
ERASMUS UNIVERSITY ROTTERDAM
Erasmus School of Economics

Bachelor Thesis [Econometrics & Operations Research]

Adaptive Kernel Search: A
General-Purpose MIP

Heuristic

Name student: Karel Bleichrodt
Student ID number: 485093

Supervisor: Rowan Hoogervorst
Second assessor: Prof.dr. Dennis Huisman

Date final version: July 5, 2020

The views stated in this thesis are those of the author and not necessarily
those of the supervisor, second assessor, Erasmus School of Economics or

Erasmus University Rotterdam.



Abstract

I investigate the Adaptive Kernel Search (AKS) heuristic introduced by Guas-
taroba et al. (2017). AKS is designed to provide solutions to general Mixed
Integer Programs (MIPs). The heuristic works with a set of promising vari-
ables, named the kernel. The promising variables are likely to be non-zero in
an optimal solution. According to the kernel, sub-problems of the MIP are
constantly solved. AKS offers options to manage the trade-off between a high
solution quality and a low computational time. The CPLEX solver with a time
limit of 1 hour and 5 hours was utilized as a benchmark method. The results in-
dicate that the solution quality of AKS is slightly inferior to the solution quality
of CPLEX, but AKS can be associated with a reduced computation time.
I introduce an extension to AKS. The extension attempts to establish an im-
provement, by resolving a weakness of the current AKS framework. The ex-
tension variant appears to compete well with the current framework of AKS.
To obtain a representative image of the performance of the extension variant,
further research is required.



Contents

1 Introduction 1

2 Literature Review 2

3 Methodology 4
3.1 Initialization Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Assessment Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Updating the kernel for easy instances . . . . . . . . . . . 7
3.2.2 Updating the kernel for hard instances . . . . . . . . . . . 7

3.3 Improvement Phase . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Accommodating general integer variables . . . . . . . . . . . . . 8
3.5 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.5.1 AKS-EXT approach . . . . . . . . . . . . . . . . . . . . . 9

4 Results 10
4.1 AKS - Variants and parameters . . . . . . . . . . . . . . . . . . . 11
4.2 Comparison of CPLEX and AKS . . . . . . . . . . . . . . . . . . 12
4.3 Comparison with original paper . . . . . . . . . . . . . . . . . . . 16
4.4 AKS-EXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Conclusion 21

References 24

A Comparison with original paper - CPLEX 25



1 Introduction

Linear Programming (LP) optimizes a maximization or minimization problem
subject to numerous linear constraints. LP problems only contain continuous
variables, variables that can take any possible value between the lower bound
and the upper bound. Mixed Integer Programs (MIPs) extend Linear Programs,
as they also contain variables that are exclusively allowed to take an integer
value. A large variety of logistics problems can be formulated as MIPs. Exam-
ples of such logistics problems are Vehicle Routing Problems, one-dimensional
or multi-dimensional Knapsack Problems, Facility Location Problems and Trav-
elling Salesman Problems. MIP problems have many applications such as the
delivery of goods, resource allocation, telecommunication networks, electricity
regulation, agricultural or industrial production planning etc.

In this thesis, I aim to replicate the results of Guastaroba et al. (2017). They
developed a heuristic called Adaptive Kernel Search (AKS), which is a heuristic
for MIPs. AKS is an extension of Kernel Search (KS), which was introduced
by Angelelli et al. (2010). KS maintains a set of promising variables, named the
kernel. The promising variables are likely to be non-zero in an optimal solution.
KS consists of two main stages. In the first stage, the kernel is initialized and a
feasible solution is obtained. The second stage concerns improving the solution.
According to the kernel, sub-problems of the actual MIP are constantly solved.

A disadvantageous point of KS is that the heuristic requires problem-specific
tuning. For separate problems, alternative parameter settings need to be ex-
amined in order to perform well. AKS resolves this issue. Additional to the
two stages of KS, AKS appends an extra stage. The extra stage assesses the
specific instance and adapts the heuristic, according to certain characteristics of
the instance. This makes AKS well applicable for any arbitrary MIP, therefore
having an exceptionally wide reach of practical applications.

Guastaroba et al. showed that their heuristic has numerous advantages over
solving MIPs using the CPLEX solver. AKS can be used to achieve, on aver-
age, better solutions than CPLEX, given that both methods use a time limit
of 5 hours. By changing a few parameters, several variants of AKS can be
implemented easily. These variants provide great flexibility in the well-known
trade-off between solution quality and computational time. CPLEX with a time
limit of 5 hours was compared to a variant of AKS that has a strong focus on a
relatively short computational time. This variant of AKS was able to drastically
reduce the computational time at the expense of a small deterioration in the
quality of the solutions.

Guastaroba et al. also compared AKS to Variable Decomposed Neighbour-
hood Search (VNDS), a state-of-the-art heuristic by Lazic et al. (2010). AKS
outperformed VNDS on the large set of instances tested. Analyzing the different
variants of VNDS and the different variants of AKS, the AKS variants proved
to be superior in solution quality as well as in computational time. The limited
time of seven weeks that is reserved for this thesis excluded the possibility of
generating the VNDS results. Therefore, AKS will solely be compared to solving
MIPs using the CPLEX solver.

1



Besides aiming to replicate the results, I will propose an extension of the
current AKS framework. This extension modifies the stage wherein the search
for an improving solution is executed.

The main research questions of this thesis are the following:

(1) How does AKS perform on solution quality and computation time in
comparison with the CPLEX solver?

(2) To what extent do my results match the results of Guastaroba et al.
(2017)

(3) How does the extension perform on solution quality and computation
time in comparison with the current AKS framework?

Sub-questions that arise for the second main research question are:

(a) What are possible explanations for any differences?

(b) Can these explanations fully account for the differences?

To answer the research questions, I will run a subset of the instances that
are tested in the replicated paper. These instances are predominantly obtained
from the MIPLIB 2010 library (http://miplib2010.zib.de/miplib2010.php).

2 Literature Review

This section consists of two parts. First, the literature review on the search for
a feasible solution is conducted. In the second part, developments in the field
of general-purpose MIPs are discussed.

For complicated (large-size) MIP problems, it is often very challenging to
find a feasible solution. An efficient heuristic, that is able to reduce the time
before discovering a feasible solution, is desired. Fischetti et al. (2005) were
among the first to tackle this issue, with the Feasibility Pump (FP) heuristic.
The FP heuristic is centered around two points (say x̄ and x∗). Both points
partly satisfy the MIP feasibility criteria. x̄ is feasible for the Linear Program-
ming relaxation, but is not necessarily integer. x∗, on the other hand, is integer
and not necessarily LP feasible. The obtaining of x∗ is done through a simple
rounding procedure. The idea of the FP heuristic is to iteratively reduce the
distance between x̄ and x∗, eventually arriving at a feasible solution. Since
the introduction of the FP heuristic, a lot of effort has been made in order
to explore further improvements to the FP scheme. Achterberg and Berthold
(2007) have slightly altered the original FP scheme. Because the solutions of
the FP heuristic were often poor, they focused on constructing a superior LP
feasible solution (x̄). Other authors have concentrated on ameliorating the in-
teger solution (x∗). In the original FP scheme, x∗ was obtained using a simple
rounding procedure. In numerous papers, the attempt was made to improve
the FP heuristic by considering more advanced rounding procedures. For in-
stance, Fischetti and Salvagnin (2009) investigate the possible advantages of

2

http://miplib2010.zib.de/miplib2010.php


inserting a diving-like rounding procedure in the FP heuristic. This procedure
is based on rounding and constraint propagation. Baena and Castro (2011) also
introduce an alternative rounding procedure. Their Analytic Center Feasibility
Pump(AC-FP) first determines the analytic center of the MIP problem. Sub-
sequently, using a line segment, points that are candidates to become feasible
solutions are explored. An interesting recent development in the area of find-
ing a feasible solution is the paper by Adamo et al. (2020). The authors use
a framework that resembles the approach introduced by Ghiani et al. (2015),
who start from a feasible MIP solution and attempt to improve it. Ghiani et al.
use two main phases. The outline is that the variables of the MIP are divided
amongst several clusters in the first phase. In the second phase, each cluster is
examined, where all variables outside the cluster are fixed to their value in the
feasible solution that was supplied to the heuristic. Adamo et al. (2020) have
altered this framework, such that it is able to start with an infeasible solution.
The goal is no longer to constantly improve a solution, but merely to find a fea-
sible solution. Adamo et al. have named their framework a learn-and-construct
framework. On three well-known problems, the learn-and-construct framework
outperforms the FP heuristic and another state-of-the-art MIP solver in both
success rate and average computational time.

