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1 Introduction

The widely known K-Means clustering method has been around since 1957 (Steinhaus, 1957) and

was given its current name by MacQueen (1967). This method is used for clustering analysis, which

originated in 1932 (Driver and Kroeber, 1932), and groups objects such that objects in one cluster are

more similar to each other than objects in different clusters. Since its first introduction, K-Means,

which tries to minimise the within-cluster variance (Steinhaus, 1957), has received both praise and

criticism. To battle its shortcomings, many new clustering methods have been developed. Some

of these have an approach very different from K-Means, such as Density-based spatial clustering of

applications with noise (DBSCAN), developed by Martin, Kriegel, Sander, and Xu (1996), which

is a non-parametric algorithm that groups closely packed points together. Others tried to address

the shortcomings of K-Means, by slightly adjusting the original method. I focus on these methods

in this thesis. I evaluate the performance of different variations of the K-Means clustering method,

namely standard K-Means, K-Means++, K-Harmonic Means, Fuzzy K-Means and a combination

of K-Means++ and K-Harmonic Means, that I call ‘K-Harmonic Means++’. I appoint hierarchical

clustering using Ward’s procedure as a benchmark. To evaluate the performances, I look at both

the internal clustering validity of the methods and at the extent to which they depend on the

initialisation of their centres.

The advantage of adjusting K-Means in favour of developing a new clustering method altogether

is that the advantages of K-Means, which I discuss later in this thesis, can be preserved, while some

of its shortcomings could be eliminated. This thesis focuses on what variation of K-Means achieves

this goal best.

The different K-Means variations are applied to eight different data sets, but in particular, I

discuss a data set regarding the energy dependence of EU countries. I am extending the research

done by Bluszcz (2016), who applied hierarchical clustering using Ward’s procedure and standard

K-Means on the same data set. The author uses hierarchical clustering to find the number of clusters

and then forms these clusters using K-Means. The data set is small, with only 28 observations,

namely, the current 27 EU member states plus the United Kingdom, and three variables.

Horuckova (2016) discusses the importance of energy dependence in the EU. After the first oil

shock, in 1973, energy security became an important item on the political agenda. Chevalier (2005)

defines energy security as:

• a reliable supply of energy;

1



• reliable transportation of energy;

• a reliable distribution and delivery of supply to the final customer;

• a ‘reasonable price’ over a continuous period.

Because of the uncertainty since the beginning of this century around the energy dependence

of the EU, the Commission of the European Communities published a Green Paper (Commission

of the European Communities, 2006). This document discusses the energy mix of the EU and

considers what steps member states should take to assure their future energy security. Bluszcz

(2016) attempted to cluster the EU member states, based on their dependence on oil, coal and

natural gas, such that long-term common energy policies can be formulated.

To make a fitting clustering of the EU member states based on their energy dependence, I

formulate the following research question: ‘In what ways can the standard K-Means clustering

method be improved?’. I divide this question into two sub-questions: ‘What are appropriate ways

to improve the internal clustering validity of the standard K-Means clustering method?’, and ‘What

are appropriate ways to increase the probability that the standard K-Means clustering method

reaches a global optimum?’. These questions will be answered with the use of different evaluation

techniques.

I find that for most data sets, K-Means++ gives the best results. K-Harmonic Means and

K-Harmonic Means++ do not differ greatly from each other in terms of performance. Fuzzy K-

Means gives better results than standard K-Means, but not by much. As the implementation of

K-Means++ is easy, it would be useful to have standard K-Means exchanged for it in all sorts of

applications.

The rest of this thesis is structured as follows. Section 2 discusses existing literature on the

standard K-Means method and the comparison of different clustering algorithms. Then, Section 3

discusses the data set I mainly focus on. I explain the hierarchical benchmark method, standard

K-Means and its variations in Section 4. Afterwards, in Section 5, I discuss the evaluation of these

methods and make comparisons. Finally, Section 6 gives some concluding remarks and suggestions

for future research.

2 Literature Review

Clustering analysis has been around for almost a century. It has its origins in anthropology (Driver

and Kroeber, 1932) and was applied to psychology a few years later (Zubin, 1938; Tryon, 1939).
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Clustering analysis became widely known when it was used in personality psychology by Cattell

(1943). Since then, cluster analysis has become one of the main tools in marketing research (Punj

and Stewart, 1983).

My research focuses on comparing several variations of the standard K-Means clustering method.

The classic method has some advantages and disadvantages. MacQueen (1967), who came up

with one of the first K-Means variants, states that K-Means creates reasonably efficient clusters

regarding minimising the variance within the clusters, is easily programmed and computationally

easy. Therefore, this classic method is very suitable to process large amounts of data. Xu and

Wunsch (2005) evaluate some of its disadvantages. The authors mention the method’s sensitivity to

its initialisation, meaning that the number of clusters has to be set beforehand. Another problem

regarding the initialisation is that the convergence of K-Means algorithms to a global optimum is

not guaranteed, but depends on the initial centres that have been chosen. A third disadvantage of

K-Means is that it is sensitive to outliers and noise in the data, as objects far away from a cluster

centre are still forced in the cluster, thereby distorting the shape of the cluster. K-Means detects

spherical clusters, thereby constraining them. Various researchers have made suggestions related

to these limitations. Ball and Hall (1967), Pham, Dimov, and Nguyen (2005) and Redmond and

Heneghan (2007) researched different ways to decide on the number of clusters. Others focused on

the initialisation of the centres (Likas, Vlassis, and Verbeek, 2003; Bradley and Fayyad, 1998; Peña,

Lozano, and Larrañaga, 1999) or on the sensitivity to outliers and noise (Estivill-Castro and Yang,

2004). Likas et al. (2003) worked with random restarts, which means running an algorithm several

times, with different starting points, and taking the best outcome.

