
Erasmus University Rotterdam
Erasmus School of Economics

Bachelor Thesis BSc2 Econometrics & Economics

An Enquiry into an Improved Branch-and-Bound

Algorithm for the Knapsack Problem

with Conflict Graph
Abstract

The knapsack problem with conflict graph consists of packing items into a knapsack such that total

profit is maximised, while not violating the knapsack capacity constraint and avoiding the packing

of incompatible items. This research replicates a proposed improved branch-and-bound algorithm,

and compares the obtained results with other custom branch-and-bound algorithms and a general

purpose solver. The improved algorithm depends on an upper bound based on finding a clique cover,

and a branching scheme based on solving the 0-1 knapsack problem with dynamic programming.

It has been found that the proposed algorithm outperforms the other solvers when larger amounts

of items are considered and conflict graph densities are relatively high. Additionally, a GPU-based

implementation for the branching scheme is proposed, which showed significant improvements for

higher knapsack capacities.

Name student: V.T. Schouten

Student ID number: 449249

Supervisor: R. Hoogervorst

Second assessor: Dr. W. van den Heuvel

Date final version: July 4, 2020

The views stated in this thesis are those of the author and not necessarily those of the supervisor,
second assessor, Erasmus School of Economics or Erasmus University Rotterdam

Contents

1 Introduction 1

2 Problem Description 2

3 Literature Review 2

3.1 Branch-and-Bound in Practice . 3

3.2 Origins of Branch-and-Bound . 3

3.3 0-1 Knapsack Problem . 4

3.4 Knapsack Problem with Conflict Graph . 5

3.5 Bin Packing Problem with Conflicts . 6

3.6 GPU Computing . 7

3.7 Accessibility of GPU Programming . 8

4 Methodology 9

4.1 MIP Models . 9

4.2 Branch-and-Bound Algorithm . 10

4.2.1 Branching Scheme . 11

4.2.2 Weighted Clique Cover Bound . 11

4.2.3 Capacitated Weighted Clique Cover Bound . 12

4.3 GPU-based Branching Scheme . 13

5 Data 14

6 Results 16

6.1 Upper Bound Performance . 16

6.2 Dense instances . 17

6.3 Sparse instances . 22

6.4 GPU-based Branching Scheme . 23

7 Conclusion & Discussion 25

References 30

Appendix A Computational Results 31

Appendix B Java Code 32

B.1 Miscellaneous . 32

B.2 Clique Heuristic . 43

B.3 CPLEX . 45

B.4 Branch-and-Bound . 47

B.5 GPU-Based Branching Scheme . 51

1 Introduction

The Knapsack Problem with Conflict Graph (KPCG), otherwise known as the disjunctively constrained

knapsack problem, extends upon the classical 0-1 Knapsack Problem (KP). The latter is a well-known

problem in the field of combinatorial optimisation. It consists of filling a knapsack with items, with

each considered item having a weight and profit associated with it, and the knapsack being constrained

by a weight capacity. The goal of the 0-1 KP is to maximise total profit under the given constraint.

The KPCG adds incompatible items to the problem, i.e. items which cannot be placed in a knapsack

together. The KP occurs frequently in the field of operations research. For example, the KP presents

itself as a subproblem in the Bin Packing Problem (BPP) in operations research, which also holds for the

KPCG in the case of Bin Packing Problem with Conflicts (BPPC) (Sadykov and Vanderbeck, 2013). In

an era where logistics become increasingly difficult to manage, research on topics like this is becoming

progressively more important. Simultaneously, academics are still improving on existing frameworks, take

Bettinelli, Cacchiani, and Malaguti (2017) with their work on the KPCG. Hence, both in practical and

scientific context there is incentive to examine this topic.

The main goal of this research is to replicate and validate the results of Bettinelli et al. (2017). To

achieve that goal, various methods are used to solve the KPCG. The problem will first be formulated as

two Mixed Integer Programs (MIPs), which will be solved using a general purpose solver. Moreoever,

multiple custom Branch-and-Bound (B&B) algorithms will be implemented: a generic version as pro-

posed by Sadykov and Vanderbeck (2013); and two improved versions of the generic version, one with an

improved branching scheme, the other utilising both the improved branching scheme and an improved

upper bound (Bettinelli et al., 2017). Extending on the proposed methods, a parallel computing imple-

mentation of the improved branching scheme is proposed and applied. All methods will be compared on

amount of instances solved to optimality, solving time, and amount of nodes visited. Additionally, the

ratio of the upper bounds with respect to the optimal solution will be used to determine the performance

of each of the upper bounds.

It has been found that for moderate knapsack capacities all custom B&B algorithms perform well,

and are faster than a general purpose solver. With increased knapsack capacities, their performance

degrades rather quickly, yet they are still preferred over a general purpose solver when the amount of

items considered is more than moderate and graph densities are relatively high. Moreover, it is still

apparent that the proposed branching scheme and upper bound increase the performance of the B&B

algorithm. The main contribution of this research is the parallel implementation of the branching scheme

proposed by Bettinelli et al. (2017). It has been found that for large knapsack capacities, computing the

branching condition on the GPU results in moderate to large speedups in solving times, depending on

the amount of items considered.

The paper is outlined as follows. In Section 2, a general description of the problem to be researched is

given, followed by a review on existing literature on the subject in Section 3. Subsequently, in Section 4

the different methods of solving the KPCG will be elaborated upon. Section 5 will then treat the data

needed to perform the research. Subsequently, Section 6 will discuss the obtained results, after which

1

Section 7 will conclude the paper with conclusions and a discussion on the limitations of the research.

2 Problem Description

The main task at hand is replicating and validating the findings of Bettinelli et al. (2017), and ultimately

adding to their framework in a contributing manner. Consequently, the KPCG will be explained in detail.

The KPCG extends upon the classical 0-1 KP by adding the possibility of having incompatible items,

implying that those items cannot be packed into the knapsack. To further specify, the aim of the KPCG

is to find the subset of items that fits in the knapsack while maximising the associated profit, taking into

account that incompatible items may not be placed together in the knapsack. The incompatible items

are represented by an undirected conflict graph G = (V,E), with |V | = n and where any edge (i, j) ∈ E

denotes that the items i and j are incompatible. The density of such a graph is then defined as the

ratio between |E| and the amount of edges in a complete graph with the same amount of vertices. To

formulate the KPCG, some parameters are to be defined: the knapsack capacity c and the set of items

1, . . . , n, with each item having a weight wi and profit pi (i = 1, . . . , n). Following Yamada, Kataoka,

and Watanabe (2002), we assume the following without loss of generality:

(i) c > 0 & wi, pi > 0 (i = 1, ..., n)

(ii)
∑n

i=1 wi > c & wi < c (i = 1, ..., n)

(iii) Items are sorted in non-increasing profit-weight ratio, i.e. pi/wi < pi+1/wi+1 (i = 1, ..., n− 1)

Assumption (i) simply states that the capacity, weights and profits are to be positive. Assumption

(ii) denotes that the sum of the weights of all items should be greater than the capacity and that each

item should have a weight less than the capacity. If this were not the case, the problem would become

trivial. Due to the nature of the knapsack problem, assumption (iii) is to facilitate the solving process,

also known as implementing a greedy approach. This owing to the fact that items having a higher profit

relative to its weight intuitively have a higher precedence over other items. Hence, in the solving process,

the item at the top of the item list should be the most profitable item available to be added to the

knapsack.

3 Literature Review

There are many approaches to solve combinatorial optimisation problems, yet direct approaches can be

inefficient or do not always find a feasible solution (Lawler and Wood, 1966). B&B algorithms are well-

studied and widely implemented, as it facilitates the solving process by dividing a difficult problem into

easier subproblems. The process branches over solution sets, not considering branches incompatible with

the bounding condition. Computation time thus depends on the amount of distinct subproblems created,

which can prove to be very valuable for larger problem instances.

2

3.1 Branch-and-Bound in Practice

Nowadays B&B is a widely-implemented solving approach. Take the field of engineering, where Demeule-

meester and Herroelen (1992) proposed a B&B algorithm for the multiple resource-constrained project

scheduling problem. The problem concerns the scheduling of a construction project, with the goal to

minimise its duration subject to technological precedence and resource constraints. This entails that an

activity can only be started when preceding activities have finished, and resources have limited availabil-

ity per period. Efficiently solving this problem may greatly benefit construction managers, and issuers of

projects.

In the context of transport economics, Haffner, Monticelli, Garcia, and Romero (2001) proposed a

B&B algorithm for transmission network expansion planning. The goal of the aforementioned problem

is to guide future investment in transmission equipment such that the long-term transmission network is

optimal. Transportation is a part of everyone’s life, be it a single individual or a firm, and B&B can be

an important tool in shaping an efficient network.

The Vehicle Routing Problem (VRP) is an important and diverse problem in the field of operations

research, as many firms have to deal with it. Zhang, Qin, Zhu, and Lim (2012) propose a B&B approach

in solving the VRP with toll-by-weight scheme. The VRP normally assumes that the cost to traverse

each edge is equal to its length. In China however, expressways require the driver to pay a toll based on

distance travelled and vehicle weight. In that context, it is crucial for firms to efficiently route all vehicles

to avoid excessive and unneeded cost.

Miralles, Garćıa-Sabater, Andrés, and Cardós (2005) propose B&B procedures for the newly intro-

duced Assembly Line Worker Assignment and Balancing Problem (ALWABP). The problem describes

allocation of tasks to stations as well as available workers to stations. The amount of workers is limited,

and each task takes a different time to complete depending on who executes the task, even having some

tasks which cannot be completed by some workers. The procedure is applied to the real world environ-

ment which motivated their research to begin with: a sheltered work centre for disabled. Solving the

ALWABP in this context helps those centres to provide jobs to the disabled, while considering their indi-

vidual limitations. This example shows how the field of operations research may be extended to include

certain social aims, besides economic and productive aims.

In a more unexpected application of B&B algorithms, Pupko, Pe’er, Hasehawa, Graur, and Friedman

(2002) implemented it to reconstruct ancestral gene sequences with among-site-rate-variation. The pro-

posed method appears to efficiently find the global most likely ancestral-sequence reconstruction with

maximum likelihood. Reconstruction of ancestral sequences is an important part of evolutionary biology

research, as it may ultimately help in synthesising certain hormones, subsequently opening up new ways

for treating illnesses.

3.2 Origins of Branch-and-Bound

One of the first to describe a framework for a B&B algorithm were Land and Doig (1960). This was

in the context of discrete programming problems, in which some or all variables where restricted to be

3

nonnegative integers. They described a process in which first the LP relaxation of the problem was solved,

i.e. ignoring the constraints for nonnegative integer values of the variables. This would yield an upper

bound on the objective value. Then a single fractional variable is selected and its neighbouring integer

values determined, adding each as a constraint to the resulting two subproblems. The objective values of

all encountered subproblems are recorded in a list. The maximum objective value in that list will then

be set as the new upper bound, and its entry disregarded from that list. The subproblem resulting in the

new best upper bound will serve as the next branching point. This process is repeated, not branching

on infeasible solutions. When an integer solution is found with objective value higher than those of the

upper bounds remaining in the list, the process is terminated and the optimal solution is found. This

could be described as pruning, be it at the end of the procedure.

While the idea of Land and Doig (1960) was promising, it proved to be somewhat difficult to im-

plement given the storage limitations of computers available at that time. Dakin (1965) proposed a

similar algorithm which required far less memory than it’s predecessor. Instead of solving each arising

subproblem and saving the corresponding simplex-tableau, each branch is followed until an infeasible or

integer solution is found. This significantly reduces the storage requirement as only a list of node-specific

information has to be saved, yet it may result in visiting parts of the tree which would otherwise not have

been visited. Additionally, to ensure integral values, Dakin (1965) applies bounding constraints instead

of exact integer constraints like Land and Doig (1960). The algorithm proposed by Dakin (1965) showed

to be a great improvement over the mixed-integer algorithm proposed by Gomory (1960), solving the

same instance in less than eight minutes while the mixed-integer algorithm of Gomory (1960) was not

able to find a solution in over 2000 iterations.

Shortly after, researchers began improving upon the framework of Land and Doig (1960) or extended

it to more specific cases, such as the traveling salesman problem (Little, Murty, Sweeney, and Karel,

1963), the plant location problem (Efroymson and Ray, 1966), and more relevant for this research the

KP (Balas, 1965; Kolesar, 1967). The aforementioned papers are just a small overview of early B&B

papers, yet since then many have adapted the framework and it has become a staple method in the world

of combinatorial optimisation. Next to the abundance of literature on B&B algorithms, its importance is

additionally emphasised when looking at state-of-the-art general purpose solvers. Some well-known and

widely-used solvers are CPLEX, Gurobi, LINDO, and Xpress-MP. What these solvers all have in common

is that their main solving approach is B&B-based (Atamtürk and Savelsbergh, 2005).

3.3 0-1 Knapsack Problem

The classical 0-1 KP has been well-studied over the last century. Two main approaches come to mind for

solving this problem, namely Dynamic Programming (DP) and B&B. DP algorithms are less affected by

correlation between profits and weights, yet quickly become impractical for greater capacity sizes (Toth,

1980). Procedures to reduce the amount of variables have been proposed by multiple authors such that

DP remains viable, but the effectiveness of variable reduction is limited (Toth, 1980). To that extent,

many B&B algorithms have been proposed for the KP, one after the other improving the upper bound.

Until then, the solution to the continuous knapsack problem as put forward by Dantzig (1957) was used

4

as an upper bound, which corresponds to the Linear Programming (LP) relaxation of the 0-1 KP. The

branching scheme has remained the same throughout, selecting an item and generating child nodes where

the item is either set to one or zero. Martello and Toth (1977) proposed a new upper bound for the

knapsack problem, improving on that of Dantzig (1957). Given a list of items ordered on profit-weight

ratio, Dantzig (1957) filled the knapsack up to item l, with item l + 1 not fitting in its entirety for the

residual capacity. After that, the residual capacity is filled with item l + 1. Martello and Toth (1977)

proposed a maximum of two upper bounds, distinguished by the decision of whether item l + 1 is added

or not, after the knapsack has been filled up to item l. If item l + 1 is not added, the residual capacity

is filled with item l + 2. Otherwise, item l + 1 is added in its entirety, and item l is fractionally removed

until maximum capacity is reached. The proposed upper bound proved to be a slight improvement over

that of Dantzig (1957).

Martello and Toth (1988) then proposed an upper bound involving the solving of a subset of items

on the residual capacity through an elementary binary decision tree, and procedures to reduce the size of

a KP instance, as such yielding favourable results. Later, Martello and Toth (1997) discussed an upper

bound based on the continuous knapsack solution, but with adding valid inequalities on the cardinality

of an optimal solution and solving the Lagrangian relaxation of it. They showed that for large amounts

of items and correlated problems the results were promising, solving all instances rather quickly, while

other algorithms could not. Since then, literature on the classical 0-1 KP is somewhat sparse. Mostly

derivations and extensions thereof appear to be researched, such as the two-constraint 0-1 KP (Martello

and Toth, 2003) or the multidimensional KP (Boyer, El Baz, and Elkihel, 2010).

3.4 Knapsack Problem with Conflict Graph

The KPCG is one of those extensions of the classical 0-1 KP which only surfaced relatively recently,

with Yamada, Kataoka, and Watanabe (2002) being the first to introduce the KPCG. They utilised a

greedy algorithm for the KPCG, incorporating conflict checking to obtain a lower bound, which is then

improved upon through a 2-opt neighbourhood search exchange. For the upper bound, the LP-relaxation

and subsequently the Lagrangian relaxation of the KPCG is considered. These heuristic approaches are

then implemented in the exact method of implicit enumeration. Due to the lower bound possibly not

being that strong, an interval reduction algorithm is suggested. This method takes an estimate of the

lower bound with the aim of reducing the search interval of the B&B algorithm. If the estimated lower

bound does not result in a feasible solution, it may be used as a stronger upper bound. This process may

then be repeated until an optimal solution is found.

Moreover, Hifi and Michrafy (2006) proposed a reactive local search algorithm with tabu list for

solving the KPCG. It’s reactive in the sense that if the solutions tend to cycle often, the algorithm reacts

and degrades the solution set, diversifying the search and escaping local optima. Configurations which

lead to these cycles are then considered tabu, preventing the search to visit known unwanted solution

sets. Similar to Yamada et al. (2002), a greedy approach is used to obtain an initial feasible solution,

after which an improved feasible solution is constructed through the swapping of already selected items

or performing a neighbourhood replacement procedure. Hifi and Michrafy (2007) continued research on

5

the subject and implemented a B&B algorithm for the KPCG. The upper bound is straight-forward

and derived from the LP-relaxation of the KPCG, while the lower bound is a slight alteration of the

algorithm proposed in Hifi and Michrafy (2006). In order to improve the algorithms performance, various

reduction strategies are applied to the upper bound in an attempt to reduce the size of the subproblems.

Additionally, a dichotomous search is suggested to update the lower bound, similar in concept to the

interval reduction approach proposed by Yamada et al. (2002), in order to speed up the solving process.

