
Verifying the Applicability of Optimal Decision Trees

for (Imbalanced) Categorical Data

ERASMUS UNIVERSITY ROTTERDAM

Erasmus School of Economics

Bachelor Thesis Business Analytics & Quantitative Marketing

Matthijs Otten 453401

Supervisor: prof.dr. S.I. Birbil

Second assessor: dr. O. Karabag

July 5, 2020
The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University
Rotterdam.

Abstract

In this research we consider the applicability of Optimal Decision Trees generated by using a

Mixed-Integer Linear Programming (MILP) formulation as described by Günlük et al. (2019)

for categorizing data. We do so to verify whether this approach is a superior alternative to

existing heuristics like CART for creating Decision Trees. In many fields, such as healthcare,

data-driven policing and business, Artificial Intelligence assists humans in binary decision

making. Therefore, it is important to improve the existing methods so that technology

can help in the best possible way when categorizing data in two possible classes. In this

research, we confirm previous conclusions that good Decision Trees can be generated in

reasonable time through solving MILP problems and perform better in terms of accuracy

than trees generated through the existing method CART. Furthermore, we investigate ways

to reduce the complexity brought by continuous variables. Additionally, we show that the

MILP formulation can outperform CART in generating trees to handle data for which the

distribution of observations of the two classes is imbalanced, as is the case in many real world

scenarios.

1

Contents

1 Introduction 3

2 Related Work 3

3 Theoretical Framework 4

3.1 Decision Trees . 5

3.2 Mixed-Integer Linear Programming . 6

3.3 Formulation by Günlük et al. (2019) . 7

3.4 Extension Imbalanced Data . 10

4 Computational Results 11

4.1 Replication . 11

4.2 Extension Imbalanced Data . 18

4.3 Extension dealing with many numerical values 20

5 Conclusion and Discussion 21

A Topologies by Günlük et al. (2019) 25

B Summary description of the datasets 26

C Programming 26

D Extension Imbalanced Data 27

2

1 Introduction

Life is all about making choices. What to eat, what to wear, what to buy, whom to marry.

The human species is the most intelligent form of life on earth, but its brain capacity and

computing performance remain very limited. Therefore, humans started to use writing to store

information and since the 1930’s, programmable computing devices have been assisting humans

by performing computations. Almost a century later, humans have produced forms of Artificial

Intelligence (AI) that can process stored data in order to help us make wise decisions by applying

statistical and mathematical theory. This can reach from deciding what assets a firm should

invest in or whether a person can be regarded as a suspect in a crime. Several different “machine

learning” methods and models exist nowadays to perform these data driving decision making

processes. However, one of the challenges is to build models that provide interpretable results.

The focus in this research lies on the Decision Tree (DT) as particular method to produce

accurate and interpretable results. Specifically, we use Integer Programming to build an Optimal

Decision Tree (ODT) as done before by Günlük et al. (2019). Such an ODT is used to correctly

classify observations with a binary outcome, e.g. passing or failing final exams. Our aim is to

verify the conclusions of Günlük et al. (2019) on the adequacy of such an ODT and produce new

insights ourselves. Additionally, we investigate for the first time if the ODT classifies well for

imbalanced datasets (i.e. when one of the classes corresponds to 90% or more of the observations)

and explore a suggested approach to deal with continuous variables.

First, attention is paid to previous insights from related work on the subject to describe the

context of our research in Section 2. With emphasis, we look at the findings by Günlük et al.

(2019). Secondly, the theoretical framework for the research is presented in Section 3. This

means we look at the concepts of a DT and Mixed-Integer Linear Programming (MILP), after

which we elaborate on the formulation by Günlük et al. (2019) and describe the extension for

imbalanced data. Thirdly, the results are shown in Section 4 after which we finally draw our

conclusions and discuss our findings in Section 5.

2 Related Work

In recent decades, researchers have found ways to generate an interpretable DT that classifies

data in such a way that good decisions can be made (Breiman et al., 1984). These so called

Classification and Regression Trees (CART) are applicable to uncountable scenarios, such as

deciding which patients to classify as potential breast cancer patients or not and to classify a

person as suspect in a crime. These trees are “grown” stepwise by means of heuristics. This

3

means that, starting from the “root” of the DT, a split of the datapoints is chosen in such a way

that best distinguishes between the different classes of observations, as if this single split was

the final split of the whole procedure. This is repeated for the two resulting “nodes” (and on

the next four nodes etc.) until a stopping criterion is met or the observations cannot be splitted

anymore in a way that improves the distinction. The same Breiman that introduced CART

in 1984 already admitted that it would be better to find a method that generates an optimal

decision tree (ODT) in one go. For this end, we will focus on a method that uses Integer

Programming to generate such an ODT. This idea was already present in the previous decades,

but the technology did not allow for good results in reasonable time. Nowadays, with faster

processors, these Integer Programming applications prove to be feasible. In several researches,

Integer Programming was used and optimal DTs were found that performed better than existing

alternatives like the aforementioned CART (Bertsimas & Dunn, 2017; Blanquero et al., 2019;

Misic, 2019). Of these, Bertsimas & Dunn (2017) were the first to publish a research that uses

MILP for generating DTs. However, as also noted by Gambella et al. (2019), their method

does not exploit the combinatorial structure that accompanies categorical variables. In order

for us to verify the claimed superiority of ODTs, we choose to replicate the promising research

that was carried out by Günlük et al. (2019). In their MILP formulation, they do exploit the

combinatorial structure brought along by categorical values, while also providing rules to cope

with numerical variables. In order to keep the computation time of an ODT restricted, they

predefine candidate topologies for the tree and stick with binary classification.

To improve the accuracy of DTs, aggregated predictions from an ensemble of different trees

are often used. Several different methods exist to generate such an ensemble, such as boosting,

bagging and generating random forests. However, the resulting models are not interpretable, as

addressed by Hara & Hayashi (2016) and Palczewska et al. (2013). As interpretability is crucial

in many applications, such as for creating a model that classifies people as suspects in a crime,

we focus on applying Integer Programming to generate a single binary DT. In contrast, Misic

(2019) applies Integer Programming on tree ensembles, so this field is also being explored. We

expect that more research on the usage of MILPs will be carried out in the next years, as more

research on this topic has already been done in 2020 (Aghaei et al., 2020).

3 Theoretical Framework

In this section, insights are given in the different methods used. The same notation as Günlük

et al. (2019) is used for consistency, besides small improvements in terms of clarity. We will also

explain what is meant in this context by topology, overfitting, interpretability and performance.

