
Ant colony optimization algorithms

for the bi-objective shortest path

problem in sparse networks

Based on a paper by Ghoseiri and Nadjari (2010)

Arie Trouwborst

Supervisor: Y.N. Hoogendoorn

Second assessor: S. Sharif Azadeh

A thesis presented in fulfillment of the requirements for the

Bachelor Econometrics and Operational Research

Erasmus School of Economics

July 3, 2020

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second

assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Abstract

The Ant Colony Optimization algorithm was developed as a heuristic method for solving

the traveling salesman problem. Since then, it became used for solving many combinatorial

optimization problems, among which the bi-objective shortest path problem. We test the quality

of the ACO algorithm as used by Ghoseiri and Nadjari (2010) for this problem by comparing

its results to those obtained by an exact method, the label correcting algorithm. We show that

this algorithm produces formidable results within shorter running time for large grid networks.

Moreover, a comparison with another ACO method shows that the technique used is one of the

best in the field of the ACO algorithms.

Contents

1 Introduction 2

2 Problem description 3

3 Methodology 5

3.1 Original AS and ACS procedures . 5

3.2 Procedures as used by Ghoseiri and Nadjari . 6

3.3 Another ACO algorithm . 8

4 Performance measures 9

5 Results 11

5.1 Effects of different values of the parameters . 12

5.2 Performance on small and large networks . 13

5.3 CPU solving time . 18

6 Conclusion 20

A Appendices 24

A.1 Ant Colony Optimization Algorithm . 24

1

1 Introduction

The shortest path problem, which is about finding the shortest path from one node to another,

is applied to network analysis in many fields, ranging from communication and transportation

networks to fluid flow networks. Many from these are multi-objective in nature, which is why

researchers started studying the multi-objective shortest path (MOSP) problem. A bi-objective

shortest path problem is a form of a MOSP problem which is in turn an extension of the traditional

single-objective shortest path problem (SP) (Ghoseiri and Nadjari, 2010). Therefore, MOSP results

from SP by considering multiple criteria for the edges (Paixão and Santos, 2013). While solving

the single-objective shortest path problem results in one optimal path, the solution of its multi-

objective counterpart is generally not unambiguous, as it is assumed that the multiple objectives

have a conflicting nature. That is, the optimal path for one objective may differ from the optimal

path for another objective (Sastry et al., 2003). This usually results in a set of Pareto-optimal

paths, i.e. one cannot improve one objective function without harming another. We will discuss

this more extensively in Section 2. The decision-maker has to decide between the non-dominated

paths by weighing the different objectives (Modesti and Sciomachen, 1998).

While the classical shortest path problem is solvable in polynomial time, the same is not guar-

anteed for MOSP problems (Hansen, 1980). Garey and Johnson (1979) indeed showed that the

number of Pareto-optimal paths can grow exponentially with the number of nodes, which makes

MOSP problems NP-hard (Serafini, 1987). However, significant research has recently been devoted

to developing different methods for solving MOSP problems, many of which are label-based algo-

rithms. These methods are categorized into two broad groups, label setting and label correcting

algorithms. The original label correcting algorithm was developed by Vincke (1975), while the first

label setting algorithm was described by Hansen (1980). For an extensive comparison between

these two families, the reader is referred to Zhan and Noon (2000). Skriver and Andersen (2000)

ranked their label correcting algorithm as the best among the then existing MOSP algorithms in

terms of computational performance, solving instances up to 1,000 nodes. That is why Ghoseiri and

Nadjari (2010) compare their ant colony optimization algorithm to the label correcting algorithm

with regard to their running times and Pareto-optimal frontier.

Ghoseiri and Nadjari (2010) propose an ant colony optimization (ACO) algorithm for solving a

bi-objective shortest path problem. Ant colony optimization is a heuristic technique for solving hard

combinatorial optimization problems within reasonable running time inspired by the behaviour of

2

ant colonies. While searching for food, the ants start exploring the area surrounding their nest

in a random manner. If an ant has found a food source, it deposits a chemical substance called

pheromone during the way back to the nest (Dorigo and Blum, 2005). As the ants using a shorter

path return to the nest faster, pheromone accumulates at a higher rate on the shorter paths. Beckers

et al. (1992) showed that the ants tend to find shortest paths between their nest and food sources

by choosing the path with more pheromone with higher probability. As the deposited pheromone

vaporizes over time, the longer paths containing lower levels of pheromone will eventually get out

of use (Goss et al., 1989).

Exploiting this characteristic of real ants, Dorigo et al. (1996) first developed Ant System (AS).

One year later, Dorigo and Gambardella (1997) improved the algorithm and renamed it to Ant

Colony System (ACS). Although it was initially applied to the Traveling Salesman Problem, it

has now applications to many other combinatorial optimization problems such as vehicle routing,

scheduling, knapsack and graph colouring (Dorigo and Stützle, 2003). As the number and range

of applications grew, it was soon used to tackle multi-objective optimization problems as well.

Mariano and Morales (1999) used a preliminary version of AS to tackle a multi-objective water

distribution problem. In the same year, Gambardella and Taillard (1999) developed a multiple

ant colony system to tackle a bi-objective vehicle routing problem considering both the number

of vehicles and the total travel time as different objectives. Two years later, Iredi et al. (2001)

considered a multi-objective problem where the objectives could not be ranked by importance.