Now, the literature review regarding the concept of general-purpose MIPs is
conducted. As Balas et al. (2001) note, compared to the amount of research on
problem-specific MIPs, research on general-purpose MIPs is scarce. An overview
of the major developments in the field of heuristics for general-purpose MIPs
is discussed in the paper by Fischetti and Lodi (2011). Regarding this the-
sis, a notable method is the Relaxation Enforced Neighborhood Search (RENS),
introduced in Berthold (2007). This heuristic makes use of a rounding proce-
dure to simplify the MIP. RENS is used in the extension of this thesis and will
be explained in more detail in the corresponding section. Guastaroba et al.
(2017) state that, to the best of their knowledge, the Variable Neighbourhood
Decomposition Search by Lazic et al. (2010) is the state-of-the-art heuristic for
solving general 0-1 MIPs. VNDS forms sub-problems of the original problem.
In each iteration, several variables are fixed, leading to a smaller problem. More
specifically, all variables are sorted first. This sorting occurs according to the
criteria of non-decreasing order of the absolute value of the distance between the
variable’s value in the LP relaxation and the variable’s value in the incumbent
solution. The first k variables of the sorted list are then fixed and the remain-
ing sub-problem is solved. Lazic et al. have investigated numerous instances
to assess the performance of VNDS. They concluded that, on the investigated
set of instances, VNDS outperformed the CPLEX solver, as well as three other
successful MIP solution methods. On the domain of general-purpose MIPs, the
article by Gamrath et al. (2019) is a noteworthy recent addition. Gamrath et
al. have created a framework that provides feasible solutions easily. This can
reduce the time that a solver needs to prove optimality. The authors developed
their methods around three types of global structures (Cliques, Variable bound
relations and Variable locks) within MIP problems. According to the global
structures, certain variables are fixed, leading to a smaller problem. They cre-

3



ate three different heuristics, each based on a different type of global structure.
The proposed heuristics managed to find a feasible solution for approximately
60% of the instances that were tested. The supplying of a feasible solution was
accompanied by a reduced average solving time to optimality.

3 Methodology

Let B be the set of all binary variables and I be the set of all general integer
variables of a MIP. If one attempts to solve this MIP in an exact way, all the
variables in B and I need to be considered simultaneously. This often results in
a substantial computation time for large instances. The AKS heuristic avoids
this scenario. For the sake of convenience in explaining, I will first show the
framework of AKS with only binary variables and then extend to incorporate
the general integer variables.

First, the AKS heuristic aims to execute preliminary steps that result in
finding a feasible solution and judging the difficulty of the instance. After that,
the main idea is to divide the actual MIP into many sub-problems, in order to
efficiently improve the current solution. Consider the previously mentioned set
B that contains all binary variables of a MIP. Then, in AKS each sub-problem
considers a subset U ⊂ B, where U is meant to consist of promising variables.
Let MIP(U) denote the sub-problem wherein all variables in B \ U are fixed to
zero.

A crucial component of AKS is the kernel, which is a set of promising vari-
ables, and will be abbreviated by K. The binary variables that are not in the set
K are divided into buckets. The sequence of buckets is {Ai}NBi=1 , where NB is the
total amount of buckets. Each sub-problem consists of solving MIP(K ∪ Ai),
thus solely including the variables in K plus the variables in a single bucket
Ai. Note that all continuous variables are included in the sub-problems. It is
hard to determine an appropriate fixed kernel up front. Therefore, the kernel
K is constantly adjusted by adding variables, as will be explained later in this
section.

The pseudocode of the AKS heuristic is given in Algorithm 1. Throughout
the explanation of this algorithm, zUB represents the value of the best solution
discovered so far by the heuristic and ÑB represents the maximum amount of
buckets that are considered. The algorithm can be divided into three phases,
the Initialization Phase, the Assessment Phase and the Improvement Phase.

4



Algorithm 1 AKS framework

(Initialization Phase)
Step 1: Solve the root node LP relaxation, create initial kernel K. The binary
variables that are not in K are added to an ordered list L.
Step 2: Solve MIP(K)
if MIP(K) is infeasible then

Step 3: Apply the method getFeasible (see Algorithm 2)
end if

(Assessment Phase)
Step 4: Assess the difficulty of the instance
if Instance is easy then

Step 5a: Adjust the kernel using the ”easy procedure”
end if
if Instance is hard then

Step 5b: Adjust the kernel using the ”hard procedure”
end if
Step 6: Create buckets Ai to insert the non-kernel variables (i = 1,2, . . . ,
NB)

(Improvement Phase)

while i ≤ min{NB, ÑB} do
Step 7: Solve MIP(K ∪Ai)
Step 8: Use the result of 7 to update the kernel

end while

3.1 Initialization Phase

The goal of the Initialization Phase is to obtain a (as-good-as-possible) feasible
solution. The first step of the Initialization Phase concerns solving the root
node of the MIP. Recall that zUB stands for the objective value of the current
best solution that the heuristic has discovered. If solving the root node resulted
in a feasible solution to the MIP, then zUB is set to the corresponding objective
value. Otherwise, zUB is initialized as ∞.

Next, to form an initial kernel, the root node LP relaxation of the MIP is
considered. The solution to the final linear program solved at the root node is
denoted as xLP . All binary variables that have a value larger than zero in xLP

are added to the kernel. The size of the initial kernel is denoted by the parameter
m. The binary variables with a value of zero in xLP are added to an ordered
list L, sorted by non-decreasing reduced costs. These reduced costs comprise
a slight difference between my implementation and the implementation in the
original paper. The authors of the original paper used the reduced costs of the
root node LP relaxation. Unfortunately, CPLEX does not provide a straight-
forward way to extract these. Instead, the reduced costs of the LP relaxation
are used. The consequence of this difference is that the ordered list will likely

5



be slightly different. This means that the sub-problems are non-identical, which
might lead to a deviation in the results.

In the final step of the Initialization Phase, MIP(K) is solved, with zUB as
objective cutoff value. If this doesn’t result in a feasible solution, the method
getFeasible (see Algorithm 2 below) is invoked. This method keeps adding
variables to the kernel, until MIP(K) becomes feasible. Here, w is a pre-specified
parameter. In getFeasible, the objective cutoff value zUB is used as well. Once
a feasible solution is found, zUB is updated, after which the Initialization Phase
is terminated.

Algorithm 2 getFeasible

while MIP(K) is infeasible do
- Add the first w ×m variables of the ordered list L to K.
- Solve MIP(K)

end while

3.2 Assessment Phase

In the Assessment Phase the difficulty of the instance is assessed. The difference
in difficulty of solving between MIPs can be large. Because of this difference, it
is necessary to make distinctions between instances, in order for AKS to perform
well. The measure of difficulty that will be used is the time required to solve the
last MIP of the Initialization Phase (tlast). This is either the MIP(K) with the
initial kernel or the last restricted MIP solved in the method getFeasible. An
instance can be judged to be easy, normal or hard, making use of the parameters
teasy and thard. If tlast ≤ teasy the instance is considered easy and if tlast ≥
thard the instance is considered hard. If neither of these criteria is met, then
the instance is judged to be normal.

Depending on the judged difficulty the kernel from the Initialization Phase
is reconsidered. A larger kernel will generally lead to better solutions in the
upcoming Improvement Phase, but these solutions are accompanied by longer
running times. When AKS is implemented with a time limit, an excessive kernel
size might also reduce the quality of the solutions in the Improvement Phase.
A trade-off thus has to be made. For easy instances the kernel is enlarged, until
the computation time of the sub-problem becomes higher than threshold teasy.
This likely leads to better solutions in the Improvement Phase and the fact that
the running time is still smaller than teasy is an indication that the sub-problems
in the Improvement Phase won’t need excessive computation time. For normal
instances the kernel is not altered. For hard instances, certain variables in the
kernel will be fixed. This is done to prevent excessive computation time of the
sub-problems in the upcoming Improvement Phase. The details of updating
the kernel when an instance is labeled as ”easy” or ”hard” are discussed in the
following subsections.

6



3.2.1 Updating the kernel for easy instances

The pseudocode of the updating of the kernel for easy instances is given in
Algorithm 3. Let q be a fixed parameter. In each iteration, the first q × m
variables of the ordered list L are put in a set K+ (and subsequently deleted
from the ordered list). Then, MIP(K ∪K+) is solved with the current zUB as
objective cutoff value and

∑
i∈K+ xi ≥ 1 as additional constraint. The objective

cutoff value specifies that we are only interested in improving solutions. The
additional constraint imposes that at least one of the binary variables in K+

should be equal to one. At the end of each iteration, all variables in K+ are
added to K. If MIP(K ∪K+) has a solution, the corresponding objective value
becomes the new zUB (note that the objective cutoff value ensures that this
solution is at least as good as the solution associated with the previous zUB).
As long as the time required to solve MIP(K ∪K+) is smaller than teasy and
the kernel doesn’t contain all binary variables, new iterations are performed.

