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Abstract

Coincident downturns are often documented in financial time-series, whereas simultaneous

surges are not evident as such. This asymmetrical dependence between assets is however often

not accounted for by mainstream financial volatility models, sometimes additionally imposing

normality restrictions on the marginals. Copulas, conversely, ‘decouple’ marginal distributions

which allows for analysing dependence separately. In this paper static Gaussian and Clayton

copulas, as well as a time-varying Clayton copula are considered to model German and Dutch

stock returns. Its Value-at-Risk is compared to RiskMetrics by looking at backtesting perfor-

mance. The Clayton copula techniques yielded the best VaR in terms of average exceedance

errors, suggesting asymmetrical dependence in the stock returns.
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1 Introduction

The nature of time series is often assessed in academic literature. This has led to the so called

stylised facts observed in asset returns, such as volatility clustering and excess kurtosis, which

models based on normality can not capture. There has also been interest in multivariate time-series

and their mutual dependency. A natural metric to measure dependency would be the correlation

between assets. However, correlation depends on the assumption of Gaussian processes, which

financial assets do not show. Therefore a different approach is needed.

Copulas form an interesting alternative to popular dependence modelling techniques. These

functions do not impose restrictions on marginal distributions, and even allow for asymmetric

dependence. These are functions that ‘link’ marginal distributions to model a joint distribution. Of

course, based on these attributes of copulas, it would be of importance to analyse how well copulas

perform, as this has direct implications to portfolio theory and Value-at-Risk. Moreover, in this

research the copula will also be time-varying, based on the assumption of local homogeneity. It

allows for a dynamic estimation, which is called the Local Change Point (LCP) procedure, and is

deemed a relative novel approach. The main research question of this paper thus reads ‘how well do

time-varying copula models perform compared to traditional methods of determining risk? ’ In order

to answer this question, Value-at-Risk (VaR) of the LCP procedure (based on the Clayton copula),

moving windows (based on Gaussian and Clayton copulas) and RiskMetrics is compared.

Historical data from German and Dutch stocks are acquired for the purpose of empirical analysis.

Two portfolios consisting of German stocks over the period 2000 to 2005, as well as one portfolio of

Dutch stocks over the period 2006 to 2016 are examined to calculate the respective VaR. The copula

methods (Gaussian and Clayton) appeared to be performing better than RiskMetrics in terms of

exceedance errors at different levels. Clayton methods (LCP and moving windows) consistently

produced the lowest standard error of exceedances, suggesting lower tail dependence in returns.

This paper is organised as follows. Section 2 discusses relevant literature. Section 3 presents the

methodology of this paper, with subsections explaining different steps in the estimation procedure.

Simulations are performed with the copula model in Section 4 to assess its dynamics. Following the

simulation the empirical data is presented in Section 5, which is used in this paper for estimation

and visual purposes. Section 6 presents the estimation results of the time-varying copulas, moving

window and RiskMetrics estimations. Finally Section 7 concludes.
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2 Literature Review

Historically there has been ample interest in financial time series. This has led to the formulation

of so called stylised facts of these time series. For example, empirical evidence from a wide selection

of financial assets suggest volatility clustering, negative skewness and excess kurtosis. Cont (2001)

presents a thorough examination of these stylised statistical facts. This leads to the conclusion

that models based on normal distributions often fail to capture non-normal behaviour of financial

time series. However, many financial applications such as investment strategies, asset pricing and

portfolio management rely on the correct specification of these models. It is therefore of importance

to correctly specify financial models that are used in this framework.

Black (1976) found that conditional volatility of asset returns did react differently on positive

and negative shocks in asset returns. This asymmetry yields a larger increase in volatility after

negative returns compared to positives. Several authors (see for example Kraus and Litzenberger

(1976), Friend and Westerfield (1980) and Richardson and Smith (1993)) support this finding of

skewness in the distribution of stock returns with empirical evidence.

Recently there has been interest in the (time-varying) multivariate distributions of asset returns.

In this new framework, studies also found deviations from normality. An asymmetric dependence

between assets manifests itself when in declining markets returns often have greater correlation

compared to when a market is expanding. Research from Longin and Solnik (2001) demonstrated

that there indeed exists increased correlations between assets in market downturns, but could not

conclude the same for bullish markets. Ang and Chen (2002) presented evidence that rejects the

notion of multivariate normality at multiple frequencies in asset returns. One possible solution to

correct for non-normal behaviour is to apply multivariate ARCH/GARCH models. Various models

have been introduced to try to specify some form of conditional heteroskedasticity. One well-known

example is the VEC representation of the conditional covariance matrix by Bollerslev et al. (1988).