For as long as clustering analysis has existed, there have been comparative studies on different

methods. Dougherty, Barrera, and Brun (2002) compared the basis K-Means method with fuzzy

K-Means, self-organising maps, hierarchical Euclidean-distance based clustering and correlation-

based clustering in the field of genetics. Maulik and Bandyopadhyay (2002) compared K-Means

with single linkage clustering and a Simulated Annealing based technique, using among others

the Davies-Bouldin Index and Dunn’s Index. Another example is the work by De Souto, Costa,

Araujo, Ludermir, and Schliep (2008), who studied the comparative performance of K-Means, single,

complete and average linkage, multivariate Gaussians, spectral clustering and a nearest neighbour-

based method on clustering cancer gene expression data. Finally, Costa, Carvalho, and Souto

(2004) studied the comparative performance of K-Means, agglomerative hierarchical clustering,

Cluster Identification via Connectivity Kernels (CLICK), dynamical clustering and self-organising
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maps, also in the field of genetics, using evaluation indices like the corrected Rand Index and the

Hubbert Index.

In my research, I compare the standard K-Means clustering method with some improved K-

Means methods. By analysing the internal clustering validity and the initialisation dependence

of these variations, I can evaluate the quality and relevance of the adjustments that have been

proposed. Hamerly and Elkan (2002) have conducted similar research, by comparing K-Means to

K-Harmonic Means, Fuzzy K-Means and two hybrid versions of K-Means and K-Harmonic Means.

Their research, however, was mainly focused on what aspects of these methods actually improve

standard K-Means. The authors found that soft membership, meaning that objects belong to mul-

tiple clusters to a certain degree, is essential for finding good clusterings. In case of methods with

a hard membership, where each object belongs to one cluster only, varying weights are beneficial.

The authors do not explicitly focus on the internal clustering validity and the initialisation de-

pendence of the different methods. I extend their research by also discussing two other methods,

namely K-Means++ and K-Harmonic Means++. Third, Hamerly and Elkan (2002) only compare

clustering performance using two artificial data sets that both contain true underlying clusters, thus

mainly focusing on the external clustering validity, whereas I use ‘real world’ data sets, that do not

necessarily have a natural clustering.

3 Data

The data used both by Bluszcz (2016) and in this paper can be found in Chapter 2 of the Statistical

book by Eurostat (2015). This book provides the total energy dependence of the formerly 28 EU

member states, namely the current 27 member states plus the United Kingdom, for the period 2004-

13. Furthermore, it provides the countries’ energy dependence on solid fuels and its derivatives,

petroleum products and natural gas respectively. The energy dependence of a country indicates to

what extent it relies on import. The Directorate-General for Economic and Financial Affairs (2013)

gives the following formula to calculate this dependence for energy product i :

EDi =
mi − xi

GICi + BUNKi
, (1)

where mi is the import of product i, xi the export, GICi the gross inland consumption and BUNKi

represents the consumption of ships and aircraft on international routes. Table A1 contains the

energy dependence of the 27 EU member states plus the United Kingdom in 2013. Table 1 contains

descriptive statistics on the dependence on the three energy products. As standardisation of data
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is recommended for clustering (Milligan and Cooper, 1988), I present the standardised results in

Table A2.

Table 1: Descriptive statistics of the three variables used for clustering

Mean Median St.Dev Min. Max.

Fuels 62.07 81.3 41.40 -11.6 111.6

Petroleum 87.18 95.95 25.64 -13.7 106.2

Gas 70.63 95.75 48.49 -86.8 115.6

Figure 1: 27 EU member states plus the United Kingdom in two-dimensional space

The first two principal components of the data are shown in Figure 1. In this figure, the

numbers correspond with the numbers given to the countries in Table A1. Together, those two

principal components explain 81.5% of the total variance.

The other seven data sets I evaluate are discussed in Section 5.2.

4 Methodology

I compare the clustering performance of four different K-Means clustering variations. I evaluate

those variations using eight different data sets and discuss the data set on the energy dependence

of the 27 EU member states plus the United Kingdom in particular. In Section 4.1, I discuss

hierarchical clustering. Then, after deciding the optimal number of clusters using these hierarchical
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methods, I will apply several non-hierarchical clustering methods to the data in Section 4.2. Finally,

I explain how those methods are evaluated in Section 4.3.

4.1 Hierarchical Methods

Malhotra, Nunan, and Birks (2017) describe hierarchical clustering in Chapter 25. Hierarchical

clustering can be agglomerative or divisive. For divisive clustering, all objects are grouped in a

single cluster at first. Then, clusters are divided until each object is in a separate cluster. For

agglomerative clustering, all objects are placed in separate clusters at first. Then, objects are

iteratively grouped into bigger clusters, until there is one single cluster left. Agglomerative methods

include linkage methods, variance methods and centroid methods. Linkage methods cluster objects

based on their distance. Variance methods approach clustering differently, namely by trying to

minimise the within-cluster variances. A commonly used variance method is Ward’s procedure

(Ward, 1963), also used by Bluszcz (2016). Centroid methods focus on merging clusters with the

smallest difference between their centroids. The general algorithm for agglomerative hierarchical

clustering, according to Chapter 12.3 of the book by Johnson and Wichern (2007), is described in

Algorithm 1. As Bluszcz (2016) only discusses Ward’s procedure, I also limit this section to that

method.

Algorithm 1: Agglomerative hierarchical clustering algorithm

1 Place all n objects in separate clusters and create an n× n symmetric distance matrix D = dik.

2 Search D for the nearest pair of clusters. Let the distance between these clusters U and V be dUV .

3 Merge U and V. Relabel this newly formed cluster (UV). Update distance matrix D by replacing

the rows and columns corresponding to clusters U and V by a row and column for the distances

between the new cluster (UV) and the remaining clusters.

4 Repeat steps 2 and 3 n− 1 times.

For Ward’s procedure, the squared Euclidean distance of each object to the mean of their

respective cluster is calculated (Ward, 1963). These distances are summed for all the objects, and

then the clusters that would cause the smallest increase in the Error Sum of Squares (ESS) are

combined. If there are currently k clusters formed, the ESS is the sum over the ESSj :

ESS = ESS1 + ESS2 + ... + ESSk. (2)
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The ESS for cluster j is computed as follows:

ESSj =
∑
k∈j

(xk − xj)
′(xk − xj), (3)

where xk is the position of the kth object and xj the mean of all the objects in cluster j.

