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LONG SHORT-TERM MEMORY NETWORKS FOR EQUITY RETURN FORECASTING

Abstract

by David Johan Waijers, Erasmus University Rotterdam
May 2020

Thesis Advisor: Dr. X. Ma

This thesis deploys Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU)
neural networks to predict out-of-sample equity returns using 51 factor portfolios for 30 of
the constituent stocks of the Standard & Poor’s 500 index from 2013 to 2019. The results
show that both LSTM and GRU neural networks are able to predict directional changes
with accuracies significantly higher than 50 percent, with directional accuracies ranging
from 54 to 82 percent. Two trading strategies are constructed on the basis of the directional
predictions of equity returns. Equally-weighted portfolios of the LSTM strategies were able
to generate out-of-sample annualized returns of 21.94 and 35.12 per cent, as well as monthly
alphas of 1.22 and 2.46 per cent, respectively, after transaction costs. Moreover, the LSTM
and GRU strategies had lower exposure to systematic risk while generating significantly
higher returns than holding an equally-weighted buy-and-hold portfolio or the S&P 500 over
the out-of-sample period. The LSTM networks outperform the GRU and linear ARIMA
models on both out-of-sample return prediction as well as risk-adjusted returns. Predictive
performance stays constant over the out-of-sample period, suggesting that the LSTM edge
has not been arbitraged away.

ii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Factor Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Neural Networks and Return Prediction . . . . . . . . . . . . . . . 4

2.2 Long Short-Term Memory Neural Networks . . . . . . . . . . . . . . . . . 7
2.2.1 LSTM in Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Gated Recurrent Units . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Data and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.5 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.6 Trading Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iii



4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Statistical Forecast Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Trading Strategy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Directional Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Annualized Returns and Risk . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 Risk-Return Performance . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.4 Equally-weighted Portfolio Performance . . . . . . . . . . . . . . . 33

4.3 LSTM Performance over Time and Market Efficiency . . . . . . . . . . . 36

5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

APPENDIX

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

iv



LIST OF TABLES

4.1 LSTM Out-of-sample R-squared, MAE, RMSE, MSE, and MAPE for each of

the equities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Fraction of periods invested as well as out-of-sample directional accuracy of

the LSTM Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 LSTM annualized geometric mean returns and standard deviations of monthly

returns over the out-of-sample period for each stock . . . . . . . . . . . . . . 29

4.4 Maximum drawdown (MDD) over the out-of-sample period for each stock for

the LSTM, GRU, and ARIMA trading strategies . . . . . . . . . . . . . . . . 31

4.5 Sharpe ratios for the Buy-and-Hold, the LSTM, the GRU, and the ARIMA

trading strategies for each equity . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 LSTM, GRU, and ARIMA trading evaluation statistics for the equally-weighted

portfolios of the Buy-and-Hold, Long-Only, and Long/Short strategies . . . . 35

A.1 Factors used as inputs in the LSTM neural network (Hou, Xue, and L. Zhang,

2017)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.2 List of S&P 500 constituent stocks used for equity return prediction . . . . . 49

B.1 LSTM, GRU, and ARIMA out-of-sample R-squared, MAE, RMSE, and MAPE

for each of the equities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



B.2 Fraction of periods invested as well as out-of-sample directional accuracy of

the ARIMA benchmark models . . . . . . . . . . . . . . . . . . . . . . . . . 51

B.3 Fraction of periods invested as well as out-of-sample directional accuracy of

the GRU models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B.4 ARIMA annualized geometric mean returns and standard deviations of monthly

returns over the out-of-sample period for each stock . . . . . . . . . . . . . . 53

B.5 GRU annualized geometric mean returns and standard deviations of monthly

returns over the out-of-sample period for each stock . . . . . . . . . . . . . . 54

vi



LIST OF FIGURES

2.1 Schematic representation of a one-layer Recurrent Neural Network (Kawakami,

2008) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Visual representation of an LSTM block with one cell (Olah, 2015) . . . . . 9

2.3 Visual representation of a GRU cell (Olah, 2015) . . . . . . . . . . . . . . . 13

4.1 LSTM out-of-sample predicted and actual monthly returns for AXP . . . . . 24

4.2 Out-of-sample cumulative portfolio value of equally-weighted LSTM portfolios

compared to an equity buy-and-hold portfolio . . . . . . . . . . . . . . . . . 34

4.3 MAE & the percentage of predictions incorrect for each month over the entire

out-of-sample period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B.1 Equally-weighted ARIMA and GRU portfolios out-of-sample performance com-

pared to an equity buy-and-hold strategy . . . . . . . . . . . . . . . . . . . . 55

vii



Chapter One

Introduction

Both academics and practitioners have made considerable efforts to forecast future stock

returns and develop strategies to leverage these predictions into profits. French-Fama’s 1993

endeavours to explain the cross-section of equity returns using their three-factor model has

inspired other researchers to contribute to a continually expanding list of factors. Whilst

these models may provide decent in-sample performance, their out-of-sample performance is

usually lacking. Li, W. Zhang, and Kong (2018) show that the linear combination of factors is

too restrictive and that a nonlinear combination outperforms. Since neural networks are able

to discover nonlinear and chaotic patterns, they may be able to forecast market directions

more accurately than linear multi-factor models. This may lead to improved out-of-sample

predictive performance compared to traditional methods.

This thesis evaluates the effectiveness of Long-Short Term Memory (LSTM) neural net-

works models in equity return prediction using a large number of factors, and compares its

performance to that of Gated Recurrent Unit neural networks and Autoregressive Integrated

Moving Average (ARIMA) models. In conjunction with statistical measures, a trading-based

evaluation procedure is used to evaluate the performance of the predictions, as the latter

mirrors the economic relevance of LSTM neural networks to practitioners and thus may be

more informative. This thesis both contributes to our understanding of the predictive ability

of deep learning factor models, as well as their implications for practitioners.
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The remaining chapters of this thesis are organized as follows: Chapter 2 provides a

literature review of the related studies; Chapter 3 introduces the data and methodology, and

Chapter 4 provides the results for the out-of-sample performance of the LSTM, GRU, and

ARIMA models. Lastly, Chapter 5 concludes and discusses the results, and recommendations

for future research are made.
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Chapter Two

Literature Review

2.1 Related Works

2.1.1 Factor Portfolios

Over the last decades, a large body of research has emerged that suggests that financial

stock returns may be predictable by the use of financial returns as well as macroeconomic

data. Whilst earlier work focused on finding determinants of financial returns in the cross-

section by implementing linear regressions, later research incorporates nonlinear methods

and machine learning techniques to predict future stock returns. While this section will

touch on both subjects, it will be primarily focused on the latter.

Much research has been devoted to uncovering the determinants of financial returns in

the cross-section. Fama and French (1993) introduce in the concept of factor portfolios

in their seminal and foundational paper on this topic. Fama and French construct two

portfolios based on Book-to-Market ratio and firm size. Subsequently, both portfolios are

sorted according to their Book-to-Market and firm size, and further partitioned into deciles.

Then, the difference in returns between the tenth and first decile portfolio may be interpreted

as the risk-premium to that specific factor. This paper essentially lays out the methodology

upon which further research on factor portfolios is based. Fama and French’s results show
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that the factor premia for Book-to-Market and firm size in combination with the market

factor are able to explain stock returns in the cross-section rather well.

Since Fama and French’s seminal paper on factor portfolios, other research has evaluated

the abilities of other factors to explain stock returns in the cross-section to a possibly greater

extent. Fama and French (2015) themselves introduce two more factors in order to better

explain equity returns in the cross-section. Whilst some academics argue that many of these

factors and their associated premia are merely compensation for risk, others argue that they

can be regarded as anomalous. Over the last decades, a list of over 450 distinct factors or

anomalies has emerged in the literature (Hou, Xue, and L. Zhang, 2017). A large replication

study by Hou, Xue, and L. Zhang examines the reliability of these factors. The authors

find that 82 per cent of the factors under consideration do not pass the hurdle of reaching a

significance level of 5 per cent.

2.1.2 Neural Networks and Return Prediction

Neural networks may have several advantages as compared to traditional statistical methods.

First, the universal approximation theorem shows that neural networks are able to approx-

imate any nonlinear function (Cybenko, 1989). Second, unlike other nonlinear modelling

techniques, neural network models are not specified in advance by the researcher(s), but

rather generated by the network itself through model-training (Livingstone, Manallack, and

Tetko, 1997). However, it should be noted that while NNs provide important advantages,

they also suffer from major drawbacks as compared to other techniques. Neural networks

are often regarded as "black boxes", as the weight matrices are difficult to interpret and

causal inferences are not easily established (Tu, 1996). Moreover, neural networks are prone

to overfitting, meaning that the model may learn to fit the training data too well, thereby

losing much of its predictive power over unseen out-of-sample datasets (Tu, 1996).
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The above research on the influence on factors on equity returns is mostly performed using

linear regression techniques, which impose a linear relationship on the variables. However,

Li, W. Zhang, and Kong (2018) show that the linear combination of factors is too restrictive

and that a nonlinear combination outperforms. Moreover, Abhyankar, Copeland, and Wong

(1997) find evidence for nonlinear dependencies in the returns on four of the world’s largest

indices: the S&P 500, the DAX, the Nikkei 225, and the FTSE-100. One way in which these

nonlinearities may be accounted for is by implementing neural networks. Neural networks are

universal approximators of functions and can, therefore, approximate whatever functional

form best characterizes a time series (T. Hill, O’Connor, and Remus, 1996). As a result of

this, T. Hill, O’Connor, and Remus (1996) find that neural networks significantly outperform

traditional statistical methods in a major forecasting competition.

Motiwalla and Wahab (2000) use Artificial Neural Networks to predict equity returns one-

step-ahead as well as construct trading strategies based on said predictions. The authors

use bond market yield and yield-curve characteristics as input variables. Whilst their neural

network only achieves a directional accuracy of 48 per cent, it is able to produce significantly

higher cumulative and risk-adjusted returns than buy-and-hold returns on market indices.

Machine learning may also be used to implement more complex trading strategies. Huck

(2009) uses Artificial Neural Networks in conjunction with other econometric techniques

to forecast the stock direction and magnitude of stock price changes. Subsequently, the

authors apply these predictions to form pairs of stocks, in an attempt to perform statistical

arbitrage. Such a strategy involves finding co-integrated equities that may whose prices may

drift apart in the short run, but which eventually will mean-revert. Hence, shorting the

relatively overvalued stock and going long in the undervalued equity may generate positive

returns (Huck, 2009). The trading strategies based on a combination of deep neural networks,

gradient-boosted trees, and random forests show annualized returns of 73 per cent after
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transaction costs, with a substantially higher Sharpe ratio of 1.81 as compared to 0.35 for

the S&P 500 index. These results clearly challenge the efficient market hypothesis.

More recently, Fischer and Krauss (2018) used Long Short-Term Memory (LSTM) neural

networks to forecast the predicting out-of-sample daily directional movements for the con-

stituent stocks of the S&P 500, and implement trading strategies based on these predictions.

