estimation techniques are problematic in small sam-

ples, data sets with 400, 200, 100 and 48 observations are considered. The data sets are

distance-based and k-means is used as the clustering algorithm. Each case is repeated 50

times. The hit rates of the stability-based measures, i.e. the proportion of runs in which

they select the correct number of clusters, can be found in Table 8.

Table 8: Hit rates of the stability-based measures for various sample sizes

N 400 200 100 48

CC 1.00 1.00 0.96 0.98

CVa1 1.00 1.00 0.82 0.00

CVv 1.00 1.00 0.94 0.00

As the sample size N decreases, the performance of both CVa1 and CVv starts to degrade.

For N = 100 they still perform reasonably well, but for N = 48 they consistently fail to select

the correct number of clusters. CC, on the other hand, still performs well. These results

suggest that splitting of the data into small sub-samples is inappropriate for small samples

and that cross validation estimation techniques are problematic. As CC takes 70% of the

observations of the original data set, it encounters less problems.
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Note that this example is distance-based and has well-separated clusters. The underlying

structure is therefore clear-cut and well-preserved when small sub-samples are taken. In

non-distance-based data sets or data sets with little spatial separation between the clusters,

taking small sub-samples may come at the costs of the underlying data structure. In these

cases, the underlying data structure cannot be detected such that the clustering is formed

in an arbitrary manner. Cross validation estimation techniques are then more problematic

and larger sample sizes than are suggested by these results may be required. With the rise

of new technologies, however, data sets have grown to contain many observations such that

this concern for the cross validation measures becomes negligible. This pitfall of the cross

validation measures thus seems to be more theoretical than it is practical.

From Tables 3, 4, 5, 6, 7 and 8 it is also clear that the performance of CVa1 worsens at a

faster rate than that of CVv. This is attributed to the fact that the voting strategy of CVv

is more robust against outlying clusterings compared to the averaging strategy of CVa, such

that the first performs better under various conditions.

6 Practical implications

Cluster analysis has applications in various fields of studies. In marketing, the technique

is often used to form representative groupings of products, customers or markets. With the

problem of clustering, the problem of selecting the appropriate number of clusters follows.

One of the primary applications of cluster analysis in marketing is market segmentation.

It aims to divide a heterogeneous market, one that is characterized by divergent demands,

into smaller homogeneous segments based on the differences in product preferences across

the segments (Smith, 1956). The characteristics of the segments may then aid in gaining a

better understanding of buyer behaviour. The groupings are often formed based on consumer

choice tasks and individual characteristics. The first of which concerns human behaviour,

which is inherently unstable. As a consequence, the data may contain outliers and high

variability. Moreover, small differences in behaviour may correspond to distinct groups such

that the clusters have little spatial separation or are even overlapping. This complicates the

clustering task. In addition, such data sets often exhibit correlations in the features. For
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instance, the number of visits to a store and total expenditure are likely to be positively

correlated. The use of the cross validation measures for the selection of the number of

clusters may then be problematic. Furthermore, such data sets often contain a large number

of clusters that may be of unequal size. Large clusters correspond to the main target markets,

while small clusters correspond to niche markets. Stability-based selection measures must

then be used with care. While the previous results have illustrated the consequences of each

of these challenges in isolation, it is yet unclear what the implications are when data sets

contain multiple of these challenges simultaneously. As this is often the case for real data

sets, it is important that future researchers look into this matter. Despite these challenges,

cluster analysis is still used in practice for market segmentation. For instance, Furse, Punj,

and Stewart (1984) used cluster analysis to successfully identify six distinct search patterns

among purchasers of new automobiles.

In addition, cluster analysis could be used for market structure analysis. It is crucial for

firms to understand their competitive landscape as it guides their strategic decision making.

By clustering products, firms can evaluate their current competitive position in the market.

In this way, firms can determine whether their offerings are uniquely positioned and who

their main competitors are. Moreover, this technique can help to identify gaps in the mar-

ket, which can be used to guide the development of new product offerings. Amongst others,

Srivastava, Leone, and Shocker (1981) found that clustering methods yield inherently inter-

pretable groupings that could be used to guide the strategic decisions of managers. Cluster

analysis could also be used for the problem of test market selection. Test marketing concerns

the practice of evaluating a certain marketing activity, for example a product launch or an

advertising strategy, in a limited geographical area (Green, Frank, & Robinson, 1967). The

success of the test market program depends on whether the responses in the test market can

be generalized to a greater area. Cluster analysis could be used to identify homogeneous

markets, such that the results can be generalized within clusters. In this way, the number of

test market programs that have to be executed can be reduced, thereby reducing costs.

While it is interesting to study the performance of stability-based selection measures in

real data sets, it is not within the scope of this paper. Those type of analyses are specific to

the example at hand and cannot be generalized to other cases. The objective of this research
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paper was to provide a clear picture of the strengths and weaknesses of the stability-based

selection measures to guide a more considered use. Simulated examples were employed, as

they allow for a controlled environment, such that the results can be generalized. This is not

to say that the application of the stability-based selection measures in real life examples is not

interesting. On the contrary, many applications of cluster analysis exist and future research

should look into the performance of stability-based selection measures in these instances.

