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Abstract

In this thesis the effects of clustering in SaaS networks were investigated. With use of
clustering the costs of a SaaS company can be reduced. The assumption is made, that
all the requested applications of an organization has to be placed on only one cluster
but several organizations can be dedicated to a cluster. The first part of this research
was to formulate an IP model for minimizing the total costs of clustering. However,
due to computational limits this formulation can not directly be solved optimally by
CPLEX and therefore several heuristics were developed. Of these heuristics, Tabu Search
performed better than both the Lagrange heuristic and the Genetic Algorithm.

In the second part of this research the effects of stochastic demand were determined.
In this case, stochastic demand is incorporated in the IP formulation and the total
(expected) costs are minimized for two-stages. The scenarios in the second-stage were
constructed by a procedure inspired by SAA. Tabu Search and Genetic Algorithm were
adapted to this extension. Again, Tabu Search gave the best results, however the in
large data sets GA ran much faster.
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1 Introduction

Clustering in Software as a Service (SaaS) networks is investigated in this thesis. SaaS
software are computer applications which are not hosted in an enterprise or at a desktop,
but are hosted out of the enterprise. SaaS companies have to install these applications on
their servers, which are called clusters. A SaaS client can then access these applications
via the web.

By clustering is meant to merge different organizations to one and the same cluster in
a SaaS network. This can be beneficial for the SaaS company, because it can reduce the
costs of hardware and installing software. Clustering might reduce the total necessary
clusters and if SaaS clients request the same applications, the SaaS company has to
install this application only once. SaaS networks consist of several clusters and all
clients of the SaaS company have to be assigned to a cluster. The clusters differ in
installed applications and size. The size depends on the number of nodes in a cluster.
In this thesis it is investigated how clustering in SaaS networks can be carried out in the
most efficient way. It is investigated how the total costs for the SaaS company can be
minimized.

The relevance of this subject is beyond all doubt. The market for SaaS software is
rapidly growing. The revenue of SaaS in 2009 is expected to be $7.1 billion and that till
2013 this market will grow every year with at least 20%. This indicates the importance
of this research. Not only for determining the optimal clustering for now, but also for
determining the optimal clustering with respect to the future.

The outline of this thesis is therefore as follows. First a literature study is carried
out. In this part the idea behind SaaS is explained. After that, some articles about
the Facility Location Problem (FLP) are discussed, since our SaaS Clustering Problem
(SCP) is formulated in a similar way. In several articles, Tabu Search and Genetic
Algorithm were applied to find a solution of the FLP; these articles are shortly described
in separate sections. The last part of the literature study consists of a short introduction
to Stochastic Integer Programming. This is important for determining the optimal
cluster configuration when the demand is not known for the future.

In the second part of this research, the IP formulation of the SCP is given and the
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Lagrangian relaxation of this formulation is derived. After that, both heuristics — Tabu
Search and Genetic Algorithm — are introduced and applied to the SCP. At the end, a
comparison between these two heuristics is given.

The stochastic extension of SCP is described in the third part. In the Stochastic SCP
(SSCP) demand can differ in the second stage and therefore several scenarios has to be
considered. The total costs are then minimized for two stages. In addition, Tabu Search
and Genetic Algorithm are adapted to this new formulation.

Part four shows the computational results which are obtained for the test cases. The
creation of the test cases are described in detail. The results of the SCP and the SSCP
are investigated and some guidelines for clustering are derived from the obtained results.
These guidelines give rules of thumb for clustering in SaaS networks.

The conclusion of the research is given in the last and fifth section. The conclusion
gives a drawback to the used methods for clustering in SaaS networks. Some remarks
on the research will be given along with some further research topics.
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2 Literature research

2.1 SaaS general

Since early 90’s there has been a rapid advance in the Internet in terms of speed, con-
nectivity and reliability (Nitu, 2009). With the Internet becoming everywhere available,
coupled with the vendor’s interest in capturing the market of small customers who could
not afford the expensive enterprise software, the rise of Software as a Service (SaaS) has
been fueled. A working definition of SaaS is given by de Jong (2009):

”SaaS delivers software as a service to the customer through the Internet, the
software is managed centrally, delivered and owned by one or more providers
in such way that the customers has not the burden of maintaining the soft-
ware they use.”

SaaS is thus a software delivery paradigm where the software is hosted out of the en-
terprise and delivered via the web. The organization is connected via the Internet with
the SaaS company. The end user in the company requests for applications via the Inter-
net. These applications are supplied from the server in the SaaS company through the
Internet to the end user. This is shown graphically in figure 2.1.

I n t e r n e tD e m a n d S u p p l y

E n d  U s e r A p p l i c a t i o n  S e r v e r

O r g a n i z a t i o n S a a S  C o m p a n y

Figure 2.1: Software as a Service design
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Figure 2.2: Client costs in SaaS (Waters, 2005)

It was only in 2005-2006 that the SaaS wave gained momentum. The reason for
this was that not only the Internet had become high-speed and affordable, but also the
customers had started becoming comfortable with doing business on the web. It was
realized that good backup and fault tolerant practices at a good SaaS vendor may make
data more secure and reliable with the SaaS company rather than with own enterprise.
Since the number of SaaS vendors had increased, the customers had the advantage of
flexibility in making their IT decisions as they had not invested in the infrastructure and
could always shift to another vendor if needed. Due to the faster upgrade cycle of SaaS
software and small deployment time, the customers need not spend time and money in
upgrades and deployment of the software. These cost-advantages are shown in figure 2.2.

The mode of payment follows a subscription mode. The enterprise which uses SaaS
software has to pay the (annual) fee to the SaaS company for using the software. These
are roughly the only IT-costs the enterprise has. In a company which uses software in a
traditional way, the actual IT-costs are more hidden. The costs of software licenses are
known, but costs of down time, training of IT-personnel, server hardware, installation,
upgrading and the license maintenance fee are difficult to predict. An enterprise which
uses SaaS software does not have to make large investments in hardware and training of
IT-personnel before they can use the software. They pay only a fee to the SaaS company
for using software. This fee is higher than the costs of traditional software licenses, but
now they face not longer (substantial) other hidden IT-costs. On the SaaS company’s
side, not only they could tap newer markets through SaaS, they also found consistent
periodic revenues from the subscription model of SaaS very attractive (Nitu, 2009).
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In the Netherlands enterprises like Cordys, SaaS Nederland and Microsoft deliver SaaS
software. The market for SaaS software is rapidly growing. The revenue of SaaS in 2009
is expected to be $7.1 billion worldwide (Kivits, 2009). This is an increase of $2.5 billion
compared with the revenue in 2008. It is expected that till 2013 this market will grow
every year with at least 20%.

2.2 Facility Location Problem

The SaaS Clustering Problem developed in this thesis shares many similarities with the
widely known Capacitated Facility Location Problem (CFLP). The CFLP is a well studied
NP-hard combinatorial optimization problem (Ghiani et al., 2004), for which several
solution methods have been developed the past fifty years. CFLP is a generalization
of the Simple Facility Location Problem (SFLP). In the CFLP facilities (warehouses,
facilities, plants, etc.) are located optimal in such a way that the costs associated with
opening plants and serving the customers are minimized and the capacity in a facility is
limited.

In the last ten years, some new extensions for the CFLP were developed. For example,
general cost functions and the possibility to open several facilities on one location. The
following articles addresses one or more of these extensions.

Hajiaghayi et al. (2002) created a model for the SFLP with general setup cost func-
tions. The use of the general setup costs was motivated by an application in placing
servers on the Internet. A company has to setup of number of servers to serve a number
of clients. Since there is a connection cost between a server and a client, the costs of
installing and maintaining the connection is a function of the amount of demand served
by it. Because of economies of scale, these setup cost functions usually are concave. In
order to solve the problem, a greedy algorithm was formulated.

Ghiani et al. (2002) discussed a Facility Location Problem in which several identical
facilities can be opened at one site. They concluded that the standard solutions methods
for CFLP fail to find a good solution. Their computational experiments had shown that
the deviation of the solution provided by traditional Lagrange heuristics over the best
lower bound can be as great as 500%. Therefore, they reformulated the problem as a
Mixed Integer Program and developed an efficient Lagrangian heuristic algorithm. The
results show that these heuristics perform well.

Wu et al. (2006) studied the CFLP with general setup cost functions. In their problem,
it was also possible to locate several facilities at one site. The site setup cost was a fixed
cost associated with opening a site and was independent of the facilities located in it. The
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facility setup cost was a function of its size which is defined as the number of customers
served by it in the uncapacitated problem or the number of facilities located in the site
in the capacitated problem. To solve the problem, a Lagrange heuristic was used. These
heuristics gave very good approximations of the solution for their large scale problems.

In this thesis, an adjusted CPLP model is used to solve the SCP. However, there are
major differences in the costs of serving customers. Normally, these are made up by the
transport costs from a facility to a customer. In the SCP, these costs are linked with the
applications that are installed on a cluster. Also, a multicommodity variant of the CFLP
problem is considered. Organizations can request a subset of a finite set of commodities,
but a cluster has to serve all the demand of the assigned organizations. Up till now,
there is no close example in the literature addressing this problem in the same way. In
the following chapter, the proposed model will be discussed in greater detail.

2.3 Tabu Search

In the following articles a Tabu Search heuristic was used to achieve a solution for the
Facility Location Problem.

Michel and Hentenryck (2004) investigated a Tabu Search heuristic for the Uncapac-
itated Warehouse Location Problem (UWLP). The neighborhood was extremely simply
defined. It was obtained by just flipping the status of a warehouse; opened or closed.
The algorithm used a Tabu-list which contained the set of warehouses that can not be
flipped. At each iteration, the algorithm considered the set of neighbors which were not
Tabu and the neighbor with the highest gain was selected. The used algorithm proved
to be very robust and fast. In addition, it found optimal solutions (from problems of
the OR library (Beasley, 1990)) very often. The variance on the quality of the solutions
was always below 0.4% and zero most of the time.

Sun (2008) developed a Tabu Search heuristic procedure for the CFLP. It used a Move
procedure to change the status of a facility. The neighborhood of a feasible solution was
the set of distinct solutions that can be reached by making one move from the current
solution. The procedure considered only feasible solutions, these were solutions where
the capacity constraints were not violated. By fixing the status of a facility — opened or
closed — the CFLP reduced to a Transportation Problem. A network algorithm was used
to solve this problem. All solutions were stored, because solving these Transportation
Problems took most of the computational time. A step in the algorithm was Tabu if it
results in an already visited solution. Computational results on test problems from the
literature and on test problems newly generated showed that this TS heuristic procedure
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was very effective and efficient in finding good solutions. It found optimal solutions for
almost all test problems in the literature.

Rolland et al. (1996) provided a Tabu search procedure for the p-median FLP. In this
p-median problem exact p facilities had to be opened. The initial solution started with p
opened facilities. The status of a facility can not easily be changed. By opening a facility
another facility had to be closed, otherwise the solution was not feasible. This was done
by a Nodes Substitution Procedure, a kind of paired Add and Drop procedure. First an
additional facility was opened and total costs were calculated, then an opened facility
was closed to obtain a feasible solution. Whether a facility was opened, the facility can
not be closed for some steps. Closing a recently opened facility was Tabu. The obtained
results were better than the results of a traditional Add/Drop or Swap procedure.