The authors find that LSTM neural networks outperform other forms of neural networks

as well as regression, with annualized returns of 82 per cent after transaction costs and a

Sharpe ratio of 2.34 over the out-of-sample period of 1992-2015. Interestingly, Fischer and

Krauss find that LSTM returns fluctuate around 0 per cent from 2009 onward, suggesting

that the LSTM ’edge’, as it is applied in this paper, has been arbitraged away. Nakagawa

et al. (2019) use a variation of the LSTM architecture to build a time-varying multi-factor

model using 16 factors on the Japanese stock market. The authors find that their LSTM

model is able to capture nonlinear and time-varying relationship between the factors and

equity returns, resulting in higher annualized returns and a higher Sharpe ratio as compared

to a linear model, a Support-Vector Machine, and a Random Forrest.

Besides forecasting returns, neural networks are also frequently used to predict volatility

in the context of financial economics. The ability to forecast volatility of returns is crucial

to investors given its impact on portfolio optimization and asset valuation, as well as the

computation of optimal hedge ratios (Kristjanpoller and Minutolo, 2016). Monfared and

Enke (2014) use several hybrid models in which they combine GJR-GARCH models and

several types of neural networks to forecast volatility of the NASDAQ over a 40-day period.

The authors find that the hybrid model exhibits superior predictive performance in times

of extreme turmoil, such as the 2008 financial crash. However, the hybrid model is unnec-

essarily complex in low-volatility periods, and other less complex econometric techniques

show higher performance. Roh (2007) performs a similar volatility forecasting exercise on
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the Korea Composite Stock Price Index. Roh also finds that neural networks combined

with traditional statistical methods outperform either of the individual models in predictive

accuracy. Compared to the single neural network model, the hybrid NN-EGARCH model

outperforms the former by as much as 36.94 per cent on the basis of Mean Absolute Er-

ror. Moreover, the directional accuracy, the percentage of directional changes in volatility

correctly predicted, of the NN-EGARCH model is 60.63 per cent while that of the NN-only

model is only 43.75 per cent.

2.2 Long Short-Term Memory Neural Networks

Long Short-Term Memory (LSTM) neural networks have been applied in different areas of re-

search, with a particular focus in the field of language processing. LSTM models have shown

excellent performance in tasks such as speech synthesis and recognition, machine transla-

tion, as well as image-to-text conversion (Zen and Haşim Sak, 2015). Although the LSTM

architecture has existed since 1997 (Hochreiter and Schmidhuber, 1997), its application to

financial markets has only been recent.

Long Short-Term Memory neural networks is a unique form of a Recurrent Neural Net-

work (RNN). An important distinction of Recurrent Neural Networks as opposed to a Feed-

Forward NN is the fact that an RNN is able to retain some of the logic it used to generate

previous outputs to generate the current output (Kawakami, 2008). Hence, an RNN is not

only influenced by what it learned during supervised training, but also by what it learned

in generating previous outputs. In other words, the RNN is able to use contextual informa-

tion in generating its output. Figure 2.1 shows a schematic representation of a one-input,

one-neuron Recurrent Neural Network (Kawakami, 2008). Each individual node represents a

different time step. Each input (xt) is passed onto the neuron, which then passes its output

onto the output layer (rt). The next time step, some information from the previous time

7



step’s neuron is passed onto the current neuron, affecting its output. This way, in theory, a

RNN should be able to access many of the previous inputs in order to generate its current

output.

A A A A=A

r0

x0

r1

x1

r2

x2

rt

xt

rt

xt . . .

Figure 2.1 Schematic representation of a one-layer Recurrent Neural Network
(Kawakami, 2008)

One major drawback of standard Recurrent Neural Networks is that they are somewhat

limited in the range of contextual information they are able to access in practice (Kawakami,

2008); RNNs tend to ’forget’ contextual information rather quickly. This is referred to as the

vanishing gradient problem (Hochreiter, 1998). Kawakami (2008) note that the sensitivity

of an input decreases over time as new inputs overwrite their activation of the hidden layer;

as such, the RNN ‘forgets’ the inputs many time steps away.

Long Short-Term Memory neural networks are a particular variation within the class of

Recurrent Neural Networks that are able to overcome the vanishing gradient problem, and

hence they are able to learn long-term dependencies. Figure 2.2 shows a visual representation

of an LSTM memory block with a single cell and input. The foremost reason why LSTM

networks are able to learn long-term dependencies and overcome the vanishing gradient

problem is by how the cell-state (Ct in figure 2.2) is manipulated by the memory block and

passed onto the memory block of the next time step; this way, it functions as a form of

long-term memory. Information is added or removed from the cell-state by the use of three
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σ σ Tanh σ

× +

× ×

Tanh

Ct−1

Prev. Cell-state

rt−1

Prev. Output

xtInput

Ct

Cell to next time step

rt Output to next time step

rtOutput

ft it ot

Figure 2.2 Visual representation of an LSTM block with one cell (Olah, 2015)

gates: the input-gate, the forget-gate, and the output-gate (Olah, 2015).

For the input- and forget-gate, the amount of information each of the layers allows

through is determined by sigmoid (σ) functions, which take values of between 0 and 1 as to

regulate the amount of information they let through (Olah, 2015). A value of 0 means that

no information is let through, while a value of 1 implies that all information is passed on.

The forget-gate, as the name suggests, regulates what information from the previous cell-

state is kept in the current cell-state. Then, a tanh-layer determines which of the features

(inputs) are to be considered to be added to the cell-state. The input-gate supervises which

of these inputs will be added to the cell-state through a sigmoid layer, and incorporated into

the cell-state or updates these inputs to their more current value. Lastly, the output-gate

determines which what elements of the cell-state will be converted to output; this is subse-

quently multiplied by a tanh-layer of the cell-state, which scales the cell-state contents to

values between [-1,1] (Olah, 2015).
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2.2.1 LSTM in Equations

The formulae used by LSTM neural networks for the forget-gate and the input-gate are

shown in equation 2.1 and 2.2, respectively (Kawakami, 2008; Olah, 2015).

ft = σ(wf · [rt−1, xt] + bf ) (2.1)

it = σ(wi · [rt−1, xt] + bi) (2.2)

where:

ft represents the forget-gate

it represents to the input-gate

σ refers to the sigmoid activation function, applied element-wise

wj = weight for the neurons of the respective gate

rt−1 = output of the LSTM memory block of the previous time step

xt = input at the previous time step

bj = the bias for the respective gate

As stated above (Section 2.2), a tanh-layer determines which inputs to consider for the

cell-state by creating a vector of new candidate values as shown in equation 2.3.

C̃t = tanh(wc · [rt−1, xt] + bc) (2.3)

where:

C̃t represents the vector of candidate values

tanh refers to the tanh activation function, applied element-wise

Subsequently, the cell-state is updated by removing some, if any, of the constituents of

the previous cell-state through the forget-gate, as well as introducing new and updating

values through the input gate. This is shown in equation 2.4.

10



Ct = ft � Ct−1 + it � C̃t (2.4)

where:

Ct = the cell-state memory vector of the LSTM network at time t

� refers to the element-wise product

Through a sigmoid layer, the output-layer determines which what elements of the cell-

state will be converted to output. Subsequently, the output-layer is multiplied by the vector

of the cell-state memory to produce the final output of the LSTM block at time t. These

calculations are shown in equations 2.5 and 2.6, respectively. Then, both the cell-state as

well as the current output rt will be passed onto the next LSTM block, to calculate the

output for the next time step.

ot = σ(wo · [rt−1, xt] + bo) (2.5)

rt = ot � tanh(Ct) (2.6)

where:

ot represents the output-gate

rt = the output of the LSTM NN at time step t

2.2.2 Gated Recurrent Units

Introduced in 2014 by Cho et al., the Gated Recurrent Unit (GRU) is a closely related

variant to Long Short-Term Memory networks that is also able to overcome the vanishing

gradient problem. GRU and LSTM are rather similar in architecture in that both use so-

called ’gates’ to control the information flowing through the neural network. However, GRU

networks are less complex than LSTM networks as the former utilizes two gates rather than

three. Specifically, the Gated Recurrent Unit does not have an output gate that controls
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which elements in the cell-state are exposed to the units in the network (see section 2.2.1).

As such, the GRU exposes its full cell-state contents without any control (Chung et al.,

2014).

In many machine learning applications, GRU and LSTM models show similar perfor-

mance, despite the GRU being inherently less complex. There is no theoretical guidance

as to which model should be chosen for which task; the final decision depends heavily on

the dataset and corresponding task (Chung et al., 2014). In comparison to LSTM models,

GRU networks have fewer parameters and may therefore generalize better based on smaller

datasets (Zhao et al., 2019). However, this comes at a cost: compared to LSTMs, GRUs are

able to model fewer temporal relations and thus have lower expressiveness.

Rather than using a cell-state like LSTMs, the GRU operates directly on the output (or

hidden state) of the previous time step. Gated Recurrent Units have two different gates to

control the flow of information of the hidden state: the update and reset gate. The update

gate regulates which new information from the input features and the previous hidden state

to incorporate into the current hidden state, and the reset gate decides which information

to remove (forget) from the hidden state (Olah, 2015).

The equations used by Gated Recurrent Units for the update and the reset gates are

shown in equations 2.7 and 2.8, respectively (Chung et al., 2014).

zt = σ(wz · xt + Uz · rt−1) (2.7)

qt = σ(wq · xt + Uq · rt−1) (2.8)

where:

zt represents the update gate

qt represents the reset gate

Uj = weight for the previous hidden state of the respective gate

12



A tanh-layer determines which of the features (inputs) and elements of the previous

hidden state are to be considered to be added to the hidden state. This is done by creating

a vector of candidate values, as shown in equation 2.9.

r̃t = tanh(wr · xt + qt � Uqrt−1]) (2.9)

where:

r̃t represents the vector of candidate values for the hidden state

Subsequently, the hidden state (output) is calculated is by means of the update gate,

which allows through elements of the previous hidden state, as well as elements of the vector

of candidate values. This is shown in equation 2.10.

rt = (1− zt)� rt−1 + zt � r̃t (2.10)

Figure 2.3 shows a visual representation of a GRU block with a single cell and input,

showing the interaction between the above equations.

σ σ tanh

× +

× ×

1-

rt−1

Prev. Hidden state

xtInput

rt

Hidden state

rtOutput

ztqt r̃t

Figure 2.3 Visual representation of a GRU cell (Olah, 2015)
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Chapter Three

Data and Methodology

3.1 Data

The datasets on the total monthly returns of 30 of the Standard & Poor’s 500 index con-

stituents are obtained from the Center for Research in Security Prices (CRSP). The choice to

focus on S&P500 constituent equities is motivated by their relatively high degree of market

efficiency and liquidity. Moreover, the sample of public equities has been constructed to

reflect a variety of industries and for historic return-data availability. The list of stocks used

in this thesis can be found in Table A.2. The size of each of the datasets depends on the

stock in question. These datasets are subsequently combined with a dataset of 51 monthly

factors returns produced and maintained by Hou, Xue, and L. Zhang (2017). The factor

dataset covers the horizon from January 1967 to December 2019. The factors used and their

respective descriptions can be found in Table A.1.