Algorithm 3 Updating kernel for easy instances

while tlast ≤ teasy AND K 6= B do
- Let K+ consist of the first q ×m variables of the ordered list L.
- Solve MIP(K ∪K+)
- Update tlast to the time that was needed to solve MIP(K ∪K+). Add all
variables of K+ to K.

end while

3.2.2 Updating the kernel for hard instances

The pseudocode corresponding with the altering of the kernel for hard instances
is given in Algorithm 4. The solution of the root node LP relaxation, xLP , is
investigated. The binary variables (j ∈ B) for which the value in xLPj is greater
than 1− ε are permanently fixed to 1. Here, ε is a tolerance parameter that is
specified before running the AKS heuristic.

Algorithm 4 Updating kernel for hard instances

for j ∈ B do
if xLPj > 1− ε then

Fix value xj = 1
end if

end for

The last step of the Assessment Phase, regardless of the judged difficulty of
the instance, is the division of non-kernel variables into buckets. The bucket
size is set equal to m, which was the initial kernel size after solving the root
node LP relaxation. The first m variables of the ordered list L are added to the
first bucket etc.

7



3.3 Improvement Phase

In the Improvement Phase, AKS will evaluate the sub-problems that each in-
clude one bucket Ai. To repeat, NB represents the total number of buckets and
ÑB is a parameter that indicates the maximum amount of buckets to consider.
For the first min{NB, ÑB} buckets in {Ai}NBi=1 , the problem MIP(K ∪ Ai) is
solved. In a similar way as in the updating of the kernel for easy instances, zUB

is set as the objective cutoff value and the constraint
∑
j∈Ai

xj ≥ 1 is added to
MIP(K ∪ Ai). Then, if a solution to MIP(K ∪ Ai) is found, the corresponding
objective value is the new value of zUB . All binary variables of Ai that had a
non-zero value in the best discovered solution to MIP(K ∪Ai) are added to K.

Considering a situation where a time limit is used, it is possible that for
a certain MIP(K ∪ Ai−1) a feasible solution is found, but was not proven to
be optimal (i = 2, 3, . . . , NB). If this scenario occurs, then a solution to the
following MIP(K ∪ Ai) could be an improving solution in which all variables
in Ai are zero. However, the constraint that was introduced in the previous
paragraph would smother the possibility of finding this improving solution. A
change is required. Let xH denote the solution associated with zUB . The
constraint then becomes

∑
j∈Ai∪{j∈K:xH

j =0} xj ≥ 1 instead of
∑
j∈Ai

xj ≥ 1.

3.4 Accommodating general integer variables

For general integer variables, a separate ordered list L̄ is kept, which is also
created after determining the initial kernel. Likewise, separate buckets Āi are
created. Contrary to the separate ordered list and the separate buckets, binary
variables and integer variables are merged into a single kernel.

The procedure for fixing general integer variables (j ∈ I) when an instance
is labeled as ”hard” is the following. Let R(xLPj ) be the value of xLPj rounded

to the nearest integer. If R(xLPj ) − ε ≤ xLPj ≤ R(xLPj ) + ε, then variable j is

permanently fixed to R(xLPj ).
As explained in previous subsections, w ×m variables from the ordered list

L are constantly added to the kernel in getFeasible and q ×m variables from L
are constantly added to the kernel when an instance is easy. Appending general
integer variables, these same amounts of variables are taken from the ordered
list L̄ and inserted in the kernel.

The Improvement Phase of AKS will focus on one bucket of binary variables
and one bucket of integer variables simultaneously. Generally, the amount of
buckets with binary variables is not equal to the amount of buckets containing
general integer variables. If there are no more buckets containing one variable
type, only the bucket of the other variable type is taken. For the ease of explana-
tion, I will continue using the notation MIP(K∪Ai). From now on, MIP(K∪Ai)
also contains a bucket of general integer variables (Āi), when there is at least
one bucket of general integer variables remaining.

There is a minor change in the constraint that is added to all MIPs in the
Improvement Phase. The original constraint was:

∑
j∈Ai

xj ≥ 1. To include

8



the variables coming from the bucket of general integer variables, this constraint
becomes:

∑
j∈Ai∪Āi

xj ≥ 1.

3.5 Extension

The extension that is introduced will accommodate a major modification of the
Improvement Phase of AKS. The extension variant of AKS is named AKS-EXT.
In the extension variant, the parameter ÑB is set to five, meaning that only the
first five buckets are considered. The variables from the sixth bucket onward
are deleted and will not be used anywhere in the extension.

Currently, when solving MIP(K∪Ai), the variables in the remaining buckets
are ignored. In AKS-EXT a variant wherein the variables in the remaining
buckets are transformed into continuous variables and then added to MIP(K ∪
Ai) is explored. From now on, this modified MIP is indicated by MIP∗(K∪Ai).
Note that a feasible solution to MIP∗(K ∪Ai) is not necessarily feasible to the
original problem. In attempt to accomplish a feasible solution to the original
problem, the solution to MIP∗(K ∪ Ai) is combined with the Local Search
heuristic Relaxation Enforced Neighborhood Search (RENS) of Berthold (2007).
RENS is a relatively simple Local Search heuristic, which is desirable, as the
AKS part of the extension is expected to consume considerable computation
time. RENS starts from a certain solution and performs a fixation procedure on
the variables, in order to decrease the size of the problem. RENS was designed
to start from the solution of the LP relaxation, but in AKS-EXT RENS will
start from solutions to MIP∗(K ∪ Ai). The λ solutions to MIP∗(K ∪ Ai) with
the lowest objective value are explored. Logically, when the amount of solutions
to MIP∗(K ∪Ai) is smaller than λ, all solutions are explored.

An advantageous point of AKS-EXT is that, because of MIP∗(K∪Ai) partly
taking into account the variables in the other buckets, the heuristic can ”antici-
pate” towards the future wherein the variables in the other buckets are added as
integer variables. In the current version of AKS, these variables are completely
ignored, making anticipation towards the future impossible. The approach of
AKS-EXT is described in more detail below.

3.5.1 AKS-EXT approach

In the beginning of each iteration of the Improvement Phase, the sub-problem
MIP∗(K ∪ Ai) is solved. If no feasible solution is found the iteration is ended
immediately. If solving the modified MIP did result in a feasible solution, the
iteration proceeds as follows, consistent with the procedure of RENS.

Recall that a total of λ solutions can be supplied to RENS. Consider a
specific solution to MIP∗(K ∪ Ai). First, all variables in the kernel and bucket
Ai are fixed to their value in this solution. By construction, these variables
are guaranteed to be integer. Then, the variables in the other buckets, which
were added as continuous variables in MIP∗(K ∪ Ai), are considered. The
binary variables in the other buckets that took an integer value in the solution
to MIP∗(K ∪ Ai) are fixed to their value. The approach for general integer

9



variables in the other buckets is slightly different. Similar to the binary variables,
the general integer variables that had an integer value in the solution to the
modified MIP are fixed to their value. For the general integer variables that
don’t satisfy this property, rebounding is applied. Rebounding assures that
general integer variables are restricted to two possible values. The fractional
value in the solution to MIP∗(K ∪Ai) is rounded down to form a lower bound
for the general integer variable. An upper bound for the general integer variable
is obtained by rounding up the fractional value. By now, the problem size
has likely been reduced. The resulting MIP, containing a combination of fixed
variables and non-fixed variables, is solved with zUB as objective cutoff value.
This MIP is labeled as MIPRENS , as this is the MIP that results from executing
the fixation procedure of RENS. If a feasible solution to MIPRENS is acquired,
it is a feasible and improving solution.

The kernel regulation of AKS-EXT is as follows. If MIP∗(K ∪ Ai) was
solved, the best discovered solution is analyzed. All variables in bucket Ai that
had a non-zero value in this best discovered solution are added to the kernel.
Furthermore, if a variable in the other buckets (added as a continuous variable)
took a value greater or equal to 1-γ in the best discovered solution it is added to
the kernel. In the case that one or multiple feasible solutions to MIPRENS are
obtained, the kernel regulation goes as follows. All variables that are not yet in
the kernel and take a non-zero value in any of the examined feasible solutions
to MIPRENS are added to the kernel.

4 Results

The Results section will provide the AKS results and will compare them to the
results from the CPLEX solver. Also, the extent to which the replicated AKS
results are in line with the results of Guastaroba et al. (2017) is exhibited. Last,
the performance of the extension is assessed.