4

3.1 Decision Trees

Before stepping into the specific MILP formulation for creating a binary DT, we will pay at-

tention to binary DTs in general. A DT is a machine learning tool for decision making. As an

example, the setting is used in which the DT should predict whether students will pass their

year or not. This prediction is based on the characteristics of the students, such as gender,

family size, historical performance at school and times absent in class. By splitting the sample

of students in two subsamples in each step based on a certain characteristic or combination of

characteristics, the goal of the DT is to generate optimal distinctions between groups of stu-

dents that tend to pass and those who tend to fail. A criterion to evaluate the performance of

a DT upon, is the mean prediction accuracy. This is illustrated in Figure 1, where a tree of

depth 2 is shown. Note that this tree has a certain symmetrical topology (structure) of three

“decision nodes” and four “leaves”. After starting with a sample of 1000 students that pass and

1000 that fail, the DT yields 4 resulting groups of students that are classified based on the pass

results of the majority in the group. In our example, this yields a mean prediction accuracy of

(160 + 110 + 500 + 500)/2000 = 63.5%, which is higher than the 50% accuracy that a random

guess would give. However, the decision rules at each decision node are to be provided by the

Artificial Intelligence (AI) instead of the human. Namely, by using mathematics and statistics,

the AI is much faster in finding good choices on which characteristics to use in each step and

what values to split upon. These choices are made by using heuristics that result in, for instance,

the CART or new methods such as optimization through MILP. Independent from the method

used to generate the DT, each DT is constructed using a training dataset for which the best

distinction between different classes is made. However, the aim of the DT is to correctly predict

the class of observations based on their characteristics, without knowing the class beforehand.

Therefore, the classification of new observations by using the generated DT should be evaluated

to find the actual performance. Even more, a good performance on the training set does not

guarantee a good performance on the testing set, even if both sets are randomly drawn from one

larger dataset. This undesired phenomenon of yielding significantly higher performance on the

training set than on the testing set, due to the training data-specific DT, is called overfitting.

Unlike other machine learning tools, a DT is interpretable as each split is comprehensive and the

resulting leaves contain clearly identifiable observations. For example, we can see from the DT

in Figure 1 that a student who never failed a year and was absent at most 10 times is classified

to pass this year.

5

Figure 1: Decision Tree on passing of mathematics students

3.2 Mixed-Integer Linear Programming

The basic idea of solving an MILP is to optimize a given function f(·), subject to a certain set

of constraints. For us, this means maximizing the number of correctly classified observations

subject to constraints that define the structure of and splits in the DT. The programming

problem gets its name “Mixed-Integer” from the fact that many, but not all, variables in the

function or constraints should be integer valued. For instance, this is the case when deciding on

which value of a characteristic, such as gender, to split upon in one step. As long as the problem

is correctly defined, an (optimal) integer solution can be found.

Solving the MILP problem is used to find the best binary tests to use at each decision node.

For example, the test whether a student has a (very) low alcohol consumption in the weekend

against medium, high or very high. Note that the optimization process does not involve choosing

a certain topology, but is applied on a given topology for a binary tree. The topologies considered

are that of the aforementioned symmetric tree (topology 2) of depth 2, its extension (topology

3) of depth 3 (so 7 decision nodes and 8 leaves), its asymmetrical extension (topology 2.5) of

replacing the two left side leaves by decision nodes (resulting in 5 decision nodes and 6 leaves).

The final topology IB (Imbalanced) is the extension of topology 2.5 by replacing the two utmost

left leaves by decision nodes (resulting in 7 decision nodes and 8 leaves). The topologies are

shown in Appendix A, which contains Figures 2 and 3 from respectively page 8 and 10 from the

paper by Günlük et al. (2019).

6

3.3 Formulation by Günlük et al. (2019)

Günlük et al. (2019) present their formulation step by step, showing propositions and proofs to

account for each choice made in the formulation. While using their notation, we present the

final strengthened formulation at once, after which we provide a concise explanation.

First of all, consider a given dataset of the form {(gi
1, ..., gi

t, yi) : i ∈ 1, 2, ..., N}. Hence,

for each observation i, we have gi
j ∈ Gj which is the corresponding value of characteristic

j ∈ 1, ..., t and thus an element of the finite set of possible values Gj . Besides these values of

the characteristics, we have yi ∈ {0, 1} which is the class label (e.g., fail or pass).

However, we replace every gi
j ∈ Gj by a vector of size |Gj | with only zeroes, except for a

single non-zero entry at the position in the vector that corresponds to the value of characteristic

j corresponding to observation i. For clarity, we redefine characteristics as groups, indexed by

G = {1, 2, ..., |G|} that contain corresponding binary features J(g), a subset of the set of all

present features J = {1, 2, ..., |J |}. For a numerical group, the features can be combined into

“bins”. This restricts the number of possible solutions to consider in the optimization process,

making the problem simpler. Additionally, g(j) denotes the group that contains feature j.

Furthermore, we define the set with all observations as I = {1, 2, ..., N} with I+ ⊂ I as the

subset for all observations with a positive label (pass) and I− ⊂ I the subset for observations

with negative labels (fail). Finally, consider the set of decision nodes K = {1, 2, ..., |K|} and the

set of leaf nodes B = {1, 2, ..., |B|}. Günlük et al. (2019) decided to force the observations to be

classified as either positive or negative at each final pair of leaf nodes, where in leaf nodes of the

subset B+ ⊂ B the observations are classified as postive and in B− as negative. Without loss

of generality, we let B+ contain even and B− odd indices. This does not restrict the possible

solutions, as the structure of each final decision node with its pair of leaf nodes is symmetrical

since the leaf nodes can be switched places by replacing the test in the final decision node with

its opposite. Now, we will look at the MILP itself.

max
∑
i∈I+

∑
b∈B+

ci
b + C

∑
i∈I−

∑
b∈B−

ci
b (1)

s.t.
∑
g∈G

vk
g = 1 ∀k ∈ K , (2)

zk
j ≤ vk

g(j) ∀j ∈ J, ∀k ∈ K , (3)∑
b∈B:KL(b)3k

ci
b ≤ L(i, k) ∀i ∈ I, k ∈ K , (4)

∑
b∈B:KR(b)3k

ci
b ≤ R(i, k) ∀i ∈ I, k ∈ K . (5)

7

In (1) we have the function to maximize, which is the sum of observations with a positive label

routed to positive leaf nodes plus the sum of observations with a negative label routed to negative

leaf nodes. This second sum is multiplied by a weighting factor C for scenarios in which correctly

classifying observations with a negative label is of a different importance than observations with

a positive label. Constraint (2) makes sure that at each decision node k, exactly one group is

chosen to split upon. Here, we use binary variables vk
g ∈ {0, 1} to indicate which group is indeed

chosen. To ensure that only features that belong to the selected group g are candidates to be

used at decision node k, we have Constraints (3). Here, binary variables zk
j ∈ {0, 1} indicate for

every feature j if it is used for splitting at decision node k or not. Furthermore, Constraints (4)

and (5) ensure that each observation is routed to the correct leaf node. To see this, we need to

understand each part of the constraint. First, consider L(i, k) =
∑

j∈J ai
jzk

j ∀k ∈ K,∀i ∈ I,

where ai
j equals 1 if observation i has feature j and 0 otherwise. So, L(i, k) denotes whether

observation i meets the test at node k and therefore goes to the left, without loss of generality.

Note that observations flow to “the left” if they meet the test, which is a structural choice

since every test is symmetric in nature. Consequently, R(i, k) = 1 − L(i, k) ∀k ∈ K, ∀i ∈ I.

Furthermore, KL(b) ⊂ K is the set of decision nodes where the left branch is followed to reach

leaf node b and, similarly, KR(b) for the right branch. Observe that decision variables ci
b indicate

a valid routing of observation i to leaf node b, as they take the value 1 if observation i is routed

to b and 0 otherwise. This is because L(i, k) and R(i, k) take the values 0 or 1 and every ci
b is

maximized to this value due to the maximization of the objective function (1).