To find out the optimal number of clusters for our data, I apply the average silhouette method to

Ward’s procedure. This method is introduced in Chapter 2 of the book by Kaufman and Rousseeuw

(1990). The method uses the silhouette width to evaluate the relationship between the tightness of

the objects within the clusters and their separation from objects from different clusters. Its exact

specification is

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (4)

where a(i) is the average distance between object i and all the other objects in its cluster, and

b(i) the average distance between object i and the objects in the other clusters. If a cluster only

contains one object, the value of s(i) is set to zero. From Equation (4) follows that −1 ≤ s(i) ≤ 1.

If s(i) is close to −1, i should be assigned to a different cluster. If s(i) is close to 1, the cluster i

belongs to is well-specified. To find the optimal number of clusters, I calculate the silhouette width

of all the individual objects, for different numbers of clusters. The largest average silhouette width

indicates the optimal number of clusters.

4.2 Non-Hierarchical Methods

Bluszcz (2016) not only discusses hierarchical but also non-hierarchical clustering methods. The au-

thor focuses on the K-Means method. A characteristic of non-hierarchical methods like the K-Means

method is that the number of clusters has to be specified in advance. Those methods either start

from an initial partition of objects into groups or from an initial random set of cluster centres. In

this section, I first discuss the K-Means method. Then, I discuss some adjustments to this method,

namely, the K-Means++ method, the K-Harmonic Means method and the Fuzzy K-Means method

respectively. Finally, I explain a combination of the K-Means++ method and the K-Harmonic

Means method, which I name K-Harmonic Means++.

The original idea for the K-Means method comes from Steinhaus (1957), but the term K-Means

itself was first used by MacQueen (1967). I use the algorithm by Hartigan and Wong (1979). K-

Means is a method that assigns each item to the cluster with the nearest centre, resulting in the
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following objective function:

KM(X,C) =
k∑

j=1

∑
i:c(i)=j

||xi − cj ||2, (5)

where xi ∈ X is the ith object, cj ∈ C the j th cluster centre and || · || the Euclidean distance. The

algorithm for K-Means is shown in Algorithm 2.

Algorithm 2: K-Means clustering algorithm

1 Randomly specify k initial centres.

2 Assign each object to the cluster with the nearest centre.

3 For each object, assign it to its nearest centre. If this changes anything, recalculate the centres for

the old and new clusters. This is done by finding the arithmetic means of the members of the

clusters.

4 Repeat step 3 a pre-specified amount of times or until no more reassignments take place. Assign all

xi to the cj with the shortest Euclidean distance.

Arthur and Vassilvitskii (2007) first introduced the K-Means++ clustering method. It augments the

standard K-Means method with a simple seeding technique. Experiments conducted by Arthur and

Vassilvitskii (2007) have shown that this seeding technique often improves the accuracy of K-Means

greatly. The intuition behind K-Means++ is that the k initial clusters are optimally spread out,

as centres 2,...,k are chosen with a probability directly proportional to the squared distance to the

closest existing centre, thereby favouring objects that do not have a nearby centre. After choosing

these initial centres, K-Means++ follows the same procedure as K-Means, with the same objective

function as shown in Equation (5). The exact algorithm for K-Means++ is shown in Algorithm 3.

Algorithm 3: K-Means++ clustering algorithm

1 Choose centre c1 uniformly at random from X.

2 For each object, compute D(x), which is the Euclidean distance to the nearest centre that already

exists.

3 Choose new centre ci, choosing xi ∈ X with probability D(x)2∑
xi∈X D(x)2 .

4 Repeat step 2 until there are k centres.

5 Proceed with steps 2-4 from Algorithm 2.

Zhang, Hsu, and Dayal (1999) recognise a flaw in the K-Means method. Namely, this method is
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very sensitive to the initialisation of the centres. Therefore, K-Means does not always lead to a

global optimum. To combat this, the authors developed the K-Harmonic Means method, which

tries to avoid this by using the harmonic mean of the distances from each object to the centres in

its objective function. This means that large weights are assigned to data points that are not close

to any centres and small weights to data points that are. Additionally, as K-Harmonic Means is a

soft clustering method: every object has a membership for every centre, indicating to what degree

it belongs to this centre. Eventually, objects are assigned to the cluster for which this membership

degree is highest. Mathematically, the objective function for K-Harmonic Means can be described

as follows:

KHM(X,C) =
n∑

i=1

k∑k
j=1

1
||xi−cj ||p

. (6)

Jiang, Yi, Li, Yang, and Hu (2010) suggest choosing p ≥ 2. I find the optimal value of p by taking

51 points in the interval [2, 7]. As K-Harmonic Means depends on a seed for its initialisation, I

calculate which p gives, after a certain amount of iterations, the highest average silhouette width.

Jiang et al. (2010) also describe an algorithm for K-Harmonic Means, shown in Algorithm 4.

Algorithm 4: K-Harmonic Means clustering algorithm

1 Randomly specify k initial centres.

2 Calculate the objective function value KHM(X,C).

3 For each object, calculate its membership to centre cj :

m(cj , xi) =
||xi − cj ||−p−2∑k
j=1 ||xi − cj ||−p−2

. (7)

4 For each object, calculate its weight:

w(xi) =

∑k
j=1 ||xi − cj ||−p−2

(
∑k

j=1 ||xi − cj ||−p)2
. (8)

5 For each cluster, calculate its new centre location:

cj =

∑n
i=1 m(cj , xi)× w(xi)× xi∑n

i=1 m(cj , xi)× w(xi)
. (9)

6 Repeat steps 2-5 a pre-specified amount of times or until KHM(X,C) converges. Assign all xi to

the cj with the shortest Euclidean distance, or, equivalently, for which the membership m(cj , xi) is

highest.

