
A Tabu search approach to the mobile facility location problem

Supervisor Lisanne van Rijn

Second assessor Twan Dollevoet

Vivian Yeung (454989)

Bachelor Thesis Econometrie en Operationele Research

July 5, 2020

Abstract

Facility location problems appear extensively in the academic literature in different forms.

One specific problem is the mobile facility location problem. Previous work on the mobile

facility location problem has been conducted by Halper, Raghavan, and Sahin (2015). They

define local search heuristics to obtain high quality solutions to the problem in reasonable

time. This paper builds upon these local search heuristics. We use Tabu search procedures to

improve the local search heuristics. Using a simple Tabu search we find small improvements

in the optimality gaps compared to their local search heuristic counterparts defined by Halper

et al. (2015).

ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

The views stated in this thesis are those of the author and not necessarily those of the supervisor,

second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

1

Contents

1 Introduction 5

2 Problem description 6

3 Literature review 7

4 Exact solution approaches 8

4.1 Integer problem formulation 1 . 8

4.2 Integer problem formulation 2 . 9

4.3 Linear relaxations for a lower bound . 10

5 Local search heuristic solution approaches 10

5.1 Decomposition of the MFLP . 10

5.2 n-Swap local search heuristic . 11

5.3 n-OptSwap local search heuristic . 13

5.4 n-SmartSwap local search heuristic . 14

6 Tabu search solution approaches 15

6.1 Two simple Tabu searches . 15

6.1.1 Parameter testing . 16

6.2 Diversification strategies . 16

6.2.1 Restart diversification . 17

6.2.2 Continuous diversification . 17

7 Computational Results 18

7.1 Test instances . 18

7.2 Exact solution approaches . 19

7.3 Heuristic solution approaches . 19

7.4 Tabu search solution approaches . 21

7.4.1 Parameter settings . 21

7.4.2 Simple TS solution approaches . 21

7.4.3 TS with diversification solution approaches 23

8 Conclusion 24

8.1 Further research . 25

Appendix A Algorithm details 28

A.1 Local search heuristics . 28

2

A.2 Tabu search . 30

Appendix B Computational results per instance 31

B.1 Test instances analysis . 31

B.2 Exact solution approaches . 32

B.3 Heuristic solution approaches . 34

B.4 Tabu search solution approaches . 35

Appendix C Code description 39

3

List of Figures

1 Example of a swap for the 2-Swap heuristic . 12

2 Example of a swap for the 2-OptSwap heuristic . 13

3 Example of a swap for the 2-SmartSwap heuristic 14

List of Tables

1 Statistics of pmed data set . 19

2 Statistics on the objective and running times (sec.) of IP1, IP2 for the instances

1− 35 and 37− 40 . 19

3 Statistics on the gap (%) and running times (sec.) of LP2 19

4 Statistics on the optimality gap (%) and running times (sec.) of the local search

heuristics and IP2 . 20

5 Statistics on the number of iterations and average running time (sec.) per iteration

of the heuristics . 21

6 Maximum number of non-improving iterations r and tabu list size l for simple TS 21

7 Statistics on the optimality gap (%) and running times (sec.) of the local search

heuristics and IP2 for the even instances . 22

8 Statistics on the optimality gap (%) and running times (sec.) of simple TS1 and

simple TS2 heuristics for the even instances . 22

8 Statistics on the optimality gap (%) and running times (sec.) of simple TS1 and

simple TS2 heuristics for the even instances, continued. 23

9 Statistics on the optimality gap (%) and running times (sec.) of TS1 and TS2

heuristics with the restart diversification method for the even instances 23

10 Statistics on the optimality gap (%) and running times (sec.) of TS1 and TS2

heuristics with the continuous diversification method for the even instances 24

B1 Statistics per instance of the pmed data set . 31

B2 Objective values or gap (%) and running time (sec.) of all instances for IP1, IP2

and LP2 . 32

B3 Gap (%) and running time (sec.) of all instances for the local search heuristics . . 34

B4 Gap (%) and running time (sec.) of even instances for simple TS1 and TS2 35

B5 Gap (%) and running time (sec.) of even instances for TS1 and TS2 with the restart

diversification method . 36

B6 Gap (%) and running time (sec.) of even instances for TS1 and TS2 with the

continuous diversification method . 37

C7 Codes descriptions of the classes in the Java packages 39

C7 Codes descriptions of the classes in the Java packages, continued. 40

4

1 Introduction

The academic literature covers multiple different variants of the facility location problem. One

variant is the mobile facility location problem (MFLP), first introduced by Demaine et al. (2009).

This problem holds facilities and clients at initial locations and assigns these to destination loca-

tions in a way that every client is assigned to a location that at least one facility is also assigned

to. This is done while minimising the total weighted distance of the facilities and clients to their

destination locations. Friggstad and Salavatipour (2011) paint a scenario in which the MFLP

comes into play. In this scenario manufacturing plants fabricate products that must be delivered

to customers with minimal cost. This can be accomplished by sending the products directly from

manufacturing plants to customers. A potentially less costly alternative would be using distri-

bution centers that collect products from a plant for multiple customers, and send them to the

individual customers. These distribution centers could be placed far away from the manufacturing

plants and closer to the clients if this is desirable. This way the shipping cost can be reduced as

the larger shipment from the manufacturing plants to the distribution centers can be less costly

and if the distribution centers are located closer to the customers, these smaller shipments are

less costly because of the smaller distance. Another example would be disaster relief logistics, as

described by Halper et al. (2015). After a disaster has taken place, supplies need to be send to

aid stations. This can be done efficiently through distribution points. These distribution points

for warehouses need to be determined and would function as the facilities of the MFLP. Supplies

will then be send to aid stations, which function as the clients. It is therefore of interest to find

an efficient solution method to the MFLP that can be used in practice.

Some work on the MFLP has already been carried out. In particular, Halper et al. (2015) build

on the work by Friggstad and Salavatipour (2011), discussing two integer problems (IPs) and local

search heuristics. This paper extends the work of Halper et al. (2015). We test the state-of-the-art

meta-heuristic Tabu search (TS) on the local search heuristics to try and avoid getting caught

in local optima. Several different TS procedures are defined, two simple TS heuristics and two

additional methods that further search the solution space. Through this we answer the research

question: “What is the effect of a Tabu search procedure on the results of local search heuristics

for the MFLP?”. We find that one of the IPs has a shorter average running time compared to

the other IP. For the local search heuristics, we find high quality solutions within a reasonable

running time. Applying the TS procedures, we see that the simple TS heuristics produce smaller

optimality gaps compared to the local search heuristics of Halper et al. (2015), but it does not

guarantee the optimal solution every time. Using the two additional methods, we generally do

not find improvements in the TS heuristics.

The remainder of this paper is structured as follows. We first discuss the MFLP in more detail

in Section 2 and discuss the relevant literature in Section 3. Section 4, 5 and 6 discuss the exact

models, local search heuristics of Halper et al. (2015) and TS respectively. Section 7 provides the

5

results and in Section 8 we give a conclusion with suggestions for further research.

2 Problem description

This section gives a mathematical formulation to the MFLP. We use the framework introduced

by Halper et al. (2015) to formulate the problem. This formulation sets the MFLP on a graph

G(F ∪ V ∪ C,A), with F , C and V denoting the set of facility, client and destination location

vertices respectively, and A the edges between facilities and clients to destination locations. If a

facility j ∈ F or a client i ∈ C also functions as a destination location, a new (identical) vertex

is created to denote a destination location v ∈ V so that F , C and V are three disjoint sets. It

holds that the initial location of a facility is also a possible destination location, as it allows for

a facility to not travel. Facilities and clients are then reassigned to a location, while minimising

the total weighted travel cost, in other words the sum of the travel cost of the facilities to their

location destinations and the travel cost of the demand of supplies of the clients from a facility

on their destination location to the client. It is required that the destination location of a client

also needs to be a destination location for at least one facility.

To calculate the total weighted distance we use the following parameters:

• dj,v: the distance between facility j ∈ F and destination location v ∈ V

• di,v: the distance between client i ∈ C and destination location v ∈ V

• ui: the per unit distance cost of satisfying the demand of client i ∈ C

• wj : the per unit distance cost of relocating mobile facility j ∈ F

The weights ui and wj are positive, as the travel costs are positive. The total travel cost for one

client (or facility) is subsequently calculated by multiplying the distance between the initial and

destination location with the client (or facility) weight. Note that in this formulation multiple

clients at a vertex can be seen as one aggregated client with a weight equal to the sum of their

individual weights. This is because multiple clients at the same vertex will have the same destina-

tion location. If this was not the case, the total demand satisfaction cost of client i ∈ C, that has

a destination location that lays further from the client vertex compared to another client î ∈ C,

can be reduced by switching the destination location of i to the closer destination location of î.

This results in the two clients having the same destination location v ∈ V with total demand

satisfaction cost di,vui + dî,vuî, and since the two clients are at the same vertex (dî,v = di,v) this

results in the total demand satisfaction cost di,v(uî + ui). For facilities it holds that multiple

facilities are not located at the same initial vertex. If multiple facilities are located at a single

vertex, a facility vertex can be created for each separate facility with their respective costs and

the same distances di,v to vertex v for all v ∈ V as the original vertex.

A feasible solution to this problem would be a selection of destination locations vj ∈ V for

each facility j ∈ F and a destination location vi ∈ V for a client i ∈ C so that vi = vj for ∀i

6

and ∃j, such that the constraint of a client being assigned to a location with an open facility is

satisfied.

3 Literature review

Demaine et al. (2009) introduce the MFLP among movement problems and uses pebbles to illus-

trate these movements. For the MFLP these pebbles have an initial configuration and are moved

to a target configuration, which satisfies a certain property. This can be done for any particular

objective function. The pebbles represent the facilities and clients. The paper also provides a

2-approximation algorithm for the variant of the MFLP that minimises the maximum movement

of a facility or client. Friggstad and Salavatipour (2011) give an IP formulation for the MFLP and

present an 8-approximation algorithm through rounding off a solution of a LP relaxation. Halper

et al. (2015) build upon the IP formulation of Friggstad and Salavatipour (2011) and present a new

IP formulation that uses less memory and is thus applicable to larger instances. They also present

multiple local search heuristics. In particular, they show that the MFLP can be decomposed into

assigning the facilities to destination locations and the clients to destination locations separately,

resulting in two subproblems. Using this key insight they design three local search heuristics.

The first variant of the local search heuristic defines a neighbourhood as swapping destination

locations of certain facilities (and minimising the client assignment cost). The second one swaps

destination locations and minimises both the facility and client assignment cost. The last one also

swaps destination locations, but only reassigns the facilities for which their previous destination

locations are swapped out. They find that the last local search heuristic is most efficient, as it

results in small optimality gaps, while still having a relatively short running time. Ahmadian,

Friggstad, and Swamy (2013) show that the first heuristic, which swaps the destination locations

of facilities, has an unbounded approximation ratio, because a constant number of facilities are

swapped in a neighbourhood, and the second heuristic, which swaps destination locations and op-

timises the facility assignment, has an asymptotic approximation ratio of 3, when the maximum

number of destination locations swapped is large.