Enhancements

After having this formulation, we can speed up the optimization process by using two enhance-

ments, as Günlük et al. (2019) show. First, we consider anchoring features. As mentioned before,

the DTs are effectively symmetric. This will result in considering extra identical trees (except

for switching “left” and “right”) as possible solutions to the problem, whereas only considering

one of them is required in the process of finding the optimal solution. Therefore, for every group

g, we select the first feature in J(g), janchor, as the anchor feature. For every decision node k

that has no leaf node directly attached to it and that has symmetric subtrees on the left and

the right, we add constraint:

zk
janchor

= vk
g . (6)

Second, we relax the formulation by redefining every binary variable zk
j that is not directly

attached to a leaf node and every binary variable v, such that they are continuous on the

8

interval [0, 1]. This is because the formulation already ensures that, even if not declared as

integers, these variables take on the value 0 or 1 in an optimal solution. This reduction of

declared integer variables makes the optimization process faster (Günlük et al., 2019).

Three variations

Upon the presented formulation, Günlük et al. (2019) provides three extra variations: con-

trolling overfitting due to combinatorial branching, handling numerical features and maximizing

sensitivity/specificity.

First of all, Günlük et al. (2019) introduce two sets of constraints that can be used to restrict

the maximum number of features to us in one split. This keeps the tests ‘simple’ and thereby

should prevent the DT from becoming too specific for the training dataset, leading to overfitting

and thus having a significantly lower performance on the test dataset. For every k ∈ K, decision

variable mk
g is required to decide whether the split with at most max.card features makes the

observations flow to the left or the right. So, we have∑
j∈J(g)

zk
j ≤ max.card + (|J(g)| −max.card)(1−mk

g) , (7)

∑
j∈J(g)

zk
j ≥ (|J(g)| −max.card)(1−mk

g) . (8)

Second, as mentioned before, numerical variables are just treated as categorical variables. In

this case, a possible problem might be that a numerical group can take on many different values.

Therefore, one should bin several numerical values together to reduce the number of features be-

longing to the numerical group. Also, counterintuitive tests might arise. (For example, whether

a student missed 4, 6 or 13 classes or not.) These tests might help in making good distinctions

for the training dataset, but are prone to making the DT too specific for this training set and

thereby overfitting, leading to a lower performance on the test dataset. To prevent this and

ensure interpretable DTs, we can enforce tests of the form “less/greater than or equal to”. To

this end, we introduce binary decision variables wk
g that enforce all zk

j in group k up to and in-

cluding a certain feature to take on the value 1 or 0 and the remaining features the other value.

Hence, replacing the categorical structure with a numerical structure for particular variables.

This leads to the following sets of constraints:

zk
j ≥ zk

j+1 − wk
g ∀j, j + 1 ∈ J(g) , (9)

zk
j ≥ zk

j−1 − (1− wk
g) ∀j, j − 1 ∈ J(g) . (10)

Finally, the ODT can be used to maximize the number of correctly classified observations

with a certain label, while guaranteeing a minimum level of accuracy on the training dataset

9

for observations of the opposite label. Heuristics such as CART cannot guarantee such minima.

We define this minimum accuracy as s. When maximizing correct classifications of observations

with a positive label, we can introduce constraint∑
i∈I−

∑
b∈B−

ci
b ≥ ds|I−|e (11)

and alter the objective function to ∑
i∈I+

∑
b∈B+

ci
b . (12)

To do the same for observations with a negative label, we interchange the sums in (11) and (12).

3.4 Extension Imbalanced Data

Building upon the methodology and research from Günlük et al. (2019), we introduce our first

extension. In many real world scenarios, the data to classify is unbalanced, meaning that one

of the class-labels is overrepresented in the data. Therefore, it is of interest to investigate the

performance and applicability of an ODT on such an imbalanced dataset. It is not insightful

to focus on mean accuracy as performance measure, since the observations belonging to the

underrepresented class are often the observations that are most important to correctly predict.

Without loss of generality, we will define the underrepresented class as the positive class and

the overrepresented class as the negative class.

Consider the real world scenario in which correctly classifying observations of the positive

class is evaluated a certain times higher than classifying negative observations. For this pur-

pose, we use the aforementioned hyperparemeter C, which puts a lower weight than 1 to the

observations that belong to the negative class. We compare the resulting ODT with a CART

that has this weight incorporated in its fitting procedure. We do so for different weights. In

practise, the weight should be chosen that corresponds with the preferences of the DT user. The

performance measure Score (S) we use, is as follows:

S = TP + C(TN)
TP + FN + C(TN + FP) , (13)

where TP is the number of True Positives, the positive observations that are classified as such.

TN is the number True Negatives, the negative observations that are classified as such. FN is

the number of False Negatives, the positive observations that are classified as negative. FP is

the number of False Positives, the negative observations that are classified as positive.

For each weight level, we compare the ODTs with different topologies and DTs from CART

with different maximum depths based on their performance on a validation set. Using these

results, we choose the best ODT and DT from CART to ultimately compare them based on

10

their performance on a holdout sample.

Additionally, we verify if the third variation of the formulation by Günlük et al. (2019) can

be used to guarantee a certain accuracy for the positive class (True Positive Rate, TPR) in

a more effective way than using CART for different weights to find the weight for which the

desired TPR is reached.

4 Computational Results

In order to get the solutions from the MILP problems, the code is written in Python 3.7 and

solved with IBM ILOG CPLEX 12.10.0. For Tables 1 to 3 a dual core Intel i5-5200 2.2 GHz

CPU is used. The rest of the results were found by using a 6 core Intel i5-8400 2.8 GHz CPU.

4.1 Replication

For the replication of the results by Günlük et al. (2019), we made use of the same 10 datasets.

The dataset ‘heloc’ is from the FICO Community (2018) and the other nine from the UCI

Machine Learning Repository (Dua & Graff, 2017). All of these datasets fit the purpose of

the research, as they contain a binary variable to be classified. Small differences exist between

number of observations and features corresponding to each dataset in our research and those

belonging to the same datasets in the paper by Günlük et al. (2019). This has mainly to do with

undocumented alterations of the raw datasets, so that we cannot reconstruct the exact same

preprocessed datasets. Günlük et al. (2019) did not describe how they binned the numerical

features together for the ‘heloc’ dataset. We tried to approach the same number of features

(253) by clustering the numerical values together in bins of size 10 (resulting in 269 features).

Therefore, we denote the dataset as ‘heloc-clustered’. We prepocessed all datasets to have as

final column the class labels with ones and zeroes to indicate a positive or negative class. The

remainder of each dataset (representing the characteristics used for classifying) is altered to have

values j = {1, 2, ..., |J |}. The summary description of the datasets can be found in Table 14 in

Appendix B together with the summary description from the paper by Günlük et al. (2019).