The datasets and methodology are constructed to ensure that the input variables used

to forecast next month’s return were not unobservable at the time the prediction is made.

This is done to ensure that the conditions in which the predictions are made are similar to

those practitioners experience in the real world.
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3.2 Methodology

3.2.1 Recurrent Neural Networks

As stated in section 2.2, Recurrent neural networks (RNN) are neural networks that use

contextual information from previous time steps as inputs to influence predictions at the

current time step, which in theory would allow them to learn long-term dependencies (Hasim

Sak, Senior, and Beaufays, 2014). However, in practice, RNNs are only able to access

contextual information between five to ten time steps in the past (Gers, Schmidhuber, and

Cummins, 1999). Long short-term memory networks are able to overcome this apparent

problem and learn contextual dependencies of over a thousand time steps away. Since Gated

Recurrent Units use gates to manipulate the information in a similar way to LSTM networks,

they are also able to overcome the vanishing gradient problem (Chung et al., 2014).

LSTM neural networks offer excellent performance in analysing sequential data for which

an unknown hierarchical decomposition may exist (Gers, Schmidhuber, and Cummins, 1999).

Since stock market behaviour may be characterised as such, an LSTM model may offer good

performance in equity return prediction. Ryll and Seidens (2019) compiled a comprehensive

survey of machine learning algorithms in financial market forecasting. The authors compile

evidence of the predictive ability of different types of machine learning algorithms from over

150 published papers on these topics. Ryll and Seidens find that LSTM neural networks,

on average, outperform other machine learning techniques such as Support-Vector Machines

(SVM), Artificial Neural Networks (ANN), Recurrent Neural Networks (RNN), and Neuro-

Fuzzy Networks by a large margin. The choice for Long Short-Term Neural Networks over

architectures is specifically motivated by its superior performance over other machine learn-

ing algorithms, as well as its ability to overcome the vanishing gradient problem and thus

learn long-term dependencies.
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This thesis employs Autoregressive Integrated Moving Average (ARIMA) models in order

to benchmark the predictive performance of the LSTM models against a traditional econo-

metric statistical technique. ARIMA models are among the most widely used linear models

in time series forecasting (Pai and Lin, 2005), and hence serve as a good benchmark. ARIMA

models predict the future value of a variable on the basis of a linear combination of previous

values and previous prediction errors. Following Ahoniemi (2008), an ARIMA(1,1,1) model

is implemented, enhanced with first-lagged values of the factors (Table A.1). This particu-

lar ARIMA model specification shows highest directional accuracy on a validation sample.

Moreover, the LSTM performance is also compared to that of Gated Recurrent Units. As

stated in section 2.2.2, Gated Recurrent Units are a less complex variant of LSTM models

that may show higher performance if the datasets are small. Since the datasets used in this

thesis are relatively small (n=360 for in-sample training), the GRU architecture is relevant.

3.2.2 Software

This thesis partially follows the methodology as applied by Nakagawa et al. (2019), who

use LSTM neural networks in conjunction with 16 accounting variables to forecast 1-month

stock returns on the Tokyo Stock Exchange.

Data preparation, model training and model validation is conducted in Python 3.7. To

do this, the Python software libraries NumPy (Walt, Colbert, and Gael Varoquaux, 2011),

sci-kit learn (Pedregosa et al., 2011), pandas (McKinney et al., 2011), Keras (Chollet et al.,

2015), as well as Google TensorFlow revision 2 (Abadi et al., 2016) are used.

First, each individual equity dataset is split into non-overlapping in-sample training and

out-of-sample testing sets. The training sample consists of the first 80% of the observations;

the test set is the following 20%. For most of the equities in the sample, the training data

consists of 360 months, and the out-of-sample test set is 72 months long. Training sets are
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used to train the LSTM models, which are subsequently evaluated on their out-of-sample

performance on the test sets.

3.2.3 Features

LSTM neural networks require sequential time series data of both the target measure as well

as the ‘features’ for training purposes. The target measure, i.e. the measure that the LSTM

network attempts to predict, is the monthly stock return, which is defined in equation 3.1.

The return is the monthly percentage change in the total value of an investment in a common

stock, taking into account stock splits and dividends received.

ri,t =
pi,t ∗ fi,t + di,t

pi,t−1

(3.1)

where:

pi,t = last sale price or closing bid/ask average for stock i at time t

fi,t = price adjustment factor for stock i at time t

di,t = cash adjustment factor for stock i at time t

The inputs or features used for training are the lagged differences in returns between the

10th decile portfolio and the first decile portfolio for each of the factors, as shown in equation

3.2.

Fi,t = r10,i,t − r1,i,t (3.2)

where:

r10,i,t = the return on the 10th decile portfolio for factor i at time t

r1,i,t = the return on the 1st decile portfolio for factor i at time t
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3.2.4 Data Preparation

Before a neural network can be trained on the input data, the data need to be pre-processed

and normalized as to improve the efficiency and accuracy of the model (Bishop et al., 1995).

Each of the features, as well as the target variable, is normalized by the sklearn MinMaxScaler

such that each value lies between zero and one. To avoid any bias, this is done separately

for the in-sample training and out-of-sample test samples. After each prediction is made,

the LSTM/GRU output is re-scaled back to its ‘normal’ state.

3.2.5 Model Training

For the training of the LSTM and GRU networks, the RMSprop optimizer is used (Tiele-

man and Hinton, 2012). Dropout regularization is an effective way to avoid overfitting and

thus may improve out-of-sample performance (Srivastava et al., 2014); this means that some

nodes are randomly dropped (temporarily removed) from the LSTM or GRU network during

training. Following Fischer and Krauss (2018), a dropout rate of 10% is used. Hyperparam-

eter optimization is performed and cross-validated on a sub-sample of the training sample

dataset, again as to avoid any data snooping bias.

Hyperparameters are model parameters that have to be selected before the process of

training the model, e.g. the number of layers or number of epochs (Lago, De Ridder, and

De Schutter, 2018). There are no clear theoretical guidelines as to how one can determine

the correct model specification (hyperparameters) of neural networks. In practice, they are

often chosen based on rules-of-thumb, or through testing different specifications (Claesen

and De Moor, 2015). As stated above, this thesis applies hyperparameter optimization and

cross-validation on a validation sample to determine the hyperparameters. As such, the

topology of the LSTM and GRU networks are as follows: the first layer is the input layer

with 51 features and 48 time steps, the following layer is a hidden layer with 256 neurons,

the last layer is a fully-connected dense output layer. These values lead to a high number
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of observations per parameter, which leads to reduced risk of overfitting and more robust

estimates if the training data is noisy (Fischer and Krauss, 2018). Thus, both the LSTM and

GRU neural networks take return and factor data of the previous 48 months into account in

order to forecast the following month’s return.

Each of the models is trained with 200 epochs, meaning that during training, the model

passes 200 times over the training set; saving the best fitting model. While there is no

technical specification for setting this number of epochs, this number is large enough to find

a well-fitting model whilst moderate enough avoiding overfitting.

Since the predictions of the neural networks will be implemented into trading strategies,

the accuracy of return direction prediction may be of higher importance than the absolute

magnitude of the prediction error. Hence, it may be sensible to implement a custom loss

function that penalizes the model when its prediction is not of the same sign as the true

outcome. Thus, the loss function, as shown in equation 3.3, is implemented.

Lossi,t(r
true
i,t , rpredi,t ) =


α ∗ (rpredi,t )2 − sgn(rtruei,t ) ∗ rpredi,t + |rtruei,t |, if rpredi,t ∗ rtruei,t < 0

|rtruei,t − r
pred
i,t |, otherwise

(3.3)

where:

rpredi,t = the predicted return for stock i at time t

rtruei,t = the predicted return for stock i at time t

α is a parameter that influences the sensitivity of the loss to predictions of the wrong sign

3.2.6 Trading Strategy

Rather than merely considering the statistical accuracy with which the LSTM and GRU

models predict returns one month ahead, one should also consider their directional accuracy
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and the performance of trading strategies based on LSTM output. As such, two trading

strategies are implemented: a Long-Only strategy, as well as a Long/Short strategy. The

former strategy purchases the respective equity when the neural network model predicts

a positive return for the next month and does not invest otherwise. The latter strategy

purchases the stock if the forecasted return is positive and shorts the stock when the predicted

return is negative. Both strategies will be evaluated against buy-and-hold strategies for each

of the equities. Following Avellaneda and Lee (2010), a transaction/slippage cost of 5 basis

points (0.05%) is applied to each trade.

In addition to the traditional risk measure of standard deviation of returns, the maximum

drawdown is calculated for each of the out-of-sample trading strategies. This risk metric is

routinely used by asset managers for fund allocation and redemption decisions (Van Hemert

et al., 2020). The maximum drawdown measures downside risk by calculating the largest

single percentage drop from the from the peak to the bottom of the value of a portfolio.

The methodology, as specified above, satisfies three important criteria to prevent data

snooping bias, as outlined by Motiwalla and Wahab (2000). Firstly, the datasets are split into

disjoint training and evaluation sets, as no investor could have obtained parameter estimates

based on the entire sample period and trade upon that knowledge. Second, the possible issue

of model uncertainty, meaning that the model specification could have been made with the

benefit of hindsight, is addressed as LSTM and GRU neural networks form their own model

specification after training on the training data. Third, there may be data snooping if the

same dataset is used for model specification as well as validation of said specification; since

the LSTM and GRU models are trained on a different dataset than they are evaluated upon,

this form of data snooping is not present.
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3.3 Hypotheses

Hypothesis 1 The LSTM and GRU neural networks have directional accuracies signifi-

cantly higher than 50%

Directional accuracy, as referred to in this thesis, is the percentage of predictions that

have the same sign as the realized return in that month. Neural networks may be able to

detect nonlinear relationships in return and factor portfolio data, which may improve their

ability to predict both the magnitude and sign of financial returns accurately.

Hypothesis 2 The LSTM and GRU neural network trading strategies significantly outper-

form a buy-and-hold strategy based on the Sharpe Ratio

To calculate whether the Neural Network trading strategies produce significantly higher

Sharpe ratios than a buy-and-hold strategy of the same equity would, the test of Jobson,

Korkie, and Memmel (JKM) is used (Memmel, 2003). Jorion (1992) shows that the power

of this test is rather low in small sample sizes, which may be considered a drawback for its

application to this thesis. Namely, the length of the out-of-sample test periods used in this

thesis are relatively short (n=72 for each public equity). On the other hand, significantly

higher Sharpe ratios for the neural network strategies would, therefore, constitute as strong

evidence of higher risk-adjusted performance. The z-values for the JKM-test are calculated

as shown in equation 3.4, with the Standard Error as calculated in equation 3.5.

zi =
ShNNi − ShBHi

SEdiff
i

(3.4)

where:

ShNNi = the Sharpe ratio of the Long-Only or Long-Short NN strategy for stock i

ShBHi = the Sharpe ratio of the buy-and-hold strategy for stock i

SEdiff
i = the Standard Error of the difference between the Sharpe ratios
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SEdiff
i = (

1

T
(2− 2pBH,NN +

1

2
(Sh2BHSh

2
NN − 2ShBHShNN)))

1
2 (3.5)

where:

pBH,NN = the correlation between the the buy-and-hold returns and the NN returns

T = the number of time steps in the out-of-sample test period

22



Chapter Four

Results

The results are presented in three stages. First, the out-of-sample statistical accuracy of the

LSTM, GRU, and ARIMA models is presented and analysed. Following this, the out-of-

sample performance of the trading strategies is presented and thoroughly evaluated for each

of the three models. Third, it is analysed whether the predictability of returns diminishes

over time, which may indicate increasing market efficiency. As a benchmark, the results of

the LSTM neural networks are compared to those of Auto Regressive Integrated Moving

Average (ARIMA) and Gated Recurrent Unit (GRU) models.