9



Fuzzy K-Means, or Fuzzy C-Means, is a soft clustering method, just like K-Harmonic Means. Fuzzy

K-Means was developed by Dunn (1973) and improved by Bezdek (1981). Fuzzy K-Means works

very similar to standard K-Means, but has a different objective function, namely:

FKM(X,C) =
k∑

j=1

n∑
i=1

umij ||xi − cj ||2, (10)

where

uij =
1∑k

l=1

(
||xi−cj ||
||xi−cl||

) 2
m−1

(11)

for uij ∈ [0, 1] is the membership degree and m ∈ R,m ≥ 1. Here, m is the fuzzifier and determines

the level of fuzziness. The higher m, the fuzzier the cluster, meaning that a lot of objects could

potentially belong to multiple clusters. I find the optimal value of m by taking 196 points in the

interval [1.05, 3]. As Fuzzy K-Means depends on a seed for its initialisation, I calculate which m

gives, after a certain amount of iterations, the highest average silhouette width. The algorithm for

Fuzzy K-Means is given in Algorithm 5.

Algorithm 5: Fuzzy K-Means clustering algorithm

1 Randomly specify k initial centres.

2 For each object, assign its membership degrees for the different clusters randomly.

3 For each cluster, calculate its centre as follows:

cj =

∑
i u

m
ij × xi∑
i u

m
ij

, (12)

where uij denotes the degree of membership for object xi to cluster j.

4 For each object, calculate its new membership degrees for the different clusters using Equation (11).

5 Repeat steps 3-4 a pre-specified amount of times or until FKM(X,C) converges. Assign all xi to cj

with the largest uij .

The final method I discuss is a combination of K-Means++ and K-Harmonic Means. Hamerly

and Elkan (2002) have done something similar, by combining standard K-Means and K-Harmonic

Means. K-Harmonic Means++ uses the same cluster initialisation as K-Means++ but then tries

to optimise the objective function for K-Harmonic Means as shown in Equation (6). I use the same

p’s as used for K-Harmonic Means. The steps for this method are shown in Algorithm 6.
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Algorithm 6: K-Harmonic Means++ clustering algorithm

1 Choose centre c1 uniformly at random from X.

2 For each object, compute D(x), which is the Euclidean distance to the nearest centre that already

exists.

3 Choose new centre ci, choosing xi ∈ X with probability D(x)2∑
xi∈X D(x)2 .

4 Repeat step 2 until there are k centres.

5 Proceed with steps 2-6 from Algorithm 4.

4.3 Method Evaluation

Finally, I want to evaluate the clustering performance of the methods that have been used. To

do this, I look at both the internal clustering validity for those methods and their dependence on

their random initialisation. The internal clustering validity will be discussed in Section 4.3.1 and

the dependence on random initialisation in Section 4.3.2. As stated in Section 4.2, a major flaw of

the K-Means method is that it does not always lead to a global optimum, as it highly depends on

the random initialisation of the centres. Therefore, I run the algorithms for the different methods

multiple times for different initial seeds before assessing their performance, to obtain reliable results.

4.3.1 Internal Clustering Validity

I evaluate the internal clustering validity of the different clustering methods in two ways. First,

I calculate the average silhouette width, as given in Equation (4), for all the clustering methods.

Second, I consider the Davies-Bouldin (DB) Index, as proposed by Davies and Bouldin (1979). Just

like the average silhouette width, the DB Index is an internal clustering validity measure: the results

are evaluated based on the internal information and do not rely on external data. The DB Index

can be formulated as follows:

DB(X,C) =
1

k

k∑
j=1

max1≤j′≤k,j 6=j′

(
sj + sj′

djj′

)
, (13)

where sj = 1
||cj ||

∑
i:c(i)=j d(xi, cj), ||cj || is the number of objects in cluster j, djj′ = d(cj , c

′
j) and

d(x,y) is the Euclidean distance between x and y. Low DB Index values are preferred over high

values.

I run the algorithms for the different methods 100 times for different initial seeds and take the

average silhouette width and DB Index value to evaluate their internal clustering validity.
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4.3.2 Initialisation Dependence

I evaluate to what extent different clustering methods depend on their centre initialisation. For

every time I run the algorithm for that method, I compute its objective function, or, in case of

Fuzzy K-Means, the objective function for standard K-Means. I group the five different clustering

methods in two groups:

Group 1: K-Means, K-Means++ and Fuzzy K-Means, and

Group 2: K-Harmonic Means and K-Harmonic Means++.

These groupings are made because the methods they contain use different minimisation criteria,

and thus cannot be compared. For the objective functions of K-Harmonic Means and K-Harmonic

Means++, as shown in Equation (6), I calculate the centres as the arithmetic means of the members

of the clusters and do not take weights and memberships into account. I assume that, after running

the algorithm for every method a certain amount of times, the optimal clustering for that method

must have been reached at least once, for both groups. This has been supported by Fränti and

Sieranoja (2019). Thus, I evaluate the initialisation dependence of the different methods as follows:

ID =
Amount of times that global minimum is reached

Amount of iterations
, (14)

where I assume that the lowest local minimum found for each group is equal to the global minimum.

As the benchmark, hierarchical clustering using Ward’s procedure, does not have its own objective

function, it is excluded from this measure.

5 Results

In this section, I present and discuss the results for the different clustering methods. The results are

obtained using R by the R Core Team (2020). Programming code can be provided upon request. A

short description of the code files can be found in Appendix B. First, I discuss the application of the

data on European energy dependence by Eurostat (2015) on the hierarchical benchmark method

and the different non-hierarchical methods in Section 5.1. As the data set I consider is very limited,

I apply the different methods as well to some test data sets to be able to draw stronger conclusions.

Their clustering results are briefly discussed in Section 5.2.
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5.1 Energy Dependence Data Set

First, I specifically look at the clustering of the data on the energy dependence of the 27 EU member

states plus the United Kingdom, as discussed in Section 3. I evaluate the clustering performance

of hierarchical clustering using Ward’s procedure for the data set on energy dependence. This

method serves both as a benchmark for the different K-Means variations and is used to determine

the optimal number of clusters. A dendrogram for this clustering can be found in the appendix,

Figure A1. In this figure, the numbers correspond with the numbers given to the countries in Table

A1.