Performance in terms of solving speed

Before we look at the performance of the ODT in terms of accuracy, we will investigate the

running times for different formulation enhancements and sizes of the training sample, but only

for topology 3. Just as Günlük et al. (2019), we look at datasets ‘a1a’, ‘bc’, ‘krkp’, ‘mush’ and

‘ttt’. First, we run with training samples of different sizes for each dataset such that a solution is

found for at least one formulation within 1800 seconds (30 minutes), whereas Günlük et al. (2019)

11

had enough time available to run for 3 hours. The results can be seen in Table 1, where we put

an asterisk (*) if no optimal solution can be found within 30 minutes. We use 5 variations of the

formulation. The first (Nothing) is a formulation for which Constraints (4) and (5) do not have

the sum in the constraints themselves, but an extra constraint,
∑

b∈B ci
b = 1 ∀i ∈ I, is used.

The second (Relax) and third (Anchor) are the strengthened formulation as defined by (1) to (5),

with the relaxation of some binary variables and anchoring of features respectively. The fourth

(No Strength) is the same as the first (Nothing), but contains the two enhancements of anchoring

and relaxing some integer variables. Finally, the fifth formulation is the strengthened formulation

with both enhancements. We see that the strengthened formulation with enhancements is faster

(4 to 11 times) than the No Strength formulation, except for when the ‘mush’ dataset is used.

This result was also obtained by Günlük et al. (2019), though with different absolute solution

times due to differences in hardware. Whether anchoring or relaxation of variables speeds up

the process more, is different per dataset and for dataset ‘krkp’ not consistent with Günlük et

al. (2019), as the Anchor formulation outperformed Relax and No Strength for us, but not for

them. Overall, the strenghtened formulation and enhancements speed up the solving process,

except for the ‘mush’ dataset, where the most basic formulation is the quickest.

Table 1: IP Strengthening for depth 3 with varying samples - solving time in seconds as table
entries

Dataset Observations Nothing Relax Anchor No Strength All

a1a 100 * * * * 769
krkp 200 * 1606 326 653 60
bc 300 * 532 53 309 42
mush 500 4 43 74 97 138
ttt 300 * 1503 394 1198 218

Now, we look at the relation between running time and the tree topology and size of the

training set. We do so for datasets ‘bc’ and ‘krkp’ as can be seen in Table 2. The solution times

tend to increase for larger trees and sample sizes for both datasets, but the magnitudes of these

increments differ significantly. Though having the same number of nodes, the topology IB takes

more time to solve than symmetric topology 3.

12

Table 2: Solution times (in seconds) for krkp and bc without feature selection

Topology Data set 100 200 300 400 500 600

depth2 krkp 1 3 5 8 11 19
depth2.5 krkp 7 16 30 54 67 105
depth3 krkp 58 60 100 301 371 642
depthIB krkp 75 228 381 876 683 1545

depth2 bc 0 1 2 3 6 6
depth2.5 bc 1 40 94 226 479 707
depth3 bc 0 9 42 * * *
depthIB bc 0 10 52 * * *

Next, we investigate the effect of deleting candidate groups that do not seem to help in

correctly classifying the observations (and refer to this as feature selection). To do so, we first

apply the CART algorithm to each dataset with a random 90% of the observations for 5 runs.

Then, we delete all groups that were not used in at least 4 runs. Note that it was unclear

how exactly Günlük et al. (2019) did their group selection, but the similarity is that we all

used CART to identify the groups that did not seem important. We replicate Table 2, but

now without these deleted groups and show the results in Table 3. In most scenarios, we see a

decrease in solving time of about 50%.

Table 3: Solution times (in seconds) for krkp and bc using feature selection

Topology Data set 100 200 300 400 500 600

depth2 krkp 1 2 3 3 6 8
depth2.5 krkp 7 16 35 39 57 97
depth3 krkp 36 51 77 152 239 381
depthIB krkp 56 128 166 306 353 610

depth2 bc 0 1 1 2 3 4
depth2.5 bc 0 19 65 138 214 323
depth3 bc 0 3 67 911 * *
depthIB bc 0 5 26 1381 * *

Performance in terms of accuracy

In the rest of the research, we will focus more on classification (training) and prediction (testing)

accuracy as measure of performance. Note that all following results are averages from 5 runs

with a solution time limit of 5 minutes and that, if not stated otherwise, training sizes of 600

observations are used. For most of the runs, except for results for topology 2, the training phase

was cut off after this 5 minute limit due to time constraints, indicating that the trees are often

not optimal for the training sample. Note that even a DT that is optimal for the training sample

does not have to be optimal for the testing sample.

13

We present the results of ODT compared to that of CART (with maximum depth of 3)

in Tables 4 (without feature selection) and 5 (with feature selection, as described previously).

If the highest testing accuracy of an ODT topology is at least 1% larger than that of CART,

we highlight it in bold, and visa versa for the testing accuracy of CART. We define such a

difference as significant. When not using feature selection, the ODT performed significantly

better than the CART for 7 scenarios and visa versa for only 1. This seems to show that the

ODT performs better than CART for similar depths. Feature selection only improved the ODT

performance for three datasets (heloc clustered, krkp, mush), but the testing accuracies only

decreased for the ‘ttt’ dataset. In the paper by Günlük et al. (2019), feature selection improved

performance for five datasets and deteriorated for three datsets. Therefore, we do share the

conclusion from Günlük et al. (2019) that feature selection could indeed improve performance,

but emphasize that it could also have a negative effect. Considering the presence of overfitting,

only for 5 (a1a, heloc clusterd, krkp, ttt, student) out of 10 datasets the gap between training

and testing accuracy for the best performing ODT was larger than for CART-D3. Thus, we

have no indication that overfitting is more of a problem for ODT in comparison to a heuristic

based method like CART.

Table 4: The average training (testing) accuracy with 5 mins limit without feature selection.

Dataset Depth 2 Depth 2.5 Depth 3 Depth IB CART-D3

a1a 81.7 (79.3) 83.6 (80.1) 83.1 (77.9) 83.7 (78.1) 80.8 (79.6)
bc 96.8 (95.7) 97.8 (93.7) 98.2 (93.7) 98.3 (92.8) 96.1 (94.5)
heloc clustered 73.8 (65.6) 74.9 (64.7) 74.5 (63.2) 74.4 (64.7) 68.1 (68.9)
krkp 87.4 (86.8) 93.8 (93.8) 93.8 (93.7) 93.2 (92.8) 90.4 (90.8)
mush 99.5 (99.3) 100.0 (99.5) 100.0 (99.5) 100.0 (99.5) 98.6 (98.1)
ttt 72.7 (66.3) 77.7 (72.3) 79.9 (72.4) 80.8 (76.5) 74.9 (74.2)
monks-1 78.2 (73.6) 84.2 (75.9) 89.4 (84.1) 100 (100) 76.5 (77.7)
votes 96.2 (94.5) 96.8 (94.1) 97.3 (94.1) 98.0 (97.3) 96.8 (94.5)
heart 79.4 (76.3) 82.8 (70.4) 82.8 (70.4) 85.3 (73.3) 81.4 (71.1)
student 77.2 (73.5) 79.4 (73.5) 80.3 (65.0) 79.0 (66.0) 76.3 (73.5)

Table 5: The average training (testing) accuracy with 5 mins limit with feature selection.

