
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Econometrics and Operations Research

Quantitative Logistics

Evaluating and Extending Adaptive Kernel Search for

General Mixed Integer Linear Programming

Abstract

This thesis analyzes the Adaptive Kernel Search (AKS) heuristic for finding solutions to general Mixed
Integer linear Programs (MIPs) as proposed by Guastaroba, Savelsbergh, and Speranza (2017). The
performance of this heuristic is evaluated by solving a set of problem instances and comparing the results
to the results of the commercial solver CPLEX using the same time limit. AKS creates a kernel of
promising variables and adapts the kernel size based on the difficulty of the problem instance. A weak
point regarding the decrease of the kernel size for hard instances is identified, and an extension is suggested
to improve the heuristic. This extension includes an iterative process of increasing the kernel size again
after it has been decreased. On average, this extended version of AKS finds better solutions in a specific
group of instances for which the original version of AKS used less than the available time.

Author:
Martijn Bij de Vaate (476061mv)

Supervisor:
R. Hoogervorst
Second assessor:

Prof. Dr. D. Huisman

Date final version: 5 July 2020

The views stated in this thesis are those of the author
and not necessarily those of the supervisor, second assessor,

Erasmus School of Economics or Erasmus University Rotterdam.

Contents

1 Introduction 2

2 Literature 3

2.1 Mixed Integer Linear Programming . 3

2.2 Primal Heuristics . 3

2.3 Improvement Heuristics . 3

3 Methodology 4

3.1 Kernel Search . 4

3.2 Adaptive Kernel Search . 5

3.3 Extension: Unfixing Kernel Variables . 7

4 Results 9

4.1 Problem Instances . 9

4.2 Results Adaptive Kernel Search . 10

4.3 Results Extension . 15

5 Conclusion 19

1

1 Introduction

Many practical problems from different disciplines and industries can be formulated as a Mixed Integer linear

Program (MIP). This formulation offers a way to model a decision making process with restrictions in a

mathematical way. Finding the best solution to such a problem boils down to making the decisions in an

optimal way, such that the objective value is optimized. Such an objective can be defined as the total costs

associated with the decisions, the total distance traveled, etc.

The objectives of MIPs are often directly or indirectly related to money, for example production costs or

total profit. This makes it clear that finding a better solution is valuable for the individual or company facing

the problem. Algorithms exist to solve such problems to optimality, but as the problem instances increase in

size, the computation time to find the optimal solution using such an algorithm also increases. It is therefore

necessary to develop heuristics which are able to find a relatively good solution within a prespecified amount

of time.

An example of such a heuristic is Adaptive Kernel Search (AKS), presented by Guastaroba, Savelsbergh,

and Speranza (2017). AKS is an extension of Kernel Search (KS), which was developed by Angelelli, Mansini,

and Speranza (2010). KS is a heuristic which divides the non-continuous variables into a set of promising

variables and non-promising variables. Initially, a feasible solution to the problem is found using only the set

of promising variables, referred to as the kernel. Afterwards, this solution is improved in an iterative process.

The algorithm repetitively calculates whether including a subset of the non-promising variables improves the

solution, trying a different subset in each iteration. One of the extensions of AKS as compared to KS is to

identify the difficulty of a problem instance as easy, normal or hard, and to use this in the remainder of the

algorithm by increasing or decreasing the kernel size. Secondly, AKS uses a better method to find a feasible

solution in the initial phase of the algorithm.

Based on a set of 137 problem instances, Guastaroba et al. (2017) conclude that when a fixed computa-

tion time is used, AKS yields better results than the commercial solver CPLEX. Besides, by changing the

parameters of AKS, the user can trade quality of the solutions against computation time. This thesis ana-

lyzes the performance of AKS in comparison to CPLEX. It also identifies a weak point of AKS. For instances

that are considered hard, decreasing the kernel size sometimes is too drastic and leads to short computation

times and relatively bad solutions. An extended version of AKS is suggested which deals with this problem

by iteratively increasing the kernel size again. On average, this extension finds better solutions in case an

instance did not use all of the available time when being solved by the original version of AKS. In case the

original version of AKS used all of the available time to solve an instance, the extension usually found the

same or a worse solution than the original version of AKS.

The remainder of this thesis is structured as follows. Section 2 contains a description of MIPs and some

well-performing heuristics to solve them. Section 3 describes KS as well as AKS and the extension of AKS.

Section 4 starts with a description of the problem instances used by Guastaroba et al. (2017) and how these

instances will be used in this thesis. It then proceeds to the results of this thesis, which are the analysis of

AKS and its extended version. Lastly, Section 5 provides a conclusion.

2

2 Literature

2.1 Mixed Integer Linear Programming

MIPs consist of a number of decision variables x1, ..., xn. Different types of decision variables exist. Some

variables are continuous, which means that they can attain any value from the real numbers. Integer variables

are restricted to the set of non-negative integers, and binary variables to 0 and 1. The MIP contains linear

restrictions on the variables, as well as a linear objective function in terms of the variables. The aim of the

model is to find values for the decision variables which minimize the objective function while satisfying all of

the constraints. An MIP without integer variables is a special case called 0-1 MIP.

A lot of research has been done on heuristical methods to solve MIPs. Guastaroba et al. (2017) indicate

that those heuristics can be divided into two groups. The first group consists of primal heuristics. Those

heuristics aim to find an initial feasible solution to a problem instance. The other group consists of im-

provement heuristics, which try to improve a feasible solution. The remainder of this section describes some

examples of primal heuristics and improvement heuristics.

2.2 Primal Heuristics

A well-performing primal heuristic is the Feasibility Pump (FP) heuristic, which has been proposed by

Fischetti, Glover, and Lodi (2005). As a starting point, an infeasible solution x̃ is used. Defining P as the

feasible region of the LP relaxation of the MIP, the following step is to find the point x∗ ∈ P closest to x̃. This

will generally not be a solution to the MIP, since the integer and binary variables may now attain continuous

values. So the next step is to round the integer and binary variables of x∗ such that the integrality constraints

are satisfied again. This new point might be infeasible again. It replaces x̃, after which the process repeats

until the distance between two points is zero. When this situation is reached, it means that a point has

been found satisfying both the integrality constraints and all the other constraints. Such a point is a feasible

solution to the MIP.

Several researches have been done on how to extend the FP heuristic, for example by Fischetti and

Lodi (2008), who combine the FP heuristic with Local Branching (LB) from Fischetti and Lodi (2003).

Their algorithm starts by finding a promising, but infeasible solution. Next, LB is performed to find a

feasible solution. This idea of combining a heuristic to find an initial, although infeasible, solution with an

improvement heuristic has also been applied to construct the Kernel Search heuristic, which we will describe

in Section 3.