2.4 Genetic Algorithm

The use of Genetic Algorithm (GA) is very common in solving Facility Locations Prob-
lems. Next are a few recent articles discussing some of the findings in this field.

Kratica et al. (2001) considered a Simple Plant Location Problem (SPLP) and used
GA to solve the problem. The algorithm they developed solved the SPLP with more
than 1000 facility sites and customers. They found out that the techniques of rank-
based selection and uniform crossover provided the best results. They also speed up
the computational time by caching already computed object values. Considering their
very large instances with more than 1000 facility sites and customers, GA produced
qualitative solutions in reasonably short run time.

Chaudhry et al. (2003) addressed the uncapacitated p-median problem with maximum
distance constraint. They used the normal techniques like mutation and crossover. How-
ever, a direct encoding method was adopted to represent the solution. Their algorithm
was tested on two data sets, where the optimal solution was known beforehand. GA
performed in both cases quite good compared to other solution methods. This finding
was in contrary to earlier research, who reported non-promising results for this problem,
but was in line with more recent research.

Correa et al. (2004) also proposed a GA for the p-median problem, but this time for
the capacitated variant. Their GA also used direct encoding, where a gene consisted
the opened facilities. The genetic operators were specifically developed for the p-median
problem. In particular, they used a heuristic hyper-mutation operator, in addition with
the crossover and conventional mutation operators. The algorithm was tested on a large
scale and a real-world problem with a quite large search space, containing roughly 421
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billion candidate solutions. They compared the results of their two GAs, one with hyper-
mutation and one without it, with a Tabu Search heuristic. TS outperformed GA without
the heuristic hyper-mutation operator; but the other GA outperformed TS. These results
were evidence for the cost-effectiveness of the proposed heuristic operator, since all three
algorithms assessed roughly the same number of candidate solutions during their search.

2.5 Stochastic Programming

An extension of the CFPL model is to consider some stochastic elements. In stochastic
models some parameters in the objective or in the constraints are uncertain. The un-
certainty is in most cases characterized by a probability distribution on the parameters.
In most cases, only a few scenarios (possible outcomes of the data) or very specific joint
probability distributions are specified. An example of few scenarios is that years can be
good, fair, or bad, resulting in above average, average and below average yields of the
different kinds of crops (Birge and Louveaux, 1997).

Stochastic models require one decision made at the beginning, so that the expected
costs of this decision is minimized. Some popular stochastic models are the two-staged
recourse models. Suppose a vector x the set of decision variables which are fixed in the
first stage, when only partial information is available. In the second stage, all information
is available and the second-stage variable y is minimized. Let ξ represent the realization
of some random vector, q the recourse cost vector; W and T constraints matrices and
requirement vector h when the full information is made available; and let A, c, and b the
same as in the first stage. Finally, P is the non-negativity or integrality of the variables
x and y. The stochastic program can be written as:

min c
′
x+ EξQ (x, ξ) (2.1)

s.t. Ax ≤ b (2.2)

x ∈ P (2.3)

where Q (x, ξ) = min q
′
y (2.4)

s.t. Tx+Wy ≥ h (2.5)

y ∈ P (2.6)
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Q (x, ξ) is the optimal value of the second stage, given the scenario ξ = (q, T,W, h) and
the first-stage variables x. The expectation is taken with respect to ξ. In the first-stage
the cost function (2.1) is minimized plus the expected costs of the second-stage decision.
In the second-stage a recourse action can be taken where the term Wy compensates for
a possible inconsistency of the system Tx ≥ h. The costs of this recourse action are
(2.4).

A popular adjustment of the two-stage recourse model is a model where the second
stage is characterized by a finite set of scenarios. In scenario t, the constraint matrix,
cost vector and requirement vector take on values T t, W t, qt and ht respectively, and
scenario t occurs with probability pt. It is now possible to write model (2.1)-(2.3) in
extensive form as follows, where yt represents the choice if scenario t materializes:

min c
′
x+

∑
t∈T

pt
(
qt
)′
yt (2.7)

s.t. Ax ≤ b (2.8)

T tx+W tyt ≥ ht t ∈ T (2.9)(
x, yt

)
∈ P t ∈ T (2.10)

Solving two-stage recourse models appears to be very hard. In model (2.7)-(2.10) the
advantage is that risk is taken explicitly and it is a large scale LP model. As a conse-
quence, a disadvantage is that if the number of scenarios is high, the model becomes too
large to solve with commercial available LP/IP solvers like CPLEX. This is because the
number of constraints and variables grow linear with the number of scenarios to power
of number of independent random variables. However many heuristics exists to find
solutions. Examples of solution methods include the L-shaped method, inner lineariza-
tion methods and basis factorization methods. In addition, Non Linear Programming
approaches exists like regularized decomposition, methods based on the stochastic pro-
gram Lagrangian and the piecewise quadratic form of the L-shaped method. All these
techniques are behind the scope of this thesis.

A method of reducing the number of scenarios in a stochastic program is to use Monte
Carlo simulation (Shapiro and Philpott, 2007). In some programs the total number of
scenarios is very large or infinite. If it possible to generate a idd (independent identically
distributed) sample ξ1, . . . , ξN of size N , EξQ (x, ξ) can be approximated by the average;
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q̂N (x) = N−1
N∑
j=1

Q
(
x, ξj

)
(2.11)

and the ”true” value of model (2.1)-(2.3) by;

min
x∈X

ĝN (x) := c
′
x+N−1

N∑
j=1

Q
(
x, ξj

) (2.12)

This technique is widely known under the name sample average approximation (SAA).
A major question is in SAA is how large sample size N must be in order to achieve an
accurate approximation of the true model. Since Monte Carlo simulation is used, there
is possibility of a very slow convergence and in order to improve the accuracy N needs
to increase substantially. Also, if the number of random variables is high the problems
can not be solved with a high accuracy. The advantage of using Monte Carlo simulation
is that it does not rely on the number of scenarios. It is proved and verified in problems
with a manageable sample size, that the SAA method finds a solution of the original
problem with a reasonable accuracy of 1% provided four conditions discussed in Shapiro
and Philpott (2007).

An example of a stochastic two-stage Stochastic Facility Location Problem (SFLP) is
given by Ravi and Sinha (2006). Ravi and Sinha considered an Uncapacitated Facility
Location Problem where the demand of each client is not known in the first stage.

They first examined some properties of the model. For example, if the costs in the
second-stage are identical to the first-stage it is possible to decouple the problem and
solve each scenario separately. Secondly, if there is no second-stage and all the facilities
had to be opened in the first-stage, the model boils down to a standard UFLP with some
probability multipliers in the expected service costs. In this case existing approximations
for UFL can be applied directly. The added difficulty, and indeed the interesting aspect
of the model, arises from varying second-stage facility costs under different scenarios.

The main problem in the two-stage recourse model is that the different scenarios in-
teract with the first-stage. The heuristic Ravi and Sinha proposed compares the solution
obtained if all the demand is satisfied in the first-stage and the situation where no facil-
ities are opened in the first-stage. This heuristics works in some cases, but it fails when
there is interaction between scenarios. Their adjusted heuristics performs better in this
case.
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3 SaaS Clustering Problem

3.1 IP Formulation

The goal of the SCP is to obtain the optimal allocation of organizations i ∈ I to clusters
j ∈ J in the SaaS network. The SaaS network consists of a set of clusters l ∈ L where
all the organizations are assigned to. The capacity a cluster ql, l ∈ L is related to the
number of installed nodes j ∈ J . The higher the number of nodes in a cluster, the
higher the capacity is. Each organization i ∈ I requests a subset of all the available
applications k ∈ K. In this subset Li, the demand dik is defined as the amount of users
in organization i·transactions per second for application k. Furthermore, the costs of
installing application ck, k ∈ K only have to be paid once also when two organization on
the same cluster requests the same program. In order to obtain an optimal allocation,
the total costs of the SaaS network are minimized.

S a a S  c o m p a n y

Figure 3.1: Concept behind the SCP

The idea behind the SCP is illustrated in figure 3.1. In this figure an organization
is represented by a computer. An organization is connected to one cluster (server). A
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cluster is collection of several nodes (racks). In the cluster all the needed applications to
serve the connected organizations are installed. In addition, more than one organization
can be connected to the same cluster.

To calculate the minimal costs the SCP is formulated as an adjusted Facility Location
Problem. The IP formulation of the SCP is as follows:

min
∑
k∈K

∑
j∈J

ckzkj +
∑
j∈J

fyj +
∑
j∈J

∑
l∈L

elvjl (3.1)

s.t.
∑
j∈J

xij = 1 i ∈ I (3.2)

∑
i∈I

∑
k∈Li

dikxij ≤
∑
l∈L

qlvjl j ∈ J (3.3)

xij ≤ yj i ∈ I, j ∈ J (3.4)

xij ≤ zkj k ∈ Li, i ∈ I, j ∈ J (3.5)∑
l∈L

vjl ≤ 1 j ∈ J (3.6)

xij , yj , zkj , vjl ∈ B i ∈ I, j ∈ J, k ∈ K, l ∈ L (3.7)

ck: The costs of installing application k.

el: The costs of opening l nodes.

dik: The demand of organization i for application k, defined as the amount of
users·transactions per second.

xij :

1 if organisation i is assigned to cluster j.

0 otherwise.

yj :

1 if cluster j is opened.

0 otherwise.

zkj :

1 if application k is installed on cluster j.

0 otherwise.

vjl:

1 if in cluster j, l nodes are opened.

0 otherwise.

i: Set of organizations.
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j: Set of clusters.

k: Set of applications.

l: Set of nodes.

The object function (3.1) minimizes the total costs, which consist of the costs of placing
applications in a cluster, setting up a cluster and installing nodes in a cluster. Con-
straints (3.2) define that for each organization all needed applications are located in one
cluster. Constraints (3.3) state that a cluster can not serve more than the total capacity
of the installed nodes. An important remark is here that there is a maximum amount
of nodes in a cluster. It acts somewhere between the capacity constraint in a CFLP and
that in the CFLP with multiple facilities on the same site, as described in (Ghiani et al.,
2002). Constraints (3.4) ensure that an organization can only be served by a cluster that
is opened. Constraints (3.5) check for every cluster which applications are placed on that
cluster. It follows that an application only once has to installed in a cluster, if requested
by multiple organizations. Constraints (3.6) are added to the model to ensure that only
one set of nodes in a cluster is opened. Finally, (3.7) are the integrality constraints.

3.2 Lagrangian heuristic

A Lagrangian relaxation can be used to solve the model in section 3.1. The Lagrangian
relaxation has been successfully used in various optimization problems as well as in
Capacitated Facility Location Problem (CFLP) computation. See Fisher (2004); Wolsey
(1998); Geoffrion and Bride (1978) for some examples.