The total running time of all solving methods or heuristics of Guastaroba
et al. is very large. They presented a total of 137 instances, nearly all instances
were run for at least ten hours. Considering the limited amount of weeks re-
served for a thesis, a subset of instances used in the original paper was selected.
The authors of the original paper defined three categories: Lazic, MIPLIB-2010-
OS and MIPLIB-2010-NOS. The first category consists of instances investigated
by Lazic et al. (2010). The second category contains instances from the MIPLIB
2010 library (http://miplib2010.zib.de/miplib2010.php) that have a proven op-
timal solution. The last category is a set of instances from the MIPLIB 2010
library with an unknown optimal solution. The subset of 25 instances that I
composed is a mix of instances from these three categories. Four of the in-
stances in the Lazic category were selected, along with eleven instances in the
MIPLIB-2010-OS category and ten instances belonging to the MIPLIB-2010-
NOS category. The subset contains instances on which AKS performed well
(according to the results of Guastaroba et al. (2017)), as well as instances on
which AKS performed poorly.

10

http://miplib2010.zib.de/miplib2010.php


4.1 AKS - Variants and parameters

In this subsection, multiple variants of AKS are introduced and all parameters
are set.

The AKS heuristic was implemented with a time limit of 5 hours. This vari-
ant is labeled as AKS(5h). The time allocated to every part of AKS is organized
as follows. The solving process of the root node and the LP relaxation are only
limited by the total time of five hours. After that, the time allocated to solving
MIP(K) has to be defined. One tries to achieve a reasonable allocation time
by estimating the amount of sub-problems that will be solved after MIP(K). If
the method getFeasible is not called and the instance is labeled as ”normal”,
the number of sub-problems that involve the buckets (named α in the next sen-
tence) can easily be calculated. Then, also counting the sub-problem MIP(K)
itself, it seems reasonable to set the time allocated to solving MIP(K) to the
time remaining divided by (α + 1). In the case that the method getFeasible is
applied, each sub-problem within this method will have an allocated time that
is twice as high as that of MIP(K). If the time allocated to a sub-problem in
getFeasible exceeds the remaining total time for AKS(5h), the allocated time is
set equal to the remaining time. In the procedure of enlarging the kernel for easy
instances, each sub-problem is allocated the same amount of time as MIP(K).
In the Improvement Phase, each sub-problem is allocated an equal fraction of
the remaining time. When a sub-problem doesn’t need all of its allocated time,
the saved time is equally distributed amongst the sub-problems that have not
been processed yet.

An advantageous point of AKS is that it provides a possibility to control the
trade-off between solution quality and computation time. The trade-off is mod-
ulated by several variants of AKS. A variant of AKS that has a stronger focus
on low computation time, compared to the previously introduced AKS(5h), is
AKS-TL. AKS-TL imposes additional time and node limits. For the restricted
MIP associated with the initial kernel (MIP(K)) and each restricted MIP in
the Improvement Phase, I limit the time without finding a feasible solution to
700 seconds and the time without improving the incumbent solution to 1200
seconds. For instances labeled as ”easy” the time limits regarding finding a
feasible solution and improving the incumbent solution are slightly different,
600 seconds and 1500 seconds respectively. The amount of nodes explored be-
fore finding a feasible solution is limited to 10,000,000. In a similar way, the
amount of nodes explored before improving the incumbent solution is limited to
80,000,000. To clarify, none of these limits are in operation for the root node,
the LP relaxation and any restricted MIP solved in getFeasible.

Finally, a variant of AKS that is most tilted towards a low computation
time is introduced: This variant is named AKS-TBL. AKS-TBL adopts all time
limits of AKS-TL. Additionally, the time allocated to solving the root node is
limited to 7200 seconds. Furthermore, the time spent on the rest of the heuristic
is bounded to 3600 seconds. Last, the maximum amount of buckets considered
(ÑB) is set to five.

Now, the parameters that were introduced in Section 3 are set. The param-

11



eter w that is used to regulate the amount of added variables in the method
getFeasible is given a value of 0.30. The parameter q, functioning to determine
the amount of variables to add for easy instances, is set to 0.35. For AKS(5h)
and AKS-TL, the maximum amount of buckets considered in the Improvement
Phase (ÑB) is calibrated such that all buckets are taken into account. For

AKS-TBL, as mentioned above, ÑB is set to five. The time limit for an in-
stance to be considered easy (teasy) equals 10 seconds. Contrary to teasy, thard
is instance-specific, meaning that it will be determined during the execution of
the AKS heuristic. The value of thard is the time allocated to the last MIP of
the Initialization Phase (this is MIP(K) or the last restricted MIP solved in the
getFeasible method).

4.2 Comparison of CPLEX and AKS

In this subsection, the performance of AKS in my implementation is assessed.
Running the CPLEX solver for five hours (CPLEX(5h)) and running the CPLEX
solver for 1 hour (CPLEX(1h)) serve as benchmark methods. To clarify, all re-
sults in this subsection are obtained by my implementation of AKS and running
the CPLEX solver on my computer.

As in the original paper, the results will be presented in the form of compar-
ison with respect to running the CPLEX solver for 5 hours. Let z denote the
best discovered objective value of CPLEX(5h) and zot denote the best discov-
ered objective value of the other method. Then, zdif is the percentage change of
the best discovered objective value belonging to the other method, compared to
z. This is calculated by the following formula: zdif = 100%× zot−z

|z| . Through-

out the rest of this thesis, zdif will also be identified as the gap. The variable t
represents the running time in seconds. When a method used all of the available
computation time, thus reaching the time limit, the value T.L. is assigned to t.
The results are shown in Table 1.

Before commenting on the results of Table 1, it is necessary to point out that
the selected subset of instances contains a bias. The testing of the total set of
instances used in Guastaroba et al. (2017) never led to a high deterioration of the
average solution quality in the AKS variants, when compared with CPLEX(5h).
For the subset of instances that I selected, a fairly large deterioration is present
in the results of Guastaroba et al. In their results the average deterioration
of these 25 instances is 4.10% for AKS(5h), 7.75% for AKS-TL and 8.46% for
AKS-TBL. These percentages of deterioration should be considered the standard
when analyzing my results.

Table 1 reveals that the average deterioration of the solution quality is
12.77% for AKS(5h). This is notably higher than the standard of 4.10%. This
high value is heavily influenced by the instances markshare2 and ns1456591,
with deviations of 100.00% and 157.44% respectively. In the original paper, re-
spective deviations of 0.00% and 61.94% were noted for these instances. AKS(5h)
managed to outperform CPLEX(5h) on three of the instances. A better or equal
solution was achieved for 14 of the 25 instances. For AKS-TL, the average dete-