Local search heuristics always find a local minimum to the problem, but it is not guaran-

teed that the global minimum (and thus the optimal solution) is found. To escape local optima

and to perform a robust search of the solution space, meta-heuristics can be used (Gendreau &

Potvin, 2010). There are many meta-heuristics that can be used in this regard, e.g. Simulated

annealing (Kirkpatrick, Gelatt, & Vecchi, 1983), Guided local search (Voudouris & Tsang, 2003)

and Late acceptance hill climbing (Burke & Bykov, 2008). One state-of-the-art meta-heuristic

is Tabu search, introduced by Glover and Laguna (1998). This heuristic allows acceptance of

non-improving moves to get out of a local optimum and uses memories of past visited solutions

to prevent cycling back to this local optimum. Glover and Samorani (2019) state that there are

three fundamental components for all of these global search meta-heuristics: intensification, di-

7

versification and learning. Glover and Laguna (1998) discuss these components. Intensification

entails searching a particular promising part of the search space more thoroughly. Diversification

makes sure a large enough part of the solution space is searched. This is done through forcing the

heuristic to search unexplored areas. Learning is the way the heuristic uses the information that

becomes available during the search for further progress.

There are also related problems to the MFLP found in the literature. Raghavan, Sahin, and

Salman (2019) define the capacitated mobile facility problem, which is similar to the MFLP, but

also has to keep in mind that the facilities are capacitated and therefore only a limited number

of clients can be served per facility. The mobile facility routing problem by Halper and Raghavan

(2011) is set on a time horizon on which the demand of clients change over time. Therefore the

facilities can change locations over time to satisfy the demand of the clients.

4 Exact solution approaches

In this section we describe two IP formulations from the literature, using the formulation described

in Section 2. These IPs are used to obtain the optimal solution of a MFLP. For both IPs we use

a time limit of five hours during the computation.

4.1 Integer problem formulation 1

We discuss integer problem formulation 1 (IP1) as introduced by Friggstad and Salavatipour

(2011). IP1 uses two decision variables:

• xi,v ∈ B: equal to 1 if client i ∈ C has destination location v ∈ V , 0 otherwise

• yj,v ∈ B: equal to 1 if facility j ∈ F has destination location v ∈ V , 0 otherwise

This gives us the following IP formulation:

min
∑
j∈F

∑
v∈V

wjdj,vyj,v +
∑
i∈C

∑
v∈V

uidi,vxi,v (1)

∑
v∈V

xi,v = 1 ∀i ∈ C (2)

∑
v∈V

yj,v = 1 ∀j ∈ F (3)

∑
j∈F

yj,v ≥ xi,v ∀i ∈ C,∀v ∈ V (4)

yj,v, xi,v ∈ B ∀i ∈ C,∀j ∈ F,∀v ∈ V (5)

Objective function (1) minimises the total weighted distance travelled by taking the sum of all the

weighted distances of the facilities and the clients to the destination locations they are assigned

to. Constraints (2) make sure all clients i ∈ C are assigned to exactly one destination location

and constraints (3) do the same for all facilities j ∈ F . Lastly constraints (4) ensure that a client

8

i ∈ C is only allowed to be assigned to a destination location v ∈ V if at least one facility is

assigned to v. Halper et al. (2015) note that in this formulation the variable xi,v can be relaxed

to a continuous variable (xi,v ∈ [0, 1]), which reduces the running time.

4.2 Integer problem formulation 2

The integer problem formulation 2 (IP2), as introduced by Halper et al. (2015), will now be

discussed. First note that no two facilities will have the same destination location. If multiple

facilities would have the same destination location v ∈ V , the solution could be improved by

changing the destination location of the facilities that are the furthest away equal to the destination

location v̂ ∈ V that is a duplicate of their own facility vertex. This procedure still ensures that the

destination location v has an open facility. Besides this, it was discussed in Section 2 that each

facility vertex has one facility, and we thus know that the destination location v̂ is a destination

location to only one facility. If this is not the case, the same procedure can be applied until it does

hold. If it is the case that each facility will have their own destination location, then we know

that a total of |F | vertices will have an open facility located on it. Using this knowledge, Halper

and Raghavan (2011) formulate IP2. IP2 is almost identical to IP1. We first introduce an extra

decision variable next to xi,v and yj,v, namely zv ∈ B, which is equal to 1 if destination location

v ∈ V is the destination location of some facility. Using this decision variable we formulate the

following IP formulation.

min
∑
j∈F

∑
v∈V

wjdj,vyj,v +
∑
i∈C

∑
v∈V

uidi,vxi,v (6)

∑
v∈V

xi,v = 1 ∀i ∈ C (7)

∑
v∈V

yj,v = 1 ∀j ∈ F (8)

∑
j∈F

yj,v − zv = 0 ∀v ∈ V (9)

xi,v − zv ≤ 0 ∀i ∈ C,∀v ∈ V (10)

yj,v, xi,v, zi,v ∈ B ∀i ∈ C,∀j ∈ F,∀v ∈ V (11)

We see that objective function (6) and constraints (7) and (8) are identical to IP1. Next to this we

replace constraints (4) with the constraints (9) and (10). Constraints (9) ensure that if a facility

j ∈ F is assigned to destination location v ∈ V (yj,v = 1), there is a facility open at v (zv = 1).

We know that
∑
j∈F

yj,v ≤ 1, since a destination location holds up to one facility. Constraints (10)

make sure that a client i ∈ C can only be assigned to a destination location v ∈ V (xi,v = 1), if

a facility is open at v (zv = 1). Halper et al. (2015) show that the variables xi,v and yj,v can be

relaxed to continuous variables (xi,v, yj,v ∈ [0, 1]) to shorten the running time.

9

4.3 Linear relaxations for a lower bound

To construct a lower bound as a benchmark for the MFLP, we use a linear relaxation, similarly

to Halper et al. (2015). Halper et al. (2015) show that the linear relaxation (LP) of IP1 and IP2

are identical to one another. It is therefore only necessary to compute one of them. Since the LP

serves as a benchmark, the running time is not relevant and thus the results of LP1 and LP2 do

not differ in quality for this paper. Therefore only LP2 will be executed.

5 Local search heuristic solution approaches

Halper et al. (2015) implement three local search heuristics for the MFLP which we evaluate.

These local search heuristics all decompose the MFLP into two separate subproblems, the facility

assignment subproblem and client assignment subproblem. Therefore we first explain this decom-

position of the problem. After this the three local search heuristics are introduced. For all the

local search heuristics, we use a time limit of five hours and use the best found solution within

those five hours if the time limit is reached.

5.1 Decomposition of the MFLP

Section 4.2 explains that a total of |F | destination locations have an open facility. Looking at

IP2, if Z is the set of |F | destination locations ṽ ∈ Z with an open facility f ∈ F and Z is known,

we know that zṽ = 1 for all ṽ ∈ Z and zv̂ = 0 for all v̂ ∈ V \ Z. Setting these values for zv

for all v ∈ V , we obtain an IP that can be decomposed into two separate subproblems, because

the decision variables xi,v and yj,v are both only dependent upon zv. These two subproblems are

named the facility assignment subproblem and the client assignment subproblem and assign each

facility and each client to a distinct destination location in Z respectively. This is done while

minimising the weighted travelled distance of the two subproblems.

The facility assignment subproblem entails assigning facilities j ∈ F to destination locations

ṽ ∈ Z, given Z and |Z| = |F |. We therefore know that yj,v̂ = 0 for j ∈ F and v̂ ∈ V \ Z in

IP2, because it is given that the vertices v̂ do not have an open facility assigned to them. This

results in constraints (8) simplifying to constraints (13) and, together with setting zṽ = 1 for

ṽ ∈ Z, this results in constraints (9) simplifying to constraints (14), which gives us the following

IP formulation for the facility assignment subproblem.

min FA(Z) =
∑
j∈F

∑
ṽ∈Z

wjdj,ṽyj,ṽ (12)

∑
ṽ∈Z

yj,ṽ = 1 ∀j ∈ F (13)

∑
j∈F

yj,ṽ = 1 ∀ṽ ∈ Z (14)

yj,ṽ ≥ 0 ∀j ∈ F,∀ṽ ∈ Z (15)

10

This IP is identical to the formulation of a least cost weighted bipartite matching problem, which

matches facilities with destination locations. We see that the constraint matrix is unimodular,

since constraints (13) assign one destination location per facility, and constraints (14) assigns one

facility per destination location. Consequently, we can relax the integrality constraints of yj,ṽ

and the facility assignment subproblem can be solved in polynomial time using, for example, the

Hungarian algorithm by Kuhn (1955).

The client assignment subproblem assigns each client i ∈ C to a destination location ṽ ∈ Z,

while minimising their total weighted travelled distance. Since we know that zv̂ = 0 for v̂ ∈ V \Z

and zṽ = 1 for ṽ ∈ Z, if we set xi,v̂ = 0 for i ∈ C, we can disregard constraints (10), which gives

us the following IP formulation for the client assignment subproblem.

min CA(Z) =
∑
i∈C

∑
ṽ∈Z

uidi,ṽxi,ṽ (16)

∑
ṽ∈Z

xi,ṽ = 1 ∀i ∈ C (17)

xi,ṽ ≥ 0 ∀i ∈ C,∀ṽ ∈ Z (18)

Again, the integrality constraints of xi,ṽ is relaxed, because the constraint matrix is unimodular. It

can also be seen that the client assignment subproblem is essentially assigning individual clients to

destination locations independently from each other. We can therefore solve the client assignment

subproblem by selecting, for each client separately, the closest destination location in Z.

This gives us two subproblems of the MFLP that can be solved optimally independently from

each other, given a set Z of destination locations with open facilities. Using this insight Halper

et al. (2015) define three local search heuristics that searches neighborhoods and minimises the

total weighted travelled distance, namely FA(Z) + CA(Z).

5.2 n-Swap local search heuristic

The n-Swap heuristic of Halper et al. (2015) is based on an operation defined by Friggstad and

Salavatipour (2011). The operation selects k ≤ n facilities and unoccupied destination locations

and changes the destination location of each of the selected facilities to the unoccupied desti-

nation locations in order. There are two versions of the heuristic, best improvement (BI) and

first improvement (FI). n-SwapBI goes through the whole neighbourhood and selects the best

improved solution (largest improvement) and n-SwapFI selects the first improved solution. The

n-Swap heuristic is described in Algorithm 1. We see that for every step we select a neighbour

through first selecting a set of facilities j1, ..., jk, then selecting a set of unoccupied destination

locations v1, v2, v3, ..., vk and afterwards selecting an order of the selected destination locations,

e.g. v2, v1, v3, ..., vk. The neighbour is composed by swapping the current destination location of

j1 with v2, the current destination location of j2 with v1 etc., and solving the client assignment

problem optimally to obtain the objective value of this neighbour.

11

Algorithm 1: The n-Swap local search heuristic

Input : di,v, dj,v, wj and ui for all i ∈ C, j ∈ F and v ∈ V
Output: A feasible solution with a local minimum value of the total weighted travelled distance

1 Initialise the current objective value curr obj = FA(Z) + CA(Z), current facility assignment

curr fac and the occupied destination locations Z. And if performing BI, initialise

best obj = curr obj, best fac = curr fac, Zbest = Z. Go to step 2.