They also first used a different approach to handle the multiple objectives, which will be discussed

in Section 3. The same approach is also used by Ghoseiri and Nadjari (2010).

Section 2 will describe the aforementioned problem in mathematical terms, while Section 3

explores the methodology of the ACO algorithm as used by Ghoseiri and Nadjari (2010). The

results of their paper are replicated and a number of extensions will be explored in Section 4.

2 Problem description

Let us now make a more formal definition of a MOSP problem. Let � = (#, �) be a directed

graph where # is the set of = nodes and � the set of directed edges connecting any pair of the

nodes. More formally, � = {(8, 9) : 8, 9 ∈ #, 8 ≠ 9}. Associated with every edge (8, 9) is a cost vector

{21
8 9
, ..., 2:

8 9
}, where : represents the number of objectives. In the problem under consideration,

these two objectives represent cost and time. The goal of MOSP is finding the optimal path from

3

source node B to sink node C with regards to the : objective functions. The bi-objective shortest

path problem, where : = 2, can be formulated as follows:

min. 5 1(G) =
∑
(8, 9) ∈�

218 9G8 9 (1)

min. 5 2(G) =
∑
(8, 9) ∈�

228 9G8 9 (2)

s.t.
∑

9:(9 ,8) ∈�
G8 9 −

∑
9:(8, 9) ∈�

G8 9 =

−1 if 8 = B

0 if 8 ≠ B, C

1 if 8 = C

(3)

G8 9 ∈ B (4)

In this G8 9 is a binary decision variable indicating whether edge (8, 9) is part of the suggested path.

Ghoseiri and Nadjari use the following graph to illustrate that two objective functions may lead to

different optimal paths.

S

1

2

4

5

3 T

(1,2)

(1,1)

(2,1)

(2,2)

(2,2)

(1,2) (3,1)

(2,2)

(1,1)

Figure 1: Multiple non-dominated solution in a network (Ghoseiri and Nadjari, 2010)

As follows from the graph, four paths exist from node (to) , two of which are dominated and

two are non-dominated. Both path (-1-4-) and path (-1-3-5-) , associated with costs (5,5) and

(6,6) respectively, are (strictly) dominated by path (-1-3-) (4,5). Path (-2-5-) (6,4) is however

better than path (-1-3-) (4,5) in terms of 22, but worse in terms of 21. Therefore, both paths

are Pareto-optimal, i.e. non-dominated, which means that they form the Pareto-optimal frontier.

Determining the set of Pareto-optimal paths is the aim of solving an MOSP problem (Ghoseiri and

4

Nadjari, 2010). As mentioned before, the decision-maker has then to decide whether avoiding 21

or 22 is considered more important.

3 Methodology

In this section, we will show how the pheromone trail-following behaviour of ants while searching

for food is applied to deal with the MOSP model. Also, a number of key concepts, such as the

pheromone matrix, evaporation, heuristic parameters and local and global updates as originally

used by the AS and ACS procedures are explained. Subsequently we will show how Ghoseiri and

Nadjari’s procedures are derived from the original.

3.1 Original AS and ACS procedures

The AS algorithm comes down to letting artificial ants explore the feasible area, generating solutions

on the way. Although this is initially done mostly randomly, the search later focuses on (local)

optima. When an ant completes its walk, a certain amount of artificial pheromone is left on the

edges traveled by the ant, dependent on the quality of the solution. As the ants prefer higher levels

of pheromone, more pheromone should be added for better solutions. To keep track of the current

pheromone levels per edge, at the end of every iteration these values are updated in the pheromone

matrix. The basic steps of the first iteration of the ant algorithms may be described as follows

(Afshar, 2005):

1. The ant colony is set up by placing a number of < ants at the source node. Also, the

pheromone matrix is initialized at some appropriate level at the start of the computation.

2. As long as the ants have not reached the sink node, a transition rule is used at the nodes

to determine the next destination for every ant. This transition rule weighs the pheromone

level, costs of the arc used and the distance to the sink node.

3. When all < ants have generated a trial solution, the associated cost is evaluated and the

pheromone matrix is updated accordingly. By also taking evaporation into account, previous

information is efficiently disregarded and stagnation around a local optimum can be avoided.

The transition rule indicates the probability distribution for moving to any of the subsequent

nodes, weighing broad searching for new optima and thorough searching in the neighbourhood of

5

known optima. The original transition probability for moving from node 8 to 9 as defined by Dorigo

et al. (1996) was based on a ratio between the pheromone level g and a heuristic parameter [:

?8 9 (C) =

g8 9 (C)U · [V8 9∑

D∈l8
[g8D (C)U · [V8D]

if 9 ∈ l8 ,

0 otherwise.

(5)

At iteration C, g8 9 (C) represents the pheromone value at edge (8, 9) ∈ � , while the heuristic

parameter [8 9 was originally defined as 1/28 9 . The former encourages ant to choose commonly

used arcs, while the latter causes them to prefer cheaper arcs. Furthermore, the values of U and

V indicate the importance of the pheromone level of edge (8, 9) ∈ � relative to its cost. Finally,

l8 ⊂ # represents the set of nodes adjacent to 8 that have not been previously visited by the ant.

