
Economics & Informatics

Erasmus School of Economics

Erasmus University Rotterdam

Bachelor Thesis

A Semantic-Based Approach for

Searching and Browsing Tag

Spaces

Authors:

Jan-Willem van Dam
305069

Damir Vandic
305415

Supervisor:

Dr. Flavius Frasincar

Co-supervisor:

Frederik Hogenboom MSc.

14th of July 2009

Abstract

In this thesis we propose the Semantic Tag Clustering Search framework (STCS).

This framework consists of three parts. The first part deals with syntactic varia-

tions by clustering tags that are syntactic variations of each other and assigning

a label to them. The second part of the framework addresses the problem of

recognizing homonyms and identifying semantically related tags. The last, and

final part of the STCS framework utilizes the clusters obtained from the first

two parts to improve search and exploration in tag spaces. For removing syn-

tactic variations, we use the normalized Levenshtein distance, and the cosine

similarity measure based on tag co-occurrences. For creating semantic clusters,

we employ two non-hierarchical, and two hierarchical clustering techniques. To

evaluate the value of the semantic clusters, we develop an Web Application

called XploreFlickr.com.

2

Contents

List of Figures 8

List of Tables 10

1 Introduction 11

1.1 Problems and Goals . 13

1.2 Methodology . 15

1.2.1 Motivation . 16

1.2.2 Scope . 16

1.3 Structure . 17

2 Related Work 19

2.1 Similarity Measures . 19

2.2 Syntactic Variations . 20

2.3 Semantic Symptoms . 21

2.4 Searching Tag Spaces . 23

2.5 Research Motivation . 24

2.6 Conclusions . 25

3 Framework Design 27

3.1 Problem Definition . 27

3.1.1 Removing Syntactic Variations 28

3.1.2 Finding Semantically Related Tags 28

3.1.3 Improving Search and Exploration in Tag Spaces 28

3.2 Similarity Measures . 29

3.2.1 Levenshtein Distance Measure 29

3

3.2.2 Co-occurrence Data and the Cosine Similarity 30

3.3 STCS Framework . 31

3.3.1 Removing Syntactic Variations from Tags 31

3.3.2 Semantic Clustering . 36

3.3.3 Improving Search and Exploration in Tag Spaces 40

3.4 Conclusions . 43

4 Framework Implementation 45

4.1 Data Processing . 45

4.1.1 Data Collection . 45

4.1.2 Cleaning the Data Set . 46

4.2 Syntactic Variations . 47

4.3 Semantic Clustering . 47

4.3.1 Non-hierarchical Clustering 48

4.3.2 Hierarchical Clustering . 48

4.4 Improving Search and Exploration 49

4.4.1 The search methods . 50

4.4.2 Architecture . 55

4.5 Conclusions . 56

5 Evaluation 59

5.1 Syntactic Variations . 59

5.2 Semantic Clustering . 61

5.2.1 Non-hierarchical Clustering 61

5.2.2 Hierarchical Clustering . 66

5.3 Searching Tag Spaces . 69

5.3.1 Sorting the Results . 69

5.3.2 Syntactic Variations . 71

5.3.3 Homonym Recognition . 71

5.3.4 Query Information . 74

5.4 Conclusions . 79

6 Conclusions and Future Work 81

6.1 Conclusions . 81

4

6.1.1 Syntactic Variations . 81

6.1.2 Semantic Clustering . 82

6.1.3 Improving Search and Exploration in Tag Spaces 83

6.2 Future Work . 84

Bibliography 89

5

List of Figures

1.1 Searching for ‘self portrait’ gives 1, 272, 492 results 12

1.2 Searching for ‘selfportait’ gives 7, 365 results 12

1.3 An example of a homonymous word 14

3.1 Overview of the STCS framework 32

3.2 An example of an input graph for the syntactic variation cluster-

ing algorithm . 33

3.3 ‘Step-by-Step’ versus ‘Longest Path’, hierarchical clustering . . . 40

3.4 An example of a homonym in a tree 42

4.1 The work environment of yED 48

4.2 A screenshot of the Hierarchical Clustering Application 49

4.3 XploreFlickr.com: Auto completer 50

4.4 The XploreFlickr.com Web application 51

4.5 XploreFlickr.com: Syntactic variation detection 52

4.6 XploreFlickr.com: Homonym detection 53

4.7 XploreFlickr.com: The tables in the database 54

4.8 XploreFlickr.com: An example of a non-hierarchical cluster rep-

resentation . 55

4.9 XploreFlickr.com: A textual tree representation 56

5.1 Distributions of the tag length of our syntactic variations 62

5.2 The threshold distribution for φ = 0.8 63

5.3 Maximum allowed different elements for a constant threshold,

with ε = 0.2 . 63

7

5.4 Maximum allowed different elements for a dynamic threshold ε,

with φ = 0.8 . 64

5.5 Non-hierarchical clustering: distribution of the cluster size, NHC

Modified . 64

5.6 Non-hierarchical clustering: distribution of the cluster size, Spe-

cia and Motta’s algorithm . 65

5.7 An example of a hierarchical cluster obtained with parameters

t = 0.65, Dx = 30 and Ux = 15. 67

5.8 An example of a hierarchical cluster obtained with parameters

t = 0.40, Dx = 30 and Ux = 30. 67

5.9 Distribution of the cluster size of original semantic clustering al-

gorithm . 68

5.10 Distribution of the cluster size of the modified semantic clustering

algorithm . 68

5.11 XploreFlickr.com: An example of a homonym 72

5.12 XploreFlickr.com: An example of different contexts: ‘beautiful’ . 72

5.13 XploreFlickr.com: An example of different contexts: ‘daughter’ . 73

5.14 XploreFlickr.com: An example of different contexts: ‘Pet’ 74

5.15 XploreFlickr.com: An example of different contexts: ‘Blanket’ . . 74

5.16 XploreFlickr.com: An example of a picture when querying on

‘laugh’ . 75

5.17 XploreFlickr.com: Querying on ‘laugh’ 76

5.18 XploreFlickr.com: Querying on ‘laugh, smiling’ 76

5.19 XploreFlickr.com: Querying on ‘laugh, smiling, laughing’ 76

5.20 XploreFlickr.com: An example of a picture when querying on

‘laugh, smiling, laughing’ . 77

8

List of Tables

3.1 An example of some syntactic variations 35

4.1 The data set before and after applying filters 46

4.2 An example of the syntactic variations and tag labels 54

5.1 Our data set obtained from Flickr: before and after applying

syntactic clustering . 60

5.2 Some example clusters with syntactic variations 60

5.3 Wrongly classified syntactic variations, no domain specific step . 61

5.4 Three examples of correct clusters, created by using a domain

specific step . 61

5.5 Syntactic clustering test data set, the 10 mistakes and 10 correct

examples . 62

5.6 Non-hierarchical semantic clustering, performance summary on

the test data set . 66

5.7 Evaluation of the parameters for the hierarchical semantic clus-

tering methods . 66

5.8 Relationship classification for hierarchical clustering 69

5.9 Obtained results from XploreFlickr.com, ‘Dummy’ vs cluster-

driven search engine . 70

5.10 XploreFlickr.com: examples of syntactic variation detection . . . 71

5.11 XploreFlickr.com: homonym recognition results for the non-hierarchical

clusters . 73

5.12 XploreFlickr.com: homonym recognition results for the hierar-

chical clusters . 74

5.13 XploreFlickr.com: Precision after query relaxation 77

9

Chapter 1

Introduction

There are a lot of Web services where users can employ tags to label content

on the Web. Flickr [1] and Delicious [2] (also known as del.icio.us) are two

well-known applications which make use of tags. In this thesis we focus on

the Flickr service. Users that are registered on the Flickr Web site can upload

photographs and assign tags to them. As with most tagging systems the user

has no restrictions on the tags that can be used, the user can use any tag he or

she wants.