Many financial models rely on some kind of Gaussian processes (for example the Black-Scholes

model implements Brownian motions). However, these well-known multivariate distributions are too

rigid in the sense that they cannot account for non-normal tail behaviour in different variables. Sklar

(1959) posed a new theorem of copulas, in which an n-dimensional joint distribution of variables can

be written as a function of its n marginal distributions. The copula then presents the dependence

between the n variables. The main motivation for this technique is that it is possible to examine

3



the copula systems under different assumptions and that it does not impose strong restrictions

of normality. This has led to the implementation of copulas in many financial applications. For

example Cherubini and Luciano (2001) and Embrechts et al. (2002) analyse Value-at-Risk in a risk

management setting. Patton (2004) and Boubaker and Sghaier (2013) look at portfolio optimisation

using (time-varying) copulas. Finally, in more recent research, there has been interest in high

dimensional copulas. Creal and Tsay (2015) evaluate high dimensional copulas by considering them

as factor models. Wang et al. (2018) assess complex dependencies when introducing renewable

energy by using high dimensional copulas.

Aside from the ability of modelling dependence with a copula, it is also of importance to consider

the non-constant nature of conditional volatility frequently observable in economic time series. It

follows that models that also account for time-varying volatility may more accurately resemble

economic theory. Longin and Solnik (1995) and Engle (2002) show that correlation is not constant

over time, which implies dependency between variables is also time dependent. Many time-varying

copula models are assessed in literature, see for example Patton (2006), Ausin and Lopes (2010) and

So and Yeung (2014), where the researchers modelled volatility with univariate GARCH processes

and the dependence structure with copulas. Finally, the dependence structure can also be deemed

locally homogeneous. Dias and Embrechts (2010) and Guégan and Zhang (2010), among others,

determine whether dependency is locally constant, while Busetti and Harvey (2011) develop a test

for changing dependence in the time series.

3 Methodology

3.1 Copulas

Copulas provide an alternative approach to conventional methods of modelling multivariate distribu-

tion functions. This technique has the advantage of modelling marginals and dependence structure

separately. An n-dimensional copula is defined as a distribution function C that links standard

uniform marginal distributions. This has led to Theorem 3.1 of Sklar (1959):

Theorem 3.1. Let F be an n-dimensional joint distribution function with marginal cumulative

distribution functions F1, . . . , Fn. Then there exists a copula C : [0, 1]n → [0, 1] such that

F (x1, . . . , xn) = C
!
F1(x1), . . . , Fn(xn)

"
, (3.1.1)
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for some vector X = (x1t, . . . , xnt)
′, with t = (0, . . . , T ). Conversely,

C(u1, . . . , un) = F
!
F−1
1 (u1), . . . , F

−1
n (un)

"
, (3.1.2)

with ui = Fi(xi) and F−1
i (xi) the inverse of xi.

A proof of the two-dimensional case is given in Schweizer and Sklar (1975). In this research

copulas will be used in order to estimate multivariate distribution functions. The scope of this

article will cover financial stock returns as considered data. Subsequently, Value-at-Risk estimates

are evaluated in order to quantify the copula performance. There are multiple copula families

introduced in literature, see for example McNeil et al. (2015). Copulas can either be classified as

elliptical or non-elliptical. One popular elliptical copula is the Gaussian copula

CG
Ψ(u1, . . . , un) = FX

!
Φ−1(u1), . . . ,Φ

−1(un)
"
, (3.1.3)

with Φ(ui) the standard normal CDF and X assumed to be normally distributed around 0 with

correlation matrix Ψ. Gaussian copulas are convenient to work with. However, the downside

of a Gaussian copula is that it assumes normally distributed and therefore symmetric dependence

without tail dependence. This means it underestimates kurtosis, as well as the dependence structure

in the tails when looking at returns in financial data.

Non-elliptical (or Archimedean) copulas allow for non-elliptical distributions with tail depen-

dencies. Archimedean copulas are defined as C(u1, . . . , un) = φ−1(
#

φ(ui)), with φ−1 the inverse of

φ. The function φ is also called the generator of the copula. In this research the Clayton copula

CCl
θ (u1, . . . , un) =

! n$

i=1

u−θ
i − (n+ 1)

"−θ−1

θ > 0, (3.1.4)

is used for modelling tail dependency, where CCl
θ is the cumulative distribution function of the

copula. To arrive at the density of the Clayton copula, note that for any copula C(u1, . . . , un) the

PDF c(u1, . . . , un) can be obtained as c(u1, . . . , un) = ∂nC((u1, . . . , un)/∂u1, . . . ∂un. The density

for the Clayton copula then is obtained as

cθ(u) =

d−1%

k=0

(θk + 1)

& n%

i=1

ui

'−(1+θ)& n$

i=1

u−θ
i − n+ 1

'−(n+1/θ)

