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Abstract

This research paper aims to investigate the validity of and relation between several
feature selection methods. Specifically, in a setting where possible features are sparse
and weak. Higher criticism thresholding has recently been proposed as an efficient and
computationally fast alternative to false discovery rate control. Yet, beliefs on which
variable selection method to implement in real-life cases remain mixed. I illustrate, using
both simulations and real life examples, that higher criticism is a compromise between
the Kolmogorov-Smirnov and class boundary threshold. Furthermore, in the region where
signal identification is possible, the class boundary and higher criticism threshold become
indistinguishable. This shows that higher criticism is an outstanding technique for feature
selection. However, in cases where signal identification is possible, feature selection based
on false discovery rates is just as appropriate to implement as higher criticism thresholding.
In the case of correlation between features the use of innovated higher criticism has recently
been advocated. Both the simulated results and empirical data sets show that the power
of innovated higher criticism is not significantly higher than the one of higher criticism
thresholding. This is in contrast with previous literature. The combination of these results
sheds new light on several variable selection techniques and lays a foundation for further
research.
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1 Introduction

Feature selection, the process of selecting those features which have the greatest power in

predicting the variable of interest, is of great importance in a variety of research fields. Take

for example the identification of specific galaxies in astronomy or the production of maps of

human settlements, which can be used for investigating population movement. These studies

involve a numerous amount of possible features and although performing feature selection in

these settings is difficult, if done incorrectly the accuracy and consequently the relevancy of the

developed models can vanish (Cantú-Paz et al., 2004). On the one hand, the growth and evolu-

tion of big data the past decades has complicated the process of feature selection. On the other

hand, it has offered opportunities for the development of new techniques and novel approaches

for the improvement of models and the provision of solutions to real-world applications (Dash

& Liu, 1997; Donoho & Jin, 2015). Therefore it is of importance to investigate how relevant

features can be selected in a real-world big data setting.

Especially in a rare-weak (RW) feature setting the process of identifying features is com-

plicated (Donoho & Jin, 2008). A RW effects setting has two main characteristics. First of

all, relatively few of the measured features are expected to be relevant, or in other words show

any deviation from the global null hypothesis of no effect. This is referred to as the effect

sparsity. Secondly, when features do have predictive power, the effect size, or signal strength,

is weak. This is referred to as the effect weakness (Donoho & Jin, 2015). Settings like these are

common in application fields such as genomics, proteomics and astronomy. Therefore, finding

an optimal method for identifying signals in a RW setting could contribute to studies and their

accompanying discoveries in these fields. This in turn could have major economic, health and

well-being implications for the population which endorses the societal relevance of this research.

Previous literature discusses several selection strategies in multiple hypothesis testing. First

introduced was the Bonferroni-based family-wise error rate. The family-wise error rate (FWER)

is the probability of at least one incorrect rejection of the null hypothesis, and thus at least

one false conclusion. This type of false rejection is also called a Type I error. When more

hypotheses are tested at the same time, the chance of oberving a rare event increases and

thus the probability of incorrectly rejecting a null hypothesis increases. This can be corrected

for by testing each individual hypothesis with an adjusted significance level, based on the

number of hypotheses (Dunn, 1958). This technique is named the Bonferroni-based FWER

as the underlying proof for this correction is based on the Bonferroni inequality. A different

technique based on controlling the proportion of falsely rejected hypotheses is the false discovery
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rate (FDR). To be specific, FDR controls the expected proportion of Type I errors among all

rejected hypotheses, also named discoveries. In contrast, FWER controls the probability of

making false discoveries among all hypotheses. The FDR method offers a substantial gain in

power compared to the Bonferroni FWER (Benjamini & Hochberg, 1995). Another threshold,

closely linked to the FDR, is based on an equal probability of a feature belonging to the null or

alternative component. This threshold is known as the class boundary (CB) (Klaus & Strimmer,

2013). A more recently favoured approach is called Higher Criticism (HC) thresholding. The

HC method uses a second-level test-statistic computed from first-level p-values. This technique

is especially advocated for RW feature settings (Klaus & Strimmer, 2013).

On the one hand HC thresholding was shown to outperform strategies based on FDRs or

FWER when applied to feature selection (Donoho & Jin, 2008, 2015). On the other hand,

studies have proven that FDR is perfectly useful for the identification of features and control-

ling the FDR is equivalent to HC thresholding (Ahdesmäki, Strimmer, et al., 2010; Klaus &

Strimmer, 2013). In fact, Klaus and Strimmer (2010) show that, in the RW model when signal

identification is possible, the thresholds resulting from FDR and HC approaches are practically

indistinguishable. When the thresholds are notably different, the HC threshold leads to the

inclusion of more false positives than the CB threshold and thus the CB threshold is more

cautious (Klaus & Strimmer, 2013). These mixed beliefs cause disunity in the methods applied

in real-world applications. Some recent studies have adapted the use of HC thresholding when

selecting variables (Mihunov et al., 2019) while others still opt for FDR tools (Monroy-Vilchis

et al., 2019). The aim of this paper is to settle the division on the use of these thresholding

methods and to provide advice for future real-world studies. Therefore, the following research

question is formulated:

What is the most effective method for identifying variables in a rare-weak feature setting?

Specifically, I state the following hypotheses:

H1: In a RW setting, HC thresholding outperforms both CB and FDR strategies in terms of

prediction errors.

H2: When variable identification is possible, the HC and CB threshold are not significantly

different.

H3: Using the HC threshold leads to the inclusion of more false positives than CB and FDR

thresholds.

One assumption of HC thresholding is independence between features (Klaus & Strimmer,
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2013). This assumption is unlikely to hold in many real-world applications. For instance, in

genomics there is a high chance of correlation between markers due to chemical similarities or

spatial dependence (Zuber & Strimmer, 2009). Several ways have been proposed to incorporate

this dependence. One option is to use an autoregressive model to take dependencies into account

(Hand, 2008). Ahdemäski and Strimmer (2010) propose thresholding correlation adjusted t-

scores (CAT scores). This method is also applied by Klaus and Strimmer (2013) both in the

case of FDR and HC thresholding. Hall and Jin (2010) argue that the possible correlation

in the data can be exploited to improve the performance of HC thresholding by taking the

correlation into account when setting the detection boundary. They call this concept innovated

higher criticism (iHC). This concept has, to my knowledge, not yet been applied or extended

in other studies. In this paper, I will apply this concept and generalize it to cases where the

correlation matrix can be estimated from the data. This novel and underresearched concept

could therefore contribute to the existing literature. Hence, I formulate my last hypothesis.

H4: Innovated higher criticism results in a higher power and lower prediction error than HC

thresholding.

To find an answer to the hypotheses and main research question, I conduct a simulation study

and apply the thresholding methods to four real-world cancer data sets. The results support

the part of the literature which suggests that both HC and FDR based thresholding methods

are appropriate methods in a RW feature setting. In case of a correlation structure between

features, the results show significantly different patterns from the situation of no correlation.

In contrast with the theory posed by Hall and Jin (2010), iHC thresholding does not lead to a

significantly higher power than HC variable selection. Therefore, it is of importance for future

research to investigate the underlying causes for this difference in results before the merit of

iHC can be validated.

The remainder of this paper is structured as follows. First, the models for analysing the

research question are presented in Section 2. Section 3 describes the experimental design

for both the simulations and empirical evaluation. The corresponding results are presented in

Section 4. Thereafter, possible practical applications of the discussed techniques in the economic

sector are discussed in Section 5. Lastly, conclusions are drawn and recommendations for further

research are given in Section 6.
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2 Methodology

In this section, several methods for determining relevant features are presented. These

methods can be applied to, for example, assigning data samples to a certain class. In genomics,

disease classification is of great importance. Gene expression data can contain large numbers

of features which can be used to distinguish among disease subtypes. To select the relevant

features for this classification, I propose a combination of linear discriminant analysis and the

several methods presented.

The RW model is a normal mean mixture model

Z ∼ (1− ε)N(0, 1) + εN(τ, 1) (1)

where ε ∈ [0; 1] describes the sparsity of the relevant features and τ ∈ [0;∞] describes the effect

size of these relevant features. Thus, in a RW setting, where features are sparse and weak, both

ε and τ are small. When faced with a set of features of sample size d, it is of interest to test

which of the following two hypotheses is true for each feature i ∈ (1, ..., d):

H0 : feature i comes from the null component N(0,1)

H1 : feature i belongs to the alternative distribution N(τ ,1)

Several techniques for this problem are presented in the remainder of this section.

2.1 Family-Wise Error Rate

In statistics, a Type I error is defined as the false rejection of a true null hypothesis. Such a

rejection is also known as a false positive. In a single hypothesis setting the per-comparison error

rate (PCER) α is controlled by controlling the probability of a Type I error for each hypothesis.

This idea was extended to a multiple hypothesis setting by controlling the probability of falsely

rejecting at least one true null hypothesis (Saunders, 2014). This approach is more commonly

known as the Family-Wise Error Rate (FWER). By controlling the FWER, the PCER is also

controlled, yet at a lower level.

The simplest and most frequently applied FWER method is the Bonferroni correction

method. This method controls the FWER at a level α when each individual test Hi is controlled

at a PCER level αi under the condition that

αi =
α

d
for i = 1,...,d (2)
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where d is the number of hypotheses tested simultaneously. This condition can be proven by

Bonferroni’s inequality, which is based on Boole’s inequality (Boole, 1847).

Boole’s inequality states that, for a countable set of events A1, A2, A3, ... the following

holds.

P(
⋃
i

Ai) ≤
∑
i

P(Ai). (3)

When applying this inequality to the definition of the FWER, the proof of condition (2)

appears. In this proof, d0 denotes the number of true null hypotheses and pi the p-value

corresponding to hypothesis Hi.