At the end of every iteration the pheromone level is updated for every arc (8, 9) ∈ � by summing

the pheromone deposition gℎ
8 9

of every ant ℎ ∈ � (step 3). Moreover, evaporation rate d ∈ (0, 1) is

applied according to the following formula:

g8 9 (C + 1) = (1 − d) · g8 9 (C) +
∑
ℎ∈�

Δgℎ8 9 (C) (6)

When ACS was introduced in 1997, the transition rule changed into a so-called pseudo-random

proportional rule (Dorigo and Gambardella, 1997). The chance of moving from node 8 to node 9

during iteration C, ?8 9 (C), since also depends on a uniformly distributed random variable @ and a

pre-specified parameter @0. If @ ≤ @0, the edge with the highest probability according to (5) is

selected, i.e. node 9 is chosen such that g8 9 (C) · [V8 9 is maximized. Otherwise, the same probability

distribution as in (5) is applied. Moreover, ACS led to the introduction of a local pheromone

update on top of the aforementioned global update. After traversing an edge, every ant performs

the following update to the pheromone concentration on that edge:

g8 9 (C) = (1 − q) · g8 9 (C) + q · g8 9 (0) (7)

This local update is generally applied to encourage the ants to choose exploration over exploita-

tion. By setting q ∈ (0, 1) at a high value, the search is diversified as the nodes already visited

before become less attractive.

3.2 Procedures as used by Ghoseiri and Nadjari

As mentioned before, different ways have been used to deal with the multiple objectives. The first

multi-objective algorithms which used ACO employed multiple colonies, one for every objective

6

(Gambardella and Taillard, 1999; Mariano and Morales, 1999). Iredi et al. (2001) in contrast, used

a different pheromone matrix for every objective, while Barán and Schaerer (2003) employed several

heuristic parameters instead, one for every objective. Yet another way is proposed by Doerner et al.

(2003) who introduced the so-called COMPETants algorithm, which does all three for a bi-objective

transportation problem. It uses two colonies of ants, two pheromone matrices and two heuristic

parameters, one for each objective. The ’competing’ element of this algorithm is that the number of

ants each colony gets is dependent on the quality of the solutions they generate. For a comparison

between ten different multi-objective ACO algorithms, the reader is referred to Garćıa-Mart́ınez

et al. (2007). This taxonomy was very recently updated by Falcón-Cardona et al. (2020).

Ghoseiri and Nadjari use a transition rule similar to the one defined by Dorigo and Gambardella

(1997), although an extra heuristic parameter is added for the nodes, which will be referred to as

\. Like Iredi et al., for the pheromone level and the first heuristic parameter an extra index : is

included to account for the different objectives. The transition probability distribution is based on

the following formula:

?8 9 (C) =

([g1

8 9
(C)]U · [[1

8 9
]V)_ · ([g2

8 9
(C)]U · [[2

8 9
]V)1−_ · [\ 9] X∑

D∈l8
([g1

8D
(C)]U · [[1

8D
]V)_ · ([g2

8D
(C)]U · [[2

8D
]V)1−_ · [\D] X

if 9 ∈ l8 ,

0 otherwise.

(8)

Again, this probability only applies if @ > @0. Otherwise, the node with the highest probability

is selected. Put differently, if @ ≤ @0:

?8 9 (C) =

1 if 9 = 0A6maxD∈l8

{([g1
8D
(C)]U · [[1

8D
]V)_ · ([g2

8D
(C)]U · [[2

8D
]V)1−_ · [\D] X},

0 otherwise.

(9)

The first heuristic parameter [as defined by Ghoseiri and Nadjari is different from the classic

1/28 9 , using the costs corresponding to the minimum and maximum cost edges, respectively 2:
<8=

and 2:<0G, instead:

[:8 9 = min
©«1,

2:<0G − 2:8 9
2:<0G − 2:<8=

+ n
ª®®¬ (10)

In this equation, n is a small parameter preventing [from being zero, while the min(·) function

guarantees [not to grow more than one.

The second heuristic parameter \8 on the other hand is equal to the inverse of the number of

nodes on the shortest path from node 8 to the sink node and is meant to encourage the ants moving

7

to the nodes closer to the sink node. Ghoseiri and Nadjari show that the inclusion of \ leads to a

larger Pareto-optimal set in less computation time.

Two other parameters that are new to the transition rule are X and _. The former is used to set

the weight of the second heuristic parameter, while latter decides the weight of the first objective

versus the second. The value of _ is determined using two experimental parameters, 0 and 1, and

the ant index number ℎ:

_ =

0 if ℎ ≤ 0<

ℎ

(1 − 0)< −
0

1 − 1 − 0 if 0< < ℎ < 1 − 1<

1 if ℎ ≥ 1<

(11)

As follows from this equation, 0 represents the fraction of ants that are entirely dedicated to

finding the cheapest path in terms of cost, while 1 is the fraction of ants that are dedicated to

finding the cheapest path in terms of time. Taking formulas (8) - (11) into account, we implement

the algorithm in Appendix 1 into Java.

3.3 Another ACO algorithm

As shown in Section 3.2 many ways have been used to approach the multiple objectives using ACO.