2 Select k facilities j1, ..., jk for k ≤ n. If all combinations of k facilities for all k ≤ n are searched,

go to Step 8 if performing FI and Step 9 if performing BI. If not all combinations of k facilities

for all k ≤ n are searched, go to Step 3.

3 Select k unoccupied destination locations from V \ Z. If all combinations of k unoccupied

destination locations searched go to Step 2, otherwise go to Step 4.

4 Select an order of the selected unoccupied destinations v1, ..., vk. If all permutations of the k

unoccupied destination locations are searched go to Step 3, otherwise go to Step 5.

5 Set Zfound = Z and remove all destination locations of jl for all l = 1, ..., k from Zfound and add

vl for all l = 1, ..., k. Set found fac = curr fac and swap the destination location of jl to vl for

l = 1, ..k in found fac. Set found obj = FA(Zfound) + CA(Zfound). If performing FI, go to

step 6, if performing BI go to step 7.

6 If found obj < curr obj, go to Step 8, otherwise go to Step 4.

7 If found obj < best obj set best obj = found obj, best fac = found fac and Zbest = Zfound,

otherwise go to Step 4.

8 If found obj < curr obj set curr obj = found obj, curr fac = found fac and Z = Zfound and go

to Step 2, otherwise STOP and return curr obj.

9 If best obj < curr obj set curr obj = best obj, curr fac = best fac and Z = Zbest and go to Step

2, otherwise STOP and return curr obj.

An example is given for three facilities and k = 2 for 2-Swap in Figure 1. We select for the

solution on the left the facilities j1 and j2 and the unoccupied destination locations v1 and v2. The

selected order of the destination locations is v2, v1, which results in the relocation of the facilities

to the destination locations shown on the right of Figure 1.

Figure 1: Example of a swap for the 2-Swap heuristic

For this paper only 1-Swap is implemented. We use the initial vertex of a facility as their

destination location as the intial solution, so that no facility travels in this solution. The stopping

criterion described in Algorithm 1, which stops if a local minimum is found, is adapted from

Ahmadian et al. (2013). The client assignment subproblem is solved as described in Section 5.1.

Observe that when solving the client assignment subproblem during the search, if a client was

12

previously assigned to a location that is still part of the set of occupied destination locations,

it is sufficient to only look for a potential improvement for the client in the set of newly added

occupied destination locations.

It should be noted that for the implementation of n-SwapFI the order of searching the neigh-

bourhood influences the results. For our paper the order is obtained through recursively selecting

subsets of facilities, starting with k = 1 and ending at k = n, and for every selected subset of

unoccupied destination locations, recursively selecting subsets of k unoccupied destination loca-

tions. The subsets are recursively selected starting from the first facility or unoccupied destination

location in their respective sets. The order of the k unoccupied destination locations is again re-

cursively chosen through swapping a destination location with all possible positions it can take,

starting with the last destination location in the subset.

5.3 n-OptSwap local search heuristic

n-OptSwap of Halper et al. (2015) defines a neighbour as a swap between k occupied destination

vertices and k unoccupied destination vertices. We therefore do not search the permutations

in Step 4 of the n-Swap heuristic in Algorithm 1, but instead we solve the assignment of the

facilities through the facility assignment subproblem. This is done through the implementation

of the Hungarian algorithm with a O(|X|3) complexity, introduced by Edmonds and Karp (1972)

and adapted by Halper et al. (2015). Therefore a neighbour can be characterised with the set of

occupied destination locations only. A swap between two neighbours is shown in Figure 2. We

see that the occupied destination locations are initially vertex 3, 4 and 5. The swap is between

the locations 3 and 4, and 1 and 2, which results in the solution on the right.

Figure 2: Example of a swap for the 2-OptSwap heuristic

The Hungarian algorithm solves, given an edge weighted graph G(F ∪ Z,E), the least cost

weighted bipartite matching problem. In this algorithm we label the facilities lj for all j ∈ F and

the unoccupied vertices lv for all v ∈ Z. For a feasible labeling it holds that lj + lv ≤ dj,v. We

also define the tight graph GL(V,E) as the graph containing all the tight edges given a labeling

L, namely for which lj + lv = dj,v. This algorithm essentially tries to find a matching on a graph

with only tight edges, which gives us a least cost matching, because given the definition of the

labels
∑
j∈F

lj +
∑
v∈Z

lv is a lower bound on the cost of the perfect matching. Therefore if the total

sum of the labeling is equal to the cost (
∑
j∈F

∑
v∈Z

dj,v), we obtain a minimum cost perfect matching.

A pseudocode for the Hungarian algorithm can be found in Appendix A, Algorithm A1. Halper

et al. (2015) also take three different steps to further shorten the running time of the Hungarian

algorithm (and n-OptSwap), which we elaborate more on in Appendix A.1.

13

We again implement both n-OptSwapBI and n-OptSwapFI. The order in which the neigh-

bourhood is searched is identical to the order of the selected subset of facilities and unoccupied

vertices for the n-SwapFI heuristic. The initial solution of n-OptSwap and the stopping criterion

is identical to that of n-Swap. Note that the initial solution is identical to selecting the facility

vertices as the occupied vertices and solving the facility assignment subproblem, since holding

the facilities on their initial facility vertices, gives a total weighted travelled distance of zero for

the subproblem. Therefore the Hungarian algorithm does not have to be applied on the initial

solution.

5.4 n-SmartSwap local search heuristic

n-SmartSwap of Halper et al. (2015) also swaps occupied destination vertices with unoccupied

destination vertices, but the facility assignment subproblem is not solved in its entirety. Only for

the facilities for which their assigned destination vertices are swapped, we perform the Hungarian

algorithm, discussed in Section 5.3, with the selected unoccupied destination vertices. Similarly

to n-OptSwap we reduce the running time using the steps described in Appendix A.1.

An example of a swap is given in Figure 3. We see that the occupied destination locations

3 and 4 get swapped with the unoccupied destination locations 1 and 2. Therefore facilities 1

and 2 do not have an assigned destination location anymore and the Hungarian algorithm will

be applied on the facilities 1 and 2 and destination locations 1 and 2, to obtain the minimum

matching between the facilities and destination locations.

Figure 3: Example of a swap for the 2-SmartSwap heuristic

We search for a solution in the neighbourhood until the first (FI) or best (BI) solution is

attained. After this solution is obtained, the facility assignment subproblem is solved in its

entirety for the facilities and occupied destination locations of the selected neighbour and the

objective function FA(Z) +CA(Z) is recalculated to form the final solution of one iteration. The

initial solution and the stopping criterion is identical to the ones used so far for the other local

search heuristics. Note that it is possible that the best solution of the neighbourhood does not

improve the current solution during the search of the neighbourhood, but only after solving the

facility assignment subproblem entirely it gives an improvement and consequently is still accepted.

Again, observe that the initial solution is identical to selecting the set of facility vertices as the

occupied destination locations and solving the facility assignment subproblem.

14

6 Tabu search solution approaches

This section uses Tabu search (TS) procedures to improve the local search heuristics of Halper

et al. (2015). TS, introduced by Glover and Laguna (1998), is a meta-heuristic that guides local

search heuristics to try and escape local optima. This is done through allowing non-improving

solutions. Cycling back to local optima is prevented by memories, which are called the tabu lists.

We refer to the implementation of TS for the three heuristics as n-SwapTS, n-OptSwapTS and

n-SmartSwapTS. Again a five hours time limit is used for all of the heuristics and the best found

solution in those five hours is used as the found solution if the time limit is reached. We first

introduce two variants of the simple TS. After this we suggest several ways to implement a more

thorough search of the solution space through two diversification techniques.

6.1 Two simple Tabu searches

For simple TS a few basic components are needed (Gendreau, 2003). First are the search space

and neighbourhood structure. We use the search space and neighbourhood structures of n-Swap,

n-OptSwap and n-SmartSwap introduced in Section 5. Secondly, tabus need to be determined.

Tabus are certain solutions or moves that are prohibited. We implement two different tabus,

which we call TS1 and TS2. For TS1 we consider solutions as a whole. We characterise these

solutions through the facility assignment for n-Swap and the set of occupied destination locations

for n-SmartSwap and n-OptSwap. These tabus are saved in tabu lists. The maximum size of

these lists are set in advance. This ensures that cycling back to solutions will be avoided and a

local optimum can be escaped. Gendreau (2003) state that besides cycling one of the properties

of the tabus is that it encourages diversification. This can be done through defining a stricter

tabu and prohibiting all solutions that have a component that is similar to a previous visited

solution. Therefore we define for TS2 the following tabus: for n-Swap we define a separate tabu

list for each facility, and regard each destination location that is previously swapped out for

the particular facility as tabu for that particular facility. For n-SmartSwap and n-OptSwap we

prohibit all previous destination locations that are swapped out from the occupied destination

location set. Sometimes the tabu restriction defined is too strong. This especially holds for TS2.

Therefore aspiration criteria are often used in TS. This is a criterion that, if it holds, a tabu

active solution can still be selected and visited. Gendreau (2003) state that the most frequent

implemented aspiration criterion is to allow for solutions that improve the best found solution so

far. We implement this same aspiration criterion.

Simple TS searches the whole neighbourhood of a current solution and finds the best solution

that is not tabu or satisfies the aspiration criterion, which will then be set as the new current

solution. We continue the search from this current solution even if it does not improve our best

found solution. If this solution does improve the best found solution, the solution is also saved as

15

the current best found solution. We evaluate the solutions through the total weighted travelled

distance of a neighbour, which we want to minimise. We initialise the heuristic similarly to the

local search heuristics described in Section 5. For TS1, we save the initial solution in the tabu list.

Since TS2 considers swapped destination locations, this is not needed and we start with an empty

tabu list. The stopping criteria we use for the heuristic is equal to the one used by Al-Sultan

and Al-Fawzan (1999) and also described by Gendreau (2003) as the most generally used in the

literature. We run the heuristic until the best found solution is not improved for a number of

iterations or all solutions in the neighbourhood are tabu and do not satisfy the aspiration criterion.

A more detailed description of the heuristic can be found in Appendix A, Algorithm A2.

6.1.1 Parameter testing

Two parameters need to be determined for these heuristics, the size of the tabu list and the

maximum number of non-improving iterations. The parameters are set through experimental

analysis. For the maximum number of non-improving iterations r it holds that the larger this

number is, the better the found solution is, but the longer the running time. Therefore a trade-off

between a high quality solution and a shorter running time has to be made. We only choose for

an increase of r, if the proportional increase of the running time is smaller than the proportional

decrease of the optimality gap in percentages. That is if RT1
RT2

< gap%2

gap%1
, we choose r2 over r1.

For the tabu list size l, it holds that we have to find a size that is large enough to avoid

cycling, but small enough so that it is not too strong and drives the search to a different part

of the solution space without searching the current part thoroughly. Al-Sultan and Al-Fawzan

(1999) elaborate that a small tabu list size focuses more on intensification and a large size more

on diversification. Therefore some intermediate values for the tabu list size must be found that

produces the smallest optimality gap. Burke and Bykov (2008) state that the increase of the

length of the tabu list always causes a higher computational cost per iteration, because more tabu

solutions need to be checked. This does not mean that the total running time will necessarily be

longer, because the number of iterations until termination could still differ.