FWER = P{
d0⋃
i=1

(pi ≤
α

d
)} ≤

d0∑
i=1

{P(pi ≤
α

d
)} = d0

α

d
≤ d

α

d
= α (4)

The Bonferroni procedure is used frequently in clinical trials and genome-wide studies due

to its simplicity. However, it is conservative and rejects too many null hypotheses, especially if

the number of simultaneously tested hypotheses is large as in our RW feature setting (D. Wang

et al., 2015).

2.2 False Discovery Rate

A more powerful method to control Type I errors in a multiple hypothesis setting was

introduced by Benjamini and Hochberg in 1995. They control the expected proportions of

errors among all the rejected hypotheses and call this the false discovery rate (FDR) (Benjamini

& Hochberg, 1995). Due to this construction, the FDR is equal to the FWER when all tested

hypotheses are true.

This method can be split up into two variants. One based on distributions (tail-based FDR)

and the other based on densities (local FDR). The tail-based FDR is defined on the p-value

scale as follows:

Fdr(x) = Pr(H0|X ≤ x) =
η0F0(x)

F (x)
=

η0x

F (x)
(5)

Thus, Fdr(x) is equal to "the proportion of p-values from the null component found among all p-

values smaller than x" (Klaus & Strimmer, 2013). Benjamini and Hochberg (1995) introduced

an empirical procedure for controlling the Fdr at level q · d0/d ≤ q where d0 is the number

of true null hypotheses. In this way, the Fdr is exactly equal to the q-value threshold if all
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tested hypotheses are true and smaller otherwise. This procedure is as follows. First, let

p(1), p(2), ..., p(d) be the observed p-values sorted in ascending order. Then,

k = max{i : p(i) ≤
i

d
q} (6)

Subsequently, the hypotheses H0
(0), ..., H

0
(k) are rejected and the corresponding features are thus

identified as signals (Benjamini & Hochberg, 1995).

The local FDR is defined as the probability of the null hypothesis under the observed data:

fdr(x) = Pr(H0|X = x) =
η0
f(x)

(7)

If the roles of the alternative and null hypothesis are switched the false non-discovery rate

(FNDR) appears. This rate can be viewed as an extension of the Type II error in a multiple

hypothesis setting. Specifically, it is defined as the proportion of falsely accepted null hypotheses

among all true alternative hypotheses. This concept relates to the power of a test, which is

identified as the fraction of features for which a test correctly rejects the null hypothesis when

an observation belongs to the alternative. Namely, the power of a test can be calculated as

1− FNDR. The two variants of the FNDR are defined as follows (Klaus & Strimmer, 2013):

Fndr(x) = Pr(H1|X ≥ x) = (1− η0)
1− FA(x)

1− F (x)
(8)

fndr(x) = Pr(H1|X = x) = 1− fdr(x) (9)

The FNDR can be used to identify the true null features. Therefore, the FNDR of a test is an

indication of the quality of that procedure.

2.2.1 Variable Selection with False Discovery Rate Thresholding

Relevant features can be selected in several ways using FDR thresholding techniques. A

common approach is to set a cutoff value of q in the procedure of Benjamini and Hochberg and

to select all features for which the null hypothesis is rejected. This cutoff value is commonly set

to 0.05. Another approach is to control the local FDR by requiring ˆfdr(x) to be smaller than

or equal to 0.2. This conventional threshold corresponds to q-values between 0.05 and 0.15.

Pragmatically, it is shown that when increasing the local FDR threshold much above 0.20, this

results in high proportions of Type I errors (Efron, 2005).

When the aim is to identify the true null features we impose ˆfndr(x) ≤ 0.2. This is the
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method we adopt in the rest of this paper. A natural division between the null and alternative

features is obtained when we set ˆfndr(x) = ˆfdr(x) = 0.5. The x for which this condition is

satisfied is called the Class Boundary (CB) (Klaus & Strimmer, 2013). The CB threshold, t̂CB,

in a RW feature setting can be expressed analytically as

t̂CB =
τ

2
+

1

τ
log(

1− ε
ε

) (10)

2.3 Higher Criticism

In a rare-weak feature setting, it may easily happen that no predictor has a sufficiently

small false discovery rate to be called significant. An alternative approach to select variables

which keeps the missed-feature detection rate better under control, is proposed by Donoho and

Jin (2008). This method is called higher criticism (HC) and is based on the supremum of a

standardized empirical process under the null hypothesis. An empirical process is a stochastic

process that represents the proportion of objects in a system in a given state. Empirical

processes are useful in the sense that they can be used to establish large sample properties

of test statistics and estimators (Andrews, 1994). This characteristic forms the basis of the

motivation for HC thresholding.

HC thresholding works as follows. Suppose we are in a situation where we have d fea-

tures and for each feature a corresponding test statistic y1, ...yd. For each test statistic yi the

corresponding two-sided p-value pi is calculated and subsequently these p-values are sorted in

ascending order. Next, the HC statistic is calculated for each feature:

HC(i; pi) =
√
d

i/d− pi√
p(i)(1− p(i))

(11)

By maximizing over the empirical HC statistics, the HC test statistic ĤC
∗
is obtained:

ˆHC∗ = max
i
HC(i; pi) (12)

Using the theory of empirical processes, Donoho and Jin (2004) show that for HC thresh-

olding under the null hypothesis H0,

ˆHC∗n√
2 log log(n)

p→ 1, as n→∞ (13)

From this it follows that for every combination of τ and ε where a likelihood ratio test would
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completely separate the null and alternative hypothesis, the power of HC feature selection will

converge to one (Donoho, Jin, et al., 2004). This demonstrates the theoretical merit of HC

thresholding.

Another way to determine the HC threshold is to solve the squared empirical objective

function. When both the null and alternative distribution are known, this can be generalised

to the population level as

HC(x)2 ∝ (FA(x)− F0(x))2

F (x)(1− F (x))
(14)

This formulation does not depend on the number of observations and thus can be used to

determine the theoretical thresholds, depending only on τ and ε (Klaus & Strimmer, 2013) .

2.3.1 Variable Selection with Higher Criticism Thresholding

When selecting features, applying the HC algorithm yields ĤC
∗
at index îHC . Then the

HC threshold is the absolute value of the test statistic corresponding to feature îHC . Thus,

t̂HC = |Z |̂i. All features with test statistics exceeding t̂HC are selected as relevant predictors.

Signal identification with HC thresholding is only possible when τ ≥
√
−2 log(ε). Below

this threshold only the presence but not the location of a signal can be determined (Klaus &

Strimmer, 2013).

An interesting observation is that the HC objective function is invariant against transfor-

mations in the test statistics. This property can be used to apply HC directly to, for example,

correlation adjusted t (CAT) scores instead of only to a set of p-values. Klaus and Strimmer

(2013) take advantage of this property and apply both FDR and HC variable selection tech-

niques to CAT scores to take into account possible correlation between features. In this way,

the expected power of the tests in the multiple comparison problem rises. These CAT scores

are the decorrelated gene-specific t-scores between the mean of a class and the pooled mean.

An advantage of using CAT scores, as opposed to other ways to incorporate dependence, is

that CAT scores do not require an adjustment of the RW model. Additionally, when there

is no correlation, the CAT score reduces to the standard t-score (Zuber & Strimmer, 2009).

However, the multiple comparison problem remains.

2.4 Kolmogorov-Smirnov Threshold

The HC statistic can be seen as the standardized Kolmogorov-Smirnov (KS) statistic. There-

fore, we can also apply the KS statistic in a same way as the HC statistic in order to find a
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decision threshold (Klaus & Strimmer, 2013). The KS statistic is given as

sup
x
|FA(x)− F0(x)| (15)

and we can analytically express the KS threshold, t̂KS as

t̂KS =
τ

2
(16)

2.5 Innovated Higher Criticism

Instead of modeling the correlation through CAT scores, Hall and Jin (2010) propose an

advanced method of higher criticism to take advantage of the potential dependence structures.

This method is also referred to as innovated higher criticism (iHC). Several assumptions are

taken before applying iHC. In cases where the correlation decays slowly, the detection bound-

aries can be identified quite precisely. Therefore, iHC is examined under the assumption of a

correlation matrix Σd which has polynomial off-diagonal decay. Mathematically, this can be

expressed as

Θ∗d(λ, c0,M) = {Σd ∈ Θd : |Σd(j, k)| ≤M(1 + |j − k|−λ, ||Σd|| ≥ c0} (17)

where Θd is the set of n by n correlation matrices and λ ≥ 1. In addition, the operator

norm ||Σd|| is uniformly bounded from below. For these matrices, their inverse as well as their

Cholesky factorization decay with the same rate as the correlation matrix itself (Hall, Jin,

et al., 2010). This property makes it possible to characterize the detection boundary for the

identification of signals.

The iHC statistic is constructed according to the following steps. First of all, the Cholesky

factorization of the correlation matrix is calculated such that UdΣdU
T
d = Id. This Cholesky

factorization forms an computationally effective upper triangular matrix Un. Applying standard

HC to UdX will yield a higher power than applying HC toX directly, whereX is a d-dimensional

vector of signals in a RW setting (Hall, Jin, et al., 2010). However, due to this transformation

the pattern of the signals also changes and appears in clusters as can be seen in Figure 1. In

this figure, a signal vector µ is simulated where the signal is equal to 1.357 for 40 features and 0

for the other features. After multiplying the signal vector with U, the signals appear in clusters

and 67 features display a signal bigger than 0. By remodeling the signals from clusters to

singletons, the signal strength increases and thus the potential power of the variable selection
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process enhances. This remodeling is done for Ud = (ukj){1≤k,j≤d} as follows

Ũ(bd) = (ũkj)1≤j,k,ũkj =

ukj, if k − bd + 1 ≤ j ≤ k

0, otherwise
(18)

where bd is a bandwidth which ensures that the lower off-diagonal elements are equal to zero

if they are more than or equal to bd rows in distance from the central diagonal. Hall and Jin

(2010) advice to set bd = log(d) to balance the tradeoff between stronger signals and stronger

correlated noise as bd increases.