3.5 Bin Packing Problem with Conflicts

Conflict graphs have been introduced to other related problems as well. The BPPC has a conflict graph

where the edges denote items which cannot be packed into the same bin. Consequently, each subproblem

in the BPPC takes the form of a KPCG. The BPPC is a combination of the BPP and the Vertex Coloring

Problem (VCP). Naturally, without any conflicts the BPPC reduces to the BPP, while the BPPC with

all item weights being zero reduces to the VCP (Muritiba, Iori, Malaguti, and Toth, 2010). Jansen

and Öhring (1997) were one of the first to explicitly touch upon the concept of the BPPC, albeit in

the context of job scheduling. Generalising the BPP, jobs are to be assigned to machines, with total

execution time per machine being constrained and some jobs not being able to be performed on the

same machine. They suggested various polynomial time heuristic algorithms, and yielded upper bounds

with a worst-case approximation ratio of 2.7 for perfect conflict graphs. This application can be seen

as process assignment, which is one of the real-world applications of the BPPC. Next to the inherent

implications of the BPPC for specific distributional packing problems, it may also be applied in the

context of examination scheduling (Laporte and Desroches, 1984) and even parallel computing (Jansen,

1999).

Epstein and Levin (2008) tried to improve upon the work of Jansen and Öhring (1997), thus proposing

additional approximate methods and as well as extending the framework to the on-line BPPC. With the

introduction of weighting systems and removal of small problematic subgraphs, the heuristic procedures

ultimately yielded upper bounds with a theoretical worst-case approximation ratio of 2.5 for perfect

conflict graphs. Gendreau et al. (2004) also put forward multiple heuristics and provided benchmark

instances, which are still used to this day. The most promising heuristic dealt with clique calculation in

combination with a first fit decreasing procedure to fill the bins. Moreover, they proposed an improved

lower bound through solving a Transportation Problem in order to obtain a solution for packing the bins

while taking the the conflict constraints into account.

Muritiba et al. (2010) were the first to discuss an exact method to solve the BPPC, next to proposing

yet again improvements upon both lower and upper bounds. They proposed a Branch-and-Price (B&P)

algorithm, with the pricing problem being the KPCG. The lower bounds of the algorithm correspond

to the LP-relaxation of the Set Covering (SC) formulation of the BPPC, while the upper bounds are

obtained through a so-called population heuristic. The population heuristic consists of diversifying a set

of upper bounds obtained through known greedy algorithms and performing a local tabu search on them.

It may be noted that the SC formulation of the BPPC is a minimisation problem. Their computational

results showed to be a fair improvement on those obtained in previously published literature on this

6

subject.

Subsequently, Elhedhli, Li, Gzara, and Naoum-Sawaya (2011) proposed a special-purpose B&P algo-

rithm with a different lower bounding scheme and branching rule, solving the majority of instances left

unsolved by Muritiba et al. (2010). Then Sadykov and Vanderbeck (2013) proposed an efficient generic

B&P algorithm, which proved to outperform those algorithms proposed by Muritiba et al. (2010) and

Elhedhli et al. (2011). This algorithm differs in several aspects from the aforementioned B&P algorithms.

Looking at the branching rule, Muritiba et al. (2010) branch on the largest fractional variable, while

Elhedhli et al. (2011) follow the scheme proposed by Ryan and Foster (1981). Sadykov and Vanderbeck

(2013) follow the branching scheme as proposed by Vanderbeck (2011), which was developed with the

aim of preserving the structure of the subproblems when branching.

Another interesting difference is the approach of solving the subproblems. Muritiba et al. (2010) use a

greedy approach and opt for CPLEX to solve the subproblem in an exact manner if no improved solution is

found heuristically. Elhedhli et al. (2011) utilise CPLEX with conflict constraints based on maximal cliques.

Sadykov and Vanderbeck (2013) however propose a B&B algorithm for solving the KPCG subproblem in

case of arbitrary conflict graphs, and a DP approach for the case of interval conflict graphs. The proposed

B&B algorithm posed to be quicker than CPLEX for instances with conflict graph densities greater than

10%. When instances with a greater amount of items per bin possible are considered and the conflict

graph has no particular structure, the difficulty of solving the problem was found to be higher.

3.6 GPU Computing

The usual course of action when programming any algorithm is to execute it sequentially sing the Central

Processing Unit (CPU) of a computer, as the CPU is designed to handle logical operations of a machine.

However, when problems become larger, even modern multi-core CPUs can struggle when solving some

problems. Graphics Processing Units (GPUs) were tradionally designed to handle image processing, for

which they have to perform thousands of simple operations at once. GPUs have evolved tremendously

throughout the last decades, and even consumer-grade GPUs now show large potential in the context of

parallel computing. Parallel computing may be defined as the act of solving a problem by splitting its

domain into multiple parts, and solving each part simultaneously by using multiple physical processors

(Navarro, Hitschfeld-Kahler, and Mateu, 2014). As Navarro et al. (2014) note, a problem may be par-

allelisable in multiple ways. A problem can be data-parallel or task-parallel, both of which intrinsically

belong to the GPU and CPU, respectively. Data-parallel problems consist of different data values which

have to be applied to the same function. Task-parallel problems consists of different tasks being applied

to a common data stream. Due to GPUs having a Single-Instruction Multiple-Threads architecture, a

data-parallel problem may see benefit of execution on the GPU (Boyer, El Baz, and Elkihel, 2012).

GPU computing is a relatively recent development in the context of parallel computing, yet very

promising. Boyer et al. (2017) present a survey on the advancements of GPU computing in the context

of operations research. Many metaheuristics able to exploit parallelism are discussed, but the main exact

methods suitable for GPU implementation are the simplex method, DP, and B&B. With such parallelised

methods, various problems have been attempted to solve throughout the years, such as the KP (Boyer

7

et al., 2012), traveling salesman problem (Carneiro, Muritiba, Negreiros, and Lima de Campos, 2011),

and the flow-shop scheduling problem (Chakroun, Melab, Mezmaz, and Tuyttens, 2013).

Boyer et al. (2012) proposed a parallel implementation of solving the KP with DP. The program was

implemented using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, which could be

seen as the standard for such implementations. The inner loop over the possible knapsack capacities of

the DP algorithm is executed in parallel on the GPU. Their results showed a speedup of factor of around

26 compared to the traditional sequential implementation.

B&B can be a challenge to implement in a parallel manner, as the tree structure often is irregular.

Nevertheless, Lalami and El Baz (2012) proposed a parallel B&B algorithm for the KP, where both

branching and bounding computations are parallelised. The algorithm transfers the list of nodes to the

GPU, in which first the branching operations are performed in parallel, then the bounds for all nodes are

computed simultaneously, and lastly the best lower bound is found among the nodes. Then the updated

list of nodes is transferred back to the CPU, after which the process is repeated. This implementation

showed to decrease the time needed to solve instances by around 20 times.

Gmys, Mezmaz, Melab, and Tuyttens (2016) were the first to propose a B&B algorithm employed

entirely on the GPU. Most GPU-based implementations still have to communicate relevant information

back to the CPU in order for the algorithm to continue, like the algorithm of Lalami and El Baz (2012).

Gmys et al. (2016) perform all of the branching, bounding, selecting, and pruning operations on the

GPU. This is possible due to the use of an Integer-Vector-Matrix data structure, as opposed to the

conventional Linked-List based data structures. Data transfer times are an important factor in whether

GPU implementation is advantageous, hence there being no need for communication between the CPU

and GPU until the problem instance is solved is an interesting development. In the context of flow-shop

scheduling problem, their algorithm is compared to a regular parallel B&B algorithm, and it was able to

solve all instances faster with a factor of 3.3 on average.

3.7 Accessibility of GPU Programming

The main drawback of GPU computing is that CUDA, or similar platforms like OpenCL, may not appeal

to the average researcher, as it comes with learning a new programming language and requiring an

integral understanding of computer architecture. Clarkson, Fumero, Zakkak, Xekalaki, Kotselidis, and

Luján (2018) aimed to bypass that hurdle by introducing a new Java-based Virtual Machine (VM) called

TornadoVM. It allows the user to run parts of their program on parallel devices with little adjustment to

their Java code and without needing excessive knowledge about the intricacies of the hardware. TornadoVM

helps to execute code on OpenCL-compatible devices and is able to do so on any Java Virtual Machine

(JVM) compatible architecture (Clarkson et al., 2018).

TornadoVM consists of three layers: an Application Programming Interface (API), runtime, and Just-

In-Time (JIT) compiler. The API ensures that with code annotations, the compiler can recognise parts

of the program which are to be executed on a parallel device. The runtime analyses data dependencies,

optimises data transfers, and manages communication between the host and its devices. Lastly, the JIT

compiler generates and optimises code for the different devices dynamically. Clarkson et al. (2018) showed

8

for a Kinect Fusion benchmark, provided through SLAMBench (Nardi, Bodin, Zia, Mawer, Nisbet, Kelly,

Davison, Luján, O’Boyle, Riley, Topham, and Furber, 2015), an increase in performance between 18 and

150 times with TornadoVM, compared to the standard Java reference.

4 Methodology

4.1 MIP Models

Two MIP models will be examined for the KPCG, both of which will be solved with a general purpose

solver. The binary decision variable xi (i = 1, ..., n) denotes whether an item is selected or not. Model

(1a)-(1d) has objective function (1a), which maximizes the total profit associated with the selected items.

Constraint (1b) ensures that the weight of the selected items does not exceed the knapsack capacity.

Constraint (1c) makes sure that incompatible items are not simultaneously selected. Lastly, constraint

(1d) tells us that the decision variables are binary.

max
∑n

i=1
pixi (1a)

s.t.
∑n

i=1
wixi ≤ c (1b)

xi + xj ≤ 1 (i, j) ∈ E (1c)

xi ∈ {0, 1} i = 1, ..., n (1d)

Model (2a)-(2d) is equivalent to model (1a)-(1d), but yields a stronger LP-relaxation bound due to

the formulation of conflict constraint (2c). The constraint states that at most one item in clique C may

be added to the knapsack, for all clique sets C in the family of cliques ξ. Given an undirected graph

G = (V,E), a clique set is defined as a set vertices C ⊆ V such that any distinct pair of vertices in C

is associated with an edge in E, i.e. ∀i, j ∈ C ∧ i 6= j =⇒ (i, j) ∈ E. This translates to C inducing a

complete subgraph of G. As defined by Bettinelli et al. (2017), a family of cliques ξ on graph G is a set

of cliques such that ∀(i, j) ∈ E), items i, j ∈ V belong to some clique C ∈ ξ. The family of cliques will be

determined with a heuristic approach (Bettinelli et al., 2017). It takes a random edge (i, j) ∈ E such that

either items i, j are not yet part of any clique. A maximal clique will be built for those items i, j. This

entails going through the (sorted) list of items and adding an item to the clique if that item is adjacent to

all items in the current clique. This process is repeated until all edges are in at least one clique. Following

Bettinelli et al. (2017), model (2a)-(2d) will be applied to the dense instances and model (1a)-(1d) to the

sparse instances.

max
∑n

i=1
pixi (2a)

s.t.
∑n

i=1
wixi ≤ c (2b)∑

i∈C
xi ≤ 1 C ∈ ξ (2c)

xi ∈ {0, 1} i = 1, ..., n (2d)

9

4.2 Branch-and-Bound Algorithm

A general description of a B&B procedure boils down to an intelligent search over the space of all

feasible solutions. In the context of KPs, the process can be represented by a tree. The root of the

tree corresponds to no items having been added to the knapsack. Given a greedy approach of item

ordering, subtrees will be made based on (not) locking the first item in the list of available items into the

knapsack. An upper bound will be calculated for the entire subtree, which may result in termination of

the branching procedure at that node if the found upper bound is lower than the current best solution,

i.e. the (lower) bound. When branching, an internal upper bound specific to the item in consideration

will ultimately determine whether an item will be locked into the knapsack at that point in the tree.

In describing the B&B framework, we will follow Bettinelli et al. (2017) closely, as such we will first

clarify some notation. Each node in the B&B tree is associated with a subproblem defined by the two

sets of items S and F . S ⊆ V is a stable set of items currently packed in the knapsack, while F ⊆ V

is the set of unassigned items ordered on profit-weight ratio. A stable set could be seen as the opposite

of a clique set, defined as a set of vertices S ⊆ V such that for any distinct pair of vertices in S there

is no edge in E, i.e. ∀u, v ∈ S ∧ u 6= v =⇒ (u, v) /∈ E. To simplify notation, we denote the profits

and weight corresponding to some solution Z ⊆ V by p(Z) and w(Z), respectively. The current global

lower bound will be abbreviated to LB. Then, N(i) denotes the set of nodes adjacent to node i, i.e.

N(i) = {j ∈ V : (i, j) ∈ E}. Lastly, KP (Z, c̄) denotes the value of the optimal solution for the 0-1 KP,

given some set of items Z and capacity c̄.

Algorithm 1: Generic B&B scheme for the KPCG: BB(S, F, LB)

Data: Set of items S currently in the knapsack; set of available items F ; current lower bound
LB.

if LB < p(S) then
LB = p(S)

if Upperbound(F,c-w(S)) + p(S)≤ LB then
return

for i ∈ F do
if UBi > LB then

F = F \ {i}
BB(S ∪ {i}, F \N(i), LB)

else
break

Having defined those, Algorithm 1 shows a generic B&B scheme in which all proposed variations of

the algorithm will be implemented (Bettinelli et al., 2017). In describing the algorithm, we will take

the implementation of Sadykov and Vanderbeck (2013) as reference point, which we’ll denote by SV 13

henceforth. The scheme first checks if the profits of the current solution S exceed the lower bound, if

that’s the case a new global lower bound has been found. Then an upper bound for the available items

F on residual capacity c − w(S) is calculated. Sadykov and Vanderbeck (2013) use the LP-relaxtion of

model (1a)-(1d) for the upper bound.

This entails solving model (3a)-(3c) and possibly results in a non-integer solution, thus we will refer

to this bound as fracKP . If that upper bound plus p(S) is lower than the current bound, the subproblem

does not improve upon the current solution and the scheme will not continue at that node. Continuing the

10

scheme, an internal upper bound UBi will be calculated for each item i ∈ F . The upper bound following

the SV 13 algorithm equals UBi = p(S)+(c−w(S))(pi/wi), which translates to calculating the maximum

profit possible to obtain by filling the residual capacity with item i. If that upper bound appears to be

an improvement on the current best found objective value, branching will continue by adding item i to

S and removing neighbours N(i) from F . Initially, the function as defined in Algorithm 1 will be called

as BB(∅, V, 0).

max
∑n

i=1
pixi (3a)

s.t.
∑n

i=1
wixi ≤ c (3b)

0 ≤ xi ≤ 1 i = 1, ..., n (3c)

4.2.1 Branching Scheme

Bettinelli et al. (2017) propose an improved internal upper bounding procedure to that of Sadykov and

Vanderbeck (2013). Instead of filling the residual weight of the knapsack with item i ∈ F , they propose to

solve the 0-1 KP for the residual weight with items {i,...,n}, ignoring possible conflicts. Mathematically,

this entails ŨBi = p(S)+KP ({i, ..., n}, c−w(S)), which we’ll denote by preKP from now on. As suggested

by Bettinelli et al. (2017), the optimal solution KP (Z, c̄) will be determined using a DP approach (Toth,

1980). It can clearly be seen that ŨBi < UBi, which should make itself apparent in the relative amount

of nodes visited. Bettinelli et al. (2017) compute K(Z, c̄) in a preprocessing phase for all i = 1, . . . , n,

Z = {i, . . . , n}, c̄ = 0, . . . , c. This is not done in this research due to time constraints, which may result

in increased solving times compared to Bettinelli et al. (2017).

4.2.2 Weighted Clique Cover Bound

A weighted clique cover is a set of cliques Kr (r = 1, . . . , R) of graph G, of which each has weight Πr

(r = 1, . . . , R), such that
∑

r=1,...,R:i∈Kr
Πr ≥ pi,∀i ∈ V (Bettinelli et al., 2017). The weight of a clique

cover is subsequently defined as
∑R

r=1 Πr. Held et al. (2012) proposed an upper bound using a weighted

clique cover for the maximum weight stable set problem (MWSSP), which Bettinelli et al. (2017) adopted

and afterwards modified for the KPCG. This makes sense due to the fact that the KPCG is an extension

of the MWSSP. The aim of the MWSSP is to find the maximum weight stable set of a graph G without

some capacity constraint, with each item having weight wi (i = 1, . . . , n). The KPCG extends upon the

MWSSP by letting those weights function as profits pi (i = 1, . . . , n), adding weights wi (i = 1, ..., n) for

each item, and adding a capacity constraint. The optimal objective value of the MWSSP is less than or

equal to the weight of any clique cover of G, consequently the weight of any such clique cover is an upper

bound for the MWSSP (Held et al., 2012). Given the similarities between the MWSSP and the KPCG,

any upper bound for the MWSSP also is an upper bound for the KPCG (Bettinelli et al., 2017).