Dataset Depth 2 Depth 2.5 Depth 3 Depth IB CART-D3

a1a 81.7 (79.3) 83.6 (80.1) 83.2 (78.2) 83.8 (78.1) 80.8 (79.6)
bc 96.8 (95.7) 97.8 (94.9) 98.2 (93.3) 98.4 (93.3) 96.1 (94.5)
heloc clustered 73.8 (66.1) 75.5 (64.0) 75.7 (61.8) 75.3 (62.9) 68.1 (68.9)
krkp 87.4 (86.8) 93.8 (93.8) 93.8 (93.7) 94.3 (94.1) 90.4 (90.8)
mush 99.5 (99.4) 100.0 (99.8) 100.0 (99.8) 100.0 (99.8) 98.6 (98.1)
ttt 72.7 (66.3) 77.7 (72.3) 80.0 (72.3) 80.3 (75.7) 74.9 (74.2)
monks-1 78.2 (73.6) 84.2 (75.9) 89.4 (84.1) 100 (100) 76.5 (77.7)
votes 96.2 (94.5) 96.8 (95.5) 97.3 (93.6) 98.0 (97.3) 96.8 (94.5)
heart 79.4 (76.3) 82.8 (70.4) 82.8 (70.4) 85.3 (73.3) 81.4 (71.1)
student 77.2 (73.5) 79.4 (73.5) 80.3 (65.0) 79.0 (66.0) 76.3 (73.5)

14

Additionally, we look at the effect of the size of the training sample on the testing accuracy.

The results are shown in Table 6. For dataset ‘a1a’ no conclusion can be drawn on the effect of

increasing sample size, as this effect differs per topology. From the results for datasets ‘krkp’ and

‘heloc clusterd’ we learn that the effect of training size on testing accuracy can change. E.g. for

‘heloc clusterd’, we see that testing accuracy drops when going from 600 observations to 1200,

but increases again when going from 1800 to 2400. Testing accuracies stay the same among all

trainings sizes for ‘mush’. More importantly, these results show that large training samples are

often not required to achieve high testing accuracy and, for a given topology, testing accuracy

can substantially differ per training size.

Table 6: Comparison of training (testing) accuracy across training data sizes with 5 minutes
limit and feature selection

Dataset Topology 600 1200 1800 2400

a1a 2 82.0 (78.0) 81.9 (79.9) - -
krkp 2 86.8 (87.6) 86.8 (87.0) 86.6 (87.4) 86.6 (87.8)
mush 2 99.4 (99.3) 99.5 (99.3) 99.4 (99.3) 99.4 (99.4)
heloc clustered 2 68.7 (69.3) 72.1 (67.8) 70.7 (68.2) 70.2 (68.9)

a1a 2.5 82.4 (79.9) 82.5 (79.5) - -
krkp 2.5 82.5 (82.1) 93.7 (93.9) 93.6 (94.1) 93.7 (94.2)
mush 2.5 99.9 (99.9) 100.0 (99.9) 99.9 (99.9) 99.9 (99.9)
heloc clustered 2.5 68.6 (69.5) 71.9 (68.0) 69.6 (67.9) 68.6 (68.4)

a1a 3 81.2 (79.9) 82.0 (79.6) - -
krkp 3 85.5 (85.2) 93.7 (93.9) 92.2 (92.4) 88.9 (89.2)
mush 3 100 (100) 100.0 (99.9) 100.0 (100.0) 100.0 (100.0)
heloc clustered 3 69.0 (69.2) 70.2 (67.3) 68.9 (67.0) 68.7 (68.3)

a1a IB 81.2 (75.5) 81.5 (79.3) - -
krkp IB 75.3 (74.8) 91.9 (92.0) 87.9 (88.4) 73.3 (73.3)
mush IB 100 (100) 100.0 (99.9) 100.0 (99.9) 100.0 (100.0)
heloc clustered IB 68.8 (69.5) 70.0 (67.4) 68.7 (68.0) 68.4 (68.4)

Throughout the research, we used four different topologies. Now, we will choose the best

topology for ODT via cross-validation and then compare testing accuracy and tree size with

CART. In Table 7 we present our results. Note that we first do feature selection as described

before. For every dataset, we reserve 10% of the observations as holdout sample for final testing.

From the remaining 90%, we run 5 validation rounds for each topology by training with 600

observations (or 90% of this 90% when the dataset is too small) and report (validation) accuracy

on the remaining observations of this 90%. Then, we take the number of leaves of the best

topology in each run and report the average over the 5 runs. Additionally, we find the topology

that has the highest average validation accuracy over the 5 runs. Then, we use the 5 resulting

trees of this topology to classify the observations in the holdout sample and report the average

15

(testing) accuracy. For CART, Günlük et al. (2019) say they do not impose a maximum depth,

train with 90% of the observations as training sample and report accuracy on the holdout sample.

However, this cannot yield an average number of leaves as CART seems to be carried out only

once and this number of leaves is much (around 10 times) smaller than was the case in our

initial replication. Therefore, we choose to run 5 validation runs for several maximum depths

with 81% as training sample (so 90% of the 90%) and 9% as validation sample, leaving the

holdout sample. Then, we take the tree that showed best on average for validation and take

the average number of leaves from these 5 trees (of same maximum depth). Finally, we train

on the 90% with the optimal maximum depth from validation and report the accuracy of the

tree applied on the holdout sample. In many validation runs for ODT, there is not one single

dominant topology. Therefore, we report average number of leaves in two ways: in the fourth

column for when the smaller or simpler topology is chosen in case of a tie and in the fifth column

for when the larger or more sophisticated topology is chosen. From the results in Table 7 we

can conclude that CART outperforms the ODTs if it is allowed to grow large and for ODT no

optimal solution is found on the training sample within 5 minutes (datasets krkp, ttt, student).

If such an optimal solution is found, ODT is better for some datasets (bc, monks-1, votes), but

CART for others (a1a, heloc clustered, mush, heart). Additionally, the larger ODTs perform

better or equally well as the small ODTs for 7 datasets.

Table 7: Comparison of testing accuracy and size of cross validated trees vs. CART

Dataset ODT Optimal leaves (small) leaves (large) CART ave. leaves

a1a 77.7 Yes 5.2 6 81.2 8
bc 98.8 Yes 4.8 6.4 93.8 16
heloc clustered 66.7 Yes 5.2 5.2 68.6 16
krkp 91.2 No 6.8 8 99.4 50.2
mush 99.5 Yes 6.4 8 100 9
ttt 76 No 8 8 94.9 90
monks-1 100 Yes 8 8 91.3 47
votes 96.8 Yes 8 8 94.9 13.4
heart 73.3 Yes 6.8 7.6 78.3 18.6
student 61 No 7.6 8 65.1 68.2

Three variations

As mentioned, Günlük et al. (2019) propose three variations of the formulations. The first is to

prevent overfitting by restricting the number of features that can be tested upon at one decision

node. For the comparison, we take topologies 2 and 3, datasets ‘a1a’ and ‘mush’ (as used by

Günlük et al. (2019)) and three scenarios. The first (Simple) is where only one feature can

be used in the test, the second (Comb-con) has max.card of two and the third (Comb-unc) is