12



Table 1: Comparison of AKS and CPLEX

CPLEX(5h) CPLEX(1h) AKS(5h) AKS-TL AKS-TBL

Instances z t zdif (%) t zdif (%) t zdif (%) t zdif (%) t

danoint 65.67 317 0.00 317 0.00 957 0.00 606 0.00 606

markshare2 5.0 T.L. 60.00 T.L. 100.00 T.L. 60.00 3980 140.00 2170

mkc -563.85 T.L. 0.00 T.L. 0.00 1206 0.00 1653 2.06 934

swath 478.03 T.L. 0.00 T.L. 21.98 T.L. 21.98 T.L. 21.98 3606

berlin 5 8 0 62.0 1101 0.00 1101 0.00 T.L. 0.00 1684 0.00 1713

d10200 12432.0 T.L. 0.03 T.L. 0.00 T.L. 0.04 4930 0.00 2814

germanrr 4.70959 ·107 1450 0.00 1450 0.09 4661 0.09 3910 0.09 2905

maxgasflow -4.45657·107 T.L. 0.00 T.L. 0.00 T.L. 0.00 3079 0.00 1985

opm2-z10-s2 -33826.0 17563 0.61 T.L. 0.00 T.L. 0.06 3535 0.06 2674

probportfolio 16.88 T.L. 0.00 T.L. 1.60 5020 1.60 1918 1.60 1915

queens-30 -39.0 T.L. 0.00 T.L. 0.00 T.L. 0.00 2503 0.00 2491

set3-10 195072.1 T.L. 0.05 T.L. -2.92 T.L. 7.98 2959 7.98 2864

seymour-disj-10 287.0 T.L. 0.00 T.L. 0.00 T.L. 0.00 2692 0.00 2732

triptim3 13.53 T.L. 0.00 T.L. 0.00 10486 0.00 6708 0.06 1881

tw-myciel4 10.0 T.L. 0.00 T.L. 0.00 T.L. 0.00 T.L. 0.00 3613

dano3mip 685.94 T.L. 0.27 T.L. 0.17 T.L. 2.02 4463 0.95 3606

lectsched-1-obj 81.0 T.L. 0.00 T.L. 0.00 12020 2.47 12025 3.70 2458

momentum3 342681.86 T.L. 13.90 T.L. 7.74 7696 7.74 7710 16.06 2173

n15-3 46379.0 T.L. 0.00 T.L. -0.92 7685 0.00 T.L. 0.00 5983

ns1456591 1118.04 T.L. 0.00 T.L. 157.44 T.L. 157.44 T.L. 157.44 3608

rmine14 -4267.17 T.L. 82.82 T.L. -0.31 T.L. -0.29 10085 2.84 4326

sct32 -17.77 T.L. 0.92 T.L. 8.64 9189 9.56 12998 9.64 3617

shipsched 117160.0 T.L. 1.40 T.L. 25.20 T.L. 10.69 6461 42.68 2555

sing2 1.73476 ·107 T.L. 0.10 T.L. 0.43 T.L. 0.52 17456 0.64 3652

sing245 2.56164 ·107 T.L. 0.29 T.L. 0.10 8763 0.12 9845 0.28 3421

Average 15 937 6.42 3 283 12.77 13 507 11.28 7 728 16.32 2 812

rioration of the solution quality is 11.28%. This comprises a difference with the
standard of 7.75%. The difference with the standard is predominantly caused
by the instance ns1456591. Although Guastaroba et al. reported a massive de-
terioration of 61.94% for this instance, the value of 157.44% in Table 1 clearly
surpasses it. AKS-TL improved upon CPLEX(5h) on one instance. The so-
lution provided by AKS-TL was at least as good as the solution provided by
CPLEX(5h) for 10 of the 25 instances. Interestingly, the deterioration for AKS-
TL is lower than for AKS(5h). This is caused by the relatively large gains in
the instances markshare2 and shipsched. These cases should be regarded ex-
ceptions, as an improving value for AKS-TL (compared to AKS(5h)) is never
accomplished elsewhere. Conversely, AKS(5h) arrives at a better solution than
AKS-TL for 10 out of 25 instances. The perception that AKS(5h) is more fo-

13



cused on solution quality than AKS-TL therefore remains valid. For AKS-TBL,
the average deterioration is 16.32%, much higher than the expected standard of
8.46%. Again, the instances markshare2 and ns1456591 have a dominant share
in this dissimilarity with the standard. The values of 140.00% and 157.44% in
Table 1 are accompanied by values of 50.00% and 61.94% in the original paper.
AKS-TBL was not able to find a better solution than CPLEX(5h) for any of
the instances. A solution of equal quality was found for 8 of the 25 instances.

The average computation time for CPLEX(5h) is 15937 seconds. AKS(5h) is
able to, on average, reduce the computation time to 13507 seconds. The average
time required for AKS-TL is less than 1/2 of the time needed for CPLEX(5h),
namely 7728 seconds. AKS-TBL comes with a highly reduced running time,
slightly more than 1/3 of the time that was needed for AKS-TL. AKS-TBL also
manifested itself as a faster method than CPLEX(1h).

Some results in Table 1 might appear counter-intuitive at first sight. For ex-
ample, at instance d10200 AKS-TBL arrives at a better solution than AKS-TL
(gaps of 0.00 and 0.04 respectively). This can be explained by the fact that the
limit of 3600 seconds caused the instance to be labeled as ”hard” in AKS-TBL,
leading to the fixation of variables. Due to the effective fixation of variables,
AKS-TBL was able to find better solutions in the Improvement Phase. Another
example is the running time of AKS-TL and AKS(5h) for instance sct32. AKS-
TL needed 12998 seconds, whereas AKS(5h) was completed after 9189 seconds.
In this case, the superior upper bound of AKS(5h) caused the difference. While
AKS-TL struggled to prove infeasibility in the Improvement Phase, especially
for the last five sub-problems, AKS(5h) was able to continue much faster. These
two examples serve to illustrate that, although the three different variants of
AKS can be ordered by overall focus on solution quality or computational time,
the framework of AKS justifies the occurrence of exceptions.

The results of the comparison of AKS and CPLEX are presented graphi-
cally in the box-and-whisker plots in Figure 1. The left boundary of the blue
box represents the first quartile (Q1), whereas the right boundary represents
the third quartile (Q3). The red line inside the box indicates the median. The
outliers are shown by crosses. A result is considered an outlier if its value is
more than 1.5× (Q3−Q1) below the first quartile or more than 1.5× (Q3−Q1)
above the third quartile. The black whisker indicates the non-outlier that is
furthest from the box. In the box-and-whisker plots in Figure 1(a), to keep the
figure readable, outliers with a gap smaller than -5% or larger than 45% are not
reported. Figure 1(a) confirms that outliers are the main cause for the aver-
age solution quality of AKS-TL being slightly better than the average solution
quality of AKS(5h). The Q3 boundary belonging to the box of AKS(5h) takes a
much smaller value than the Q3 boundary belonging to AKS-TL. This indicates
that the solutions of AKS(5h) are generally accompanied by less deterioration
to CPLEX(5h). Figure 1(b) provides a visualization of the computation times
of the methods. One can conclude that AKS(5h) has used all time available
(18 000 seconds) for more than half of the instances. The boxes belonging to
AKS(5h) and AKS-TL are very wide, indicating that the computation times
are widespread. For AKS-TBL, on the other hand, the box is narrow. The

14



(a) Box-and-whisker plots for the solution quality, zdif (%). Outliers smaller than
-5% or bigger than 45% are not reported.

(b) Box-and-whisker plots for the computation times, t

Figure 1: Box-and-whisker plots

15



conclusion arises that for AKS-TBL most instances require a computation time
that is close to 3600 seconds, which is the maximum time that was reserved
after solving the root node.

4.3 Comparison with original paper

In this subsection, the obtained results for the three different AKS variants are
compared to the AKS results in the original paper.

There are multiple factors that can cause differences between my results and
the results of Guastaroba et al. (2017). All the replicated results were run on
a HP Pavilion computer with 16.0 GB RAM and an AMD Ryzen 5 processor.
The operating system is Windows 10. AKS was coded in Java, with the default
amount of threads. This is not identical to the computer that was used by the
authors of the original paper. Next to the computer, the authors noted that they
used CPLEX version 12.6.0. I first attempted to use the same CPLEX version,
but unfortunately was unable to extract the root node LP relaxation from this
version. After consulting my supervisor, it turned out that extracting the root
node LP relaxation was simple in CPLEX version 12.10.0. As the root node LP
relaxation is a crucial part of the heuristic, CPLEX 12.10.0 was used to obtain
my results. The magnitude of the differences in computer and CPLEX version
was tested, the results are shown in Table A.1 in the Appendix. Fortunately,
on average, the differences appeared to be relatively small. Another difference
is that the reduced costs of the LP relaxation were used in my implementation,
whereas the reduced costs of the root node LP relaxation were used in the
implementation of the authors of the original paper. The consequence is that the
order of the ordered list is possibly modified, leading to different sub-problems.

The notation for the comparison of AKS is as follows. Let ω denote the
objective value of my results and ωg denote the objective value found by the
authors of the original paper. Then, ωdif is the percentage change of ω with

respect to ωg. More specifically, ωdif = 100%× ω−ωg

|ωg| . The variable t represents

the running time (in seconds) taken to obtain my results. When a method used
all of the available computation time, thus reaching the time limit, t is assigned
the value T.L. The running time for the results of the authors (in seconds) is
represented by tg. The difference in time, tdif , is calculated by the following
formula: tdif = 2 × t

t+tg
. If the running time are approximately equal, tdif

will take a value close to 1. This formula ensures that the impact of extreme
outliers, which ought to be expected when comparing running times, is limited.
The results of the comparison of the AKS variants are reported in Table 2.

There was an additional difference between my results and the results of
Guastaroba et al. In their paper, Guastaroba et al. state that the method get-
Feasible was invoked infrequently. In fact, only three out of all 137 instances
that they tested needed the support of the getFeasible method. One of these
three instances belongs to the subset that I selected, namely lectsched-1-obj.
Surprisingly, there were substantially more instances that needed the getFeasi-
ble method in my implementation (e.g. 9 out of 25 for AKS-TBL). This suggests