In discussing Algorithm 2, we’ll first introduce an additional parameter qi, denoting the residual weight

of item i. Initially, qi is set equal to the item’s profit for each item i ∈ V . While there still exists an item

with positive residual weight, the index ī for which qi is smallest but positive is found. A maximal clique

11

Algorithm 2: Weighted Clique Cover

qi = pi i ∈ V
r = 0
while ∃i ∈ V : qi > 0 do

ī = argmin{qi : qi > 0, i ∈ V }
r = r + 1
Find clique Kr ⊆ {j ∈ N (̄i) : qj > 0}
Kr = Kr ∪ {̄i}
Πr = qī
qj = qj − qī ∀j ∈ Kr

Kr is found heuristically for that item ī. Lastly, the weight Πr of clique Kr is set to the residual weight

of item ī, and qi is subtracted from the residual weights of all items in the clique. This procedure yields

an upper bound for the KPCG equal to
∑R

r=1 Πr, which we’ll denote by CC. It should be noted that

the stronger the capacity constraint of the KPCG is, the weaker CC may be as an upper bound.

4.2.3 Capacitated Weighted Clique Cover Bound

As Bettinelli et al. (2017) noted, the weighted clique cover bound does not take the knapsack capacity

into account. Hence the weighted clique cover bound is extended to incorporate the capacity constraint.

The proposed method either finds a complete or partial weighted clique cover, it being partial if the

knapsack is saturated before a complete clique cover has been found. The set of items not covered by the

partial clique cover Ξ is defined as V = {i ∈ V :
∑

Kr∈Ξ:i∈Kr
Πr < pi}, such that the set of fully covered

items equals V̄ = V \ V. Furthermore, we define the load Wr of a clique Kr as in equation (4), from

which follows that the load-over-weight ratio of a clique Kr may not exceed the lowest weight-profit ratio

of the items in Kr (Bettinelli et al., 2017).

Wr ≤ Πr min
j∈Kr

{
wj

pj

}
(4)∑

Kr∈K
Wr = c (5)

min
Kr∈Ξ

{
Πr

Wr

}
≥ max

j∈V

{
pj
wj

}
(6)

Theorem 1 in Bettinelli et al. (2017, p. 461) then states two conditions which needs to be satisfied

for the weight
∑

Kr∈Ξ Πr of a partial clique cover Ξ such that it is a valid upper bound for the KPCG,

as shown in equation (5) and (6). Equation (5) denotes that the sum of the loads of all cliques should

equal the knapsack capacity, while equation (6) describes that the most valuable items should be part of

the clique cover.

Algorithm 3 incorporates these two constraints, continuously satisfying equation (6) and terminating

when equation (5) is satisfied or a complete clique cover is found. First, the index corresponding to the

item with the smallest weight-profit ratio is found, given that its residual weight qi is positive. Similar to

before, a maximal clique containing item ī is then found heuristically. Subsequently, the load and weight

of the clique are updated. To that extent, first the item t having the lowest residual weight in the clique

is determined. Bearing equation (4) in mind, the load Wr is then set to the the minimum of qt multiplied

12

Algorithm 3: Capacitated Weighted Clique Cover

qi = pi i ∈ V
r = 0
while ∃i ∈ V : qi > 0 ∧

∑r
h=1Wh < c do

ī = argmin{wi/pi : qi > 0, i ∈ V }
r = r + 1
Find clique Kr ⊆ {j ∈ N (̄i) : qj > 0}
Kr = Kr ∪ {̄i}
t = argmin{qt : qi > 0, t ∈ Kr}
Wr = min{qtwī/pī, c−

∑r−1
h=1Wh}

Πr = Wr/(wī/pī)
qj = qj − qt ∀j ∈ Kr

with the minimum weight-profit ratio in the clique, and the residual load with respect to the capacity.

The weight of the clique is then set conform with equation (6) and the minimum residual weight qt in the

clique is subtracted from the residual weights of all its nodes. Similarly to CC, the upper bound equals∑R
r=1 Πr, which we’ll denote by capCC. Propositions 7 and 8 in Bettinelli et al. (2017, p. 463) state that

capCC should theoretically dominate CC and fracKP , respectively. In the case of CC, the proposition

is conditional on the fact that both capCC and CC consider the same cliques in the same order. If that

were the case, capCC would surely dominate CC as an upper bound, given that it takes the capacity into

account. If the conflict constraints were to be disregarded, the algorithm would only encounter cliques

with one item, and the algorithm would terminate when the knapsack capacity is reached. This would

results in the fracKP upper bound. Hence including the conflict constraints would yield a tigher upper

bound for the KPCG than fracKP .

4.3 GPU-based Branching Scheme

The internal upper bound preKP can be transformed to be implemented in a parallel manner on a GPU.

Let us denote this implementation by parKP . In order to achieve that, the DP algorithm of Toth (1980)

is adjusted to the parallel DP framework of Boyer et al. (2012). The DP approach for the KP has two

dimensions, namely the item and weight count. In each item iteration, it computes whether it is worth

adding it to the knapsack for all possible capacities, given information about the objective values for

different capacities derived from items which have preceded it. From this, we can deduce that along the

item dimension there are dependencies. However, the weight dimension has no dependencies and could

thus be computed simultaneously.

To that extent, Algorithm 4 shows the sequential part of the parallel DP algorithm for the KP. It

computes for each item k = 0, . . . , n the maximum profit for each capacity value l = 0, . . . , c̄ up to item k.

inputDP and outputDP alternately switch their function in the method for better memory management

(Boyer et al., 2012). This can be done as only outputDP is changed in the internal loop, and that array

needs to serve as input in the next iteration. More technically, creating new outputDP arrays is inefficient

in the case of our implementation. The input and output array have to be streamed to the GPU for each

item iteration. If the memory address of those arrays remain unchanged, memory occupancy is decreased,

and the chance of errors due to changed memory addresses is mitigated. Ultimately, either outputDP or

inputDP will contain the optimal objective value, depending on n.

13

Algorithm 4: Dynamic Programming Knapsack Problem: KP(Z,c̄)

Data: Set of items Z (|Z| = n) and capacity c̄
Create arrays inputDP and outputDP, containing zero values
for k ← 0 to n do

if k even then
parallelLoop(inputDP,outputDP,c̄,wk,pk)

else
parallelLoop(outputDP,inputDP,c̄,wk,pk

)

if k even then
return outputDP[c̄]

else
return inputDP[c̄]

Algorithm 5 shows what will be executed simultaneously on the GPU for all l = 0, . . . , c̄. If an item

fits the capacity, i.e. wk ≤ l, it is checked whether adding the item is more profitable than excluding it

for that particular capacity. If that’s not the case, or the item doesn’t fit the capacity, the previous profit

value for that capacity is kept.

Algorithm 5: Parallel Internal Loop: parallelLoop(inputDP,outputDP,c̄,wk,pk)

Data: Arrays inputDP and outputDP of length c̄, capacity c̄, weight wk, and profit pk
parallel for l← 0 to c̄ do

if wk ≤ l then
if inputDP(l) < inputDP[l − wk] +pk then

outputDP[l] = inputDP[l − wk] +pk
else

outputDP(l) = inputDP[l]
else

outputDP[l] = inputDP[l])

It is well known and easily observed that the sequential DP algorithm for the KP runs in pseudopoly-

nomial time, namely O(cn). Strictly speaking that doesn’t change for the parallel implementation, as the

number of operations does not change. However, the potential speedup factor does depends on the prob-

lem size. As the algorithm is parallelised along the capacity dimension, this is where the most noticeable

speedup will be observed first. Transferring the relevant data to the GPU might not even be worth it

for smaller capacities. It seems likely that noticeable speedups will become apparent when the knapsack

capacity sufficiently large enough such that the parallel implementation is worth it. In that case, greater

knapsack sizes will potentially make even better use of it, as effective parallelisation will take place a

larger amount of times. Strictly speaking, if the capacity is sufficiently large and enough processing units

are available, all c iterations can efficiently be performed concurrently on the GPU. That is the desired

scenario at which perceptible differences will likely be obtained.

5 Data

The data used in this research has been obtained at or.dei.unibo.it, as generated and used by Bettinelli

et al. (2017). The data is split into two groups based on conflict graph densities. As put forward by

Sadykov and Vanderbeck (2013), the first group has randomly generated conflict graphs with densities

ranging from 0.1 to 0.9 and consists of eight classes. The first four classes have n ∈ {120, 250, 500, 1000}

14

items, respectively. The item weights are drawn from a uniform distribution such that wi ∈ U [20, 100]

(i = 1, . . . , n) and the knapsack capacity c equals 150. The last four classes have n ∈ {60, 120, 249, 501}

items, respectively, with the items having been generated in triplets such that an exact packing in the

knapsack is formed. Sadykov and Vanderbeck (2013) clarify these triplets further, stating that the weight

of every third item is determined in such a way that an optimal solution requires n/3 bins filled to capacity

with three items. To be more specific, this entails that the weight of every third item i3s (s = 1, . . . , n/3)

should equal wi3s = c − wi3s−1 − wi3s−2 . Akin to the first four classes, the item weights are defined as

wi ∈ U [250, 500] (i = 1, . . . , n) and the knapsack capacity c equals 1000. The approach of generating all

abovementioned values ultimately originates from Gendreau, Laporte, and Semet (2004), who built on

the test instances proposed by Falkenauer (1996) for the BPP. However, the KPCG requires that profits

are associated with each of the items, unlike the BPP from which the aforementioned parameter values

were derived. Bettinelli et al. (2017) have generated the profit values using two approaches: a random

approach, where pi ∈ U [1, 100] (i = 1, . . . , n); and a correlated approach with pi = wi + 10 (i = 1, . . . , n).

These characteristics are summarised in Table 1.

Table 1: Summary of Class Characteristics for Dense Datasets

Class n c wi prandi pcorri

1 120 150 U [20, 100] U [1, 100] wi + 10
2 250 150 U [20, 100] U [1, 100] wi + 10
3 500 150 U [20, 100] U [1, 100] wi + 10
4 1000 150 U [20, 100] U [1, 100] wi + 10
5 60 1000 U [250, 500] U [1, 100] wi + 10
6 120 1000 U [250, 500] U [1, 100] wi + 10
7 249 1000 U [250, 500] U [1, 100] wi + 10
8 501 1000 U [250, 500] U [1, 100] wi + 10

Additionally, a capacity multiplier (m ∈ {1, 3, 10}) is applied to obtain instances where more items

fit in the knapsack. In total 4320 instances are available of the first group, and each set of instances

is identified by a capital letter, followed by an integer number denoting the capacity multiplier. The

capital letters C and R denote the profits in the dataset to be correlated or random, respectively. Due

to the characteristics of class four and the datasets with capacity multiplier 10 and the time constraints

under which this research has been performed, two decisions have been made on how and if they’re to be

solved. A subset containing half the instances of class 4 is considered, alternately picking nine instances

from class four. This ensures that the ratio of density values over the dataset remains constant, and

that the chosen instances are reasonably spread over the class. Datasets with capacity multiplier 10 are

not considered at all, as it has been found that solving the other datasets already took more time than

expected.

The second group of datasets concerns instances with conflict graphs exhibiting sparse density values.

Bettinelli et al. (2017) consider graph densities of 0.001, 0.002, 0.005, 0.01, 0.02, and 0.05. For each

of these densities, n ∈ {500, 1000} items are considered for knapsack capacities c ∈ {1000, 2000}. Item

weights are once more uniformly distributed such that wi ∈ U [1, 100] (i = 1, . . . , n), which altogether

results in 24 classes. The decision on these parameter values take heavy inspiration from Hifi and Michrafy

15

(2007) and Yamada et al. (2002), with both papers using a similar framework with slightly different values

compared to what has been applied here. The associated profit values are defined the same as for the first

group, of which for each class 10 instances are generated for both the random and correlated variants.

These characteristics are summarised in Table 2.

Table 2: Summary of Class Characteristics for Sparse Datasets

Class n c wi prandi pcorri

1 500 1000 U [1, 100] U [1, 100] wi + 10
2 500 2000 U [1, 100] U [1, 100] wi + 10
3 1000 1000 U [1, 100] U [1, 100] wi + 10
4 1000 2000 U [1, 100] U [1, 100] wi + 10

This results in two datasets for this group, distinguished by its profits being either random or corre-

lated. Due to the sparse instances not being the main focus of the research and time constraints, a subset

of the datasets are considered. Half of the instances are considered, such that the ratio of density values

over each dataset is constant and instances are chosen alternately for every two instances.

6 Results

All solvers are implemented in Java, with custom code for the B&B algorithms and the MIP models

using the CPLEX 12.6.3.0 library. The workstation used for testing is equipped with an Intel i5-3570K

3.4 GHz CPU and 16 GB RAM, running the Windows 10 operating system. The solvers are subject to a

time limit of 1800 seconds per instance. Any deviation from the aforementioned will be explicitly stated.

All Java code can be found in Appendix B.

6.1 Upper Bound Performance

To analyse the performance of each of the implemented upper bounds, their optimality gaps in percentages

are determined. These values are obtained by computing 100(UB− z∗)/z∗, with z∗ denoting the optimal

(or best-known) objective value corresponding to the instance of interest.

Tables 3 and 4 show descriptive statistics on the optimality gaps of the proposed upper bounds,

aggregated by dataset and density, respecitvely. Upper bound fracKP performs moderately well, yet

its performance becomes worse for increased knapsack capacities and densities, as shown in Table 3 and

4, respectively. As discussed in Section 4.2, fracKP is the LP-relaxation of model (1a)-(1d), without

conflict constraints and resulting in a non-integer solution. Both these factors explain the conditions for

fracKP to decrease in performance.

Upper bound CC shows better performance in datasets with higher capacity, and performs worse for

lower conflict graph densities, as shown in Table 3 and 4, respectively. As discussed in Section 4.2.2,

tighter capacity constraints would indeed theoretically result in a higher optimality gap, due to CC

ignoring the capacity constraint of the KPCG. Lower conflict graph densities entails that the majority of

the cliques added to CC will only contain one item. That in combination with the absence of a capacity

16

constraint will result in higher optimality gaps for lower densities. Compared to fracKP and capCC,

CC’s performance is the worst overall.

The performance of capCC worsens under the same conditions as fracKP , yet in all cases outperforms

it, and in most cases with a large factor. As discussed in Section 4.2.3, capCC should indeed theoretically

dominate fracKP and CC under some conditions. Due to the approach of obtaining the cliques being

heuristic based, the proposition of Bettinelli et al. (2017) as discussed in Section 4.2.3 does not hold

theoretically, but is nevertheless confirmed numerically.

Table 3: Upper Bounds Percentage Optimality Gaps (Minimum, Average, Maximum)

fracKP CC capCC

Dataset Min Avg Max Min Avg Max Min Avg Max

R1 0.48 29.81 116.79 4.91 579.09 3,023.49 0.02 18.88 57.41
R3 2.12 96.94 393.20 4.91 209.28 946.35 0.26 40.21 141.21
C1 0.00 4.15 24.07 101.19 2,978.41 20,868.46 0.00 2.92 15.49
C3 0.21 20.74 162.13 26.65 544.88 3,535.39 0.12 14.80 107.82

Note: Results aggregated by dataset.

Table 4: Upper Bounds Percentage Optimality Gaps (Minimum, Average, Maximum)

fracKP CC capCC

Density Min Avg Max Min Avg Max Min Avg Max

0.1 0.00 6.54 29.96 72.84 2,269.63 20,868.46 0.00 4.67 29.86
0.2 0.00 9.61 45.63 55.67 1,755.85 15,955.00 0.00 6.19 30.24
0.3 0.00 16.61 66.32 24.90 1,405.09 12,689.00 0.00 8.18 32.86
0.4 0.00 18.65 78.02 29.03 1,175.53 10,472.73 0.00 11.12 38.47
0.5 0.00 26.88 126.07 40.31 962.63 8,292.31 0.00 15.80 61.99
0.6 0.00 36.18 159.26 24.09 781.78 6,566.33 0.00 20.78 74.87
0.7 0.00 50.73 218.36 24.10 606.64 5,013.00 0.00 28.09 90.23
0.8 0.00 71.12 278.98 10.67 450.12 3,636.95 0.00 35.78 115.75
0.9 0.95 107.88 393.20 4.91 293.96 2,243.96 0.65 42.22 141.21

Note: Results aggregated by density.

The obtained results for the upper bounds coincide quite well with those of Bettinelli et al. (2017).

fracKP should not come as a surprise, due to the method being exact. In this case, small deviations

are explained by the fact that a subset of class 4 is examined in this research. Moreover, capCC also

compares very well, even though it is a heuristic-based method. As heuristics are not exact, discrepancies

may occur and may explain deviations. Interestingly enough, our implementation of CC outperforms

that of Bettinelli et al. (2017) in the majority of cases, except for graph densities lower than 0.4.

6.2 Dense instances

Following the method of Dolan and Moré (2002), performance profiles of the different solvers for datasets

R1 and C1 are shown in Figure 1 and 2, respectively. The performance profiles plot the cumulative

distribution function for the performance ratio against τ . The performance ratio is defined as the solving

time of a solver for a problem instance, normalised against the fastest solving time for that instance.

17

Then for each τ , the graph shows for each solver the fraction of instances solved at most τ times slower

than the fastest solver.