Before I determine the optimal number of clusters for this data set, I examine an elbow plot, as

shown in Figure 2, which describes the explained variation as a function of the number of clusters,

for clusters constructed by hierarchical clustering. The elbow plot was introduced by Thorndike

(1953). The vertical axis shows the Total Within Sum of Squares, which is the sum of the squared

distances between the objects and their cluster centre, or in other words, the variation, when the

data is divided into a certain amount of clusters. The intuition behind the elbow plot is that the

‘elbow’ in the figure denotes for how many clusters the returns of an extra cluster are no longer

worth the costs, due to overfitting of the data. At first, a big part of the variation in the data can

be explained by adding more clusters, but at some point, the new information an additional cluster

gives, decreases sharply. The ‘elbow’ seems to appear at three or four clusters, but I check this

using the average silhouette method, as described in Section 4.1. As can be seen in Figure 3, the

average silhouette width is indeed highest for four clusters.

Bluszcz (2016) uses seven clusters in total, so I also evaluate the different K-Means variations

for seven clusters, to be able to judge whether I can find a better clustering solution then Bluszcz

(2016) in that case.

Figure 2: Elbow plot for EU data on energy

dependence

Figure 3: Silhouette plot for EU data on energy

dependence
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The first two principal components of the data set are depicted again in Figures 4 and 5. The

clusters according to Ward’s procedure are shown.

Figure 4: Four clusters Figure 5: Seven clusters

The values for the different evaluation measures discussed in Sections 4.3.1 and 4.3.2 are shown in

Tables 2 and 3 for four and seven clusters respectively.

Table 2: Evaluation results four clusters

Ward K-Means K-Means++ K-Harmonic Means Fuzzy K-Means K-Harmonic Means++

Silhouette Width 0.5064 0.4727 0.5064 0.5064 0.5064 0.5064

DB Index 0.7519 0.7908 0.7519 0.7519 0.7519 0.7519

Initialisation Dependence 0.70 1.00 1.00 1.00 1.00

Best results (for K-Means variations) are bold

In the case of four clusters, which was suggested by the average silhouette method, standard K-

Means is outperformed by all its variations, even by hierarchical clustering using Ward’s procedure.

Remarkable is that hierarchical clustering and the four variations all come to the same average

values for the evaluation measures. This might be because the data set only consists of 28 objects.

Also, a visual inspection of Figure 4 suggests that the distinction between the four clusters is quite

clear. For 100 different initialisations, all K-Means variations reach the same objective function in

100% of the cases, while standard K-Means only realises this optimum in 70% of the cases. Clearly,

for this data set, standard K-Means depends more on its initialisation than the other methods.

Conducting a t-test on both the average silhouette widths and the DB Indices of K-Means and

K-Harmonic Means also indicates that the different K-Means variations significantly perform better

than standard K-Means, at a 1% confidence level. An assumption for comparing the means of two

samples using a t-test is that they should follow a normal distribution, but, due to the central limit
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theorem, under weak assumptions, this is not needed for large samples (Lumley, Diehr, Emerson,

and Chen, 2002).

Figure 6 shows the optimal clustering of the 28 countries. This clustering is also listed in Table

A3, which includes for each country the Euclidean distance to the centre of its cluster. Figure 6

suggests that most of the countries in Cluster 1 (dark purple) are situated in Western Europe. The

countries in this cluster are generally characterised by high levels of energy dependence, especially

for petroleum and gas. Most of the countries in Cluster 2 (light purple) are in Eastern Europe.

They are generally characterised by a low, or even negative, oil dependence. There does not seem to

be any relation between the countries in Clusters 3 and 4 (light green and dark green respectively).

Figure 6: Map of the EU plus the United Kingdom

divided into four clusters - Created using MapChart

(2020)

Figure 7: Map of the EU plus the United Kingdom

divided into seven clusters - Created using MapChart

(2020)

Table 3: Evaluation results seven clusters

Ward K-Means K-Means++ K-Harmonic Means Fuzzy K-Means K-Harmonic Means++

Silhouette Width 0.4839 0.3253 0.4807 0.4775 0.3738 0.4753

DB Index 0.4847 0.7251 0.4939 0.4925 0.6597 0.4986

Initialisation Dependence 0.04 0.84 0.32 0.05 0.30

Best results (for K-Means variations) are bold

When clustering the data set into seven clusters, imitating Bluszcz (2016), standard K-Means

still seems to be the worst available option. This time, however, there are differences in the per-

formances of the other options. The average silhouette width is highest for K-Means++, followed

by K-Harmonic Means and K-Harmonic Means++ respectively. K-Harmonic Means scores best for
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the DB index, followed by K-Means++ and K-Harmonic Means++. The performance of Fuzzy

K-Means, however better than that of standard K-Means, is also clearly worse than the other three

non-hierarchical options. In the case of seven clusters, none of the non-hierarchical methods can

come to the same objective function for every iteration with different initialisations. K-Means++

reaches the optimal objective function value for Group 1 in 84% of the cases, followed by K-Harmonic

Means and K-Harmonic Means++, that reach the optimal objective function value for Group 2 in

only 32% and 30% of the cases respectively. Similar to clustering into four data sets, hierarchi-

cal clustering using Ward’s procedure performs at least as well as the non-hierarchical K-Means

variations.

To confirm the significance of these results, I conduct t-tests on both the average silhouette

widths and the DB Indices of any combination of K-Means variations leads to the results in Tables

4 and 5 respectively. These tables show the p-values resulting from a t-test with the null hypothesis

that the method in the header column outperforms the method in the header row. I select a 5%

confidence level. For example, in Table 4, the null hypothesis that standard K-Means outperforms

any of its variations is rejected. Remarkable for the average silhouette width in Table 4, is that the

null hypothesis that K-Harmonic Means++ outperforms K-Harmonic Means is rejected, indicating

that, for this data set, augmenting K-Harmonic Means is not beneficial. The null hypothesis that

K-Means++, which has the highest average silhouette width according to Table 2, outperforms any

of the other four methods is not rejected.