16



Table 2: AKS - Comparison to original paper

AKS(5h) AKS-TL AKS-TBL

Instances ω ωdif (%) t tdif ω ωdif (%) t tdif ω ωdif (%) t tdif

danoint 65.67 0.00 957 1.38 65.67 0.00 606 1.17 65.67 0.00 606 1.17

markshare2 10.0 150.0 T.L. 1.00 8.0 33.33 3980 1.22 12.0 100.00 2170 0.94

mkc -563.85 0.00 1206 0.13 -563.85 0.00 1633 1.02 -552.25 2.05 934 0.75

swath 583.11 21.05 T.L. 1.58 583.11 21.05 T.L. 1.63 583.11 21.05 3606 1.09

berlin 5 8 0 62.0 0.00 TL 1.00 62.0 0.00 1684 0.88 62.0 0.00 1713 0.89

d10200 12432.0 0.00 T.L. 1.00 12437.0 0.03 4930 1.13 12432.0 -0.03 2814 1.04

germanrr 4.71363·107 -0.04 4661 0.41 4.71363·107 -0.04 3910 0.88 4.71363·107 -0.04 2905 0.95

maxgasflow -4.45658·107 0.00 T.L. 1.00 -4.45658 ·107 0.00 3079 0.99 -4.45645·107 0.00 1985 0.78

opm2-z10-s2 -33826.0 -0.07 T.L. 1.00 -33806 -0.01 3535 0.53 -33806.0 -8.27 2674 0.81

probportfolio 17.15 0.00 5020 1.79 17.15 0.00 1918 1.52 17.15 0.00 1915 1.53

queens-30 -39.0 0.00 T.L. 1.00 -39.0 0.00 2503 1.11 -39.0 0.00 2491 1.11

set 3-10 189378.27 -4.11 T.L. 1.00 210638.84 2.18 2959 1.33 210638.84 2.18 2864 1.33

seymour-disj-10 287.0 0.00 T.L. 1.00 287.0 0.00 2692 1.01 287.0 0.00 2732 1.02

triptim3 13.53 0.00 10486 0.74 13.53 0.00 6708 0.78 13.54 0.06 1881 0.64

tw-myciel4 10.0 0.00 T.L. 1.00 10.0 0.00 T.L. 1.93 10.0 0.00 3613 1.71

dano3mip 687.07 0.09 T.L. 1.00 699.79 -0.65 4463 1.27 692.43 -1.69 3111 1.07

lectsched-1-obj 81.0 10.96 12020 0.80 83.0 13.70 12025 0.80 84.0 10.53 2458 0.81

momentum3 369209.68 11.07 7696 0.60 369209.68 -7.93 7710 1.43 397720.69 -3.68 2173 0.75

n15-3 45954.0 1.29 7685 0.60 46379.0 2.23 T.L. 1.60 46379.0 2.23 5983 1.13

ns1456591 2878.31 58.98 T.L. 1.00 2878.31 58.98 T.L. 1.82 2878.31 58.98 3608 1.33

rmine14 -4280.33 -0.06 T.L. 1.00 -4279.72 -4.15 10085 1.16 -4145.98 -0.18 4326 0.94

sct32 -16.23 -51.18 9189 0.68 -16.07 -48.66 12998 1.05 -16.05 -56.44 3617 1.00

shipsched 146707.0 9.77 T.L. 1.00 129705.0 -12.61 6461 1.11 167181.0 12.64 2555 0.83

sing2 1.74217·107 0.45 T.L. 1.00 1.74379·107 0.52 17456 1.27 1.74581 ·107 0.45 3652 1.00

sing245 2.56428·107 -0.03 8763 1.21 2.56428·107 -0.03 9845 1.35 2.56884·107 -0.03 3421 1.13

Average 8.32 0.957 2.32 1.200 5.59 1.030

that there was a difference in the construction of the initial kernel (the method
getFeasible is only called when MIP(K) is infeasible). Note that the initial ker-
nel is constructed by adding all variables with a strictly positive value in the
final linear program solved at the root node. It is most likely that the final linear
program solved at the root node was not always completely consistent with the
final linear program of the authors of the original paper. Although this differ-
ence presumably affects all instances, the impact was particularly large for two
instances. This concerns the instances ns1456591 and swath. The initial kernel
of these instances contained a tiny fraction of all binary and general integer
variables. Subsequently, when the method getFeasible was invoked, very few
variables were added to the kernel. The consequence was that all three AKS
variants were not able to exit the getFeasible method before reaching the total

17



time limit. This is reflected by the relatively poor results on both instances.
The results in Table 2 indicate that the solution quality of my results is lower

than the solution quality of the authors of the original paper. For AKS(5h),
the gap (ωdif (%)) takes an average value of 8.32%. The average gap for AKS-
TL equals 2.32% and for AKS-TBL it is 5.59%. These percentages are mainly
caused by a bad performance on a few instances. As mentioned, all three AKS
variants performed poorly on the instances ns1456591 and swath. Furthermore,
the results on instance markshare2 were clearly inferior to the results of the
authors of the original paper. On this particular instance, the solutions found
by the CPLEX solver (see Table A.1 in the Appendix) were also worse than the
results of the authors. It is conceivable that the new CPLEX version contains
different techniques that turn out to be disadvantageous for markshare2. All
three AKS variants improved massively on the instance sct32, in line with the
major improvement in the CPLEX solver for this instance (also shown in Table
A.1 in the Appendix). In total, my results achieved a better value for AKS(5h)
for 6 out of 25 instances and a worse value for 9 instances. The gap is between
-1% and 1% for 16 out of 25 instances. A better value for AKS-TL was achieved
8 out of 25 times. A worse value also occurred 8 times. The gap for AKS-
TL is between -1% and 1% for 15 of the 25 instances. For AKS-TBL, my
implementation resulted in a better value for 8 out of 25 instances. A worse
value was obtained for 10 instances. For AKS-TBL, the gap is between -1% and
1% for 13 out of 25 instances.

Table 2 exhibits that the average value of tdif in AKS(5h) is 0.957. This
is slightly lower than 1 and thus suggests that AKS(5h) is slightly faster in
my implementation. For AKS-TL, the average value of tdif is 1.200. This is
relatively far from 1. The increase is consistent with the fact that the getFeasible
method was invoked frequently, as the time and node limits for AKS-TL are not
in operation within getFeasible. Last, the average value of tdif corresponding to
AKS-TBL is 1.030. Presumably, the negative effect of the getFeasible method
on the running time was largely diminished by the time limit of 3600 seconds
imposed on AKS-TBL.

One can observe from Table 2 that the AKS variants, in general, tend to
perform analogously when compared to the results of the authors of the original
paper. For example, all AKS variants were accompanied by a large deterioration
of the solution quality for the instances markshare2 and lectsched-1-obj. A
considerable improvement was achieved on instance sct32. There are exceptions
regarding this pattern, such as the remarkably good solution of AKS-TL on
instance shipsched and the noticeably poor solution of AKS(5h) on instance
momentum3.

4.4 AKS-EXT

In this subsection, the results of the extension are shown and discussed. The
framework of the extension (AKS-EXT) was already explained in Section 3.5.

Two additional parameters were introduced for AKS-EXT. After solving
the modified MIP, with the variables from the other buckets that are added

18



as continuous variables, a maximum of λ solutions are passed on to the RENS
procedure. Preliminary experiments indicated that performing the RENS pro-
cedure on a particular solution is often accompanied with a short computation
time. Therefore, it seems advantageous to check a lot of solutions, and λ is set
to 50. The other parameter that was introduced is γ. This parameter deter-
mines when the variables in the other buckets, that were added as continuous
variables, will be added to the kernel. I chose γ equal to 10−5.

Next, the allocation of time for the AKS-EXT variant will be discussed. The
time reserved for solving the root node is 7200 seconds. The time spent on the
rest of the heuristic is also limited to 7200 seconds. The division of time for the
solving of MIP(K) with the initial kernel, any restricted MIP in the method
getFeasible or the MIPs in the procedure for ”easy” instances is in line with the
three other AKS variants. Note that there are two steps in the Improvement
Phase of AKS-EXT; the solving of the modified MIP with the variables of the
other buckets added as continuous variables and the MIPRENS that results
after applying the RENS procedure. For both steps, the time and node limits
regarding the search for a feasible or an improving solution are identical to those
of AKS-TL and AKS-TBL. For example, for normal and hard instances, the time
limit for improving the incumbent solution is set to 1200 seconds. Recall that
ÑB is set to five in AKS-EXT, meaning that MIP∗(K ∪Ai) will be solved with
a maximum of five different buckets Ai. These different MIPs are allocated an
equal amount of time. The time reserved for each MIP solved after the RENS
procedure is half the time that was allocated to the MIP∗(K ∪ Ai) that was
solved prior to it.

It is good to note that I tested a few parameters within the CPLEX solver
that could positively influence the results of AKS-EXT. In the current version
of AKS-EXT, the λ solutions with the lowest objective value are passed to the
RENS procedure. It is imaginable that this is not the most efficient regulation.
When these λ solutions are similar to a large extent, it is likely that many solu-
tions violate the same constraint(s). Therefore, two parameters that encourage
solution diversity were examined. The parameter SolnPoolCapacity, defining
the maximum amount of solutions that are retained, was set to both 10 and 50.
Then, the parameter SolnPoolReplace was set to 2, in order to keep the most
diverse solutions in the solution pool. In preliminary experiments, any combi-
nation of these two additional parameters appeared to influence the results in a
negative way. For this reason, I decided to omit them.