Figure 1 and 2 show that the custom B&B algorithms outperform CPLEX for these datasets. We can

see that SV 13 is the fastest algorithm for 87% of all instances for the random dataset, and solves 95%

of the instances within four times the solving time of the fastest algorithm (τ = 4). Compare this to

BCM17, only being the fastest algorithm for 2% of the instances and only solving 27% at τ = 4. SV 13

with preKP performs similar to BCM17, only showing itself to be a slight improvement over it for this

dataset. For the correlated dataset the results for the B&B algorithms are a bit more ambiguous. Still

SV 13 is the fastest algorithm with 50% of the instances solved the fasted, followed closely by SV 13 with

preKP , then by BCM17. However, around τ = 4 their performances seem to converge somewhat, with

BCM17 lagging behind a bit.

Figure 1: Performance Profiles for SV13, SV13 with

preKP , BCM17, and CPLEX model (2a)-(2d) for
dataset R1

Figure 2: Performance Profiles for SV13, SV13 with

preKP , BCM17, and CPLEX model (2a)-(2d) for
dataset C1

Figures 5 and 6 show more elaborate results for the datasets with capacity multiplier one, aggregated

by class and density, respectively. For the random dataset, all B&B algorithms seem to have no real

difficulty with the instances. CPLEX is not doing bad in absolute term, but not really well in either. It has

been noted as well that the time to build a clique family in the majority of cases far exceeds the solving

times of the B&B algorithms. This, in combination with time constraints, has led to the decision to not

solve class four with CPLEX. The column for (2a)-(2d) in Table 6 thus shows somehwat biased results, yet

including class four would only have increased its values, thus relatively the B&B algorithms would still

come out superior in this case. SV 13 appears to have the greatest difficulty with the instances of class

eight and those with a lower density. Noticing the amount of nodes SV 13 visits compared to the other

algorithms, it performs well. This is likely due to the simple structures implemented in the algorithm,

saving computational time in that respect. SV 13 with preKP and BCM17 perform very similarly, from

solving times to nodes visited, although SV 13 with preKP seems to have a slight edge over BCM17.

Instances of class four and eight appear the most difficult for these methods. There is some variation in

solving times for the different density levels, yet firm deductions cannot be made from Table 6 on the

performance impact for these datasets.

18

Table 5: Computational Results for Datasets with Capacity Multiplier 1

SV 13 SV 13 with preKP BCM17 (2a)-(2d)

Class Solved Time Nodes Solved Time Nodes Solved Time Nodes Solved Time

R1
1 90 0.001 204.0 90 0.011 34.9 90 0.129 32.1 90 1.627
2 90 0.006 475.0 90 0.069 61.0 90 0.087 56.6 90 4.045
3 90 0.067 1,767.4 90 0.482 150.7 90 0.631 142.0 90 12.659
4 45 0.255 3,396.8 45 3.146 363.3 45 5.003 347.4 x —
5 90 0.001 236.0 90 0.010 16.1 90 0.011 14.9 90 1.048
6 90 0.016 1,116.8 90 0.058 25.1 90 0.062 24.4 90 2.099
7 90 0.428 7,185.1 90 0.521 44.7 90 0.540 44.3 90 6.649
8 90 10.960 46,645.5 90 4.203 65.7 90 4.246 65.7 90 184.801

C1
1 90 0.347 18,202.4 90 0.014 79.0 90 0.019 77.0 90 3.591
2 89 51.066 565,414.2 90 0.096 153.0 90 0.110 149.9 90 11.862
3 85 45.262 472,444.9 90 0.534 273.8 90 0.633 269.4 90 25.096
4 31 17.300 2,251,476.0 45 3.683 718.7 45 4.909 705.6 x —
5 90 0.139 15,186.7 90 0.028 135.6 90 0.029 132.6 90 1.035
6 90 2.958 93,479.0 90 0.112 163.9 90 0.111 161.9 90 1.675
7 90 11.493 242,237.3 90 0.339 152.4 90 0.347 152.4 90 3.095
8 89 56.034 817,845.0 90 1.643 200.8 90 1.676 200.8 90 14.041

Note: Results aggregated by class. * denotes values subject to change before final version. x denotes classes which have not
been attempted to solve.

Table 6: Computational Results for Datasets with Capacity Multiplier 1

SV 13 SV 13 with preKP BCM17 (2a)-(2d)

Density Solved Time Nodes Solved Time Nodes Solved Time Nodes Solved Time

R1
0.1 75 8.325 22,994.5 75 1.399 35.5 75 1.392 35.5 69 2.733
0.2 75 3.167 15,895.0 75 0.725 33.7 75 0.738 33.7 69 4.065
0.3 75 1.249 10,489.0 75 0.540 40.9 75 0.573 40.9 69 3.350
0.4 75 0.704 9,121.5 75 0.762 53.9 75 0.834 53.9 70 5.362
0.5 75 0.341 6,601.2 75 0.731 64.1 75 0.835 64.1 70 7.861
0.6 75 0.126 3,299.1 75 0.771 92.2 75 1.023 92.2 70 10.976
0.7 75 0.050 1,722.9 75 0.786 134.0 75 1.160 132.6 71 19.775
0.8 75 0.021 739.5 75 1.125 113.3 75 1.403 107.1 71 41.655
0.9 75 0.013 334.1 75 1.472 128.3 75 1.751 104.4 71 174.617

C1
0.1 64 99.466 614,350.4 75 0.213 78.6 75 0.216 78.6 70 3.294
0.2 70 23.067 391,564.5 75 0.368 105.5 75 0.373 105.5 70 4.203
0.3 70 19.102 396,999.9 75 0.491 134.0 75 0.500 134.0 70 4.061
0.4 75 28.577 429,176.3 75 0.343 129.8 75 0.353 129.8 70 4.061
0.5 75 30.363 462,309.3 75 0.390 169.6 75 0.442 169.6 70 6.701
0.6 75 16.160 429,030.7 75 0.724 268.1 75 0.946 268.1 70 8.271
0.7 75 3.370 151,099.8 75 0.613 265.6 75 0.737 265.1 70 12.165
0.8 75 0.644 52,238.2 75 0.900 303.9 75 1.196 301.8 70 13.272
0.9 75 0.115 9,530.8 75 1.487 366.5 75 1.692 343.6 70 21.621

Note: Results aggregated by density. (2a)-(2d) column subject to change before final version.

The correlated dataset shows that indeed the proposed improvements of Bettinelli et al. (2017) are

important, with SV 13 beginning to exhibit difficulty solving the instances. Relative to the other algo-

rithms, solving times are very high, amount of nodes visited becomes very large, and it is not able to

solve all instances to optimality anymore. Table 6 shows these cases mainly consist of instances with

lower densities. Similar to the random dataset, both SV 13 with preKP and BCM17 perform well, with

the amount of nodes visited being low and dominating SV 13 and CPLEX. The difference in upper bounds

19

used by the two algorithms do not seem to have much of an impact on their respective solving capabilities

for these datasets.

Now we’ll discuss the datasets with capacity multiplier three. First it must be said that SV 13 is not

considered and CPLEX for MIP model (2a)-(2d) only partially. SV 13 had inconsistent performance for

the previous datasets, and the other B&B algorithms were designed to improve upon it. The solving

times of CPLEX for model (2a)-(2d) were relatively slow and misleading for the previous datasets. The

solving times themselves are reliable, yet in order to run CPLEX, a clique family must be built first. It

has been found by examining a small amount of instances that the time to build a clique family is at

most moderate, around 60 seconds for the highest density, when item amounts don’t exceed 250. If there

are more than 250 items, the building time can be moderate for lower densities to excessive for higher

densities, mostly far exceeding the time limit of 1800 seconds. To this extent, classes three, four and

eight will be excluded for now. These factors in combination with the available time for this research has

resulted in the decision to exclude or to partially examine these methods for the following datasets.

Figure 3 and 4 show the performance profiles for SV 13 with preKP and BCM17 for the datasets R3

and C3, respectively. Contrary to the previous performance profiles, a clear indication of the superior

performance of BCM17 is apparent for both datasets. In both cases BCM17 is the fastest solver for

approximately 73% and 66% of the instances for the random and correlated datasets, respectively. SV 13

with preKP on the other hand is only the fastest for roughly 14% and 10%, respectively. Within two

times (τ = 2) the solving time of the fastest algorithm, BCM17 solves about at 84% of R3 and 74% of

C3, yet SV 13 with preKP solves approximately 50% and 43% respectively. Assuming these algorithms

to be faster than SV 13 and CPLEX, these findings show great potential for BCM17, especially in this

comparison the potential of capCC. It may be noted that the algorithms are not able to solve all instances

anymore, with BCM17 converging to approximately 85% and 75% solved for the random and correlated

datasets, respectively.

Figure 3: Performance Profiles for SV13 with

preKP and BCM17 for dataset R3
Figure 4: Performance Profiles for SV13 with

preKP and BCM17 for dataset C3

Table 7 and 8 show more detailed computational results for these datasets, aggregated by class and

density, respectively. As discussed before, it was decided to not solve all classes with CPLEX, which is also

the reason why (2a)-(2d) is absent from Table 8, as it would be an unfair comparison. This time around,

both algorithms seem to show more difficulty in solving the instances. As Table 7 shows, classes three,

20

four, seven and eight cannot be solved entirely anymore for the random dataset, while for the correlated

dataset the majority of the classes cannot be solved in their entirety anymore. In other words, classes

Table 7: Computational Results for Datasets with Capacity Multiplier 3

SV 13 with preKP BCM17 (2a)-(2d)

Class Solved Time Nodes Solved Time Nodes Solved Time Clique

R3
1 90 10.035 11,432.5 90 13.130 8,658.1 90 1.656 0.484
2 90 183.529 119,724.0 90 156.070 72,221.4 90 6.914 13.228
3 51 401.918 185,811.8 55 315.803 98,320.9 x — —
4 16 470.918 570,795.6 15 550.49 80,744.7 x — —
5 90 9.766 1,915.2 90 3.253 759.4 90 0.780 0.027
6 90 81.385 11,568.2 90 31.028 5,584.0 90 1.853 0.534
7 84 418.752 41,376.8 89 187.186 20,254.3 90 8.088 13.250
8 45 588.135 40,973.1 61 664.291 24,274.7 x — —

C3
1 87 156.857 78,455.6 90 59.110 64,754.1 90 2.394 0.484
2 58 251.979 228,007.8 67 307.494 236,131.3 90 28.870 13.228
3 36 474.870 495,290.1 36 321.007 107,732.0 x — —
4 12 673.312 1,823,530.0 12 706.072 392,596.4 x — —
5 90 86.721 33,838.2 90 40.058 15,572.8 90 1.024 0.027
6 85 261.271 81,047.6 90 134.872 40,060.8 90 2.386 0.534
7 57 125.013 31,637.3 68 178.709 27,109.5 90 31.721 13.250
8 51 137.056 19,640.5 61 319.428 28,509.4 x — —

Note: Results aggregated by class. x denotes classes which have not been attempted to solve.

Table 8: Computational Results for Datasets with Capacity Multiplier 3

SV 13 with preKP BCM17

Class Solved Time Nodes Solved Time Nodes

R3
0.1 66 146.309 11,297.4 66 138.031 11,297.4
0.2 55 168.376 33,359.9 56 184.115 33,208.4
0.3 56 331.224 80,175.5 56 254.302 72,872.8
0.4 51 282.786 108,944.7 55 250.254 60,636.3
0.5 52 294.211 93,927.7 60 239.140 64,264.0
0.6 60 265.844 93,698.9 63 146.488 22,384.2
0.7 66 203.753 145,197.1 74 248.247 25,459.2
0.8 75 184.495 47,506.5 75 108.035 5,928.8
0.9 75 64.917 8,900.9 75 48.610 1,818.8

C3
0.1 65 81.425 6,257.3 66 72.487 7,734.3
0.2 52 91.552 23,995.8 54 115.856 52,142.7
0.3 49 135.210 54,176.6 51 97.712 71,977.2
0.4 48 408.726 167,408.8 51 308.866 165,593.4
0.5 32 458.638 240,090.5 41 325.131 234,412.1
0.6 40 296.679 203,112.7 41 116.592 53,323.2
0.7 50 280.199 308,182.5 60 224.924 73,459.1
0.8 65 189.454 93,189.9 75 317.326 85,441.1
0.9 75 111.991 21,140.4 75 82.010 10,302.4

Note: Results aggregated by density.

21

with higher amounts of items available strain the performance of both B&B algorithms. The amount

of nodes visited for both methods per datasets are more than substantial, although BCM17 has more

favourable values in virtually all cases. Looking at how many nodes SV 13 visited relatively in the case of

normal capacity, it’s performance on these datasets would likely be much worse than SV 13 with preKP

and BCM17. Looking at density values, both low and high density values appear to be mostly solved and

relatively quickly at that, as shown in Table 8. Both B&B algorithms seem to struggle most with densities

between 0.3 and 0.7, having a great amount of nodes visited and high solving times. Eventhough both

methods suffer the same performance-degrading characteristics, BCM17 still shows to be the superior

algorithm in amount of instances solved, solving times, and amount of nodes visited. Still, for item

amounts up to 250, CPLEX appears to be faster than the B&B algorithms even when including the clique

family building time. When more items are considered, the B&B algorithms are plausibly superior,

assuming the clique family building time exceeds the time limit in the majority of cases, especially for

higher densities.

Bettinelli et al. (2017) show slightly different results than those mentioned in here. They managed to

solve all instances for the datasets considered in this research, with solving times almost never exceeding

one second. Most noticeably in Table 7 and 8, this is not the case with our implementation. This is

most likely due to Bettinelli et al. (2017) precomputing the values of preKP , and possibly some tricks to

implement their code more efficiently. While for the datasets with normal capacity the amount of nodes

visited coincide relatively well, with an increased capacity the results diverge considerably from theirs.

What does correspond is that their proposed branching scheme and upper bound does indeed improve

upon the SV 13 algorithm, decreasing solving time and amount of nodes visited.

6.3 Sparse instances

Table 9 shows the computational results for BCM17 and CPLEX for model (1a)-(1d) for the random

dataset with sparse graph densities. CPLEX performs well, with fast to moderate solving times, solving

virtually all instances. Instances with density 0.05 are the most difficult to solve for this dataset, with

increased solving times when either the amount of available items or the capacity increases. In the case

where 1000 items are considered for a capacity of 2000, it cannot solve the instances of density 0.05

anymore. Given that CPLEX is rather quick for this dataset, the time limit for BCM17 is set to 900

seconds, instead of 1800. With this time limit, BCM17 is not able to solve any of the instances for this

dataset.

Bettinelli et al. (2017) already noted that for datasets with sparse graph densities, BCM17 showed

undesirable results, which is confirmed by our results. As we have noted throughout this research,

correlated datasets are more difficult to solve for all proposed methods. To this extent, the choice has

been made to not further examine the correlated dataset with sparse instances, as the verdict about the

performance of BCM17 will likely not differ much from that of the random dataset.

22

Table 9: Results Random Sparse Instances

RANDOM

BCM17 (1a)-(1d)

Items/Cap Density Solved Time Solved Time

500/1000

0.001 0 — 5 0.98
0.002 0 — 5 1.04
0.005 0 — 5 2.10
0.01 0 — 5 3.07
0.02 0 — 5 4.10
0.05 0 — 5 19.68

500/2000

0.001 0 — 5 0.79
0.002 0 — 5 1.13
0.005 0 — 5 2.13
0.01 0 — 5 3.63
0.02 0 — 5 4.81
0.05 0 — 5 203.52

1000/1000

0.001 0 — 5 0.04
0.002 0 — 5 0.03
0.005 0 — 5 0.06
0.01 0 — 5 0.10
0.02 0 — 5 0.21
0.05 0 — 5 169.38

1000/2000

0.001 0 — 5 0.03
0.002 0 — 5 0.03
0.005 0 — 5 0.07
0.01 0 — 5 0.12
0.02 0 — 5 1.81
0.05 0 — 0 —

Note: BCM17 performed under reduced time limit of 900 sec-
onds.

6.4 GPU-based Branching Scheme

Some aspects of the workstation had to be changed or needed to be introduced in the context the

implementation of parKP . The workstation used for testing was running on the Ubuntu 20.04 LTS

operating system, as required by TornadoVM. The used GPU was an NVIDIA GeForce RTX 2060. It is

based on NVIDIA’s new Turing architecture, equipped with 6GB GDDR6 of memory and 1920 processing

cores. The Java code modified for use with TornadoVM can be found in Appendix B.5 Listing 10. Tables

10 and 11 show the computational results for BCM17 with parKP aggregated by class for datasets R1

and R3, respectively. Given the limited computational time available, for the datasets with capacity

multiplier three, a subset of instances has been chosen under a reduced time limit of 900 seconds. The

subset was derived the same way as has been done for class four earlier. That is, alternately picking

nine instances, such that density ratios remain constant and the instances are spread equally over the

original dataset. The computational results of the sequential implementation of BCM17 under the same

conditions has been included in the tables as well for reason of comparison. parKP should not show

dissimilar behaviour towards different graph densities than preKP , because at the base they perform

the same operations. This fact makes it that meaningful inferences could not be made for those results.