The basis idea behind Lagrangian heuristics is to place hard constraints in the object
function together with a Lagrange multiplier λ for every restriction. The fundamental
step of the heuristic is to determine a lower bound. By means of the lower bound an
upper bound can be found. If these bounds coincide, an optimal solution has been found.
If not, the set of multipliers can be updated with use of a classical subgradient algorithm,
which tries to find the highest lower bound as possible. At every step of the subgradient
algorithm, a feasible solution of the original problem can be constructed, which can be
used as a upper bound. The availability of both lower and upper bounds on the optimal
objective function value is an attractive feature of the Lagrangian heuristic research.
The relative gap between upper and lower bounds is typically used as a measure of the
maximal error of the solution.
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3.2.1 The lower bound estimation

A method to approach the solution of the SCP is to use a Lagrangian heuristic, based
on a Lagrangian relaxation of the model (3.2)-(3.7). The only sensible restriction to
relax is the demand constraint (3.2). Relaxing other constraints (except for (3.3), see
subsection 3.2.2) does not make the Lagrange relaxation easier to solve.

Relaxing the demand constraints (3.2) in a Lagrangian fashion with multipliers λi,
i ∈ I:

(LR(λ)) min
∑
k∈K

∑
j∈J

ckzkj +
∑
j∈J

fyj +
∑
j∈J

∑
l∈L

elvjl (3.8)

+
∑
i∈I

λi

1−
∑
j∈J

xij


s.t. (3.3), (3.4), (3.5), (3.6), (3.7)

For a given set of Lagrangian multipliers λi, i ∈ I, the optimal solution of LR(λ) can
be found as follows. The model can be decomposed in |J | sub-problems, one for each
cluster j:

(LR(λ)− j) min
∑
k∈K

ckzkj +
∑
l∈L

elvjl (3.9)

−
∑
i∈I

λixij

s.t.
∑
i∈I

∑
k∈Li

dikxij ≤
∑
l∈L

qlvjl j ∈ J (3.10)

xij ≤ zkj k ∈ Li, i ∈ I, j ∈ J (3.11)

xij , zkj , vjl ∈ B j ∈ J, k ∈ K, l ∈ L (3.12)

Finally, the optimal solution of LR(λ)− j is given by zjLRλ
:= min

{
f + zjLR(λ), 0

}
, j ∈

J where zjLR(λ) is the optimal value of model (3.9)-(3.12). Remark that all sub-problems
are equal, due to ck. Model (3.9)-(3.12) is solved by using the Integer Programming
solver of CPLEX. Then, the optimal solution value of LR(λ) is:

z∗LRλ
=

J∑
j=1

zjLRλ
+
∑
i∈I

λi
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The solution z∗LR
λk

of the Lagrangian relaxation LR(λ) provides a lower bound to the
original problem, since

z∗LR
λk
≤ zIP

That this relation hold can be proved by noting that the feasible region of the original
IP formulation is smaller than the feasible region of the Lagrange relaxation.

3.2.2 Alternative lower bound estimation

Another Lagrangian relaxation of the model (3.2)-(3.7), is to relax capacity constraint (3.3).
Relaxing the capacity constraints (3.3) in a Lagrangian fashion with multipliers λj ≥ 0,

i ∈ I:

(LR(λ)) min
∑
k∈K

∑
j∈J

ckzkj +
∑
j∈J

fyj +
∑
j∈J

∑
l∈L

elvjl (3.13)

+
∑
j∈J

λj

∑
l∈L

qlvjl −
∑
i∈I

∑
k∈Li

dikxij


s.t. (3.2), (3.4), (3.5), (3.6), (3.7)

Note that in this case model can not be further decomposed. For a given set of
Lagrangian multipliers λi ≥ 0, i ∈ I, the optimal solution of LR(λ) can be found as
follows. Again, the model is solved by using the Integer Programming solver of CPLEX.
The optimal solution value of LR(λ) is z∗LRλ

. The solution z∗LRλ
of the Lagrangian

relaxation LR(λ) provides also a lower bound to the original problem.

3.2.3 The upper bound estimation

By solving the Lagrangian relaxation, a set of opened cluster J∗ is obtained and for
every cluster the amount of opened nodes. To obtain an upper bound the following
linear programming problem is used to find a feasible solution:
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(UR) min
∑
j∈J∗

∑
k∈K

ckzkj (3.14)

s.t.
∑
j∈J∗

xij = 1 i ∈ I

∑
i∈I

∑
k∈Li

dikxij ≤
∑
l∈L

qlv
∗
jl j ∈ J∗ (3.15)

xij ≤ zkj k ∈ Li, i ∈ I, j ∈ J (3.16)

xij , zkj ∈ B i ∈ I, j ∈ J∗, k ∈ K (3.17)

The optimal solution value of UR, denoted as z∗UR = zUR +
∑
l∈L

ejlv
∗
jl +

∑
j∈J

fjy
∗
j is an

upper bound on for model (3.2)-(3.7).
However, it may not always be the case that the opened amount of clusters yj and

nodes v∗jl are feasible for the original model. Therefore, a greedy algorithm is used in
order to satisfy all the demand before running model (3.14)-(3.17). This algorithm adds
per iteration a node with the lowest costs, until all demand is satisfied.

Step 1: Calculate the cost of adding an extra node δj for every cluster j ∈ J∗;

δj =

f + e1 if y∗j = 0

el+1 if y∗j = 1

Step 2: Add an extra node — where it is possible — to the cluster j ∈ J∗ with the
lowest costs δj .

Step 3: If all demand can be satisfied; STOP, otherwise go to step 1.

An other upper bound can be obtained by using later discussed rules of thumb. An
advantage of these rules is the very fast calculation time, but there is no guarantee that
is upper bound is good.

3.2.4 The Lagrangian Heuristic

The proposed Lagrangian heuristic follows the next steps (if the lower bound of subsec-
tion (3.2.1) is chosen):

Step 0: Initialize LB = −∞, UB = ∞ or set UB equal to the solution of the rules
of thumb, m = 0, k = 1, λki = 0 or some other specified value like min (ck),
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i ∈ I. Select a tolerance value ε ≥ 0 and the maximum number maxiter > 0 of
subgradient iterations since LB latest increase.

Step 1: Solve LR
(
λk
)
− j. If z∗LR

λk
> LB, then set LB = z∗LR

λk
and m = 0; else set

m = m+ 1.

Step 2: Optional: Solve UR
(
λk
)
− j. If z∗UR

λk
< UB, then set UB = z∗UR

λk
.

Step 3: If max
(
λk−1 − λk

)
≤ ε, then STOP, LB and UB correspond respectively to the

best lower and upper bound on z∗. In particular, if LB = UB, the optimal solution
is found.

Step 4: If m = maxiter, then α = α/2 and set m = 0.

Step 5: Determine the sub gradient of each relaxed constraint:

ski =
∑
j∈J

xkij − 1, i ∈ I (3.18)

where xkij , i ∈ I , j ∈ J , corresponds to the optimal solutions of LRλk . Set:

λk+1
i = λki + βkski , i ∈ I (3.19)

where βk is computed according to:

βk =
α
(

UB− z∗LR
λk

)
∑

i∈I
(
ski
)2 (3.20)

Set k = k + 1 and return to step 1.

Formulas (3.18)-(3.20) update the Lagrangian multipliers according to the classical sub
gradient method. In particular, (3.18) defines the sub gradients as the violations of the
relaxed constraints (3.2); (3.19) calculates the new multipliers; (3.20) computes the step
sizes in (3.19). Note that in (3.20) the parameter α is used to limit the variation on
the values of the Lagrangian multipliers when the lower bound is approaching the upper
bound. With the aim to improve the performance of the heuristic, α is halved every
maxiter iterations of last change in the lower bound. In case of the other lower bound of
subsection (3.2.2), the Lagrange heuristics follows the same step, but in Step 5 the the
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sub gradient is defined in a different way. The sub gradient is defined as follows:

skj =
∑
i∈I

∑
k∈Li

dikxij −
∑
l∈L

qlvjl, j ∈ J (3.21)

The rest of the changes should be clear for the reader.
Due to the assumption of homogeneous servers, the costs ck of installing application

k ∈ K are the same for every server. As a result, the first Lagrangian relaxation
of subsection 3.2.1 can not distinguish among different servers and assigns the same
organizations to every cluster. In lower bound many organization will not be served
and are penalized by the Lagrange multipliers. Therefore, the Lagrangian heuristic will
maybe give bad bounds.

The second Lagrange relaxation of subsection (3.2.2) does not have this problem, but in
this case the wisest action would be to install all the programs on only one cluster. Since
the capacity restriction does not have to hold, the total needed capacity of this cluster
is very high. The Lagrange relaxation will open empty clusters with no organization
assigned to it in order fill up the remaining demand. As a result, this lower bound will
be very close to the LP bound of model (3.2)-(3.7).

3.3 Local Search Techniques

3.3.1 Tabu Search

A Tabu Search heuristic is used to achieve a feasible solution in reasonable time. Tabu
Search (TS) is a local search technique proposed by Glover in the 70’s (Glover and La-
guna, 1997). The basic principle of Tabu Search is to pursue a local search whenever it
encounters a local optimum by allowing non-improving moves. Cycling back to previ-
ously visited solutions is prevented by the use of a memory, called the Tabu list. This
list records the recent history of the search. The basic Tabu Search can be seen as a
combination of a local search with short-term memory (Gendreau, 2003). This subsec-
tion will give a general description of TS and a detailed description of the TS used in
this thesis.

The search space of the TS heuristic is the space of all possible solutions that can be
considered during the search. The heuristic starts with an initial feasible solution. This
initial solution can be an arbitrary feasible solution or the outcome of another heuristic,
for example a Genetic Algorithm or some rules of thumb. This solution is stored as the
best solution.
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In every step of the heuristic the neighborhood structure of the current solution is
considered. These neighborhoods can be reached by a single local transformation. The
best neighbor in the neighborhood is chosen. In a normal local search this is the neighbor
with the most positive gain with respect to the previous solution. In TS the neighbor
can have a worse objective value with respect to the previous solution. In this way TS
avoids the heuristic to stop in a local optimum. If the current solution is better than
the best solution, the current solution is stored as the best solution.

Tabu lists (Tabus) are used to prevent cycling when moving away from local optima
through non-improving moves. Normally in the next step the heuristic can return in
the local optimum. But now some steps are Tabu. The moves that reverse the effect of
recent moves are not allowed. Tabus are stored in a short-term memory of the search
(the Tabu list). The Tabus are in fact recently visited solution, but storing whole solu-
tions is not very efficient. Therefore, the most commonly used Tabus involve recording
the last few transformations performed on the current solution for prohibiting reverse
transformations.

Sometimes Tabus are too powerful: they may prohibit attractive moves, even when
there is no danger of cycling, or they may lead to an overall stagnation of the searching
process. It is thus necessary to use algorithmic devices that will allow one to cancel
Tabus. These are called aspiration criteria. The simplest and most commonly used
aspiration criterion consists in allowing a move, even if it is Tabu, if it results in a
solution with an objective value better than that of the current best-known solution.