Like the results for the other AKS variants, the performance of AKS-EXT is
expressed in comparison to CPLEX(5h). Let z denote the objective value of the
best solution found by CPLEX(5h). Then, zot represents the best discovered
objective value of AKS-EXT. The percentage change (zdif ) is defined as follows:
zdif = 100%× zot−z

|z| . Last, t stands for the computational time that was needed

for AKS-EXT. Because the main difference of AKS-EXT is the modification
to the Improvement Phase, it is useful to mention the instances for which the
Improvement Phase resulted in an ameliorating solution. In Table 3, these
instances are indicated by an asterisk (∗) after their name.

19



The results on the solution quality and computation time of AKS(5h), AKS-
TL and AKS-TBL were already presented in Table 1. A brief overview of the
comparison of AKS-EXT to the other AKS variants will be provided in this
subsection. I introduce a measure to compare the solution quality. Comp(5h)
represents the comparison on solution quality to AKS(5h), Comp(TL) represents
the comparison to AKS-TL and Comp(TBL) marks the comparison to AKS-
TBL. If the zdif belonging to AKS-EXT is at least 2% lower than the zdif
of one of the other methods, the notation ”++” is given in the corresponding
comparison. When the gap of AKS-EXT is lower, but less than 2% lower,
the notation is ”+”. No difference in zdif (rounded to two decimal places) is
indicated by ”±”. The procedure for a higher zdif of AKS-EXT is alike. If the
gap is at least 2% higher the notation ”−−” is given, whereas other cases with
a higher zdif are marked by ”−”. The results are shown in Table 3.

Table 3 reports that the average gap of AKS-EXT, with respect to CPLEX(5h),
is 12.74%. Recall that a detailed comparison of the solution quality and compu-
tation time among the three AKS variants and AKS-EXT can be obtained by
inspecting the results in Table 1 and Table 3 simultaneously. Looking back at
Table 1, the average gap of AKS(5h) was 12.77%. The average gaps of AKS-TL
and AKS-TBL were 11.28% and 16.32% respectively. On average, AKS-EXT
thus delivers better solutions than both AKS(5h) and AKS-TBL, and worse
solutions than AKS-TL. The ”plus-minus” notation provides more detail in the
comparison. Interestingly, AKS-EXT outperformed all three other AKS variants
on the instances probportfolio and shipsched. AKS-EXT was able to improve
the solution of AKS(5h) for 2 of the 25 instances. A large improvement was
made for the instance shipsched, heavily impacting the average gap comparison
between AKS-EXT and AKS(5h). The solution of AKS(5h) turned out to be
superior for 12 instances. AKS-EXT supplied a better solution than AKS-TL
for 3 of the 25 instances. Conversely, the solution of AKS-TL was superior for
10 instances. AKS-EXT found a better solution than AKS-TBL for 7 out of 25
instances. Three of these seven improvements were marked with a ”++”. For 4
instances, the solution of AKS-EXT was inferior to the solution of AKS-TBL.
None of these four instances had major declining solutions, as they were all
marked by a single ”-”. Overall, AKS-EXT appears to produce lower quality
solutions than the variants AKS(5h) and AKS-TL. AKS-EXT is successful in
obtaining higher quality solutions than the variant AKS-TBL.

Furthermore, Table 3 exhibits that the average computation time required
for AKS-EXT was 4522 seconds. Examining Table 1 again I note that, on
average, 13507 seconds were needed for AKS(5h), 7728 seconds were needed for
AKS-TL and AKS-TBL required 2812 seconds. AKS-EXT can thus be placed
between AKS-TL and AKS-TBL in terms of computation time.

Last, it is noteworthy that AKS-EXT was able to find at least one solution
in the Improvement Phase for 13 of the 25 instances. For the vast majority
of the remaining 12 instances, the other three AKS variants also didn’t obtain
a solution in the Improvement Phase. Hence, this should not be regarded as
a weakness of AKS-EXT. Examples of possible causes for not exploiting the
Improvement Phase are the discovering of the optimal solution in the earlier

20



Table 3: Extension results.

AKS-EXT

Instances zdif (%) t Comp(5h) Comp(TL) Comp(TBL)

danoint 0.00 605 ± ± ±
markshare2 100.00 2768 ± −− ++

mkc (∗) 2.06 4669 −− −− ±
swath 21.98 7205 ± ± ±

berlin 5 8 0 (∗) 0.00 1732 ± ± ±
d10200 (∗) 0.00 3893 ± + ±

germanrr (∗) 0.45 3446 − − −
maxgasflow (∗) 0.00 4850 ± ± ±

opm2-z10-s2 0.06 3556 − ± ±
probportfolio (∗) 0.00 1859 + + +

queens-30 (∗) 0.00 2490 ± ± ±
set 3-10 7.98 2947 −− ± ±

seymour-disj-10 0.00 1952 ± ± ±
triptim3 (∗) 0.00 4672 ± ± +

tw-myciel4 0.00 7212 ± ± ±
dano3mip 2.10 4372 − − −

lectsched-1-obj 3.70 4850 −− − ±
momentum3 9.93 3668 −− −− ++

n15-3 0.00 9761 − ± ±
ns1456591 157.44 7208 ± ± ±

rmine14 (∗) 3.56 6845 −− −− −
sct32 (∗) 11.26 6331 −− − −

shipsched (∗) -2.82 5836 ++ ++ ++

sing2 (∗) 0.62 6565 − − +

sing245 (∗) 0.21 3754 − − +

Average 12.74 4522

(∗) AKS-EXT found a solution in the Improvement Phase

phases or never reaching the Improvement Phase due to getting stuck in the
getFeasible method.

5 Conclusion

In this thesis, I replicated the results of Guastaroba et al. (2017). I implemented
the three different variants of the Adaptive Kernel Search heuristic, named
AKS(5h), AKS-TL and AKS-TBL. The variants provide options in the trade-
off between a high solution quality and a low computation time. AKS(5h)
is mainly focused on solution quality. AKS-TL takes a step towards a lower

21



computation time, inevitably accompanied by a lower solution quality. AKS-
TBL is the variant that is most tilted towards a low computational time and
therefore also expected to have the lowest solution quality. In order to assess
the performance of the three AKS variants, a set of 25 instances was tested.

In Guastaroba et al. (2017) the average gap of the solution quality, when
compared to running the CPLEX solver with a time limit of five hours, is
reported. The subset of 25 instances that I selected contained a bias. For
all three AKS variants, the average gap that the authors of the original paper
reported on these 25 instances is much higher than the average gap that the
authors reported over their full set of 137 instances, therefore constituting a bias.
The average gap of these 25 instances in the results of Guastaroba et al. (2017)
was 4.10% for AKS(5h), 7.75% for AKS-TL and 8.46% for AKS-TBL. These
percentages should be seen as the standard. In my implementation of AKS, the
average gap was higher than the standard for all three variants. I reported an
average gap of 12.77% for AKS(5h), 11.28% for AKS-TL and 16.32% for AKS-
TBL. For all variants the differences to the standard appear to be substantial
at first sight, but could largely be explained by a small number of outliers.

The fact that AKS-TL, on average, arrives at less deteriorating solutions
compared to AKS(5h) can be seen as surprising. However, as I have illustrated,
this unexpected difference is caused by a few outliers. In general, the claim that
AKS(5h) lays more focus on solution quality than AKS-TL remains valid.

The AKS variants all go along with shorter average computation times than
running the CPLEX solver with a time limit of five hours (CPLEX(5h)). The
decrease of computation time was not very large for AKS(5h). AKS-TL, on the
other hand, required less than half of the computation time that was needed
for CPLEX(5h). The difference for AKS-TBL was the most remarkable, as it
required only slightly more than 1

6 of the computation time that CPLEX(5h)
used.

Even when taking the impact of the outliers into account, it is fair to state
that my implementation of AKS delivers solutions of a slightly lower quality
than the CPLEX solver with a time limit. However, compared to the CPLEX
solver with a time limit of five hours, AKS-TL and AKS-TBL go along with
highly reduced computation times. Remarkably, AKS-TBL required less time
than the CPLEX solver with a time limit of one hour. Concluding, there is
no reason to contest the overall conclusion of the authors of the original paper,
that AKS is a valuable addition to the toolbox of researchers and commercial
practitioners who desire to obtain high-quality solutions to MIPs in a reasonable
amount of time.