. (3.1.5)

See Hofert et al. (2012) for comprehensive proofs of multivariate Archimedean copulas. The density

as given in Equation (3.1.5) will be needed when the copula is estimated.
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Tail dependency is a measurement of simultaneous movement of the variables in the tails of the

distribution function. This concept refers to the dependence in extreme values of the considered

variables, which depends mainly on the behaviour in the tails. Variables can exhibit tail dependency

when no correlation is present. Lower and upper tail dependency is defined as

λL := lim
u↓0

C(u, . . . , u)
u

; (3.1.6)

λU := lim
u↓0

Ĉ(u, . . . , u)
u

, (3.1.7)

respectively, where u ∈ (0, 1] and Ĉ the survival copula of C (see Joe (1997) for a review of depen-

dency). When λL = 0, the copula does not demonstrate lower tail dependence. When λU = 0,

the copula does not demonstrate upper tail dependence. Gaussian copulas are copulas with both

independent lower and upper tails (λL = λU = 0). Clayton copulas exhibit independent upper tail

behaviour and dependent lower tail dependency (λL = d−1/θ, with d the dimension). Figures 1

and 2 present draws from bivariate Clayton and Gaussian copulas, respectively. Notice the lower

tail dependency in the Clayton distribution and no upper tail dependency (θ = 2.5). The gaus-

sian distributed variables exhibit constant correlation across the distribution (ρ = 0.7). Modelling

tail dependency can be beneficial in analysing financial data, since this data often deviate from

normality and exhibit greater correlation in market contractions.

Figure 1: Simulated bivariate Clayton copula with
θ = 2.5, 1000 draws.
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Figure 2: Simulated bivariate Gaussian copula
with ρ = 0.7, 1000 draws.
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3.2 Estimation

The next step is to estimate the copula parameter. In this analysis the Gaussian and Clayton copula

C(u) (with dependence parameter θ, θ > 0 for the Clayton copula and correlation matrix Ψ for the

Gaussian copula) is estimated. This is achieved by means of maximising the pseudo log-likelihood.

Let {xt,i}Tt=1, i = 1, . . . , n be a vector of observations. Then the canonical log-likelihood is given as

l(x1, . . . ,xT ; (θ,Ψ)) =

T$

t=1

log c(xi; (θ,Ψ)) =

T$

t=1

log c
!
F̂1(xt,1), . . . , F̂n(xt,n); (θ,Ψ)

"
, (3.2.1)

where c the PDF of the copula, (θ,Ψ) the parameters of either Clayton or Gaussian and moreover

assuming that the data is transformed into uniformly distributed variates {ût,i}Tt=1. The advantage

of working with the canonical maximum likelihood is that it is possible to estimate the likelihood

in two steps. The first step is to estimate the nonparametric CDF of the marginal distributions

F̂i(xt,i). A variant of the empirical CDF is used for this purpose. This step yields uniform variates

ût,i = F̂i(xt,i) =
1

T + 1

T$

t=1

I[xt,i≤x]. (3.2.2)

Equation (3.2.2) differs from the standard empirical CDF in the scalar 1/(1 + T ), to ensure that

the transformed data does not take infinite values on the the boundary of the unit interval [0,1].

Step two then maximises the pseudo log-likelihood which provides maximum likelihood estimator θ̂

or Ψ̂,

θ̂, Ψ̂ = argmax

T$

t=1

log c(ût,1, . . . , ût,n). (3.2.3)

3.3 Value-at-Risk

In the empirical analysis of this paper the Value-at-Risk will be examined, since the VaR has a direct

connection with the dependence between asset returns. Consider Vt =
#n

i=1wiat,i the value of a

portfolio at time t with n assets, w = (w1, . . . , wn)
′ the weights of asset i, and At = (at,1, . . . , at,n)

′

the prices of asset i (i ∈ [1, . . . , n]). Then the log returns can be defined as

Rt = (log at,1 − log at−1,1, . . . , log at,n − log at−1,n)
′ = (Rt,1, . . . , Rt,n)

′. (3.3.1)
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The profit and loss function can be written using Equation 3.3.1 as

Lt =

n$

i=1

wiat−1,i(e
Rt,i − 1). (3.3.2)

The distribution of Lt is given as Ft,Lt(x) = Pt(Lt ≤ x) and is determined by the distributions of

the returns Rt,i. It follows that the VaR at confidence level α is written as

VaRt(α) = F−1
t,Lt

(α). (3.3.3)

This means the unknown CDF Ft,Lt(x) has to be specified. For this reason there will be looked at

shocks of individual assets.