2.3 Improvement Heuristics

Lazić, Hanafi, Mladenović, and Urošević (2010) defined the Variable Neighborhood Decomposition Search

(VNDS) heuristic, which has proven to be among the best heuristics to solve 0-1 MIPs. An initial feasible

solution and the optimal solution to the LP relaxation are used as input for the heuristic. First, the distance

between the values in these two solutions is calculated for all binary variables. The binary variables are

ordered based on these distances, starting from the variable with the smallest distance. Next, the first k

variables according to this order are fixed to their value in the best feasible solution found so far. Initially,

most variables will be fixed. Using this restriction, the MIP is solved. If the objective value has not been

improved, fewer variables will be fixed, and the MIP will be solved again. This is repeated until a solution

is found with a better objective value than the objective value of the best solution found so far. Variable

3

Neighbourhood Descent (VND) will be applied to this new solution, and the resulting solution will take the

role of the initial feasible solution, after which the whole process starts over. This is repeated until the time

limit has been reached.

3 Methodology

This Section describes the Kernel Search (KS) heuristic as proposed by Angelelli et al. (2010), as well as the

Adaptive Kernel Search (AKS) heuristic, proposed by Guastaroba et al. (2017), which is an extension of KS.

3.1 Kernel Search

KS is a heuristic for finding solutions to 0-1 MIPs. It uses a set of promising binary decision variables, called

the kernel. Those variables are promising in the sense that they are likely to be equal to one in the optimal

solution. The heuristic searches for an initial feasible solution, after which it tries to improve this solution.

To this end, the kernel is changed by adding promising variables to it and removing non-promising variables

from it. Comparing this to the division of heuristics into two groups as described in Section 2, we can see

that KS combines a primal heuristic with an improvement heuristic. The idea of KS has been successfully

used by among others Kirschstein and Meisel (2019), who constructed a heuristic based on KS to solve a

problem regarding the production process in the chemical industry.

As a first step towards a feasible solution, an initial kernel K needs to be created. This is done by solving

the Linear Programming (LP) Relaxation, and letting the kernel consist of all binary variables with a value

greater than zero in the LP solution. The remaining binary variables are sorted by non-increasing reduced

cost. Using this order, they are put into so called buckets B1, B2, ..., BNb
of certain size. For example, this

size could be equal to the kernel size. This would mean that a problem instance with 35 binary decision

variables and a kernel size of 10 would need Nb = 3 buckets. The first two buckets would contain 10 variables

each, whereas the last bucket would only contain 5 variables. The 0-1 MIP may also contain continuous

variables. They are neither in the kernel nor in the buckets.

The next part of the heuristic is to find a feasible solution to the problem. This is done by solving a

restricted MIP, denoted by MIP(K), which is a version of the original MIP with extra constraints. In this

restricted MIP, all binary decision variables, except those in K, are restricted to zero. If the set of binary

decision variables is denoted by B, this restriction would be given by xj = 0, j ∈ B \K. Any continuous

variables are not restricted in the restricted MIP.

The final part of the KS algorithm tries to improve the initial feasible solution. Such a solution may

not have been found yet, in which case this part of the algorithm could find the first feasible solution. This

improvement phase consists of a number of iterations, defined by the number of buckets Nb, or a prespecified

maximum number of iterations N̄b, if N̄b < Nb. Iteration i corresponds to bucket Bi. The variables of this

bucket will not be restricted to zero anymore. That is, MIP(K ∪ Bi) is solved. To this restricted MIP, two

more constraints are added. The first constraint is that the objective value should be less than (or, if the

programming environment requires this, equal to) the objective value of the best solution found so far, since

we are looking for improvement of this solution. The other constraint is given by
∑

j∈Bi
xj ≥ 1. It implies

that at least one of the variables in the bucket should be equal to one. Both constraints reduce the search

space, therefore they speed up the process of finding better solutions. When this restricted MIP has been

solved, the kernel needs to be updated in case a feasible or optimal solution has been found. Such a solution

will be better or exactly as good as the best solution found before that. Of all variables in bucket Bi, those

4

with a value of one in the solution of MIP(K ∪ Bi) are added to the kernel. Next, we remove those variables

from the kernel that have been equal to zero for p iterations, in order to prevent the size of the kernel from

becoming too large. Here, p is a prespecified parameter.

When all iterations have been performed, the best solution found so far is the final solution. However, it

is not guaranteed that a feasible solution has been found.

3.2 Adaptive Kernel Search

One problem with KS is the kernel size and how it depends on the problem instance. A larger kernel size

generally means better solutions, but also longer computation times. In case KS can be applied to a problem

instance in a very short time, it would be possible to increase the kernel size, without creating extremely

long computation times. On the other hand, if it takes a very long time to apply KS to a certain problem

instance, it would be desirable to decrease the size of the kernel.

The possibility to adapt the kernel based on the difficulty of the problem instance is one of the changes

Guastaroba et al. (2017) made to KS when they proposed AKS. This change and the other changes have

been described in the following paragraphs. Algorithm 1 provides pseudocode for AKS.

LP relaxation

In KS, the LP relaxation of the problem instance is solved. This is done by relaxing all the integrality

constraints. In AKS, this has been changed to the LP relaxation as solved by CPLEX when the first node of

the search tree is evaluated. In its basic form, this equals the LP relaxation of the complete problem instance.

However, CPLEX adds some functionality such as preprocessing the problem and creating cuts. This means

that a higher bound is obtained, which in turn generally results in a better initial kernel.

Initial feasible solution

In case MIP(K) is an infeasible problem, there are too many constraints. Some constraints need to be relaxed

to find a feasible solution, which is done by adding variables to the kernel. Repeatedly, the variables from

w buckets are added to the kernel, starting from the first bucket. If there exists any solution to the overall

problem, and there is no time limit for the new restricted MIPs that are created, this procedure should find

a feasible solution. Once it has been found, the remaining non-kernel binary variables are again divided into

buckets. If the bucket length is taken to be equal to the kernel size, there will now be fewer buckets, but

with more variables per bucket.

Adaptation of the kernel size

After having found an initial feasible solution to the problem instance, the kernel size is adapted based on

the computation time of the last restricted MIP that has been solved, and which found the initial solution.

This computation time will be denoted by tinit and compared to certain prespecified thresholds: if this time

is less than or equal to teasy, the problem instance is supposed to be easy ; if this time is greater than or

equal to thard, the problem instance is supposed to be hard. Otherwise, the problem instance is supposed to

be normal. This information is used to adapt the kernel accordingly. For normal instances, the kernel will

not be adapted. Instead, the algorithm immediately proceeds to the improvement phase.

The adaption of the kernel for easy instances is to add the variables of the first q buckets to the kernel

and solve MIP(K) again, now using the adapted kernel. To find a better solution, at least one of the new

5

Algorithm 1 Adaptive Kernel Search

Initialization phase
1: Solve the root node relaxation in CPLEX
2: Create a kernel K and buckets B1, ..., BNb

3: Solve MIP(K)
4: if a feasible solution has not been found then
5: while a feasible solution has not been found do
6: Add bucket variables to kernel K
7: Solve MIP(K)
8: end while
9: Create buckets B1, ..., BNb

10: end if

Adaptation phase
11: Classify the difficulty of the problem instance as easy, normal or hard
12: if the problem instance is easy then
13: while the problem instance is easy and the kernel K can be extended do
14: Add bucket variables to kernel K
15: Solve MIP(K)
16: end while
17: if the kernel K can be extended then
18: Create buckets B1, ..., BNb

19: else
20: return
21: end if
22: else if the problem instance is hard then
23: for every variable xj in K do
24: if the value of variable xj at the root node relaxation differs at most ε from the closest integer

then
25: Add constraint xj = 1 to the problem instance
26: end if
27: end for
28: end if

Improvement phase
29: for i = 1, 2, ...,min{Nb, N̄b} do
30: Solve MIP(K ∪Bi)
31: Adjust the kernel K based on the solution
32: end for
33: return

6

variables should equal one, since they were all equal to zero in the best solution found so far. Therefore, to

cut off a part of the search space, the constraint
∑

j∈K+ xj ≥ 1 can be added to the restricted MIP. Here,

K+ denotes the set of new kernel variables. As long as the time to solve this problem does not exceed teasy,

the variables of another q buckets are added, following their initial order of reduced cost. It could occur

that all the binary variables have been added to the kernel and the solution can still be found, in which case

the optimal solution to the overall problem has been found and the algorithm stops. In case the algorithm

does not stop, the process of creating buckets of variables is repeated with the remaining non-kernel binary

variables. AKS then proceeds to the improvement phase.