4.1 Statistical Forecast Evaluation

Table 4.1 lists the R2, Mean Absolute Error (MAE), Mean Square Error (MSE), Root Mean

Square Error (RMSE), and the Mean Absolute Percentage Error (MAPE) for each stock

over the out-of-sample test period for the LSTM models. The summary statistics for the

benchmark GRU and ARIMA models are shown in Table B.1. The statistics in Table 4.1

show how good, on average, the LSTM Neural Networks are at forecasting the magnitude

of the monthly returns one step ahead. In addition, figure 4.1 shows the forecasted returns

contrasted with the actual returns over the full out-of-sample period for ticker AXP. This

figure serves as an example and is similar to those of the other equities.
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Figure 4.1 LSTM out-of-sample predicted and actual monthly returns for AXP

As shown in 4.1, the LSTM out-of-sample R2 are rather high in general, with values

ranging between 12 to 61 per cent for the stocks under consideration. On average, the

LSTM models explain over 14 times as much variation in the cross-section of returns than

the benchmark ARIMA models; the GRU models outperform, on average, the LSTM models

by 2.6 percentage points as based on R2. Overall, the LSTM models, in conjunction with the

51 factors, are able to explain relatively high amounts of the variance in out-of-sample equity

returns. On the other hand, the summary statistics that measure average prediction error

(MAE, RSME, MSE, & MAPE) are rather high for most stocks. This implies that the LSTM

models tend to be less precise in forecasting the magnitude of the return. Indeed, from figure

4.1 it is evident that the return predictions are less volatile than the actual returns, resulting

in large error statistics. The LSTM models show near identical performance to the GRU

models as based on MAE and RMSE, but perform worse as based on MAPE. Overall, the

LSTM models outperform the benchmark ARIMA models on the basis of Mean Absolute

Error by 69.6 per cent on average.

The error statistics, as reported in Table 4.1, should be interpreted with caution, as they

may be higher than they would have been given a different loss function. Namely, the loss

function that the LSTM Neural Network utilises for in-sample training not only penalises

absolute error but also whether the direction of the return was correctly predicted. This
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may have adversely affected the statistics reflected in Table 4.1.

Table 4.1 LSTM Out-of-sample R-squared, MAE, RMSE, MSE, and MAPE for
each of the equities

Ticker R-squared MAE RMSE MSE MAPE

ADM 0.1159 0.0514 0.0727 0.0053 298%
ADP 0.3689 0.0329 0.0414 0.0017 463%
AXP 0.2954 0.0378 0.0520 0.0027 177%
BAX 0.3392 0.0575 0.0654 0.0043 650%
BDX 0.6062 0.0244 0.0324 0.0011 154%
CLX 0.3716 0.0320 0.0414 0.0017 345%
DIS 0.2997 0.0541 0.0627 0.0039 474%
DUK 0.1722 0.0362 0.0458 0.0021 198%
FDX 0.3344 0.0544 0.0713 0.0051 1296%
GIS 0.5181 0.0307 0.0381 0.0014 295%
HON 0.2657 0.0353 0.0470 0.0022 997%
HPQ 0.2929 0.0586 0.0792 0.0063 254%
IFF 0.4146 0.0464 0.0587 0.0034 164%
INTC 0.3035 0.0412 0.0556 0.0031 239%
JNJ 0.5390 0.0209 0.0272 0.0007 115%
JPM 0.3051 0.0408 0.0547 0.0030 178%
LNC 0.4376 0.0540 0.0719 0.0052 130%
MCD 0.3888 0.0318 0.0404 0.0016 287%
MMM 0.3318 0.0450 0.0555 0.0031 515%
NEM 0.3151 0.0604 0.0915 0.0084 334%
PCAR 0.4138 0.0495 0.0647 0.0042 208%
SLB 0.2783 0.0480 0.0667 0.0045 175%
T 0.3534 0.0392 0.0508 0.0026 306%
TAP 0.5474 0.0390 0.0513 0.0026 143%
TGT 0.2762 0.0449 0.0630 0.0040 580%
TXT 0.2141 0.0552 0.0720 0.0052 319%
VFC 0.4530 0.0356 0.0446 0.0020 950%
WBA 0.4831 0.0409 0.0533 0.0028 160%
WMB 0.5189 0.0565 0.0764 0.0058 227%
WMT 0.2970 0.0307 0.0432 0.0019 494%
Mean 0.3617 0.0428 0.0564 0.0034 371%
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4.2 Trading Strategy Evaluation

This section will cover the evaluation of the buy-and-hold, LSTM, GRU, and ARIMA trading

strategies as specified in section 3.2.6. Each of the respective Long-Only and Long/Short

strategies will be evaluated against a buy-and-hold strategy on several aspects. First, the

directional accuracy of the different models will be assessed. Second, the annualized returns,

standard deviation of the returns, and maximum drawdown of each strategy will be presented

and evaluated. Third, the Sharpe ratios of the trading strategies will be evaluated for each

of the equities. Lastly, an equally-weighted portfolio of the equities will be created for each

of the strategies and subsequently evaluated.

4.2.1 Directional Accuracy

Kendall and A. B. Hill (1953), among others, proposed that stock prices indeed evolve

according to a random walk, meaning that it should not be possible to predict the direction

of stock price changes consistently. Hence, on average, one should expect an accuracy of

50% in predicting the direction of equity returns.

Table 4.2 shows the out-of-sample directional accuracy of the LSTM models in regards

to forecasting next month’s return, as well as the fraction of the out-of-sample period in

which the LSTM trading strategies take long positions. The reported p-values refer to the

binomial probability of achieving at least the reported accuracy under the null hypothesis of

50 per cent. The results show that the overall directional accuracy for the LSTM models is

significantly higher than 50 per cent at the 1 per cent level for 24 out of 30 public equities

in the sample, with accuracies ranging between 55 and 82 per cent. Table B.3 shows the

directional accuracies for the GRU models, of which 21 out of 30 stocks achieve an directional

accuracy higher than 50 per cent at the 1 per cent significance level. Overall, the results

show that the direction of many of the equities in the sample seem to be predictable.
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Table 4.2 Fraction of periods invested as well as out-of-sample directional accuracy
of the LSTM Neural Networks

Ticker Fraction of Periods Long Directional Accuracy Upwards Acc. Downwards Acc.

ADM 0.9028 59.72%** 56.92% 85.71%***
ADP 0.8194 70.83%*** 69.49%*** 76.92%**
AXP 0.8194 63.89%*** 64.41%*** 61.54%
BAX 0.1558 54.55% 100.0%*** 46.15%
BDX 0.6667 76.39%*** 79.17%*** 70.83%**
CLX 0.4306 66.67%*** 77.42%*** 58.54%
DIS 0.9444 58.33%* 55.88% 100.0%***
DUK 0.2778 58.33%* 80.00%*** 50.00%
FDX 0.9167 70.83%*** 68.18%*** 100.0%***
GIS 0.6944 63.89%*** 60.00%* 72.73%***
HON 0.8472 70.83%*** 72.13%*** 63.64%
HPQ 0.7917 76.39%*** 73.68%*** 86.67%***
IFF 0.1528 58.33%* 100.0%*** 50.82%
INTC 0.5694 69.44%*** 75.61%*** 61.29%*
JNJ 0.7639 81.94%*** 80.00%*** 88.24%***
JPM 0.7778 69.44%*** 67.86%*** 75.00%**
LNC 0.3889 75.00%*** 92.86%*** 63.64%**
MCD 0.4167 66.67%*** 83.33%*** 54.76%
MMM 0.9167 68.06%*** 66.67%*** 83.33%**
NEM 0.5972 68.06%*** 67.44%*** 68.97%**
PCAR 0.2778 69.44%*** 90.00%*** 61.54%**
SLB 0.4306 79.17%*** 74.19%*** 82.93%***
T 0.8333 66.67%*** 61.67%** 91.67%***
TAP 0.2927 68.29%*** 100.0%*** 55.17%
TGT 0.5333 76.67%*** 84.38%*** 67.86%**
TXT 0.8056 62.50%** 60.34%** 71.43%**
VFC 0.4722 72.22%*** 82.35%*** 63.16%**
WBA 0.6528 73.61%*** 65.96%*** 88.00%***
WMB 0.7639 75.00%*** 69.09%*** 94.12%***
WMT 0.5000 68.06%*** 69.44%*** 66.67%**
Note: * = p < .1, ** = p < .05, *** = p < 0.01, H0 = 50%

Table B.2 shows the out-of-sample directional accuracy of the benchmark ARIMAmodels.

The results show that the directional accuracy of the ARIMA models is significantly higher

than 50 per cent for only 5 out of 30 stocks. On average, the LSTM models outperform the

ARIMA models based on directional accuracy by 34.3 per cent (17.7 percentage points); the

27



average LSTM directional accuracy is nearly identical to that of the GRU models.

To evaluate whether the LSTM and GRU models are more accurate in predicting either

the upwards or downward movements, the overall directional accuracy is separated into these

categories and shown in Table 4.2 and B.3, respectively. Regarding the upwards accuracy

of LSTM and GRU models, for 27 and 28 out of 30 equities in the sample, respectively,

the upward accuracy is significantly higher than 50 per cent at the 5 per cent level. As

for the downwards accuracy, for both the LSTM and GRU models 21 of the 30 equities

reach an accuracy significantly higher than 50 per cent at the 5 per cent level. It must be

noted that the samples of downward predictions tend to be smaller than those for upward

predictions. Overall, there is no evidence to suggest that the LSTM or GRU models are

more accurate at forecasting one direction over the other. For the ARIMA models (Table

B.2), there does seem a substantial difference in the upward and downward accuracies, with

upward accuracies being generally substantially higher than downward accuracies.