A normal local search stops when no better solution can be achieved. However, in the
Tabu Search the solution in the next step can be a worse solution than the current. In
theory, the search could go on forever, unless the optimal value of the problem is known.
Therefore a termination criteria has to be chosen, for example: stop after a fixed number
of iterations, stop after a fixed amount of time, stop after some fixed number of iterations
without an improvement in the best solution or stop when the objective value reaches a
pre-specified threshold value.

In every step all neighborhood solutions has to be considered. This can take a long
time if the data set becomes large. An alternative is to consider only a random sample
of the neighborhoods. This reduces the computation time, but very good solutions can
be missed.

The Tabu Search can be improved in several ways, for example intensification, diver-
sification and allowing infeasible solutions. Intensification means that the steps taken
in the Tabu Search are investigated. Steps that take place very often will be done in
the initial solution. Diversification means that the heuristic starts with a new different
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initial solution, to explore another part of the search space. Allowing infeasible solutions
means that infeasible solutions are allowed by relaxing the constraints. If a constraint is
violated, this costs a penalty.

In the next steps the TS used in this research is described in detail. These steps follows
the algorithmic description of TS described in (Zhang and Sun, 2002). Let Sb denote
the best solution obtained so far and TL the Tabu list.

Step 1: Initialize: Generate an initial solution x. Let Sb = x, k = 1, TL = Φ.

Initial solution x is obtained by placing every organization at a separate cluster:

xij = 1 ∀i = j (3.22)

Set k = 1 , TL = Φ, length(TL) = 8

Step 2: Generate candidates: Consider the solutions in the neighborhood of x, which
are obtained by a single local transformation of x. Randomly pick out a certain
number or pick all solutions in this neighborhood to form the candidate set N(x).

Two local transformations of x are considered: Merge/Divide and Swap. A Merge/Divide
transformation means that an organization is placed on a different cluster. Organizations
can so be merged at a cluster, or can be divided if there is more than one organization
on a cluster:

xij = xij′ ∀i, j 6= j′ (3.23)

Costs can differ through a Merge/Divide transformation, for the configuration of the
clusters change. The total number of applications to be installed can decrease by merging
organizations to a cluster. If the demanded applications of the merged organizations
(partly) overlap each other, the objective value decreases, while the applications has to
be installed only one time in a cluster (zkj ∈ B). The first part of the objective function,∑

k∈K
∑

j∈J ckzkj , decreases in this way. The number of opened cluster can also change.
By merging organizations to a cluster, clusters can become empty (no organization is
dedicated to the cluster) and the empty cluster can be closed. The second part of the
objective function,

∑
j∈J fyj , decreases in this way. The third part of the objective

function,
∑

j∈J
∑

l∈L elvjl, can decrease, for the number of needed nodes can decrease
by merging organizations. The objective function consists of three parts, and there is
a kind of trade-off between these three parts. Therefore, a Merge transformation is
not always beneficial and even a Divide transformation, which can open an additional
cluster, could be beneficial.
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A Swap transformation means that two organizations, which are placed on different
clusters, are inter-changed:

xij = xij′ xi′j′ = xi′j ∀i 6= i′, j 6= j′ (3.24)

In a Swap transformation the number of opened cluster does not change, but the
number of installed applications and needed nodes can change. By executing these two
local transformation, infeasible neighbor solutions can be obtained. A neighbor can be
infeasible due to the maximum amount of 20 nodes in a cluster. This is not allowed,
and these neighbors are therefore not considered. Only a randomly chosen subset of
the neighborhood is considered, because considering all neighborhoods can take much
computation time. The organizations with a bad overlap of applications in their cluster
get a higher probability to be selected for considering. The weight of an organization to
be selected is defined as:

weighti′ = 1−
∑

k 1((
∑
i,j dikxij−di′k)>0)∑
k 1(di′k>0)

(3.25)

weighti = 1 if no applications of organization i are already in cluster j. weighti = 0 if
all applications of organization i are already in cluster j. The probability to be selected
is not the same as the weight of an organization, for the sum of all weight can be more
than 1. The probability is defined as:

probi =
weighti∑
iweighti

(3.26)

50% of the organizations is randomly chosen with the calculated probabilities, for
it is reasonable to think that it is beneficial to merge organizations on a cluster with
overlapping applications.

Step 3: Move: Find out the best solution y ∈ N(x). If y ∈ TL and Sy < Sb (no better
overall solution) let N(x) = N(x)−{y} and repeat step 3 with the adjusted N(x).
Else, let x = y and let Sb = y if y is better than Sb.

The local transformation which results in the best improvement in objective value of
current solution x is executed, if it is not Tabu. If the best solution y is Tabu, but better
than Sb the local transformation also is executed. y is set to x and if y is better than
Sb, then Sb = y.

Step 4: Output: If termination condition is satisfied, stop and output Sb. Otherwise,
let TL = TL ∪ {x} and remove first element of TL. Let k = k + 1 and go back to
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step 2.

As termination criteria a maximum number of steps k is set to 200. In every step
not the visited solution is set in the Tabu List, but the inverse of the executed local
transformation. This means that in a Merge/Divide transformation the organization
can not go back to the cluster where it comes from and in a Swap transformation the
two inter-changed organizations can not be inter-changed again. In addition a Tabu is
added to prevent combination-steps. These are consecutive steps of the Merge/Divide
transformation. They occur if two organizations, i and i′ are placed on cluster j. If
organization i is placed by the heuristic at cluster j′, where there are still no other
organizations, then in the next step of the heuristic organization i′ can be merged again
with organization i on cluster j′. The heuristic will in this way not improve the objective
value, therefore it is Tabu to execute a similar local transformation where an organization
goes from cluster j to cluster j′ on another organization for the length of the Tabu list.

The whole procedure is executed several times with different initial solutions. All
initial solutions are obtained by the procedure described in step 1, but now 25 random
merges (if they result in a feasible solution) are done for diversification of the initial
solution. The procedure is also executed with the results of the rules of thumb, described
in subsection 5.2.5.

3.3.2 Genetic Algorithm

Genetic Algorithm (GA) was first described in the book: Adaptation in Natural and
Artificial Systems (Holland, 1975). The book of Holland created a new field of research
and applications that goes much wider now than the original GA he proposed. Nowadays,
the terms Evolutionary Computing or Evolutionary Algorithms (EAs) are used when
talking about GA. However, in the context of meta-heuristics, GAs in their original
form describe most of the main ideas.

While Holland’s influence in the development of GA has been very significant — sev-
eral other scientists with different backgrounds also developed similar ideas. In 1970s
Germany, Rechenberg (1973) and Schwefel (1977) developed the idea of the Evolution-
sstrategie (in English, evolution strategy), while — in the 1960s — Bremermann (1958),
Fogel et al. (1966) and others in the USA implemented their idea for what they called
evolutionary programming.

All these ideas are centered around the principles of mutation and selection, which lay
at the core of the neo-Darwinian theory of evolution. Although at the beginning some
promising results were obtained, GA did not really take off until the 1980s. Not the least
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important reason for this was that the techniques needed a great deal of computational
power.

Throughout GA, solutions that are also called individuals take part in a reproductive
process in which they interact, mix together and produce offspring that retain the good
characteristics of their parents. The reproductive process which involves the creation of
new solutions is based on selection, crossover, inheritance and mutation.

The first question in GA is the size of the initial population, and secondly the method
in choosing individuals. The size of the population should be intuitively be consider-
able big to allow variation in the search place, but a very large population means a loss
in efficiency. It would take too much computation time to find a solution. A reason-
able population size for the test cases in section 5.2 was 100. The initialization of the
population is chosen to be random, like most GA applications (Reeves, 2003).

The basic idea of selecting an individual h ∈ H for a next generation is related with
the fitness. The fitness values are calculated by the following formula:

fith =
∑
k∈K

∑
j∈J

ckzkj +
∑
j∈J

fyj +
∑
j∈J

∑
l∈L

elvjl (3.27)

For explanation of the parameters ck, zkj , f, yj , el and vjl see subsection 3.1. The goal of
GA is to minimize the total costs, which consist of the costs of placing applications in a
cluster, setting up a cluster and installing nodes in a cluster. In every generation, several
individuals are drawn from the population with the use of a probability distribution and
will then be placed in the next generation. The chance of selecting an individual is based
on formula 3.35. The original scheme for selecting individuals is commonly known as the
roulette-wheel method (Mitchell, 1998). It uses a probability distribution for selection in
which the selection probability of a given string is proportional to its fitness. By using a
random number generator it is possible to generate a set of chosen individuals. The GA
for the SCP model uses the roulette-wheel method for selection. However, other ways
of selection are possible — for example — stochastic universal selection and tournament
selection (Reeves, 2003).

In most of the GAs binary encoding is used to represent a solution. However, this
is not well suited for the SCP model. Therefore, a direct encoding method is adopted
where the location of the organizations are represented as follows:

S = {s1, s2, . . . , si} (3.28)

where the allele si denotes the assigned cluster of organization i, si ∈ J and J =
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{j1, j2, . . . , jn}. With S the values of xij , yj , zkj and vjl can be determined. A cluster
j ∈ J is opened (yj = 1), if j ∈ S, otherwise yj = 0; the cluster that serves organization
i ∈ I is defined as xij=si = 1, elsewhere xij 6=si = 0; the installed nodes vjl can be obtained
by the minimal amount of nodes necessary to serve all the organizations for every cluster
j ∈ J and the installed applications on cluster j ∈ J zkj := 1{∑i∈I dikxij=si>0}.

Mutation involves a probability that an arbitrary allele in a genetic sequence will be
changed from its original state. In a mutation a randomly chosen organization i ∈ I

in cluster j is added to other cluster j∗ 6= j if possible. The most used method is to
generate a random variable for each allele. However, a more sophisticated method can
be used. For every allele in the genetic sequence the current overlap on cluster j∗ ∈ J
in programs ξi for every organizations i ∈ I is determined, where ξi is defined as:

ξi =

∑
k∈Li wkj∗∑
k∈Li zkj∗

(3.29)

where wkj∗ = 1 if application k has overlap on its current cluster j∗, otherwise wkj∗ = 0.
The chance that a particular allele mutated uses the roulette-wheel method with a chance
of selecting 1/ξi. Suppose that j = {1, 2, . . . , 6} and i = {1, 2, . . . , 6}, thus an individual
consist of six alleles, i.e.

M : (1, 5, 6, 3, 5, 2) (3.30)

The roulette-wheel chooses — for example — the third allele. The location of this allele
j∗ will be mutated and it is possible that a new cluster will be opened for this allele. For
all the possible mutations the new overlap with the programs on the new cluster φj′ is
calculated. φj′ is defined as follows:

φj′ =

∑
k∈Li w

′
kj′∑

k∈Li zkj′
j′ 6= j∗ (3.31)

where w
′
kj′ = 1 if application k has overlap on the new cluster j′, otherwise w

′
kj′ = 0.