16

unconstrained, so the base case scenario. It was not mentioned by Günlük et al. (2019) that

relaxing binary variables cannot be done when restricting the maximum number of features to

use at a decision node, as this will sometimes result in variables zk
j taking on values between 0

and 1. We show the results in Table 8. We question whether Günlük et al. (2019) indeed only

used binary variables, as their results for Comb-unc are inconsistent with results that should be

equal and are reported in other tables. For ‘a1a’ we see that the training accuracy for scenario

Simple is the smallest, but not the testing accuracy. In combination with that the testing

accuracy for Comb-con is larger than for Comb-unc, this result is in line with the expectation

that unconstrained combinatorial branching leads to overfitting. For the ‘mush’ dataset, the

results are not straightforward on which scenario is best. This is in contrast with the results of

Günlük et al. (2019), mainly because of the fact that for the Simple scenario, we achieve similar

testing accuracy results for topology 3, whereas their testing accuracy for Simple is inferior to

that of the other scenarios. As the results on only these two datasets are insufficient to draw

conclusions, we also use datasets ‘bc’ and ‘heloc clustered’. For both datasets, we find that

Simple yields the smallest gaps between training and testing accuracy, whereas for Comb-con

the highest testing accuracies are obtained. Therefore, restricting the number of features to use

in a split can indeed prevent overfitting and improve performance. For best application, it is to

be investigated what is the optimal maximum number of features for each dataset and topology.

The second variation is to compare the performance of the situation in which the categorical

structure of the formulation is replaced with a numerical structure for numerical variables. As

can be seen from the results in Table 9, gaps between training and testing accuracy close in many

cases when the numerical variation (rows with ‘n’) is applied. Also, this numerical structure

yields higher testing accuracy than the base categorical (rows with ‘c’) structure. This suggests

that, due to restricting the number of possible tests, the second variation can help to prevent

overfitting and achieve better out of sample performance.

The third variation is about maximizing the classification of observations from a specific

class, while guaranteeing a minimum accuracy on the training sample for observations of the

other class. We consider the scenario in which an accuracy for observations of the positive class

(so the True Positive Rate, TPR) should be guaranteed (while maximizing the True Negative

Rate, TNR). From the results in Table 10, for dataset ‘bc’ and topologies 2 and 3, we see that

gaps exist between guaranteed training TPR and testing TPR of around 4% for topology 2 and

9% for topology. This seems to imply that a ‘buffer’ on the guaranteed TPR should be taken

into account when setting the constraint on the training sample, in order to achieve the desired

TPR on the testing sample.

17

Table 8: The average training (testing) accuracy for combinatorial vs. simple branching using
depth 2 and depth 3 trees

Depth 2 Depth 3

Dataset Simple Comb-con Comb-unc Simple Comb-con Comb-unc

a1a 80.6 (80.8) 81.4 (80.5) 81.7 (79.2) 81.6 (79.4) 82.2 (79.5) 82.8 (79.0)
bc 94.7 (95.2) 96.4 (97.1) 96.8 (95.7) 96.1 (95.4) 97.5 (96.1) 98.0 (93.5)
heloc clustered 68.6 (67.3) 70.9 (68.5) 73.8 (65.5) 68.8 (68.0) 70.6 (68.6) 73.9 (65.0)
mush 97.3 (96.9) 99.5 (99.3) 99.5 (99.2) 99.7 (99.5) 100.0 (99.4) 100.0 (99.7)

Table 9: The average training (testing) accuracy/solution time with or without constraints for
numerical features

Dataset n/c Depth 2 Depth 2.5 Depth 3 Depth IB

a1a n 81.7 (79.2) 83.7 (79.6) 83.6 (79.6) 84.0 (79.1)
c 82.0 (78.0) 82.4 (79.9) 81.2 (79.9) 81.2 (75.5)

bc n 96.8 (96.4) 97.6 (95.7) 97.9 (94.7) 97.8 (96.1)
c 96.8 (95.9) 97.8 (94.2) 98.1 (95.4) 98.2 (93.3)

heloc clustered n 70.7 (69.3) 71.4 (67.6) 70.6 (67.8) 70.3 (69.2)
c 68.7 (69.3) 68.6 (69.5) 69.0 (69.2) 68.8 (69.5)

student n 74.8 (72.0) 76.1 (74.0) 77.4 (71.0) 76.6 (71.5)
c 77.2 (73.5) 79.4 (73.5) 80.3 (65.0) 79.0 (66.0)

Table 10: TPR vs. TNR, breast cancer data, depth 2 and depth 3 trees

Depth 2 Depth 3

Training Testing Training Testing

TPR TNR TPR TNR TPR TNR TPR TNR

100 87.6 97.1 88.9 100 96.5 91.9 96.0
99.5 91.4 95.2 94.4 99.5 97.2 90.3 97.2
99 93.6 95.1 94.4 99 97.3 93.2 96.7

98.5 94.8 96.2 96.0 98.5 98.0 90.3 97.2
98 95.7 96.5 97.1 98 98.1 88.9 97.2
97 96.5 93.2 97.3 97 98.8 86.1 97.6
96 97.0 92.5 97.4 96 99.3 85.1 97.6
95 97.4 91.8 97.6 95 99.5 85.4 97.6

4.2 Extension Imbalanced Data

For the purpose of investigating how well the ODT can handle imbalanced data, the ‘Bank

Marketing Data Set’ is used from the UCI Learning Repository (Dua & Graff, 2017). This

‘bank’ dataset has 4120 observations of which only 10% belongs to the positive class, 20 groups

and a total of 209 features. We cluster features into 10 bins of the same size for the groups ‘age’,

‘duration’ and ‘euribor3m’, as these take on many different numerical values. Furthermore, we

do feature selection using CART as described before. We take 25% as holdout sample, 50% for

training and 25% for validation. In order to find the best topology for ODT and best maximum

18

Table 11: Testing scores for best ODT versus best CART

Weight ODT CART

1 0.906 0.913
0.5 0.881 0.874
0.25 0.863 0.845
0.1 0.842 0.828

depth for CART, 5 validation runs are carried out with a random 90% of the training sample for

different topologies and maximum depths. In Figure 2, the resulting average validation ‘Score’

measure for different trees can be seen. For CART, we find that the best maximum depths

obtained are 3, 4, 2 and 4 for weights 1, 0.5, 0.25 and 0.1 respectively. For ODT, we observe

that topology 2 is best for all weights. Using these topologies and maximum depths for the

corresponding weights, we find Scores by applying the trees on the holdout sample. Again, we

do 5 runs with a random 90% of the training sample and report the average Scores in Table 11.

We notice that ODT scores higher for all 3 scenarios with weights deviating from 1, suggesting

that using weights C in the optimization process yields better performance than using the same

weights in CART.