Though tags are a flexible way of categorizing data, there are some limita-

tions when considering search and exploration in tagging systems. Because the

users have a lot of freedom in tagging resources, they can, for example, make

typographical errors or use syntactic variations. This results in having differ-

ent tags having the same meaning. An example of a typographical mistake

would be to use ‘selfportait’ instead of ‘self portrait’. Figure 1.1 and Figure 1.2

show what the consequences of these mistakes are when an user searches for

these tags. Searching for ‘self portrait’ gives us 1, 265, 127 more results than

searching for ‘selfportait’. Examples of a syntactic variations would be among

other things plurals and singulars, like ‘self portraits’ and ‘self portrait’. These

typographical errors and syntactic variations of tags are important aspects to

consider when designing a search engine. Google, for example, has auto syntac-

tic variation detection in their search service. Often you get ‘Did you mean...’

from Google where the engine tries to suggest the correct search term.

11

Figure 1.1: Searching for ‘self portrait’ gives 1, 272, 492 results

Figure 1.2: Searching for ‘selfportait’ gives 7, 365 results

Furthermore, people can use synonyms for the same concepts. These syn-

onyms result in different results when people search, explore, or retrieve infor-

mation from a tagging system like Flickr. For instance, somebody tags a picture

12

with ‘city’ where somebody else would have used ‘town’.

People also describe pictures differently. For a picture which shows the

interior of a house, most people would use the tag ‘interior’, where others use a

tag like ‘inside’ or ‘furniture’. These tags are semantically related. When people

search for ‘furniture’ they are probably also interested in pictures tagged with

‘interior’. Another example of semantically related tags would be ‘Web 2.0’,

‘Ajax’, and ‘XML’.

Additionally, homonyms can occur. For instance, the word ‘apple’ is a

homonym. When an user searches for ‘apple’, the search engine returns pic-

tures related with both the brand ‘Apple’ as well as an apple and maybe other

fruit. The search engine cannot distinguish between the multiple meanings the

word ‘apple’ can have. Figure 1.3 illustrates this issue. Another example of a

homonym is ‘rock’. Somebody can mean ‘rock’ as in ‘rock and roll’ or ‘rock’ as

a stone.

When searching and exploring a tag space, the previously described symp-

toms (typographical mistakes, syntactic variations, synonyms, homonyms, and

related tags) are a problem. The currently used search engines for tagging sys-

tems do not deal with these symptoms. In general, there are no structures,

hierarchies, classifications, or clusters available in most tagging systems. A

reason might be the enormous amount of data, if you do not structure incre-

mentally. Better search engines for such tagging systems could be valuable for a

lot of people, organizations, and companies. For example, marketing companies

often need pictures in their daily activities and these companies would certainly

benefit from more structured tagging systems. In this thesis we want to im-

prove searching and exploring tag spaces by coping with syntactic variations,

typographical mistakes, synonyms, homonyms, and related tags.

1.1 Problems and Goals

Our research goal is to gain insight into the possibilities of improving search

and exploration in tag spaces, especially for marketing companies. Related

work reveals that clustering techniques are appropriate for improving search

and exploration in tag spaces. Thus, our main research question is

13

Figure 1.3: An example of a homonymous word

‘How can one utilize clustering techniques to improve exploring and

searching tag spaces?’

Related to this main research question the sub questions are defined as follows:

1. How can one deal with syntactic variations and typographical mistakes?

2. How can one deal with semantic symptoms (homonyms, synonyms, and

related tags) in tagging systems ?

3. What kind of clustering techniques are best to be used for improving

search and exploration in tagging systems?

14

1.2 Methodology

To address the research goal and problems we define an objective for every sub

question as presented in Section 1.1:

1. An implementation for dealing with syntactic variations and typographical

mistakes by using clustering techniques;

2. An implementation for dealing with semantic symptoms of tagging sys-

tems by using several clustering techniques;

3. Implementations for searching in tag spaces by using several clustering

techniques for syntactic and semantic clustering.

To reach these objectives we design and implement an appropriate framework.

The framework is called the Semantic Tag Clustering Search (STCS) framework.

The framework consists of three parts, namely: a part where syntactic variations

are identified, a part where semantic clusters are derived, and a part where one

can search in tag spaces by using search methods utilizing these clusters.

In this thesis we consider two types of clustering methods, namely the non-

hierarchical clusters and the hierarchical clusters. The non-hierarchical clusters

contain related tags, but the there is no hierarchy in these type of clusters. On

the contrary, hierarchical clusters do have these hierarchies, either for tags or

clusters of tags.

For the non-hierarchical clusters we consider the method proposed by [3].

The reason why we have chosen to implement the method proposed in [3], is

that their clustering algorithm allows tags to appear in multiple clusters. In

this way homonyms could be easily detected and put in different contexts.

The method proposed by the authors of [4] are implemented for the hier-

archical clusters. We have chosen for [4], because his method is proven better

than that of [5] and [6]. An alternative could have been the method in [7]. This

method in [7] is meant for collaborative tagging systems, like Delicious. The

difference between a tagging system like Flickr and Delicious, is that resources

(Web sites) on Delicious can be tagged by multiple users. This is not the case

with the resources (images) on Flickr.

We propose two adjusted methods (based on [3] and [4]) for clustering tags

which address issues that are left open by the authors of [3] and [4]. So, in

15

total we have two ‘types’ of clustering techniques with two instances of each

type. Thus, we implement 4 semantic clustering methods in order to address

the second research objective.

For each semantic clustering technique, we use our own proposed method

for dealing with the syntactic variations symptoms. This method deals with a

lot of issues which are left open by other authors, e.g. [3] and [4]. This method

addresses the first research objective.

We also propose two search methods, one for the non-hierarchical clusters,

and one for the hierarchical clusters. After that, the results obtained from

the implementations of these search methods are compared with the so called

‘Dummy’ search engine. This ‘Dummy’ search engine searches in the tag space,

without using the knowledge about the semantic clusters or syntactic variation

clusters. This comparison is also be made in the perspective of the different

clustering techniques. It shows how the search methods perform on the two

instances of each type of clustering technique. This gives insight into the possi-

bilities of improving search and exploration in tag spaces.

We build a Web application, called XploreFlickr.com, which is accessible

online [8]. The Web application makes it possible to compare the results from

different clustering and search techniques directly on a subset of the Flickr

database. This application addresses the third research objective.