0 20 40 60 80 100
0

0.5

1

1.5

2

index

µ

0 20 40 60 80 100
0

0.5

1

1.5

2

index

U
µ

Figure 1: Comparison of µ and Uµ for n = 100 and a correlation matrix with 1 on the main
diagonal, 0.3 on the two sub-diagonals and 0 elsewhere.

Next, each column of Ũ(bd) is normalized by its l2 norm, the square root of the sum of the

elements, such that this norm equals 1 for every column. The resulting matrix is denoted by

Ū(bd). The last step is to apply higher criticism to ŪT
d UdX, which is also denoted as V X. This

results in the following definition:

iHC∗d(bd) =
1√

2bd − 1
sup
i
{
√
d

i/d− p(i)
p(i)(1− p(i))

} (19)

2.5.1 Variable Selection with Innovated Higher Criticism Thresholding

Applying the iHC algorithm yields iHC∗d(bd) at index ˆiiHC . Just as when implementing the

HC algorithm, the iHC threshold is the absolute value of the test statistic corresponding to

feature ˆiiHC . So, t̂iHC = |V X| ˆiiHC . Subsequently, all features with test statistics exceeding t̂iHC

are selected as possible predictors.

When there is a correlation structure between features, the region where signal identification

is possible differs from the situation under the assumption of independence. In case of a matrix
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with constant elements on the diagonals, which is also called a Toeplitz matrix, the threshold

for the detectable region changes with a factor C(f). Here, C(f) =
1

2π

∫ π
−π

1

f(θ)
dθ, where f(θ)

is the underlying function for the Toeplitz matrix (Hall, Jin, et al., 2010). In terms of the

parameters τ and ε this means that signal identification with iHC thresholding is possible when

τ ≥ C(f) ·
√
−2 log(ε).

2.6 Generalised Innovated Higher Criticism

The previously introduced innovated higher criticism assumes a correlation matrix with

off-diagonal polynomial decay. However, in real-life applications this matrix often has to be

estimated non-parametrically. To investigate the performance of iHC in such situations, I apply

iHC to real-life data sets and estimate the correlation matrix using the Pearson correlation, a

technique often applied in fields such as genomics (Cheverud, 2001; Li & Ji, 2005). The Pearson

correlation is calculated as

ρXY =
Cov(X, Y )

V arXV arY
(20)

where X and Y form a given set of two random variables. For example, this can be a set of

gene expressions for two type of genes.

In this paper I apply iHC to a real-life data set using the non-parametric technique for

inducing the corrrelation matrix. Then I compare the predictive abilities of iHC with previously

introduced feature selection techniques. This way, I expect to show that iHC has theoretical

advantages over HC, CB and FDR thresholding but does not perform as well empirically.

2.7 Linear Discriminant Analysis

To use the several variable selection techniques in fields such as genomics, we need to

manipulate our data before applying the techniques. Namely, the techniques select features

from a certain set of possible features based on a vector of p-values. In real-life data sets, often

a matrix of test statistics is given instead of a vector. For example, in genome studies a gene

expression is given for each possible feature for n number of observations (persons). Therefore,

to be able to apply the proposed techniques, we need to transform the data such that for each

possible feature the vector of statistics is reduced to one value. To do this we make use of

shrinkage estimators and implement linear discriminant analysis (LDA). This method is used

to predict the probability of a sample belonging to a specific class. In this way, we can test the
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predictive performance of the several decision thresholds.

LDA assumes the following mixture model for the d-dimensional data x.

f(x) =
K∑
j=1

πjf(x|j) (21)

where K is the number of classes in the data set, each represented by a multivariate normal

density.

f(x|k) = (2π)−p/2|Σ|−1/2 exp{−1

2
(x− µk)TΣ−1(x− µk)} (22)

In this formulation, µk are the class specific centroids, which are calculated by the empirical

means, and Σ is the common covariance over all classes (Fisher, 1936). The LDA discriminant

score dLDAk for a sample x can then be calculated for every class according to

dLDAk (x) = µTkΣ
−1x− 1

2
µTΣ−1µk + log(πk) (23)

Subsequently, sample x is assigned to the class corresponding to the highest LDA discriminant

score.

The standard form of the LDA discriminant function (23) can be transformed into another

formulation which is better interpretable:

∆LDA
k (x) = (ω(k,pool))Tδk(x) + log(πk) (24)

In this formulation, ωk is called the feature weight vector and δk(x) a transformed predictor

(Ahdesmäki, Strimmer, et al., 2010). These vectors can be decomposed as

δk(x) = P−1/2V −1/2(x− µk + µpool
2

) (25)

ωk,pool = P−1/2V −1/2(µk − µpool) (26)

where µpool is the pooled mean over all classes calculated as µpool =
∑K

k=1

nk
n
µk. Furthermore,

P = (ρij) is the correlation matrix and V is a diagonal matrix containing the variances V =

diag{σ2
1, ..., σ

2
d} .

The LDA discriminant function (24) is constructed by three shrinkage rules, for the cor-
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relations P , variances V and proportions πk, which are based on the theory of James-Stein

estimation (James & Stein, 1992). James and Stein proved that an estimator exists which

performs better than the population mean in case of several unknown population means. This

estimator is based on the fact that for large sample sizes the magnitude of the k-dimensional

estimator vector X is expected to be much more substantial than the magnitude of the esti-

mand vector θ. To correct for this difference in size, James and Stein proposed the shrinkage

estimator

θ̂ = (1− (k − 2)

||X||2
)X (27)

These kind of estimators are appropriate for analysing large-dimensional data as they are

computationally efficient and hard to improve. Additionally, they can be constructed without

making any assumptions on the distribution of the data or the model parameters (Opgen-

Rhein & Strimmer, 2007). The key advantage of shrinkage estimation is that it reduces the

mean squared error of the sample estimator and subsequently improves the accuracy of the

classification rule. The three rules for constructing the LDA discriminant function (24) are

discussed in more detail below.

2.7.1 Variances: Opgen-Rhein and Strimmer (2007)

The shrinked variances are estimated by the median of the empirical variances vi. vshrinki =

λ̂1vmedian + (1− λ̂1)vi, where

λ̂1 = min(1,

∑d
i=1

ˆV ar(vi)∑d
i=1(vi − vmedian)2

) (28)

2.7.2 Correlations: Schäfer and Strimmer (2005)

P is estimated by shrinking the empirical correlations towards zero according to the follow-

ing rule. rshrinkij = (1− λ̂2)rij, where

λ̂2 = min(1,

∑
i 6=j

ˆV ar(rij)∑
i 6=j r

2
ij

) (29)
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2.7.3 Proportions: Hausser and Strimmer (2009)

The class frequencies are estimated as

π̂shrinkj =
1

K
+
nj
n

(30)

3 Experimental Design

To study the relationship between and to compare the results of the several feature selection

methods in a RW feature setting, I analyse both simulated and empirical data.

3.1 Theoretical Evaluation

3.1.1 No Correlation

I identify the decision threshold for the KS, CB and HC threshold under the assumption of

independent features for combinations of τ ∈ 2, 3, 4, 5, 6 and ε ∈ 0, 0.001, 0.01, 0.1, 0.5. The KS

and CB threshold are determined analytically by solving equations (16) and (10) respectively.

To establish the HC threshold, I numerically solve equation (14).

To compare various output measures of the proposed methods, a simulation study is con-

ducted. To be specific, I compare the number of false positives (FP), false negatives (FN), true

positives (TP), true negatives (TN) and total errors (TE). To determine these output measures,

I sample 10,000 random z-scores from the mixture model (1) with as input combinations of τ

and ε such that the model is located at the detection boundary and above. To be specific, I set

ε ∈ 0.01, 0.05, 0.1, 0.3, 0.5 and τ ∈ 3, 4, 5, 6. Next, I transform the simulated z-scores into two

sided p-values. Subsequently, the HC threshold is determined by maximization of (10). Fur-

thermore, the CB threshold is determined by setting local FDR = 0.5 and the FNDR threshold

by setting local FDR = 0.8. To do so, the R-package fdrtool is employed. Next, I investigate

for each threshold the number of FP, FN, TP, TN and TE. This simulation is repeated 1,000

times to determine the means and standard errors of the output measures.

3.1.2 With Correlation

To compare the thresholds in case of correlation, we repeat the simulation under the as-

sumption of a correlation matrix with off-diagonal polynomial decay. Specifically, this involves

the following steps. First of all, the correlation matrix is simulated. To be precise, I simulate

a tri-diagonal Toeplitz matrix which is generated according to f(θ) = 1 + 2ρ cos(θ), |ρ| ≤ 0.35.
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I let ρ range from -0.35 to 0.35 with increments of 0.05. This results in a matrix with 1 on the

main diagonal, ρ on the two sub-diagonals and zero elsewhere. Second, I simulate 1,000 signals

for each combination of ρ, τ ∈ 3, 4, 5, 6 and ε at 0.01. For these combinations of τ , ε and ρ, the

model is located above the detection boundary.

Given the generated correlation matrix, I generate a Gaussian vector with zero mean vector.

Following from this, the generated noise vector is added to the simulated signal vector. The

third step is to determine the thresholds. Again, the HC threshold is determined by maximizing

equation (10) and the CB and FNDR threshold by setting local FDR = 0.5 and local FDR =

0.8 respectively. Next to this, the iHC threshold is calculated by solving equation (19). Lastly,

I investigate the number of FP, FN, TP, TN and TE for each threshold. Considering the

computer power needed for these simulations, I repeat this simulation 500 times to determine

the means and standard errors of the output measures.