Nevertheless, for those interested, those results can be found in Appendix A, Tables 12 and 13.

23

Table 10: Computational Results for Dense Datasets with Capacity Multiplier 1

BCM17 BCM17 with parKP

Class Solved Time Solved Time

R1
1 90 0.013 90 0.214
2 90 0.087 90 0.589
3 90 0.631 90 2.272
4 45 5.003 45 11.182
5 90 0.011 90 0.120
6 90 0.062 90 0.340
7 90 0.540 90 1.217
8 90 4.246 90 3.465

C1
1 90 0.019 90 0.354
2 90 0.110 90 0.979
3 90 0.633 90 3.223
4 45 4.909 45 15.019
5 90 0.029 90 0.662
6 90 0.111 90 1.453
7 90 0.347 90 1.395
8 90 1.676 90 3.586

Note: Results aggregated by class. All instances
solved under reduced time limit of 900 seconds.

It can be seen in Table 10 that BCM17 with parKP performs worse than its sequential counterpart

for datasets R1 and C1. This must be because the capacities for these datasets are relatively low, and

the program is not able to efficiently parallelise the code over the GPU. The only exception being class

eight for R1, where BCM17 with parKP is 0.781 seconds faster on average. This is likely due to its

characteristics, having a capacity of 1000, in combination with a relatively high amount of items, namely

501.

Subsequently we’ll have a look at the results for the (subsets of the) datasets with multiplier three,

as shown in Table 11. The first four classes show BCM17 with parKP to be worse than BCM17 for the

random dataset. Solving times do not significantly improve for all classes, except class four. Although

an improvement in solving time is seen for that class, for all four classes BCM17 with parKP solves

less instances to optimality within the time limit. However, the last four classes are more interesting,

showing BCM17 with parKP to be an improvement over BCM17 in both solving times and amount

of instances solved to optimality. Class seven and eight show a decrease in solving times of 30% and

26%, respectively. Class seven is now solved in its entirety (under the reduced time limit), and 68% more

instances are solved for class eight.

The correlated dataset shows the same pattern as the random dataset. BCM17 with parKP shows

no improvement over BCM17 for the first four classes, yet for the last four classes the differences in

favour of BCM17 with parKP are very noticeable. Solving times show a decrease of 20% for class eight,

while for classes six and seven this is approximately 60%. However, the difference in amount of instances

solved to optimality for this dataset is minimal, although still in favour of BCM17 with parKP .

Overall it may be noted that for the last four classes the performance of BCM17 with parKP compared

24

to BCM17 is noticeably well, which cannot be said for the first four classes. Note that first four classes

have a capacity of 450, while the last four have a capacity of 3000. As discussed in Section 4.3, performance

was expected to increase when the capacity was sufficiently large, which appears to be the case for a

capacity of 3000.

Table 11: Computational Results for Dense Datasets with Capacity Multiplier 3

BCM17 BCM17 with parKP

Class Solved Time Solved Time

R3 Subset
1 45 8.279 45 28.684
2 44 130.544 42 124.156
3 23 155.825 22 155.611
4 12 349.675 11 247.779
5 45 3.129 45 2.342
6 45 29.727 45 16.967
7 42 164.741 45 114.712
8 19 295.745 32 235.326

C3 Subset
1 45 27.498 44 89.174
2 30 181.527 25 109.768
3 16 226.821 15 200.872
4 7 383.755 7 354.872
5 45 35.755 45 28.079
6 44 135.883 45 58.205
7 32 138.789 33 54.638
8 26 106.013 30 84.292

Note: Results aggregated by class. All instances solved
under reduced time limit of 900 seconds.

7 Conclusion & Discussion

The purpose of this research was to replicate and validate the results of Bettinelli et al. (2017), and

extend upon their model. In replicating their results we have found that for the datasets with dense

graph densities, all examined B&B algorithms perform well for low capacities, except for SV 13 on the

random set of instances. The B&B algorithms outperform CPLEX, especially if the time-consuming part of

building the clique family is taken into account. BCM17 outperformed SV 13 with preKP relatively easy

for the examined datasets with higher capacity. BCM17 however is not suitable for datasets with sparse

graph densities, i.e. lower than 0.1. CPLEX is the preferred approach for solving those datasets. Extending

upon their framework, it is found that for sufficiently large knapsack capacities, parallel implementation

of the branching scheme on a GPU can result in moderate to large speedups in solving times.

Overall, an increased capacity or increased amount of items considered greatly strains performance

of the B&B algorithms. However, the performance degradation of an increased capacity can partly be

overcome with parallel implementation of preKP . Moreover, datasets are substantially harder to solve

when the profits are correlated to the item’s weight, compared to datasets where they are random. The

density of the conflict graph is also an important factor on performance, with midrange densities, those

25

between 0.2 and 0.7, showing an increased amount of instances not solved to optimality and increased

solving times. Graph densities lower than 0.1 cannot be solved at all with the proposed B&B algorithm.

To some extent we have validated the results of Bettinelli et al. (2017). Namely, the solving times

found in this research greatly exceed those presented by Bettinelli et al. (2017), and not all instances

which they were able to solve could be solved by our implementation. However, this is likely due to

our implementation not precomputing the values of preKP . Still, it has been shown that the proposed

branching scheme preKP and upper bound capCC do indeed increase the performance of algorithm

compared to the generic version proposed by Sadykov and Vanderbeck (2013). The BCM17 algorithm

shows a large reduction in solving times, amount of nodes visited, and is able to solve more instances than

comparative algorithms. However, CPLEX still seems the best option when the amount of items available

is moderate, i.e. does not exceed 250, and graph densities are moderate to low.

The main limitation of this research was time. With how the B&B algorithm was implemented in this

paper, a large amount of time would have been needed to apply all algorithms to all available datasets.

That time was not available, and thus some choices had to be made on which solvers were to be used

and which datasets were to be solved. Secondly, it should have been noted earlier that the time needed

to build a clique family was considerable. If those times were recorded, relevant statistics of those times

could have been shown for all datasets. Lastly, the absence of knowledge on parallel programming posed

to be a hurdle. It was a journey to delve into the subject, but it might have made things more difficult

than they had to be. Initially, the intention was to apply parallel computing to the algorithm in a broader

context, but this proved to be too ambitious. However, this leaves all the more room for other researchers

to improve upon what is proposed.

The parallel implementation of the internal upper bound is an interesting addition, but it is only a

small part of the algorithm as a whole. Although a challenge to efficiently implement, B&B algorithms

show large potential for parallel computing. I would suggest future research on the topic of KPCGs to

look into ways to further parallelise the proposed algorithm.

Acknowledgements

I would like to thank the team behind TornadoVM for their quick responses to problems I encountered in

setting up and utilising TornadoVM. To be more precise, a special thanks to Juan Fumero and Thanos

Stratikopoulos, who were my main points of contact with the team, and both have been very helpful.

References

Atamtürk, A., & Savelsbergh, M. (2005). Integer-Programming Software Systems. Annuals of Operations

Research, 140, 67–124. https://doi.org/10.1007/s10479-005-3968-2

Balas, E. (1965). An Addative Algorithm for Solving Linear Programs with Zero-One Variables. Opera-

tions Research, 13 (4), 517–546. https://doi.org/10.1287/opre.13.4.517

26

https://doi.org/10.1007/s10479-005-3968-2
https://doi.org/10.1287/opre.13.4.517

Bettinelli, A., Cacchiani, V., & Malaguti, E. (2017). A Branch-and-Bound Algorithm for the Knapsack

Problem with Conflict Graph. INFORMS Journal of Computing, 29 (3), 457–473. https://doi.

org/10.1007/BF00226291

Boyer, V., El Baz, D., & Elkihel, M. (2010). Solution of Multidimensional Knapsack Problems via Co-

operation of Dynamic Programming and Branch and Bound. European Journal of Industrial

Engineering, 4 (4), 434–449. https://doi.org/10.1504/EJIE.2010.035653

Boyer, V., El Baz, D., & Elkihel, M. (2012). Solving knapsack problems on GPU. Computers & Operations

Research, 39 (1), 42–47. https://doi.org/10.1016/j.cor.2011.03.014

Boyer, V., El Baz, D., & Salazar-Aguilar, M. (2017). GPU Computing Applied to Linear and Mixed-

Integer Programming. In Advances in GPU, Research and Practice (pp. 247–271). Elsevier. https:

//doi.org/10.1016/B978-0-12-803738-6.00010-0

Carneiro, T., Muritiba, A. E., Negreiros, M., & Lima de Campos, G. A. (2011). A New Parallel Schema

for Branch-and-Bound Algorithms Using GPGPU, In 2011 23rd International Symposium on

Computer Architecture and High Performance Computing. https ://doi .org/10.1109/SBAC-

PAD.2011.20

Chakroun, I., Melab, N., Mezmaz, M., & Tuyttens, D. (2013). Combining Multi-Core and GPU Com-

puting for Solving Combinatorial Optimization Problems. Journal of Parallel and Distributed

Computing, 73 (12), 1563–1577. https://doi.org/10.1016/j.jpdc.2013.07.023

Clarkson, J., Fumero, J. P., Zakkak, F., Xekalaki, M., Kotselidis, C., & Luján, M. (2018). Exploiting

High-Performance Heterogeneous Hardware for Java Programs using Graal, In Proceedings of

the 15th International Conference on Managed Languages & Runtimes. https://doi.org/10.1145/

3237009.3237016

Dakin, R. (1965). A Tree-Search Algorithm for Mixed Integer Programming Problems. The Computer

Journal, 8 (3), 250–255. https://doi.org/10.1093/comjnl/8.3.250

Dantzig, G. (1957). Discrete-Variable Extremum Problems. Operations Research, 5 (2), 266–277. https:

//doi.org/10.1287/opre.5.2.266

Demeulemeester, E., & Herroelen, W. (1992). A Branch-and-Bound Procedure for the Multiple Resource-

Constrained Project Scheduling Problem. Management Science, 38 (12), 67–124. https://doi.org/

10.1287/mnsc.38.12.1803

Dolan, E., & Moré, J. (2002). Benchmarking Optimisation Software with Performance Profiles. Mathe-

matical Programming, 91, 201–213. https://doi.org/10.1007/s101070100263

Efroymson, M., & Ray, T. (1966). A Branch-Bound Algorithm for Plant Location. Operations Research,

14 (3), 361–368. https://doi.org/10.1287/opre.14.3.361

Elhedhli, S., Li, L., Gzara, M., & Naoum-Sawaya, J. (2011). A Branch-and-Price Algorithm for the

Bin Packing Problem with Conflicts. INFORMS Journal on Computing, 23 (3), 404–415. https:

//doi.org/10.1287/ijoc.1100.0406

Epstein, L., & Levin, A. (2008). On Packing With Conflicts. SIAM Journal of Optimization, 19 (3), 1270–

1298. https://doi.org/10.1137/060666329

27

https://doi.org/10.1007/BF00226291
https://doi.org/10.1007/BF00226291
https://doi.org/10.1504/EJIE.2010.035653
https://doi.org/10.1016/j.cor.2011.03.014
https://doi.org/10.1016/B978-0-12-803738-6.00010-0
https://doi.org/10.1016/B978-0-12-803738-6.00010-0
https://doi.org/10.1109/SBAC-PAD.2011.20
https://doi.org/10.1109/SBAC-PAD.2011.20
https://doi.org/10.1016/j.jpdc.2013.07.023
https://doi.org/10.1145/3237009.3237016
https://doi.org/10.1145/3237009.3237016
https://doi.org/10.1093/comjnl/8.3.250
https://doi.org/10.1287/opre.5.2.266
https://doi.org/10.1287/opre.5.2.266
https://doi.org/10.1287/mnsc.38.12.1803
https://doi.org/10.1287/mnsc.38.12.1803
https://doi.org/10.1007/s101070100263
https://doi.org/10.1287/opre.14.3.361
https://doi.org/10.1287/ijoc.1100.0406
https://doi.org/10.1287/ijoc.1100.0406
https://doi.org/10.1137/060666329

Falkenauer, E. (1996). A Hybrid Grouping Genetic Algorithm for Bin Packing. Journal of Heuristics, 2,

5–30. https://doi.org/10.1007/BF00226291

Gendreau, M., Laporte, G., & Semet, F. (2004). Heuristic and Lower Bounds for the Bin Packing Problem

with Conflicts. Computers & Operations Research, 31 (3), 347–358. https://doi.org/10.1016/

S0305-0548(02)00195-8

Gmys, J., Mezmaz, M., Melab, N., & Tuyttens, D. (2016). A GPU-Based Branch-and-Bound Algorithm

using Integer-Vector-Matrix Data Structure. Parallel Computing, 59, 119–139. https://doi.org/

10.1016/j.parco.2016.01.008

Gomory, R. (1960). An Algorithm for the Mixed Integer Problem. Santa Monica, CA, RAND Corporation.

https://www.rand.org/pubs/research memoranda/RM2597.html

Haffner, S., Monticelli, A., Garcia, A., & Romero, R. (2001). Specialised Branch-and-Bound Algorithm

for Transmission Network Expansion Planning. IEEE Proceedings - Generation, Transmission

and Distribution, 148 (5), 482–488. https://doi.org/10.1049/ip-gtd:20010502

Held, S., Cook, W., & Sewell, E. C. (2012). Maximum-Weight Stable Sets and Safe Lower Bounds for

Graph Coloring. Mathematical Programming Computation, 4, 363–381. https://doi.org/10.1007/

s12532-012-0042-3

Hifi, M., & Michrafy, M. (2006). A Reactive Local Search-Based Algorithm for the Disjunctively Con-

strained Knapsack Problem. Journal of Operations Research, 57 (6), 718–726. https://doi.org/

10.1057/palgrave.jors.2602046

Hifi, M., & Michrafy, M. (2007). Reduction Strategies and Exact Algorithms for the Disjunctively Con-

strained Knapsack Problem. Computers & Operations Research, 34 (9), 2657–2673. https://doi.

org/10.1016/j.cor.2005.10.004

Jansen, K. (1999). An Approximation Scheme for Bin Packing with Conflicts. Journal of Combinatorial

Optimization, 3, 363–377. https://doi.org/10.1023/A:1009871302966

Jansen, K., & Öhring, S. (1997). Approximation Algorithms for Time Constrained Scheduling. Informa-

tion and Computing, 2 (1), 85–108. https://doi.org/10.1006/inco.1996.2616

Kolesar, P. (1967). A Branch and Bound Algorithm for Knapsack Problem. Management Science, 13 (9),

723–735. https://doi.org/10.1287/mnsc.13.9.723

Lalami, M., & El Baz, D. (2012). GPU Implementation of the Branch and Bound Method for Knapsack

Problems, In IEEE 26th International Parallel and Distributed Processing Symposiom Workshops

and PhD Forum, Shanghai. https://doi.org/10.1109/IPDPSW.2012.219

Land, A., & Doig, A. (1960). An Automatic Method of Solving Discrete Programming Problems. Econo-

metrica, 28 (3), 497–520. https://doi.org/10.2307/1910129

Laporte, G., & Desroches, S. (1984). Examination Timetabling by Computer. Computers & Operations

Research, 11 (4), 351–360. https://doi.org/10.1016/0305-0548(84)90036-4

Lawler, E., & Wood, D. (1966). Branch-and-Bound Methods: A Survey. Operations Research, 14 (4),

699–719. https://doi.org/10.1287/opre.14.4.699

Little, J., Murty, K., Sweeney, D., & Karel, C. (1963). An Algorithm for the Traveling Salesman Problem.

Operations Research, 11 (6), 972–989. https://doi.org/10.1287/opre.11.6.972

28

https://doi.org/10.1007/BF00226291
https://doi.org/10.1016/S0305-0548(02)00195-8
https://doi.org/10.1016/S0305-0548(02)00195-8
https://doi.org/10.1016/j.parco.2016.01.008
https://doi.org/10.1016/j.parco.2016.01.008
https://www.rand.org/pubs/research_memoranda/RM2597.html
https://doi.org/10.1049/ip-gtd:20010502
https://doi.org/10.1007/s12532-012-0042-3
https://doi.org/10.1007/s12532-012-0042-3
https://doi.org/10.1057/palgrave.jors.2602046
https://doi.org/10.1057/palgrave.jors.2602046
https://doi.org/10.1016/j.cor.2005.10.004
https://doi.org/10.1016/j.cor.2005.10.004
https://doi.org/10.1023/A:1009871302966
https://doi.org/10.1006/inco.1996.2616
https://doi.org/10.1287/mnsc.13.9.723
https://doi.org/10.1109/IPDPSW.2012.219
https://doi.org/10.2307/1910129
https://doi.org/10.1016/0305-0548(84)90036-4
https://doi.org/10.1287/opre.14.4.699
https://doi.org/10.1287/opre.11.6.972

Martello, S., & Toth, P. (1977). An Upper Bound for the Zero-One Knapsack Problem and a Branch and

Bound Algorithm. European Journal of Operational Research, 1 (3), 169–175. https://doi.org/

10.1016/0377-2217(77)90024-8

Martello, S., & Toth, P. (1988). A New Algorithm for the 0-1 Knapsack Problem. Management Science,

34 (5), 633–644. https://doi.org/10.1287/mnsc.34.5.633

Martello, S., & Toth, P. (1997). Upper Bounds and Algorithms for Hard 0-1 Knapsack Problems. Oper-

ations Research, 45 (5), 768–778. https://doi.org/10.1287/opre.45.5.768

Martello, S., & Toth, P. (2003). An Exact Algorithm for the Two-Constraint 0-1 Knapsack Problem.