1.2.1 Motivation

As we discuss in the related work section there has been a lot of research done

for syntactic clustering and semantic clustering. Nevertheless, there is little

or no literature where the focus is primarily on the improving of searching

or exploring tag spaces. In this thesis we want to go one step further and

empirically investigate searching in tag spaces with the knowledge of the derived

syntactic and semantic clusters.

1.2.2 Scope

We consider only two types of clustering techniques: ones that produce non-

hierarchical clusters, and techniques that produces hierarchical clusters. The

hierarchical clusters can only be clusters of tags (relationships between tags).

16

It is also possible that you have a hierarchy of clusters (relationships between

clusters), but we do not consider these type of hierarchies. Investigating these

hierarchies of clusters might be interesting for future work.

Furthermore, the STCS framework uses only a relatively small part of the

Flickr database. It does not run on ‘live’ Flickr data, this is for two reasons.

The first reason is that the ‘live’ Flickr data set is too large to save one one hard

disk and the Flickr API connection is too slow to do calculations on directly.

The second reason is that it is not possible to perform clustering algorithms in

a reasonable time on such a large data set as Flickr’s.

1.3 Structure

This thesis contains six chapters. Every chapter starts with a small introduction

and ends with a conclusion of that chapter. The thesis is organized as follows.

Chapter 2 provides an overview of the related work. This chapter is divided in

three sections, where each section addresses a part of the STCS framework, as

described in Section 1.2. Chapter 3 contains a description of our design and the

used methodology. This chapter starts with Section 3.1, describing the problem

definition. Furthermore, Section 3.3 discusses the design and methodology of

the three parts of the STCS framework. In Chapter 4 the development process

of the STCS Framework is illustrated. Section 4.1 describes the gathering and

preparation of the data set. The next three sections of that chapter discuss

the implementation of the processes of identifying syntactic variations, deriving

semantic clusters, and improving search and exploration in tag spaces, respec-

tively. Chapter 5 gives an evaluation of all the parts of the STCS framework.

In Section 5.1 the results of the first part of the STCS framework, removing the

syntactic variations, are discussed. In Section 5.2 we discuss the results derived

from the semantic clustering process. In Section 5.3 we discuss the results of

the search and exploration improvement, based on the three aspects as stated

in Section 3.1. Finally we present the conclusions from this chapter in Section

5.3.

17

Chapter 2

Related Work

In this chapter we discuss literature that addresses syntactic variations, semantic

symptoms, and searching tag spaces. Before we dive into these three topics we

analyze several similarity measures (measures that are used in either syntactic

variation solutions or semantic symptoms solutions) as these are to be considered

for the clustering methods. These similarity measures are discussed in Section

2.1. The literature which addresses syntactic variations, semantic symptoms,

and searching tag spaces, is be analyzed in Section 2.2, Section 2.3, and Section

2.4 respectively.

2.1 Similarity Measures

In [9] the authors analyze several measures for tag similarity. Each measure is

computed on data from Delicious [2] and a semantic grounding is provided by

mapping pairs of similar tags in the folksonomy to pairs of synsets in Wordnet.

The results expose some interesting features of the similarity measures. For

detecting synonyms one should use tag or resource context similarities. For

concept hierarchy, FolkRank and co-occurrence relatedness seemed to yield more

general tags in their analysis. FolkRank gave the best results when considering

tag recommendations.

In [10] the authors analyze the performance of two pattern matching tech-

niques to identify syntactic variations in folksonomies, namely the Levenshtein

distance and the Hamming distance. The Levenshtein distance between two

19

strings is given by the minimum number of operations needed to transform one

string into the other. An operation is defined as inserting, deleting, or substi-

tuting a single character. For instance, the Levenshtein distance between ‘wall’

and ‘balls’ is 2, because two operations are needed. It can be considered as a

generalization of the Hamming distance, which can only be used for strings of

the same length and only considers substitution edits. So, the Hamming dis-

tance for ‘tall’ and ‘bell’ is 2, but the distance for ‘tall’ en ‘bells’ cannot be

calculated.

For clustering of related tags several measures based on co-occurrence data

are used in literature. In [3] the cosine similarity is used. The authors of [3] also

tried different metrics to calculate the similarity between the pairs of vectors of

co-occurrence data, including Euclidian and Manhattan distance, but achieved

the best results with the cosine similarity measure. Metrics computing absolute

distance like Euclidian and Manhattan showed to be inappropriate, since they

are much more sensitive to significant variations in a few elements than little

variations in a large number of elements. This is relevant when trying to find

clusters of related tags.

2.2 Syntactic Variations

Syntactic variations between tags is a well-known symptom. Several authors

have tried to deal with these variation by identifying them. As already men-

tioned, in [10] the authors analyze the performance of the Levenshtein distance

and the Hamming distance. They perform an analysis over a large data set

in two different ways, by (i) identifying pattern-candidate combinations, and

(ii) the recognition of new tags (which are not a syntactic variation of oth-

ers). In [10] ‘pattern’ is one of the tags in their data set, and ‘candidate’ is a

syntactic variation of the pattern. The authors showed that both techniques

provide similar results for some syntactic variation types, for example typo-

graphic errors and simple plurals/singulars. With identifying variations based

on the insertion/deletion of characters, Levenshtein gets significantly better re-

sults than Hamming. However, both techniques do not perform as well as desired

when identifying variations based in the transposition of adjacent characters (li-

20

brary/lirbary) or some kind of singulars/plurals (library/libraries). Moreover,

both techniques improve their results ignoring candidate tags with length less

than four.

In [3] the authors also use the Levenshtein similarity metric to group mor-

phologically similar tags. They use a high threshold to determine ‘similar’ words

(cat and cats) as well as misspellings (such as theory and teory). Within each

group of similar tags, one is selected to be the representative of the group, and

the occurrences of tags in that group are replaced by their representative.

2.3 Semantic Symptoms

In previous approaches, the semantic symptoms are addressed by either using

a clustering technique which results in non-hierarchical clusters of tags, or a

hierarchical graph of either tags or clusters of tags.

In [3] the authors present a complete framework where they address the

syntactic variations in a tagging system, create clusters of semantically related

tags, and within each cluster, identify the relationship between each tag pair.

The semantic clustering algorithm of [3] distinguish itself, because tags can

occur in multiple clusters.

For the clusters of related tags, the authors of [3] use the cosine similarity

measure on the co-occurrence data. Given the highly similar pairs of tags,

their algorithm considers each pair, for example, ‘audio’ and ‘mp3’, as seeds

constituting an initial cluster, and then tries to enlarge this cluster by looking for

tags that are similar to both initial tags. This procedure is recursively repeated

for all tags, i.e., each new ‘candidate’ tag for a cluster must be similar to the

whole (possibly enlarged) set of tags in that cluster. The algorithm generates a

set of clusters, including a number of identical clusters, resulting from distinct

seeds that are in fact similar to each other. It also generates highly similar

clusters, differing in only a few tags, which are in many cases a consequence

of the threshold to filter out unrelated pairs of tags. Two smoothing heuristics

are used to avoid having a high number of these similar clusters. In order to

determine the relationship between tags in a cluster, the authors use Swoogle

[11] to find ontologies where both tags occur. They also make use of Wikipedia

21

[12], Google [13] and WordNet [14].