3.2 Empirical Evaluation

To evaluate the various proposed thresholding techniques, I also apply them to a real-life

data set in the field of genomics. In this way, the empirical performance of the proposed

variable thresholding techniques can be demonstrated. The experimental data consist of 4

data sets of various cancer types. Each of these data sets contains gene expression values and

multiple classes to which each sample can belong. This makes these data sets appropriate to

test the predictive performance of the proposed methods. Specifically, I will investigate data

on prostate cancer (Singh et al., 2002), lymphoma cancer (Alizadeh et al., 2000), small round

blue cell tumors (Khan et al., 2001) and brain cancer (Pomeroy et al., 2002).

Applying linear discriminant analysis in combination with several thresholding methods

yields a number of selected variables for each method. Subsequently, these selected variables

are used to predict the class of each sample. Following from this, the prediction error of each

thresholding technique can be calculated as the fraction of samples assigned to the wrong class.

To estimate the prediction error I conduct 10-fold cross validations with 20 repetitions. In this

approach, the training set is split into 10 smaller sets which are used to classify the test set.

To implement the linear discriminant analysis, I employ the R-package sda (Ahdesmaki et al.,

2015).
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4 Results

4.1 Comparison of Thresholds

The theoretical CB, HC and KS thresholds can be found in Table 1. The results illustrate

that as τ is growing, the CB and HC thresholds grow closer. Additionally, for ε =
1

2
both the

CB and HC thresholds reduce to the KS threshold, which is line with the theory. An important

observation is that the HC threshold can be seen as a compromise between the KS and CB

threshold. This holds for each combination of τ and ε. From this we can expect HC thresholding

to include more false positives than when the CB threshold would be employed. Lastly, with

growing ε and thus parameters further in the recoverable region where signal identification is

possible, the CB and HC thresholds become increasingly similar. These results are in line with

the theory and statements from previous literature (Klaus & Strimmer, 2013).

Table 1: Decision Thresholds for Several Proposed Methods

KS CB HC

τ = 2

ε = 0 1 ∞ 3.3514

ε = 0.001 1 4.45337 3.0707

ε = 0.01 1 3.29755 2.5203

ε = 0.1 1 2.09861 1.7574

ε = 0.5∗ 1 1 1.0000

τ = 4

ε = 0 2 ∞ 7.6667

ε = 0.001∗ 2 3.72669 3.6377

ε = 0.01∗ 2 3.14878 3.0965

ε = 0.1∗ 2 2.54831 2.5268

ε = 0.5∗ 2 2 2.0000

τ = 6

ε = 0 3 ∞ 8.1607

ε = 0.001∗ 3 4.15113 4.1454

ε = 0.01∗ 3 3.76585 3.7631

ε = 0.1∗ 3 3.36620 3.3652

ε = 0.5∗ 3 3 3.0000

KS CB HC

τ = 3

ε = 0 1.5 ∞ 5.5305

ε = 0.001 1.5 3.8023 3.4927

ε = 0.01 1.5 3.0317 2.8406

ε = 0.1∗ 1.5 2.2324 2.1452

ε = 0.5∗ 1.5 1.5 1.5000

τ = 5

ε = 0 2.5 ∞ 8.1607

ε = 0.001∗ 2.5 3.8814 3.8567

ε = 0.01∗ 2.5 3.4190 3.4059

ε = 0.1∗ 2.5 2.9394 2.9343

ε = 0.5∗ 2.5 2.5 2.5000

Note: Signal identification is possible as τ ≥
√
−2 log(ε) when marked with asterisk (∗).
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4.2 Comparison of Output Measures

The results from the simulation of the output measures of the CB, HC and FNDR thresh-

olding techniques in the case of independence between features can be found in Figure 2 for

ε = 0.01. The standard errors are not included in the plots as they disorganize the plots due to

their amplitude. Yet, as Table 2 shows, the standard errors grow smaller as τ becomes larger

and overall they are largest when implementing HC. As expected from the theoretical thresh-

olds, HC produces more false positives than CB thresholding. Furthermore, with growing τ ,

CB and HC yield increasingly similar results. This can be attributed to the fact that a larger

τ means that the effect weakness is smaller and thus signals are more distinguishable. As a

result, the error structure becomes more similar and the power of the methods rises.

When the signals are weak, variable selection using HC leads to the most false positives.

In contrast, CB is more cautious and leads to more false negatives. Overall, FNDR variable

selection results in the most total erroneous outcomes. Lastly, for all signal strengths overall

the HC output measures are in between those of CB and FNDR thresholding.

This simulation study is repeated with other effect sparsity settings. The results for

those simulations can be found in Appendix A.1. Specifically, we present the results for

ε ∈ 0.05, 0.1, 0.3, 0.5. The resulting plots show the same patterns as in Figure 2.
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Figure 2: Simulation of Output Measures for HC, CB and FNDR Thresholding in a Rare-Weak
Feature Setting with ε = 0.01
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Table 2: Standard Errors of the Output Measures in Figure 2 for ε = 0.01

Method τ SE(FP) SE(FN) SE(TP) SE(TN) SE(TE)

HC 3 69.28 9.75 11.82 70.68 63.16

4 18.42 5.00 9.94 21.74 16.15

5 7.73 2.50 10.09 13.23 6.95

6 4.26 1.05 9.74 10.66 3.99

CB 3 9.05 8.19 9.55 14.58 8.96

4 6.12 5.10 9.77 12.14 5.96

5 4.30 4.36 10.34 11.15 4.67

6 2.21 4.68 10.37 9.90 4.57

FNDR 3 45.05 8.23 11.86 47.80 39.80

4 27.57 5.55 10.23 29.73 24.51

5 21.91 4.78 10.63 24.30 20.42

17.24 4.86 10.48 19.42 16.65

In case of a correlation structure between the features, the plots for ε = 0.01 and ρ = 0.2

look like those in Figure 3. The plots for false negatives and true positives show similar patterns

as in the case of no correlation. For these plots, HC is a compromise between FNDR and CB

thresholding. Furthermore, iHC produces more false negatives and less true positives than

HC. In contrast to my expectations, these results do not show a significant rise in power when

implementing iHC instead of HC. Both the plot which displays the false positives for each

method, as well as the plot which displays the true negatives illustrate patterns significantly

different from the plots when there is no correlation structure. The resulting plots indicate

that both CB and FNDR perform better than HC and iHC in case of correlation between

features. Moreover, in both plots HC outperforms iHC which again rejects the hypothesis

of improved performance when applying iHC. This simulation study is repeated with other

correlation settings. The results for those simulations can be found in Appendix A.2. The

resulting plots show the same patterns as in Figure 3.

The results of these simulations are not in line with the claims from Hall and Jin (2010).

Namely, in contrast to my results they find a significant increase in power when applying iHC

instead of HC thresholding. This difference is striking as the exact steps presented in the paper

of Hall and Jin (2010) are implemented. Additionally, the combinations of τ , ε and ρ cause the

simulated RW model on which the methods are applied, to be above the detection boundary

according to the theory of Hall and Jin (2010).
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I see several possibilities for the discrepancy in the results of this research paper and the

one from Hall and Jin (2010). First of all, it could be the case that the combination of the

input variables for my simulated RW model do not put the RW model in the detectable region.

However, I am following the theory of Hall and Jin (2010) and the proof included in their paper

seems to be correct. Therefore, I deem this reason to be improbable. Secondly, it could be that

Hall and Jin (2010) omit the explanation of one or several assumptions taken, which are not

generally known. This would make their research fail to obey the rule of replicability. Lastly,

the noise vector Z is generated as a Gaussian vector by Hall and Jin (2010). How exactly this is

done remains unclear. Consequently, I generated the noise vector using the function rmvnorm

from the R-package mvtnorm. This generates a vector which, when added to the signal vector,

contains signal features which are hard to distinguish from the features which do not come from

the alternative distribution. It could be the case that Hall and Jin (2010) obtain their noise

vector in another way. However, this remains unclear from their explanation and thus again

would make their paper incapable of being replicated.

Replicability is an important characteristic for published research papers. Namely, if a

research is replicable, other researchers can reproduce, test and further develop the models and

theories posed by the authors. If all the theory posed by and Hall and Jin (2010) is correct, this

must mean that their paper is not replicable. This should then be rectified by the authors such

that further research is able to use and build further on their results. Therefore, the results

of my simulations of iHC shed new light on the technique and lay a foundation for further

research. It is of importance for future research to further investigate the underlying causes for

the difference in conclusions and clearly state them in the literature.

4.3 Cancer Gene Expression Data

The number of selected variables and prediction errors for the four cancer data sets are

shown in Table 3. Overall, the CB threshold gives the smallest predictor set. This set is

roughly half the amount of predicted genes by HC thresholding, except for the prostate cancer

data set. While the number of variables selected using HC thresholding is almost double, the

prediction error is only slightly increased. This indicates that almost all of the additionally

included predictors are false positives, which confirms the previous theoretical results. FNDR,

applied to identify true null features, selects the biggest set of features, which is as expected.

These results are in line with those of Klaus and Strimmer (2013).

The performance of iHC varies significantly per data set. In case of the prostate and SRBCT
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Figure 3: Simulation of Output Measures for HC, CB and FNDR Thresholding in a Rare-Weak
Feature Setting with ε = 0.01 and ρ = 0.2.

data sets, the number of selected variables is in between those of HC and CB thresholding.

However, for the other two data sets, iHC eminently selects the most variables while not always

significantly lowering the prediction error. Additionally, when the number of selected variables

is in between those of the other techniques, the prediction error is not necessarily similar to those

of the other methods. This result could be caused by the fact that the empirical correlation

matrices are much more complicated than those assumed by the foundation of iHC. However,

keeping in mind the theoretical results, it is likely that the paper of Hall and Jin (2010) fails

to obey the rule of replicability. This could cause my implementation of iHC to give results

different from my expectations. These results again demonstrate that further investigation for

this method is necessary before its merit can be validated.