The shocks εt = (εt,1, . . . , εt,n)
′ are obtained to estimate the Gaussian and Clayton copula in

this analysis, in order to compare the results with conventional benchmarks which are described in

Section 3.4. Therefore the log-returns first have to be demeaned and devolatised. This is achieved

by specifying a RiskMetrics model for the conditional variance of every asset in the considered

portfolio. For asset i the historical volatility is calculated as

σ̂2
t,i = (1− λ)R2

t−1,i + λσ̂2
t−1,i, (3.3.4)

where λ = 0.94 when operating in the framework of RiskMetrics, and R2
t the squared asset return

of asset i at time t. It allows for estimating the residuals as

ε̂t,i =
Rt,i − µt,i

σ̂t,i
, (3.3.5)

with µt,i = E(Rt,i|Ft−1) the conditional mean and σ2
t,i = E

(
(Rt,i − µt,i)

2|Ft−1

)
the conditional

variance. This yields standardised shocks with unknown joint CDF Fεt . However, using Theorem

3.1 proposed in Sklar (1959), Fεt can be written as

Fεt(x1, . . . , xn) = Cθ
!
Ft,1(x1), . . . , Ft,n(xn)

"
. (3.3.6)

The dependence parameter θ of copula C can then be estimated using the marginal CDF’s of the

shocks εt as explained in Section 3.2. The final step is to generate 1000 Monte Carlo portfolio

simulations using the dependence parameter θ̂t and CDFs from the residuals. These residuals are

then transformed back to the original time-series using its mean and volatility as described in

Equation 3.3.5. The ordered simulations subsequently yield estimations of Value-at-Risk.
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3.4 Benchmarks and performance measures

The Value-at-Risk obtained with the estimation of the Gaussian and Clayton copula can be com-

pared with traditional techniques. In this analysis the VaR will also be estimated using a RiskMetrics

model for portfolio log returns with different weights. The specification of the conditional variance

is the same as given in Equation (3.3.4). Moreover, the Gaussian and Clayton copula will also be

estimated by means of a fixed moving window of 250 days. However, this moving window procedure

is dependent on its length. Small windows will produce unstable estimates while at the same time

large windows yield delays in the changing dependence parameter. In the following Subsection the

LCP procedure is presented which aims to resolve moving window shortcomings.

The performance of the VaR can be quantified using backtesting. At every time t the log returns

Rt as defined in Equation (3.3.1) of a portfolio w with given weights, is compared with the estimated

VaR at that point. The exceedance ratio α̂w(α) =
1

T

#T
t=1 I{Rt<V̂ aRt(α)} is a measurement of

exceedances at confidence level α. The difference between α̂ and α subsequently yields the relative

exceedance ratio ew = (α̂ − α)/α. Relative exceedance ratio is computed for confidence level 0.05

and 0.01 for a large portfolio set W = {w∗,wk : k = 1, . . . , 100}. Each wk is uniformly distributed,

and adhering to the constraints
#n

i=1wk,i = 1 and wk,i ≥ 0.1 for asset i in portfolio k. The portfolio

set W then produces an average exceedance error and its corresponding standard deviation

AW =
1

|W |
$

w∈W
ew (3.4.1)

Dw =

&
1

|W |
$

w∈W
(ew −AW )2

'1/2

(3.4.2)

which will be used to formally compare performance of the VaR estimation.

3.5 Local Change Point procedure

In this Section a technique called the local change point (LCP) procedure will be applied to estimate

the Clayton copula parameter. A simulation of changing Clayton copula parameter will also be

performed in Section 4 in order to test the performance of the LCP procedure.

Interval of homogeneity Instead of estimating the copula parameter θt for the entire sample, or

allowing for time variation, the parameter θt could be estimated with a smaller interval It = [t−mt, t]

for each t ∈ (1, . . . T ) (thus deemed to be locally homogeneous). Based on the local change point
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procedure (LCP) of Mercurio and Spokoiny (2005), the null hypothesis of local homogeneity (in

other words, θt = θ) is tested against a local change point alternative. The procedure starts for

any given t0 ∈ (1, . . . , T ) with the determination of nested intervals IK ⊃ IK−1 ⊃ · · · ⊃ I0. Each

interval Ik, k ∈ (1, . . . ,K) is defined as Ik = [t0 −mk, t0]. These intervals are thus defined by mk.

It is chosen such that m0 is fixed and mk defined as mk = m0c
k (c > 1, rounding to the nearest

natural number). Each interval Ik subsequently produces an estimate candidate θ̂k for the actual

value θt0 . The LCP procedure then assigns one interval Îk with a corresponding estimate θ̂k to the

value θt0 . How to choose this interval will be expounded in the following paragraph.

Testing LCP Each interval Ik = [t0−mk, t0] consists of smaller intervalsWk = [to−mk, t0−mk−1].