In [15] the authors create semantic clusters of tags by using co-occurrence

data. For every tag in the data set they find the tags which co-occur the most

with it. The authors use a cut-off value which is determined by the first and

second derivative, where the co-occurrence count is on the y-axis and the tags

are ordered descending on the x-axis). The tags above this cut-off value are

placed in a graph with the co-occurrence counts as the weights of the edges.

To split the clusters further, the authors use the spectral bisection algorithm

[16]. Then they use the modularity function [17] to determine whether or not

to reject or accept the partitioning. The algorithm then proceeds recursively on

each accepted partition. The authors conclude that clustering techniques can

and should be used in combination with tagging. They also suggest that these

techniques can improve the search and exploration in tag spaces in general.

In [5], [6], and [4] a subsumption-based model is used to derive a hierarchy

of semantically related tags. The title of [4] suggests that their methods result

in an ontology induced from Flickr tags, but that is not the case. Their final

result is a hierarchical representation of concepts. These hierarchies give no

information about domains, ranges or the nature of the concept relationships.

Thus, you do not have a real ‘ontology’. The result of [5] and [6] are also concept

hierarchies.

In [4] an adjusted subsumption model of [5] is used having as input co-

occurrence statistics. They finally use this subsumption model for building

hierarchical trees. The adjusted subsumption model consists of two steps. The

first step is a pre-filtering step, where pictures with less than 2 tags, are filtered

out as they have no meaning for co-occurrence statistics. The next step is the

subsumption step. One tag subsumes another tag if the subsumption condition

is fulfilled and if these two tags meet some statistical thresholds. The subsump-

tion model from [4] differs from [5] as [4] uses additional conditions for statistical

thresholds, like user count and tag count restrictions.

In [4] the models of [5], [6] are also implemented and tested on a snapshot of

the Flickr database as of July 2005. This database consists of about 25 million

images, which yield in 65 million annotations. The resulting trees is evaluated

manually for all three models. The method proposed in [4] outperformed the

22

other two methods on the number of relevant relations, and on correctness.

Another example of a hierarchical taxonomy is proposed in [7]. The au-

thors consider collaborative tagging systems. These systems have many casual

users who annotate objects with free-form strings (tags) of their choice. Their

algorithm builds a hierarchy of tags from annotation data. It is an extensible

greedy algorithm that makes use of graph centrality. As input a similarity graph

of tags is needed, this is a graph of all tags with the cosine similarity (based

on co-occurrence) as the weight of the edges. The authors determined several

features which impact the effectiveness of their algorithm. A prerequisite, as

they propose, is that the data contains natural hierarchical relations. They

argue that this seems to be a general feature of tagging data. An empirical

study in [18] showed that a large proportion of tags in Delicious participate in

hierarchical relationships.

2.4 Searching Tag Spaces

There is little literature where the focus is primarily on the improvement of

search and exploration in tag spaces by using clustering methods. The discussed

papers about semantic clustering state that the main goal the improvement of

search and exploration in tag spaces is, but in fact, none of them investigates

this aspect. The scope of the papers does not go beyond discussing the derived

syntactic and/or semantic clusters.

In [19] and [20] seven different ranking algorithms for querying in tag spaces

are discussed and evaluated. These algorithms can be applicable for users, tags

and resources (or a combination of these). As we want to rank resources (Flickr

images) we are only interested in ranking algorithms which are applicable for

resources. Furthermore, there are some algorithms which are specially adjusted

for GroupMe [21]. We also did not take these algorithms into account. There-

fore, we only consider FolkRank [22], as SocialPageRank [23] is not suited for

topic related ranking. Unfortunately, FolkRank is not applicable for the Flickr

tagging system. FolkRank requires as the the number of users who annotated

a certain resource. In Flickr this count is always 1, because only 1 user can

upload a specific picture. This would impose a problem for the algorithm as

23

it is not designed for systems like Flickr. In other systems, like Delicious, it is

possible to have multiple users linking to a specific resource (a Web page).

We could also have considered Latent Semantic Indexing for the ranking the

images resulted from a search query, but we chose to use the average cosine sim-

ilarity based on co-occurrence. The main goal of our research is not finding the

best ranking method, but to investigate how semantic and syntactic clustering

techniques can improve search and exploration in tag spaces.

Query relaxation can also be important when one searches tag spaces, but

in the literature the focus is on querying directly in a database. Any extra

knowledge, like you have with clusters, has not been taken into account.

2.5 Research Motivation

As previously mentioned, the proposed method in [10] had bad results for tags

with a length smaller than 4. We want to improve the syntactic clustering part

by addressing this issue. The authors also mentioned that both the Levenshtein

and Hamming distance perform bad on tag pairs which are singulars and plurals

of each other (e.g. ‘libraries’ and ‘library’). Our method should also address

this issue, together with other syntactic variations. The authors do not focus

on improving search and exploration.

In [3] the authors propose a method that can derive an ontology from Flickr

data. Their results look promising, but these results are derived manually. It is

not yet possible to automatically achieve useful results. This is due to Swoogle,

it has no good support for internally searching ontology documents. The method

for removing syntactic variations is also limited as they use absolute Levenshtein

measure with a high threshold to identify syntactic variations. This approach

does not address the problem of syntactic variations between tags with length

smaller than 4. Again, the goal is to improve this. The authors mention the

aspect of improving search and exploration, but do not cover this.

The authors of [15] conclude that clustering techniques can and should be

used in combination with tagging. The authors of [15] show that clusters can

help with giving suggestions for related tags when searching or exploring tag

spaces. The authors also suggest that clusters could be used for identifying

24

ambiguous tags (homonyms). This is a clear motivation for us to investigate

clustering techniques further. Once more, the topic of improving search and

exploration of tag spaces is not covered extensively by the authors.

In [5], [6] and [4] a subsumption-based model is used to derive a hierarchy

of semantically related tags. The method of [4] outperformed the other two

methods on the number of relevant relations and on correctness. However, the

model proposed in [4] does not cover the symptoms of syntactic variations and

typographical mistakes. The author of [4] proposes also to extend the model

to be more robust, i.e., it should incorporate other aspects than only the co-

occurrence count, when looking for parent-child relationships between tag pairs.

We adjust the method proposed in [4] by using another approach for deriving

the final hierarchical clusters, i.e., trees.

The reason why we have chosen to implement the method proposed in [3],

is that their clustering algorithm allows tags to appear in multiple clusters.

In this way homonyms could be detected and put in different contexts. We

have chosen for [4], because his method is proven better than that of [5] and

[6]. An alternative could have been the method in [7], his method is meant for

collaborative tagging systems, like Delicious. The difference between a tagging

system like Flickr and Delicious, is that resources on Delicious can be tagged

by multiple users. This is not the case with Flickr.