Hard instances are adapted by restricting some of the kernel variables to one for the remainder of the

algorithm. Those variables are the binary decision variables with a value greater than 1 − ε in the LP

relaxation at the root node. Here, ε is a prespecified value. After this adaptation, the improvement phase is

carried out.

MIPs with integer decision variables

Whereas KS has only been defined for 0-1 MIPs, so MIPs without integer decision variables, AKS also

works for general MIPs. To create the kernel and the buckets, the binary and integer variables are handled

separately. Non-zero variables are put into the kernel, while the remaining variables are ordered based on

their reduced cost. This results in two kernels and two sets of buckets, which are then combined for the

remainder of the algorithm. In case either the binary or the integer variables have more buckets, the last

couple of combined buckets consist only of one type of variables.

When adjusting the kernel size by fixing variables in the case of a hard instance, integer variables with

an absolute difference of at most ε to the nearest integer will be fixed to this integer.

Regarding the improvement phase, KS uses an extra constraint which ensures to have at least one of the

binary variables of the buckets equal to one. In AKS, this changes to having at least one bucket variable which

is greater than zero. The mathematical formulation of this constraint remains unchanged:
∑

j∈Bi
xj ≥ 1.

3.3 Extension: Unfixing Kernel Variables

In order to reduce the complexity of the hard instances, AKS fixes some of the kernel variables at a promising

value before starting the improvement phase. This may turn the remaining problem into a very easy one, such

that the improvement phase can be performed in a small amount of time. However, this small computation

time may come at a price of a bad solution. In such cases, we might want to leave out the fixation of variables.

This will result in a longer computation time and a better solution for some instances.

The AKS heuristic is extended by implementing the idea described above. For hard instances, each

iteration of the improvement phase is split into several sub-iterations. The first of these sub-iterations equals

the usual iteration from AKS. In the next sub-iteration, some of the variables that were fixed to a certain

value, will not be fixed to this value anymore. In other words, some of the fixation constraints are removed

from the problem. In the next iteration, even more fixation constraints are removed, until the last sub-

iteration does not contain any fixation constraints anymore. This means that the last sub-iteration is equal

to a usual iteration if the instance were treated as a normal instance, in which case no variables are fixed.

The order in which the variables are unfixed is determined by their difference with the nearest integer, or

the value to which they were fixed. The variable with the largest difference is unfixed first, and the variables

which is closest to the nearest integer is unfixed last.

7

The number of sub-iterations per iteration is controlled by a pre-specified parameter f = 1, 2, If the

number of variables that are fixed, Nf , is less than f , f is adjusted to Nf . During each sub-iteration, 1/f of

the fixed variables is unfixed. This results in a total of f + 1 sub-iterations per iteration. The time limit of

each sub-iteration is determined by dividing the remaining time for the iteration as a whole by the remaining

number of sub-iterations. This implies that if a sub-iteration is finished before the time that was allocated

to it, the remaining time is shared equally among the next sub-iterations of the current iteration. Algorithm

2 contains the pseudocode for this extended version of AKS.

This extension to AKS will likely perform well for hard instances for which the computation time of AKS

is below the time limit. This generally means that the iterations were solved in a small amount of time.

Now, the time that is left will be used to unfix some of the variables and search for a better solution in the

search space that was added to the problem. However, if an iteration needed all or a substantial part of the

available time, this extension might also result in worse solutions. That is, the original iteration, now the first

sub-iteration, will now be aborted earlier, to allow for the other sub-iterations to be solved. At this point, the

first sub-iteration may not have found the solution it could have found with some more time. Also, the next

sub-iterations may not find better solution than the first sub-iteration because of the increased complexity

of the problem.

It follows from this argument that better solutions can be expected for some of the hard instances, but a

better or equal solution is not guaranteed. Section 4.3 provides the results of this extension and a discussion

thereof.

Algorithm 2 Extended version of Adaptive Kernel Search

Initialization phase as in Adaptive Kernel Search

Adaptation phase as in Adaptive Kernel Search

Improvement phase
1: for i = 1, 2, ...,min{Nb, N̄b} do
2: if the problem instance is hard and the number of fixed variables, Nf , is greater than 0 then
3: Solve MIP(K ∪Bi)
4: Adjust the kernel K based on the solution
5: for k = 1, 2, ...,min{f,Nf} do
6: Unfix a total of k/min{f,Nf} kernel variables
7: Solve MIP(K ∪Bi)
8: Adjust the kernel K based on the solution
9: end for

10: else
11: Solve MIP(K ∪Bi)
12: Adjust the kernel K based on the solution
13: end if
14: end for
15: return

8

4 Results

The AKS algorithm as described in Section 3 has been implemented in Java using version 12.10.0 of the

commercial solver CPLEX. Appendix A explains the set-up of this code. This section starts with a description

of the problem instances from Guastaroba et al. (2017), and which of those will be used in this thesis. Two

changes have been made to the original algorithm, which will be discussed in Section 4.2. Afterwards, the

settings of the AKS heuristic will be given, as well as the results. These results will be compared and discussed

in detail, which also shows the need of an extension. Finally, the results of the extension of AKS will be

given and discussed.

4.1 Problem Instances

Guastaroba et al. (2017) used a set of 137 problem instances. 29 of those are called the Lazić instances, since

they were used by Lazić et al. (2010) for evaluating the results of VNDS. Earlier, they were also used by

Fischetti and Lodi (2003), who composed this set of problem instances from different disciplines. The other

108 problem instances are taken from the MIPLIB2010, a library of MIPs. Both the Lazić and MIPLIB2010

instances are taken from different applications, such as crew scheduling, network design and rolling stock

planning.

This thesis will extend the AKS heuristic, after which its results will be compared to the results of the

original version of AKS. In order to be able to compare our results to the results of Guastaroba et al. (2017),

the same instances as described before will be solved. Due to limited time over the course of this thesis, we

will need to use a subset of these instances. This subset will contain a variety of instances, e.g. instances

that are classified as easy and hard by AKS, instances with relatively few and many decision variables, etc.