Operations Research, 51 (5), 826–835. https://doi.org/10.1287/opre.51.5.826.16757

Miralles, C., Garćıa-Sabater, J., Andrés, C., & Cardós, M. (2005). Branch and Bound Procedures for

Solving the Assembly Line Worker Assignment and Balancing Problem: Application to Sheltered

Work Centres for Disabled. Discrete Applied Mathematics, 156 (3), 352–367. https://doi.org/10.

1016/j.dam.2005.12.0125

Muritiba, A., Iori, M., Malaguti, E., & Toth, P. (2010). Algorithms for the Bin Packing Problem with

Conflicts. INFORMS Journal on Computing, 22 (3), 401–415. https://doi.org/10.1287/ijoc.1090.

0355

Nardi, L., Bodin, B., Zia, M., Mawer, J., Nisbet, A., Kelly, P., Davison, A., Luján, M., O’Boyle, M.,

Riley, G., Topham, N., & Furber, S. (2015). Introducing SLAMBench, a Performance and Accu-

racy Benchmarking Methodology for SLAM, In IEEE International Conference on Robotics and

Automation. https://doi.org/10.1109/ICRA.2015.7140009

Navarro, C., Hitschfeld-Kahler, N., & Mateu, L. (2014). A Survey on Parallel Computing and its Appli-

cations in Data-Parallel Problems. Communications in Computational Physics, 15 (2), 285–329.

https://doi.org/10.4208/cicp.110113.010813a

Pupko, T., Pe’er, I., Hasehawa, M., Graur, D., & Friedman, N. (2002). A Branch-and-Bound Algorithm

for the Inference of Ancestral Amino-Acid Sequences when the Replacement Rate Varies among

Sites: Application to Evolution of Five Gene Families. Bioinformatics, 18 (8), 1116–1123. https:

//doi.org/10.1093/bioinformatics/18.8.1116

Ryan, D., & Foster, B. (1981). An Integer Programming Approach to Scheduling. In A. Wren (Ed.),

Computer Scheduling of Public Transport Urban Passenger and Vehicle and Crew Scheduling

(pp. 269–280). North-Holland, Amsterdam.

Sadykov, R., & Vanderbeck, F. (2013). Bin Packing with Conflicts: A Generic Branch-and-Price Algo-

rithm. INFORMS Journal of Computing, 25 (2), 244–255. https://doi.org/10.1287/ijoc.1120.0499

Toth, P. (1980). Dynamic Programming Algorithms for the Zero-One Knapsack Problem. Computing, 25,

29–45. https://doi.org/10.1007/BF02243880

Vanderbeck, F. (2011). Branching in Branch-and-Price: a Generic Scheme. Mathematical Programming,

130, 249–294. https://doi.org/10.1007/s10107-009-0334-1

Yamada, T., Kataoka, S., & Watanabe, K. (2002). Heuristic and Exact Algorithms for the Disjunctively

Constrained Knapsack Problem. Information Processing Society of Japan, 43 (9), 2864–2870.

http://id.nii.ac.jp/1001/00011486/

29

https://doi.org/10.1016/0377-2217(77)90024-8
https://doi.org/10.1016/0377-2217(77)90024-8
https://doi.org/10.1287/mnsc.34.5.633
https://doi.org/10.1287/opre.45.5.768
https://doi.org/10.1287/opre.51.5.826.16757
https://doi.org/10.1016/j.dam.2005.12.0125
https://doi.org/10.1016/j.dam.2005.12.0125
https://doi.org/10.1287/ijoc.1090.0355
https://doi.org/10.1287/ijoc.1090.0355
https://doi.org/10.1109/ICRA.2015.7140009
https://doi.org/10.4208/cicp.110113.010813a
https://doi.org/10.1093/bioinformatics/18.8.1116
https://doi.org/10.1093/bioinformatics/18.8.1116
https://doi.org/10.1287/ijoc.1120.0499
https://doi.org/10.1007/BF02243880
https://doi.org/10.1007/s10107-009-0334-1
http://id.nii.ac.jp/1001/00011486/

Zhang, Z., Qin, H., Zhu, W., & Lim, A. (2012). The Single Vehicle Routing Problem with Toll-by-Weight

Scheme: A Branch-and-Bound Approach. European Journal of Operational Research, 220 (2),

295–304. https://doi.org/10.1016/j.ejor.2012.01.035

30

https://doi.org/10.1016/j.ejor.2012.01.035

Appendix A Computational Results

Table 12: Computational Results for Dense Datasets with Capacity Multiplier 1

BCM17 BCM17 with parKP

Density Solved Time Solved Time

R1
0.1 75 1.392 75 2.166
0.2 75 0.738 75 1.494
0.3 75 0.573 75 1.742
0.4 75 0.834 75 1.813
0.5 75 0.835 75 1.601
0.6 75 1.023 75 1.853
0.7 75 1.160 75 1.680
0.8 75 1.403 75 2.284
0.9 75 1.751 75 1.937

C1
0.1 75 0.216 75 1.733
0.2 75 0.373 75 2.371
0.3 75 0.500 75 2.010
0.4 75 0.353 75 1.612
0.5 75 0.442 75 1.642
0.6 75 0.946 75 1.950
0.7 75 0.737 75 2.859
0.8 75 1.196 75 4.653
0.9 75 1.692 75 4.164

Note: Results aggregated by density. All instances
solved under reduced time limit of 900 seconds.

31

Table 13: Computational Results for Dense Datasets with Capacity Multiplier 3

BCM17 BCM17 with parKP

Density Solved Time Solved Time

R3 Subset
0.1 31 93.289 33 55.141
0.2 25 96.470 28 145.061
0.3 25 156.145 26 154.064
0.4 24 89.864 27 158.425
0.5 28 153.218 26 77.128
0.6 30 81.960 32 133.229
0.7 32 79.368 35 64.364
0.8 40 123.635 40 66.460
0.9 40 57.880 40 21.786

C3 Subset
0.1 32 18.989 33 37.861
0.2 27 63.923 25 46.967
0.3 25 61.208 25 75.569
0.4 22 209.401 23 141.515
0.5 19 287.535 16 134.078
0.6 20 94.124 20 84.488
0.7 29 191.732 27 106.736
0.8 31 80.185 35 98.781
0.9 40 97.806 40 65.825

Note: Results aggregated by density. All instances solved un-
der reduced time limit of 900 seconds.

Appendix B Java Code

B.1 Miscellaneous

Listing 1: Main class

1 import java.io.IOException;

2 import java.util.*;

3

4 import ilog.concert.IloException;

5

6 public class Main {

7 private static InstanceLoader loader;

8 private static Scanner in;

9 private static long startTime;

10 private static ArrayList<Instance> instanceList;

11 private static String solver, foldername, ubString;

12 private static boolean preKP, CC, capCC, clique, proper;

13

14 /**

15 * Main method, calls choice menus and subsequently the solvers.

16 * Ultimately writes all relevant results to excel.

17 */

18 public static void main(String[] args) throws IOException, IloException {

19 loader = new InstanceLoader();

20 in = new Scanner(System.in);

21 instanceList = new ArrayList<Instance>();

22

23 menu();

24

32

25 System.out.println("Finished solving at "+java.time.LocalTime.now());

26

27 ExcelWriter writer = new ExcelWriter(foldername,solver, ubString," all");

28 writer.writeFile(instanceList);

29

30 in.close();

31 }

32

33 /**

34 * Solves the set of instances using CPLEX

35 * @throws IOException

36 */

37 private static void cplexSolve() throws IloException, IOException {

38 cplexMenu();

39 int k = 1;

40 instanceList = loader.loadInstanceList(foldername);

41

42 for (Instance i : instanceList) {

43 startTime = System.currentTimeMillis();

44 CplexModel cplex = new CplexModel(i,clique);

45

46 cplex.solve();

47 i.setSolvingTime((double) (System.currentTimeMillis() - startTime)/1000);

48 i.setObjectiveValue(cplex.getObjectiveValue());

49 i.setNodesVisited(cplex.getNodesVisited());

50 if (cplex.isOptimal()) {i.setSolved();}

51

52 System.out.printf("\nAmount of instances solved: %d\n\n", k++);

53 }

54 }

55

56 /**

57 * Solves the set of instances using a Branch-and-Bound algorithm

58 * @throws IOException

59 */

60 private static void bbSolve() throws IOException {

61 bbMenu();

62 int k = 1;

63 instanceList = loader.loadInstanceList(foldername);

64

65 for (Instance i : instanceList) {

66 BranchBoundModel bbModel = new BranchBoundModel(i,preKP, CC, capCC);

67 startTime = System.currentTimeMillis();

68

69 bbModel.solve();

70

71 i.setSolvingTime((double) (System.currentTimeMillis() - startTime)/1000);

72 i.setObjectiveValue(bbModel.getObjectiveValue());

73 i.setNodesVisited(bbModel.getNodesVisited());

74 if (bbModel.isSolved()) {i.setSolved();}

75 i.setUB(bbModel.getUB(i.getItemList(), 0));

76

77 System.out.printf("\nAmount of instances solved: %d\n\n", k++);

78 }

79

80 }

81

82 /**

83 * Menu to determine choice of dataset and which solver will be used

84 * @throws IOException

85 */

86 private static void menu() throws IloException, IOException {

87 proper = false;

33

88

89 System.out.print("Enter name of dataset to be loaded (C1, C3, C10, R1, R3, R10, SR, SC):

");

90 foldername = in.nextLine();

91

92 while (proper == false) {

93 System.out.print("Which solver would you like to use?\n"

94 + " - 0 for Branch-and-Bound\n"

95 + " - 1 for CPLEX\nEnter choice: ");

96 switch(in.nextInt()) {

97 case 0: System.out.printf("\nBranch-and-Bound selected\n\n"); proper = true;

bbSolve(); break;

98 case 1: System.out.printf("\nCPLEX selected\n\n"); proper = true; cplexSolve();

break;

99 default: System.out.printf("\nInput mismatch\n\n");

100 }

101 }

102 }

103

104 /**

105 * Choice menu to determine which CPLEX model to use

106 */

107 private static void cplexMenu() {

108 proper = false;

109 while (!proper) {

110 System.out.printf("Enter 1 for CPLEX model with clique conflict constraints, 0

otherwise: ");

111 switch(in.nextInt()) { case 0: proper = true; clique = false; solver = "CPLEX MIP 1";

break;

112 case 1: proper = true; clique = true; solver = "CPLEX MIP 2"; break;

113 default: System.out.printf("\nInput mismatch, try again.\n\n");}

114 }

115 ubString = "N.A.";

116 }

117

118 /**

119 * Choice menu for Branch-and-Bound.

120 * Returns integer value according to the choice made used to determine the B&B variant

121 */

122 private static void bbMenu() {

123 proper = false;

124 preKP = false;

125 CC = false;

126 capCC = false;

127

128 while (!proper) {

129 System.out.print("Which variant of the Branch-and-Bound algorithm would you like to

use?\n"

130 + " - 0 for SV13\n"

131 + " - 1 for SV13 with preKP\n"

132 + " - 2 for SV13 with capCC\n"

133 + " - 3 for SV13 with CC\n"

134 + " - 4 for BCM17\n"

135 + "Enter Choice: ");

136 switch(in.nextInt()) {

137 case 0: System.out.printf("\nSV13 selected\n");

138 proper = true; solver = "B&B SV13"; ubString = "fracKP"; break;

139 case 1: System.out.printf("\nSV13 with preKP selected\n"); preKP = true;

140 proper = true; solver = "B&B SV13 preKP"; ubString = "fracKP"; break;

141 case 2: System.out.printf("\nSV13 with capCC selected\n"); capCC = true;

142 proper = true; solver = "B&B SV13 capCC"; ubString = "capCC"; break;

143 case 3: System.out.printf("\nSV13 with CC selected\n"); CC = true;

144 proper = true; solver = "B&B SV13 CC"; ubString = "CC"; break;

34

145 case 4: System.out.printf("\nBCM17 selected\n"); preKP = true; capCC = true;

146 proper = true; solver = "B&B BCM17"; ubString = "capCC"; break;

147 default: System.out.printf("\nInput mismatch, try again.\n\n");

148 }

149 }

150 }

151

152 }

Listing 2: Item class

1 import java.util.*;

2

3 /**

4 * Class describing an item in the KPCG

5 * @author Victor Schouten, 449249

6 *

7 */

8 public class Item {

9 private final int index;

10 private final int profit;

11 private final int weight;

12 private final double pwratio;

13 private boolean clique;

14 private int residWeight;

15 private ArrayList<Item> conflicts;

16 private ArrayList<Integer> conflictIndices;

17

18 /**

19 * Constructor

20 */

21 public Item(int index, int profit, int weight) {

22 this.index = index;

23 this.profit = profit;

24 this.weight = weight;

25 this.pwratio = (double) profit / weight;

26 this.conflicts = new ArrayList<Item>();

27 this.conflictIndices = new ArrayList<Integer>();

28 this.clique = false;

29 this.residWeight = profit;

30 }

31

32 /**

33 * Adds the input item to the list of conflicts. Also saves the corresponding index to a

list.

34 * @param i - conflict item

35 */

36 public void addConflict(Item i) {

37 conflicts.add(i);

38 conflictIndices.add(i.getIndex());

39 }

40

41 /**

42 * Returns the list of conflict items

43 */

44 public List<Item> getConflicts(){

45 return conflicts;

46 }

47

48 public void pwSort() {

49 Collections.sort(conflicts, new Comparator<Item>() {

50 @Override

51 public int compare(Item item1, Item item2) {

35

52 if(item1.getRatio() < item2.getRatio())

53 return 1;

54 else if (item1.getRatio() == item2.getRatio())

55 return 0;

56 else

57 return -1;

58 }});

59 }

60

61 /**

62 * returns the index of this item instance

63 */

64 public int getIndex() {

65 return index;

66 }

67

68 /**

69 * returns the profit associated with this item instance

70 */

71 public int getProfit() {

72 return profit;

73 }

74

75 /**

76 * returns the weight associated with this item instance

77 */

78 public int getWeight() {

79 return weight;

80 }

81

82 /**

83 * returns the profit/weight ratio associated with this item instance

84 */

85 public double getRatio() {

86 return pwratio;

87 }

88

89 /**

90 * called when adding the item to a clique.