The higher the new overlap is, the better the mutation is. The roulette-wheel method
is used to pick the mutation which is carried out. This results in a new individual M

′
:

M
′

: (1, 5, 3, 3, 5, 2) (3.32)

The purpose of mutation in GAs is to allow the algorithm to avoid local minima by
preventing the population from becoming too similar to each other, thus slowing or
even stopping the algorithm. Note that in some cases a mutation leads to an unfeasible
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solution. In this case the mutation is not carried out.
An extension of the mutation method is the so called hybrid mutation. In a hybrid

mutation all organizations on a cluster get mutated in the same way. Instead of calcu-
lating the individual overlap for every organization i ∈ I, the mean overlap per cluster
j ∈ J is calculated. The higher this number, the higher the probability that the cluster
is chosen. The newly combined cluster for the hybrid mutated alleles follows the same
approach as a normal mutation.

A crossover is simply a matter of replacing some of the characteristics in one parent
by the corresponding characteristics of the other. In a crossover some organizations —
currently in the cluster — are replaced by organizations of another cluster. Two parents
P1 and P2 are first randomly selected from the population. As before suppose, i.e.

P1 : (1, 5, 6, 3, 5, 2) and P2 : (1, 4, 6, 2, 1, 2) (3.33)

which represent two possible solutions to a problem. A crossover swaps one variable from
P1 to P2. One swap point is chosen in a similar way as formula 3.29. A new solution is
produced by combining the pieces of the the original ‘parents’. For instance, if the swap
point was the fourth allele, the offspring solutions would be

C1 : (1, 5, 6, 2, 5, 2) and C2 : (1, 4, 6, 3, 1, 2) (3.34)

In its initial approach by Holland (1975) GA used selection, recombination and mu-
tation to form the new generation. This way looks from an optimization point of view
a strange thing to do — a considerable effort is spend to obtain a good solution, only
to run the risk of throwing it away and thus preventing it from taking part in further
reproduction. For this reason, de Jong (1975) introduced the concepts of elitism and
population overlaps. His ideas are simple — an elitist strategy ensures the survival of
the best individual(s) so far by preserving it and replacing only the remaining (H − 1)
members of the population with new individuals. Overlapping populations take this a
stage further by replacing only a fraction G (the generation gap) of the population at
each generation. Only elitism is used in the GA for the SCP problem.

In contrary to simple neighborhood search methods that stop after reaching a local
optimum, GAs can in theory run for ever. To avoid this, a termination criterion is needed.
The most simple way is to stop after predetermined number of generations. Otherwise
include, stopping after a fixed number of fitness evaluations or running time. On the
other hand, the algorithm can aborted when the diversity falls below some threshold.
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For the last case, it is in most cases not really clear how to track diversity (Reeves, 2003).
In the GA for the SCP the heuristics stops after a certain number of generations, which
was defined at the beginning of the algorithm.

Algorithm 3.1 gives the pseudo code of the GA used to solve the SCP problem. The
results of the algorithm are presented in section 5.2.

3.3.3 Link between TS and GA

There are some similarities between the techniques used in TS and GA. A Merge/Divide
transformation in TS can be compared with a mutation and a hybrid in GA. A mutation
assigns an organization to another cluster. This is also done by Merge/Divide in TS.
A Hybrid combines two clusters into one. This can also be done by the Merge/Divide
in TS, but in a different way. It occurs if an organization which is separately assigned
to a cluster j is assigned to another cluster j′. Organizations are no longer assigned to
cluster j, and cluster j is closed. By closing a cluster by a Merge/Divide transformation,
two clusters are combined into one. A Swap transformation can be compared with a
Crossover. Here, two organizations are interchanged form cluster. Figure 3.1 gives an
overview of the similarities between the techniques used in TS and GA.

TS GA

Technique 1 Merge / Divide Mutation
Hybrids

Technique 2 Swap Crossover

Table 3.1: Overview techniques

There are also differences between TS and GA. The main difference with the TS al-
gorithm is that GA does not explore the neighborhood of a single solution but perform
a search in the neighborhood of a population of solutions. In addition, TS performs one
local transformation in every step of the heuristic, but GA performs multiple transfor-
mation in every individual in each heuristic-step. An important difference is also that
TS does not work with random transformations, in contrast to GA.
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Algorithm 3.1 Pseudo code GA

Parameters:

nGen: The amount of generations.

n: The amount of individuals per generation.

PercMut: Percentage of individuals that will mutate.

PercHyb: Percentage of individuals that will hybrid.

PercCross: Percentage individuals that will crossover.

Variables:

Pop: Collection of individuals (current generation)

PopNew: Collection of individuals (new generation)

Pseudo code:

• Initialize Pop with population of size n.

• Calculate cost fi for every combination i in Pop.

• Calculate nMerge = PercMerge·n, nHyb = PercHyb·n and nCross =
PercCross·n.

• For 1:nGen

– PopNew = ∅.
– Add n-nMut-nCross individuals from Pop to PopNew; with the chance

of selecting a individual:

exp (fiti − fitmin)∑
i exp (fiti − fitmin)

(3.35)

– Choose nMut of individuals from Pop and mutate if possible.

– Choose nHyb of individuals from Pop and hybrid if possible.

– Choose nCross of individuals from Pop and crossover if possible.

– Add the mutated and crossover individuals to PopNew.

– Pop = PopNew.

– Calculate cost fi for every combination i in Pop.

– Store the best value, with best combination.

– Print the best individual.
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4 Stochastic SaaS Clustering Problem

4.1 Stochastic IP-formulation

An extension of the SCP is to consider a second-stage. Some assumptions were made;
there are a finite number of scenarios t ∈ T which can occur in the second-stage with
probability pt, t ∈ T . Also, in this stage the opened cluster yj , j ∈ J are the same, but
additional nodes can be purchased and added to cluster only if the cluster was already
opened. In the second-stage the demand of an organization is given by dtik, i ∈ I, k ∈ K,
t ∈ T . The demand of organization i ∈ I can change in respect to the first-stage in two
ways. First, the demand in terms of transactions can change for the already requested
applications. Second, the list of requested programs Lti, i ∈ I, t ∈ T can be different
in scenario t; the organization can request some new applications or stop using some
applications. There is a possibility that the total required capacity in cluster j ∈ J is
larger then total capacity ql, l ∈ L in the second-stage; if this occurs a penalty cost
pentj , t ∈ T , j ∈ J have to be paid in order to compensate for violating the capacity
limit. In addition, in the second-stage it is not possible to resell nodes that are currently
not used anymore. Thus, the number of nodes vtjl, j ∈ J , l ∈ L, t ∈ T is always equal
or greater the number of nodes v0

jl, j ∈ J , l ∈ L in the first-stage. The place of an
organization xij , i ∈ I, j ∈ J is the same in both stages, meaning that is not possible to
reallocate an organization in the second-stage. Moreover, if an application is installed
in the first-stage and is also requested in the second-stage, maintenance costs gtk, k ∈ K,
t ∈ T have to be paid. If an application is installed in the second-stage, installation
costs ztkj , k ∈ K, j ∈ J , t ∈ T have to be paid, these installation cost can differ from the
costs in the first-stage. The goal is to minimize the total costs of the first-stage plus the
recourse costs in the second stage.
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min
∑
k∈K

∑
j∈J

c0kz
0
kj +

∑
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fyj +
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∑
l∈L
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0
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 ∑
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t
kj+ (4.1)
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∑
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∑
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s.t.
∑
j∈J

xij = 1 i ∈ I (4.2)

∑
i∈I

∑
k∈L0

i

d0
ikxij ≤

∑
l∈L

qlv
0
jl j ∈ J (4.3)

∑
i∈I

∑
k∈Lti

dtikxij ≤
∑
l∈L

qlv
t
jl + pentj j ∈ J, t ∈ T (4.4)

∑
l∈L

qlv
t
jl ≥

∑
l∈L

qlv
0
jl j ∈ J, t ∈ T (4.5)

xij ≤ yj i ∈ I, j ∈ J (4.6)

xij ≤ z0
kj k ∈ L0

i , i ∈ I, j ∈ J (4.7)

xij ≤ ztkj k ∈ Lti, i ∈ I, j ∈ J, t ∈ T (4.8)

v0
jl ≤ 1 j ∈ L, l ∈ L (4.9)

vtjl ≤ 1 j ∈ L, l ∈ L, t ∈ T (4.10)

xij , yj , z
0
kj , z

t
kj , v

0
jl, v

t
jl ∈ B i ∈ I, j ∈ J, k ∈ K, l ∈ L, t ∈ T (4.11)

c0k: The costs of placing application k in the first stage.

ctk: The costs of placing application k in scenario t.

z0
kj :

1 if application k is installed on cluster j in the first stage.

0 otherwise.

ztkj :

1 if application k is installed on cluster j in scenario t.

0 otherwise.

v0
jl:

1 if in clusterj l nodes are opened in the first stage.

0 otherwise.
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vtjl:

1 if in clusterj l nodes are opened in scenario t.

0 otherwise.

gtk: The costs of maintaining application k in scenario t.

pt: The probability of scenario t.

d0
ik: The demand of organization i for application k in the first stage, defined as

the amount of users·transactions per second in the first stage.

dtik: The demand of organization i for application k in scenario t, defined as the
amount of users·transactions per second in scenario t.

pentj : Penalty term for violating the capacity constraint in scenario t for cluster j.

t: Set of scenarios.

The object function (4.1) minimizes the total costs, which consist of the costs of installing
applications in a cluster, setting up a cluster and installing nodes in a cluster in the
first stage and the mean total costs in the second stage, which consists of the cost of
installing a new application in a cluster, the maintaining costs of the already installed
programs in the first stage, the costs of buying additional nodes and the penalty term
for violating the capacity constraints. Constraints (4.2) define that for each organization
all needed applications are located in one cluster. Constraints (4.3) state that a cluster
in the first stage cannot serve more than the total capacity of the installed nodes. In
constraints (4.4) the needed nodes for the scenarios in the second stage are set. It is
possible that the capacity of the cluster is not sufficient to serve the new total demand
of the assigned organizations in the second-stage, if this occurs a penalty term has to
be paid in order to compensate for violating the capacity limit. Constraints (4.5) check
that the nodes opened in a cluster in every scenario is at least the number of nodes in
the first stage. Constraints (4.6) ensure that an organization can only be served by a
cluster that is opened. Constraints (4.7) check for every cluster which applications are
placed on that cluster in the first stage; in the second-stage constraints (4.8) also check
which applications are in the cluster. Constraint (4.9) and (4.10) state that in both the
first- and second-stage only one set of nodes can be opened in a cluster. Finally, (4.11)
are the integrality constraints for all the variables.
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4.2 Local Search Techniques

4.2.1 Stochastic Tabu Search

In order to solve the stochastic SCP both local search techniques — Tabu Search and
Genetic Algorithm — were adjusted. TS, as described in section 3.3.1, will stay roughly
the same, but the following changes and assumptions were made.