Tabel 2 shows that 17 out of 29 Lazić instances can be solved to optimality within 1 hour using CPLEX

12.10.0 on a Dell laptop with Windows 10 as its operating system and with an Intel core i7 CPU (2.6 GHz)

and 16 GB of RAM. The other 12 instances need more than 1 hour to be solved to optimality. This means

that the instances have different difficulty. The number and types of variables also varies among the Lazić

instances, which is why we let them be part of our set of problem instances.

The MIPLIB2010 instances are generally harder than the Lazić instances. Guastaroba et al. (2017)

divide them into 53 instances to which the optimal solution was known at the time of their research, and 55

instances to which the optimal solution was unknown at the time of their research. These two sets of problem

instances are respectively referred to as MIPLIB2010-OS and MIPLIB2010-NOS. We will add ten problem

instances from MIPLIB2010-OS and ten from MIPLIB2010-NOS to the set of problem instances used in this

thesis. Because the Lazić instances already contain some easier instances, but also because the extension to

AKS in this thesis focuses on hard instances, these will be the first ten problem instances which are identified

as hard by AKS when ordered alphabetically. They include instances from different fields and with different

characteristics, such as different numbers of variables. Table 1 provides an overview of the problem instances

for this thesis, ordered by their difficulty as assessed by AKS (see Table 2).

9

Table 1: Problem Instances

Lazić MIPLIB2010-OS MIPLIB2010-NOS
easy normal hard hard hard

arki001 A1C1S1 B1C1S1 bg512142 circ10-3
danoint A2C1S1 B2C1S1 dc1c dano3mip
glass4 net12 biella1 dg012142 dc1l
markshare1 seymour mkc germanrr ex1010-pi
markshare2 sp97ar NSR8K germany50-DBM lectsched-1-obj
nsrand ipx UMTS rail2586c go19 n3700
rail2536c rail4284c ivu52 n3705
rail507 rail4872c maxgasflow n370a
roll3000 swath n3-3 neos-937815
sp97ic van neos-948126 ns1854840
sp98ar
sp98ic
tr12-30

4.2 Results Adaptive Kernel Search

Changes to the algorithm

Firstly, the LP relaxation at the root node of the problem as solved by CPLEX has been used for creating

the kernel, but not for ranking the bucket variables. This has to do with the fact that CPLEX does not offer

a straightforward way to retrieve the reduced costs of variables while the problem is being solved. Instead,

the LP relaxation of the complete problem has been used to find the reduced costs and to rank the variables

to create the buckets.

Secondly, the constraint to use at least one of the newly added variables when adapting the kernel for

easy instances has been left out. Its function is to reduce the search space by preventing the heuristic from

searching for solutions that have already been found during the previous iteration. These solutions had been

found within the time limit teasy, which means there is not much time to be gained by adding this constraint.

Moreover, it increases the complexity of the algorithm when implementing it in a programming environment,

because of the need to keep track of the previous solution during the procedure to adapt the kernel of easy

instances. We therefore chose to leave out this constraint.

Settings

The problem instances have been solved with CPLEX and by applying AKS, using the PC described in

Section 4.1. Solving the instances using CPLEX has been done with the default settings and a time limit

of 1 hour (3600 s). This has been denoted by CPLEX(1h). AKS also has a time limit of 1 hour, which

is implemented as follows: each LP relaxation or restricted MIP is limited to the remaining time. Some

restricted MIPs are limited to an even shorter time. Those are MIP(K) from line 3 of Algorithm 1 with a

time limit of t̄, which is 1/(1 +Nb) multiplied by the remaining time, and the other restricted MIPs solved to

find a feasible solution (Algorithm 1, line 7), which have a time limit of 2 · t̄. Finally, we have the restricted

MIPs during the improvement phase (Algorithm 1, line 30), which all get an equal share of the remaining

time. For example, if the remaining time is 2700 seconds and iteration 5 out of 13 is about to start, it will

be limited to a computation time of 2700/9 = 300 seconds.

The other parameters are taken as follows: the bucket length is equal to the kernel size and there is no

10

maximum number of buckets (N̄b =∞). Variables remain in the kernel, even if they have been equal to zero

for several iterations (p = ∞). Next, w = 0.3, q = 0.35, ε = 10−5, teasy = 10 seconds and thard is equal to

the time limit of the last restricted MIP, so either t̄ or 2 · t̄. This version of the AKS heuristic is referred to

as AKS(1h).

Finally, the LP relaxations and MIPs in AKS were solved by CPLEX. The default settings were used,

except for the following changes. All restricted MIPs (lines 3, 7, 15 and 30 of Algorithm 1) are solved with

bound strengthening (parameter Preprocessing.Boundstrength = 1). In addition, finding feasible solutions

is emphasized in the restricted MIPs of the improvement phase (line 30 of Algorithm 1), by setting parameter

Emphasis.MIP to HiddenFeas and the Feasibility Pump heuristic parameter (MIP.Strategy.FPHeur) to 1.

11

Table 2: Results of CPLEX(1h) and AKS(1h)

Instance
Decision variables CPLEX(1h) AKS(1h)

Cont. Bin. Int. Tot. Objective CPU (s) Category Gap (%) CPU (s)

arki001 850 415 123 1388 7581043.7 8 easy 0.00 53
danoint 465 56 0 521 65.7 463 easy 0.00 786
glass4 20 302 0 322 1200012600.0 150 easy 0.00 135
markshare1 12 50 0 62 4.0 3600 easy 0.00 3600
markshare2 14 60 0 74 12.0 3600 easy -8.33 3600
nsrand ipx 1 6620 0 6621 51200.0 73 easy 0.00 451
rail2536c 9 15284 0 15293 689.0 35 easy 0.00 110
rail507 10 63009 0 63019 174.0 80 easy 0.00 1745
roll3000 428 246 492 1166 12890.0 15 easy 0.00 54
sp97ic 0 12497 0 12497 427684487.7 3109 easy 0.59 3600
sp98ar 0 15085 0 15085 529740623.2 408 easy 0.12 3600
sp98ic 0 10894 0 10894 449144758.4 123 easy 0.00 1368
tr12-30 720 360 0 1080 130596.0 126 easy 0.00 166

A1C1S1 3456 192 0 3648 11503.4 1298 normal 0.00 737
A2C1S1 3456 192 0 3648 10889.1 870 normal 0.00 1285
net12 12512 1603 0 14115 214.0 139 normal 0.00 127
seymour 0 1372 0 1372 423.0 3602 normal 0.00 3602
sp97ar 0 14101 0 14101 660729183.0 2934 normal 0.53 3600
UMTS 73 2802 72 2947 30090583.0 277 normal 0.00 1263