91 * The corresponding boolean variable clique is set to true,

92 * such that it can be checked if the instance is in a clique

93 */

94 public void addedToClique() {

95 clique = true;

96 }

97

98 /**

99 * returns true if the item instance is in a clique

100 */

101 public boolean inClique() {

102 return clique;

103 }

104

105 /**

106 * Sets residual weight for this item instance (needed for capCC bound)

107 */

108 public void setResidWeight(int q) {

109 residWeight = q;

110 }

111

112 /**

113 * returns the residual weight associated with this item instance

114 */

36

115 public int getResidWeight() {

116 return residWeight;

117 }

118

119 public void reset() {

120 residWeight = profit;

121 clique = false;

122 }

123

124 @Override

125 public boolean equals(Object o) {

126 if (o == this)

127 return true;

128 if (!(o instanceof Item))

129 return false;

130 Item i = (Item) o;

131 return this.index == i.index;

132 }

133

134 @Override

135 public String toString() {

136 return "Item number " +index+ ", profit = " +profit+ ", weight = " + weight + ",

profit/weigh ratio = " +pwratio+

137 ", conflicts = " + conflictIndices;

138 }

139

140

141

142 }

Listing 3: Instance class

1 import java.util.*;

2

3 /**

4 * Class describing a problem instance for the KPCG

5 * @author Victor Schouten, 449249

6 *

7 */

8 public class Instance {

9 private final int capacity;

10 private final int n;

11 private final String filename;

12 private final String dataset;

13 private int dataclass;

14 private double density;

15 private int nodesVisited;

16 private double objectiveValue;

17 private double solvingTime;

18 private int solved;

19 private LinkedList<Item> itemList;

20 private LinkedList<Edge> edgeList;

21 private double finalUB;

22

23 /**

24 * Constructor

25 */

26 public Instance(int c, int n, String fileformat, String dataset) {

27 this.itemList = new LinkedList<Item>();

28 this.n = n;

29 this.capacity = c;

30 this.filename = fileformat;

31 this.dataset = dataset;

37

32 this.solved = 0;

33 this.nodesVisited = -1;

34 this.objectiveValue = -1;

35 this.solvingTime = -1;

36 this.finalUB = -1;

37 this.edgeList = new LinkedList<Edge>();

38 extractFromFileName();

39 }

40

41 /**

42 * Adds a new item to the list of items corresponding to this data instance

43 */

44 public void addItem(Item item) {

45 itemList.add(item);

46 }

47

48 /**

49 * Saves conflicting items, index are based on unsorted list of items

50 * @param index1 - first index of the set of conflicting items

51 * @param index2 - second index of the set of conflicting items

52 */

53 public void addConflicts(int index1, int index2) {

54 Item temp1 = itemList.get(index1);

55 Item temp2 = itemList.get(index2);

56 temp1.addConflict(temp2);

57 temp2.addConflict(temp1);

58 edgeList.add(new Edge(temp1, temp2));

59 }

60

61 public LinkedList<Edge> getEdgeList(){

62 return edgeList;

63 }

64

65 public Edge getEdge(Item item1, Item item2) {

66 for (Edge e : edgeList) {

67 if (item1.equals(e.getFirstItem()) || item2.equals(e.getFirstItem())) {

68 if (item2.equals(e.getSecondItem()) || item1.equals(e.getSecondItem()))

69 return e;

70 }

71 }

72 return null;

73 }

74

75 /**

76 * Sorts the list of items in nonincreasing profit/weight ratio

77 */

78 public void pwSort() {

79 Collections.sort(itemList, new Comparator<Item>() {

80 @Override

81 public int compare(Item item1, Item item2) {

82 if(item1.getRatio() < item2.getRatio())

83 return 1;

84 else if (item1.getRatio() == item2.getRatio())

85 return 0;

86 else

87 return -1;

88 }});

89 }

90

91 /**

92 * Extracts the dataclass and density of the data instance from the filename

93 */

94 private void extractFromFileName() {

38

95 String[] values = filename.split("[_\\-]");

96 if (isSparse()) {

97 String dString = values[3].substring(1, values[3].length());

98 density = Double.parseDouble(dString);

99 dataclass = 0;

100 } else {

101 dataclass = Integer.parseInt(values[1]);

102 density = Double.parseDouble(values[4]);

103 }

104 }

105

106 /**

107 * Returns true if the data instance belongs to the set with sparse densities

108 */

109 private boolean isSparse() {

110 return dataset.equals("SR") || dataset.equals("SC");

111 }

112

113 /**

114 * Returns item list associated with this data instance

115 */

116 public LinkedList<Item> getItemList(){

117 return itemList;

118 }

119

120 /**

121 * Returns item from the list of items based on its index

122 */

123 public Item getItemWithIndex(int index) {

124 for (Item i : itemList) {

125 if (index == i.getIndex())

126 return i;

127 }

128 return null;

129 }

130

131 /**

132 * returns total amount of items

133 */

134 public int getItemCount() {

135 return n;

136 }

137

138 /**

139 * Returns knapsack capacity of this data instance

140 */

141 public int getCapacity() {

142 return capacity;

143 }

144

145 /**

146 * Returns the dataclass of this data instance (0 for sparse sets)

147 */

148 public int getDataclass() {

149 return dataclass;

150 }

151

152 /**

153 * Returns conflict density of this data instance

154 */

155 public double getDensity() {

156 return density;

157 }

39

158

159 /**

160 * Sets the amount of nodes visited during the solving process

161 */

162 public void setNodesVisited(int visited) {

163 nodesVisited = visited;

164 }

165

166 /**

167 * Returns the amount of nodes visited during the solving process

168 */

169 public int getNodesVisited() {

170 return nodesVisited;

171 }

172

173 /**

174 * Sets the objective value obtained with the solving process

175 */

176 public void setObjectiveValue(double d) {

177 objectiveValue = d;

178 }

179

180 /**

181 * Returns the objective value obtained with the solving process

182 */

183 public double getObjectiveValue() {

184 return objectiveValue;

185 }

186

187 /**

188 * Sets the time needed by the solving process

189 */

190 public void setSolvingTime(double time) {

191 solvingTime = time;

192 }

193

194 /**

195 * Returns the time needed by the solving process

196 */

197 public double getSolvingTime() {

198 return solvingTime;

199 }

200

201 /**

202 * Called when the instance is solved to optimality

203 */

204 public void setSolved() {

205 solved = 1;

206 }

207

208 /**

209 * Returns 1 if the instance has been solved to optimality

210 */

211 public int getSolved() {

212 return solved;

213 }

214

215 public void setUB(double UB) {

216 finalUB = UB;

217 }

218

219 public double getUB() {

220 return finalUB;

40

221 }

222

223 public void reset() {

224 for (Item i : itemList)

225 i.reset();

226 }

227

228 @Override

229 public String toString() {

230 if (isSparse()) {

231 return "Instance information: capacity = " +capacity+ ", n = " +n+ ", dataset = "

+dataset+

232 ", density = " +density;

233 } else {

234 return "Instance information: capacity = " +capacity+ ", n = " +n+ ", dataset = "

+dataset+

235 ", class = " +dataclass+ ", density = " +density;

236 }

237 }

238

239

240 }

Listing 4: Edge class

1

2 public class Edge {

3 private Item item1;

4 private Item item2;

5 private boolean covered;

6

7 public Edge(Item item1, Item item2) {

8 this.item1 = item1;

9 this.item2 = item2;

10 this.covered = false;

11 }

12

13 public Item getFirstItem() {

14 return item1;

15 }

16

17 public Item getSecondItem() {

18 return item2;

19 }

20

21 public void setCovered() {

22 covered = true;

23 }

24

25 public boolean isCovered() {

26 return covered;

27 }

28 }

Listing 5: InstanceLoader class

1 import java.io.*;

2 import java.util.*;

3

4 /**

5 * Class describing a loader of instances for the KPCG

6 * @author Victor Schouten, 449249

41

7 *

8 */

9 public class InstanceLoader {

10 private ArrayList<Instance> instanceList;

11

12 /**

13 * Constructor

14 */

15 public InstanceLoader() {

16 instanceList = new ArrayList<Instance>();

17 }

18

19 /**

20 * Loads instances from a folder given the foldername and returns Instance list.

21 * Folders are assumed to be in the workspace in location data/foldername

22 */

23 public ArrayList<Instance> loadInstanceList(String foldername) {

24 String dataset = foldername;

25 String folderlocation = "data/" +foldername;

26 load(folderlocation, dataset);

27 return instanceList;

28 }

29

30 /**

31 * Loads all instances from a folder and them to instanceList

32 */

33 private void load(String folderlocation, String dataset) {

34 System.out.printf("\nLoading dataset...\n");

35 long startTime = System.currentTimeMillis();

36 File folder = new File(folderlocation);

37 File[] listOfFiles = folder.listFiles();

38 //int k = 1;

39

40 for (File file : listOfFiles) {

41 try{

42 Scanner in = new Scanner(file);

43 int capacity = 0;

44 int n = 0;

45 Instance temp = null;

46 boolean conflicts = false;

47

48 while(in.hasNext()){

49 // Read line

50 String line= in.nextLine();

51 String[] values = line.split("\\s+");

52

53 if (values[0].equals("param")) {

54 if (values[1].equals("n")) {

55 String nString = values[3].substring(0, values[3].length()-1);

56 n = Integer.parseInt(nString);

57 } else if (values[1].equals("c")) {

58 if (values[3].charAt(values[3].length()-1) == ’;’) {

59 String cString = values[3].substring(0, values[3].length()-1);

60 capacity = Integer.parseInt(cString);

61 } else {

62 capacity = Integer.parseInt(values[3]);

63 }

64 } else {

65 temp = new Instance(capacity, n, file.getName(), dataset);

66 }

67 continue;

68 }

69

42

70 if (values[0].equals(";") || line.isEmpty()) {

71 continue;

72 } else if (values[0].equals("set")) {

73 conflicts = true;

74 continue;

75 }

76

77 if (!conflicts) {

78 int index = Integer.parseInt(values[1]);

79 int profit = Integer.parseInt(values[2]);

80 int weight = Integer.parseInt(values[3]);

81 temp.addItem(new Item(index,profit,weight));

82 } else {

83 int index1 = Integer.parseInt(values[1]);

84 int index2 = Integer.parseInt(values[2]);

85 temp.addConflicts(index1, index2);

86 }

87

88 }

89

90 in.close();

91

92 temp.pwSort();

93 instanceList.add(temp);

94

95 } catch (FileNotFoundException e) {

96 e.printStackTrace();

97 }

98 //if (k++ == 3) {break;}

99 //break;

100 }

101 System.out.printf("Dataset loaded in %.2f seconds\n\n", (double)

(System.currentTimeMillis() - startTime)/1000);

102 }

103 }

B.2 Clique Heuristic

Listing 6: Clique class

1 import java.util.*;

2

3 /**

4 * Class describing a clique set for Items

5 * @author Victor Schouten, 449249

6 *

7 */

8 public class Clique {

9 private ArrayList<Item> itemList;

10 private double weight;

11 /**

12 * Constructor

13 */

14 public Clique() {

15 this.itemList = new ArrayList<Item>();

16 this.weight = 0.0;

17 }

18

19 /**

20 * Adds an item to this clique instance

21 */

22 public void addItem(Item i) {

43

23 itemList.add(i);

24 i.addedToClique();

25 }

26

27 /**

28 * Returns list of items in the clique

29 */

30 public ArrayList<Item> getCliqueItems(){

31 return itemList;

32 }

33

34 public void setWeight(double w) {

35 weight = w;

36 }

37

38 public double getWeight() {

39 return weight;

40 }

41

42

43 }

Listing 7: CliqueHeuristic class

1 import java.util.*;

2

3 /**

4 * Class describing a heuristic approach in finding a maximal clique and a family of cliques

5 * @author Victor Schouten, 449249

6 *

7 */

8 public class CliqueHeuristic {

9

10 /**

11 * Constructor

12 */

13 public CliqueHeuristic() {}

14

15 /**

16 * Finds a maximal clique for item i given a list of items itemList

17 * and returns the found clique

18 */

19 public Clique findMaxClique(Edge e, Instance i) {

20 Clique clique = new Clique();

21 Item item1 = e.getFirstItem();

22 Item item2 = e.getSecondItem();

23 clique.addItem(item1);

24 clique.addItem(item2);

25

26 for (Item j : item1.getConflicts()) {

27 if (isAdjacent(clique.getCliqueItems(),j) && !clique.getCliqueItems().contains(j)) {

28 for (Item k : clique.getCliqueItems())

29 i.getEdge(k,j).setCovered();

30 clique.addItem(j);

31 }

32 }

33 return clique;

34 }

35

36 public Clique findCliqueForCover(Item i, List<Item> itemList) {

37 Clique clique = new Clique();

38 clique.addItem(i);

39

44

40 for (Item j : itemList) {

41 if (isAdjacent(clique.getCliqueItems(),j) && j.getResidWeight() > 0)

42 clique.addItem(j);

43 }

44 return clique;

45 }

46

47 /**

48 * Finds a family of cliques for instance i and returns the list of cliques

49 */

50 public ArrayList<Clique> findCliqueFam(Instance i){

51 ArrayList<Clique> cliqueFam = new ArrayList<Clique>();

52 long startTime = System.currentTimeMillis();

53 for (Edge e : i.getEdgeList()) {

54 if (System.currentTimeMillis()-startTime > 1800000)

55 return null;

56 if (!e.isCovered()) {

57 Clique clique = findMaxClique(e, i);

58 cliqueFam.add(clique);

59 }

60 }

61 return cliqueFam;

62 }

63

64 /**

65 * Returns true when item i is adjacent to all items in the list cliqueItems

66 */

67 private boolean isAdjacent(List<Item> cliqueItems, Item i) {

68 for (Item j : cliqueItems)

69 if (!j.getConflicts().contains(i)) {return false;}

70 return true;

71 }

72 }

B.3 CPLEX

Listing 8: CplexModel class

1 import java.util.*;

2

3 import ilog.concert.*;

4 import ilog.cplex.*;

5

6 /**

7 * Class describing a cplex solver for the KPCG in two formulations

8 * @author Victor Schouten, 449249

9 *

10 */

11 public class CplexModel {

12 private IloCplex cplex;

13 private Map<Item, IloNumVar> varMapDecision;

14 private Instance instance;

15 private CliqueHeuristic heuristic;

16

17 /**

18 * Constructor

19 */

20 public CplexModel(Instance instance, boolean clique) throws IloException {

21 this.cplex = new IloCplex();

22 this.varMapDecision = new HashMap<>();

23 this.instance = instance;

24 this.heuristic = new CliqueHeuristic();

45

25

26 addDecisionVariables();

27 addCapacityConstraints();

28

29 if (clique) {

30 addCliqueConflictConstraints();

31 } else {

32 addConflictConstraints();

33 }

34

35 addObjective();

36 }

37

38 /**

39 * Adds decision variable x_i

40 */

41 private void addDecisionVariables() throws IloException {

42 for (Item i : instance.getItemList()) {

43 IloNumVar var = cplex.boolVar();

44 varMapDecision.put(i,var);

45 }

46 }

47

48 /**

49 * Adds capacity constraints

50 * Sum_{i=1}^n weight_i*x_i <= capcity, for all C in Xi

51 */

52 private void addCapacityConstraints() throws IloException {

53 IloNumExpr lhs = cplex.constant(0);

54 IloNumExpr rhs = cplex.constant(instance.getCapacity());

55

56 for (Item i : instance.getItemList()) {

57 IloNumVar var = varMapDecision.get(i);

58 IloNumExpr prod = cplex.prod(i.getWeight(),var);

59 lhs = cplex.sum(lhs,prod);

60 }

61

62 cplex.addLe(lhs, rhs).setName("Capacity Constraint");

63 }

64

65 /**

66 * Adds conflict constraints using edges

67 * x_i + x_j<= 1, for all (i,j) in E

68 */

69 private void addConflictConstraints() throws IloException {

70 IloNumExpr rhs = cplex.constant(1);

71

72 for (Item i : instance.getItemList()) {

73 IloNumVar var1 = varMapDecision.get(i);

74 for (Item k : i.getConflicts()) {

75 IloNumVar var2 = varMapDecision.get(k);

76 IloNumExpr lhs = cplex.sum(var1,var2);

77 cplex.addLe(lhs, rhs);

78 }

79 }

80 }

81

82 /**

83 * Adds conflict constraints based on clique notation.

84 * Sum_{i in C} x_i <= 1, for all C in Xi

85 */

86 private void addCliqueConflictConstraints() throws IloException {

87 IloNumExpr rhs = cplex.constant(1);

46

88 ArrayList<Clique> cliqueFam = heuristic.findCliqueFam(instance);

89

90 for (Clique c : cliqueFam) {

91 IloNumExpr lhs = cplex.constant(0);

92 for (Item i : c.getCliqueItems()) {

93 IloNumVar var = varMapDecision.get(i);

94 lhs = cplex.sum(lhs,var);

95 }

96 cplex.addLe(lhs, rhs);

97 }

98 }

99

100 /**

101 * Adds objective function

102 * Sum_{i=1}^n profit_i*x_i

103 */

104 private void addObjective() throws IloException {

105 IloNumExpr obj = cplex.constant(0);

106

107 for (Item i : instance.getItemList()) {

108 IloNumVar var = varMapDecision.get(i);

109 IloNumExpr prod = cplex.prod(i.getProfit(),var);

110 obj = cplex.sum(obj,prod);

111 }

112

113 cplex.addMaximize(obj);

114 }

115

116 /**

117 * Solves the MIP, imposing a time limit of 1800 seconds.

118 * Node list file strategy 3 is applied in order to avoid running out of memory.