We set the parameters of TS1 and TS2 independently from each other. This is because

according to Glover and Taillard (1993) the appropriate size for the tabu list is dependent on the

strength of the tabu restrictions. Lastly, the parameters for TS are set using half of the available

instances, so overfitting is avoided, as recommended by Gendreau (2003).

6.2 Diversification strategies

Gendreau (2003) states that one of the main problems of TS is that it tends to be too “lo-

cal”, and therefore only focuses on a small portion of the solution space. This could cause the

heuristic to miss the global optimum. Diversification methods try to avoid this, by forcing the

heuristic to explore previously unexplored areas. In addition, Gendreau (2003) also mentions that

16

intensification methods are not necessarily needed in TS. Therefore we decide to only focus on

diversification methods in this paper. We introduce two different diversification methods based

on the diversification methods mentioned by Gendreau (2003) as two of the most commonly used.

6.2.1 Restart diversification

A restart diversification method is proposed by Soriano and Gendreau (1996). The restart di-

versification method forces a not yet visited component into a current solution and proceeds the

search from this newly formulated solution. For our restart method, we formulate an entirely

new solution if possible. This is done through selecting |F | destination locations out of the set of

not yet visited locations V ∗ and setting the set of occupied locations Z equal to the set of these

selected locations. The selected destination locations v̂∗ ∈ V ∗, are selected based on proximity

to the clients. We choose the destination location with the smallest average distance to clients,

calculated with
1

|C|
∑
i∈C

di,v∗ for all destination location v∗ ∈ V ∗. For n-Swap we assign v̂∗ to

the closest (not yet assigned) facility to obtain a solution. For n-OptSwap and n-SmartSwap Z

gives an unique solution in the solution space and we assign the locations v̂∗ to the facilities using

the Hungarian algorithm, discussed in Section 5.3. If the number of not yet visited locations is

smaller than the number of facilities (|V ∗| < |F |), we assign for n-Swap, after assigning all selected

locations v̂∗, the not assigned facilities to the same destination location as the previous solution

and for n-OptSwap and n-SmartSwap we select out of the previous occupied locations set, the

locations with the smallest average distance to the facilities, calculated with
1

|F |
∑
j∈F

dj,v for all

destination locations v ∈ Z of the last visited solution.

We implement the restart diversification method after the simple TS is finished for the stopping

criteria defined in Section 6.1. After constructing a new solution we proceed back to the simple

TS (with the previous filled tabu list). This is done until all destination locations are visited at

least once. We update the set of not yet visited destination locations V ∗ after a solution is selected

from the neighbourhood and also each time a new solution is constructed. A detailed description

can be found in Appendix A.2, Algorithm A3. We use the same parameters for simple TS as

previously set. This is done similarly to Sarmady (2012), as he tests the diversification methods

independently from all other settings in his TS.

6.2.2 Continuous diversification

The continuous diversification method performs a more subtle diversification procedure, as it

does not restart from a whole new solution. Instead it modifies the function used to evaluate

the solution, so that it guides the heuristic to previously unexplored areas. This is done through

penalising the objective function if the occupied destination location that is swapped into the

solution had been previously present a number of times in a visited solution. We use objective

17

function (19) for this purpose, with numPresṽ being the number of times that ṽ has been present

in a visited solution and ṽ the currently swapped destination location. A logarithmic function is

used for the penalisation in this objective function. The log is used so that the added term does

not have a too large effect on the objective value, as discussed by Soriano and Gendreau (1996).

Similarly to the restart method, we use the previously set parameters for simple TS.

min
∑
j∈F

∑
v∈V

wjdj,vyj,v +
∑
i∈C

∑
v∈V

uidi,vxi,v + log(1 + numPresṽ) (19)

7 Computational Results

This section presents the results of the exact models, local search heuristics followed by the

TS approaches. All computational results are obtained with an Intel(R) Core(TM) i7-4700MQ

CPU @ 2.40GHz and 16GM RAM running 64-bit Windows 10. The programs are coded in

Java and compiled using Eclipse IDE 2018-12. A detailed description of the code can be found in

Appendix C. The IP and LP formulations are solved using IBM ILOG CPLEX 12.6. The Wilcoxon

signed-rank test by Wilcoxon (1992) is used to test whether the difference between the results are

significantly different, which is a non-parametric test to compare the mean of two samples. We

use a significance level of 0.05 throughout the analysis. We first introduce the test instances that

are used to evaluate the models and heuristics.

7.1 Test instances

The data that is used for the implementation of this paper is retrieved from Raghavan et al. (2019).

This data set contains identical instances to the 40 instances used by Halper et al. (2015), called

pmed instances. For the purpose of their paper, Raghavan et al. (2019) generate a total of five

extra instances. These are removed from the data set, so we end up with the 40 pmed instances

of Halper et al. (2015). Table 1 gives an overview of the the number of destination locations |V |,

facilities |F | and clients |C| per instance and the client weight ui over all the instances, as well as

the average client weight per instance. All location destinations are initial locations of a facility or

client. The facility weights are all equal to 1.0 for the instances. In Table B1 of Appendix B.1 the

number of destination locations, facilities, clients and average client weight per instance is given.

For TS we use the instances with an uneven number to set the parameters and the instances

with an even number are used to evaluate the heuristics. The alternated selection is chosen so

that we obtain a variety of instances that are representative of the whole pmed data set.

18

Table 1: Statistics of pmed data set

|V | |F | |C| ui Avg. ui

Min. 100 5 100 1.0 1.09

Max. 900 200 900 1.90 1.35

Avg. 460 46.13 460 1.22 1.21

7.2 Exact solution approaches

The results for the two IPs described in Section 4 show that IP2 has a shorter running time

on average compared to IP1. A summary of the results is provided in Table 2. Out of the 40

instances, instance 36 did not provide a solution for IP1 within five hours. Therefore we extract

this instance for the comparison of the models. We see that the average running time of IP2

is more than four times as short as the average running time of IP1. Table 3 gives the gap (in

percentages of the optimal value) between the LP2 objective value and the optimal value. It can

be seen that LP2 provides the optimal (integer) solution for some of the instances as the minimum

gap found is 0.00%. This is the case for a total of 19 out of 40 instances. The largest found gap

is 1.19% with an average of 0.21%. All of these results largely agree with the results of Halper

et al. (2015), except for the overall longer running times, likely caused by the use of a different

hardware and software. Appendix B.2, Table B2 shows the objective values, running times and

gaps of IP1, IP2 and LP2 for each instance. Since the results show that IP2 has a shorter average

running time as opposed to IP1, we use the running time of IP2 as a benchmark for the running

times of the heuristics in the remainder of our analysis.

Table 2: Statistics on the objective and running

times (sec.) of IP1, IP2 for the instances 1− 35

and 37− 40

IP1 IP2

Objective RT Objective RT

Min. 2170.57 0.94 2170.57 0.31

Max. 14810.14 11554.07 14810.14 2262.73

Avg. 7057.23 1133.21 7057.23 272.41

Table 3: Statistics on the gap (%) and running

times (sec.) of LP2

LP2

Gap RT

Min. 0.00 0.15

Max. 1.19 506.34

Avg. 0.21 97.04

7.3 Heuristic solution approaches

From the three local search heuristics described in Section 5 the 1-OptSwap heuristics result

in the smallest optimality gaps, but with a relative long running time compared to the other

heuristics. The running times of 1-Swap and 1-SmartSwap are similar, but 1-SmartSwap results in

considerably smaller optimality gaps. The optimality gaps (in percentages) and the running times

are given in Table 4, together with the running times of IP2. We see that both 1-SwapBI and

1-SmartSwapBI provide significantly smaller gaps compared to 1-SwapFI and 1-SmartSwapFI

19

respectively, with a p-value of 0.00. The smallest average gap is given by 1-OptSwapFI with

an optimality gap of 0.17%. After testing, we conclude that 1-OptSwapFI and 1-OptSwapBI

significantly outperform all other four local search heuristics, as well as that 1-SmartSwapFI

outperforms 1-SwapFI, and 1-SmartSwapBI outperforms both 1-SwapBI and 1-SwapFI. It should

be noted that the average running time of the 1-OptSwap heuristics are large compared to the

other heuristics and similar to the average running time of IP2.

Notably, the running times of all the local search heuristics are longer compared to the running

times of Halper et al. (2015). This is likely because of the difference in hardware and software

used and small differences in implementation of the heuristics. The average gaps of some of the

heuristics differ from the results of Halper et al. (2015), with a decrease of the gap of 0.03% and

0.34% for 1-SmartSwapBI and 1-SwapFI respectively, and an increase of 0.01% and 0.25% for

1-OptSwapFI and 1-SmartSwapFI respectively. For the FI heuristics these discrepancies could

be caused by the order in which the neighbourhood is searched. For 1-SmartSwapBI the only

identified potential cause of the difference in gaps is the use of a different initial solution. Appendix

B.3 provides the optimality gaps and running times for every instance in Table B3. Summarised

we conclude that 1-OptSwapFI results in the smallest optimality gap, and 1-SmartSwapBI results

in a quality solution with a relatively short running time.

Table 4: Statistics on the optimality gap (%) and running times (sec.) of the local search heuristics and

IP2

(a) Results of the BI heuristics

1-SwapBI 1-OptSwapBI 1-SmartSwapBI IP2

Gap RT Gap RT Gap RT RT

Min. 0.00 0.03 0.00 0.04 0.00 0.04 0.31

Max. 2.82 547.83 1.02 2686.19 1.80 521.64 2262.73

Avg. 0.87 62.77 0.19 183.34 0.40 63.37 272.41

(b) Results of the FI heuristics

1-SwapFI 1-OptSwapFI 1-SmartSwapFI IP2

Gap RT Gap RT Gap RT RT

Min. 0.00 0.03 0.00 0.05 0.00 0.03 0.31

Max. 7.79 1055.51 0.86 3314.52 9.21 745.23 2262.73

Avg. 2.64 86.03 0.17 269.10 1.15 65.25 272.41

A remark on the results presented in Table 4 can be the longer running times of the FI

heuristics compared to the BI heuristics. This can be explained by the number of iterations each

heuristic performs to reach a local minimum. Table 5 shows that the average number of iterations

for each FI heuristic is large compared to the number of iterations for their BI counterpart. It is

important to note that the average running time of one iteration for each FI heuristic is shorter

compared to their BI heuristic. This is in line with the definition of FI, as it stops an iteration

directly when an improvement is found as opposed to searching through all solutions as BI does.

20

Table 5: Statistics on the number of iterations and average running time (sec.) per iteration of the heuristics

(a) Results of the BI heuristics

1-SwapBI 1-OptSwapBI 1-SmartSwapBI

#Iterations Avg. RT #Iterations Avg. RT #Iterations Avg. RT

Min. 5 0.00 5 0.00 5 0.00

Max. 75 7.30 79 42.64 75 6.96

Avg. 26.85 1.07 28.10 3.01 27.35 1.06

(b) Results of the FI heuristics

1-SwapFI 1-OptSwapFI 1-SmartSwapFI

#Iterations Avg. RT #Iterations Avg. RT #Iterations Avg. RT

Min. 23 0.00 23 0.00 24 0.00

Max. 508 2.08 745 11.88 399 1.90

Avg. 128.45 0.31 174.80 0.80 105.08 0.30

7.4 Tabu search solution approaches

This section presents the results of the TS heuristics. We first discuss the parameter settings,

determined using the odd numbered instances, and continue with the results of the even numbered

instances for simple TS1, TS2 and the TS heuristics with the diversification methods.