Table 4: P-Values based on average silhouette width

K-Means K-Means++ K-Harmonic Means Fuzzy K-Means K-Harmonic Means++

K-Means 0.0000 0.0000 0.0000 0.0000

K-Means++ 1.0000 0.9904 1.0000 0.9999

K-Harmonic Means 1.0000 0.0096 1.0000 0.9790

Fuzzy K-Means 1.0000 0.0000 0.0000 0.0000

K-Harmonic Means++ 1.0000 0.0001 0.0210 1.0000

Table 5: P-Values based on DB Index

K-Means K-Means++ K-Harmonic Means Fuzzy K-Means K-Harmonic Means++

K-Means 0.0000 0.0000 0.0001 0.0000

K-Means++ 1.0000 0.3401 1.0000 0.8912

K-Harmonic Means 1.0000 0.6599 1.0000 0.9920

Fuzzy K-Means 0.9999 0.0000 0.0000 0.0000

K-Harmonic Means++ 1.0000 0.1088 0.0080 1.0000
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When looking at Table 5 for the DB Index, it is noteworthy that the null hypothesis that K-

Harmonic Means or K-Harmonic Means++ outperforms K-Means++ or the other way around is

not rejected. It is again rejected that K-Harmonic Means++ outperforms K-Harmonic Means.

Bluszcz (2016) finds a clustering solution by running standard K-Means just once. This leads to

an average silhouette width of 0.4683 and a DB Index of 0.5253. For certain seeds, I find the same

clustering solution as Bluszcz (2016). Clearly, this solution is better than the average performance

of K-Means and Fuzzy K-Means, as shown in Table 3. However, as Table 3 only depicts the average

performance, individual K-Means or Fuzzy K-Means solutions might still be superior. Moreover,

even the average performances of K-Means++, K-Harmonic Means and K-Harmonic Means++

outperform the solution by Bluszcz (2016).

Figure 7 shows the optimal clustering of the 28 countries, in case there are seven different

clusters. Details on the clustering can be found in Table A4, including the Euclidean distance for

each country to the centre of its cluster. As was also true for the case of four clusters, there seems

to be a divide between Western and Eastern Europe: Cluster 3 seems to be mainly comprised of

Western European countries, Cluster 5 of Eastern European countries.

To summarise, for this data set on the energy dependence of the European Union, it is best to

divide the EU member states into four groups. However, in that case, K-Means++, K-Harmonic

Means, Fuzzy K-Means and K-Harmonic Means++ all perform equally well. Therefore, I apply all

K-Means variations to seven other data sets with different properties, to be able to decide which

method is superior. These data sets and their evaluation are discussed in the next section.

5.2 Test Sets

To further evaluate the performance of the different methods I compare in this paper, I apply

them to seven built-in data sets in R. I use the mtcars data set from the package by the R Core

Team (2020), the iris, the Ionosphere, the Glass and the BostonHousing data sets from the package

by Newman et al. (1998) and the birth.death.rates.1966 and acidosis.patients data sets from the

package by Novomestky (2013). These different sets will from now on be referred to as Test Sets

1-7. For each data set, I determine the number of clusters by determining what number gives

the highest average silhouette width for hierarchical clustering, as described in Section 4.1. If this

results in three or more methods getting equal, optimal results, I change the number of clusters to

the second-best number. Then, I apply the different methods to the sets and evaluate them using

the performance techniques discussed in Section 4.3.
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Table A5 shows some characteristics of the used sets. As can be seen, the sets vary greatly in the

number of objects and variables. The first two principal components of each data set are depicted

in Figures A2 - A7. The figures also contain the clusters according to hierarchical clustering.

The evaluation results for the test sets are displayed in Tables A6 - A12. I will shortly discuss

their internal clustering validity and initialisation dependence.

There are seven different test sets, so, in total, there are 14 different internal clustering indices.

For the non-hierarchical methods, K-Harmonic Means++ performs best in seven out of 14 cases,

followed by K-Means++, which performs best in six out of 14 cases, and K-Harmonic Means, for

four cases. Fuzzy K-Means performs best in three cases, and standard K-Means never performs best

for these data sets. In Test Set 4, K-Harmonic Means and K-Harmonic Means++ have the same

results, just like the three remaining non-hierarchical methods between themselves, suggesting that

this data set is not sensitive to its initialisation. In Test Set 6, K-Harmonic Means and K-Harmonic

Means++ again perform equally well, just like K-Means++. The benchmark method, hierarchical

clustering using Ward’s procedure, outperforms any of the non-hierarchical methods in terms of

both average silhouette width and DB Index only for Test Set 1. This might be related to the

low number of objects in this data set, which is only 32. This was also true for the hierarchical

clustering of the EU data set into four clusters. A last remarkable feature of the evaluation results

is that for Test Sets 3 and 6, the indices for the preferred methods are clearly superior to the indices

for the worst methods. A possible explanation for this is that upon visual inspection of Figures A4

and A8, the clusters for these data sets seem to have more outliers than those for other data sets.

For the different non-hierarchical methods, K-Means++ has the highest value for the Initialisa-

tion Dependence for six out of seven cases, followed by K-Harmonic Means++, having the highest

value for three out of seven cases, and K-Harmonic Means, which performs best in two cases. Stan-

dard K-Means and Fuzzy K-Means are both only preferred for one out of seven cases. For Test Set

4, all non-hierarchical methods come to a global optimum for all of the 100 iterations, reinforcing

the idea that this data set is not sensitive to its initialisation. For Test Sets 6 and 7, K-Means++

also comes to a global minimum for 100% of the iterations. Remarkable is that for Test Set 1, the

maximum initialisation dependence is only 20%, namely for K-Harmonic Means++. This might

be connected to the fact that this data set only contains 32 objects, but is still divided into nine

clusters.
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6 Conclusion

This thesis aimed to answer the following question: ‘In what ways can the standard K-Means clus-

tering method be improved?’, with the sub-questions ‘What are appropriate ways to improve the

internal clustering validity of the standard K-Means clustering method?’ and ‘What are appro-

priate ways to increase the probability that the standard K-Means clustering method reaches a

global optimum?’ I discussed five different methods, namely, standard K-Means, K-Means++, K-

Harmonic Means, Fuzzy K-Means and K-Harmonic Means++. I appointed hierarchical clustering

using Ward’s procedure as a benchmark. Using eight different data sets, specifically focusing on a

data set on energy dependence in the EU, I formulated this answer.