2.6 Conclusions

As we have seen, there has been a lot of research done for syntactic clustering

and semantic clustering. Nevertheless, there is little or no literature where the

focus is primarily on the improvement of searching or exploring tag spaces. The

discussed papers about semantic clustering all state as main goal the improve-

ment of search and exploration in tag spaces, but in fact, none of them actually

investigates this aspect. The scope of the papers does not go beyond discussing

the derived syntactic and/or semantic clusters. In this thesis we want to go

one step further and empirically investigate the searching in tag spaces with the

knowledge of the derived syntactic and semantic clusters.

To summarize, for the syntactic variation recognition we use the normalized

25

Levenshtein distance in combination with the cosine similarity based on co-

occurrence vectors. As motivated in Section 2.6 we use the adjusted methods

proposed by the authors of [4] and [3] for semantic clustering. The method

proposed in [4] is used to derive hierarchical clusters and the method of the

authors of [3] is used for deriving non-hierarchical clusters.

26

Chapter 3

Framework Design

To answer the research questions, stated in Section 1.1, we propose the Seman-

tic Tag Clustering Search framework (STCS). This framework consists of three

parts. The first part deals with syntactic variations by clustering tags that are

syntactic variations of each other and assigning a label to them. The second

part of the framework addresses the problem of homonyms and identifying se-

mantically related tags. The last, and final part of the STCS framework utilizes

the clusters obtained from the first two parts to improve search and exploration

in tag spaces.

In this chapter we first give the definition of the problem with which we are

trying to deal with. After that, we discuss the STCS framework in detail in

section 3.3. We finish this chapter with a short conclusion on the design and

methodology.

3.1 Problem Definition

The input data set is defined as a tuple D = {U, T, P, r}, where U , T , and P

are the finite sets of users, tags, and pictures respectively, and r is the ternary

relationship r ⊆ U × T × P , defining the initial annotations of the users. We

can split the problem definition into three parts: removing syntactic variations,

finding semantically related tags and the improvement of searching in tag spaces

with this knowledge.

27

3.1.1 Removing Syntactic Variations

The first goal is to remove any syntactic variations from tags. These syntac-

tic variations could be the result of synonymous words like ‘terrible’ and ‘aw-

ful’, but usually they are the consequence of typographic mistakes or syntac-

tic/morphological variations. To detect syntactic variations between tags we

need to create a set T ′ ⊂ P(T). Each element of T ′ represents a cluster of tags

where each tag occurs only in one element (cluster), i.e., if x, y ∈ T ′, and a ∈ x

and b ∈ y, then this implies a 6= b. Then we denote by m′ the bijective function

that indicates a label for each x ∈ T ′, m′ : T ′ → L. Furthermore, for each l ∈ L

and some x ∈ T ′, l ∈ x exists, i.e., l is the label of cluster x.

To clarify this mathematical definition we give an example. Consider the

set of tags (tag IDs) T = {1, 2, 3, 4, 5}. A possible T ′ could then be T ′ =

{{1, 3} , {2, 4} , {5}}. The mappings could then be {1, 3} → {1}, {2, 4} → {4},
and {5} → {5}. The set L then equals {1, 4, 5}, these tags are the labels.

3.1.2 Finding Semantically Related Tags

The second goal of this thesis is to create semantic clusters of tags. We want

to group similar tags together, based on their semantic meaning. This means

that we have to create a set T ′′ that clusters elements from l ∈ L. This denotes

that we cluster only the tags that are labels of a syntactic cluster. An example

of a semantic cluster is {new york, manhattan, hudson bridge, central park}.
A tag should be able to be present in multiple clusters. This way, we can

identify these tags as homonyms, i.e., they are related with multiple clusters

and therefore have multiple meanings.

3.1.3 Improving Search and Exploration in Tag Spaces

We define the ‘improvement of search and exploration in tag spaces’ by the

following aspects:

• The clusters provide information with which more and/or better results

are retrieved;

• The search engine recognizes syntactic variations and homonyms;

28

• The precision of the search engine is increased.

3.2 Similarity Measures

In this section we discuss the different similarity measures used in the STCS

framework. This section also introduces the notation and use of the different

similarity measures.

3.2.1 Levenshtein Distance Measure

The Levenshtein distance is a metric for measuring the amount of difference

between two strings (i.e., the so called edit distance). The Levenshtein distance

between two strings is given by the minimum number of operations needed to

transform one string into the other, where an operation is an insertion, deletion,

or substitution of a single character. It can be considered a generalization

of the Hamming distance, which is used for strings of the same length and

only considers substitution edits. It is often used in applications that need to

determine how similar, or different, two strings are.

For example, the Levenshtein distance between ‘hair’ and ‘stairs’ is 3, since

the following three edits change one into the other, and there is no way to do it

with fewer than three edits:

1. hair → shair (insert of ‘s’ at the beginning)

2. shair → stair (substitution of ‘h’ for ‘t’)

3. stair → stairs (insert ‘s’ at the end).

From now on, we call this distance the absolute Levenshtein distance. We denote

it by alvij , which is the absolute Levenshtein distance between tag i and j.

In the STCS framework we use the normalized Levenshtein distance, or also

called the normalized Levenshtein similarity. We denote this by lvij , which

is the normalized Levenshtein distance between tag i and j. The normalized

Levenshtein value is defined as

lvij = 1− alvij

max(length(ti),length(tj))
, (3.1)

29

The normalized Levenshtein distances addresses the string lengths. If you have

two strings, of both length 24, then an absolute Levenshtein distance of 3 is

not large. However, with two strings of length 6 this distance is quite large

(it is 50% of the tag length). According to the absolute Levenshtein distance

these two distances are the same. But the normalized Levenshtein distances

are in this case 0.875 and 0.5. This indicates that, according to the normalized

Levenshtein distance, the two pairs of strings do not have the same distance,

i.e., the first pair is more similar.

3.2.2 Co-occurrence Data and the Cosine Similarity

To measure the semantic relatedness between tags, we use the cosine similarity

based on co-occurrence vectors. First, let us define what a co-occurrence matrix

is, what the properties of it are, and how co-occurrence vectors are defined.

Given that there are m tags in the database of the data set, we can construct

a matrix X ∈ N0
m×m where Xij denotes the co-occurrence count between tag

i and j. One should note here that N0 represents the collection of natural

numbers including zero, i.e., N0 = {0, 1, 2, . . .}.

A property of X is that the diagonal contains only zeros,

m∑

i=1

xii = 0

Furthermore, xj denotes the jth column of X. This is also called the co-

occurrence vector of tag j. We define the function vector (j), which is used

from now on to denote the co-occurrence vector for a given tag j.

Given two columns from matrix X called a and b, we can calculate the cosine

between these two co-occurrence vectors

cos (a, b) =
a · b

‖a‖ ‖b‖ (3.2)

where

a · b =
m∑

i=1

aibi = a1b1 + a2b2 + · · ·+ ambm

30

and

‖a‖ =

√√√√
m∑

i=1

a2
i

The range of the function cos (a, b) where a, b ∈ Rm, is [−1, 1]. In this case

the vectors a, b ∈ N0
m, it then turns out that the range equals to [0, 1]. We can

interpret cos (a, b) = 0 as ‘no semantic relatedness’, and cos (a, b) = 1 as ‘fully

semantically related’.