Garćıa-Mart́ınez et al. (2007) assess the different ACO algorithm that have been developed and

compare them by applying them to different instances of a traveling salesman problem (TSP). They

point out a method as proposed by Iredi et al. (2001) as one of the methods producing the best

results. As this method uses two ant colonies instead of one, we will apply this procedure as an

alternative way of applying ant colony optimization to the instances. I will then compare their

results to those as achieved by Ghoseiri and Nadjari.

As a consequence of the existence of multiple colonies, this method uses one pheromone variable

g and one heuristic parameter [for every colony. The transition probability distribution now looks

as follows.

?8 9 (C) =

([g8 9 (C)]U · [[8 9]V)_ · ([g′8 9 (C)]U · [[′8 9]V)1−_ · [\ 9] X∑

D∈l8
([g8D (C)]U · [[8D]V)_ · ([g′8D (C)]U · [[′8D]V)1−_ · [\D] X

if 9 ∈ l8 ,

0 otherwise.

(12)

g refers to the pheromone level of the colony the ant under consideration belongs to, while g′

refers to the pheromone level of the other colony. The same cis true for respectively [and [′.

8

Although \ is not part of the original formula, it is still added for reasons that will become clear

in Section 5. Finally, _ is now defined as ℎ/<, where ℎ is the index number of the ant and < is the

total number of ants in both colonies. Both colonies therefore prefer a different objective, although

every ant takes both objectives into account, except for the first ant in colony 1 and the last ant in

colony 2. These ants are entirely focused on the first and the second objective, respectively.

4 Performance measures

Ghoseiri and Nadjari (2010) use three types of performance measures to assess the quality of the

ACO approximation set . ′ relative to the real Pareto-optimal set . , generated using the label

correcting algorithm. Firstly, performance measure � indicates the closeness of the generated

approximation set to the real Pareto-optimal frontier. Every solution 0 from the approximated

front is compared to the closest solution in the real set.

�0 =
min1∈. (| |0 − 1 | |)

| |0 | |

�̄ , the average of �0 for every vector 0 ∈ . ′, takes a value between 0 and 1, where a lower

value indicates a closer approximation of the real set. Secondly, the quality of the ACO solutions

is assessed with regard to its extent. Ghoseiri and Nadjari (2010) compare the worst solution in

terms of every objective : offered by the approximation set to the worst solution in the real Pareto-

optimal front. We will however use a slightly different approach, comparing the best solution in

terms of both objectives instead.

�- =

∑
: min{min0∈. ′ (0:),min1∈. (1:)}∑

: min0∈. ′ (0:)

By definition, �- is at most 1, which would indicate that the approximation front covers the

entire range of . , both in terms of cost and in terms of time. Finally, three performance measures

are used to indicate to what extent the solutions of the approximated front are close to each other

9

and uniformly distributed over the entire front.

* =
max0∈. ′ (min1∈. (| |0 − 1 | |))∑

0∈. ′ min1∈. (| |0 − 1 | |)
(13)

(% =

√
1

|. ′ − 1|
∑
0∈. ′
(3 (0) − 3 (0))2 (14)

" =
1

|. ′ | · |. ′ − 1|
∑
0∈. ′

∑
1∈. ′

1 | |0−1 | |>f (15)

* is the ratio between the worst case distance and the average distance to the real front, i.e. it

indicates the uniformity of the closeness of the ACO solutions to the real Pareto-optimal front. (%

indicates the spread of the solutions offered by the ACO algorithm. This performance measure is

strongly correlated with the number of solutions. Finally, " gives an indication of the uniformity of

the distribution of the solutions on the Pareto-optimal frontier. It is calculated using neighbourhood

parameter f which is equal to the distance between the outer solutions in the approximation set

. ′ divided by the size of this set. A value close to 1 shows the solutions are located not only in a

limited area. This performance measure was introduced by Zitzler et al. (2003).

As fas as * is concerned it has to be pointed out that this performance measure is not always

as informative. This can be shown using the graphs in Figure 4. In case of the front shown to

the left, * is equal to 1.05, while it is equal to a staggering 7.25 in case of the front shown to the

right. This difference is solely caused by the left upper observation of the ACO front in the graph

to the right, whose distance to the LC front is significantly larger than the distance of the other

observations.

Figure 2: Pareto-optimal frontiers resulting in different values of *.

1,000 2,000 3,000 4,000 5,000 6,000 7,000

1,000

2,000

3,000

4,000

5,000
!�

��$

1,000 2,000 3,000 4,000 5,000 6,000 7,000

!�

��$

10

5 Results

We tested the algorithms on 21 instances, based on an idea from Andersen et al. (1996). These

networks have a grid structure, i.e. given a width F and a height ℎ, the structure of the instances

is such as is shown in Figure 3:

S
..

.

..
.

..
.

..
.

...

...

...

...

...

T

F

ℎ

Figure 3: Instance format

The number of nodes is Fℎ+2, while the number of edges equals 2F(2ℎ−1). Important to note,

this results in almost four edges per node if a two-way edge counts as two, whereas this fraction

for the instances used by Ghoseiri and Nadjari (2010) is slightly more than 15 edges per node. The

width of the 21 instances is equal to [50, 60, ..., 250], while the height is always 100. The instances

are numbered from 0 to 20, starting with the smallest instance.

In order to determine the cost and time associated with every edge (8, 9) ∈ � , two independent

random positive integers 0 and 1 are uniformly drawn from respectively [1, 33] and [68, 100].