For the comparison of my results to the results of the authors of the original
paper, the average gap was 8.32% for AKS(5h). For AKS-TL, the average gap
was 2.32%. The value of the average gap was 5.59% for AKS-TBL. These dis-
similarities appear to be substantial at first sight. Inspecting the results closely,
the conclusion that the high dissimilarities are mainly caused by a few outliers
emerges. For each of the three AKS variants, a gap in the interval [-1.00%,1.00%]
is established for more than half of the instances. I attempted to find factors
that constitute significant differences between my implementation and the im-

22



plementation of the authors of the original paper. First of all, it was noted that
different computers and different versions of CPLEX were utilized. Fortunately,
an experiment indicated that the effect of these two factors is minor. Next, a
possible difference in the ordered list of non-kernel variables was noted. The
consequence of such a difference is that the sub-problems of the AKS heuristic
are altered. Although this can severely impact the results of specific instances,
it seems unlikely that it can account for the considerably high average gaps in
the AKS variants. The most dominant difference between my implementation
and the implementation of the authors was discovered during the execution of
the AKS heuristic. The method getFeasible, required when the initial kernel
can’t form a feasible solution, was employed much more frequently in my re-
sults. The most likely explanation is that the final linear program solved in the
root node, which is used for the construction of the initial kernel, was not always
identical to the final linear program of the authors. This presumably affected
the results on many instances, and it proved to have exceptionally negative ef-
fects for some instances. All in all, the differences between my implementation
and the implementation of the authors of the original paper can directly ex-
plain some outliers. Of course, there remain a few instances for which a large
deterioration or improvement can’t wholly be attributed to a specific difference
in the implementation. However, it is still well possible that the origin of these
large deteriorations or improvements lie in the noted differences between the
implementations. I conclude that the differences that I’ve noted can explain the
dissimilarities between my results and the results of Guastaroba et al. (2017)
reasonably well.

As an extension, I introduced a variant of AKS that imposes a major adjust-
ment to the Improvement Phase of the AKS heuristic. Similar to the three pre-
defined AKS variants, the solution quality of the extension variant (AKS-EXT)
was measured in comparison with CPLEX(5h). For two instances, AKS-EXT
managed to outperform all three other AKS variants, in terms of solution qual-
ity. The average gap of the extension variant was lower than the average gap
belonging to AKS(5h) and AKS-TBL. AKS-EXT was associated with a higher
average gap than AKS-TL. Examining the results more closely, I observed that
a small amount of instances disproportionately influenced the average gap com-
parison. Overall, the solutions of AKS-EXT ought to be seen as superior to
the solutions of AKS-TBL, and inferior to the solutions of AKS(5h) and AKS-
TL. The extension variant requires significantly less computation time than
AKS(5h). Judging by computation time, AKS-EXT can be placed in between
AKS-TL and AKS-TBL, being in closer proximity to AKS-TBL.

The subset containing 25 instances can already be considered relatively
small. For AKS-EXT, the Improvement Phase led to an improving solution
for only 13 instances. On the vast majority of the other 12 instances, AKS(5h),
AKS-TL and AKS-TBL likewise didn’t find any solutions in the Improvement
Phase. Accordingly, the noted performance of AKS-EXT compared to the other
three AKS variants is based on a small amount of observations. Therefore, al-
though the results of AKS-EXT seem promising, it has to be stated that further
research is required in order to provide a representative image of its performance.

23



References

Achterberg, T., & Berthold, T. (2007). Improving the feasibility pump. Discrete
Optimization, 4 (1), 77–86.

Adamo, T., Ghiani, G., Guerreiro, E., & Manni, E. (2020). A learn-and-construct
framework for general mixed-integer programming problems. Interna-
tional Transactions in Operational Research, 27 (1), 9–25.

Angelelli, E., Mansini, R., & Speranza, M. (2010). Kernel search: A general
heuristic for the multi-dimensional knapsack problem. Computers &
Operations Research, 37 (11), 2017–2026.

Baena, D., & Castro, J. (2011). Using the analytic center in the feasibility pump.
Operations Research Letters, 39 (5), 310–317.

Balas, E., Ceria, S., Dawande, M., Margot, F., & Pataki, G. (2001). Octane: A
new heuristic for pure 0-1 programs. Operations Research, 49 (2), 207–
225.

Berthold, T. (2007). Rens-relaxation enduced neighborhood search. ZIB-Report
07-28.

Fischetti, M., Glover, F., & Lodi, A. (2005). The feasibility pump. Mathematical
Programming, 104, 91–104.

Fischetti, M., & Lodi, A. (2011). Heuristics in mixed integer programming.
Wiley Encyclopedia of Operations Research and Management Science.

Fischetti, M., & Salvagnin, D. (2009). Feasibility pump 2.0. Mathematical Pro-
gramming Computation, 1 (2), 201–222.

Gamrath, G., Berthold, T., Heinz, S., & Winkler, M. (2019). Structure-driven
fix-and-propagate heuristics for mixed integer programming. Mathemat-
ical Programming Computation, 11, 675–702.

Ghiani, G., Laporte, G., & Manni, E. (2015). Model-based automatic neigh-
borhood design by unsupervised learning. Computers & Operations Re-
search, 54, 108–116.

Guastaroba, C., Savelsbergh, M., & Speranza, M. (2017). Adaptive kernel search:
A heuristic for solving mixed integer linear programs. European Journal
of Operational Research, 263 (3), 789–804.

Lazic, J., Hanafi, S., Mladenovic, N., & Urosevic, D. (2010). Variable neighbour-
hood decomposition search for 0–1 mixed integer programs. Computers
& Operations Research, 37 (6), 1055–1067.

24



A Comparison with original paper - CPLEX

I use the following notation for the CPLEX comparison in Table A.1. Let ψ
denote the objective value of my results and ψg denote the objective value found
by the authors of the original paper. Then, ψdif is the percentage change of ψ

with regard to ψg. More specifically, ψdif = 100× ψ−ψg

|ψg| . Furthermore, t stands

for the running time in my results, and tg represents the running time in the
results of the authors (both measured in seconds). The difference in time, tdif ,
is calculated by the following formula: tdif = 2× t

t+tg
. A value of T.L. indicates

that the time limit was reached for the instance.

Table A.1: CPLEX - Comparison with original paper

CPLEX(5h) CPLEX(1h)

Instances ψ ψdif (%) t tdif ψ ψdif (%) t tdif

danoint 65.67 0.00 317 1.15 65.67 0.00 T.L. 1.15

markshare2 5.0 25.00 T.L. 1.00 8.0 33.33 T.L. 1.00

mkc -563.85 0.00 T.L. 1.00 -563.85 0.00 T.L. 1.00

swath 478.03 2.27 T.L. 1.00 478.03 2.27 T.L. 1.00

berlin 5 8 0 62.0 0.00 1101 0.12 62.0 0.00 1101 0.47

d10200 12432.0 -0.03 T.L. 1.00 12436.0 1.51 T.L. 1.00

germanrr 4.70959·107 0.00 1450 0.15 4.70959·107 0.00 1450 0.57

maxgasflow -4.45657 ·107 -0.01 T.L. 1.00 -4.45648 ·107 -0.01 T.L. 1.00

opm2-z10-s2 -33826.0 -1.47 17563 0.99 -33621.0 -0.85 T.L. 1.00

probportfolio 16.88 0.85 T.L. 1.00 16.88 0.00 T.L. 1.00

queens-30 -39.0 0.00 T.L. 1.00 -39.0 0.00 T.L. 1.00

set 3-10 195072.07 -0.36 T.L. 1.00 195172.82 -2.16 T.L. 1.00

seymour-disj-10 287.0 0.00 T.L. 1.00 287.0 0.00 T.L. 1.00

triptim3 13.53 0.00 T.L. 1.00 13.53 0.00 T.L. 1.00

tw-myciel4 10.0 0.00 T.L. 1.00 10.0 0.00 T.L. 1.00

dano3mip 685.94 0.90 T.L. 1.00 687.81 -1.02 T.L. 1.00

lectsched-1-obj 81.0 6.58 T.L. 1.00 81.0 0.00 T.L. 1.00

momentum3 342681.86 -10.25 T.L. 1.00 390314.36 -13.60 T.L. 1.00

n15-3 46379.0 0.18 T.L. 1.00 46379.0 0.18 T.L. 1.00

ns1456591 1118.04 0.00 T.L. 1.00 1118.04 0.00 T.L. 1.00

rmine14 -4267.17 0.21 T.L. 1.00 -733.05 33.17 T.L. 1.00

sct32 -17.77 -3.29 T.L. 1.00 -17.60 -5.23 T.L. 1.00

shipsched 117176.0 1.73 T.L. 1.00 118811.0 3.15 T.L. 1.00

sing2 1.73476 ·107 -0.07 T.L. 1.00 1.73655·107 -0.15 T.L. 1.00

sing245 2.56164 ·107 -0.28 T.L. 1.00 2.56895·107 -0.15 T.L. 1.00

Average 0.88 0.936 2.02 0.968

25


	Introduction
	Literature Review
	Methodology
	Initialization Phase
	Assessment Phase
	Updating the kernel for easy instances
	Updating the kernel for hard instances

	Improvement Phase
	Accommodating general integer variables
	Extension
	AKS-EXT approach


	Results
	AKS - Variants and parameters
	Comparison of CPLEX and AKS
	Comparison with original paper
	AKS-EXT

	Conclusion
	References
	Comparison with original paper - CPLEX