7.4.1 Parameter settings

Through experimental analysis, discussed in Section 6.1.1, we obtain the parameter settings shown

in Table 6. We see that TS1 requires less non-improving iterations compared to TS2. The tabu

list size of TS1 is generally larger than for TS2. This is to be expected, since the tabu restriction

of TS2 is stricter than the one of TS1. We found that a larger tabu list did not necessarily result

in a longer running time. Therefore multiple appropriate intermediate values are tested and the

one that resulted in the shortest running time is selected.

Table 6: Maximum number of non-improving iterations r and tabu list size l for simple TS

Simple TS1 Simple TS2

1-Swap 1-OptSwap 1-SmartSwap 1-Swap 1-OptSwap 1-SmartSwap

r 3 6 6 44 10 60

l 20 200 53 5 100 14

7.4.2 Simple TS solution approaches

We evaluate our TS heuristics using the even numbered instances. The simple TS heuristics are

a variant of the BI heuristics, since it searches the whole neighbourhood for the best (non-tabu)

solution. Therefore we mainly compare the TS heuristics with the BI variants. We show the

statistics of the results of the even instances for the BI heuristics and IP2 in Table 7.

21

Table 7: Statistics on the optimality gap (%) and running times (sec.) of the local search heuristics and

IP2 for the even instances

1-SwapBI 1-OptSwapBI 1-SmartSwapBI IP2

Gap RT Gap RT Gap RT RT

Min. 0.01 0.07 0.00 0.04 0.00 0.04 0.31

Max. 2.01 547.83 1.02 2686.19 1.60 521.64 3384.20

Avg. 0.89 80.47 0.23 248.66 0.44 79.67 455.54

From the results of the simple TS heuristics, we see a small decrease of the optimality gaps

compared to their BI counterpart for all TS heuristics. On top of that, the TS2 heuristics results

also show a smaller gap compared to their TS1 counterpart, but with a longer running time. We

present the results of the simple TS heuristics in Table 8. It can be seen that for all except 1-

OptSwapTS2 the average running time is still shorter than that of IP2. We note, though, that the

maximum running time of 1-OptSwapTS1 is actually longer than the maximum running time of

IP2. Moreover, we see that 1-SwapTS1 gives an improvement of 0.04% to 1-SwapBI, with a slightly

shorter running time. Besides that, all the TS heuristics have a smaller average gap compared to

their BI counterpart. When we test the hypothesis whether the TS heuristics produce a smaller

gap compared to their BI counterpart heuristics, it is significant for all the simple TS heuristics

except for 1-SwapTS1. This shows that the TS procedures do indeed improve the optimality gap.

Table 8 further shows that TS2 results in a smaller gap compared to TS1 for 1-Swap and 1-

SmartSwap, both with a 0.02% decrease. The difference between the two 1-SmartSwap heuristics

is also significant. We remark that the average running times of the TS2 heuristics are longer than

the TS1 heuristics. Lastly, we want to mention that the 1-OptSwapTS heuristics both improve

the previous local search heuristic with the smallest gap (1-OptSwapFI). Appendix B.4 shows

the results for each separate instance in Table B4. Following this section we analyse the two

diversification methods and their effects on the two simple TS heuristics.

Table 8: Statistics on the optimality gap (%) and running times (sec.) of simple TS1 and simple TS2

heuristics for the even instances

(a) Results of the TS1 heuristics

1-SwapTS1 1-OptSwapTS1 1-SmartSwapTS1

Gap RT Gap RT Gap RT

Min. 0.01 0.07 0.00 0.06 0.00 0.06

Max. 2.01 388.63 0.84 3402.69 1.60 476.44

Avg. 0.85 74.37 0.13 310.60 0.37 91.47

22

Table 8: Statistics on the optimality gap (%) and running times (sec.) of simple TS1 and simple TS2

heuristics for the even instances, continued.

(b) Results of the TS2 heuristics

1-SwapTS2 1-OptSwapTS2 1-SmartSwapTS2

Gap RT Gap RT Gap RT

Min. 0.01 0.14 0.00 0.09 0.00 0.16

Max. 2.01 661.20 0.84 4735.80 1.55 729.19

Avg. 0.83 113.11 0.13 642.93 0.35 118.37

7.4.3 TS with diversification solution approaches

We now present the results of TS1 and TS2 heuristics with the two diversification methods dis-

cussed in Section 6.2. We show that the two diversification methods generally do not result

in a smaller optimality gap despite both diversification methods having a longer running time

compared to their simple TS heuristic counterparts.

Table 9 presents the optimality gap and running time of the TS heuristics using the restart

diversification method, with TS1 in Table 9a and TS2 in Table 9b. It can be seen that all of

the running times are longer compared to their simple TS heuristic counterparts. Additionally, a

significant difference in the optimality gap is only seen in 1-SwapTS2, with a decrease of 0.08%.

However the running time of 1-SwapTS2 with the restart diversification method is more than four

times the running time of simple 1-SwapTS2 and also longer than the average running time of

IP2. Appendix B.4 displays the results of the restart diversification method per instance in Table

B5.

Table 9: Statistics on the optimality gap (%) and running times (sec.) of TS1 and TS2 heuristics with the

restart diversification method for the even instances

(a) Results of the TS1 heuristics

1-SwapTS1 1-OptSwapTS1 1-SmartSwapTS1

Gap RT Gap RT Gap RT

Min. 0.01 0.12 0.00 0.31 0.00 0.38

Max. 2.01 651.61 0.84 18000.19 1.60 4957.69

Avg. 0.85 106.60 0.13 1221.47 0.36 399.13

(b) Results of the TS2 heuristics

1-SwapTS2 1-OptSwapTS2 1-SmartSwapTS2

Gap RT Gap RT Gap RT

Min. 0.00 0.74 0.00 1.32 0.00 0.77

Max. 2.01 2604.03 0.84 18000.82 1.55 5957.69

Avg. 0.75 482.68 0.13 4297.67 0.34 904.94

Table 10 gives a summary of the results of TS1 and TS2 using the continuous diversification

method. The results per instance can be found in Appendix B.4, Table B6. The running times

23

are generally longer compared to the running times of the simple TS methods, but shorter than

the restart diversification method heuristics. We see a significant decrease of 0.07% in the gap for

1-SmartSwapTS2 compared to simple 1-SmartSwapTS2, with a running time that is almost half

of the average running time of IP2, but double the running time of simple 1-SmartSwapTS2. We

therefore conclude that out of the two diversification methods, only 1-SmartSwapTS2 with the

continuous diversification method provides a relevant improvement of the optimality gap.

Table 10: Statistics on the optimality gap (%) and running times (sec.) of TS1 and TS2 heuristics with

the continuous diversification method for the even instances

(a) Results of the TS1 heuristics

1-SwapTS1 1-OptSwapTS1 1-SmartSwapTS1

Gap RT Gap RT Gap RT

Min. 0.01 0.05 0.00 0.12 0.00 0.08

Max. 2.01 505.67 0.46 15598.40 1.57 569.95

Avg. 0.85 81.10 0.10 954.47 0.38 88.93

(b) Results of the TS2 heuristics

1-SwapTS2 1-OptSwapTS2 1-SmartSwapTS2

Gap RT Gap RT Gap RT

Min. 0.01 0.14 0.00 0.11 0.00 0.12

Max. 2.01 895.81 0.84 18000.42 1.55 1699.44

Avg. 0.82 137.02 0.13 1506.78 0.28 232.32

8 Conclusion

In this paper we have researched solution approaches to the mobile facility location problem

(MFLP). We build upon the work of Halper et al. (2015), implementing the two exact models

and local search heuristics of their paper. We observe that one of the local search heuristics

produces high quality solutions with a running time that is four times less than the running time

of the fastest exact model. Additionally, we have defined two simple tabu search (TS) procedures.

Answering our research question, “What is the effect of a Tabu search procedure on the results of

local search heuristics for the MFLP?”, we see that both simple TS procedures improve the local

search heuristics, but generally also have a longer running time. Although, one of the simple TS

heuristics actually produces a smaller gap with a similar running time to the local search heuristic

without TS. We also have tested two methods to further try and improve the TS procedure.

These methods force the TS to explore previously unexplored areas of the solution space. This

generally did not improve the solution in spite of the longer running time. We conclude that the

TS procedures show promise in improving the local search heuristics of Halper et al. (2015). These

TS heuristics can still be developed in multiple ways, both obtaining lower optimality gaps and

having a shorter running time.

24

8.1 Further research

The parameters that are currently used are set using a small sample out of the whole data set.

These instances might not be representative for either the data set or the average MFLP problem.

Halper et al. (2015) recognised similar problems, and also evaluated the heuristics on larger in-

stances. More research into appropriate parameters using a larger and more representative sample

will therefore be beneficial. Moreover, it is seen that the sizes of the instances and the number of

facilities per instance differ over a large range. Focusing on groups of instances separately with

similar characteristics may result in more favorable parameters.

More research into the TS procedure is also necessary. A suggestion would be to only consider

part of the neighbourhood for each iteration to shorten the running time or to use a variant

tabu list size which will generally result in higher quality solutions, as Glover and Taillard (1993)

discuss. The diversification methods should also be a point of research, especially since this is

one of the main problems of TS (Gendreau, 2003). Other diversification methods, like strategic

oscillation, can be considered, but we can also improve the two defined diversification methods,

e.g. modifying the added term of the continuous method. Also adding an intensification phase

to the TS would likely be valuable. This is especially true for the two heuristics that do not

perform a thorough search of all the solutions for a particular occupied destination location set.

An idea would be to use the heuristic that goes through all the solutions for a given set for the

intensification phase of the previous two heuristics, so that when a promising region is found, all

the potential optimal solutions are searched in that region. Lastly we suggest not limiting to TS

and also exploring other meta-heuristics that can potentially improve the local search heuristics.

25

References

Ahmadian, S., Friggstad, Z., & Swamy, C. (2013). Local-search based approximation algorithms

for mobile facility location problems. In Proceedings of the twenty-fourth annual acm-siam

symposium on discrete algorithms (pp. 1607–1621).

Al-Sultan, K. S., & Al-Fawzan, M. A. (1999). A tabu search approach to the uncapacitated

facility location problem. Annals of Operations Research, 86 , 91–103.

Burke, E. K., & Bykov, Y. (2008). A late acceptance strategy in hill-climbing for exam timetabling

problems. In Patat 2008 conference, montreal, canada (pp. 1–7).

Demaine, E. D., Hajiaghayi, M., Mahini, H., Sayedi-Roshkhar, A. S., Oveisgharan, S., & Zadi-

moghaddam, M. (2009). Minimizing movement. ACM Transactions on Algorithms (TALG),

5 (3), 1–30.

Edmonds, J., & Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for

network flow problems. Journal of the ACM (JACM), 19 (2), 248–264.

Friggstad, Z., & Salavatipour, M. R. (2011). Minimizing movement in mobile facility location

problems. ACM Transactions on Algorithms (TALG), 7 (3), 1–22.