Then, with probability 1
2 we assign (2(8, 9), C (8, 9)) = (0, 1) and with probability 1

2 we assign

(2(8, 9), C (8, 9)) = (1, 0). This results in a negative correlation between cost and time Andersen

et al. (1996).

The relatively low edge/node ratio of our networks poses a problem to the ACO algorithm. As

shown in the transition rule formula (8) an ant never visits a node twice during the same iteration.

This means that there is a probability that an ant gets stuck, i.e. l8 = ∅ if an ant is at node 8. For

obvious reasons, this probability increases with lower edge/node ratios. In the following section we

explore how we deal with this.

11

5.1 Effects of different values of the parameters

A natural way to prevent the ants of getting stuck is discouraging them to move left, that is, moving

away from the sink node (see Figure 3). This can be achieved by increasing the value of X, which

gives parameter \ more weight. As shown in the Table 1, the extent to which ants get stuck is

strongly dependent on the value of X.

X 0.1 0.5 1 5 10 20

�- 0.47 0.44 0.48 0.69 0.73 0.65

�̄ (%) 27.18 29.24 24.56 10.07 3.87 1.58

* 1.05 1.28 1.36 1.58 2.39 4.36

(% 32.40 46.18 28.35 34.71 32.19 1.10

" 0.72 0.91 0.88 0.86 0.88 0.92

return moves (%) 20.2 20.2 20.2 6.9 0.3 0.0

solutions 415 164 223 236 306 1847

CPU time (s) 63 69 42 20 12 196

Table 1: Performance measures for instance 0 with varying values of X

The seventh row shows the percentage of moves that an ant is returning to the former node. As

can be observed from the table, this percentage falls as the value of X becomes larger than 1. The

CPU time also decreases, except it is much higher for X = 20. This is caused by the larger number of

generated Pareto-optimal solutions, which results in better performance in terms of spread ((%). It

now takes significantly more time to determine the Pareto-optimal set at the end of every iteration.

Performance measure �- shows an optimal value for X = 10, while �, (% and " obtain a better

value for X = 20. Only the value of * is optimal for X = 0.1. As the CPU time is lowest for X = 10,

we will however proceed with X = 10.

Another parameter that will receive attention is V. As follows from (8), the value of V indicates

the relative weight of the first heuristic parameter. In other words, the higher the value of V, the

more likely an ant is to choose the cheapest path instead of the path containing the highest level

of pheromone or the path leading to the node closest to the sink node. The table and graph below

show the outcome of the behaviour of the ants under different values of V.

12

V 0.5 1 2 3 4 5 10

�- 0.64 0.64 0.68 0.74 0.79 0.79 0.75

�̄ (%) 1.43 1.78 3.11 7.89 7.59 7.40 19.19

* 3.87 2.04 3.67 1.30 2.24 1.52 1.41

(% 10.22 10.07 24.61 64.43 52.11 89.79 72.20

" 0.89 0.89 0.92 0.91 0.92 0.64 0.86

solutions 1042 643 330 87 158 178 87

CPU time (s) 30 15 7 5 6 6 7

Table 2: Performance measures for instance 0 with varying values of V

Figure 4: Pareto-optimal frontiers as a result of different values of V.

1,000 2,000 3,000 4,000 5,000 6,000 7,000

1,000

2,000

3,000

4,000

5,000
!�

��$, V = 1

1,000 2,000 3,000 4,000 5,000 6,000 7,000

!�

��$, V = 5

As Table 2 shows, increasing V from 0.5 to 3, results in an improvement of the running time

of the algorithm and the extension (�-) of the generated Pareto-optimal front at the expense of

its closeness (�) and spread ((%). Higher than 3, none of the performance measures improves

anymore. Lower than 3, the optimal value of V depends on the decision-maker whether they prefer

closeness or extension. For now we proceed with V = 2. If closeness is preferred over extension, it

is better to set V equal to 1, while 3 should be considered in the opposite case.

5.2 Performance on small and large networks

Initially we fix both the number of iterations and the number of ants at 100. This led to the

performance measures stated in Table 3. The parameters are set at U = 1, V = 2, X = 10, q = d = 0.9

13

and @0 = 0.99, while 0 and 1 are both equal to 45%. Except for X these values are more or less the

same as used by Ghoseiri and Nadjari (2010). The performance measures for the 21 instances are

stated in Table 3.

Instance #Solutions Extension Closeness Uniformity

�- �̄ (%) * (% "

0 454 0.71 3.04 3.26 20.20 0.90

1 313 0.72 3.96 2.01 32.03 0.90

2 366 0.79 4.36 1.84 44.07 0.93

3 235 0.72 4.21 2.08 49.72 0.95

4 461 0.69 3.96 1.88 40.60 0.89

5 278 0.71 4.89 1.91 38.66 0.95

6 239 0.68 5.54 1.50 45.11 0.91

7 131 0.68 5.66 1.55 97.07 0.95

8 120 0.69 4.73 1.88 98.07 0.97

9 72 0.62 6.63 1.68 134.39 0.90

10 156 0.68 6.47 1.41 92.46 0.94

11 71 0.67 5.17 1.32 139.75 0.96

12 54 0.63 4.38 2.08 199.54 0.95

13 137 0.64 6.83 1.71 102.72 0.93

14 77 0.64 7.77 1.35 131.05 0.97

15 109 0.65 6.20 1.39 149.26 0.96

16 93 0.67 8.69 1.48 155.77 0.93

17 99 0.61 5.10 1.54 98.54 0.96

18 93 0.65 6.38 1.73 183.82 0.86

19 52 0.63 7.78 1.41 337.58 0.97

20 84 0.59 8.33 1.24 141.95 0.90

Avg. 176 0.67 5.72 1.73 111.06 0.93

St. dev. 129 0.05 1.57 0.44 73.78 0.03

Table 3: Performance measures for all instances with a fixed

number of ants.