7 Conclusion and discussion

7.1 Conclusion

The objective of this paper was to identify the strengths and weaknesses of stability-based

selection measures. Based on the results, it can be concluded that there are compelling argu-

ments for the use of stability-based measures for the selection of the number of clusters. The

three stability-based measures outperformed several popular non-stability-based measures

in four simulated examples. These examples illustrated the flexibility of the stability-based

measures and highlight that clustering stability is a competitive measure for the selection of

the number of clusters. However, this paints a too optimistic picture. The stability-based

measures cannot be expected to always perform well. Indeed, when features were corre-

lated, the cross validation measures were found to perform badly, while consensus clustering

performed well. On the contrary, when clusters were of unequal size, the cross validation

measures performed reasonably well, while the performance of consensus clustering deterio-

rated. Furthermore, when the true number of clusters grew large, all three measures were

biased towards fewer clusters. These results are concerning as unequal cluster sizes, corre-

lated features and a large number of clusters are not uncommon in real data sets. Yet, most

concerning is the existence of stable but meaningless clusterings. While this result followed

from a lack of data pre-processing steps, it shows that a stable clustering is not necessarily

valid. This is a counter example for the validity of clustering stability for the selection of the

number of clusters. It is concluded that clustering stability is not a valid measure for the

selection of the number of clusters. However, previous results suggest that, given the right

conditions, stability-based measures could be helpful in selecting the number of clusters.
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Therefore, they should not be used in isolation but as a component of a broader strategy for

the selection of the number of clusters. In this way, the risk of accepting wrong results can

be minimized.

To guide a more informed use of stability-based selection measures, the cross validation

measures were compared to consensus clustering. From the results it is concluded that

cross validation estimation techniques are problematic in small samples, such that consensus

clustering is preferred. Other advantages of consensus clustering include the visualisation

of the clusterings and the computation of stability scores for components of the data. The

first is especially useful in high-dimensional data sets and yields additional insights. The

latter allows for the identification of unstable components. It was found that, when these

components were removed, the recovery of the true number of clusters improved. For the

cross validation measures, CVv was found to be more robust than CVa.

Consensus clustering can be used for a wide range of purposes, favouring it over the cross

validation measures. However, its decision rule is somewhat vague, especially when ∆(k)

converges to zero. In this case it is unclear for which k ∆(k) is significantly larger than

zero. The inspection of the heat maps is then needed to select k. Visual inspection is rather

subjective, which is undesirable as it may cause researchers to unconsciously favour results

that support their own assumptions. On the contrary, the cross validation measures provide

a stricter decision rule but are unable to yield additional insights about the clusterings.

Neither of the approaches can thus be concluded to be uniformly the best. Depending on

the conditions at hand, one of the approaches may be preferred. If it is unclear which one is

preferred, it is recommended that both are implemented and that their results are compared.

7.2 Discussion

This paper contributes to the literature in several ways. Firstly, it provides an unbiased

view of clustering stability for the selection of the number of clusters. This is important as it

guides the choice of future researches of which measure to use for the selection of the number

of clusters. Previous research often emphasized either the strengths or the weaknesses of

the measures in question, thereby failing to provide an unbiased view. Secondly, it provides

a formal evaluation of the validity of clustering stability for the selection of the number of
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clusters. It is made clear that stability-based measures can be used for the selection of the

number of clusters. However, they should be used with care and in combination with other

selection methods. Lastly, the comparison of the cross validation measures with consensus

clustering has not been considered in previous literature. This study yields valuable insights

on how clustering stability should be implemented in practice. This lays a foundation for

future research.

Due to time constraints, this paper evaluated three stability-based measures: CVa, CVv

and CC. These methods were chosen as they cover a wide range of existing stability-based

selection measures, such that the results can be generalized. In fact, other variations exists for

the computation and evaluation of instability scores. It is important that future researchers

objectively compare all these measures to obtain a better idea of how clustering stability

should be implemented in practice for the selection of the number of clusters. This paper

also employed two clustering algorithms: k-means and spectral clustering. The choice of

these algorithms was motivated by their simplicity, popularity and efficiency. In practice,

other clustering algorithms exist that may be more suitable in certain data sets. From the

results it is clear that the stability-based measures may select the wrong number of clusters

due to the inflexibility of the employed clustering algorithm. Therefore it is recommended

that future research looks into the selection performance of the stability-based measures in

combination with other more flexible clustering algorithms.

Lastly, this paper identified some challenges for the use of stability-based selection mea-

sures. These challenges were investigated in isolation and it is yet unclear what the conse-

quences are when the data contains multiple of these challenges simultaneously. This is likely

to be the case in real data sets. While the examples in this paper were designed to incor-

porate some characteristics of real data sets, they are still rather stylized examples. Future

research should look into the selection performance of the stability-based measures in real

data sets.
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Appendix A Data sets

The following contains an overview of the employed data sets in this paper. The plots are

only generated for the first two dimensions, but this often provides enough intuition about

the structure of the data sets. The data sets in Figure 6 are an exception, in which all ten

dimensions are required to grasp the structure of the data. This is however not possible and

the plots of the first two dimensions are included for completeness.

A.1 The validity of clustering stability

Figure 4: Distance-based examples (1 and 2)

Figure 5: Non-distance-based examples (3 and 4)
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Figure 6: Data sets with equal cluster sizes and independent features, unequal cluster sizes

and independent features, and equal cluster sizes and dependent features (from left to right)

Figure 7: Data sets with m = {5, 6, 7, 8, 9, 10} clusters

Figure 8: Data sets with two elongated clusters (stable but meaningless)
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A.2 Cross validation measures versus consensus clustering

Figure 9: Data sets with sample sizes N = {200, 100, 48}

Figure 10: The Iris data set with overlapping clusters

Appendix B Programming codes

This simulation study was implemented in R. In total 9 scripts were written to execute the

simulations. Script 1 contains auxiliary functions and functions for the implementation of the

non-stability-based selection measures. Script 2 contains functions for the cross validation

measures. Script 3 contains functions for consensus clustering. These functions are utilised

in scripts 4 to 9, in which the various data sets are generated and used to evaluate the

performance of the selection measures. The ordering of these scripts is in line with the

ordering in which the results are presented in this paper.

A more precise description of the scripts and the exact programming codes can be found

in the attached zip file.
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