For each point ω ∈ Wk, the log-likelihood defined in Equation 3.2.1 is computed based on the interval

S = [ω, to] and Sc = [t0−mk,ω). The length of Wk is also determined by the value of mk. Following

Spokoiny (2009), m0 will be set to 20 and c to 1.25. This procedure yields two log-likelihood for

each ω ∈ Wk. The null hypothesis claims θt = θ ∀ t ∈ Ik. The alternative hypothesis allows for a

change point. A likelihood ratio test with

T Ik, ω = max
θS , θSc

!
lSc(θSc) + lS(θS)

"
−max

θ
lIk(θ) (3.5.1)

= lSc(θ̃Sc) + lS(θ̃S)− lIk(θ̃Ik), (3.5.2)

can be applied in order to reject the null (with θ̃i, i ∈ (Sc, S, Ik) the maximum likelihood estimates

of the Clayton dependence parameter), with the test statistic defined as TIk := max ω∈W T Ik, ω.

This statistic will be compared to critical values Vk, which are defined in the following paragraph.

Concludingly, the interval Ik is accepted if the test statistic TIk does not exceed critical value Vk

for each ω ∈ Wk. If a local change point is detected in Wk, the procedure stops and uses the latest

accepted interval Ik−1 for the selection of the dependence parameter θ̂Ik−1
for θt0 .

Determining critical values Whether the test statistic TIk has to be rejected depends on the

exceedance of some critical value Vk. However, as TIk is defined as the maximum over the interval

Wk, the test statistic does not follow a known distribution function. Then again, it is of significant

importance to determine the right critical values.

This methodology considers an approach that is based on the procedure of Spokoiny (2009).

Its main goal is to select one (constant) estimate for θ̃Ik , the maximum likelihood estimator for
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interval Ik (and focussing on a false positive of an LCP), rather than focussing on the possibility

of an LCP. A false positive leads to an estimation of θ̂Ik (the estimator after k steps of the LCP

algorithm) that has a higher variance than θ̃Ik . It follows that some conditions should be established

on both the estimates θ̂Ik and θ̃Ik . Spokoiny (2009) looks at the difference of the estimations,

normalised by the risk of the global estimator θ̃Ik . Let lIk(θ̃Ik , θ̂Ik) := lIk(θ̃Ik) − lIk(θ̂Ik) be the

difference of log-likelihood of estimations, and define the risk of the homogeneous situation be

R(θ∗) = maxE θ∗

!
|lIk(θ̃Ik , θ̂∗)|1/2

"
, with θ∗ the parameter under the null. Then the constraint

E θ∗

!
|lIk(θ̃Ik , θ̂Ik)|

1/2
"
≤ νR(θ∗) (3.5.3)

will determine the values for Vk, which are selected as minimal values adhering to these conditions.

The parameter ν is a scale parameter and determines the sensitivity of the constraints. Critical

values are found with Monte Carlo simulation. This simulation is executed under the null with

θt = θ∗. Table 1 presents critical values for given θ∗ and ν. In this setting both θ∗ and ν are

unknown parameters. However, based on the findings in the paper of Spokoiny (2009) and on Table

1, both will later be fixed as they have negligible effect on the critical values.

θ∗ = 0.5 θ∗ = 1.0 θ∗ = 1.5
k ν = 0.2 ν = 0.5 ν = 1.0 ν = 0.2 ν = 0.5 ν = 1.0 ν = 0.2 ν = 0.5 ν = 1.0

1 3.64 3.29 2.88 3.69 3.29 2.84 3.95 3.49 2.96
2 3.61 3.14 2.56 3.43 2.91 2.35 3.69 3.02 2.78
3 3.31 2.86 2.29 3.32 2.76 2.21 3.34 2.80 2.09
4 3.19 2.69 2.07 3.04 2.57 1.80 3.14 2.55 1.86
5 3.05 2.53 1.89 2.92 2.22 1.53 2.95 2.65 1.49
6 2.87 2.26 1.48 2.92 2.17 1.19 2.83 2.04 0.94
7 2.51 1.88 1.02 2.64 1.82 0.56 2.62 1.79 0.31
8 2.49 1.72 0.35 2.33 1.39 0.00 2.35 1.33 0.00
9 2.18 1.23 0.00 2.03 0.81 0.00 2.10 0.60 0.00
10 0.92 0.00 0.00 0.82 0.00 0.00 0.79 0.00 0.00

Table 1: Critical values Vk for given values θ∗ and ν, as given in Giacomini et al. (2009).

4 Simulation

The local change point procedure as described in Section 3.5 can be applied to simulated data.