5 Practical Implications

Multiple hypothesis testing in a RW feature setting is common in many fields such as ge-

nomics, physics and astronomy. In this section I highlight the possibilities of the discussed tech-

niques in economic sectors as they are not yet widely applied in the economic world. Specifically,

I emphasize the possible opportunities in the fields of marketing, finance and health economics.
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Table 3: Application of Decision Thresholds to Cancer Gene Expression
Data

Method Prediction Error Selected variables

Prostate(d = 6033, n = 102,K = 2)

CB 0.0579 (0.0051) 115

HC 0.0564 (0.0051) 116

FNDR 0.0536 (0.0048) 131

iHC 0.0023 (0.0013) 844

Lymphoma(d = 4026, n = 62,K = 3)

CB 0.0113 (0.0031) 178

HC 0.0000 (0.0000) 345

FNDR 0.0057 (0.0021) 392

iHC 0.2175 (0.0087) 217

SRBCT (d = 2308, n = 63,K = 4)

CB 0.0000 (0.0000) 88

HC 0.0007 (0.0007) 174

FNDR 0.0000 (0.0000) 89

iHC 0.0157 ( 0.0034) 171

Brain(d = 5597, n = 42,K = 5)

CB 0.1582 (0.0131) 78

HC 0.1618 (0.0121) 131

FNDR 0.1768 (0.0145) 102

iHC 0.1575 (0.0124) 653

Note: d: number of possible features,
n: sample size,
K: number of classes in the dependent variable.

In marketing, there is often a search for appropriate variables to classify products, consumers

groups or markets. New technologies have enabled marketeers to store enormous amounts of

data, in the hope that this data will eventually be useful in their marketing models. This

unfocused gathering of data results in a vast quantity of possible explanatory variables. Due

to the aimless nature of the obtained data, the structure of the data is likely to meet the

characteristics of a RW feature setting. Therefore, it would be of interest to apply the proposed

thresholding techniques in this paper to decide which variables to include or not.

Another field which could benefit from the proposed methods is quantitative finance. Namely,

with the development of the internet, a huge amount of trading behaviour of each individual

agent can be recorded. This can include variables like investment decisions but also consumption

21



patterns or social communications (Z. Wang et al., 2019). Techniques such as HC thresholding

could be effective for predicting market trends or analysing market behaviour in such settings.

Lastly, the discussed thresholding techniques could offer benefits for the health economics

sector. In recent years, genome-wide association studies (GWAS) have shown that a large part

of the genetic basis for most complex traits is built out of small effects of hundreds or even

thousands of variants (Euesden et al., 2015). The results from GWASs can be used to create

polygenic risk scores (PRSs) for several phenotypes such as obesity. A PRS for an individual is

a summation of millions of variants genome-wide, weighted by the strength of their association

with a trait of interest (HRS, 2018). Effect sizes are estimated from published GWAS results,

and only variants exceeding a certain p-value are included.

PRSs can be used as instrumental variables in many applied studies in the field of health

economics. For instance, many studies find a significant negative association between obesity

and labor market outcomes (Devaux & Sassi, 2015; Lindeboom et al., 2010). However, due to

the reverse causality between obesity and labor market outcomes, instrumental variables are

needed. As previous research suggests that the genetic effect on variation in BMI is relatively

strong, the PRS would serve as a appropriate instrumental variable. Higher Criticism has, to

my knowledge, not yet been applied to the calculation of PRSs. Due to the genomic structure,

HC and FDR thresholding seem very appropriate for the calculation of PRSs and their use

as instrumental variables. If results would provide new insights to the understanding of the

correlation between socioeconomic variables and PRSs, health policy could incorporate this in

order to become more effective.

6 Conclusion and Discussion

6.1 Conclusion

This research investigated the effectiveness of several methods for identifying relevant vari-

ables in a rare-weak feature setting. Several output measures of these methods were simulated

and subsequently the techniques were applied to real-life data sets. The results show that,

in the case of independent features, the HC threshold can be seen as a compromise between

the KS and CB threshold. Both in the theoretical and empirical setting, HC feature selection

leads to output measures in between those of CB and FNDR tresholding. Following from this

result, I reject the first hypothesis which states that HC thresholding outperforms both CB and

FDR techniques in terms of the prediction error. In addition, when the combination of signal
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strength and signal sparsity is such that variable identification is possible, the three theoreti-

cal thresholds are not significantly different. Therefore, I accept the second hypothesis which

states that the CB and HC threshold become indistinguishable when variable identification is

possible. Furthermore, the results show that HC variable selection leads to the inclusion of

more false positives than the other various thresholding techniques. This leads me to accept

the third hypothesis.

These results on the one hand support the studies which claim that HC thresholding is

an outstanding technique for feature selection when the assumption of independence is valid.

On the other hand, they show that when signal identification is possible, feature selection

based on false discovery rates is just as appropriate to implement as HC thresholding. Namely,

the theoretical thresholds of the two techniques are insignificantly different. Next to this, the

empirical results show that HC thresholding mostly includes extra false positives, which do not

raise the predictive power of the model.

When there is a correlation structure between features, the output measures show signif-

icantly different patterns from the situation of no correlation. Both CB and FNDR perform

better than HC and iHC in terms of Type I errors. Furthermore, the power of iHC thresholding

is not significantly better than the one of HC variable selection. This is in contrast with the

theory posed by Hall and Jin (2010). Likewise, the empirical results show that iHC does not

systematically perform better than HC in terms of prediction error. Consequently, I reject my

fourth hypothesis. The difference between my results and the results of Hall and Jin (2010) are

striking and likely due to the fact that Hall and Jin (2010) fail to obey to the rule of replicabil-

ity. The results of my simulations of iHC shed new light on the technique and lay a foundation

for further research. In conclusion, it is of importance for future research to investigate the

underlying causes for this difference in conclusions before the merit of iHC can be validated.

6.2 Discussion

This research paper contributes to the literature in several ways. First of all, it presents a

clear and understandable overview of multiple hypothesis testing techniques and their combina-

tion with linear discriminant analysis. Previous papers discussing multiple hypothesis testing

methods often only briefly mentioned the combination of LDA and the proposed thresholding

techniques but did not clarify how this combination functions. Secondly, both the simulations

and empirical results support the part of the literature which suggests that both HC and FDR

based thresholding are appropriate methods in a RW feature setting, in case of independence
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between features. Third, this research investigated iHC, a novel concept which has theoretical

advantages over HC. Both the empirical results as the results from simulations in this paper

show that more research must be done for this concept to be accepted as an alternative for HC

thresholding in case of correlation. The combination of these results establishes a foundation

for further research.

Due to time constraints, this paper only discusses CB, FDR, HC and iHC as feature selec-

tion techniques. Many other approaches such as the Cramer-Von Mises and Anderson-Darling

threshold or machine learning based techniques, which make use of neural networks, exist.

Therefore, it is of importance to further compare HC and iHC thresholding to these techniques

to get an complete overview of how variable selection techniques can be best applied in a

rare-weak feature setting.

Another limitation of this study is that it only applies the techniques to data sets frequently

used in genomics, but does not apply it to more economically focused data sets. It would be

interesting to see if the presented multiple hypothesis testing techniques would be of value in

economic sectors as suggested by Section 5. Therefore, my last suggestion for further research

is to apply the techniques to real-world economic data sets.
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A Comparison of Output Measures

The following contains an overview of output measures for several thresholding techniques

for various combinations of input variables. The plots in Appendix A.1 show the output mea-

sures in case of no correlation and the plots in Appendix A.2 display the results when there is

a correlation structure between the possible features. The plots for various other ρ are left out

as they displayed exactly the same patterns.

A.1 No Correlation

3 4 5 6
0

50

100

150

200

250

τ

(a) FP

HC
FNDR

CB

3 4 5 6
0

50

100

150

τ

(b) FN

HC
FNDR

CB

3 4 5 6
0

50

100

150

200

250

300

350

τ

(c) TE

HC
FNDR

CB

3 4 5 6
350

400

450

500

τ

(d) TP

HC
FNDR

CB

3 4 5 6
9,200

9,300

9,400

9,500

τ

(e) TN

HC
FNDR

CB
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Feature Setting with ε = 0.05
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Figure 5: Simulation of Output Measures for HC, CB and FNDR Thresholding in a Rare-Weak
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Figure 6: Simulation of Output Measures for HC, CB and FNDR Thresholding in a Rare-Weak
Feature Setting with ε = 0.3
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A.2 With Correlation
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Figure 8: Simulation of Output Measures for HC, CB and FNDR Thresholding in a Rare-Weak
Feature Setting with ε = 0.01 and ρ = −0.35.
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B Programming Codes

The simulation studies and empirical evaluation were implemented in R. In total 4 scripts

were written to obtain the results. Script 1 contains the functions for obtaining the thresholds in

Table 1. Script 2 displays the code for simulating the output measures in case of no correlation.

The code for simulating the output measures when there is a correlation structure between

features is written in script 3. Script 4 contains the general code for obtaining the results in

Table 3.