Gendreau, M. (2003). An introduction to tabu search. In Handbook of metaheuristics (pp. 37–54).

Springer.

Gendreau, M., & Potvin, J.-Y. (2010). Handbook of metaheuristics (Vol. 2). Springer.

Glover, F., & Laguna, M. (1998). Tabu search. In Handbook of combinatorial optimization (pp.

2093–2229). Springer.

Glover, F., & Samorani, M. (2019). Intensification, diversification and learning in metaheuristic

optimization. Journal of Heuristics, 25 (4-5), 517–520.

Glover, F., & Taillard, E. (1993). A user’s guide to tabu search. Annals of operations research,

41 (1), 1–28.

Halper, R., & Raghavan, S. (2011). The mobile facility routing problem. Transportation Science,

45 (3), 413–434.

Halper, R., Raghavan, S., & Sahin, M. (2015). Local search heuristics for the mobile facility

location problem. Computers & Operations Research, 62 , 210–223.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.

science, 220 (4598), 671–680.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval research logistics

quarterly , 2 (1-2), 83–97.

Raghavan, S., Sahin, M., & Salman, F. S. (2019). The capacitated mobile facility location problem.

European Journal of Operational Research, 277 (2), 507–520.

Sarmady, S. (2012). An investigation on tabu search parameters. School of Computer Sciences,

Universiti Sains Malaysia, 11800 .

26

Soriano, P., & Gendreau, M. (1996). Diversification strategies in tabu search algorithms for the

maximum clique problem. Annals of Operations Research, 63 (2), 189–207.

Voudouris, C., & Tsang, E. P. (2003). Guided local search. In Handbook of metaheuristics (pp.

185–218). Springer.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Breakthroughs in statistics

(pp. 196–202). Springer.

27

A Algorithm details

A.1 Local search heuristics

Algorithm A1: The Hungarian Algorithm

Input : An edge weighted graph G(F ∪ Z,E) with a feasible labeling of lj for all j ∈ F and lv

for all v ∈ Z and an initial matching M

Output: A minimum weighted perfect matching

1 while A perfect matching M is not yet found do

2 Find an unmatched vertex j ∈ F and set S := j and T := ∅
3 Set slackv := maxj∈S{lj + lv − dj,v} for all v ∈ Z
4 while M is not changed do

5 if JGL
(S) 6= T with JGL

(S) = {v : (j, v) ∈ El, j ∈ S} then

6 Set δ := maxv∈Z\T slacky

7 Update the labels lj − δ for all j ∈ S and lv + δ for all v ∈ T
8 Update GL to contain the additional tight edges under the new labeling

9 Update slackv := slackv − δ for each v ∈ Z

10 end

11 Choose a v ∈ JGL
(S) and set v̂ equal to the selected v

12 if v̂ is matched in M with any vertex ĵ ∈ F then

13 Update S := S ∪ {ĵ} and T := T ∪ {v̂}
14 Update slackv := max{slackv, lj + lv − dj,v} for all v ∈ Z

15 else

16 Find an augmenting path P from j ∈ F to v ∈ Z that alternates between edges in M

and edges in EL \M and for which j, v /∈M
17 Change M by setting M := (M \ P) ∪ (P \M)

18 end

19 end

20 end

Reducing the running time of the local search heuristics

For n-OptSwap we take three steps, taken from Halper et al. (2015), to reduce the running time

of the heuristic. The three steps are discussed below. We also implement Step 1 during the

neighbourhood search and Step 2 when solving the facility assignment sub-problem in its entirety

for n-SmartSwap.

1. Before solving the facility assignment sub-problem, solve the client assignment sub-problem

first. If Z is the set of occupied vertices from the current solution and Z ′ is the set for the

neighbour currently being searched, it holds that if CA(Z ′) ≥ FA(Z) + CA(Z) it can be

concluded that the solution will not be an improvement on the current solution. In that case

the floor assignment sub-problem is not solved to save computation time and the neighbour

28

is disregarded. This is often the case, because usually the number of clients is relatively

large compared to the number of facilities.

2. Use the solution of the last found solution to initialise the labels and matching for the

Hungarian algorithm of the searched neighbour and therefore “not starting from scratch”.

Since the goal is to obtain a labeling that is equal to the distance on the edge, we want to

start with the largest feasible labeling (and thus the closest to a distance on an edge) found.

To obtain this labeling note that to obtain the new neighbour Z ′, it entails swapping v ∈ Z

with v̂ ∈ Z ′ \ Z and dj,v to dj,v̂ on the edges for every j ∈ F to obtain the new weighted

graph G(F ∪ Z ′, E). Therefore a feasible labeling would be lv̂ = lv +minj∈F {dj,v̂ − lj − lv}

for the destination locations v̂ ∈ Z ′ \ Z. Afterwards we increase the labels of all j ∈ F by

setting with lj = lj +minv∈Z′{dj,v− lj − lv}. Obtaining the initial labeling we set the initial

matching equal to the matching of the last found solution and remove the edges that are no

longer tight with the new labeling.

3. Check during the execution of the Hungarian Algorithm, whether the searched neighbour

would provide an improved solution to the best found solution so far in the neighbourhood.

This is done by checking whether FA(Z ′′) + CA(Z ′′)− CA(Z ′) >
∑

j∈F lj +
∑

v∈Z′ lv after

every update of the labels (in line 7 of Algorithm A1), with Z ′′ being the neighbour with the

best solution found so far in the neighbourhood of the current solution and Z ′ the searched

neighbour. If this inequality does not hold, we can conclude that no improved solution will

be found and the Hungarian Algorithm can be terminated. To justify this note that an

improved solution is found if FA(Z ′′) + CA(Z ′′) > FA(Z ′) + CA(Z ′) and that FA(Z ′) ≥∑
j∈F lj +

∑
v∈Z′ lv, since the labels form a dual feasible solution to the facility assignment

sub-problem. Therefore it has to hold that FA(Z ′′)+CA(Z ′′)−CA(Z ′) >
∑

j∈F lj+
∑

v∈Z′ lv

to find an improved solution.

We initialise the labeling of the initial solution as lv = 0 for all v ∈ Z and lj = max
v∈Z

dj,v for

all j ∈ F , so it can be used to solve the neighbourhood solutions. When running the Hungarian

algorithm partially for n-SmartSwap we use an initial labeling lv̂ = 0 for all v̂ ∈ Z ′ \ Z and

lĵ = max
v̂∈Z′\Z

dĵ,v̂ for all ĵ ∈ F ′, with F ′ being the set of facilities with an assigned destination

location after the swap. An initial matching is obtained through selecting for each facility ĵ ∈ F ′,

a v̂ ∈ Z ′ \ Z for which the edge between those two vertices is tight and v̂ is not yet assigned to

another facility. If no such v̂ exists, the facility ĵ is not matched for the initial matching.

29

A.2 Tabu search

Algorithm A2: Simple Tabu search

Input : Initial solution S0, tabu list size maxSizeTL, maximum number of non-improving

iterations MaxIter

Output: Best found solution S∗
1 Current solution S := S0

2 Best found solution S∗ := S

3 while numNoImpr < MaxIter do

4 Find the best solution in the neighbourhood that is not tabu or fits the aspiration criteria Siter

5 if no Siter is found then

6 break

7 end

8 S := Siter

9 if S < S∗ then

10 S∗ := S

11 numNoImpr = 0

12 else

13 numNoImpr = numNoImpr + 1

14 end

15 Update the tabu list

16 if sizeTL > maxSizeTL then

17 remove earliest entry in tabu list

18 end

19 end

20 return S∗

30

Algorithm A3: Restart diversification method

Input : Initial solution S0, tabu list size maxSizeTL, maximum number of non-improving

iterations MaxIter

Output: Best found solution S∗
1 Current solution S := S0

2 Best found solution S∗ := S

3 The set of not yet visited destination locations V ∗ := V \ Z, with Z the set of occupied

destination locations of S and V the set of destination locations

4 while V ∗ 6= ∅ do

5 Execute the TS algorithm (in Algorithm A2), additionally perform V ∗ := V ∗ \ Z for every

solution S

6 if V ∗ 6= ∅ then

7 Find a new solution Snew, using V ∗

8 S := Snew

9 V ∗ := V ∗ \ Z
10 if S < S∗ then

11 S∗ := S

12 numNoImpr = 0

13 else

14 numNoImpr = numNoImpr + 1

15 end

16 Update the tabu list if needed

17 if sizeTL > maxSizeTL then

18 remove earliest entry in tabu list

19 end

20 end

21 end

22 return S∗

B Computational results per instance

B.1 Test instances analysis

Table B1: Statistics per instance of the pmed data set

Instance |V | |F | |C| Avg. ui

1 100 5 100 1.19

2 100 10 100 1.09

3 100 10 100 1.25

4 100 20 100 1.27

5 100 33 100 1.20

6 200 5 200 1.14

7 200 10 200 1.24

Continued on next page

31

Table B1 – Continued from previous page

Instance |V | |F | |C| Avg. ui

8 200 20 200 1.19

9 200 40 200 1.30

10 200 67 200 1.22

11 300 5 300 1.09

12 300 10 300 1.33

13 300 30 300 1.12

14 300 60 300 1.10

15 300 100 300 1.12

16 400 5 400 1.18

17 400 10 400 1.16

18 400 40 400 1.10

19 400 80 400 1.20

20 400 133 400 1.27

21 500 5 500 1.19

22 500 10 500 1.25

23 500 50 500 1.33

24 500 100 500 1.35

25 500 167 500 1.14

26 600 5 600 1.34

27 600 10 600 1.32

28 600 60 600 1.26

29 600 120 600 1.33

30 600 200 600 1.11

31 700 5 700 1.24

32 700 10 700 1.13

33 700 70 700 1.31

34 700 140 700 1.21

35 800 5 800 1.18

36 800 10 800 1.28

37 800 80 800 1.12

38 900 5 900 1.34

39 900 10 900 1.09

40 900 90 900 1.28

B.2 Exact solution approaches

Table B2: Objective values or gap (%) and running time (sec.) of all instances for IP1, IP2 and LP2