4.2.2 Annualized Returns and Risk

Table 4.3 shows the geometric average annualized returns for each of the LSTM trading

strategies: the Buy-and-Hold, Long-Only, and Long/Short strategies. As noted in section

3.2.6, these results take trading fees into account. As for annualized returns, the results

seem mixed. Whilst some of the LSTM trading strategies clearly outperform the Buy-and-

Hold strategy on a return basis, others receive similar or even lower returns. For 17 out of

30 equities in the sample, the LSTM networks outperform the buy-and-hold strategy on a

return basis at least at the 5 per cent significance level. This number increases to 22 out of

30 for the GRU models, as shown in Table B.5. Table B.4 shows the annualized returns for

the ARIMA models. These results show that for only one equity the benchmark ARIMA

models are able to achieve significantly higher annualized returns than the Buy-and-Hold

strategy. Moreover, for 24 out of the 30 stocks both the ARIMA Long-Only and Long/Short
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strategies achieved lower returns than the Buy-and-Hold strategy. As such, the LSTM and

GRU models clearly outperform both the Buy-and-Hold strategy as well as the ARIMA

models in generating returns over the out-of-sample period.

Table 4.3 LSTM annualized geometric mean returns and standard deviations of
monthly returns over the out-of-sample period for each stock

Annualized Returns Standard Deviation

Ticker Buy&Hold Long-Only Long/Short Buy&Hold Long-Only Long/Short

ADM 0.0327 0.1123** 0.1899** 0.0603 0.0537 0.0582
ADP 0.1744 0.2602*** 0.347** 0.0476 0.0397 0.0424
AXP 0.0777 0.1947** 0.3019** 0.0553 0.0367 0.0506
BAX 0.1490 0.1647 0.1505 0.0583 0.0322 0.0569
BDX 0.1781 0.2905*** 0.4045*** 0.0512 0.0400 0.0443
CLX 0.1155 0.1447 0.1608 0.0478 0.0321 0.0469
DIS 0.1285 0.1708** 0.2122** 0.0555 0.0529 0.0539
DUK 0.0925 0.0826 0.0611 0.0404 0.0218 0.0408
FDX 0.0349 0.1529** 0.2618** 0.0701 0.0571 0.0669
GIS 0.0365 0.172*** 0.3152*** 0.0499 0.0383 0.0438
HON 0.1538 0.1995* 0.2439* 0.0415 0.0364 0.0390
HPQ 0.0834 0.2521*** 0.429*** 0.0715 0.0593 0.0643
IFF 0.0880 0.1434 0.1598 0.0628 0.0289 0.0618
INTC 0.1832 0.2755* 0.3579* 0.0628 0.0497 0.0586
JNJ 0.0905 0.1911*** 0.2958*** 0.0388 0.0286 0.0326
JPM 0.1895 0.2499 0.2975 0.0582 0.0457 0.0556
LNC 0.0562 0.4007*** 0.7749*** 0.0895 0.0562 0.0735
MCD 0.1592 0.1757 0.1832 0.0398 0.0265 0.0391
MMM 0.0733 0.1315* 0.1849* 0.0523 0.0452 0.0505
NEM 0.0808 0.2653* 0.394* 0.1104 0.0814 0.1058
PCAR 0.0919 0.2151* 0.3089 0.0654 0.0345 0.0612
SLB -0.1365 0.1931*** 0.5827*** 0.0785 0.0487 0.0673
T 0.0672 0.1254*** 0.1859*** 0.0466 0.0435 0.0445
TAP 0.1347 0.2717* 0.3979* 0.0644 0.0454 0.0583
TGT 0.1532 0.3178** 0.4788** 0.0731 0.0561 0.0655
TXT 0.0835 0.2571** 0.4191** 0.0766 0.0560 0.0703
VFC 0.1096 0.2401*** 0.3722*** 0.0590 0.0461 0.0528
WBA 0.0081 0.2341*** 0.479*** 0.0708 0.0515 0.0615
WMB -0.0231 0.3886*** 0.8697*** 0.0990 0.0663 0.0812
WMT 0.1004 0.1941* 0.2777* 0.0509 0.0322 0.0468
Mean 0.0922 0.2156 0.3366 0.0616 0.0448 0.0565
Note: * = p < .1, ** = p < .05, *** = p < 0.01, H0 : RBH = RLSTM
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The risk each of the three strategies entails may be quantified by the standard deviation

of monthly returns. The standard deviation of returns for the LSTM, GRU, and ARIMA

models are shown in Table 4.3, B.5, and B.4, respectively. Overall, the LSTM, GRU, and

ARIMA Long-Only strategies produce lower standard deviations than the Buy-and-Hold

strategies, meaning that the former may be considered less risky. It is interesting to note

that while one may have expected the Long/Short strategy to be riskier than the Buy-

and-Hold strategy, for many of the equities under consideration the former produce lower

standard deviations than the latter.

Table 4.4 shows the maximum drawdown (MDD) for the Buy-and-Hold strategy as well

as the LSTM, GRU, and ARIMA strategies. Maximum drawdown can be interpreted as

a measure of downside risk. It represents the worst possible loss suffered by an investor

when investing in a portfolio or stock: buying at the highest point, and selling at the

bottom (Van Hemert et al., 2020). The results in Table 4.4 show that the LSTM Long-

Only strategy shows substantially lower max drawdowns than the Buy-and-Hold strategy

for most of the stocks under consideration. The GRU Long-Only strategies shows similar

results, albeit slightly higher than those of the LSTM Long-Only. The LSTM and GRU

Long/Short strategies more often show similar MDDs to the Buy-and-Hold strategy. The

ARIMA Long-Only and Long/Short strategies both only rarely show substantially lower

MDDs than the Buy-and-Hold strategy. Overall, these results suggest that the LSTM and

GRU Long-Only strategies seem to be exposed to lower drawdown risk, while the LSTM,

GRU Long/Short, and benchmark ARIMA strategies do not.
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Table 4.4 Maximum drawdown (MDD) over the out-of-sample period for each stock
for the LSTM, GRU, and ARIMA trading strategies

LSTM MDD GRU MDD ARIMA MDD

Ticker Buy&Hold MDD Long-Only Long/Short Long-Only Long/Short Long-Only Long/Short

ADM 0.2848 0.2848 0.2848 0.2037 0.2133 0.2093 0.2545
ADP 0.2290 0.1607 0.1607 0.2290 0.2290 0.1627 0.2550
AXP 0.2796 0.1341 0.2360 0.2796 0.3152 0.2801 0.2801
BAX 0.2876 0.1215 0.2443 0.1544 0.2443 0.2300 0.2630
BDX 0.2218 0.1673 0.1673 0.2215 0.2215 0.2219 0.2219
CLX 0.2214 0.1682 0.2060 0.1825 0.1825 0.2010 0.2276
DIS 0.2580 0.2580 0.2580 0.2304 0.2304 0.2027 0.2297
DUK 0.1713 0.1490 0.1635 0.1513 0.1626 0.1415 0.1713
FDX 0.4059 0.3161 0.3698 0.1960 0.2216 0.3564 0.3564
GIS 0.2392 0.1922 0.1922 0.1334 0.1605 0.1885 0.2183
HON 0.1877 0.1815 0.1815 0.1815 0.1815 0.0978 0.1809
HPQ 0.2468 0.2471 0.2584 0.2046 0.2457 0.2432 0.2584
IFF 0.3367 0.1110 0.2132 0.2139 0.2139 0.2147 0.2147
INTC 0.2725 0.2196 0.2196 0.2197 0.2445 0.2147 0.2147
JNJ 0.1956 0.1229 0.1229 0.1070 0.1217 0.1383 0.1658
JPM 0.2415 0.2090 0.2525 0.2112 0.2112 0.2415 0.2415
LNC 0.3802 0.2625 0.2976 0.3760 0.3760 0.3153 0.3991
MCD 0.1959 0.1283 0.1855 0.1354 0.1858 0.1458 0.1704
MMM 0.2330 0.2330 0.2368 0.1780 0.1821 0.2267 0.2267
NEM 0.4476 0.3800 0.4861 0.3800 0.4143 0.3978 0.4389
PCAR 0.2886 0.1363 0.2650 0.1701 0.2269 0.2505 0.2505
SLB 0.3378 0.1935 0.2380 0.1840 0.1999 0.3367 0.3367
T 0.2103 0.2103 0.2103 0.1562 0.1853 0.2100 0.2100
TAP 0.2447 0.1569 0.1470 0.2115 0.2115 0.2115 0.2413
TGT 0.2898 0.2366 0.2808 0.2898 0.2898 0.2445 0.3347
TXT 0.3499 0.2308 0.2559 0.3503 0.3503 0.2942 0.2942
VFC 0.2174 0.2144 0.2144 0.1661 0.1661 0.1810 0.2158
WBA 0.3220 0.2444 0.2444 0.3320 0.3320 0.2887 0.2903
WMB 0.4230 0.2918 0.3089 0.4234 0.4234 0.3535 0.3535
WMT 0.2643 0.1281 0.1833 0.2309 0.2309 0.1221 0.2119
Mean 0.2761 0.2030 0.2362 0.2234 0.2391 0.2308 0.2576

4.2.3 Risk-Return Performance

Table 4.5 shows the Sharpe ratios for both the LSTM and GRU trading strategies, as well

as the Buy-and-Hold strategy and benchmark ARIMA models. It should be noted that

these Sharpe ratios are calculated with the monthly returns, rather than annual returns.

The Sharpe ratios of both the LSTM and GRU Long-Only strategies are significantly higher

than the Buy-and-Hold strategy at the 5 per cent level for 28 out of the 30 equities under

consideration. On average, the LSTM Long-Only Sharpe ratios are 2.4 times as high as those
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of the Buy-and-Hold strategy. Hence, it seems that the Long-Only LSTM trading strategy

is able to outperform a Buy-and-Hold strategy on a risk-adjusted basis. It is noteworthy

that this result is not achieved through solely higher returns, but also by reducing risk as

measured by the standard deviation of monthly returns (see Table 4.3). For example, for

neither of the equities with tickers IFF and MCD do the Long-Only strategies outperform the

Buy-and-Hold strategies on an absolute return basis, but they achieve significantly higher

Sharpe ratios through a substantial reduction in the standard deviation of returns.

In contrast to the rather stellar results for the LSTM Long-Only strategy, only 18 out

of 30 Sharpe ratios for the LSTM Long/Short strategy are significantly higher than the

Buy-and-Hold strategy at the 5 per cent level. This increases to 22 out of 30 stocks for the

GRU Long/Short strategies. Notwithstanding, the LSTM Long/Short Sharpe ratios are 2.7

times as high as those of the Buy-and-Hold strategy, on average. Moreover, these results

are mostly achieved through higher returns, rather than a reduction in risk. As for the

ARIMA benchmark models, only one of the Long-Only and Long/Short strategies achieve

a significantly higher Sharpe ratio compared to the Buy-and-Hold strategy. Moreover, the

ARIMA models generate negative Sharpe ratios for some of the stocks under consideration.