Listing 1: Code for Obtaining Table 1

1 basicstyle =\small

2 ]

3 # simulate 10 ,000 z-scores and pvalues and calculate zHC

4 pvalues <- list()

5 library(distr)

6 library(fdrtool)

7 pvector <- vector ()

8 HC <- 0

9 avrzHC <- 0

10 df <- data.frame(matrix(ncol = 6, nrow = 0))

11 x <- c("tau", "eta", "method", "zKS", "zCB", "zHC")

12 colnames(df) <- x

13 HCvec <- vector ()

14 alpha0 = 0.1

15 T=1000

16 #Thresholds in the RW model

17 for (tau in c(2,3,4,5,6))

18 {

19 for (eta in c(0 ,0.001 ,0.01 ,0.1 ,0.5))

20 {

21 zKS <- tau/2

22 zCB <- tau/2 + 1/tau*log((1-eta)/eta)

23 HCsquare <- function(x){

24 (pnorm(x,tau ,1)^2 + pnorm(x,0,1)^2 -2*pnorm(x,tau ,1)*pnorm(x,0,1))/

25 ((1-eta)*pnorm(x,0,1)+eta*pnorm(x,tau ,1) -((1-eta)*pnorm(x,0,1)+eta*pnorm(x,tau ,1))^2)

26 }

27 curve(HCsquare(x), from = -10, to = 10)

28 zHC <- optimise(HCsquare , interval = c( -100 ,100), maximum = TRUE)$maximum

29 newrow <- data.frame(tau = tau , eta = eta , zKS = zKS , zCB = zCB , zHC = zHC)

30 df <- rbind(df, newrow)

31 }

32 }

Listing 2: Code for Simulating Output Measures in Case of no Correlation

1 # s imulate 10 ,000 z−s c o r e s and pvalues and c a l c u l a t e zCB

2 pvalues <− l i s t ( )

3 l i b r a r y ( d i s t r )

4 l i b r a r y ( f d r t o o l )

5 l i b r a r y ( t i dyve r s e )

6 l i b r a r y ( e l l i p s i s )

7 l i b r a r y ( ggplot2 )

8 pvector <− vector ( )

9 HC <− 0

10 avrzHC <− 0

11 zHC <− vector ( )

12 zCB <− vector ( )
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13 zFNDR <− vector ( )

14 df <− data . frame ( matrix ( nco l = 13 , nrow = 0) )

15 x <− c ( " tau" , " eta " , "method" , "FP" , "FN" , "TP" , "TN" , "TE" , "SEFP" , "SEFN" , "SETP" , "SETN" , "SETE" )

16 colnames ( df ) <− x

17 methods <− c ( "CB" , "FNDR" , "HC" )

18

19 f o r ( tau in c (3 , 4 , 5 , 6 ) ) {

20 f o r ( eta in c ( 0 . 3 ) )

21 {

22 Negative <− vector ( ) #1 i f an obse rvat ion i s from the standard normal ( nu l l ) d i s t r i b u t i o n

23 FPvecCB <− vector ( )

24 FNvecCB <− vector ( )

25 TNvecCB <− vector ( )

26 TPvecCB <− vector ( )

27 TEvecHC <− vector ( )

28 FPvecHC <− vector ( )

29 FNvecHC <− vector ( )

30 TNvecHC <− vector ( )

31 TPvecHC <− vector ( )

32 TEvecHC <− vector ( )

33 FPvecfndr <− vector ( )

34 FNvecfndr <− vector ( )

35 TNvecfndr <− vector ( )

36 TPvecfndr <− vector ( )

37 TEvecfndr <− vector ( )

38 f o r ( j in 1 :1000)

39 {

40 #The number o f samples from the mixture d i s t r i b u t i o n

41 N = 10000

42 U =run i f (N) #Sample N random uniforms U

43

44 #Var iab le to s t o r e the samples from the mixture d i s t r i b u t i o n

45 rand . z = rep (NA,N)

46

47 #Sampling from the mixture

48 f o r ( i in 1 :N) {

49 i f (U[ i ]< eta ) {

50 rand . z [ i ] = rnorm (1 , tau , 1 )

51 Negative [ i ] = 0

52 } e l s e {

53 rand . z [ i ] = rnorm (1 ,0 , 1 )

54 Negative [ i ] = 1

55 }

56 }

57 pvector <− l i s t ( )

58 f o r ( i in 1 : l ength ( rand . z ) )

59 {

60 # ca l c u l a t e p va lues under the nu l l o f a N(0 ,1 ) d i s t r i b u t i o n

61 p = 1 − pnorm( rand . z [ i ] , 0 , 1 )

62 pvector <− append ( pvector , p) #make a vector o f pvalues f o r a tau and eta combination

63 }

64

65 #obtain emp i r i c a l CB thre sho ld

66 tau1 <− un l i s t ( pvector )

67 fd r <− f d r t o o l ( tau1 , verbose = FALSE, p lo t = FALSE, s t a t i s t i c="pvalue " )

68 l f d r <− f d r $ l f d r

69

70 f o r (method in methods ) {

71 FP <− 0

72 TN <− 0

73 FN <− 0

74 TP <− 0

75 i f (method == "CB" ) {

76 thresh <− 0 .5

77 index <− which . min ( abs ( l f d r − 0 . 5 ) )

78 i f ( l f d r [ index ]> 0 . 5 ) {

79 index <− index − 1

80 }

81 pthresh <− s o r t ( tau1 ) [ index ]
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82 indexz <− match ( pthresh , pvector )

83 }

84 i f (method == "FNDR" ) {

85 thresh <− 0 .8 #belong to the nu l l when b igge r than 0 .8

86 index <− which . min ( abs ( l f d r − 0 . 8 ) )

87 i f ( l f d r [ index ] >0.8) {

88 index <− index −1

89 }

90 pthresh <− s o r t ( tau1 ) [ index ] #g iv e s the pvalue

91 indexz <− match ( pthresh , pvector )

92 }

93 i f (method == "HC" ) {

94 pthresh <− hc . thresh ( tau1 , p l o t = FALSE)

95 index <− match ( pthresh , pvector )

96 indexz <− match ( pthresh , pvector )

97 }

98

99 i f (method == "CB" | method == "FNDR" ) {

100 f o r ( i in 1 : l ength ( rand . z ) ) {

101 i f ( l f d r [ i ]< thresh & Negative [ i ]==1) {#so we r e j e c t and we should not r e j e c t

102 FP <− FP +1

103 }

104 i f ( l f d r [ i ]< thresh & Negative [ i ]==0) {#so we r e j e c t and we should r e j e c t

105 TP = TP+1

106 }

107 i f ( l f d r [ i ]>=thresh & Negative [ i ]==0) {#so we do not r e j e c t and we should r e j e c t

108 FN = FN +1

109 }

110 i f ( l f d r [ i ]>=thresh & Negative [ i ]==1) {#so we do not r e j e c t and we should not r e j e c t

111 TN = TN +1

112 }

113 }

114 }

115 e l s e {

116 f o r ( i in 1 : l ength ( rand . z ) ) {

117 i f ( abs ( rand . z [ i ] )>abs ( rand . z [ indexz ] ) & Negative [ i ]==1) {#so we r e j e c t and we should not r e j e c t

118 FP <− FP +1

119 }

120 i f ( abs ( rand . z [ i ] )>abs ( rand . z [ indexz ] ) & Negative [ i ]==0) {#so we r e j e c t and we should r e j e c t

121 TP = TP+1

122 }

123 i f ( abs ( rand . z [ i ] )<=abs ( rand . z [ indexz ] ) & Negative [ i ]==0) {#so we do not r e j e c t and we should

r e j e c t

124 FN = FN +1

125 }

126 i f ( abs ( rand . z [ i ] )<=abs ( rand . z [ indexz ] ) & Negative [ i ]==1) {#so we do not r e j e c t and we should

not r e j e c t

127 TN = TN +1

128 }

129 }

130 }

131 i f (method == "CB" ) {

132 FPvecCB <− append (FPvecCB , FP)

133 FNvecCB <− append (FNvecCB , FN)

134 TNvecCB <− append (TNvecCB, TN)

135 TPvecCB <− append (TPvecCB , TP)

136 }

137 i f (method == "HC" ) {

138 FPvecHC <− append (FPvecHC , FP)

139 FNvecHC <− append (FNvecHC , FN)

140 TNvecHC <− append (TNvecHC, TN)

141 TPvecHC <− append (TPvecHC , TP)

142 }

143 i f (method == "FNDR" ) {

144 FPvecfndr <− append ( FPvecfndr , FP)

145 FNvecfndr <− append ( FNvecfndr , FN)

146 TNvecfndr <− append (TNvecfndr , TN)

147 TPvecfndr <− append ( TPvecfndr , TP)

148 }
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149 TEvecCB <− FPvecCB + FNvecCB

150 TEvecHC <− FPvecHC + FNvecHC

151 TEvecfndr <− FPvecfndr + FNvecfndr

152 }

153 }

154

155 f o r (method in methods ) {

156 i f (method == "CB" ) {

157 newrow <− data . frame ( tau = tau , eta = eta , method = method , FP = mean(FPvecCB) , FN = mean(FNvecCB) ,

TP= mean(TPvecCB) , TN=mean(TNvecCB) , TE=mean(TEvecCB) ,

158 SEFP = sd (FPvecCB) , SEFN = sd (FNvecCB) , SETP=sd (TPvecCB) , SETN=sd (TNvecCB) ,

SETE=sd (TEvecCB) )

159

160 }

161 i f (method == "HC" )

162 {

163 newrow <− data . frame ( tau = tau , eta = eta , method = method , FP = mean(FPvecHC) , FN = mean(FNvecHC) ,

TP= mean(TPvecHC) , TN=mean(TNvecHC) , TE=mean(TEvecHC) ,

164 SEFP = sd (FPvecHC) , SEFN = sd (FNvecHC) , SETP=sd (TPvecHC) , SETN=sd (TNvecHC) ,

SETE=sd (TEvecHC) )

165

166 }

167 i f (method == "FNDR" ) {

168 newrow <− data . frame ( tau = tau , eta = eta , method = method , FP = mean( FPvecfndr ) , FN =

mean( FNvecfndr ) , TP= mean( TPvecfndr ) , TN=mean( TNvecfndr ) , TE=mean( TEvecfndr ) ,

169 SEFP = sd ( FPvecfndr ) , SEFN = sd ( FNvecfndr ) , SETP=sd ( TPvecfndr ) ,

SETN=sd ( TNvecfndr ) , SETE=sd ( TEvecfndr ) )

170 }

171

172 df<− rbind ( df , newrow)

173 }

174 }

175 }

176 pFP<−ggp lot ( df , aes ( x=tau , y=FP, group = method , c o l o r = method ) ) +

177 geom_l i n e ( ) +

178 geom_point ( )+

179 geom_er ro rba r ( aes ( ymin=FP−SEFP, ymax=FP+SEFP) , width =.2 ,

180 po s i t i o n=po s i t i o n_dodge ( 0 . 0 5 ) )