IP1 IP2 LP2

Instance Objective RT Objective RT Gap RT

1 7231.77 0.94 7231.77 1.12 0.63 0.28

2 4914.03 1.11 4914.03 0.31 0.00 0.18

3 5792.74 4.45 5792.74 3.02 0.00 0.18

4 4748.11 2.38 4748.11 0.38 0.00 0.19

5 2170.57 2.98 2170.57 0.50 0.00 0.15

6 8958.09 4.38 8958.09 5.59 0.02 6.62

Continued on next page

32

Table B2 – Continued from previous page

IP1 IP2 LP2

Instance Objective RT Objective RT Gap RT

7 7241.09 2.23 7241.09 3.14 0.00 3.27

8 6077.76 2.98 6077.76 2.64 0.00 2.63

9 4348.86 4.28 4348.86 3.55 0.00 1.69

10 2377.40 5.41 2377.40 1.36 0.00 11.15

11 8444.63 14.04 8444.63 24.37 0.13 15.73

12 9219.27 12.05 9219.27 16.72 0.06 12.65

13 5487.02 15.14 5487.02 13.89 0.01 7.20

14 3963.37 14.46 3963.37 5.83 0.00 4.24

15 2642.84 18.65 2642.84 3.59 0.00 1.83

16 9655.15 56.44 9655.15 72.22 0.87 47.59

17 8300.98 56.51 8300.98 52.83 0.42 34.50

18 5844.42 32.82 5844.42 21.89 0.00 20.16

19 4229.19 32.67 4229.19 16.82 0.00 16.26

20 3178.70 57.18 3178.70 16.71 0.00 7.36

21 10908.32 23.24 10908.32 63.82 0.00 54.99

22 10856.89 453.75 10856.89 194.70 0.60 141.69

23 6756.93 50.05 6756.93 20.22 0.00 40.23

24 4782.64 163.31 4782.64 32.98 0.00 23.30

25 3033.29 1667.34 3033.29 47.36 0.00 10.80

26 13314.31 386.94 13314.31 344.54 0.71 179.02

27 11199.97 174.67 11199.97 258.01 0.12 192.04

28 6133.26 144.48 6133.26 52.51 0.02 47.30

29 4756.74 1038.09 4756.74 168.08 0.02 29.81

30 3151.90 7990.85 3151.90 105.52 0.00 13.96

31 12524.16 336.79 12524.16 634.25 0.64 210.86

32 10743.65 499.98 10743.65 627.45 0.12 343.47

33 6740.80 270.09 6740.80 76.28 0.00 86.03

34 4507.58 5168.37 4507.58 257.02 0.02 53.03

35 12408.12 962.31 12408.12 1044.25 0.98 298.22

36 - - 12943.36 3384.20 0.02 151.62

37 6296.17 2582.40 6296.17 245.30 1.19 498.25

38 14810.14 3538.20 14810.14 2262.73 1.09 460.08

39 10329.38 6849.13 10329.38 2216.95 0.55 506.34

40 7151.86 11554.07 7151.86 1705.51 0.09 346.67

33

B.3 Heuristic solution approaches

Table B3: Gap (%) and running time (sec.) of all instances for the local search heuristics

1-SwapBI 1-SwapFI 1-OptSwapBI 1-OptSwapFI 1-SmartSwapBI 1-SmartSwapFI

Instance Gap RT Gap RT Gap RT Gap RT Gap RT Gap RT

1 0.32 0.07 0.16 0.07 0.00 0.06 0.00 0.05 0.00 0.09 0.38 0.04

2 0.31 0.07 3.56 0.07 0.00 0.06 0.00 0.06 0.00 0.09 0.00 0.06

3 0.00 0.03 3.31 0.03 0.00 0.04 0.00 0.05 0.00 0.05 1.28 0.03

4 1.30 0.07 4.31 0.07 0.31 0.10 0.16 0.17 0.82 0.08 2.46 0.08

5 0.58 0.09 6.79 0.08 0.58 0.27 0.00 0.29 0.58 0.12 4.98 0.10

6 0.84 0.09 0.50 0.11 0.00 0.04 0.00 0.05 0.00 0.04 0.00 0.05

7 0.94 0.13 0.83 0.30 0.00 0.13 0.00 0.28 0.00 0.13 0.00 0.27

8 2.01 0.38 3.80 0.49 0.03 0.43 0.00 0.65 0.03 0.45 2.62 0.30

9 1.97 1.69 5.31 1.55 0.24 2.05 0.52 3.48 0.08 1.70 0.39 1.53

10 1.60 2.49 7.79 2.33 0.22 9.51 0.15 10.59 1.60 2.43 2.86 2.11

11 0.86 0.07 1.24 0.12 0.86 0.07 0.86 0.08 0.86 0.08 0.00 0.11

12 0.26 0.41 1.25 1.42 0.00 0.44 0.00 0.95 0.00 0.42 0.00 0.72

13 2.05 1.96 1.42 4.56 0.02 3.21 0.00 5.47 0.38 2.15 0.25 3.16

14 1.57 10.61 4.96 8.02 0.63 20.68 0.40 20.77 1.06 10.08 1.14 7.39

15 0.00 16.60 2.52 11.13 0.00 36.45 0.22 37.36 0.00 16.83 1.84 11.46

16 0.09 0.19 0.36 0.35 0.00 0.25 0.00 0.27 0.06 0.16 0.00 0.24

17 0.36 0.48 1.02 1.77 0.00 0.72 0.00 1.40 0.00 0.47 0.00 0.77

18 0.29 11.00 3.06 18.57 0.05 13.30 0.30 23.50 0.08 10.38 0.83 11.34

19 2.82 36.43 5.99 36.26 0.36 72.44 0.23 106.59 1.80 37.00 2.19 37.23

20 0.97 60.49 5.45 39.87 0.84 289.14 0.40 349.70 0.97 61.74 3.46 37.15

21 0.04 0.25 0.22 0.56 0.00 0.30 0.00 0.50 0.00 0.27 0.00 0.40

22 0.99 1.55 1.20 3.48 0.00 1.90 0.72 2.43 0.00 1.58 0.72 1.60

23 1.98 34.82 4.17 62.87 0.09 47.96 0.35 90.82 0.49 35.13 0.59 42.52

24 1.77 96.72 5.30 112.83 0.28 239.29 0.28 320.53 0.65 101.52 1.30 107.20

Continued on next page

34

Table B3 – Continued from previous page

1-SwapBI 1-SwapFI 1-OptSwapBI 1-OptSwapFI 1-SmartSwapBI 1-SmartSwapFI

Instance Gap RT Gap RT Gap RT Gap RT Gap RT Gap RT

25 0.96 168.28 3.59 124.48 0.45 1130.84 0.41 1216.14 0.86 178.31 1.55 127.65

26 0.60 0.42 0.55 0.56 1.02 0.47 0.48 0.52 0.48 0.42 0.48 0.44

27 0.00 1.72 0.82 5.68 0.00 1.95 0.08 3.25 0.00 1.72 0.08 3.24

28 1.40 76.75 2.26 153.39 0.02 99.66 0.00 228.29 0.54 71.48 9.21 33.31

29 1.23 227.06 3.53 223.53 0.17 506.91 0.27 706.53 1.02 232.65 1.25 191.01

30 0.37 376.81 3.97 285.11 0.23 2686.19 0.20 3314.52 0.33 383.70 2.09 271.26

31 0.02 0.51 0.15 1.69 0.02 0.60 0.00 1.48 0.02 0.53 0.00 1.34

32 0.26 2.19 0.67 10.20 0.02 2.40 0.02 8.10 0.02 2.08 0.02 5.72

33 1.44 149.43 3.43 309.28 0.10 202.75 0.28 428.32 0.73 149.41 0.49 189.92

34 0.78 417.05 3.55 469.69 0.31 881.86 0.26 1180.63 0.60 420.88 2.01 400.30

35 0.01 0.95 0.00 3.30 0.00 1.03 0.00 1.59 0.00 0.92 0.00 1.52

36 0.72 2.68 0.52 13.46 0.34 3.78 0.07 12.98 0.53 2.65 0.07 10.61

37 1.17 255.72 4.22 456.13 0.02 347.16 0.20 909.07 0.48 279.11 0.82 350.34

38 0.01 1.65 0.05 4.09 0.00 1.77 0.00 3.10 0.00 1.63 0.00 2.84

39 0.37 4.93 0.41 18.40 0.00 5.57 0.00 12.41 0.00 4.82 0.00 9.64

40 1.70 547.83 3.52 1055.51 0.31 721.97 0.03 1760.88 1.07 521.64 0.69 745.23

B.4 Tabu search solution approaches

Table B4: Gap (%) and running time (sec.) of even instances for simple TS1 and TS2

1-SwapTS1 1-SwapTS2 1-OptSwapTS1 1-OptSwapTS2 1-SmartSwapTS1 1-SmartSwapTS2

Instance Gap RT Gap RT Gap RT Gap RT Gap RT Gap RT

2 0.31 0.13 0.31 0.14 0.00 0.12 0.00 0.09 0.00 0.06 0.00 0.23

4 1.30 0.07 1.30 0.29 0.16 0.23 0.16 0.27 0.82 0.14 0.82 0.16

6 0.84 0.11 0.61 0.16 0.00 0.06 0.00 0.09 0.00 0.09 0.00 0.34

8 2.01 0.43 2.01 1.42 0.03 0.52 0.03 0.65 0.03 0.68 0.03 2.11

10 1.60 2.51 1.55 3.64 0.12 14.58 0.12 30.68 1.60 2.76 1.55 3.11

Continued on next page

35

Table B4 – Continued from previous page

1-SwapTS1 1-SwapTS2 1-OptSwapTS1 1-OptSwapTS2 1-SmartSwapTS1 1-SmartSwapTS2

Instance Gap RT Gap RT Gap RT Gap RT Gap RT Gap RT

12 0.26 0.49 0.26 2.04 0.00 0.54 0.00 0.88 0.00 0.58 0.00 2.06

14 1.57 10.44 1.57 28.21 0.07 25.65 0.07 61.77 1.06 11.17 1.03 18.16

16 0.09 0.25 0.09 1.69 0.00 0.37 0.00 0.61 0.00 0.45 0.00 2.37

18 0.29 12.62 0.29 30.33 0.05 14.20 0.05 21.35 0.08 12.38 0.08 40.24

20 0.97 57.63 0.97 158.23 0.84 355.02 0.84 1931.30 0.97 70.02 0.87 99.92

22 0.99 1.84 0.99 6.86 0.00 2.19 0.00 2.59 0.00 2.48 0.00 8.96

24 1.77 94.51 1.77 164.70 0.28 293.45 0.28 836.54 0.65 111.76 0.65 186.80

26 0.23 0.79 0.23 3.26 0.00 0.92 0.00 1.15 0.00 1.11 0.00 4.34

28 1.40 71.93 1.40 127.48 0.02 107.64 0.02 113.88 0.54 73.76 0.54 146.42

30 0.37 343.68 0.29 463.14 0.13 3402.69 0.23 4735.80 0.33 449.57 0.26 439.11

32 0.24 2.98 0.24 9.94 0.00 3.43 0.00 4.13 0.00 3.66 0.00 14.04

34 0.78 388.63 0.78 661.20 0.29 1154.90 0.31 3682.94 0.60 476.44 0.60 729.19

36 0.22 5.93 0.22 16.55 0.34 4.78 0.34 5.97 0.00 7.18 0.00 22.42

38 0.01 2.09 0.01 9.80 0.00 2.62 0.00 3.41 0.00 2.78 0.00 13.29

40 1.70 490.43 1.68 573.18 0.28 828.11 0.23 1424.52 0.80 602.41 0.52 634.07

Table B5: Gap (%) and running time (sec.) of even instances for TS1 and TS2 with the restart diversification method