On average, the LSTM Long/Only Sharpe ratio is an astonishing 114 times as high as that

of the ARIMA models; the LSTM Long/Short Sharpe is on average 3.7 times as high as the

ARIMA Long/Short Sharpe. The Sharpe ratios for the GRU models are similar to those of

the LSTM models.
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Table 4.5 Sharpe ratios for the Buy-and-Hold, the LSTM, the GRU, and the
ARIMA trading strategies for each equity

Sharpe LSTM Sharpe GRU Sharpe ARIMA Sharpe

Ticker Buy&Hold Long-Only Long/Short Long-Only Long/Short Long-Only Long/Short

ADM 0.0755 0.1951*** 0.2820** 0.4016*** 0.4491** 0.0899 0.0474
ADP 0.3064 0.5138*** 0.6168*** 0.3026 0.2985 0.2077 -0.0603
AXP 0.1422 0.4288*** 0.4655** 0.2571** 0.3200** 0.1260 0.0757
BAX 0.2294 0.3953* 0.2125 0.4877*** 0.3688 0.1787 0.0358
BDX 0.2939 0.5613*** 0.6749*** 0.4416*** 0.5299*** 0.2981 0.1860
CLX 0.2149 0.3755** 0.2951 0.3560*** 0.4377** 0.1864 0.0535
DIS 0.2093 0.2766** 0.3265** 0.3563*** 0.4426** 0.2546 0.1913
DUK 0.2032 0.3274 0.1484 0.3088 0.1784 0.2263 0.1315
FDX 0.0782 0.2388*** 0.3262** 0.4938*** 0.6165*** -0.0368 -0.1387
GIS 0.0848 0.3720*** 0.5530*** 0.4983*** 0.6871*** -0.1116 -0.2570
HON 0.3094 0.4397*** 0.4924** 0.4074* 0.3920 0.4084 0.2064
HPQ 0.1296 0.3517*** 0.5046*** 0.4008*** 0.3986* 0.1711 0.1269
IFF 0.1448 0.4066** 0.2332 0.3856** 0.3274 0.1889 0.0726
INTC 0.2557 0.4407*** 0.4728* 0.3434 0.2017 0.1301 -0.0893
JNJ 0.2062 0.5348*** 0.6922*** 0.5467*** 0.6807*** 0.2702 0.1705
JPM 0.2790 0.4365** 0.4251 0.4656*** 0.4863* 0.2367 0.1128
LNC 0.0957 0.5362*** 0.7045*** 0.2029** 0.2803** 0.1559 0.1199
MCD 0.3308 0.5335** 0.3857 0.6402*** 0.7813*** 0.0663 -0.2379
MMM 0.1396 0.2532** 0.3088* 0.5265*** 0.6852*** 0.0610 -0.0380
NEM 0.1121 0.2848** 0.3210* 0.3566*** 0.4263** 0.0502 -0.0474
PCAR 0.1449 0.4970*** 0.4045* 0.4981*** 0.5848*** 0.1463 0.1016
SLB -0.1151 0.3322*** 0.6156*** 0.4135*** 0.7475*** 0.0035** 0.1211**
T 0.1399 0.2522*** 0.3470*** 0.3707*** 0.4368** 0.1443 0.1051
TAP 0.1959 0.4703*** 0.5165* 0.5567*** 0.7854*** 0.3271 0.2195
TGT 0.1988 0.4459*** 0.5412** 0.4204*** 0.5946*** -0.0080 -0.2099
TXT 0.1270 0.3737*** 0.4566** 0.2831*** 0.3914*** 0.2290 0.2038
VFC 0.1765 0.4201*** 0.5369*** 0.4776*** 0.6764*** 0.2082 0.1224
WBA 0.0451 0.3726*** 0.5724*** 0.3284*** 0.4597*** 0.0648 0.0635
WMB 0.0313 0.4508*** 0.6981*** 0.3004*** 0.4891*** -0.1202 -0.2279
WMT 0.1829 0.4854*** 0.4689* 0.3850*** 0.4880*** 0.0998 -0.0743
Mean 0.1656 0.4001 0.4533 0.4071 0.4881 0.0035 0.1211
Note: * = p < .1, ** = p < .05, *** = p < 0.01, H0 : ShBH = ShNN ∨ ShBH = ShARIMA

4.2.4 Equally-weighted Portfolio Performance

In this section, equally-weighted portfolios of the Buy-and-Hold, Long-Only, and Long/Short

will be created for the LSTM, GRU, and ARIMA models. This more closely resembles a

trading scenario in which funds hold and trade multiple equities at the same time.

Figure 4.2 shows the cumulative returns of the equally-weighted LSTM portfolios based
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on the three strategies, as mentioned in section 3.2.6. Each portfolio has a starting value of 1

US Dollar at the beginning of the out-of-sample period test period. For the first ten months

of the out-of-sample period, the cumulative returns between the three portfolios do not seem

to differ substantially. However, the portfolio values begin to diverge from the tenth month

onward, with the Long-Only and Long/Short portfolios increasing at a substantially higher

rate than the Buy-and-Hold portfolio. Figure B.1 shows the cumulative portfolio value for the

GRU and ARIMA benchmark portfolios, the latter of which substantially underperformed

compared to the Buy-and-Hold portfolio. The GRU Long-Only and Long/Short portfolios

performed nearly identical to the LSTM portfolios.
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Figure 4.2 Out-of-sample cumulative portfolio value of equally-weighted LSTM
portfolios compared to an equity buy-and-hold portfolio

Table 4.6 shows the trading summary statistics for the equally-weighted portfolios, as well

as the Standard & Poor 500 Index over the out-of-sample test period. The S&P 500 Index

is included as this may be considered a reasonable proxy for the market index. The results

show that the equally-weighted portfolios of the LSTM and GRU neural network strategies

outperform the Buy-and-Hold portfolio on an absolute return basis, with annualized returns

significantly higher at the 1 per cent level. Beta captures the sensitivity of the portfolio to
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the market index returns and can therefore be used as a measure of sensitivity to systematic

risk. Over the entire out-of-sample period, both the LSTM and GRU Long-Only as well as

the Long/Short portfolios have lower betas than the Buy-and-Hold portfolio. However, the

LSTM model are exposed to lower amounts of systematic risk than the GRU models, while

generating near identical annualized returns. Moreover, the monthly Sharpe ratios that both

the LSTM and GRU portfolios achieve are both statistically and economically significantly

higher than that of the Buy-and-Hold portfolio. This is especially meaningful, as it implies

that both the LSTM and GRU portfolios outperform on a risk-adjusted basis. Jensen’s alpha

is calculated for each of the strategies. This risk-adjusted performance measure calculates

ex-post alpha; the mean portfolio return relative to the predicted return by the capital asset

pricing model (Jensen, 1968). The LSTM Long-Only and Long/Short portfolios generated

an ex-post monthly alpha of 1.22 and 2.46 per cent, respectively; this is similar to the

alpha generated by the GRU models. The ARIMA models substantially underperform the

Buy-and-Hold strategies on all measures.

Table 4.6 LSTM, GRU, and ARIMA trading evaluation statistics for the equally-
weighted portfolios of the Buy-and-Hold, Long-Only, and Long/Short strategies

LSTM GRU ARIMA

S&P 500 Buy-and-Hold Long-Only Long/Short Long-Only Long/Short Long-Only Long/Short

Jensen’s Alpha N/A 0.0006 0.0122*** 0.0246*** 0.0125*** 0.0250*** 0.0001 0.0003

Beta 1.0000 0.8688 0.4686 0.0967 0.4885 0.1371 0.5170 0.1564

Annualized returns 0.1171 0.1093 0.2194*** 0.3512*** 0.2252*** 0.3639*** 0.0613 0.0192

Sharpe 0.2998 0.2986 1.1478*** 1.5656*** 1.1623*** 1.6284*** 0.1737 0.0883

Max Drawdown 0.1596 0.1417 0.0708 0.0636 0.0717 0.0538 0.0894 0.0884

MAR Ratio 0.7336 0.7711 2.9414 5.7292 3.1409 6.7639 0.6861 0.2167

Note: * = p < .1, ** = p < .05, *** = p < 0.01

To capture another dimension of risk, the Maximum Drawdown is calculated for each

equally-weighted portfolio. The results show that both LSTM portfolios show substantially
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lower maximum drawdowns of less than half those of the Buy-and-Hold and S&P 500 port-

folios. Moreover, the MAR Ratio, a risk-adjusted performance measure commonly used to

evaluate hedge funds, is calculated for each portfolio. This is the ratio of the annualized

returns since inception over the maximum drawdown since inception. The Long-Only and

Long/Short LSTM strategies show MAR Ratios of, respectively, 3.8 and 7.4 times higher

than that of the Buy-and-Hold portfolio. This is achieved through both higher annual-

ized returns as well as lower realized maximum drawdowns. The GRU Long-Only portfolio

achieve a similar maximum drawdown as the corresponding LSTM portfolio, while the GRU

Long/Short portfolio achieves a substantially lower maximum drawdown; both result in

slightly higher MAR ratios as compared to the LSTM portfolios; On the contrary, while the

benchmark ARIMA portfolios achieve lower maximum drawdowns than the Buy-and-Hold

portfolio, they show lower MAR ratios as a result of substantially lower annualized returns.

4.3 LSTM Performance over Time and Market Efficiency

One may expect the LSTM edge to have been arbitraged away with increased usage of

machine-learning techniques by stock market participants. If this is indeed the case, then

the predictability of stock returns and stock price direction should have diminished over the

out-of-sample test period. Figure 4.3 shows the Mean Absolute Error (MAE) and the mean

directional inaccuracy, measured in the percentage of predictions that were incorrect. Both

graphs do not show a clear trend but rather fluctuations around a constant mean. Hence,

it seems that the effectiveness of this particular application of LSTM neural networks in

conjunction with factors has not substantially been arbitraged away.
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Chapter Five

Conclusion and Discussion

5.1 Conclusion

This thesis applies Long Short-Term Memory and Gated Recurrent Unit neural networks and

factor portfolios to the forecasting of stock returns of twenty S&P 500 constituent public

equities, with an out-of-sample evaluation period of October 2013 until October 2019. The

results suggest that the magnitude of one-month out stock returns cannot be accurately

predicted using LSTM neural networks. However, the LSTM and GRU neural networks

seem to be able to predict the direction of financial returns rather well, with accuracies well

in excess of 50 per cent.

Two straightforward rules-based trading strategies are formulated based on the one-month

out return forecast. Both the LSTM and GRU strategies lead to significantly higher risk-

adjusted returns than both Buy-and-Hold strategies as well as holding the S&P 500. Namely,

the results show that the Long-Only and Long/Short LSTM portfolio strategies produce

statistically and economically significant ex-post monthly alpha of 1.22 and 2.46 per cent,

respectively, after transaction costs, as well as significantly higher Sharpe ratios. Moreover,

the two trading strategies have generally a lower systematic-risk exposure compared to the

Buy-and-Hold and S&P 500 portfolios, as well as lower downside risk as measured by the

Maximum Drawdown. This thesis is, in essence, an empirical test of the Efficient Market
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Hypothesis, and its results challenge the weak form of the EMH.

The LSTM and GRU models substantially outperformed the benchmark ARIMA models

on both the statistical evaluation as well as the out-of-sample trading strategy evaluation.

These results suggest that there are substantial non-linearities and complex temporal rela-

tions present in financial markets, which the LSTM and GRU models were able to capture

whilst the ARIMA models did not. Overall, the LSTM and GRU models perform near iden-

tically on a risk-adjusted basis. As such, a concrete conclusion as to which gated unit is

better at forecasting financial returns cannot be made on the basis of these results.