3.3 STCS Framework

The STCS framework is divided in three parts, namely: removing syntactic

variations from tags, creating clusters of semantically related tags, and finally

utilizing this knowledge to improve the searching. In Section 3.3.1, we describe

the process for removing syntactic variations from tags. The resulting output

serves as input for the next process, i.e., semantic clustering. The removal of

syntactic variations is necessary, because in the end, we want to have clusters

that contain semantically related tags, and not syntactic variations of tags.

For the semantic clustering we compare hierarchical versus non-hierarchical

clustering methods. For the non-hierarchical clustering types we implement the

method proposed by [3] and an adaption of that algorithm. For the hierarchical

clustering types we use the method proposed by [4] and also an adaption of that

method, so in total we have 4 methods to compare. In Section 3.3.2 we discuss

these four clustering techniques.

The STCS framework also consists of a search engine which utilizes the

syntactic and semantic clusters to improve searching, this is the final part of

the framework and it is discussed in Section 3.3.3. Figure 3.1 gives an overview

of the STCS framework.

3.3.1 Removing Syntactic Variations from Tags

The algorithm for the syntactic variation clustering uses an undirected graph

G = (T,E) as input. The set T contains elements which represent a tag id, and

E is the set of weighted edges (triples (ti, tj , wij)) representing the similarities

between tags. To calculate the weight wij one needs the normalized Levenshtein

31

Semantic clustering

Collect raw data and

clean the data set

Removing syntactic variations

Clean data set

U x T x P

Create input graph

Mapping syntactic

variations to tag labels

Filtered data set

U x L x P

Semantic clustering of the

tag labels

Cluster on combined

Levenshtein and Cosine

similarity measure

Cluster on domain specific

conditions

1

2

3

4

5

Improving search & exploration

Final result

Syntactical variation information

& semantical clulster

Search Engine

Uses

Figure 3.1: Overview of the STCS framework

distance lvij and the cosine similarity between tag i and j. The weight wij of

an edge in the graph is then calculated as shown in equation 3.3.

wij = zij × lvij + (1− zij)× cos (vector (i) , vector (j)) , (3.3)

where

zij = max(length(ti),length(tj))
max(length(tk)) ∈ (0, 1] ,with ti, tj , tk ∈ T . (3.4)

Normalized Levenshtein values are not representative for short tags, that is

why the cosine value gets more weight as the maximum tag length gets shorter.

This yields better results for shorter tags. Let us clarify this with an exam-

32

ple. Given two tags ‘walk’ and ‘wall’, the normalized Levenshtein value equals

1− 1/4 = 3/4, a high value for words which are not syntactic variations.

Thus, if we use only the normalized Levenshtein distance in this case, these

words would be marked wrongly as syntactic variations of each other. To address

this problem we use the cosine similarity based on co-occurrence vectors and

give it more weight for shorter tags. The cosine similarity indicates the level

of semantic relatedness between two tags. The cosine similarity for ‘walk’ and

‘wall’ is so low that the framework correctly identifies that these words are not

syntactic variations of each other.

To build the input graph we first make a list of triples ti,tj and wij , where

wij > α ∈ (0, 1). The α indicates the condition for which we consider two tags

as possible syntactic variations. When creating the list, only the pairs where

ti < tj should be considered as wij equals wji. With this list, the input graph

can be build by creating nodes (tag id’s) and edges that are on the list. After

this process finishes, we create a root node and connect each ‘cluster’ of tags

with this root node. The root is connected to a randomly chosen tag from each

cluster. An example of an input graph for the syntactic clustering algorithm is

shown in Figure 3.2. For example, {1, 5, 6, 7} is a cluster which is connected to

the root by the randomly chosen tag ‘1’. The root node functions as a pointer

to clusters, which is used in the algorithm.

An overview of the algorithm for the syntactic clustering, which uses this

input graph, is described in Algorithm 1 (this is step 2 of Figure 3.1).

Lines 1 and 2 indicate that the algorithm traverses through each cluster of

the initial input graph. It checks every edge in a cluster, and if the weight of

that edge is below a certain threshold β, the edge is cut. When an edge is cut, a

Root

1

2

4

5

6

7

8

13

12

10

9

Figure 3.2: An example of an input graph for the syntactic variation clustering
algorithm

33

Algorithm 1 Creating clusters that remove syntactic variation
Require: Input data assumed

• the set T of distinct tags and a root node root

• the set E of edges of the graph, contains triples (ti, tj , wij) where
ti, tj ∈ T , and wij is the calculated similarity (as in Equation 3.3)
between ti and tj

• β the threshold for the edge weight (similarity), if wij < β then the
edge is cut

1: for all t ∈ T∧ there exists a path from root to t do
2: for all edges e = (ti, tj , wij) ∈ E that are part of the cluster of t do
3: if wij < β then
4: E = E − {(ti, tj , wij)}
5: if no path from root to ti then
6: create link from root to ti
7: end if
8: if no path from root to tj then
9: create link from root to tj

10: end if
11: end if
12: end for
13: end for

check is performed on the tags that are connected by that edge. For both tags

we analyze if they are still connected to the root node. If that is not the case,

an edge is added from the root to that tag (indicating that this tag now belongs

to a new cluster). This process is described in lines 5 to 9.

The algorithm also ensures that a tag only appears once in a cluster, i.e.,

the root node does not point to two tags ti and tj such that there exists a path

P from ti to tj with root /∈ P . This is done by performing a depth traversal for

each cluster after the algorithm finishes. When traversing we mark the nodes as

‘visited’. If we encounter a node which has already been visited, we then know

that the root is pointing to two identical clusters. The connection between

the root and the current traversed cluster is cut. In this way the algorithm

produces a set of distinct clusters where each tag can only appear once in a

cluster. Let us clarify this with an example by look at the example input graph

in Figure 3.2. Consider that we visited all nodes from the first cluster, i.e., the

nodes {1, 5, 6, 7}. In the figure nodes 6 and 8 are not connected, but let us

assume they are. If we now traverse through the second cluster we encounter

34

node 6. We known that we already visited this node and therefore remove the

connection between the root and node 2. This action ‘creates’ a new cluster

with nodes {1, 2, 5, 6, 7, 8, 9, 10}. The result of the algorithm is a graph that

contains clusters of tags that are syntactic variations of each other.

Furthermore, we find that the data from Flickr has a domain specific prop-

erty: there are a lot of camera and lens types present. Because different cameras

and lenses are semantically related and the names often differ only by one or

two characters, there are many different cameras and lenses in one cluster. To

solve this, we propose a so called ‘domain specific’ step to deal with these do-

main specific properties. Step 3 of Figure 3.1 is this ‘domain specific’ step,

which is similar to the previously described algorithm in step 2 of Figure 3.1,

but with some slight modifications. The only thing that changes is line 3 of

Algorithm 1). Here a new condition is used to replace the old condition for

cutting an edge. For the Flickr Service we cut an edge if the extracted numbers

from the tags are not equal to each other. For example, an edge connecting

‘Canon EF 24-105mm f/4 L IS USM’ and ‘Canon EF70-200mm f/4L IS USM’

is cut as ‘241054’ does not equal ‘702004’. If only one of the two tags contains

numbers, or the extracted numbers are equal, no edges are cut.