Sets of 6-dimensional data with a sudden jump in the dependence parameter are simulated for this
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purpose. The dependence parameter is modelled as

f(x) =

*
+,

+-

θa, if 0 ≤ t ≤ 100

θb, if 100 < t ≤ 200

(4.0.1)

for different values of θa and θb. The LCP algorithm is calculated with fixed parameters. It can be

seen from Table 3 that the choice of θ∗ has little effect on the sequence of critical values. Therefore it

is set as θ∗ = 1 for the simulation examples. Based on Spokoiny (2009) and Giacomini et al. (2009),

the intervals Ik will be initiated with parameters m0 = 20 and c = 1.25, whereas ν = 0.5. Figure

3 presents simulated examples for different values of θa and θb, based on the above specification of

the LCP procedure. It can be seen that it takes about 20 to 30 observations for the LCP procedure

to ‘catch up’ with the sudden jump in the dependence parameter.

Figure 3: Simulation of data with a sudden jump in dependence parameter. Both figures depict point-wise
median (full line) and 0.25 and 0.75 quantiles (dashed) of the parameter θ̂t estimated with LCP. The true
simulated parameter is shown with the dash-dotted line. In the left figure θa = 0.1, θb = 1 (estimated in blue),
θb = 0.5 (estimated in red). In the right figure θb = 0.1, θa = 1 (estimated in blue), θa = 0.5 (estimated in
red). Based on 50 simulations where m0 = 20, c = 1.25 and ν = 0.5.
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It is viable to better understand the detection delay; the time it takes for the algorithm to catch

up with the real parameter. It is possible to get more insight of this phenomenon through the

expression

δ(t, γ, r) = min{u ≥ t : θ̂u = θa + rγ}− t, (4.0.2)

where γ = θb − θa and r the fraction it takes for the parameter to attain the true value. Table 2

presents statistics for the detection delay of the LCP procedure, based on 50 simulations, m0 = 20,

c = 1.25 and ν = 0.5. It can be seen that the average detection delay for the different simulation

examples is below 30 observations.
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(θa, θb) (0.1,0.5) (0.1,1.0) (0.5,0.1) (1.0,0.1)
r 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Mean 15.30 20.00 26.10 13.98 19.64 24.96 10.94 14.48 20.14 8.30 12.16 18.34
SD 7.27 7.81 12.15 4.01 3.72 4.54 6.18 7.14 10.33 4.05 4.35 5.07
Min 1 2 3 6 11 15 0 0 5 2 4 8
Max 37 48 79 21 27 40 22 30 70 19 27 31

Table 2: Detection delay δ statistics for given values r and (θa, θb). Based on 50 Clayton copula simulations,
implemented with LCP algorithm parameters m0 = 20, c = 1.25 and ν = 0.5.

5 Data

The empirical analysis of this research considers two portfolios of six German stocks (obtained from

Yahoo Finance), as well as one portfolio consisting of six Dutch stocks. The first German portfolio

consists of stocks from automotive (Volkswagen and Daimler), insurance (Allianz and Münchener

Rückversicherungs), and chemical (Bayer and BASF) industries. The second German portfolio

consists of stocks from electrical (Siemens), energy (E.ON), metallurgical (ThyssenKrupp), airlines

(Lufthansa), pharmaceutical (Merck) and chemical (Henkel) industries. All German companies

mentioned are traded on the Frankfurt Stock Exchange.

The Dutch portfolio consists of stocks from semiconductors (ASML), brewers (Heineken), telecom-

munications (KPN), medical equipment (Philips), oil and gas (Royal Dutch Shell) and consumer

goods (Unilever). These stocks are all traded on the Amsterdam Stock Exchange.

These data are used to calculate empirical VaR, implementing the Clayton copula based on the

LCP procedure. The daily returns of German stock portfolios are observed in the period of January

1, 2000 to December 31, 2004, for a total of 1304 observations. The daily returns of the Dutch stock

portfolio is observed from January 1, 2006 to December 31, 2015, for a total of 2561 observations.

The selection of intervals as described in Section 3.5 will affect the effective range of observations.

This means in the case where m0 = 20 and c = 1.25 the first 250 observations will be used for

the estimation procedures. Applying RiskMetrics to the individual stock data yields residuals ε̂t,i.

Table 3 presents p-values from the Ljung-Box test for serial correlation, as well as p-values from the

ARCH test for heteroskedasticity effects in the residuals. The assets in j are in alphabetical order.
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German group 1 German group 2 Dutch group 1
j Ljung-Box ARCH Ljung-Box ARCH Ljung-Box ARCH

1 0.50 0.09 0.00 0.03 0.76 0.84
2 0.06 0.99 0.99 0.98 0.44 0.14
3 0.53 0.00 0.91 0.53 0.92 0.88
4 0.91 0.20 0.72 0.16 0.22 0.89
5 0.11 0.37 0.27 0.00 0.43 0.02
6 0.98 0.53 0.86 0.00 0.00 0.00

Table 3: Reported p-values of serial correlation and heteroskedasticity tests on residuals ε̂t,j, for asset j in
alphabetical order.