181

182 pFN<−ggp lot ( df , aes ( x=tau , y=FN, group = method , c o l o r = method ) ) +

183 geom_l i n e ( ) +

184 geom_point ( )+

185 geom_er ro rba r ( aes ( ymin=FN−SEFN, ymax=FN+SEFN) , width =.2 ,

186 po s i t i o n=po s i t i o n_dodge ( 0 . 0 5 ) )

187 pTP<−ggp lot ( df , aes ( x=tau , y=TP, group = method , c o l o r = method ) ) +

188 geom_l i n e ( ) +

189 geom_point ( )+

190 geom_er ro rba r ( aes ( ymin=TP−SETP, ymax=TP+SETP) , width =.2 ,

191 po s i t i o n=po s i t i o n_dodge ( 0 . 0 5 ) )

192

193 pTN<−ggp lot ( df , aes ( x=tau , y=TN, group = method , c o l o r = method ) ) +

194 geom_l i n e ( ) +

195 geom_point ( )+

196 geom_er ro rba r ( aes ( ymin=TN−SETN, ymax=TN+SETN) , width =.2 ,

197 po s i t i o n=po s i t i o n_dodge ( 0 . 0 5 ) )

198

199 pTE<−ggp lot ( df , aes ( x=tau , y=TE, group = method , c o l o r = method ) ) +

200 geom_l i n e ( ) +

201 geom_point ( )+

202 geom_er ro rba r ( aes ( ymin=TE−SETE, ymax=TE+SETE) , width =.2 ,

203 po s i t i o n=po s i t i o n_dodge ( 0 . 0 5 ) )

204 l i b r a r y ( " gr idExtra " )

205 gr id . arrange (pFP, pFN, pTP, pTN, pTE,

206 nco l = 3 , nrow = 2)

Listing 3: Code for Simulating Output Measures in Case of Correlation between Features
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1 # simulate 10 ,000 z-scores and pvalues and calculate zCB

2 pvalues <- list()

3 library(distr)

4 library(fdrtool)

5 library(tidyverse)

6 library(ellipsis)

7 library(mvtnorm)

8 library(ggplot2)

9 library(wordspace)

10 pvector <- vector ()

11 HC <- 0

12 df <- data.frame(matrix(ncol = 14, nrow = 0))

13 x <- c("tau", "eta", "method", "rho", "FP", "FN", "TP", "TN", "TE", "SEFP", "SEFN", "SETP", "SETN", "SETE")

14 colnames(df) <- x

15 methods <- c("CB", "FNDR", "HC", "iHC")

16

17 for (tau in c(3,4,5,6)){

18 for (eta in c(0.01))

19 {

20 for (rho in c(-0.35, -0.30, -0.25, -0.20, -0.15, -0.10, -0.05, 0, 0.05 ,0.10 ,0.15 ,0.20 ,0.25 , 0.30 ,0.35)){

21 Negative <- vector () #1 if an observation is from the standard normal (null) distribution

22 FPvecCB <- vector ()

23 FNvecCB <- vector ()

24 TNvecCB <- vector ()

25 TPvecCB <- vector ()

26 TEvecCB <- vector ()

27 FPvecHC <- vector ()

28 FNvecHC <- vector ()

29 TNvecHC <- vector ()

30 TPvecHC <- vector ()

31 TEvecHC <- vector ()

32 FPveciHC <- vector ()

33 FNveciHC <- vector ()

34 TNveciHC <- vector ()

35 TPveciHC <- vector ()

36 TEveciHC <- vector ()

37 FPvecfndr <- vector ()

38 FNvecfndr <- vector ()

39 TNvecfndr <- vector ()

40 TPvecfndr <- vector ()

41 TEvecfndr <- vector ()

42 for (j in 1:500)

43 {

44 #The number of samples from the mixture distribution

45 n = 1000

46 U =runif(n) #Sample N random uniforms U

47

48 #Variable to store the samples from the mixture distribution

49 rand.z = rep(NA,n)

50

51 #Sampling from the mixture

52 for(i in 1:n){

53 if(U[i]< eta){

54 rand.z[i] = rnorm(1,tau ,1)

55 Negative[i] = 0

56 }else{

57 rand.z[i] = rnorm (1,0,1)

58 Negative[i] = 1

59 }

60 }

61

62 #simulate the correlation matrix

63 cormatrix <- matrix( rep( 0, len=n*n), nrow = n)

64 for (k in 1:n)

65 {

66 for (j in 1:n)

67 {

68 if ((j-k) == 0){
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69 cormatrix[j,k] <- 1/(2*pi)* 2*pi

70 }

71 else if ((j-k) == 1){

72 cormatrix[j,k] <- 1/(2*pi)* 2*pi*rho

73 }

74 else if ((j-k) == 2){

75 cormatrix[j,k] <- 1/(2*pi)* 0

76 }

77 else if ((j-k) == -1){

78 cormatrix[j,k] <- 1/(2*pi)* 2*pi*rho

79 }

80 else {

81 cormatrix[j,k] <- 0

82 }

83 }

84 }

85

86 #generate a Gaussian vector Z~N(0, corrmatrix)

87

88 Z <- rmvnorm(1, mean = rep(0, nrow(cormatrix)), sigma = cormatrix , method = ’chol’)

89

90 #add the generated noise to the generated signal vector

91 X <- rand.z + Z

92 transX <- t(X)

93

94 pvector <- list()

95 for (i in 1: length(rand.z))

96 {

97 # calculate p values under the null of a N(0,1) distribution

98 p = 1 - pnorm(X[i],0,1)

99 pvector <- append(pvector ,p) #make a vector of pvalues for a tau and eta combination

100 }

101 U <- chol(cormatrix)

102 b <- log(n)

103 Utilde <- U

104 for (k in 1:n){

105 for (j in 1:n){

106 if (k - b +1 <= j && j <= k){

107 Utilde[k,j] <- Utilde[k,j]

108 }

109 else {

110 Utilde[k,j] <- 0

111 }

112 }

113 }

114 Ubar <- normalize.cols(Utilde)

115 V <- t(Ubar)%*%U

116 VX <- X%*%V #check if this is a vector || yes this is a vector!

117

118 pvectoriHC <- vector ()

119 for (i in 1: length(X))

120 {

121 # calculate p values under the null of a N(0,1) distribution

122 p <- 1 - pnorm(VX[i],0,1)

123 pvectoriHC <- append(pvectoriHC , p) #make a vector of pvalues for a tau and eta combination

124 }

125

126

127 #obtain empirical CB threshold

128 tau1 <- unlist(pvector)

129 fdr <- fdrtool(tau1 , verbose = FALSE , plot = FALSE , statistic="pvalue")

130 lfdr <- fdr$lfdr

131

132 for (method in methods){

133 FP <- 0

134 TN <- 0

135 FN <- 0

136 TP <- 0

137 if (method == "CB"){
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138 thresh <- 0.5

139 index <- which.min(abs(lfdr - 0.5))

140 if (lfdr[index]> 0.5){

141 index <- index - 1

142 }

143 pthresh <- sort(tau1)[index]

144 indexz <- match(pthresh , pvector)

145 }

146 if (method == "FNDR"){

147 thresh <- 0.8 #belong to the null when bigger than 0.8

148 index <- which.min(abs(lfdr - 0.8))

149 if (lfdr[index ] >0.8){

150 index <- index -1

151 }

152 pthresh <- sort(tau1)[index] #gives the pvalue

153 indexz <- match(pthresh , pvector)

154 }

155 if (method == "HC"){

156 pthresh <- hc.thresh(tau1 , plot = FALSE)

157 index <- match(pthresh , pvector)

158 indexz <- match(pthresh , pvector)

159 }

160 if (method == "iHC"){

161 pthresh <- hc.thresh(pvectoriHC , plot = FALSE)

162 indexz <- match(pthresh , pvectoriHC)

163 }

164 if (method == "CB" | method == "FNDR"){

165 for (i in 1: length(rand.z)){

166 if (lfdr[i]<thresh & Negative[i]==1) {#so we reject and we should not reject

167 FP <- FP +1

168 }

169 if (lfdr[i]<thresh & Negative[i]==0) {#so we reject and we should reject

170 TP = TP+1

171 }

172 if (lfdr[i]>=thresh & Negative[i]==0) {#so we do not reject and we should reject

173 FN = FN +1

174 }

175 if (lfdr[i]>=thresh & Negative[i]==1) {#so we do not reject and we should not reject

176 TN = TN +1

177 }

178 }

179 }

180 else if (method == "HC"){

181 for (i in 1: length(X)){

182 if (abs(X[i])>abs(X[indexz ]) & Negative[i]==1) {#so we reject and we should not reject

183 FP <- FP +1

184 }

185 if (abs(X[i])>abs(X[indexz ]) & Negative[i]==0) {#so we reject and we should reject

186 TP = TP+1

187 }

188 if (abs(X[i]) <=abs(X[indexz ]) & Negative[i]==0) {#so we do not reject and we should reject

189 FN = FN +1

190 }

191 if (abs(X[i]) <=abs(X[indexz ]) & Negative[i]==1) {#so we do not reject and we should not reject

192 TN = TN +1

193 }

194 }

195 }

196 else if (method == "iHC"){

197 for (i in 1: length(rand.z)){

198 if (abs(VX[i])>abs(VX[indexz ]) & Negative[i]==1) {#so we reject and we should not reject

199 FP <- FP +1

200 }

201 if (abs(VX[i])>abs(VX[indexz ]) & Negative[i]==0) {#so we reject and we should reject

202 TP = TP+1

203 }

204 if (abs(VX[i]) <=abs(VX[indexz ]) & Negative[i]==0) {#so we do not reject and we should reject