In step 4 of Figure 3.1 we create a new data set which contains the tags that

are a label of a syntactic cluster, and the corresponding associations. The label

of a cluster is the most frequently occurring tag in the data set. The newly

created data set is used as input for the next steps. Table 3.1 shows an example

of a cluster created at the end of the syntactic variations removal process (steps

1 to 4 of Figure 3.1).

Table 3.1: An example of some syntactic variations
Washington, D.C.

Washington
washington d.c.
washington dc

Washington, D.C.
Washington, DC

washingtondc

35

3.3.2 Semantic Clustering

As Figure 3.1 shows, the semantic cluster process starts when the syntactic

variations have been removed from the data set. The algorithm we use to create

the semantic clusters, step 5 of Figure 3.1, is described in Algorithm 2. This

algorithm has originally been proposed by [3]. The algorithm is different from

classical clustering algorithms. Instead of using the centroid, to calculate the

distance between two clusters, all tags are used. This had the advantage that

all the elements within a cluster must be similar amongst each other, instead

of being similar just to the centroid. We improve the algorithm by replacing a

heuristic for merging similar clusters by two new heuristics. In the final part of

the research, we compare these two techniques ([3] and our adaption of that)

and a third, hierarchical clustering technique.

Non-hierarchical Clustering

In lines 1 to 10 of 2 the initial clusters are created. This is done by starting

with each tag as a cluster, and adding the rest of the tags to that cluster if they

are sufficiently similar to that cluster. A tag is sufficiently similar if the average

cosine of that tag with respect to all elements in the cluster are larger than χ.

This is shown in line 5.

The set of initial clusters can contain many duplicate or nearly duplicate

clusters. Therefore we need to merge some of the clusters, which is done in

lines 11 to 20. In [3], two heuristics are proposed for this purpose. The first

heuristic merges two clusters if one cluster contains the other. This means that

if the larger cluster contains all the tags of the smaller, we remove the smaller

cluster. The second heuristic checks if clusters differ within a small margin,

i.e., the number of different tags in the smaller cluster represents less than a

percentage of the number of tags in the smaller and larger clusters. If this is the

case, then the distinct words from the smaller are added to the larger cluster

and the smaller cluster is removed. The latter heuristic has limitations, because

it uses a constant percentage, i.e. a constant threshold for merging clusters.

First, let us clarify these limitations in more detail. If one would use a

constant threshold, it is hard to choose a threshold where the larger clusters

do not merge to quickly and the smaller clusters too slowly. This is because

36

Algorithm 2 Semantic clustering
Require: T is a set of distinct tags, χ is the minimum average cosine with a

cluster for the tag to be added to that cluster
Require: avgcosine (a, b) gives the average cosine between elements (a−b) and

b
Require: normdiff (x, y) gives the normalized difference between clusters x and

y
1: C = {∅}
2: for all t ∈ T do
3: c = {t}
4: for all t′ ∈ T similar to t do
5: if average cosine of t′ with all tags in c is above χ then
6: c = c ∪ {t′}
7: end if
8: end for
9: C = C ∪ {c}

10: end for
11: C ′ = {∅}
12: for all y ∈ C in descending order of cluster size do
13: for all y′ ∈ C in descending order of cluster size ∧ y′ 6= y do
14: if y′ ⊆ y ∨ avgcosine (y′, y) > δ ∨ normdiff (y′, y) < ε then
15: C = C − {y′}
16: y = y ∪ {y′}
17: end if
18: end for
19: C ′ = C ′ ∪ {y}
20: end for

the maximum allowed number of different elements (|D|) is growing constantly

with the size of the cluster. This is clear when we analyze the function which

calculates the maximum number of different elements for the set to be merged.

The function is: f(|c|) = bε · |c|c where ε is the already mention threshold. For

example, for ε = 0.20 we have f(|c|) = b0.20 · |c|c. If we evaluate f(30) we get

6. This means if we have a cluster c with |c| = 30 and a cluster C with |C| ≥ 30,

c would be merged into C if |D| ≤ 6 (D = c − C). This also means that any

clusters with size below 4 is not merged, because f(4) = 0. To address this we

propose a dynamic threshold. We find that a dynamic threshold, instead of a

constant one, improves the clustering technique.

We employ the first heuristic that the authors proposed (which is a trivial

one), but we do not use the second one as it has limitations due to the constant

threshold. We replaced this second heuristic with two new heuristics, which we

call the second and third heuristic from now on. The second heuristic consid-

37

ers the semantic relatedness of the difference between two clusters. The third

heuristic considers the size of the difference between two clusters in combina-

tion with a dynamic threshold. We show that these three heuristics, the first

proposed by [3] and the second and third proposed in this thesis, improve the

clustering technique originally proposed by [3].

The three heuristics are used in line 14 of the algorithm introduced earlier.

The part y′ ⊆ y represents the first heuristic, avgcosine (y′, y) > δ represents

the second heuristic and normdiff (y′, y) < ε represents the third heuristic.

Basically, the second heuristic, which we propose, merges two clusters C

and c where |C| ≥ |c| when the average cosine avg of all t ∈ {c−C} is above a

certain threshold δ. The average cosine of these elements is defined as

avg =
∑

d∈D

Avgd

|D| , (3.5)

where

Avgd =
∑

x∈C

cos(vector(x),vector(d))
|C| , (3.6)

and D = c− C, tag d ∈ D.

The third heuristic merges the clusters when the normalized difference be-

tween the clusters is smaller than a dynamic threshold ε. The normalized dif-

ference η is defined as

η = |D|
|c| , (3.7)

where also D = c− C.

We propose to define threshold ε as

ε = φ√
|c| , (3.8)

and thus f (|c|) can be described as

f (|c|) = bε · |c|c =
⌊
φ ·

√
|c|

⌋
. (3.9)

One is able to tune the distribution of maximum allowed difference between

clusters by means of φ. The functional form of f is not linear, which would have

been the case with a constant threshold. Thus, we can create a function that

38

suits the clustering process better.

Hierarchical Clustering

For hierarchial clustering we adapt, as already said, the algorithm of [4]. We

first discuss the original proposed method and then the modification we propose.

The authors of [4] propose a subsumption model. In this model tag x po-

tentially subsumes tag y (x is a parent of y) if

P (x|y) ≥ t and P (y|x) < t, (3.10)

Dx ≥ Dmin, Dy ≥ Dmin

Ux ≥ Umin, Uy ≥ Umin

where t is co-occurrence threshold, Dx is the number of documents in which tag

x occurs, Ux is the number of users that use x in at least one image annotation.

So the first step is to calculate the co-occurrence statistics.