6 Results

In this section the data described in Section 5 is analysed. There are three methods that are used to

estimate VaR for the portfolios. Backtesting is used in order to formally compare the performances

of the three estimation procedures:

• Apply a RiskMetrics specification to the residuals of the portfolio log returns Rt;

• Implement moving window estimation of the dependence parameter of the Clayton copula

and Gaussian copula. A fixed moving window of 250 observations is used in this setting;

• Specifying an LCP procedure in order to estimate the time-varying Clayton dependence pa-

rameter based on the assumption of locally homogeneous dependence between assets.

6.1 LCP estimations

First the results of the LCP estimation are presented. Figure 4 shows the time-varying dependence

parameter θ̂t for German portfolio 1, German portfolio 2 and Dutch portfolio respectively. The

parameter is estimated with m0 = 20, c = 1.25 and ρ = 0.5 for each procedure. It can be seen

that the dependence parameter is often estimated higher for the first German portfolio than for the

second. This can be attributed to the fact that the first German portfolio consists of stocks from

three industries, whereas the second is more diversified with six industries.

When looking at the time-varying dependence in the Dutch portfolio, as seen in Figure 4, the

level is of about the same level as the second German portfolio. The start of the Financial Crisis at

the end of 2008 is also clearly visible, with an extended period of high dependence. It is interesting
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Figure 4: Clayton copula dependence parameter θ̂t of German group 1 (top), German group 2 (middle) and
Dutch group (bottom) estimated with the LCP algorithm.
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to note that by the end of 2011 the considered Dutch stocks exhibited even higher dependence. After

that period dependency is low, with an increasing time-varying dependence parameter in 2015.

6.2 VaR results

Figure 5 present the VaR estimation for the different portfolios. Each figure shows four different

VaR based on the different estimation techniques. It can be seen from the figures that the moving

window VaR (in green) is less sensitive than the other two estimation techniques. This can be due

to the fact that the moving window is 250 observations long, thus having a lagged effect in the

portfolio returns. It can also be observed that after periods of high volatility in the returns the VaR

based on LCP (in blue) is lagging after the VaR from moving windows and RiskMetrics. Otherwise

the VaR seems to be similar across the different approaches. The next section will compare the

obtained VaR in terms of exceedance ratios.
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Figure 5: Value-at-Risk calculated with LCP (blue), RiskMetrics (red) and moving window (Clayton green,
Gaussian orange) at level α = 0.05. Top figure German group 1, middle figure German group 2, bottom figure
Dutch group. Black dots indicate the log returns for the equally weighted portfolio.
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6.3 Exceedance ratios

Table 4 presents the exceedance ratios for the equally weighted portfolio w∗ and portfolio with

random uniformly distributed weights w1, for German portfolios 1 and 2 and the Dutch portfolio.

It also reports average exceedanceAw and standard errorsDw for the different estimation techniques.

Considering group 1 at confidence level α = 5.00, it can be seen that the copula methods (LCP,

moving windows) perform better than RiskMetrics, both in terms of average exceedance and its

errors. LCP has the lowest average exceedance for about the same error. At confidence level

α = 1.00 in group 1, it can be seen that the copula methods overestimate the Value-at-Risk in this

case. However, from an investor’s point of view, it means that the considered confidence interval

is ensured. It also shows relatively low errors Dw for both LCP and moving windows based on

Clayton. This means in this case the Clayton copula is more consistent at estimating the VaR.
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Group 2 at confidence level α = 5.00 shows that moving windows based on the Clayton copula

perform best in terms of average exceedance and its standard error. The Gaussian estimation tech-

nique has higher absolute average exceedance than the Clayton copula methods, and RiskMetrics

performs worst. At confidence level α = 1.00, Gaussian estimation (moving windows) produces the

best VaR when looking at absolute average exceedance, next to Clayton VaR (LCP and moving

windows). However, the Clayton copula yields far lower errors, again pointing at more consistent

estimations of VaR.

When looking at the final group at confidence level α = 5.00, it can be seen that the moving

windows estimation technique based on the Gaussian copula performs best. It shows very low aver-

age exceedance for about the same errors across estimation techniques. However, when considering

a confidence level α = 1.00, it can be seen that the Clayton VaR produces lowest (absolute) average

exceedance and lowest errors. In this case RiskMetrics also supplies least consistent VaR with high

underestimation.