14

Remarkably performance measures �-, � and " significantly worsen as the size of the networks

increases. As far as * and " are concerned there is no significant effect. Therefore, in line with

Ghoseiri and Nadjari (2010) we choose to let the number of ants increase linearly proportional to

the number of nodes. Choosing the number of ants equal to the width of the network gives the

results as shown in Table 4.

Instance #Solutions Extension Closeness Uniformity

�- �̄ (%) * (% "

0 292 0.69 4.17 2.18 19.56 0.93

1 181 0.63 4.60 2.15 35.20 0.90

2 540 0.76 2.50 2.63 29.83 0.78

3 221 0.69 5.07 1.47 40.76 0.95

4 309 0.71 4.68 2.02 37.26 0.94

5 272 0.73 5.22 1.49 49.95 0.74

6 194 0.69 6.60 1.51 64.26 0.92

7 429 0.64 5.64 1.54 39.01 0.91

8 179 0.67 4.46 1.75 95.35 0.93

9 174 0.66 5.10 1.71 61.47 0.96

10 174 0.66 6.80 1.79 77.77 0.97

11 418 0.69 5.43 2.23 78.50 0.85

12 188 0.65 6.71 1.85 98.30 0.86

13 282 0.67 6.33 1.44 89.87 0.88

14 228 0.64 6.49 1.43 70.07 0.91

15 267 0.64 6.70 1.40 71.90 0.90

16 164 0.67 5.82 1.67 92.14 0.97

17 213 0.61 6.88 1.41 73.79 0.95

18 300 0.67 7.30 1.47 79.58 0.89

19 292 0.66 7.68 1.19 96.24 0.56

20 284 0.62 6.53 2.26 91.18 0.91

Avg. 267 0.67 5.75 1.74 66.29 0.89

St. dev. 97 0.04 1.25 0.37 24.68 0.09

15

Table 4: Performance measures for all instances with a vari-

able number of ants.

Although there is no significant decline in the number of solutions anymore, surprisingly enough,

the significant relationship between �-, � and (% and the size of the networks is still there, although

the effect is now smaller. As the method and the values of the parameters are more or less the same

as those used by Ghoseiri and Nadjari (2010), this has probably to do with the structure of the

networks. For the same reason we do not compare the outcome of the performance measures with

theirs. Two other points we would like to direct attention to are the mean and standard deviation

shown in the last two rows of both tables. As far as the mean is concerned, only the spread has

clearly changed for the better. The other performance measures differ less than 5%. The main gain

of making the number of ants dependent on the size of the network has taken place in terms of the

stability of the observations. Except for ", the standard deviation of every performance measure

has decreased, although the deterioration in the stability of " should not be overlooked.

We also implement the method as described in Section 3.3. The main difference with the

method used by Ghoseiri and Nadjari (2010) is that the former method uses multiple ant colonies

instead of only one. We employed two ant colonies each half the size of the colonies used in table 4.

Parameters U, V, X, n, q, d and @0 each remain at the same value. The results of the ACO algorithm

by Iredi et al. (2001) are stated in Table 5 below.

Instance #Solutions Extension Closeness Uniformity

�- �̄ (%) * (% "

0 770 0.63 2.03 5.64 22.87 0.75

1 509 0.60 2.02 2.99 16.31 0.76

2 109 0.64 3.11 1.84 65.22 0.90

3 58 0.61 3.78 2.54 139.05 0.94

4 100 0.64 3.13 4.25 100.73 0.94

5 235 0.64 2.39 4.16 86.56 0.83

6 216 0.63 3.37 3.08 104.16 0.60

7 65 0.60 2.87 3.16 106.67 0.95

8 64 0.60 2.76 4.26 195.36 0.91

9 69 0.59 3.84 2.93 257.31 0.95

16

10 60 0.59 3.46 3.51 156.40 0.93

11 52 0.60 4.07 3.03 183.51 0.96

12 102 0.58 3.26 4.83 177.07 0.89

13 54 0.60 3.30 3.28 318.95 0.94

14 56 0.61 3.25 3.17 360.99 0.96

15 65 0.60 3.93 2.12 128.62 0.97

16 98 0.60 3.26 3.99 96.92 0.97

17 68 0.57 3.80 3.17 225.11 0.92

18 63 0.60 3.76 2.47 248.02 0.95

19 65 0.61 3.62 2.30 188.01 0.95

20 40 0.59 3.62 2.10 218.41 0.96

Avg. 139 0.61 3.27 3.28 161.72 0.90

St. dev. 179 0.02 0.58 0.96 90.02 0.09

Table 5: Performance measures for the method by Iredi et al.

(2001).