1-SwapTS1 1-SwapTS2 1-OptSwapTS1 1-OptSwapTS2 1-SmartSwapTS1 1-SmartSwapTS2

Instance Gap RT Gap RT Gap RT Gap RT Gap RT Gap RT

2 0.31 0.12 0.31 0.89 0.00 0.47 0.00 1.67 0.00 0.45 0.00 1.33

4 1.30 0.13 1.30 0.74 0.16 0.31 0.16 1.32 0.82 0.38 0.62 0.77

6 0.84 0.92 0.00 7.93 0.00 1.28 0.00 2.77 0.00 1.54 0.00 10.69

8 2.01 1.07 2.01 8.00 0.03 2.03 0.03 6.92 0.03 1.63 0.03 12.02

10 1.60 2.76 1.55 7.48 0.12 583.06 0.12 5079.60 1.60 3.80 1.55 9.64

12 0.26 2.79 0.26 30.30 0.00 6.98 0.00 14.00 0.00 5.35 0.00 40.60

14 1.57 11.67 1.57 40.85 0.07 46.15 0.07 136.80 1.06 16.49 1.03 64.82

16 0.09 6.27 0.00 78.53 0.00 19.03 0.00 26.07 0.00 14.49 0.00 107.75

Continued on next page

36

Table B5 – Continued from previous page

1-SwapTS1 1-SwapTS2 1-OptSwapTS1 1-OptSwapTS2 1-SmartSwapTS1 1-SmartSwapTS2

Instance Gap RT Gap RT Gap RT Gap RT Gap RT Gap RT

18 0.29 16.88 0.29 90.72 0.05 46.61 0.05 82.00 0.08 28.24 0.08 145.00

20 0.97 65.77 0.97 179.26 0.84 541.67 0.84 18000.02 0.97 84.52 0.87 415.00

22 0.99 14.82 0.45 166.18 0.00 36.92 0.00 119.56 0.00 36.68 0.00 221.27

24 1.77 107.21 1.77 309.72 0.28 542.72 0.28 18000.31 0.65 183.71 0.65 569.31

26 0.23 23.43 0.00 296.21 0.00 62.90 0.00 120.16 0.00 59.53 0.00 403.13

28 1.40 97.94 1.40 504.45 0.02 236.23 0.02 695.93 0.54 163.87 0.54 716.46

30 0.37 420.71 0.29 788.72 0.13 18000.19 0.23 18000.82 0.00 4957.69 0.26 5957.69

32 0.24 41.72 0.20 507.56 0.00 100.90 0.00 164.95 0.00 82.84 0.00 699.10

34 0.78 488.02 0.78 1568.63 0.29 2044.43 0.31 18000.07 0.60 747.35 0.60 1976.46

36 0.22 70.65 0.10 994.01 0.34 173.04 0.33 224.00 0.00 182.34 0.00 1298.83

38 0.01 107.56 0.00 1469.40 0.00 278.85 0.00 315.29 0.00 277.77 0.00 1971.99

40 1.70 651.61 1.68 2604.03 0.28 1705.57 0.23 6961.19 0.80 1133.91 0.52 3477.04

Table B6: Gap (%) and running time (sec.) of even instances for TS1 and TS2 with the continuous diversification method

1-SwapTS1 1-SwapTS2 1-OptSwapTS1 1-OptSwapTS2 1-SmartSwapTS1 1-SmartSwapTS2

Instance Gap RT Gap RT Gap RT Gap RT Gap RT Gap RT

2 0.31 0.08 0.31 0.14 0.00 0.26 0.00 0.27 0.00 0.19 0.00 0.33

4 1.30 0.07 1.30 0.33 0.16 0.31 0.16 0.48 0.82 0.18 0.82 0.12

6 0.84 0.05 0.61 0.15 0.00 0.12 0.00 0.11 0.00 0.08 0.00 0.34

8 2.01 0.40 2.01 1.42 0.03 0.70 0.03 0.77 0.03 0.71 0.00 3.08

10 1.60 2.34 1.57 7.89 0.12 16.22 0.17 16.46 1.57 3.59 1.55 13.03

12 0.26 0.47 0.26 1.55 0.00 0.62 0.00 0.69 0.00 0.55 0.00 1.98

14 1.58 9.40 1.58 21.39 0.07 26.25 0.07 44.01 1.08 11.71 0.69 13.68

16 0.09 0.32 0.09 1.26 0.00 0.38 0.00 0.45 0.00 0.47 0.00 2.64

18 0.29 13.85 0.29 22.65 0.05 15.26 0.05 15.42 0.08 11.77 0.04 36.79

20 0.97 83.28 0.97 118.15 0.46 659.71 0.84 1117.13 0.97 70.61 0.67 133.77

22 0.99 2.36 0.99 5.24 0.00 2.31 0.00 3.35 0.00 2.12 0.00 8.84

Continued on next page

37

Table B6 – Continued from previous page

1-SwapTS1 1-SwapTS2 1-OptSwapTS1 1-OptSwapTS2 1-SmartSwapTS1 1-SmartSwapTS2

Instance Gap RT Gap RT Gap RT Gap RT Gap RT Gap RT

24 1.77 94.50 1.77 161.83 0.28 318.53 0.28 750.26 0.70 105.63 0.70 270.73

26 0.23 0.78 0.23 3.19 0.00 0.96 0.00 1.16 0.00 1.05 0.00 5.31

28 1.40 67.31 1.40 126.09 0.02 113.48 0.02 109.82 0.54 71.83 0.33 237.46

30 0.37 400.26 0.33 709.25 0.07 15598.40 0.13 18000.42 0.33 445.50 0.30 992.35

32 0.24 2.81 0.24 9.90 0.00 4.60 0.00 4.17 0.00 3.22 0.00 16.11

34 0.78 430.37 0.64 627.28 0.34 1123.15 0.31 7899.47 0.60 470.52 0.35 1176.35

36 0.22 5.62 0.22 17.01 0.34 5.05 0.34 6.02 0.00 6.42 0.00 21.16

38 0.01 2.04 0.01 9.88 0.00 2.76 0.00 3.47 0.00 2.57 0.00 12.95

40 1.70 505.67 1.53 895.81 0.11 1200.31 0.17 2161.60 0.81 569.95 0.12 1699.44

38

C Code description

We present brief descriptions of the five Java packages used in this paper and their classes in Table

C7. The codes are available upon request.

Table C7: Codes descriptions of the classes in the Java packages

(a) Classes in the data analysis package

Class name Description

Main Main class to analyse the data. Mainly gives the minimum, maximum,

overall average and average per instance client and facility weights.

Instance Instance object containing the distance (between vertices) and weights (of

facilities and clients) data of the instance.

(b) Classes in the exact models package

Class name Description

Main Main class to solve the two IPs (using CPLEX) and make a .csv file con-

taining the results for all the instances in a particular folder.

MainLP Main class to solve the LP relaxation of IP2 (using CPLEX) and make a

.csv file containing the results for all the instances in a particular folder.

IP Model for the two IPs and LP2. Using input 1 and input 2 gives the model

for IP1 and IP2 respectively. Using input 3 gives the LP relaxation of IP2

(LP2).

Instance Instance object containing the distance (between vertices) and weights (of

facilities and clients) data of the instance.

(c) Classes in the swap package

Class name Description

Main Main class to run the heuristics for n-Swap.

Graph Graph object containing the clients and facilities with their distance (to ver-

tices) and weights. Also calculates the objective value given the destination

and initial vertices of clients and facilities.

Solution Solution object containing the client and facility assignment, occupied and

unoccupied locations and corresponding objective value for given graph.

Swap Implements n-Swap, BI or FI, for a given graph and initial solution.

TabuSearch Implements n-SwapTS1 for a given graph and initial solution.

StrictTabuSearch Implements n-SwapTS2 for a given graph and initial solution.

TabuSearch1 Implements n-SwapTS1 with restart diversification for agiven graph and

initial solution.

StrictTabuSearch1 Implements n-SwapTS2 with restart diversification for a given graph and

initial solution.

TabuSearch2 Implements n-SwapTS2 with continuous diversification for a given graph

and initial solution.

StrictTabuSearch2 Implements n-SwapTS2 with continuous diversification for a given graph

and initial solution.

39

Table C7: Codes descriptions of the classes in the Java packages, continued.

(d) Classes in the optswap package

Class name Description

Main Main class to run the heuristics for n-OptSwap.

Graph Graph object containing the clients and facilities with their distance (to ver-

tices) and weights. Also calculates the objective value given the destination

and initial vertices of clients and facilities.

Solution Solution object containing the client and facility assignment, occupied and

unoccupied locations and corresponding objective value for given graph.

OptSwap Implements n-Swap, BI or FI, for a given graph and initial solution.

HungarianAlg Class that executes the Hungarian Algorithm between (all) facilities and

(selected) destination locations. It uses a previous assignment as the initial

labeling to shorten the running time.

TabuSearch Implements n-OptSwapTS1 for a given graph and initial solution.

StrictTabuSearch Implements n-OptSwapTS2 for a given graph and initial solution.

TabuSearch1 Implements n-OptSwapTS1 with restart diversification for a given graph

and initial solution.

StrictTabuSearch1 Implements n-OptSwapTS2 with restart diversification for a given graph

and initial solution.

TabuSearch2 Implements n-OptSwapTS2 with continuous diversification for a given graph

and initial solution.

StrictTabuSearch2 Implements n-OptSwapTS2 with continuous diversification for a given graph

and initial solution.

(e) Classes in the smartswap package

Class name Description

Main Main class to run the heuristics for n-SmartSwap.

Graph Graph object containing the clients and facilities with their distance (to ver-

tices) and weights. Also calculates the objective value given the destination

and initial vertices of clients and facilities.

Solution Solution object containing the client and facility assignment, occupied and

unoccupied locations and corresponding objective value for given graph.

AllHungarianAlg Class that executes the Hungarian Algorithm between (all) facilities and

(selected) destination locations. It uses a previous assignment as the initial

labeling to shorten the running time.

SubHungarianAlg Class that executes the Hungarian Algorithm between (selected) facilities

and (selected) destination locations.

SmartSwap Implements n-SmartSwap, BI or FI, for a given graph and initial solution.

TabuSearch Implements n-SmartSwapTS1 for a given graph and initial solution.

StrictTabuSearch Implements n-SmartSwapTS2 for a given graph and initial solution.

TabuSearch1 Implements n-SmartSwapTS1 with restart diversification for a given graph

and initial solution.

StrictTabuSearch1 Implements n-SmartSwapTS2 with restart diversification for a given graph

and initial solution.

TabuSearch2 Implements n-SmartSwapTS2 with continuous diversification for a given

graph and initial solution.

StrictTabuSearch2 Implements n-SmartSwapTS2 with continuous diversification for a given

graph and initial solution.

40

	Introduction
	Problem description
	Literature review
	Exact solution approaches
	Integer problem formulation 1
	Integer problem formulation 2
	Linear relaxations for a lower bound

	Local search heuristic solution approaches
	Decomposition of the MFLP
	n-Swap local search heuristic
	n-OptSwap local search heuristic
	n-SmartSwap local search heuristic

	Tabu search solution approaches
	Two simple Tabu searches
	Parameter testing

	Diversification strategies
	Restart diversification
	Continuous diversification

	Computational Results
	Test instances
	Exact solution approaches
	Heuristic solution approaches
	Tabu search solution approaches
	Parameter settings
	Simple TS solution approaches
	TS with diversification solution approaches

	Conclusion
	Further research

	Appendix Algorithm details
	Local search heuristics
	Tabu search

	Appendix Computational results per instance
	Test instances analysis
	Exact solution approaches
	Heuristic solution approaches
	Tabu search solution approaches

	Appendix Code description