5.2 Discussion

Further research could evaluate the effectiveness of combining factor portfolios with LSTM

or GRU neural networks on equities other than S&P 500 constituents. It may be that the

performance of such models is higher for stocks that are less frequently traded and receive

less analyst coverage. Moreover, this thesis merely evaluated the effectiveness of LSTM and

GRU neural networks over a one-month prediction horizon; further research could focus on

the performance of such neural networks over weekly or even daily horizons. It may be that

the differences between the two different architectures is more pronounced over different time

horizons. Moreover, although a relatively large number of factors is used in this thesis, a

different set of factors or the inclusion of other variables such as currency exchange rates,

inflation, and interest rates, may also be used as inputs.

Several comments of caution regarding the application of LSTM Neural Networks to

trading strategies must be made. First, while the LSTM models as applied in this thesis

seem to be able to generate superior out-of-sample performance than a simple Buy-and-Hold

strategy or holding the S&P 500, this is no guarantee that these strategies will continue to

perform well in the future. Moreover, it may be that the LSTM strategies are exposed to
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higher amounts of risk not captured by standard deviation, the Sharpe ratio or the Capital

Asset Pricing Model. Hence, any alpha generated could merely be compensation for this

increased amount of risk.

Furthermore, the use of LSTM neural networks in predicting financial returns has another

disadvantage: the lack of transparency and intractability of return forecasts (Nakagawa et

al., 2019). Since the model that generates these returns inherently is a ’black-box’, due

to the complexity of the generated models and the inability to infer why certain inputs are

combined and manipulated in the way that the models do. As such, one is not able to extract

an interpretable ’reasoning process’ from the model. Hence, institutional investors may forgo

using machine learning techniques as their lack of transparency may hinder accountability

to their customers (Nakagawa et al., 2019).
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APPENDIX



Appendix A

Table A.1 Factors used as inputs in the LSTM neural network (Hou, Xue, and L.
Zhang, 2017))

# Category Factor description

1 Momentum Cumulative abnormal returns (CAR) around earnings announcements, 1-month horizon

2 CAR, 6-month horizon

3 Standardized Unexpected Earnings (SUE), 1-month horizon

4 SUE, 6-month horizon

5 Revisions in Analyst Earnings Forecasts, 1-month horizon

6 Revisions in Analyst Earnings Forecasts, 6-month horizon

7 Prior 6-month returns

8 Prior 11-month returns

9 Value / Growth Book-to-Market equity (B/M)

10 Long-term reversal, 12-month horizon

11 Earnings-to-Price (E/P)

12 Cashflow-to-Price (Cf/P)

13 Payout-Yield (dividends + repurchases)

14 Net payout yield (payouts minus equity issuances)

15 Enterprise multiple (enterprise value/operating income)

16 Sales-to-Price (S/P)

17 Operating Cashflow-to-Price (OCf/P)

18 Investment Investment-to-assets (I/A)

19 Changes in Property, Plant, and Equipment (PPE), and Inventory-to-Assets

20 Net Operating Assets

21 Changes in Net Operating Assets
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# Category Factor description

22 Investment Growth

23 Net Stock Issues

24 Composite Equity Issuance

25 Operating Accruals

26 Total Accruals

27 Discretionary Accruals

28 Percent Operating Accruals

29 Profitability Return on Equity (ROE), 1-month horizon

30 Return on Equity (ROE), 6-month horizon

31 4-quarter change in ROE, 1-month horizon

32 4-quarter change in ROE, 6-month horizon

33 Operating Profits-to-Book Equity

34 Operating Profits-to-Assets

35 Operating Cashflow-to-Assets

36 Expected Growth

37 Intangibles Organizational Capital-to-Assets

38 Advertising Expense-to-Market

39 R&D Expense-to-Market

40 Industry-Adjusted Real Estate Ratio

41 Seasonality, return in month t-12

42 Seasonality, average returns across months t-24, t-36, t-48, and t-60

43 Seasonality, average returns across months t-72, t-84, t-96, t-108, and t-120

44 Seasonality, average returns across months t-132, t-144, t-156, t-168, and t-180

45 Seasonality, average returns across months t-192, t-204, t-216, t-228, and t-240

46 Trading Frictions Market Equity

47 Total volatility, 1-month horizon
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# Category Factor description

48 Idiosyncratic volatility estimated from the FF 3-factor model, 1-month horizon

49 Systematic volatility risk, 1-month horizon

50 Market Beta, 1-month horizon

51 Short-term Reversal
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Table A.2 List of S&P 500 constituent stocks used for equity return prediction

Firm name Ticker Industry (GICS*)

3M Company MMM Industrial Conglomerates
American Express Co AXP Consumer Finance
Archer-Daniels-Midland Co ADM Food Products
AT&T T Diversified Telecommunication Services
Automatic Data Processing ADP IT Services
Baxter International Inc. BAX Health Care Equipment & Supplies
Becton Dickinson BDX Health Care Equipment & Supplies
Duke Energy DUK Electric Utilities
FedEx Corporation FDX Air Freight & Logistics
General Mills GIS Food Products
Honeywell Int’l Inc. HON Industrial Conglomerates
HP Inc. HPQ Technology Hardware, Storage & Peripherals
Intel Corp. INTC Semiconductors & Semiconductor Equipment
Intl Flavors & Fragrances IFF Chemicals
Johnson & Johnson JNJ Pharmaceuticals
JPMorgan Chase & Co. JPM Diversified Banks
Lincoln National LNC Insurance
McDonald’s Corp. MCD Hotels, Restaurants & Leisure
Molson Coors Brewing Company TAP Beverages
Newmont Corporation NEM Metals & Mining
PACCAR Inc. PCAR Machinery
Schlumberger Ltd. SLB Energy Equipment & Services
Target Corp. TGT Multiline Retail
Textron Inc. TXT Aerospace & Defense
The Clorox Company CLX Household Products
The Walt Disney Company DIS Entertainment
V.F. Corp. VFC Textiles, Apparel & Luxury Goods
Walgreens Boots Alliance WBA Food & Staples Retailing
Walmart WMT Food & Staples Retailing
Williams Cos. WMB Oil, Gas & Consumable Fuels
*GICS: Global Industry Classification Standard
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Appendix B

Table B.1 LSTM, GRU, and ARIMA out-of-sample R-squared, MAE, RMSE, and
MAPE for each of the equities

LSTM GRU ARIMA

Ticker R2 MAE RMSE MAPE R2 MAE RMSE MAPE R2 MAE RMSE MAPE

ADM 0.1159 0.0514 0.0727 2.9777 0.3445 0.0411 0.0530 1.8312 0.0273 0.0792 0.0957 4.7841
ADP 0.3689 0.0329 0.0414 4.6274 0.1105 0.0792 0.0915 9.9655 0.0102 0.0966 0.1150 7.5887
AXP 0.2954 0.0378 0.0520 1.7720 0.1720 0.0421 0.0593 2.1236 0.0421 0.0587 0.0759 2.7527
BAX 0.3392 0.0575 0.0654 6.5011 0.3484 0.0405 0.0522 3.3689 0.0197 0.0635 0.0809 6.7926
BDX 0.6062 0.0244 0.0324 1.5363 0.5109 0.0392 0.0484 5.1650 0.0664 0.0573 0.0739 4.2026
CLX 0.3716 0.0320 0.0414 3.4474 0.3900 0.0386 0.0464 4.7768 0.0005 0.0636 0.0788 9.6853
DIS 0.2997 0.0541 0.0627 4.7417 0.4381 0.0429 0.0524 3.0634 0.0141 0.0703 0.0861 6.3629
DUK 0.1722 0.0362 0.0458 1.9825 0.4741 0.0376 0.0436 3.8018 0.0203 0.0447 0.0545 3.9192
FDX 0.3344 0.0544 0.0713 12.9576 0.5462 0.0395 0.0521 3.2759 0.0016 0.0919 0.1141 36.1931
GIS 0.5181 0.0307 0.0381 2.9508 0.6666 0.0291 0.0370 3.4120 0.0364 0.0638 0.0801 5.3179
HON 0.2657 0.0353 0.0470 9.9708 0.2879 0.0290 0.0368 2.1447 0.0980 0.0491 0.0614 13.9298
HPQ 0.2929 0.0586 0.0792 2.5389 0.3604 0.0612 0.0736 3.7652 0.0207 0.0810 0.1043 5.0929
IFF 0.4146 0.0464 0.0587 1.6432 0.4224 0.0475 0.0569 2.0057 0.0133 0.0680 0.0867 2.2837
INTC 0.3035 0.0412 0.0556 2.3941 0.2514 0.0596 0.0753 3.0190 0.0013 0.0831 0.1035 4.0787
JNJ 0.5390 0.0209 0.0272 1.1459 0.5492 0.0255 0.0309 1.5473 0.0166 0.0468 0.0588 2.6672
JPM 0.3051 0.0408 0.0547 1.7786 0.3435 0.0369 0.0513 1.9699 0.0125 0.0817 0.1012 4.8921
LNC 0.4376 0.0540 0.0719 1.2955 0.3410 0.0696 0.0893 1.9810 0.0606 0.0853 0.1124 2.2680
MCD 0.3888 0.0318 0.0404 2.8708 0.4330 0.0229 0.0301 3.0325 0.0105 0.0581 0.0711 4.3683
MMM 0.3318 0.0450 0.0555 5.1535 0.5076 0.0275 0.0376 2.6099 0.0100 0.0643 0.0796 10.3217
NEM 0.3151 0.0604 0.0915 3.3367 0.2561 0.0713 0.1019 2.5899 0.0022 0.1449 0.1874 3.9704
PCAR 0.4138 0.0495 0.0647 2.0815 0.4682 0.0420 0.0555 1.8279 0.0370 0.0772 0.0962 3.0285
SLB 0.2783 0.0480 0.0667 1.7544 0.4487 0.0452 0.0602 2.6882 0.0537 0.0781 0.1042 5.4334
T 0.3534 0.0392 0.0508 3.0605 0.3173 0.0312 0.0418 2.3414 0.0017 0.0613 0.0791 4.9305
TAP 0.5474 0.0390 0.0513 1.4316 0.6887 0.0260 0.0370 2.4429 0.0807 0.0719 0.1001 3.2212
TGT 0.2762 0.0449 0.0630 5.8010 0.4073 0.0435 0.0601 9.6958 0.0388 0.0944 0.1202 41.7786
TXT 0.2141 0.0552 0.0720 3.1879 0.3948 0.0434 0.0648 3.3039 0.0626 0.0732 0.1005 3.1993
VFC 0.4530 0.0356 0.0446 9.4954 0.5123 0.0339 0.0428 10.7434 0.0296 0.0606 0.0737 16.3471
WBA 0.4831 0.0409 0.0533 1.6026 0.4532 0.0425 0.0564 1.8729 0.0027 0.0813 0.1048 4.3434
WMB 0.5189 0.0565 0.0764 2.2690 0.5182 0.0715 0.0890 2.8979 0.1009 0.1282 0.1658 4.2653
WMT 0.2970 0.0307 0.0432 4.9398 0.3328 0.0330 0.0451 5.2523 0.0008 0.0636 0.0795 15.7869
Mean 0.3617 0.0428 0.0564 3.7082 0.3877 0.0440 0.0560 3.2725 0.0242 0.0726 0.0911 7.0736
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Table B.2 Fraction of periods invested as well as out-of-sample directional accuracy
of the ARIMA benchmark models

Ticker Fraction of Periods Long Directional Accuracy Upwards Acc. Downwards Acc.