B1C1S1 3584 288 0 3872 24544.2 3600 hard 0.00 3600
B2C1S1 3584 288 0 3872 25812.0 3600 hard 0.22 3600
biella1 1218 6110 0 7328 3065037.5 125 hard 0.00 1402
mkc 2 5323 0 5325 -563.8 3606 hard 6.49 266
NSR8K 6316 32040 0 38356 857676860.7 3600 hard -6.65 3600
rail2586c 11 13215 0 13226 953.0 3600 hard 0.31 3600
rail4284c 9 21705 0 21714 1072.0 3600 hard 0.09 3600
rail4872c 11 24645 0 24656 1550.0 3600 hard -0.39 3600
swath 81 6724 0 6805 467.4 3603 - 27.15 3600
van 12289 192 0 12481 4.8 3600 hard 0.00 3600

bg512142 552 240 0 792 188862.2 3601 hard 0.90 3601
dc1c 1659 8380 0 10039 1782289.6 3600 hard 0.11 1880
dg012142 1440 640 0 2080 2596277.0 3600 hard -10.69 2162
germanrr 239 5288 5286 10813 47095871.2 2054 hard 0.36 256
germany50-DBM 8101 0 88 8189 474980.0 3600 hard 0.09 2162
go19 0 441 0 441 84.0 3603 hard 0.00 3603
ivu52 0 157591 0 157591 490.1 3601 hard -1.71 2181
maxgasflow 4981 2456 0 7437 -44565689.0 3600 hard 0.25 1943
n3-3 8662 0 366 9028 16072.0 3600 hard 0.49 1880
neos-948126 2586 6965 0 9551 2609.0 3600 hard 3.64 1806

circ10-3 0 2700 0 2700 408.0 3600 hard -5.39 3601
dano3mip 13321 552 0 13873 691.8 3600 hard 0.02 3600
dc1l 1659 35638 0 37297 1782855.4 3600 hard 5.86 3600
ex1010-pi 0 25200 0 25200 241.0 3600 hard 0.00 3600
lectsched-1-obj 0 28236 482 28718 83.0 3600 hard 0.00 2408
n370a 5000 5000 0 10000 1277711.0 3600 hard 0.82 3600
n3700 5000 5000 0 10000 1280361.0 3600 hard -1.75 3600
n3705 5000 5000 0 10000 1281088.0 3600 hard -1.16 3600
neos-937815 2770 8876 0 11646 2859.0 3600 hard 1.19 1450
ns1854840 0 135280 474 135754 2242000.0 3600 hard -91.17 3600

Average 2247 14064 151 16462 2529 -1.59 2336

Comparison CPLEX(1h) and AKS(1h)

Table 2 shows the results of applying CPLEX(1h) and AKS(1h) to the 49 problem instances. For each

instance, the number of continuous, binary and integer variables is given, as well as the total number of

12

variables. The next two columns provide the objective value obtained by CPLEX(1h), and the actual CPU

time, which had a limit of 1 hour (3600 seconds). A CPU time of less than 3600 seconds implies that the

optimal solution was found. However, the objective value given in the table may be slightly greater than the

actual optimal value due to the default value of the MIP Gap Tolerance parameter in CPLEX, which is set

to 1E-4. For AKS(1h), the category of the instance is given, as well as the gap between the objective values

of AKS(1h) and CPLEX(1h). This gap has been calculated as zA−zC
|zC| · 100%, where zC and zA denote the

objective values found by CPLEX(1h) and AKS(1h), respectively. Thus, a gap of 0% means that AKS(1h)

found the same value as CPLEX(1h). A positive gap means that it found a worse solution, and a negative

gap means that the solution of AKS(1h) was better than the solution of CPLEX(1h). Lastly, the CPU time

of AKS(1h) is given in the right-most column.

The problem instances in Table 2 have been grouped into 5 blocks of rows. The first three blocks

correspond to the easy, normal and hard Lazić instances. The difficulty of instance swath could not be

identified, because the part of the heuristic in which the difficulty is assessed was not reached before the end

of the time limit. The fourth block corresponds to the MIPLIB2010-OS instances, and the MIPLIB2010-NOS

instances are presented in the fifth block.

This ordering of the problem instances makes it clear that CPLEX(1h) was able to solve to optimality

11 out of 13 easy instances, 5 out of 6 normal instances and only 2 out of 29 hard instances. On average,

the computation time was 2529 seconds. As expected, the computation time increased with the difficulty of

the problem instances, which shows that AKS(1h) generally succeeds in assessing the difficulty of a problem

instance.

Especially for the easy and normal instances, the gap between AKS(1h) and CPLEX(1h) is often equal to

0%. This happens 13 times. In 3 cases, a better solution was found. This includes problem instances arki001

and UMTS, for which the gaps are slightly negative, but equal to 0.00% when rounded to two decimals. In the

other 3 cases, a worse solution was found. Without outliers of more than 5% in absolute values, the average

gap equals 0.07%.

Among the hard instances, the results of AKS(1h) are more often different from CPLEX(1h), both better

and worse. In 5 cases, the same solution was found, but in 9 cases a better solution is found and in 15

cases a worse solution is found. On average, again after discarding outliers with gaps of more than 5% in

absolute values, the gap between AKS(1h) and CPLEX(1h) equals 0.15% for hard instances. For the problem

instances used in this thesis, AKS(1h) seems to perform slightly worse than CPLEX(1h), but further research

with a larger set of instances will have to show whether this difference is significant.

Explaining the performance of AKS(1h)

We will now attempt to explain the gaps between AKS(1h) and CPLEX(1h) in order to gain some more insight

into the robustness of AKS. The upper graph of Figure 1 shows the relationship between the proportion of

binary variables and the gap. Gaps with an absolute value of 5% or more have been removed. It seems that

positive and negative gaps are spread evenly along the horizontal axis of the graph, which means that the

proportion of binary variables does not explain the gap.

Regarding the proportion of integer variables, there is not much we can say about its effect on the

performance of AKS(1h), since there were only a few instances with integer variables among our problem

instances. These did not show any remarkable behavior. Appendix B shows the graph of the relationship

between the proportion of integer variables and the gap. The fact that most instances did not contain any

integer variables means that the graph which shows the relationship between the proportion of continuous

13

variables and the gap resembles the upper graph of Figure 1, but with a reversed horizontal axis. The

proportion of continuous variables therefore does not explain the gaps either. Appendix B also contains this

graph.

The lower graph of Figure 1 show the relationship between the total number of variables of a problem

instance and the gap between AKS(1h) and CPLEX(1h). The total number of variables is given on a

logarithmic scale. Most instances have around 10,000 variables, which explains why many of the positive

gaps occur in the same area. There does not seem to be a trend between the number of variables and the

gap.

Figure 1: Performance of AKS(1h) for different instance characteristics (without outliers)

14

Table 3 provides the average gaps for the different categories of instances as identified by AKS(1h). After

discarding the gaps which are greater than 5% in absolute values, the averages are 0.06%, 0.09% and 0.15%,

so none of the categories stands out in terms of performance of AKS(1h). We might say that there seems to

be an upward trend of the gap as the difficulty increases. However, the scale of the gaps makes it difficult to

compare the average values. For example, if we remove the hard instance with the highest gap (3.64%), the

average gap of the hard instances drops to -0.01%.

Table 3: Performance of AKS(1h) for different categories

Category Frequency Av. Gap (%)

easy 11 0.06
normal 6 0.09
hard 23 0.15

To conclude, we can say that neither the type or number of variables nor the difficulty of a problem

instance affects the performance of AKS(1h), as compared to CPLEX(1h). This means that AKS is a robust

technique to find solutions to general MIPs, in the sense that many problem characteristics do not influence

the results. In other words, there are no groups of instances based on the characteristics discussed above for

which AKS is likely to find very good or bad results.