We would like to draw a number of inferences from this table. First is that the closeness of the

generated front to the real Pareto-optimal front has clearly improved, seemingly at the expense of

its expansion. This has most likely to do with the structure of both methods. As can be observed

from the transition probability distribution (12), both colonies prefer one objective, but they are

not entirely focused on this objective. The transition probability function as used by Ghoseiri and

Nadjari (2010) however, makes sure a fraction of 0 + 1 ants is entirely focused on one objective (see

(8) and (11)). As we choose 0 = 1 = 45%, only 10% of the ants are concerned with both objectives.

This results in a larger expansion of the generated front, whereas not many ants are dedicated to

finding high quality solutions in the centre of the Pareto-optimal front. Also, the method as used

by Iredi et al. (2001) performs worse in terms of spread, although the results are clearly more stable

in case of both expansion and closeness. Finally, the performance of the algorithm is still declining

with the size of the networks in terms of expansion, closeness and spread.

17

Figure 5: Ghoseiri and Nadjari (left) and Iredi et al. (right) Pareto-optimal fronts for instance 0.

1,000 2,000 3,000 4,000 5,000 6,000 7,000

1,000

2,000

3,000

4,000

5,000
!�

��$

1,000 2,000 3,000 4,000 5,000 6,000 7,000

!�

��$

Figure 6: Ghoseiri and Nadjari (left) and Iredi et al. (right) Pareto-optimal fronts for instance 20.

0.5 1 1.5 2 2.5 3

·104

0.5

1

1.5

2

2.5

3

·104

!�

��$

0.5 1 1.5 2 2.5 3

·104

·104

!�

��$

Comparing Figure 5 and Figure 6 indeed clearly shows that the extension has dropped for both

methods in the case of the larger instance. For the closeness of the fronts generated using the

Ghoseiri and Nadjari (2010) method this is not so easy to tell, although it is for the Iredi et al.

(2001) method.

5.3 CPU solving time

Finally, we come to the main point offered by Ghoseiri and Nadjari (2010): the Ant Colony Opti-

mization algorithm is time saving in computation of large-scale bi-objective path problems. This

18

is shown in the graph below. The running times of the label correcting algorithm are represented

in blue, while the running times of the ACO algorithm with a fixed and a variable number of ants

are shown in green and orange, respectively. It has to be noted however, that the results of the

label correcting algorithm were generated on another computer in C++. Therefore, the running

times of the algorithms are not one-to-one comparable, although a trend can still be observed. The

running times of the algorithm by Iredi et al. (2001) do not significantly differ from those of the

algorithm by Ghoseiri and Nadjari (2010).

Figure 7: The running time of the ACO algorithm compared to the LC algorithm.

40 60 80 100 120 140 160 180 200 220 240 260

0

200

400

600

800

1,000

Instance width (# nodes)

C
P

U
ti

m
e

(B
)

!�

��$ G&N, fixed number of ants
��$ G&N, var. number of ants
��$ Iredi et al.

Although the ACO algorithm is outperformed by label correcting algorithm in terms of CPU

running time for half of the instances, the former performs significantly better when it comes to

the larger networks. Important to note, only the running times of the ACO algorithm with a fixed

number of ants are linearly correlated to the number of nodes. The trendline of the running times

of the ACO algorithm with a variable number of ants as well as the one of the label correcting

algorithm is of the form 2 · G=, where = > 1. As we have seen that the stability of the performance

has decreased but not so much the performance itself, a fixed number of ants may be considered

for very large networks.

19

6 Conclusion

We have shown that the Ant Colony Optimization algorithm is able to generate good solutions for

a bi-objective shortest path problem that approach the real Pareto-optimal frontier generated by

the label correcting algorithm. Especially for large networks, using the ACO algorithm would be

worth considering as this significantly saves running time. It has to be noted however, that the

quality of the solutions may decline as the number of nodes increases. This is the case for every

ACO algorithm that we have implemented. We recommend further research to finding different

ways or methods to make sure the algorithm is robust to changes in the size of the networks. We

have shown that the ACO algorithm can also be applied to networks that are relatively sparse on

arcs, although the ants should more strongly be encouraged to move to nodes closer to the sink

node, in order to prevent the ants from getting stuck many times. We could have improved the

performance of the algorithm in terms of closeness and uniformity by making this incentive even

stronger, although this would have resulted in much longer running times (see Table 1).

For the method used by Ghoseiri and Nadjari (2010), we have also seen that the determination

of the values of the parameters enable the decision-maker to choose closeness over expansion or

vice versa. As the former comes at the expense of running time (see table 7), one might as well use

the method as proposed by Iredi et al. (2001). We have seen that this method performs well on

closeness, although it has to be taken into account that it worsens more as the size of the networks

increases. We have also seen that this method has more stable results, although the method as

used by Ghoseiri and Nadjari (2010) has more opportunities to influence the shape the front by

changing the parameters. The latter method for instance has the opportunity to set the fraction

of ants that is entirely dedicated to optimizing one objective, which the other method has not.

20

References

Afshar, M. (2005). A new transition rule for ant colony optimization algorithms: application to

pipe network optimization problems. Engineering Optimization, 37(5):525–540.

Andersen, K. A., Jörnsten, K., and Lind, M. (1996). On bicriterion minimal spanning trees: an

approximation. Computers & Operations Research, 23(12):1171–1182.