In the original SCP, the SaaS company had to made a decision for only one period
and knew all the demand from the organizations. Now, there is a second period —
the second-stage — were the demand for applications of an organization is uncertain.
The SaaS company must decide in the first-stage how to cluster the organizations, in
order to minimize the total costs. An organization can in theory request all the possible
combinations of applications and the demand in terms of requested transactions per
second per application can be every positive number. This results in an infinite number
of scenarios in the second-stage.

Since it is practically impossible to consider all the scenarios because of the computa-
tional time, the assumption is made that an organization can request every application,
but if it requests an application the demand (dtik) is fixed in every scenario. This reduces
the number of scenarios to 2# organizations·# applications. However, since the number of
organizations and applications can be very large, the number of scenarios is still too
large to consider.

Inspired by the method of Sample Average Approximation (SAA) the following idea is
developed to obtain a set of scenarios which will hopefully describe the situation in the
second stage well. The demand dtik is determined and set fixed in every scenario. After
that, a number of randomly generated scenarios are drawn. In a scenario an organization
will request a certain number of applications. By selecting a large number of scenarios
and evaluating the costs; the scenarios would describe the second-stage well because of
SAA.

The costs or benefits of a local transformation in TS is in the SSCP determined by
relation (4.1). This means that the local transformation has to be evaluated in all the
scenarios for the second stage. This costs a lot of time, and therefore a trade-off has to
be made between the number of scenarios and the running time of TS.

Since it is in theory possible for an organization to request all the combinations of
applications in the second-stage, it is not useful to transform the selecting procedure
given by relation (3.25) and (3.26). If all possible scenarios are considered, this will not
influence the probability. Therefore, the probability for an organization to be selected
depends only on the overlap in the first stage.
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4.2.2 Stochastic Genetic Algorithm

The idea of SAA can also be incorporated in GA. The assumption that the demand (dtik)
is fixed and known for the second-stage is made, but in the first-stage which applications
an organizations request is not known. The idea is generate a large number of scenarios
to obtain the expected costs for the second-stage. Due to SAA these expected costs will
be very close to the real costs.

In order for GA to work with SAA, the fitness function for individual h ∈ H is changed;

fith =
∑
k∈K

∑
j∈J

ckzkj +
∑
j∈J

fyj +
∑
j∈J

∑
l∈L

elvjl + EξQ (x, ξ) (4.12)

where EξQ (x, ξ) the expected costs for the second-stage are. These costs are calculated
with SAA. Also, in the reproductive processes there are some changes. When calculating
the current overlap of an individual h ∈ H, the expected overlap of the second-stage are
as well added. The results of both stochastic local search techniques are in section 5.3.
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5 Computational results

5.1 Randomly generated data

5.1.1 Deterministic SCP

In this study eight data sets were used to examine the performance of the IP model and
the heuristics for the deterministic SCP. In these data sets a distinction is made among
different types of organizations, namely large, moderate and small organizations. The
characteristics of these organizations are shown in table 5.1. The organizations differ in
the number of applications needed. A large organization requests more applications than
a smaller organization. There is also a distinction in the number of transactions needed.
Large organizations request more transactions than smaller organizations. These pa-
rameters are uniformly distributed on the stated interval, but the requested applications
can only be integer and the requested transactions can only be thousands.

The parameters for the capacity of the nodes, the costs of the nodes, the maximum
amount of the nodes and the amount of applications are the same in every data set. It
is assumed that the capacity of the nodes in a server has a concave form. This means
that adding a node to a server does not increase the server capacity with the capacity of
the node, but with a fraction of the node capacity. This fraction decreases with respect
to the amount of nodes in a cluster. This relation is shown in formula 5.1;

10000
1 + 0.05 · (k − 1)

with k = # nodes in a cluster (5.1)

The costs of opening a cluster is fixed at e1000 and the costs of adding nodes is

Demand (applications) Demand (transactions)

Large organization 10 - 12 8000 - 10000
Moderate organization 7 - 9 5000 - 7000
Small organization 4 - 6 2000 - 4000

Table 5.1: Characteristics of organizations
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Type of application Costs # Applications

Common-use 80 - 120 10
Large 160 - 200 10
Moderate 110 - 150 10
Small 60 - 100 10
Rest 60 - 200 20

Table 5.2: Characteristic of applications

linear in the amount of nodes. Adding a node costs e500. The maximum amount
of nodes in a cluster is set to 20. This is due to the size of a rack enclosure (±40U)
divided by the size of a rack (2U). The number of applications is 60. The applications
are divided in five application groups, namely common use, large, moderate, small and
rest. This is shown in table 5.2. Every organization uses 1/3 of its applications from
the common use programs. Another 1/3 comes from the type specific applications. The
large organizations use large and therefore expensive programs, moderate organizations
use moderate and moderate-priced applications and small organizations use small and
cheap applications. The last 1/3 of the demanded applications is randomly chosen from
the rest programs and the other type specific applications. For a large organization this
means that this 1/3 is chosen from the rest, moderate and small programs. The rest
programs have a four times higher probability to be chosen than the other type-specific
applications. The installation costs (ck) are also shown in table 5.2. The costs is a ten
and are determined by an integer value drawn from an uniform distribution on the stated
interval.

With these parameters eight data sets were created. The data sets differ in the com-
bination of different types of organizations. Four data sets were created with 60 organi-
zations and another four data sets were created with 120 organizations. The details are
shown in table 5.3. Another remarks is that all costs are divided by ten, to have some
smaller numbers in the data sets.

5.1.2 Stochastic SCP

The data sets described in subsection 5.1.1 were also used in the stochastic SCP for the
first-stage. The demand in the second-stage dtik was determined by the following proce-
dure. First, dik was determined with the parameters shown in table 5.1. As described
in section 2.1 the expected growth of the SaaS market will be 20% per year. Therefore a
random multiplier µik, which is uniformly distributed on the domain [0.9 : 1.2] is drawn
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# Large # Moderate # Small # Total

Data set 1 20 20 20 60
Data set 2 40 40 40 120
Data set 3 40 10 10 60
Data set 4 10 40 10 60
Data set 5 10 10 40 60
Data set 6 30 60 30 120
Data set 7 30 30 60 120
Data set 8 60 30 30 120

Table 5.3: Organization composition of the data sets

and multiplied with dik. This procedure was executed for every i and k and the results
hold in every scenario. In this way, variable demand was obtained for the second stage.

The second step was to select the applications which an organization will request. The
number of requested applications was the same as shown in table 5.1. But here also a
random multiplier µik, uniformly distributed on [0.9 : 1.2] were drawn and multiplied
with the number of requested applications. The results were rounded and requested
applications were chosen in the same way as described in subsection 5.1.1.

With this procedure 50 scenarios are obtained, which will hopefully describe the situ-
ation in the second-stage well.

The stochastic SCP considers two-stages. The installation costs in the first-stage
c0k was the same as ck in table 5.2. The installation costs in the second-stage ctk was
determined by ck + 30, for it is assumed that installing a new application was more
expensive in the second-stage than in the first-stage. The maintenance costs gtk were
defined as ck − 40, because maintaining applications seems to be cheaper than installing
the application.

5.2 Deterministic part

All results reported in this section were obtained on a Core2 Duo PC with 3.0 GHz
and 2048 Mbytes of RAM. The LP/IP formulations were programmed in GAMS 23.0
and with the LP/IP solver of CPLEX 11.0.1. Both heuristics — TS and GA — were
programmed in MATLAB R2007b.
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IP solver TS GA LP bound Dif LP/IP

Case 1 Solution 1594 1596 1594 1510.41 5.24%
Time (s) 4 51 81 1

Case 2 Solution 2197 2197 2197 2034.97 7.38%
Time (s) 47 50 90 1

Case 3 Solution 1611 1615 1623 1528.71 5.11%
Time (s) 4 51 82 1

Case 4 Solution 1258 1258 1274 1132.23 10.00%
Time (s) 24 51 87 1

Table 5.4: Results Small Test case

5.2.1 Justification heuristics

To provide a justification for the use of TS and GA four small test cases were made.
These small test case were subsets of test case 1, as described in subsection 5.1.1. The
number of clusters, organizations, nodes and applications were reduced to 12. The
number of organization types in the test cases is respectively (4,4,4), (8,2,2), (2,8,2) and
(2,2,8). Table 5.4 shows the obtained results. The IP formulation gives all the four cases
proved optimal solutions. TS found the optimal solution twice, which was also the case
in GA. In the other cases where TS or GA did not find the optimal solution, the results
were pretty close. The time it took to find the solution is the lowest for directly solving
the IP formulation with CPLEX, while running GA took the most time. The quite long
running time of TS with respect to directly solving the IP formulation can be explained
by two things. First the number of iterations in the heuristic is set to 200. Second
through diversification the heuristic is run ten times with different initial solution. So
running TS only ones takes about 5 seconds. All IP solutions are about 5 - 10% away
from the LP bound. This indicates that the LP lowerbound can be quite far from the
IP solution.

TS and GA found the (almost) optimal solution in all of the small test cases and this
justifies the later use of the heuristics in larger data sets. The IP model then could not
always be solved due to computational limits, but TS and GA will most likely give a
pretty good approximation of the best solution.

5.2.2 Results IP model

The results of the IP model are shown in table 5.5. None of the eight cases could be
solved optimal in a reasonable time. CPLEX found a solution for the small cases 1, 3,
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IP-model
Time Solution LB Gap Div

Case 1 10:00 29969 19078.51 36.34% 31.54%
Case 2 30:00 - 38209.45 - -
Case 3 10:00 40214 27678.25 31.17% 19.90%
Case 4 10:00 24004 18012.56 24.96% 11.96%
Case 5 10:00 16378 12332.13 24.70% 12.05%
Case 6 30:00 - 37184.07 - -
Case 7 30:00 - 31025.98 - -
Case 8 30:00 - 45053.04 - -

Table 5.5: Results IP-model

4 and 5, but after finding a feasible solution the solution was not improved anymore.
The found integer solutions of the these cases were quite high with respect to the lower
bound. These lower bounds were not or almost not improved during the computational
process. As a result, the duality gap was in every case more than 20% and in some
cases more than 30%. In the large cases 2/6/7/8, where there are 120 organizations
(instead of 60 in the other cases), CPLEX did not found a feasible solution of these
case. However, only a lower bound was given. The column Div represents the difference
between the solution of the IP model and the best known solution. These best known
solution were obtained by TS, which will be discussed later on. These differences are all
bigger than 10% and in case 1 even more than 30%. Because of the bad bounds of the
IP formulation and the large difference between the given solution and the best known
solution it is concluded that solving the IP formulation directly is not useful to obtain a
good solution in large problems.

5.2.3 Comparison lower bounds

In table 5.6 several different lower bounds for all the eight cases of the SCP are presented.
The first lower bound was calculated by relaxing the integrality constraints 3.7 to real
values. This LP bound can be calculated optimally very fast in the small cases 1/3/4/5.
However, in the large cases 2/6/7/8, the time to calculate the optimal value is almost
18 times higher. These solutions were used to benchmark the Lagrange relaxations.