Comparison with Guastaroba et al. (2017)

In order to be able to make a comparison, all the settings of CPLEX(1h) and AKS(1h) have been kept equal

to the settings of CPLEX(5h) and AKS(5h) in Guastaroba et al. (2017), except for the time limit, which has

been changed from 5 hours to 1 hour due to limited time over the course of this thesis. However, because of

a newer version of CPLEX and the use of an average but relatively new PC, this difference did not become

very evident in the results. This can be seen by examining the results of applying CPLEX to the instances.

Guastaroba et al. (2017) solved 18 out of 49 instances within their 5 hour time limit. The same number of

instances is solved within in the time limit of 1 hour in this thesis. When we look at the other 31 instances,

Guastaroba et al. (2017) found the better solution in most cases.

Comparing AKS(5h) with AKS(1h) from this thesis, we see that the average gap with the corresponding

version of CPLEX equals 0.11% for this thesis, and 0.57% for Guastaroba et al. (2017). Both average values

have been calculated after discarding the gaps that were greater than 5% in absolute values. This result seems

to show that the version from this thesis performs relatively better. However, we must note that AKS(1h)

has many outliers, both positive and negative ones, whereas AKS(5h) only has two negative outliers. This

fact and the scope of the gaps makes it hard to compare the performance. If further research would find

any significant differences in performance, this could be due to the different time limits, the changes to the

algorithm as described at the beginning of this section, or the difference in software and hardware. Appendix

C provides the details of this comparison.

4.3 Results Extension

In Section 4.2, we have seen that the performance of AKS(1h) can not be explained by instance characteristics.

Instead of trying to find patterns, we will now look closely at a specific instance with a large gap, and how

15

the extension of AKS proposed in Section 3.3 could be used to find better solutions in this case and similar

cases.

Lazić instance mkc has a gap of 6.49% between the objective values of AKS(1h) and CPLEX(1h). It is a

hard instance, with a kernel of 4563 variables. 4452 (97.6%) of those kernel variables are fixed to 1 because

they are close to 1 in the LP relaxation at the root node. This adaptation of the kernel rules out a lot of

solutions, and it means that the improvement phase can be performed in 0.015 seconds. Therefore, the total

computation time is very small, even though we are dealing with a hard instance. A way to deal with this

problem is to completely remove the adaptation of hard instances, which is essentially what KS does. It will

eliminate problems such as with instance mkc, but it might also result in unsolvable restricted MIPs during

the improvement phase of other problem instances.

The extension from Section 3.3 is a compromising option. For each iteration, the allocated time is used

to solve different versions of the restricted MIP, with all, some or none of the original fixed variables. This

extended version of AKS has been performed using f = 4, meaning that a quarter of all fixed variables was

unfixed during each sub-iteration. All other settings are equal to AKS(1h). This new version of AKS will

be denoted by E-AKS(1h). Table 4 shows the results of AKS(1h) and E-AKS(1h) on all 29 hard instances.

Again, the gaps are calculated as compared to the solution of CPLEX(1h). The best gap is given in bold.

The CPU times are also given.

16

Table 4: Results of AKS(1h) and E-AKS(1h)

Instance
AKS(1h) E-AKS(1h)

Gap (%) CPU (s) Gap (%) CPU (s)

B1C1S1 0.00 3600 0.00 3600
B2C1S1 0.22 3600 0.22 3600
biella1 0.00 1402 0.00 3600
mkc 6.49 266 0.00 3600
NSR8K -6.65 3600 -6.65 3600
rail2586c 0.31 3600 1.47 3600
rail4284c 0.09 3600 1.31 3600
rail4872c -0.39 3600 0.84 3600
van 0.00 3600 0.00 3600

bg512142 0.90 3601 0.60 3600
dc1c 0.11 1880 -0.01 3600
dg012142 -10.69 2162 3.24 3600
germanrr 0.36 256 0.00 3501
germany50-DBM 0.09 2162 0.09 3600
go19 0.00 3603 0.00 3603
ivu52 -1.71 2181 -1.71 3600
maxgasflow 0.25 1943 0.04 3600
n3-3 0.49 1880 0.49 3600
neos-948126 3.64 1806 3.68 3600

circ10-3 -5.39 3601 -5.39 3600
dano3mip 0.02 3600 0.02 3600
dc1l 5.86 3600 5.86 3600
ex1010-pi 0.00 3600 2.49 3600
lectsched-1-obj 0.00 2408 0.00 3600
n370a 0.82 3600 0.53 3600
n3700 -1.75 3600 -1.44 3600
n3705 -1.16 3600 -0.42 3600
neos-937815 1.19 1450 -0.14 3600
ns1854840 -91.17 3600 -91.17 3600

Average -3.38 2793 -2.97 3597

For instance mkc, which only has one iteration in the improvement phase, the first three sub-iterations

are solved within 1 second. The fourth iteration takes 10 seconds, and it brings down the gap to 4.74%. The

fifth and last sub-iteration runs until the time limit is reached and decreases the gap even more to 0.00%,

which means the E-AKS(1h) found a solution with the same objective value as CPLEX(1h).

On average, the gap of E-AKS(1h) is -2.97%, so a bit worse than the gap of AKS(1h), which is -3.38%

for the set of hard instances. Therefore, the extension does not seem to be an improvement at first sight.

However, if we split the instances into instances for which the time limit was reached in AKS(1h), and

instances for which there was time left after performing AKS(1h), we see some interesting results. For the

first group, there are 2 cases in which E-AKS(1h) improved the solution, 9 in which the solution stayed the

same, and 6 in which the solution of E-AKS(1h) was worse than the solution of AKS(1h). For the instances

which have a CPU time less than 3600 seconds for AKS(1h), there were 5 improved cases, 5 equal cases, and

only 2 worse cases. This behavior could be expected, since the extension was specifically designed to improve

the cases in which the improvement phase could be solved in a very small amount of time due to the fixation

17

of variables. On the other hand, instances which already needed all of the allocated time, might not benefit

from expanding the search space.

These results point towards a strategy in which the extended version of AKS is used only for those

instances which can be expected to need a small amount of time. It is a topic for further research to examine

how these instances can be identified without running AKS(1h) first. Appendix D contains more details on

the results of AKS(1h) and E-AKS(1h).

18

5 Conclusion

This thesis has analyzed Adaptive Kernel Search (AKS), a heuristic for finding solutions to MIPs. AKS

creates a kernel of promising variables, after which the difficulty of the problem instance is identified to be

easy, normal or hard. Based on this classification, variables are added to or removed from the kernel, in order

to use the available time more efficiently for finding good solutions. A diverse set of 49 problem instances has

been used to evaluate the performance of this heuristic and to compare it to the commercial solver CPLEX.

Two minor changes have been made to the original version of AKS as described by Guastaroba et al.

(2017) because of programming reasons. Using a time limit of 1 hour, AKS has been compared to CPLEX.

On average, AKS seemed to perform slightly worse than CPLEX, but further research should be performed

to judge the significance of this difference.

Another result of this thesis is that AKS is a robust technique for finding solutions to general MIPs

with different characteristics. This could be concluded after analyzing the relationship between different

characteristics of instances and the performance of AKS, which did not show any trends.