119 */

120 public boolean solve() throws IloException {

121 cplex.setParam(IloCplex.DoubleParam.TiLim, 1800);

122 cplex.setParam(IloCplex.Param.MIP.Strategy.File, 3);

123 return cplex.solve();

124 }

125

126 /**

127 * returns the objective value obtained through the solving process

128 */

129 public double getObjectiveValue() throws IloException {

130 return cplex.getObjValue();

131 }

132

133 /**

134 * returns the amount of nodes visited in the solving process

135 */

136 public int getNodesVisited() throws IloException {

137 return cplex.getNnodes();

138 }

139

140 /**

141 * Returns true when the solver has solved the problem to optimality

142 */

143 public boolean isOptimal() throws IloException {

144 return cplex.getStatus().toString().equals("Optimal");

145 }

146 }

B.4 Branch-and-Bound

47

Listing 9: BranchBoundModel class

1 import java.util.*;

2

3 public class BranchBoundModel {

4 private Instance instance;

5 private final int capacity;

6 private int nodesVisited;

7 private boolean solved, preKP, CC, capCC;

8 private double globalLB;

9 private long startTime;

10 private LinkedList<Item> solution;

11

12

13 public BranchBoundModel(Instance instance, boolean preKP, boolean CC, boolean capCC) {

14 this.instance = instance;

15 this.preKP = preKP;

16 this.CC = CC;

17 this.capCC = capCC;

18 this.capacity = instance.getCapacity();

19 this.solved = false;

20 this.nodesVisited = 0;

21 this.globalLB = 0.0;

22 this.solution = new LinkedList<Item>();

23 }

24

25 public void solve() {

26 LinkedList<Item> solSet = new LinkedList<Item>();

27

28 System.out.println("Commencing solving procedure at " +java.time.LocalTime.now());

29 startTime = System.currentTimeMillis();

30 branchBound(solSet,instance.getItemList(),0,globalLB);

31

32 if (System.currentTimeMillis()-startTime < 1800000)

33 solved = true;

34

35 System.out.printf("Solving procedure finished.\n");

36 }

37

38 @SuppressWarnings("unchecked")

39 private void branchBound(LinkedList<Item> solSet, LinkedList<Item> freeSet, int currWeight,

double currProfit) {

40 if (System.currentTimeMillis()-startTime > 900000)

41 return;

42

43 LinkedList<Item> newSolSet = new LinkedList<Item>();

44 LinkedList<Item> newFreeSet = new LinkedList<Item>();

45 int newCurrWeight;

46 double newCurrProfit;

47

48 nodesVisited++;

49

50 // update globalLB if current solution exceeds it

51 if (globalLB < currProfit) {

52 globalLB = currProfit;

53 solution = solSet;

54 }

55

56 // Prune if UB is lower than best found solution globalLB

57 if (currProfit + getUB(freeSet, currWeight) <= globalLB)

58 return;

59

60 int count = 0;

61 for (Item i : freeSet) {

48

62 double internalUB = currProfit;

63

64 if (preKP) {

65 internalUB += internalBCM17(freeSet, currWeight, count);

66 count++;

67 } else

68 internalUB += internalSV13(i, currWeight);

69

70 if (internalUB > globalLB) {

71 newSolSet = (LinkedList<Item>) solSet.clone();

72 newFreeSet = (LinkedList<Item>) freeSet.clone();

73 newFreeSet.remove(i);

74 if (capacity - currWeight >= i.getWeight()) {

75 newCurrProfit = currProfit + i.getProfit();

76 newCurrWeight = currWeight + i.getWeight();

77 newSolSet.add(i);

78 for (Item j : i.getConflicts())

79 newFreeSet.remove(j);

80 branchBound(newSolSet,newFreeSet,newCurrWeight,newCurrProfit);

81 }

82 } else

83 break;

84 }

85 }

86

87 public double fracKP(LinkedList<Item> freeSet, int currWeight) {

88 double UB = 0.0;

89 int k = 0;

90

91 while (currWeight < capacity && k < freeSet.size()){

92 Item i = freeSet.get(k);

93 if (currWeight + i.getWeight() <= capacity) {

94 UB += i.getProfit();

95 currWeight += i.getWeight();

96 } else {

97 UB += (capacity - currWeight)*i.getRatio();

98 currWeight = capacity;

99 }

100 k++;

101 }

102 return UB;

103 }

104

105 public double capCC(LinkedList<Item> freeSet) {

106 CliqueHeuristic heuristic = new CliqueHeuristic();

107 LinkedList<Clique> cliqueFam = new LinkedList<Clique>();

108 double totalLoad = 0.0;

109 double UB = 0.0;

110

111 while (totalLoad < capacity) {

112 double min1 = Double.MAX_VALUE;

113 Item minItem = null;

114 int negCount = 0;

115

116 for (Item i: freeSet) {

117 if (1/i.getRatio() < min1 && i.getResidWeight() > 0) {

118 min1 = 1/i.getRatio();

119 minItem = i;

120 } else if (i.getResidWeight() <= 0)

121 negCount++;

122 }

123

124 if (negCount==freeSet.size() || minItem == null)

49

125 break;

126

127 Clique clique = heuristic.findCliqueForCover(minItem, freeSet);

128 int min2 = Integer.MAX_VALUE;

129

130 for (Item i : clique.getCliqueItems()) {

131 if (i.getResidWeight() < min2 && i.getResidWeight() > 0)

132 min2 = i.getResidWeight();

133 }

134

135 double load = Math.min(min1*min2,capacity - totalLoad);

136 clique.setWeight(load/min1);

137 cliqueFam.add(clique);

138 totalLoad += load;

139

140 for (Item i : clique.getCliqueItems())

141 i.setResidWeight(i.getResidWeight()-min2);

142

143 UB += clique.getWeight();

144 }

145 instance.reset();

146 return UB;

147 }

148

149 public double CC(LinkedList<Item> freeSet) {

150 CliqueHeuristic heuristic = new CliqueHeuristic();

151 LinkedList<Clique> cliqueFam = new LinkedList<Clique>();

152 double UB = 0.0;

153

154 while (true) {

155 int min = Integer.MAX_VALUE;

156 Item minItem = null;

157 int negCount = 0;

158

159 for (Item i: freeSet) {

160 if (i.getResidWeight() < min && i.getResidWeight() > 0) {

161 min = i.getResidWeight();

162 minItem = i;

163 } else if (i.getResidWeight() <= 0)

164 negCount++;

165 }

166

167 if (negCount==freeSet.size() || minItem == null)

168 break;

169

170 Clique clique = heuristic.findCliqueForCover(minItem, freeSet);

171 clique.setWeight(min);

172 cliqueFam.add(clique);

173

174 for (Item i : clique.getCliqueItems())

175 i.setResidWeight(i.getResidWeight()-min);

176

177 UB += clique.getWeight();

178 }

179 instance.reset();

180 return UB;

181 }

182

183 private int internalBCM17(LinkedList<Item> freeSet, int currWeight, int count) {

184 int n = freeSet.size()-count;

185 int c = capacity-currWeight;

186 int matrixDP[][] = new int[n+1][c+1];

187

50

188 for (int i = 0; i <= n; i++) {

189 for (int j = 0; j <= c; j++) {

190 if (i == 0 || j == 0)

191 matrixDP[i][j] = 0;

192 else if (freeSet.get(i+count-1).getWeight() <= j)

193 matrixDP[i][j] = Math.max(freeSet.get(i+count-1).getProfit() +

194 matrixDP[i-1][j-freeSet.get(i+count-1).getWeight()], matrixDP[i-1][j]);

195 else

196 matrixDP[i][j] = matrixDP[i-1][j];

197 }

198 }

199 return matrixDP[n][c];

200 }

201

202 private double internalSV13(Item i, int currWeight) {

203 return (capacity-currWeight)*i.getRatio();

204 }

205

206 public double getObjectiveValue() {

207 return globalLB;

208 }

209

210 public boolean isSolved() {

211 return solved;

212 }

213

214 public int getNodesVisited() {

215 return nodesVisited;

216 }

217

218 public LinkedList<Item> getSolutionSet(){

219 return solution;

220 }

221

222 public double getUB(LinkedList<Item> freeSet, int currWeight) {

223 double UB = 0.0;

224

225 if (capCC)

226 UB += capCC(freeSet);

227 else if (CC)

228 UB += CC(freeSet);

229 else

230 UB += fracKP(freeSet, currWeight);

231

232 return UB;

233 }

234

235 }

B.5 GPU-Based Branching Scheme

Listing 10: ParallelBBModel class

1 package parallel;

2

3 import uk.ac.manchester.tornado.api.TaskSchedule;

4 import uk.ac.manchester.tornado.api.annotations.Parallel;

5 import uk.ac.manchester.tornado.api.Policy;

6 import uk.ac.manchester.tornado.api.collections.types.Matrix2DDouble;

7 import uk.ac.manchester.tornado.api.collections.math.TornadoMath;

8 import java.util.*;

9

51

10 public class ParallelBBModel {

11 private Instance instance;

12 private final int capacity;

13 private int nodesVisited;

14 private boolean solved, preKP, CC, capCC;

15 private double globalLB;

16 private long startTime;

17 private LinkedList<Item> solution;

18 private int v_par[];

19 private TaskSchedule ts1;

20 private TaskSchedule ts2;

21 private int weights[];

22 private double profits[];

23 private int globalSize;

24 private double inputDP[];

25 private double outputDP[];

26

27 public ParallelBBModel(Instance instance, boolean preKP, boolean CC, boolean capCC) {

28 this.instance = instance;

29 this.preKP = preKP;

30 this.CC = CC;

31 this.capCC = capCC;

32 this.capacity = instance.getCapacity();

33 this.solved = false;

34 this.nodesVisited = 0;

35 this.globalLB = 0.0;

36 this.globalSize = instance.getItemList().size();

37 this.solution = new LinkedList<Item>();

38 this.v_par = new int[2];

39 this.inputDP = new double[capacity+1];

40 this.outputDP = new double[capacity+1];

41 this.weights = new int[globalSize];

42 this.profits = new double[globalSize];

43

44 if (preKP){

45 // Create TaskSchedules

46 ts1 = new TaskSchedule("Inner-Loop-Internal-UB-BCM17-even")

47 .streamIn(inputDP,outputDP,weights,profits,v_par) //

48 .task("taskBCM17",ParallelBBModel::parallelInternalBCM17,inputDP,outputDP,weights,profits,v_par)

//

49 .streamOut(outputDP); //

50 ts2 = new TaskSchedule("Inner-Loop-Internal-UB-BCM17-odd")

51 .streamIn(inputDP,outputDP,weights,profits,v_par) //

52 .task("taskBCM17",ParallelBBModel::parallelInternalBCM17,outputDP,inputDP,weights,profits,v_par)

//

53 .streamOut(inputDP); //

54 }

55 }

56

57 public void solve() {

58 LinkedList<Item> solSet = new LinkedList<Item>();

59

60 System.out.println("Commencing solving procedure at " +java.time.LocalTime.now());

61 startTime = System.currentTimeMillis();

62 branchBound(solSet,instance.getItemList(),0,globalLB);

63

64 if (System.currentTimeMillis()-startTime < 900000)

65 solved = true;

66

67 System.out.printf("Solving procedure finished.\n");

68 }

69

70 @SuppressWarnings("unchecked")

52

71 private void branchBound(LinkedList<Item> solSet, LinkedList<Item> freeSet, int currWeight,

double currProfit) {

72 if (System.currentTimeMillis()-startTime > 900000)

73 return;

74

75 LinkedList<Item> newSolSet = new LinkedList<Item>();

76 LinkedList<Item> newFreeSet = new LinkedList<Item>();

77 int newCurrWeight;

78 double newCurrProfit;

79

80 nodesVisited++;

81

82 // update globalLB if current solution exceeds it

83 if (globalLB < currProfit) {

84 globalLB = currProfit;

85 solution = solSet;

86 }

87

88 // Prune if UB is lower than best found solution globalLB

89 if (currProfit + getUB(freeSet, currWeight) <= globalLB)

90 return;

91

92 int currSize = freeSet.size();

93 int count = 0;

94 for (int k = 0; k < currSize;k++) {

95 Item i = freeSet.get(k);

96 double internalUB = currProfit;

97

98 if (preKP) {

99 for (int j = 0; j <= capacity-currWeight; j++){

100 if (k%2==0)

101 inputDP[j]=0;

102 else

103 outputDP[j]=0;

104 }

105 internalUB += internalBCM17(freeSet,capacity-currWeight,currSize,count++);

106 } else

107 internalUB += internalSV13(i, currWeight);

108

109 if (internalUB > globalLB) {

110 newSolSet = (LinkedList<Item>) solSet.clone();

111 newFreeSet = (LinkedList<Item>) freeSet.clone();

112 newFreeSet.remove(i);

113 if (capacity - currWeight >= i.getWeight()) {

114 newCurrProfit = currProfit + i.getProfit();

115 newCurrWeight = currWeight + i.getWeight();

116 newSolSet.add(i);

117 for (Item j : i.getConflicts())

118 newFreeSet.remove(j);

119 branchBound(newSolSet,newFreeSet,newCurrWeight,newCurrProfit);

120 }

121 } else

122 break;

123

124 }

125 }

126

127 public double internalBCM17(LinkedList<Item> freeSet,int cap, int size, int count) {

128 v_par[1] = cap+1;

129

130 for (int k = count; k < size; k++) {

131 v_par[0] = k;

132

53

133 Item i = freeSet.get(k);

134 profits[k] = i.getProfit();

135 weights[k] = i.getWeight();

136

137 if (k%2==0)

138 ts1.execute();

139 else

140 ts2.execute();

141 }

142

143 if (size-1%2==0)

144 return outputDP[cap];

145 else

146 return inputDP[cap];

147 }

148

149 public static void parallelInternalBCM17(double inputDP[], double outputDP[], int weights[],

double profits[], int v_par[]){

150 final int k = v_par[0];

151 final int cap = v_par[1];

152

153 for (@Parallel int c = 0; c < inputDP.length; c++){

154 if (c < cap){

155 if (weights[k] <= c) {

156 if (inputDP[c] < inputDP[c-weights[k]] + profits[k])

157 outputDP[c] = inputDP[c-weights[k]] + profits[k];

158 else

159 outputDP[c] = inputDP[c];

160 } else

161 outputDP[c] = inputDP[c];

162 }

163 }

164 }

165

166 public double fracKP(LinkedList<Item> freeSet, int currWeight) {

167 double UB = 0.0;

168 int k = 0;

169

170 while (currWeight < capacity && k < freeSet.size()){

171 Item i = freeSet.get(k);

172 if (currWeight + i.getWeight() <= capacity) {

173 UB += i.getProfit();

174 currWeight += i.getWeight();

175 } else {

176 UB += (capacity - currWeight)*i.getRatio();

177 currWeight = capacity;

178 }

179 k++;

180 }

181 return UB;

182 }

183

184 public double capCC(LinkedList<Item> freeSet) {

185 CliqueHeuristic heuristic = new CliqueHeuristic();

186 LinkedList<Clique> cliqueFam = new LinkedList<Clique>();

187 double totalLoad = 0.0;

188 double UB = 0.0;

189

190 while (totalLoad < capacity) {

191 double min1 = Double.MAX_VALUE;

192 Item minItem = null;

193 int negCount = 0;

194

54

195 for (Item i: freeSet) {

196 if (1/i.getRatio() < min1 && i.getResidWeight() > 0) {

197 min1 = 1/i.getRatio();

198 minItem = i;

199 } else if (i.getResidWeight() <= 0)

200 negCount++;

201 }

202

203 if (negCount==freeSet.size() || minItem == null)

204 break;

205

206 Clique clique = heuristic.findCliqueForCover(minItem, freeSet);

207 int min2 = Integer.MAX_VALUE;

208

209 for (Item i : clique.getCliqueItems()) {

210 if (i.getResidWeight() < min2 && i.getResidWeight() > 0)

211 min2 = i.getResidWeight();

212 }

213

214 double load = Math.min(min1*min2,capacity - totalLoad);

215 clique.setWeight(load/min1);

216 cliqueFam.add(clique);

217 totalLoad += load;

218

219 for (Item i : clique.getCliqueItems())

220 i.setResidWeight(i.getResidWeight()-min2);

221

222 UB += clique.getWeight();

223 }

224 instance.reset();

225 return UB;

226 }

227

228 public double CC(LinkedList<Item> freeSet) {

229 CliqueHeuristic heuristic = new CliqueHeuristic();

230 LinkedList<Clique> cliqueFam = new LinkedList<Clique>();

231 double UB = 0.0;

232

233 while (true) {

234 int min = Integer.MAX_VALUE;

235 Item minItem = null;

236 int negCount = 0;

237

238 for (Item i: freeSet) {

239 if (i.getResidWeight() < min && i.getResidWeight() > 0) {

240 min = i.getResidWeight();

241 minItem = i;

242 } else if (i.getResidWeight() <= 0)

243 negCount++;

244 }

245

246 if (negCount==freeSet.size() || minItem == null)

247 break;

248

249 Clique clique = heuristic.findCliqueForCover(minItem, freeSet);

250 clique.setWeight(min);

251 cliqueFam.add(clique);

252

253 for (Item i : clique.getCliqueItems())

254 i.setResidWeight(i.getResidWeight()-min);

255

256 UB += clique.getWeight();

257 }

55

258 instance.reset();

259 return UB;

260 }

261

262 private double internalSV13(Item i, int currWeight) {

263 return (capacity-currWeight)*i.getRatio();

264 }

265

266 public double getObjectiveValue() {

267 return globalLB;

268 }

269

270 public boolean isSolved() {

271 return solved;

272 }

273

274 public int getNodesVisited() {

275 return nodesVisited;

276 }

277

278 public LinkedList<Item> getSolutionSet(){

279 return solution;

280 }

281

282 public double getUB(LinkedList<Item> freeSet, int currWeight) {

283 double UB = 0.0;

284

285 if (capCC)

286 UB += capCC(freeSet);

287 else if (CC)

288 UB += CC(freeSet);

289 else

290 UB += fracKP(freeSet, currWeight);

291

292 return UB;

293 }

294

295 }

56

	Introduction
	Problem Description
	Literature Review
	Branch-and-Bound in Practice
	Origins of Branch-and-Bound
	0-1 Knapsack Problem
	Knapsack Problem with Conflict Graph
	Bin Packing Problem with Conflicts
	GPU Computing
	Accessibility of GPU Programming

	Methodology
	MIP Models
	Branch-and-Bound Algorithm
	Branching Scheme
	Weighted Clique Cover Bound
	Capacitated Weighted Clique Cover Bound

	GPU-based Branching Scheme

	Data
	Results
	Upper Bound Performance
	Dense instances
	Sparse instances
	GPU-based Branching Scheme

	Conclusion & Discussion
	References
	Appendix Computational Results
	Appendix Java Code
	Miscellaneous
	Clique Heuristic
	CPLEX
	Branch-and-Bound
	GPU-Based Branching Scheme