ADM 0.4444 50.00% 53.13% 47.50%
ADP 0.5000 43.06% 55.56% 30.56%
AXP 0.5694 55.56% 63.41%** 45.16%
BAX 0.4675 51.95% 63.89%** 41.46%
BDX 0.5833 51.39% 61.90%** 36.67%
CLX 0.5417 47.22% 53.85% 39.39%
DIS 0.5417 51.39% 53.85% 48.48%
DUK 0.5278 63.89%*** 71.05%*** 55.88%
FDX 0.6528 47.22% 57.45% 28.00%
GIS 0.4861 37.50% 37.14% 37.84%
HON 0.4444 55.56% 75.00%*** 40.00%
HPQ 0.5417 59.72%** 69.23%*** 48.48%
IFF 0.4444 54.17% 62.50%* 47.50%
INTC 0.4861 50.00% 60.00%* 40.54%
JNJ 0.5556 50.00% 62.50%** 34.38%
JPM 0.5694 48.61% 56.10% 38.71%
LNC 0.5694 56.94%* 63.41%** 48.39%
MCD 0.4306 37.50% 48.39% 29.27%
MMM 0.4861 50.00% 62.86%** 37.84%
NEM 0.4583 48.61% 51.52% 46.15%
PCAR 0.5278 47.22% 50.00% 44.12%
SLB 0.5694 51.39% 43.90% 61.29%*
T 0.5556 47.22% 50.00% 43.75%
TAP 0.5122 65.85%** 76.19%*** 55.00%
TGT 0.5333 50.00% 59.38% 39.29%
TXT 0.4861 61.11%** 65.71%** 56.76%
VFC 0.5556 47.22% 55.00% 37.50%
WBA 0.5972 51.39% 48.84% 55.17%
WMB 0.5556 43.06% 47.50% 37.50%
WMT 0.4167 54.17% 56.67% 52.38%
Note: * = p < .1, ** = p < .05, *** = p < 0.01, H0 = 50%
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Table B.3 Fraction of periods invested as well as out-of-sample directional accuracy
of the GRU models

Ticker Fraction of Periods Long Directional Accuracy Upwards Acc. Downwards Acc.

ADM 0.3056 69.44%*** 86.36%*** 62.00%**
ADP 0.9722 58.33%* 60.00%** 0.000%
AXP 0.8472 63.89%*** 63.93%** 63.64%
BAX 0.3472 62.50%** 84.00%*** 51.06%
BDX 0.9167 70.83%*** 68.18%*** 100.0%***
CLX 0.8889 62.50%** 60.94%** 75.00%**
DIS 0.9167 61.11%** 57.58%* 100.0%***
DUK 0.1667 55.56% 91.67%*** 48.33%
FDX 0.6944 73.61%*** 76.00%*** 68.18%**
GIS 0.3056 75.00%*** 90.91%*** 68.00%***
HON 0.5278 63.89%*** 78.95%*** 47.06%
HPQ 0.2778 61.11%** 90.00%*** 50.00%
IFF 0.2917 61.11%** 80.95%*** 52.94%
INTC 0.2083 55.56% 86.67%*** 47.37%
JNJ 0.7500 77.78%*** 77.78%*** 77.78%***
JPM 0.4861 70.83%*** 80.00%*** 62.16%**
LNC 0.9028 62.50%** 61.54%** 71.43%*
MCD 0.6806 79.17%*** 79.59%*** 78.26%***
MMM 0.7083 77.78%*** 78.43%*** 76.19%***
NEM 0.4028 68.06%*** 75.86%*** 62.79%**
PCAR 0.3194 73.61%*** 91.30%*** 65.31%**
SLB 0.2778 77.78%*** 85.00%*** 75.00%***
T 0.5694 65.28%*** 65.85%** 64.52%**
TAP 0.5854 78.05%*** 83.33%*** 70.59%**
TGT 0.8000 76.67%*** 72.92%*** 91.67%***
TXT 0.7639 63.89%*** 61.82%** 70.59%**
VFC 0.6667 75.00%*** 75.00%*** 75.00%***
WBA 0.3056 69.44%*** 77.27%*** 66.00%***
WMB 0.8056 68.06%*** 63.79%** 85.71%***
WMT 0.7917 63.89%*** 59.65%* 80.00%***
Note: * = p < .1, ** = p < .05, *** = p < 0.01, H0 = 50%
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Table B.4 ARIMA annualized geometric mean returns and standard deviations of
monthly returns over the out-of-sample period for each stock

Annualized Returns Standard Deviation

Ticker Buy&Hold Long-Only Long/Short Buy&Hold Long-Only Long/Short

ADM 0.0327 0.0320 0.0102 0.0603 0.0412 0.0604
ADP 0.1894 0.0690 -0.0540 0.0479 0.0304 0.0503
AXP 0.0777 0.0561 0.0285 0.0553 0.0479 0.0557
BAX 0.1490 0.0946 0.0261 0.0583 0.0433 0.0581
BDX 0.1781 0.1444 0.1023 0.0512 0.0416 0.0525
CLX 0.1155 0.0694 0.0142 0.0478 0.0346 0.0488
DIS 0.1285 0.1273 0.1129 0.0555 0.0438 0.0557
DUK 0.0925 0.0758 0.0527 0.0404 0.0300 0.0409
FDX 0.0349 -0.0480 -0.1399 0.0701 0.0569 0.0697
GIS 0.0365 -0.0587 -0.1544 0.0499 0.0369 0.0485
HON 0.1538 0.1294 0.0951 0.0415 0.0265 0.0426
HPQ 0.0834 0.0934 0.0773 0.0715 0.0536 0.0715
IFF 0.0880 0.0734 0.0287 0.0628 0.0362 0.0633
INTC 0.1832 0.0503 -0.0938 0.0628 0.0396 0.0646
JNJ 0.0905 0.0838 0.0702 0.0388 0.0271 0.0390
JPM 0.1895 0.1285 0.0587 0.0582 0.0486 0.0601
LNC 0.0562 0.0935 0.0786 0.0895 0.0617 0.0892
MCD 0.1592 0.0145 -0.1216 0.0398 0.0261 0.0408
MMM 0.0733 0.0170 -0.0436 0.0523 0.0435 0.0528
NEM 0.0808 0.0093 -0.1367 0.1104 0.0709 0.1110
PCAR 0.0919 0.0789 0.0532 0.0654 0.0552 0.0657
SLB -0.1365 -0.0273** 0.0763** 0.0785 0.0670 0.0784
T 0.0672 0.0574 0.0433 0.0466 0.0396 0.0468
TAP 0.1347 0.1575 0.1500 0.0644 0.0408 0.0641
TGT 0.1532 -0.0217 -0.1993 0.0731 0.0489 0.0729
TXT 0.0835 0.1372 0.1580 0.0766 0.0549 0.0757
VFC 0.1096 0.0968 0.0653 0.0590 0.0425 0.0595
WBA 0.0081 0.0221 0.0211 0.0708 0.0593 0.0707
WMB -0.0231 -0.1449 -0.2812 0.0990 0.0786 0.0966
WMT 0.1004 0.0253 -0.0634 0.0509 0.0274 0.0516
Mean 0.0927 0.0545 0.0012 0.0616 0.0452 0.0619
Note: * = p < .1, ** = p < .05, *** = p < 0.01, H0 : RBH = RARIMA
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Table B.5 GRU annualized geometric mean returns and standard deviations of
monthly returns over the out-of-sample period for each stock

Annualized Returns Standard Deviation

Ticker Buy&Hold Long-Only Long/Short Buy&Hold Long-Only Long/Short

ADM 0.0327 0.1782** 0.3143** 0.0603 0.0365 0.0551
ADP 0.1744 0.1716 0.1691 0.0476 0.0477 0.0477
AXP 0.0777 0.1412** 0.2016* 0.0553 0.0484 0.0532
BAX 0.1508 0.2090 0.2448 0.0566 0.0344 0.0546
BDX 0.1781 0.2524** 0.3265** 0.0512 0.0453 0.0472
CLX 0.1155 0.1813** 0.2465** 0.0478 0.0420 0.0448
DIS 0.1285 0.2115** 0.2928** 0.0555 0.0485 0.0519
DUK 0.0925 0.0907 0.0778 0.0404 0.0250 0.0406
FDX 0.0349 0.2694*** 0.5114*** 0.0701 0.0429 0.0599
GIS 0.0365 0.2039*** 0.3820*** 0.0499 0.0327 0.0413
HON 0.1538 0.1748 0.1931 0.0415 0.0352 0.0405
HPQ 0.0834 0.2214* 0.3337* 0.0715 0.0448 0.0669
IFF 0.0880 0.1744 0.2346 0.0628 0.0374 0.0603
INTC 0.1832 0.1742 0.1363 0.0628 0.0421 0.0636
JNJ 0.0905 0.1894*** 0.2916*** 0.0388 0.0277 0.0327
JPM 0.1895 0.2694* 0.3409* 0.0582 0.0458 0.0544
LNC 0.0562 0.1693** 0.2759** 0.0895 0.0809 0.0865
MCD 0.1592 0.2513*** 0.3464*** 0.0398 0.0304 0.0330
MMM 0.0733 0.2356*** 0.4052*** 0.0523 0.0353 0.0436
NEM 0.0808 0.3440** 0.5701** 0.1104 0.0785 0.1022
PCAR 0.0919 0.2737*** 0.4526*** 0.0654 0.0430 0.0570
SLB -0.1365 0.2377*** 0.6999*** 0.0785 0.0463 0.0633
T 0.0672 0.1516** 0.2336** 0.0466 0.0342 0.0431
TAP 0.1347 0.3484*** 0.5824*** 0.0644 0.0477 0.0516
TGT 0.1532 0.3337*** 0.5280*** 0.0731 0.0626 0.0640
TXT 0.0835 0.2162*** 0.3499*** 0.0766 0.0669 0.0719
VFC 0.1096 0.279*** 0.4614*** 0.0590 0.0460 0.0496
WBA 0.0081 0.1950*** 0.3821*** 0.0708 0.0499 0.0644
WMB -0.0231 0.2709*** 0.5918*** 0.0990 0.0776 0.0890
WMT 0.1004 0.1953*** 0.2901** 0.0509 0.0415 0.0465
Mean 0.0923 0.2205 0.3489 0.0616 0.0459 0.0560
Note: * = p < .1, ** = p < .05, *** = p < 0.01, H0 : RBH = RGRU
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Figure B.1 Equally-weighted ARIMA and GRU portfolios out-of-sample perfor-
mance compared to an equity buy-and-hold strategy
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