This thesis also found a weak point of the AKS heuristic. When the kernel size is decreased for instances

that are classified as hard, the problems that are solved during improvement phase are sometimes very easy,

such that they can be solved in a small amount of time compared to the total amount of available time. This

also yields relatively bad results. An extension of AKS has been proposed to overcome such problematic

behavior. After decreasing the kernel size, variables are iteratively added back to the kernel to increase the

search space and find better solutions.

This extension has proven to be successful for instances which were solved by the original version of AKS

within the time limit. This indicates that AKS could have used the leftover time to find better solutions,

which is indeed what the extended version of AKS did. On the other hand, this extended version usually

did not find a better solution to the other hard instances. This makes the extension an interesting topic for

further research. In a new version of AKS, the algorithm could be extended to assess whether or not the

extension should be used.

19

References

[1] Enrico Angelelli, Renata Mansini, and M. Grazia Speranza. “Kernel search: A general heuristic for the

multi-dimensional knapsack problem”. In: Computers & Operations Research 37.11 (2010), pp. 2017–

2026.

[2] Matteo Fischetti, Fred Glover, and Andrea Lodi. “The feasibility pump”. In: Mathematical Programming

104 (2005), pp. 91–104.

[3] Matteo Fischetti and Andrea Lodi. “Local branching”. In: Mathematical Programming Ser. B 98 (2003),

pp. 23–47.

[4] Matteo Fischetti and Andrea Lodi. “Repairing MIP infeasibility through local branching”. In: Computers

& Operations Research 35.5 (2008), pp. 1436–1445.

[5] Gianfranco Guastaroba, Martin Savelsbergh, and M. Grazia Speranza. “Adaptive Kernel Search: A

Heuristic for Solving Mixed Integer Linear Programs”. In: European Journal of Operational Research

263 (2017), pp. 789–804.

[6] Thomas Kirschstein and Frank Meisel. “A multi-period multi-commodity lot-sizing problem with supplier

selection, storage selection and discounts for the process industry”. In: European Journal of Operational

Research 279.2 (2019), pp. 393–406.

[7] Jasmina Lazić, Säıd Hanafi, Nenad Mladenović, and Dragan Urošević. “Variable neighbourhood decom-

position search for 0–1 mixed integer programs”. In: Computers & Operations Research 37.6 (2010),

pp. 1055–1067.

20

Appendix A: Summary of the written code

AKS and the extended version of AKS have been implemented using three classes in Java. The main class

(see AKS.java) contains the algorithm. The first part of the code contains variables which correspond to

the parameters of the algorithm, as well as a boolean variable, which can be set to true or false to switch

between the extended and the original version of AKS. After some initializing steps, the pseudocode given

in this paper is performed. Some (recurring) parts have been written as functions, such as the part in which

the buckets are created and the part in which the root node is solved.

The other two classes represent the buckets and the decision variables. The bucket class (see Bucket.java)

is mainly a way to store a set of variables. The variable class (see Variable.java) has been used, even though

CPLEX already has an object associated with variables. However, writing a class for this allows us to store

other information alongside of the variable, such as whether it is a kernel variable, what its value during

the root node relaxation was, etc. Among others, this class also contains functions to restrict or unfix the

variables.

Finally, a simple program consisting of only one class (see SimpleCPLEX.java) has been written to apply

the basic version of CPLEX to the instances.

21

Appendix B: Performance of AKS(1h)

Figure 2 contains two additional graphs showing the relationship between the performance of AKS(1h) and

different instance characteristics. Outliers with a gap of more than 5% in absolute values have been removed.

Figure 2: Performance of AKS(1h) for different instance characteristics (without outliers)

22

Appendix C: Full comparison with Guastaroba, Savelsbergh, and

Speranza (2017)

Table 5: Detailed Results of CPLEX(1h) and AKS(1h) as compared to CPLEX(5h) and AKS(5h) from
Guastaroba et al. (2017)

Instance
CPLEX(5h) CPLEX(1h) AKS(1h) AKS(5h)

Objective CPU (s) Objective CPU (s) Category Objective Gap (%) CPU (s) Gap (%) CPU (s)

arki001 7581212.5 8 7581043.7 8 easy 7580813.0 0.00 53 0.00 1369
danoint 65.7 234 65.7 463 easy 65.7 0.00 786 0.00 427
glass4 1200012600.0 459 1200012600.0 150 easy 1200012600.0 0.00 135 0.00 54
markshare1 2.0 18000 4.0 3600 easy 4.0 0.00 3600 -50.00 18000
markshare2 4.0 18000 12.0 3600 easy 11.0 -8.33 3600 0.00 18000
nsrand ipx 51200.0 34 51200.0 73 easy 51200.0 0.00 451 0.00 578
rail2536c 689.0 18 689.0 35 easy 689.0 0.00 110 0.00 43
rail507 174.0 27 174.0 80 easy 174.0 0.00 1745 0.00 147
roll3000 12890.0 11 12890.0 15 easy 12890.0 0.00 54 0.00 35
sp97ic 427684487.7 3188 427684487.7 3109 easy 430191920.3 0.59 3600 0.32 5673
sp98ar 529740623.2 312 529740623.2 408 easy 530359351.7 0.12 3600 0.03 7619
sp98ic 449144758.4 172 449144758.4 123 easy 449144758.4 0.00 1368 0.02 7646
tr12-30 130596.0 71 130596.0 126 easy 130596.0 0.00 166 0.00 110

A1C1S1 11503.4 528 11503.4 1298 normal 11503.4 0.00 737 0.00 18000
A2C1S1 10889.1 307 10889.1 870 normal 10889.1 0.00 1285 0.00 18000
net12 214.0 69 214.0 139 normal 214.0 0.00 127 0.00 104
seymour 423.0 18000 423.0 3602 normal 423.0 0.00 3602 0.00 18000
sp97ar 661059959.7 18000 660729183.0 2934 normal 664229005.1 0.53 3600 0.32 180
UMTS 30090583.0 625 30090583.0 277 normal 30090420.0 0.00 1263 0.00 427

B1C1S1 24544.3 4888 24544.2 3600 hard 24544.3 0.00 3600 0.00 18000
B2C1S1 25687.9 16861 25812.0 3600 hard 25869.4 0.22 3600 0.09 18000
biella1 3065029.8 130 3065037.5 125 hard 3065005.8 0.00 1402 0.78 6743
mkc -563.8 18000 -563.8 3606 hard -527.3 6.49 266 0.00 18000
NSR8K 18148119.0 18000 857676860.7 3600 hard 800664386.3 -6.65 3600 4.78 18000
rail2586c 955.0 18000 953.0 3600 hard 955.0 0.21 3600 0.21 18000
rail4284c 1069.0 18000 1072.0 3600 hard 1073.0 0.09 3600 0.75 18000
rail4872c 1538.0 18000 1550.0 3600 hard 1544.0 -0.39 3600 0.52 18000
swath 467.4 18000 467.4 3603 - 594.3 27.15 3600 3.06 4816
van 4.6 18000 4.8 3600 hard 4.8 0.00 3600 0.00 18000