Estimation α = 5.00 α = 1.00
Portfolio technique α̂w∗ α̂w1 Aw Dw α̂w∗ α̂w1 Aw Dw

LCP 5.75 6.23 0.138 0.071 0.48 0.57 -0.486 0.075
Group 1 M.W. (Clayton) 5.65 5.94 0.173 0.076 0.38 0.57 -0.597 0.083

M.W. (Gaussian) 5.75 5.17 0.190 0.082 0.86 1.15 -0.083 0.176
RiskMetrics 6.32 6.51 0.292 0.066 1.44 1.25 0.511 0.269

LCP 4.50 5.75 -0.041 0.139 0.57 0.67 -0.390 0.107
Group 2 M.W. (Clayton) 4.98 5.17 -0.017 0.137 0.57 0.38 -0.496 0.058

M.W. (Gaussian) 5.36 4.69 0.090 0.139 1.15 1.34 0.186 0.242
RiskMetrics 5.75 5.27 0.162 0.152 1.72 1.92 0.774 0.359

LCP 4.65 5.17 -0.020 0.081 0.87 0.78 -0.125 0.133
Dutch group M.W. (Clayton) 4.82 5.35 0.029 0.092 0.87 0.91 -0.104 0.099

M.W. (Gaussian) 4.74 5.08 -0.002 0.082 1.22 1.17 0.260 0.163
RiskMetrics 5.95 5.78 0.234 0.091 2.04 2.30 1.269 0.189

Table 4: Exceedance ratios and respective errors of different estimation techniques on German group 1, 2
and Dutch portfolio group, based on 1000 uniformly distributed random portfolios. M.W. moving windows.
Performed with confidence level α = 5.00 and α = 1.00.

These observations based on average exceedance and errors show that RiskMetrics produces

the least reliable VaR compared to the copula methods. VaR based on Gaussian moving windows

sometimes yields average exceedances, but in each case showing high errors. Clayton copula es-

timation techniques have the lowest standard error (one exception) of all instances. This means

17



that Clayton copula methods capture the underlying information available in the stock returns to

a higher degree, thus pointing at dependence dynamics in the lower tail.

The difference between exceedance of LCP VaR and the Clayton moving windows VaR is less

evident. It can be seen that the average exceedance and its respective standard errors are about the

same for the two estimation methods, which also has been reported in Giacomini et al. (2009). The

fixed LCP parameters could play a role in this regard, as they may have a considerable influence

on the selection of estimation intervals and their estimators. Nevertheless has LCP the advantage

over moving windows in terms of adaptive estimation, which does not impose restrictions on the

dynamics of the dependence parameter.

7 Conclusion

The main research question of this paper asked how well time-varying copula models perform. The

benchmark that was used to compare estimates was RiskMetrics. Value-at-Risk and backtesting

were assessed in order to formally compare performances. Both Clayton and Gaussian copulas are

used in this paper to estimate time-varying (asymmetric) dependence between assets. One advan-

tage of the Clayton copula is that it does not impose any restrictions on the marginal distributions

of the data. RiskMetrics does require multivariate normal distributions.

Copula estimation was implemented in a static and dynamic framework. The static framework

considered a moving window of 250 observations. The dynamic framework made use of a technique

called the Local Change Point procedure. This procedure assumes a locally homogeneous depen-

dence parameter, which is estimated by comparing likelihoods of given intervals. It has an extra

advantage over moving windows of not specifying the dependence dynamics. Based on backtesting,

the copula methods (LCP, Gaussian and Clayton copula moving windows) performed better than

RiskMetrics: average exceedance and its errors from the copula methods were reported to be smaller

than those from RiskMetrics. The Gaussian copula sometimes produced similar results compared

to the Clayton copula. However, these results also coincided with higher variability, pointing at a

less consistent VaR. VaR based on LCP did not perform notably better than the VaR based on

Clayton moving windows, which could depend on the specification of LCP parameters.

These results can be due to the fact that the RiskMetrics nor Gaussian copula techniques fully

capture the underlying dependence dynamics. It has been proven that stock returns exhibit higher
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dependence in market contractions, see for example Longin and Solnik (2001); the specification of

the Clayton copula makes it possible to capture these non-normal dynamics. It follows that the

results from this paper support the findings from e.g. Longin and Solnik (2001) and Ang and Chen

(2002). The implication is that (time-varying) copula models should also be considered in financial

decision making.

One interesting subject for further research is the examination of different copula models. The

Clayton copula model only allows for lower tail dependency. However, there exists multiple families

of copulas that allow for different magnitudes of both lower and upper tail dependency. Moreover,

this research considered given parameters for the LCP procedure, which might impede copula VaR

performance in different time frames. Further investigation of copulas and LCP parameters in a

financial framework could result in a fruitful continuation of research on this topic.
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