205 FN = FN +1

206 }
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207 if (abs(VX[i]) <=abs(VX[indexz ]) & Negative[i]==1) {#so we do not reject and we should not reject

208 TN = TN +1

209 }

210 }

211 }

212 if (method == "CB"){

213 FPvecCB <- append(FPvecCB , FP)

214 FNvecCB <- append(FNvecCB , FN)

215 TNvecCB <- append(TNvecCB , TN)

216 TPvecCB <- append(TPvecCB , TP)

217 }

218 if (method == "HC"){

219 FPvecHC <- append(FPvecHC , FP)

220 FNvecHC <- append(FNvecHC , FN)

221 TNvecHC <- append(TNvecHC , TN)

222 TPvecHC <- append(TPvecHC , TP)

223 }

224 if (method == "FNDR"){

225 FPvecfndr <- append(FPvecfndr , FP)

226 FNvecfndr <- append(FNvecfndr , FN)

227 TNvecfndr <- append(TNvecfndr , TN)

228 TPvecfndr <- append(TPvecfndr , TP)

229 }

230 if (method == "iHC"){

231 FPveciHC <- append(FPveciHC , FP)

232 FNveciHC <- append(FNveciHC , FN)

233 TNveciHC <- append(TNveciHC , TN)

234 TPveciHC <- append(TPveciHC , TP)

235 }

236 TEvecCB <- FPvecCB + FNvecCB

237 TEvecHC <- FPvecHC + FNvecHC

238 TEvecfndr <- FPvecfndr + FNvecfndr

239 TEveciHC <- FPveciHC + FNveciHC

240 }

241 }

242

243 for (method in methods){

244 if (method == "CB"){

245 newrow <- data.frame(tau = tau , eta = eta ,method = method , rho = rho , FP = mean(FPvecCB), FN = mean(FNvecCB), TP=

mean(TPvecCB), TN=mean(TNvecCB), TE=mean(TEvecCB),

246 SEFP = sd(FPvecCB), SEFN = sd(FNvecCB), SETP=sd(TPvecCB), SETN=sd(TNvecCB), SETE=sd(TEvecCB))

247

248 }

249 if (method == "HC")

250 {

251 newrow <- data.frame(tau = tau , eta = eta ,method = method , rho = rho , FP = mean(FPvecHC), FN = mean(FNvecHC), TP=

mean(TPvecHC), TN=mean(TNvecHC), TE=mean(TEvecHC),

252 SEFP = sd(FPvecHC), SEFN = sd(FNvecHC), SETP=sd(TPvecHC), SETN=sd(TNvecHC), SETE=sd(TEvecHC))

253

254 }

255 if (method == "FNDR"){

256 newrow <- data.frame(tau = tau , eta = eta ,method = method , rho = rho , FP = mean(FPvecfndr), FN = mean(FNvecfndr),

TP= mean(TPvecfndr), TN=mean(TNvecfndr), TE=mean(TEvecfndr),

257 SEFP = sd(FPvecfndr), SEFN = sd(FNvecfndr), SETP=sd(TPvecfndr), SETN=sd(TNvecfndr),

SETE=sd(TEvecfndr))

258 }

259 if (method == "iHC"){

260 newrow <- data.frame(tau = tau , eta = eta ,method = method , rho = rho , FP = mean(FPveciHC), FN = mean(FNveciHC), TP=

mean(TPveciHC), TN=mean(TNveciHC), TE=mean(TEveciHC),

261 SEFP = sd(FPveciHC), SEFN = sd(FNveciHC), SETP=sd(TPveciHC), SETN=sd(TNveciHC),

SETE=sd(TEveciHC))

262 }

263 df<- rbind(df , newrow)

264 }

265 }

266 }

267 }
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Listing 4: Code for Obtaining the Results in Table 3

1 # Code for table cancer genes data sets

2 library(sda)

3 library(fdrtool)

4 SRBCT.X = SRBCT$X[1:63 ,]

5 SRBCT.Y = SRBCT$Y[1:63]

6

7 #calculate correlation matrices and their cholesky decompositions

8 cormatrixbrain = cor(brain.x)

9 Ubrain = chol(cormatrixbrain , pivot = TRUE) #because the matrix can be semi positive definite

10 cormatrixlymphoma = cor(lymphoma$x)

11 Ulymphoma = chol(cormatrixlymphoma , pivot = TRUE)

12 cormatrixprostate = cor(prostate$x)

13 Uprostate = chol(cormatrixprostate , pivot = TRUE)

14 cormatrixSRBCT = cor(SRBCT.X)

15 USRBCT = chol(cormatrixSRBCT , pivot = TRUE)

16

17 #calculate VX for every data set

18 bbrain <- log(dim(brain.x)[2])

19 blymphoma <- log(dim(lymphoma$x)[2])

20 bprostate <- log(dim(prostate$x)[2])

21 bSRBCT <- log(dim(SRBCT.X)[2])

22

23 Utildebrain <- Ubrain

24 for (k in 1:dim(brain.x)[2]){

25 for (j in 1:dim(brain.x)[2]){

26 if (k - bbrain +1 <= j && j <= k){

27 Utildebrain[k,j] <- Utildebrain[k,j]

28 }

29 else {

30 Utildebrain[k,j] <- 0

31 }

32 }

33 }

34 Ubarbrain <- normalize.cols(Utildebrain)

35 Vbrain <- t(Ubarbrain)%*%Ubrain

36 VXbrain <- brain.x %*%Vbrain #check if this is a matrix || yes this is a matrix with the same

37 #dimensions as brain.x!

38

39 #apply LDA to the produced matrix and check the number of included variables when HC is applied

40 rabrain <-sda.ranking(VXbrain , brain.y, diagonal = FALSE , fdr = TRUE , ranking.score = "avg", lambda.freqs = 0)

41 numvarsbrain = which.max( rabrain[, "HC"])

42

43 Utildeprostate <- Uprostate

44 for (k in 1:dim(prostate$x)[2]){

45 for (j in 1:dim(prostate$x)[2]){

46 if (k - bprostate +1 <= j && j <= k){

47 Utildeprostate[k,j] <- Utildeprostate[k,j]

48 }

49 else {

50 Utildeprostate[k,j] <- 0

51 }

52 }

53 }

54 Ubarprostate <- normalize.cols(Utildeprostate)

55 Vprostate <- t(Ubarprostate)%*%Uprostate

56 VXprostate <- prostate$x %*%Vprostate

57

58 raprostate <-sda.ranking(VXprostate , prostate$y, diagonal = FALSE , fdr = TRUE , ranking.score = "avg", lambda.freqs = 0)

59 numvarsprostate = which.max( raprostate[, "HC"])

60

61

62 Utildelymphoma <- Ulymphoma

63 for (k in 1:dim(lymphoma$x)[2]){

64 for (j in 1:dim(lymphoma$x)[2]){

65 if (k - blymphoma +1 <= j && j <= k){

66 Utildelymphoma[k,j] <- Utildelymphoma[k,j]
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67 }

68 else {

69 Utildelymphoma[k,j] <- 0

70 }

71 }

72 }

73 Ubarlymphoma <- normalize.cols(Utildelymphoma)

74 Vlymphoma <- t(Ubarlymphoma)%*%Ulymphoma

75 VXlymphoma <- lymphoma$x%*%Vlymphoma

76

77 ralymphoma <-sda.ranking(VXlymphoma , lymphoma$y, diagonal = FALSE , fdr = TRUE , ranking.score = "avg", lambda.freqs = 0)

78 numvarslymphoma = which.max( ralymphoma[, "HC"])

79

80 UtildeSRBCT <- USRBCT

81 for (k in 1:dim(SRBCT.X)[2]){

82 for (j in 1:dim(SRBCT.X)[2]){

83 if (k - bSRBCT +1 <= j && j <= k){

84 UtildeSRBCT[k,j] <- UtildeSRBCT[k,j]

85 }

86 else {

87 UtildeSRBCT[k,j] <- 0

88 }

89 }

90 }

91 UbarSRBCT <- normalize.cols(UtildeSRBCT)

92 VSRBCT <- t(UbarSRBCT)%*%USRBCT

93 VXSRBCT <- SRBCT.X%*%VSRBCT

94

95 ### Copyright 2012 Bernd Klaus.

96 #’ Setup prediction function: estimate the accuracy of a predictor with a fixed number of predictors (note

97 #’ this takes into account the uncertainty in estimating the variable ordering).

98 predfun = function(Xtrain , Ytrain , Xtest , Ytest , numVars , diagonal=FALSE ,

99 ranking.score="avg")

100 {

101 # estimate ranking and determine the best numVars variables

102 ra = sda.ranking(Xtrain , Ytrain , verbose=FALSE , diagonal=diagonal ,

103 fdr=TRUE , ranking.score=ranking.score , lambda.freqs = 0)

104 numVars = which.max( ra[, "HC"] )

105 #numVars = sum( ra[, "lfdr"]< 0.80)

106 #numVars = sum( ra[, "lfdr"]< 0.50)

107 selVars = ra[,"idx"][1: numVars]

108

109 # fit and predict

110 sda.out = sda(Xtrain[, selVars , drop=FALSE], Ytrain , diagonal=diagonal ,

111 verbose=FALSE)

112 ynew = predict(sda.out , Xtest[, selVars , drop=FALSE], verbose=FALSE)$class

113

114 # compute accuracy

115 acc = sum(ynew != Ytest)/length(Ytest)

116 return(acc)

117 }

118

119 #’ Our setup for crossvalidation:

120 K = 10 # number of folds

121 B = 20 # number of repetitions

122

123

124 #’ Crossvalidation estimate of accuracy for

125 #’ LDA using the top 100 features ranked by CAT scores

126 #’ (combined across groups using "entropy" for overall ranking):

127 set.seed (12345)

128 cv.lda100 = crossval(predfun , Xtrain , Ytrain , K=K, B=B, numVars=numVars ,

129 diagonal=FALSE , verbose=FALSE)
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