First, I evaluated the internal clustering validity of the different methods, according to their

average silhouette width and DB Index. I found that K-Means++ and K-Harmonic Means++, in

general, give the best results. K-Means++ augments standard K-Means with an intelligent cluster

initialisation. K-Harmonic Means++ is a soft clustering method (meaning that objects belong to

multiple clusters to a certain degree), that adopts the same cluster initialisation and, in addition,

uses the harmonic mean of the distances from each object to their centre. They are followed by

K-Harmonic Means, which is similar to K-Harmonic Means++ but has a random initialisation.

Fuzzy K-Means performs better than standard K-Means, however, not by much. Except for the

sets with a low number of objects (less than 35), hierarchical clustering using Ward’s procedure is

generally outperformed by any of the other methods.

Second, I discussed the initialisation dependence of each method, meaning, to what extent the

outcome of the clustering depends on the initial clusters. K-Means++ substantially outperforms all

other methods for this criterion, followed by K-Harmonic Means++ and K-Harmonic Means. Fuzzy

K-Means, although outperforming standard K-Means, does not seem to be an adequate alternative.

To answer the research question: augmenting standard K-Means by first finding a proper cluster

initialisation, such as K-Means++ does, consistently improves results. Substituting the standard

mean for the harmonic mean, as done by K-Harmonic Means and K-Harmonic Means++, also seems

an effective way to augment the standard method, but these methods contain a free parameter which

must be estimated, which can lead to substantially higher computation time. This can be solved

by fixing this parameter, but this would impair the results. In the future, possibly more intelligent

ways of initialising K-Means could be developed, and K-Means with random initialisation might

eventually be rendered unnecessary.
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Figure 8: Failure for K-Means: circular data - based

on code by Morbieu (2018)

Figure 9: Failure for K-Means: spiral data - based

on code by Morbieu (2018)

Of course, for certain data types, other variations than K-Means++ might be more suitable.

Moreover, often any K-Means variation, despite greatly improving standard K-Means, might not

be the best option for a data set. For example, K-Means variations use the (harmonic) mean as

cluster centre, which can lead to complications, as can be seen in Figures 8 and 9, where clustering

is done using the K-Means++ method. Clearly, these clusters are wrongly specified. Such issues

could be solved by Mean-Shift Clustering (Fukunaga and Hostetler, 1975), DBSCAN (Martin et al.,

1996) or Expectation-Maximisation Clustering using Gaussian Mixture Models (Dempster, Laird,

and Rubin, 1977). In the future, it could be interesting to research which data types require which

clustering methods.
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Appendix A

Table A1: Data by Eurostat (2015)

Country Fuels Petroleum Gas

Belgium 95.1 102 100.5

Bulgaria 16.4 103.7 93.2

Czech Republic -11.6 96.3 100.2

Denmark 90.7 -13.7 -23.1

Germany 44.5 96.1 87.2

Estonia -0.1 59.9 100

Ireland 72.4 100.2 95.9

Greece 3.2 94.2 100

Spain 70.3 97.4 98.6

France 93.4 98.9 97.4

Croatia 110.1 77.1 31.8

Italy 96.2 90.7 88.1

Cyprus 100 101 0

Latvia 88.8 100.4 115.6

Lithuania 99.7 93.2 100

Luxembourg 100 100.3 99.6

Hungary 29.5 83.9 72.1

Malta 0 104.6 0

Netherlands 111.6 94.7 -86.8

Austria 93.8 92.9 75.5

Poland -10.4 91.3 74.2

Portugal 95.4 97.2 101.5

Romania 18.9 47 11.9

Slovenia 19.4 95.8 99.6

Slovakia 80.6 88.5 95.6

Finland 65.7 106.2 99.9

Sweden 82.4 101.5 99.1

United Kingdom 82 39.8 50.1



Table A2: Data from Table A1 standardised

Country Fuels Petroleum Gas

Belgium 0.7977 0.5780 0.6159

Bulgaria -1.1031 0.6443 0.4654

Czech Republic -1.7793 0.3556 0.6097

Denmark 0.6914 -3.9348 -1.9329

Germany -0.4244 0.3478 0.3417

Estonia -1.5016 -1.0641 0.6056

Ireland 0.2495 0.5077 0.5211

Greece -1.4219 0.2737 0.6056

Spain 0.1987 0.3985 0.5768

France 0.7567 0.4570 0.5520

Croatia 1.1600 -0.3932 -0.8008

Italy 0.8243 0.1372 0.3602

Cyprus 0.9161 0.5389 -1.4566

Latvia 0.6456 0.5155 0.9273

Lithuania 0.9088 0.2347 0.6056

Luxembourg 0.9161 0.5116 0.5974

Hungary -0.7867 -0.1280 0.0303

Malta -1.4992 0.6794 -1.4566

Netherlands 1.1962 0.2932 -3.2466

Austria 0.7663 0.2230 0.1004

Poland -1.7503 0.1606 0.0736

Portugal 0.8050 0.3907 0.6366

Romania -1.0427 -1.5673 -1.2112

Slovenia -1.0306 0.3361 0.5974

Slovakia 0.4475 0.0514 0.5149

Finland 0.0876 0.7418 0.6036

Sweden 0.4910 0.5585 0.5871

United Kingdom 0.4813 -1.8481 -0.4234



Table A3: Optimal clustering for four clusters

Country Distance from centroid

Cluster 1

Belgium 0.262618

Ireland 0.372863

Spain 0.409301

France 0.157183

Italy 0.397420

Latvia 0.390590

Lithuania 0.351688

Luxembourg 0.328572

Austria 0.514880

Portugal 0.215024

Slovakia 0.392808

Finland 0.619531

Sweden 0.192951

Cluster 2

Bulgaria 0.553540

Czech Republic 0.683695

Germany 0.858394

Estonia 1.327595

Greece 0.441481

Hungary 0.587396

Malta 1.755438

Poland 0.513369

Slovenia 0.476329

Cluster 3

Croatia 1.168228

Cyprus 0.572383

The Netherlands 1.423456

Cluster 4

Denmark 1.782601

Romania 1.399741

United Kingdom 1.067968

Most typical countries for each cluster (with minimum distance to its centroid) are italicised