The Lagrange lower bounds based on subsection 3.2.1 are shown in the columns La-
grange 1. In all the results was α = 0.5 and halved after 20 iterations of no improvements.
In the all test cases a positive lower bound was found. Even the fear of bad bound stated
in subsection 3.2.4 proved to be of no concern. Only in small test case the lower bound
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LP bound Lagrange 1 Lagrange 2

Time (m) Solution Iter Time (m) Solution Iter Time (m) Solution

Case 1 0:11 19078.51 400 39:04 21739.98 400 61:10 18858.32

Case 2 5:32 38209.45 400 213:38 33771.91 65 199:28 7237.00

Case 3 0:30 27678.25 400 48:46 32596.74 400 52:25 26675.62

Case 4 0:10 18012.56 400 53:36 18687.74 400 25:02 17916.61

Case 5 0:15 12332.13 400 30:33 13839.06 400 23:43 12323.29

Case 6 7:21 37184.07 200 20:29 13944.48 35 122:54 7059.00

Case 7 6:28 31025.98 200 27:22 15291.53 35 139:12 5990.00

Case 8 7:40 45053.04 200 24:10 25717.50 35 105:32 8425.00

Table 5.6: Deterministic SCP lower bounds

was higher then the LP bound. In the other cases the bound was lower, but this most
likely due to α used in the subgradient and the number of no improvements which result
in halving α and of course the number of iterations. More investigation is needed in
order to find a better α. Then most likely all the bounds will be higher then the LB
bound.

On the other hand, the second Lagrange lower bound based on subsection 3.2.2 per-
formed in the way as suspected. In the small cases, the lower bound became very close
to the LP bound, which was expected in subsection 3.2.4. But the biggest issue with
this lower bound was the computational time. In the large cases it took three hours
to calculate 65 iterations, while around 400 were needed to obtain a good lower bound.
This lower bound will at most be equal to the LP bound, since in the best solutions of
heuristics shared many similarities with the LB bound. Thus it can be concluded that
the most efficient way to obtain a lower bound is the LP relaxation, but it is possible to
obtain better bounds with the first Lagrange relaxation. The second relaxation proved
to be not much use.

5.2.4 Local Search Techniques

Since the IP formulation did not obtain a good solution of the problem, Tabu Search
and Genetic Algorithm were used to find a better feasible solution. The results of these
two heuristics are shown in table 5.7. For all cases solutions were found. The running
time of the two heuristics are comparable, but TS takes a bit more time than GA in
general.

The results of TS were the best found solution in all cases, but the results of GA were
pretty close. The column Div gives the difference between the two solutions. More-
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TS GA

Time (s) Solution Gap Time (s) Solution Div Gap

Case 1 252 22784 16.26% 230 23170 1.69% 17.66%
Case 2 953 46320 17.51% 828 47305 2.13% 19.23%
Case 3 248 33541 17.48% 228 33689 0.44% 17.84%
Case 4 256 21439 15.98% 230 21802 1.96% 17.38%
Case 5 256 14617 15.63% 228 14941 2.22% 17.46%
Case 6 2215 44866 17.12% 1639 45954 2.24% 19.08%
Case 7 2349 37727 17.76% 1528 38061 0.89% 18.48%
Case 8 2303 54497 17.33% 1246 55127 1.16% 18.27%

Table 5.7: Deterministic Results

over, if compared with the results in table 5.5, both heuristic perform better with less
computational time. However, since both heuristics are local search techniques no in-
dication of how close the solutions are to the optimal value can be given, since the
heuristics could be trapped in a local minimum. The results can only be compared with
the LP lower bound from the previous subsection. In the column Gap, the relative gap
((solution− LP bound) /LP bound) is given. This percentage indicated how far the
solution lays compared to the LP bound. Given the results for the small test cases in
subsection 5.2.1, the gaps now were a little bit higher. Solving the large cases 2/6/7/8
took more or less four times the computational time of the small cases. This is due to
the doubled number of organizations and clusters. Still, the computational time was
reasonable and a solution was found, in contrast with table 5.5.

5.2.4.1 Results Tabu Search

The results of TS are shown in table 5.8, figure 5.1 and 5.2. Table 5.8 gives the amount of
opened clusters and statistics about the number of nodes in a cluster. It can be seen that
the mean number of opened nodes is quite high with respect to the maximum number
of nodes, which is 20. In case 3 and 7 the mean number of opened nodes is the smallest.
This is due to the relative large number of large organizations in this case. It is difficult to
merge large organizations on a cluster, due to the capacity constraints. The last column,
mean excess capacity, points out to the mean not used capacity in a cluster. This is the
difference between the capacity of the opened nodes and the dedicated demand.

Figure 5.1 shows the amount of organization in a cluster. The colored bars indicate
the total number of organizations and the distribution of organization-types. Figure 5.2
gives a graphical representation of the installed applications in a cluster. The colored bar
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# Clusters # Nodes

Mean Min Max Mean excess capacity

Case 1 18 18.67 16 20 1309.5
Case 2 36 19.11 16 20 1764.6
Case 3 31 15.71 11 20 2447.0
Case 4 17 18.65 10 20 1537.8
Case 5 11 19.36 18 20 1528.1
Case 6 36 18.56 10 20 1418.0
Case 7 31 17.91 11 20 1337.9
Case 8 44 18.50 11 20 1803.0

Table 5.8: TS Results

indicates the total number of applications installed in a cluster and the color indicates
for how many organizations the applications is installed. In this way, the overlap of
applications can be seen. In all cases, except for case 3, 30% - 40% of the applications
installed on a cluster are requested by two or more organizations. In case 3, this number
is lower due to the high ratio of large organizations.

5.2.4.2 Results Genetic Algorithm

The GA results were obtained with an initial population size of 100 individuals. The
amount of generations was 500. Finally, the percentage elitism was 40%; crossover 25%;
mutation 25% and hybrid mutation 10%. The effects of these chosen parameters is later
discussed in subsection 5.10.

Table 5.9, figure 5.3 and 5.4 show the results of GA. If compared with TS, GA opened
more clusters in general. As a consequence, the mean number of nodes in a cluster was
less than in TS. Also, the minimum amount of nodes opened in a case was also lower
in most instances. But more important, the excess capacity was always bigger than in
TS, except for case 2 and 8. This indicates that GA was in most cases less efficient than
TS. Figure 5.3 shows the number of organizations per cluster and figure 5.4 gives the
amount of installed applications in a cluster.

In figure 5.4 it can be seen that the overlap in the GA cases is around 30% - 20%
of the applications, which lower then TS. This also indicates that GA was performing
worse than TS, since it was more beneficial to assign organization with high overlap on
the same cluster.
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Figure 5.1: TS results: Number of organizations
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Figure 5.2: TS results: Number of applications
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Figure 5.3: GA results: Number of organizations
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Figure 5.4: GA results: Number of applications
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# Clusters # Nodes

Mean Min Max Mean excess capacity

Case 1 19 17.74 13 20 1766.9
Case 2 40 17.20 10 20 1635.7
Case 3 32 15.21 11 20 2385.4
Case 4 18 17.61 10 20 1478.8
Case 5 12 17.75 13 20 1440.5
Case 6 39 17.18 11 20 1833.9
Case 7 31 17.97 11 20 1952.4
Case 8 46 17.70 11 20 1745.3

Table 5.9: GA Results

5.2.5 Rules of thumb

Since TS gave the best solutions of the problems, some rules of thumb will be derived
from the test case solutions to give guidelines for clustering in SaaS networks.

• Merging large organizations on a cluster is quite hard. Therefore, dedicate only
one large company to a cluster.

• Try first to merge moderate organizations with large organizations and after that
try to merge small organizations to the opened clusters.

• Try to use the maximum capacity in a cluster, setting up a new cluster is more
costly.

• Merging organizations with overlapping applications is beneficial, however in gen-
eral about 40% of the installed applications in a cluster is only demanded by one
organization.

These rules of thumb can be derived of the obtained results. With these rules, cluster-
ing in SaaS networks is more intuitive. Table 5.10 gives the results of applying these
guidelines.

By only applying the rules of thumb the results are between 3 till 8 percent from the
best known solution (obtained by TS in section 5.2.4.1). The two cases with a high
number of large organizations, namely case 3 and 8, have the worst results. This is due
to the first guideline: dedicate only one large organization to a cluster. If the obtained
solutions are used as initial solution for TS, the results become better and are about 1
percent away from the best known solution. By setting the obtained results as initial
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Results Div Results after TS Div

Case 1 23618 3.66% 22989 0.90%
Case 2 47749 3.09% 46804 1.04%
Case 3 35523 5.91% 33768 0.68%
Case 4 22309 4.06% 21608 0.79%
Case 5 15262 4.41% 14577 -0.27%
Case 6 45939 2.39% 44931 0.14%
Case 7 38589 2.28% 37624 -0.27%
Case 8 58629 7.58% 55115 1.13%

Table 5.10: Results guidelines

solution for TS, the TS is intensified and diversified. Intensification means that the steps
taken in TS are investigated and steps that take place very often will be done in the
initial solution. Diversification means that the heuristic starts with a new different initial
solution, to explore another part of the search space. The most remarkable results are
obtained in case 5 and 7, where the solution is lower than the best known solution so
far.

It follows that clustering by the rules of thumb give an acceptable result, but the
results can improve by inserting these solution as initial solution in TS.

5.2.6 Parameter Analysis

It is important to investigate the influence of the parameters which are chosen in the local
search techniques. These parameters can have a large influence on the search progress
and the final solution. In this subsection therefore a parameter analysis will be carried
out. This is done for case 1 and case 2. The main difference between these two cases is
that case 2 has twice the amount of organizations compared to case 1.

5.2.6.1 Tabu Search

In TS two parameters were used in the search progress namely the number of steps in
the algorithm k and the length of the Tabu List. In the analysis the Tabu List varies
from 6 till 12 and k varies from 100 till 1000. To compare the effects, four Tabu Searches
were carried out with different Tabu Lists lengths and at certain step k the best solution
was given. Table 5.11 shows the results of the parameter analysis. The initial solutions
were obtained by the rules of thumb from subsection 5.2.5 (23618 for case 1 and 47749
for case 2).
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Case 1 Case 2

Length TL k R. time (s) Solution Diff. R. time (s) Solution Diff.