(a) CART for different maximum depths (b) ODT for different topologies

Figure 2: Validation scores for different trees

Besides looking at the differences in Score between ODT and CART, we also consider the

possibility of ODT to guarantee a minimum TPR. In contrast with solving for only one ODT,

guaranteeing this minimum TPR for CART implies finding the correct tree by running validation

runs for several candidate trees. We consider minimum TPRs of 80, 85, 90 and 95. Again,

we do 5 runs using the aforementioned training and validation sample, for which we report

average results. In Appendix D, we show the tables used for finding the weights and maximum

depths for which CART achieves the minimum validation TPR. In Table 12, we present the

validation TPR and TNR (in brackets) for different topologies and guaranteed TPRs on the

19

Table 12: TPR (TNR) for different trees and guaranteed training TPRs on the bank dataset

ODT CART

Training TPR topology 2 topology 2.5 topology 3 topology IB [depth, 1/weight]

95 91.8 (79.7) 92.2 (51.0) 91.2 (51.4) 94.4 (52.7) 96.8 (67.5) [3,15]
90 85.3 (84.9) 87.1 (59.5) 86.9 (63.9) 90.4 (63.0) 91.5 (74.3) [4,17]
85 80.9 (88.4) 77.6 (87.2) 81.9 (69.5) 84.4 (72.3) 85.8 (83.7) [3,6]
80 75.5 (90.1) 76.3 (87.4) 77.2 (76.6) 79.2 (78.4) 81.9 (86.8) [2,2]

training sample, as well as for the best resulting validation CART with its maximum depth and

weight in square brackets. For ODT, we see very low testing TNR or large gaps between the

guaranteed training TPR and achieved validation TPR. Consequently, one should also search

for the optimal guaranteed TPR for the training sample, just as such a search should be carried

out for the weights for CART. However, for validation TPRs of at least 90, 85 and 80, the ODT

with topology 2 scores higher TNRs (79.7, 84.9, 88.4) than CART (74.3, 83.7, 86.8). Therefore,

we conclude for this particular imbalanced dataset that ODT achieves higher performance for a

given TPR than CART, though a search for the correct guaranteed training TPR is also required

in order to achieve the desired TPR on a holdout sample.

4.3 Extension dealing with many numerical values

As mentioned by Günlük et al. (2019), the computation time of the ODT depends on the size

of the dataset if it contains continuous variables. Namely, if the size of the dataset grows, the

number of unique numerical values for the continuous variables also tends to grow and thereby

the number of features to be considered in the solving process. Günlük et al. (2019) already

mention binning these continuous values into 10 features of equal size, whereby the number of

features remains constant if the dataset grows. We will test this method of creating a constant

number of bins per numerical group on the ‘heloc’ and ‘bank’ dataset by comparing the Score

(see 13) for 5, 10, 15 and 20 bins and our previous approach to just generate bins of size 10.

We use weight C = 1 for the ‘heloc’ dataset and C = 0.5 for ‘bank’. In Table 13 we see the

results for topologies 2 and 3 and CART (with a maximum depth chosen after validation). When

looking at the four ways of creating the same amount of bins per variable, we see that 15 bins

performs best for ‘heloc’ and 10 bins for ‘bank’. It seems that too few bins does not allow for

sufficient flexibility for the DT to split and too many bins leads to overfitting. Interestingly,

our unsupported approach of just creating bins of size 10 performs best for ‘heloc’, but not for

‘bank’.

20

Table 13: Training (testing) score for different feature binning approaches

Dataset feature binning Depth 2 Depth 3 CART

heloc

5 bins 0.614 0.592 0.661
10 bins 0.619 0.603 0.671
15 bins 0.635 0.608 0.676
20 bins 0.602 0.595 0.663
bins of size 10 0.650 0.642 0.698

bank

5 bins 0.831 0.831 0.842
10 bins 0.830 0.841 0.844
15 bins 0.829 0.829 0.836
20 bins 0.829 0.831 0.838
bins of size 10 0.811 0.799 0.820

5 Conclusion and Discussion

Throughout the research, we have been verifying the results from Günlük et al. (2019) on the

use of an Optimal Decision Tree (ODT). Our conclusions matched on the relative differences in

terms of running times between the different topologies, training sample sizes and formulation

variants. We see that, with 2020 hardware standards of consumer PCs, ODTs can be found

within 5 minutes for a small (4 leaf nodes) topology and well performing Decision Trees (DTs)

for larger topologies. This shows that the usage of MILP formulation in generating DTs is useful

in practise, as it yields good DTs in reasonable time. In terms of accuracy, MILP generated DTs

with a maximum of 8 leaves perform better than or equally well as equally sized trees generated

by CART, for 9 out of the 10 datasets used. However, if the CART is allowed to grow larger,

the MILP DT can often not match its testing accuracy, in particular for datasets on which

an optimal tree on the training sample can not be found within the 5 minutes time limit. The

difference in testing accuracy for different training sizes did not seem substantial, which gives the

important insight that the MILP formulation can generate a good DT without needing a large

training size. However, the optimal training size is dataset-specific and large differences (> 1%)

between testing accuracies of different training sizes might exist for a given topology. Therefore,

it could be worthwhile to generate DTs with different training sizes and use the training size

that yields best accuracy on a validation set. Analogously to Günlük et al. (2019), we saw that

restricting the number of features to use in a single test can prevent overfitting and improve

performance. In further research, recommendations could be developed on the maximum number

of features to use in different scenarios. Also for the variation of imposing a ‘less/greater than

or equal to’ structure for numerical variables, we saw that the variation can help to prevent

overfitting and achieve higher out of sample performance. However, this is dataset and topology

specific. Therefore, in practice the numerical structure should first be validated on a validation

21

set to check whether it indeed is an improvement compared to the basic categorical structure

of the formulation. The possibility for ODT to impose a minimum accuracy for observations of

one particular class unfortunately has the restriction that this minimum accuracy can only be

guaranteed for the training sample, so that a gap between training and testing accuracy should

be accounted for.

We saw that using weight parameter C can be used to achieve high accuracy for the un-

derrepresented observations in an imbalanced dataset. Additionally, for our ‘bank’ imbalanced

dataset, ODT performed better than the best possible tree generated by CART in terms of

weighted accuracy. By using the guaranteed minimum accuracy (True Positive Rate, TPR) on

the training sample, a slightly lower (≈ 4%) TPR for the out of sample observations can be

achieved. Therefore, such a gap between training TPR and testing TPR should be accounted

for. Additionally, this approach of guaranteeing the TPR (or TNR) and maximizing the TNR

(or TPR) yields a higher overall accuracy for ODT than when using the tree generated by CART

that has the highest TNR while yielding the required minimum TPR. Hence, the ODT can be

used in practice to replace CART for imbalanced datasets, though its superiority should be ver-

ified on more datasets. As mentioned by Günlük et al. (2019), a larger dataset with continuous

variables will contain more numerical features and so the complexity of the MILP problem to

solve is not independent of the sample size. Therefore, we compared our unsupported approach

to deal with many numerical features with the approach to create a fixed number (5, 10, 15

or 20) of equally sized bins with features from each numerical group, after which these bins

are used as the features in the formulation. This approach yields a number of features that is

independent of the sample size. No common conclusion could be drawn from the results for

the ‘heloc’ and ‘bank’ dataset. For now, the optimal binning strategy seems data specific, but

further research could possibly yield rules of thumb on the ratio between the number bins to

use and numerical features present.

We share the conclusion from Günlük et al. (2019) that Decision Trees constructed by using

MILP formulation outperform trees of the same size produced by CART, but not larger trees.

Due to limited time available, we had to impose time limits on solving the MILP formulations.

It would be of interest to see how well the ODT performs if enough time is available to indeed

solve to optimality. Additionally, we showed that the MILP approach can yield superior results

for imbalanced datasets in comparison with CART, although this should be verified for more

imbalanced datasets.