bg512142 184234.0 18000 188862.2 3601 hard 190569.0 0.90 3601 1.51 18000
dc1c 1778296.5 18000 1782289.6 3600 hard 1784332.4 0.11 1880 1.39 18000
dg012142 2549755.3 18000 2596277.0 3600 hard 2318648.0 -10.69 2162 1.54 18000
germanrr 47095891.1 18000 47095871.2 2054 hard 47266478.9 0.36 256 0.13 18000
germany50-DBM 473840.0 18000 474980.0 3600 hard 475410.0 0.09 2162 0.60 18000
go19 84.0 18000 84.0 3603 hard 84.0 0.00 3603 0.00 18000
ivu52 481.1 18000 490.1 3601 hard 481.7 -1.71 2181 0.12 15740
maxgasflow -44562045.0 18000 -44565689.0 3600 hard -44454998.8 0.25 1943 -0.01 18000
n3-3 15921.0 18000 16072.0 3600 hard 16150.0 0.49 1880 0.30 18000
neos-948126 2608.0 18000 2609.0 3600 hard 2704.0 3.64 1806 1.46 3580

circ10-3 382.0 18000 408.0 3600 hard 386.0 -5.39 3601 -2.62 18000
dano3mip 679.8 18000 691.8 3600 hard 692.0 0.02 3600 0.98 18000
dc1l 1781287.1 18000 1782855.4 3600 hard 1887273.6 5.86 3600 3.95 18000
ex1010-pi 240.0 18000 241.0 3600 hard 241.0 0.00 3600 1.25 18000
lectsched-1-obj 76.0 18000 83.0 3600 hard 83.0 0.00 2408 -3.95 18000
n370a 1261899.0 18000 1277711.0 3600 hard 1288180.0 0.82 3600 1.75 18000
n3700 1252509.0 18000 1280361.0 3600 hard 1257932.0 -1.75 3600 3.26 18000
n3705 1254168.0 18000 1281088.0 3600 hard 1266286.0 -1.16 3600 3.59 18000
neos-937815 2845.0 18000 2859.0 3600 hard 2893.0 1.19 1450 0.56 1008
ns1854840 316000.0 18000 2242000.0 3600 hard 198000.0 -91.17 3600 -49.37 7860

Average 11958 2529 -1.59 2336 -1.48 11962

23

Appendix D: Detailed Results

Table 6: Detailed results of CPLEX(1h), AKS(1h) and E-AKS(1h)

Instance
CPLEX(1h) AKS(1h) E-AKS(1h)

Objective CPU (s) Category Objective Gap (%) CPU (s) Category Objective Gap (%) CPU (s)

arki001 7581043.7 8 easy 7580813.0 0.00 53
danoint 65.7 463 easy 65.7 0.00 786
glass4 1200012600.0 150 easy 1200012600.0 0.00 135
markshare1 4.0 3600 easy 4.0 0.00 3600
markshare2 12.0 3600 easy 11.0 -8.33 3600
nsrand ipx 51200.0 73 easy 51200.0 0.00 451
rail2536c 689.0 35 easy 689.0 0.00 110 equals AKS(1h)
rail507 174.0 80 easy 174.0 0.00 1745
roll3000 12890.0 15 easy 12890.0 0.00 54
sp97ic 427684487.7 3109 easy 430191920.3 0.59 3600
sp98ar 529740623.2 408 easy 530359351.7 0.12 3600
sp98ic 449144758.4 123 easy 449144758.4 0.00 1368
tr12-30 130596.0 126 easy 130596.0 0.00 166

A1C1S1 11503.4 1298 normal 11503.4 0.00 737
A2C1S1 10889.1 870 normal 10889.1 0.00 1285
net12 214.0 139 normal 214.0 0.00 127 equals AKS(1h)
seymour 423.0 3602 normal 423.0 0.00 3602
sp97ar 660729183.0 2934 normal 664229005.1 0.53 3600
UMTS 30090583.0 277 normal 30090420.0 0.00 1263

B1C1S1 24544.2 3600 hard 24544.3 0.00 3600 hard 24544.3 0.00 3600
B2C1S1 25812.0 3600 hard 25869.4 0.22 3600 hard 25869.4 0.22 3600
biella1 3065037.5 125 hard 3065005.8 0.00 1402 hard 3065005.8 0.00 3600
mkc -563.8 3606 hard -527.3 6.49 266 hard -563.8 0.00 3600
NSR8K 857676860.7 3600 hard 800664386.3 -6.65 3600 hard 800664386.3 -6.65 3600
rail2586c 953.0 3600 hard 956.0 0.31 3600 hard 967.0 1.47 3600
rail4284c 1072.0 3600 hard 1073.0 0.09 3600 hard 1086.0 1.31 3600
rail4872c 1550.0 3600 hard 1544.0 -0.39 3600 hard 1563.0 0.84 3600
swath 467.4 3603 - 594.3 27.15 3600 equals AKS(1h)
van 4.8 3600 hard 4.8 0.00 3600 hard 4.8 0.00 3600

bg512142 188862.2 3601 hard 190569.0 0.90 3601 hard 189999.5 0.60 3600
dc1c 1782289.6 3600 hard 1784332.4 0.11 1880 hard 1782196.2 -0.01 3600
dg012142 2596277.0 3600 hard 2318648.0 -10.69 2162 hard 2680326.0 3.24 3600
germanrr 47095871.2 2054 hard 47266478.9 0.36 256 hard 47095869.6 0.00 3501
germany50-DBM 474980.0 3600 hard 475410.0 0.09 2162 hard 475410.0 0.09 3600
go19 84.0 3603 hard 84.0 0.00 3603 hard 84.0 0.00 3603
ivu52 490.1 3601 hard 481.7 -1.71 2181 hard 481.7 -1.71 3600
maxgasflow -44565689.0 3600 hard -44454998.8 0.25 1943 hard -44546688.4 0.04 3600
n3-3 16072.0 3600 hard 16150.0 0.49 1880 hard 16150.0 0.49 3600
neos-948126 2609.0 3600 hard 2704.0 3.64 1806 hard 2705.0 3.68 3600

circ10-3 408.0 3600 hard 386.0 -5.39 3601 hard 386.0 -5.39 3600
dano3mip 691.8 3600 hard 692.0 0.02 3600 hard 692.0 0.02 3600
dc1l 1782855.4 3600 hard 1887273.6 5.86 3600 hard 1887273.6 5.86 3600
ex1010-pi 241.0 3600 hard 241.0 0.00 3600 hard 247.0 2.49 3600
lectsched-1-obj 83.0 3600 hard 83.0 0.00 2408 hard 83.0 0.00 3600
n370a 1277711.0 3600 hard 1288180.0 0.82 3600 hard 1284461.0 0.53 3600
n3700 1280361.0 3600 hard 1257932.0 -1.75 3600 hard 1261935.0 -1.44 3600
n3705 1281088.0 3600 hard 1266286.0 -1.16 3600 hard 1275716.0 -0.42 3600
neos-937815 2859.0 3600 hard 2893.0 1.19 1450 hard 2855.0 -0.14 3600
ns1854840 2242000.0 3600 hard 198000.0 -91.17 3600 hard 198000.0 -91.17 3600

Average 2529 -1.59 2336 -2.97 3597

24