6 100 13 23066 -2.34% 49 46877 -1.83%
250 32 23059 -2.37% 120 46873 -1.83%
500 62 22987 -2.67% 239 46784 -2.02%
1000 153 22812 -3.41% 599 46784 -2.02%

8 100 12 23093 -2.22% 45 46900 -1.78%
250 30 22917 -2.97% 112 46900 -1.78%
500 60 22849 -3.26% 225 46744 -2.10%
1000 151 22840 -3.29% 569 46723 -2.15%

10 100 13 23089 -2.24% 47 46666 -2.27%
250 31 22918 -2.96% 116 46469 -2.68%
500 62 22825 -3.36% 229 46396 -2.83%
1000 152 22824 -3.36% 569 46339 -2.95%

12 100 12 22996 -2.63% 46 46846 -1.89%
250 30 22996 -2.63% 116 46839 -1.91%
500 60 22996 -2.63% 237 46839 -1.91%
1000 152 22996 -2.63% 611 46839 -1.91%

Table 5.11: TS Parameter Analysis

The best result for case 1 was obtained with k = 1000 and length(TL) = 6 and
k = 1000 and length(TL) = 10 in case 2. It is clear that the results are the best
with k = 1000, for the best solution can only be improved by iterating. However with
length(TL) = 12 the search progress will not improve the solution after k = 100 in case 1
and k = 250 in case 2. It is not easy to say what length of TL was optimal. There were
some random effects in TS for selecting the organizations and the search progress can be
highly influenced by these random effects. Therefore, it is not possible to say that the
corresponding length(TL) of the best solution is the optimal length of the Tabu List.
Since it is 10 in case 1 and 6 in case 2, any Tabu List length between 6 and 10 might
be sufficient. 12 or longer seems to be too long, since TS did not found better solutions
after respectively 100 and 250 iterations.

5.2.6.2 Genetic Algorithm

GA depends on several parameters which all have an effect on the quality of the solu-
tion. The first parameter was the population size. The size of the population was very
important; when the size is too low the variation of individuals would be very small.
However, a very large population means longer computational time. A population of 50,
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100 and 200 individuals was considered. The next set parameters were related with the
reproductional features of the population. With elitism the best randomly chosen indi-
viduals were unchanged placed in the next generation. It was investigated whether this
strategy is meaningful. The techniques crossover and mutation — which were discussed
in subsection 3.3.2 — were set equal to each other. Also, the effects the stronger form of
mutation — hybrids — were investigated. And finally, the different solutions of number
of generation were compared.

In table 5.12 the results of different input parameters can be seen for case 1 and
case 2. In case 1, the population with only 50 individuals found the lowest solution at
500 iteration. This result was not in line the reasoning given earlier. However, in case 2
the population with 200 gave the best solution. Having elitism or not, did not gave much
different solutions. In case 1, no elitism gave lower costs; while in case 2 it was the other
way around. The effects of having hybrids were more significant. In both cases, the
solution was considerably lower if there were hybrids. Finally, the number of generation
was also from great importance. Since GA in practice could be running forever, an
iteration limit has to be set. Around 750 iterations, there was no real significant reduction
in the total costs anymore. All the obtained results showed the solution found by the
rules of thumb for both case 1 and case 2 could be improved.

5.3 Stochastic part

In this section the results for the Stochastic SCP are presented. Only the local search
techniques — TS and GA — were executed and just on case 1 and 2. The IP formulation
from section 4.1 was not implemented, for it is assumed not being solved in reasonable
time. In the deterministic part, it was hard to find a feasible solution with CPLEX, so
it will be even harder in the stochastic part. Only case 1 and 2 were investigated due to
the computational time of the heuristics.

Table 5.13 shows the outcomes of TS and GA. TS gave the best results in both
cases. This is in line with the findings in the deterministic part. The difference between
the solutions is again given in the Div column. In case 1, the computational time
is comparable, but in case 2 the time to execute the TS was much larger than the
time of GA. This is due to the great number of costs evaluations in TS. However, in
TS case 2 after iteration 80 the solution was not improved, so more than half of the
computational time was more or less unnecessary. The solutions of TS and GA are not
totally comparable. The sample of scenarios was randomly chosen and differs between
the two heuristic. By enlarging the sample size this problem will become less important.
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TS GA

Time (s) Solution Time (s) Solution Div

Case 1 2624 34378 2876 34735 1.04%
Case 2 14521 68771 6987 69867 1.59%

Table 5.13: Stochastic Results

# Clusters # Nodes

Mean Min Max Mean excess cap. Overcap.

Case 1 26 Stage 1 13.19 10 17 3617.2 0.00
Stage 2 16.23 10 20 2554.3 72.26

Case 2 53 Stage 1 13.34 9 17 4765.5 0.00
Stage 2 15.75 9 20 5537.9 4622.20

Table 5.14: Stochastic TS Results

5.3.1 Tabu Search

The TS for the stochastic SCP was run with a sample of 50 scenarios and a Tabu List
length of 8. Table 5.14, figure 5.5 and 5.6 show the results for case 1 and 2. It can
be seen that the allocation of organizations to clusters in the first-stage anticipates on
the growth in the second stage. The maximum number of nodes in the first stage is
smaller than in the second stage. In case 1 in the second-stage 79 nodes are added and
therefore the mean number of nodes increases. In case 2, 128 nodes are added to fulfill
the demand, but with respect to case 1 there is more overcapacity. In addition, there is
an efficiency loss in terms of mean excess capacity. This is partly due to the fact that
nodes can only be added in a cluster in the second-stage and not removed.

If compared with the results in the deterministic part as shown in table 5.8 the num-
ber of opened clusters is larger, the mean number of opened nodes is smaller and the
mean excess capacity is higher. In the second-stage overcapacity is possible with costs
of a penalty. The total amount of penalties in all scenarios is given in the column
overcapacity. In case 2 this is much higher than in case 1.

5.3.2 Genetic Algorithm

In table 5.15 the results of stochastic GA are shown. The parameters were the same
as in the deterministic case. The number of scenarios used was 50. The results show
that the number opened clusters was lot a higher then in deterministic GA. Stochastic
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# Clusters # Nodes

Mean Min Max Mean excess cap. Overcap.

Case 1 28 Stage 1 12.29 10 17 3733.0 0.00
Stage 2 14.47 10 20 4968.3 20.49

Case 2 55 Stage 1 12.80 10 17 4090.0 0.00
Stage 2 14.96 10 20 5311.9 1584.60

Table 5.15: Stochastic GA Results

GA anticipates on the growth in the next stage and thus combines less organizations.
As a consequences, the number of nodes were lower then before. Also, the mean excess
capacity was much higher. Again, this can be explained due to the less combined orga-
nizations on a cluster. In case 1 61 additional nodes were added and in case 2 119. GA
opened more cluster than TS, since the mean number of nodes is smaller. However, the
mean excess capacity is more or less the same. The total overcapacity is relatively low
with respect to TS.

In figure 5.7 the number of organizations in the first-stage on the cluster are presented.
This figure confirms that less organizations were clustered. The effect on the overlap is
clearly. The overlap on a cluster — as seen in figure 5.8 — was much lower.
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Figure 5.5: Stochastic TS results: Number of organizations
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Figure 5.6: Stochastic TS results: Number of applications
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Figure 5.7: Stochastic GA results: Number of organizations
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Figure 5.8: Stochastic GA results: Number of applications
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6 Conclusion

In this thesis the benefits of clustering in SaaS networks were investigated. SaaS networks
consist of several clusters and all clients of the SaaS company have to be assigned to a
cluster. The clusters differ in installed applications and in size. The size depends on the
number of nodes in a cluster. It was investigated how the total costs of a SaaS company
could be minimized. Several solution procedures were used and implemented. In the
first part of the thesis, the demand of an organization was known-in-advance. However,
in the second part, it was assumed to be stochastic.

First, an IP formulation for the SaaS Clustering Problem (SCP) was developed. Due
to the size of the data sets used in the thesis, the LP/IP solver CPLEX could not found
good solution for the test cases in reasonable time. In large data sets, it even struggled
to find a feasible solutions. Therefore, several heuristics — known for solving problems
like SCP — were developed. These heuristics were; the Lagrange heuristic, Tabu Search
and Genetic Algorithm. In the Lagrange heuristic, two Lagrange relaxations were used
to simplify the IP formulation. The first relaxation gave better bounds then the LP
bound. The second on the other hand, converged to the LP bound. An drawback of
these relaxations was the very long computational time. Neither of the two relaxations
could calculate good bounds very fast. In the data sets with 120 organizations, a few
iteration could take a few hours to calculate. It was assumed that eventually these
bounds will correspond with the bounds of the small data sets. In a much faster time, a
solution was found with the GA and TS. The advantage of these local search techniques
was that it was not required to investigate the whole search space. In all the cases,
both local search techniques found a solution in reasonable time. These solution were
15-20% higher then the LP bound and in the first data case only 5% higher then the best
Lagrange lower bound. Out of the two, TS systematically outperformed GA by 1-2%.

An extension of the IP formulation was to consider stochastic demand. It was assumed
that there were a finite amount of possible scenarios, which gave the opportunity to create
a two-stage recourse model. However, due to a large number of scenarios it was nearly
possible to solve it with conventional IP solvers like CPLEX, let alone solve the LP
bound. As a consequence, the local search techniques — TS and GA — were adjusted
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for this extension. In order to reduce the number of possible scenarios in the second
stage an idea inspired by SAA was used. A number of randomly drawn scenarios were
used to represent the second-stage as good as possible. Again, TS found the best results,
while the optimal GA solution was 1-1.5% higher. But now in large data sets there was
difference in running time, the computational time was considerably lower in GA.

Some remarks have to be made about this thesis. There were some doubts whether
the developed model can be used in the real world. Some assumptions may not be
valid and all the relevant costs in the SaaS network may not be incorporated in the
model. The IP formulation can possibly be better solved by adding valid equations or
changing some restrictions. The computational time of the local search techniques can be
improved by more efficient programming or changing to another programming language.
The most doubts arise in the stochastic part of this thesis. It was questionable that
enough scenarios were used and assumption that the demand was known in advance. In
addition, it was not clear that the local search techniques were really the best way to
solve this problem.
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7 Further Research

Apart from the remarks some other research directions can be given. In the Lagrangian
heuristic, the idea was to find good bounds for the SCP. In the thesis, two relaxations
were considered but neither gave a sensible solution. However, the first relaxation gave
reasonable bounds. In case of the second Lagrange relaxation the remark of convergence
to the LP bound was made. However, no formal proof was given why this worst case
scenario occurs. Also relevant for both relaxation was the initial α used in the heuristic
and the strategy in which α was halved. More research is needed to fully understand
these effects. Finally, it maybe a good idea to consider better upper bound for the
problem instead of using the solution calculated with the rules of thumb. With these
result it maybe possible to obtain better bounds.

As mentioned before, neither of the two local search techniques were efficient imple-
mented, since the main concern of the thesis was getting the heuristics to work instead of
fast running time. In further research, the effects of more efficient programming could be
studied more intensely. In addition, other heuristics to obtain a solution of the SCP are
worth to consider, for example simulated annealing and ant-colony optimization. There
is a possibility that these heuristics may perform better than both TS and GA.

The choice of having an application in the created data sets is not correlated with
the choice of having another application. It might be interesting to investigate in more
detail the choice of applications. Maybe some combinations will never exist in practice.
Moreover, it is worth to investigate more data sets of the same type, since the given
solutions may not hold in general.

The part were the most further research is needed, is the stochastic extension. The idea
inspired by SAA to develop some scenarios for the second stage can be more investigated
and especially more scenarios can be used in the stochastic SCP. The influence of the
penalty term in the second stage is not clear. By formulating another penalty term, the
results may become very different. But most importantly is the need to develop some
bounds for the stochastic SCP to check whether the performance of the algorithms is
good.
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