Barán, B. and Schaerer, M. (2003). A multiobjective ant colony system for vehicle routing problem

with time windows. In Applied informatics, pages 97–102.

Beckers, R., Deneubourg, J.-L., and Goss, S. (1992). Trails and u-turns in the selection of a path

by the ant lasius niger. Journal of Theoretical Biology, 159(4):397–415.

Doerner, K., Hartl, R., and Reimann, M. (2003). Ar e competants more competent for problem

solving?–th e case of a multiple objective transportation problem. Centra l European Journal of

Operations Research, 11(2):115–141.

Dorigo, M. and Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer

Science, 344(2-3):243–278.

Dorigo, M. and Gambardella, L. M. (1997). Ant colony system: a cooperative learning approach

to the traveling salesman problem. IEEE Transactions on evolutionary computation, 1(1):53–66.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: optimization by a colony of

cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

26(1):29–41.

Dorigo, M. and Stützle, T. (2003). The ant colony optimization metaheuristic: Algorithms, appli-

cations, and advances. In Handbook of Metaheuristics, pages 250–285. Springer.

Falcón-Cardona, J. G., Leguizamón, G., Coello, C. A. C., and Tapia, M. G. C. (2020). Multi-

objective ant colony optimization: An updated taxonomy and review of approaches. Preprint

available at www. researchgate. net .

Gambardella, L. and Taillard, G. (1999). A multiple ant colony system for vehicle routing problems

with time windows. In New Ideas in Optimization. McGraw-Hill. London.

21

www.researchgate.net

Garćıa-Mart́ınez, C., Cordón, O., and Herrera, F. (2007). A taxonomy and an empirical analysis of

multiple objective ant colony optimization algorithms for the bi-criteria tsp. European Journal

of Operational Research, 180(1):116–148.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability, volume 174. Freeman San

Francisco.

Ghoseiri, K. and Nadjari, B. (2010). An ant colony optimization algorithm for the bi-objective

shortest path problem. Applied Soft Computing, 10(4):1237–1246.

Goss, S., Aron, S., Deneubourg, J.-L., and Pasteels, J. M. (1989). Self-organized shortcuts in the

argentine ant. Naturwissenschaften, 76(12):579–581.

Hansen, P. (1980). Bicriterion path problems. In Multiple criteria decision making theory and

application, pages 109–127. Springer.

Iredi, S., Merkle, D., and Middendorf, M. (2001). Bi-criterion optimization with multi colony ant

algorithms. In International Conference on Evolutionary Multi-Criterion Optimization, pages

359–372. Springer.

Mariano, C. E. and Morales, E. M. (1999). Moaq an ant-q algorithm for multiple objective opti-

mization problems. In Proceedings of the 1st Annual Conference on Genetic and Evolutionary

Computation-Volume 1, pages 894–901.

Modesti, P. and Sciomachen, A. (1998). A utility measure for finding multiobjective shortest

paths in urban multimodal transportation networks. European Journal of Operational Research,

111(3):495–508.

Paixão, J. M. and Santos, J. L. (2013). Labeling methods for the general case of the multi-objective

shortest path problem–a computational study. In Computational Intelligence and Decision Mak-

ing, pages 489–502. Springer.

Sastry, V., Janakiraman, T., and Mohideen, S. I. (2003). New algorithms for multi objective

shortest path problem. Opsearch, 40(4):278–298.

Serafini, P. (1987). Some considerations about computational complexity for multi objective com-

binatorial problems. In Recent advances and historical development of vector optimization, pages

222–232. Springer.

22

Skriver, A. J. and Andersen, K. A. (2000). A label correcting approach for solving bicriterion

shortest-path problems. Computers & Operations Research, 27(6):507–524.

Vincke, P. (1975). Problemes multicriteres, volume 16. Cahiers du Centre d’Etudes de Recherche

Operationnelle.

Zhan, F. B. and Noon, C. E. (2000). A comparison between label-setting and label-correcting

algorithms for computing one-to-one shortest paths. Journal of Geographic Information and

Decision Analysis, 4(2):1–11.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and Da Fonseca, V. G. (2003). Perfor-

mance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on

evolutionary computation, 7(2):117–132.

23

A Appendices

A.1 Ant Colony Optimization Algorithm

Algorithm 1: Algorithm for Ant Colony Optimization

Data: � = (#, �), U, V, X, n, q, d, @0, 0, 1

Initialize ant colony � and pheromone levels g.

Pareto-optimal solutions set← q;

End condition← 5 0;B4;

for 8 ∈ # do

Calculate \8;

for 9 ∈ # do

Calculate [:
8 9

;

end

end

repeat

repeat

for ℎ ∈ � do

Calculate _;

Determine next node using the transition rule;

Perform local pheromone update;

end

until Every ant has reached sink node C;

Update Pareto-optimal solutions set;

Perform global pheromone update;

until End condition = true;

Result: Pareto-optimal solutions set

24

	Introduction
	Problem description
	Methodology
	Original AS and ACS procedures
	Procedures as used by ghoseiri2010ant
	Another ACO algorithm

	Performance measures
	Results
	Effects of different values of the parameters
	Performance on small and large networks
	CPU solving time

	Conclusion
	Appendices
	Ant Colony Optimization Algorithm