22

References

Aghaei, S., Gómez, A., & Vayanos, P. (2020). Learning Optimal Classification Trees: Strong

Max-Flow Formulations. ArXiv, abs/2002.09142 . Retrieved 01/07/2020, from https://

arxiv.org/abs/2002.09142

Bertsimas, D., & Dunn, J. (2017). Optimal Classification Trees. Machine Learning, 106 (7),

1039-1082.

Blanquero, R., Carrizosa, E., Molero-Ŕıo, C., & Romero Morales, D. (2019). Optimal Ran-

domized Classification Trees. In Conference proceedings : 2nd Spanish Young Statisticians

and Operational Researchers Meeting (p. 53). Madrid: Universidad Complutense de Madrid

* Servicio de Publicaciones.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression

Trees. Taylor and Francis.

Dua, D., & Graff, C. (2017). UCI Machine Learning Repository. Retrieved 30/06/2020, from

http://archive.ics.uci.edu/ml

FICO Community. (2018). Explainable Machine Learning Challenge. Retrieved 18/06/2020,

from https://community.fico.com/s/explainable-machine-learning-challenge

Gambella, C., Ghaddar, B., & Naoum-Sawaya, J. (2019). Optimization Models for Machine

Learning: A Survey. ArXiv, abs/1901.05331 . Retrieved 01/07/2020, from https://arxiv

.org/abs/1901.05331

Günlük, O., Kalagnanam, J., Menickelly, M., & Scheinberg, K. (2019). Optimal Decision

Trees for Categorical Data via Integer Programming. Retrieved 21/06/2020, from http://

www.optimization-online.org/DB HTML/2018/01/6404.html

23

https://arxiv.org/abs/2002.09142
https://arxiv.org/abs/2002.09142
http://archive.ics.uci.edu/ml
https://community.fico.com/s/explainable-machine-learning-challenge
https://arxiv.org/abs/1901.05331
https://arxiv.org/abs/1901.05331
http://www.optimization-online.org/DB_HTML/2018/01/6404.html
http://www.optimization-online.org/DB_HTML/2018/01/6404.html

Hara, S., & Hayashi, K. (2016). Making Tree Ensembles Interpretable. ArXiv, abs/1606.05390 .

Retrieved 01/07/2020, from https://arxiv.org/abs/1606.05390

Misic, V. V. (2019). Optimization of Tree Ensembles. ArXiv, abs/1705.10883 . Retrieved

01/07/2020, from https://arxiv.org/abs/1705.10883

Palczewska, A., Palczewski, J., Robinson, R. M., & Neagu, D. (2013). Interpreting Random

Forest Models Using a Feature Contribution Method. In 2013 IEEE 14th International Con-

ference on Information Reuse Integration (IRI) (p. 112-119).

24

https://arxiv.org/abs/1606.05390
https://arxiv.org/abs/1705.10883

A Topologies by Günlük et al. (2019)

Figure 3: Topology 3 (Figure 2 on page 8)

Figure 4: Topologies 2, 2.5, IB (Figure 3 on page 10)

25

B Summary description of the datasets

Table 14: Summary description of the datasets

Dataset # Observations % Positive # Features # Groups

a1a 1478 26% 112 14
breast-cancer-wisconsin (bc) 683 65% 89 9

chess-endgame (krkp) 3196 52% 73 36
mushrooms (mush) 8124 52% 117 22

tic-tac-toe-endgame (ttt) 958 65% 27 9
monks-problems-1 (monks-1) 432 50% 17 6

congressional-voting-records (votes) 435 61% 48 16
spect-heart (heart) 267 79% 44 22

student-alcohol-consumption (student) 395 67% 137 30
FICO Explainable ML Challenge (heloc) 10459 48% 269 23

Figure 5: Table 1 from the paper by Günlük et al. (2019) on page 17: Summary description of
the datasets

C Programming

In order to generate the Decision Trees using Mixid-integer Programming Problem (MILP)

or CART, we have made use of Python 3.7. We used the DOcplex package (IBM Decision

Optimization CPLEX Modeling for Python) to let CPLEX solve the MILP and the scikit-learn

package to perform CART. Our code is too long to add in this appendix and is therefore available

in a compressed ZIP-file.

26

D Extension Imbalanced Data

Table 15: TNR for CART with guaranteed training TPR > 80

1/Weight Maximum depths
1 2 3 4 5 6 7 8 9 10

1
2 86.8
3 86
4 86
5 86 82.8
6 85.1 83.7 84.7 85
7 85.1 82.1 84.5 85.3
8 84.4 81.7 84.4 84.4 84.5
9 83.2 82.1 82.8 80.6 82.3

10 83.2 78.3 81.1 80.4 82.2
11 83.2 78.4 79.4 80.4 80.6
12 83.2 76.9 80.9 79.5 80.7 82.5
13 83.2 73.9 80.7 79.3 80 80.9
14 83.2 67.3 77.5 79.3 78.5 80.8
15 83.3 67.5 77.3 79.3 78.4 80.6
16 35.5 83.3 67.5 77.3 79.3 78.4 80 81.5
17 0 83.3 67.5 74.3 79.3 77.1 80 81.5
18 0 83.3 67.5 71.8 78.2 76.3 80.2 81.8
19 0 83.3 67.5 71.2 77.7 76.4 80.1 80.9
20 0 83.3 67.5 71.2 77.7 76.4 80.1

27

Table 16: TNR for CART with guaranteed training TPR > 85

1/Weight Maximum depths
1 2 3 4 5 6 7 8 9 10

1
2
3
4
5 82.8
6 83.7
7 82.1
8 81.7
9 82.8 80.6

10 78.3 81.1 80.4
11 78.4 79.4 80.4
12 76.9 80.9 79.5
13 73.9 80.7 79.3 80
14 67.3 77.5 79.3 78.5
15 67.5 77.3 79.3 78.4
16 67.5 77.3 79.3 78.4
17 0 67.5 74.3 79.3 77.1
18 0 67.5 71.8 78.2 76.3
19 0 67.5 71.2 77.7 76.4
20 0 67.5 71.2 77.7 76.4

Table 17: TNR for CART with guaranteed training TPR > 90

1/Weight Maximum depths
1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10
11
12
13 73.9
14 67.3
15 67.5
16 67.5
17 0 67.5 74.3
18 0 67.5 71.8
19 0 67.5 71.2
20 0 67.5 71.2

28

Table 18: TNR for CART with guaranteed training TPR > 95

1/Weight Maximum depths
1 2 3 4 5 6 7 8 9 10

1
2
3
4
5
6
7
8
9

10
11
12
13
14 67.3
15 67.5
16 67.5
17 0 67.5
18 0 67.5
19 0 67.5
20 0 67.5

29

	Introduction
	Related Work
	Theoretical Framework
	Decision Trees
	Mixed-Integer Linear Programming
	Formulation by gunluk
	Extension Imbalanced Data

	Computational Results
	Replication
	Extension Imbalanced Data
	Extension dealing with many numerical values

	Conclusion and Discussion
	Topologies by gunluk
	Summary description of the datasets
	Programming
	Extension Imbalanced Data