Table A4: Optimal clustering for seven clusters

Country Distance from centroid

Cluster 1

Denmark 0

Cluster 2

Croatia 0.582780

Cyprus 0.582780

Cluster 3

Belgium 0.262618

Ireland 0.372863

Spain 0.409301

France 0.157183

Italy 0.397420

Latvia 0.390590

Lithuania 0.351688

Luxembourg 0.328572

Austria 0.514880

Portugal 0.215024

Slovakia 0.392808

Finland 0.619531

Sweden 0.192951

Cluster 4

Netherlands 0

Cluster 5

Bulgaria 0.544556

Czech Republic 0.634499

Germany 0.836631

Estonia 1.226630

Greece 0.315776

Hungary 0.632639

Poland 0.629000

Slovenia 0.345089

Cluster 6

Malta 0

Cluster 7

Romania 0.869195

United Kingdom 0.869195

Most typical countries for each cluster (with minimum distance to its centroid) are italicised



Figure A1: Dendrogram hierarchical clustering

Table A5: Statistics for Test Sets 1-7

Objects Variables Clusters

mtcars 32 11 9

iris 150 4 4

Glass 214 9 2

BostonHousing 506 13 2

Ionosphere 351 32 4

birth.death.rates.1966 70 2 4

acidosis.patients 40 6 5



Figure A2: Clustering mtcars Figure A3: Clustering iris

Figure A4: Clustering Glass Figure A5: Clustering BostonHousing

Figure A6: Clustering Ionosphere Figure A7: Clustering birth.death.rates.1966

Figure A8: Clustering acidosis.patients



Table A6: Evaluation results mtcars

Set 1 Ward K-Means K-Means++ K-Harmonic Means Fuzzy K-Means K-Harmonic Means++

Silhouette Width 0.4644 0.3894 0.4315 0.4117 0.4153 0.4065

DB Index 0.6649 0.7884 0.7645 0.8009 0.7311 0.7909

Initialisation Dependence 0.03 0.16 0.14 0.16 0.20

Best results (for K-Means variations) are bold

Table A7: Evaluation results iris

Set 2 Ward K-Means K-Means++ K-Harmonic Means Fuzzy K-Means K-Harmonic Means++

Silhouette Width 0.4219 0.4033 0.3866 0.4027 0.4016 0.4046

DB Index 0.8982 0.8943 0.8778 0.8855 0.9122 0.8893

Initialisation Dependence 0.11 0.62 0.51 0.36 0.44

Best results (for K-Means variations) are bold

Table A8: Evaluation results Glass

Set 3 Ward K-Means K-Means++ K-Harmonic Means Fuzzy K-Means K-Harmonic Means++

Silhouette Width 0.4018 0.3786 0.4410 0.5975 0.4444 0.5981

DB Index 1.0571 1.5480 1.4031 1.2915 1.3951 1.2858

Initialisation Dependence 0.31 0.92 0.01 0.00 0.00

Best results (for K-Means variations) are bold

Table A9: Evaluation results BostonHousing

Set 4 Ward K-Means K-Means++ K-Harmonic Means Fuzzy K-Means K-Harmonic Means++

Silhouette Width 0.3647 0.3693 0.3693 0.3701 0.3693 0.3701

DB Index 1.1665 1.1510 1.1510 1.1474 1.1510 1.1474

Initialisation Dependence 1.00 1.00 1.00 1.00 1.00

Best results (for K-Means variations) are bold

Table A10: Evaluation results Ionosphere

Set 5 Ward K-Means K-Means++ K-Harmonic Means Fuzzy K-Means K-Harmonic Means++

Silhouette Width 0.2898 0.2567 0.2935 0.2743 0.2902 0.2735

DB Index 1.7224 1.7924 1.6934 2.0276 1.7266 2.0192

Initialisation Dependence 0.50 1.00 0.01 0.00 0.00

Best results (for K-Means variations) are bold



Table A11: Evaluation results birth.death.rates.1966

Set 6 Ward K-Means K-Means++ K-Harmonic Means Fuzzy K-Means K-Harmonic Means++

Silhouette Width 0.5023 0.3912 0.5096 0.5096 0.4336 0.5096

DB Index 0.6133 0.7780 0.6824 0.6824 0.7505 0.6824

Initialisation Dependence 0.13 1.00 1.00 0.49 1.00

Best results (for K-Means variations) are bold

Table A12: Evaluation results acidosis.patients

Set 7 Ward K-Means K-Means++ K-Harmonic Means Fuzzy K-Means K-Harmonic Means++

Silhouette Width 0.3220 0.2977 0.2820 0.2971 0.3218 0.2855

DB Index 1.0038 0.9165 0.8580 0.8869 0.8556 0.8909

Initialisation Dependence 0.08 0.88 0.01 0.00 0.00

Best results (for K-Means variations) are bold



Appendix B

Here, I give a short description of the different R code files used for this thesis.

• MAIN : installs packages; imports and prepares data on energy dependence

• Functions: gives functions I created for this thesis:

• EnergyDependence: EU data set - finds optimal amount of clusters; finds optimal values for p and m;

conducts cluster analysis for both four and seven clusters; analyses results; compares results to Bluszcz

(2016)

• mtcars: mtcars data set - finds optimal amount of clusters; finds optimal values for p and m; conducts

cluster analysis; analyses results

• iris: iris data set - finds optimal amount of clusters; finds optimal values for p and m; conducts cluster

analysis; analyses results

• Glass: Glass data set - finds optimal amount of clusters; finds optimal values for p and m; conducts

cluster analysis; analyses results

• BostonHousing : BostonHousing data set - finds optimal amount of clusters; finds optimal values for p

and m; conducts cluster analysis; analyses results

• Ionosphere: Ionosphere data set - finds optimal amount of clusters; finds optimal values for p and m;

conducts cluster analysis; analyses results

• birthdeathrates1966 : birth.death.rates.1966 data set - finds optimal amount of clusters; finds optimal

values for p and m; conducts cluster analysis; analyses results

• acidosispatients: acidosis.patients data set - finds optimal amount of clusters; finds optimal values for

p and m; conducts cluster analysis; analyses results

• Conclusion: generates circular and spiral data
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