Once the co-occurrence statistics are calculated, candidate term pairs are

selected using the specified constraints. A graph of possible parent-child rela-

tionships is then built. To clean up the graph, the co-occurrence of nodes with

ancestors that are logically above their parent are removed. So for example,

for a given term x, and two potential parent terms pi and pj , if pi is also a

potential parent term of pj , the pi is removed from the list of potential parent

terms for term x. At the same time, the co-occurrence of terms x, pi and pj in

the given relationships indicates both that the (pj , x) relationship is more likely

than simple co-occurrence might indicate, and similarly that the (pi, pj) rela-

tionship should be reinforced. The author increments the co-occurrence statistic

by 1 of each accordingly. After the paths are cleaned and reinforced, each leaf

in the tree is considered and the ‘best’ path is chosen up to a root, given the

(reinforced) co-occurrence weights. In the end, these paths are coalesced into

trees. The best path is chosen by starting at a leaf and then choosing the best

parent, i.e., the one with the highest co-occurrence.

We propose a modified version of this algorithm. Instead of choosing the

‘best’ path up to a root step-by-step, we use the longest path from a leaf up to

a root. Figure 3.3 shows an example of a graph where we need to find the ‘best’

39

path from leaf ‘D’. With the step-by-step method proposed by [4], the ‘best’

path would be ‘D,C,A’, because P (C|D) > P (B|D). With the longest path,

the path would be ‘D,B,A’, because P (B|D) + P (A|B) > P (C|D) + P (A|C).

Clearly the path ‘D,B,A’ is preferred as the total co-occurrence values are larger,

i.e., the total relationship is stronger.

A

C

D

B

0.9 0.3

0.4 0.45

Figure 3.3: ‘Step-by-Step’ versus ‘Longest Path’, hierarchical clustering

3.3.3 Improving Search and Exploration in Tag Spaces

When the syntactic and semantic clusters are created, the search engine can

utilize this information to improve searching. We now discuss each feature of

the STCS search engine in detail.

Sorting the Results

The search engine sorts the pictures based on relevance with the query. The

clusters are not used in any way to sort the pictures, instead the average cosine

similarity is used. We use this measure, because it is more convenient and

intuitive to use this measure, instead of using clusters to sort pictures. People

do not search on a cluster, but on tag(s). As a results of this, the sorting of

the pictures is the same for each cluster-driven search method. We can sort the

results by defining a similarity measure between a query and a picture, and then

sort the pictures based on this similarity.

40

We begin by defining the query q as a m dimensional column vector of tags

qi,

q =

q1

...

qm

We also define a picture p to be a n dimensional column vector of tags pi,

p =

p1

...

pn

We can then define the function f(q, p) which calculates the cosine between the

query and the picture as in Equation 3.11.

f(q, p) =
1
n

n∑

j=1

(
1
m

m∑

i=1

cos (qi, pj)

)
=

n∑

j=1

(
1

m× n

m∑

i=1

cos (qi, pj)

)
(3.11)

For a given query first all the results are collected. The syntax of the query

determines which results should be returned, but we do not focus on this now

as this is discussed in Section 4.4. For each picture the similarity f(q, p) is cal-

culated. The results are then sorted descending on the similarity and presented

to the user.

Syntactic Variation Detection

An important feature of the search engine is the automatically replacement of

syntactic variations by their labels. Steps 1 through 4 of Figure 3.1 generate tag

labels which are mapped to tags. These tags are then called syntactic variations

of their tag label. When a tag is not a syntactic variation it has just itself as

the tag label. The search engine can utilize this information by searching for

each keyword not only on the keyword, but also on all syntactic variations of

the keyword. So when the user searches for ‘self portraits’, the system searches

for ‘self portraits’, ‘self-portraits’, ‘selfportraits’ and even ‘self portaits’ (for

example). This greatly increases the number of results, as showed in Section

5.3. This method is independent of the semantic clustering type (hierarchical

41

versus non-hierarchical).

Homonym Detection

Another feature of the search engine is that it is able to detect homonyms. If

a word can have multiple meanings, the search engine asks the user for the

right meaning (given the different contexts of the word). The results are re-

turned according to the users answer. For this feature, the clustering technique

is determining how the homonym detection takes place. This is because the in-

formation needed to detect a homonym is actually semantics about a keyword.

For the non-hierarchical clustering technique we utilize the number of clus-

ters a tag occurs in. If a tag occurs in more than one cluster, it is considered

as a homonym. The user then gets a message with the different clusters a tag

is in.

For the hierarchical clustering technique we only look at tags which have at

least one parent and at least one child in the tree (cluster), i.e., it must not be

a root and also not a leaf in the tree. To determine whether or not this tag is

a homonym we look at the average cosine (based on co-occurrence) between its

children and its parent. If it is below a certain threshold λ, the tag is considered

to be a homonym. The parent and the children are then the ‘context’ of this

tag, and this information is presented to the user. An example of this is shown

in Figure 3.4. Here the tag ‘Apple’ is said to be a homonym if the average cosine

value of ‘iPod’ and ‘iBook’ with ‘Fruit’ is below λ.

Fruit

Apple Banana

iPod iBook

Figure 3.4: An example of a homonym in a tree

42

Providing Information about the Query

Searching is also improved by providing the user useful information about the

query. Each clustering type provides different information, for instance, a hier-

archical clustering technique can provide information concerning the hierarchy,

and a non-hierarchical clustering technique can not. With this information the

user understands the semantic structure of the query and the data, and can

relax (or narrow) it manually depending on what the goal is.

We have chosen not to relax the queries automatically, because this is not

the goal of this thesis. The goal is to find which clustering technique helps the

most in improving searching. If we were to choose a clustering technique, this

could have a biased effect on one or more of the clustering techniques. That is

the reason why we choose to let the user relax the queries.

There are different scenarios we can think of. Sometimes the user does not

find enough results. It could also be that there are too many results, or that

the results are not specific enough (when searching on something specific). In

any case, the user gets to see semantic information about the query. For the

non-hierarchical clusters this means that the user sees the whole cluster for each

tag. The tags within the cluster are ordered on cosine similarity with the tag so

that the most similar tags are on top of the list. The hierarchical clusters give

us the opportunity to tell the user more about each tag, as we can show the

position of a tag within a tree. The user can then decide the relax the query

more (by going one or more levels up) or to use a more constrained query (by

going one or more levels down).

3.4 Conclusions

We have seen that the STCS framework consist of three parts, syntactic varia-

tion removal, semantic clustering, and improving search and exploration. The

syntactic variation removal algorithm utilizes normalized Levenshtein distance

combined with the cosine similarity based on tag co-occurrence data. Further-

more, we saw that semantic clustering is done by using two hierarchical and

two non-hierarchical cluster techniques. Last, the search engine gives the user

the possibility to relax and narrow the query, by providing the user semantic

43

information about the query. It also detects syntactic variations and homonyms

in queries and sorts the results based on the average cosine similarity (based on

co-occurrence data) between queries and images.

44

Chapter 4

Framework Implementation

In this chapter we start by looking at data processing, which is described in

Section 4.1. After that, we discuss the implementation of the three parts of

the STCS framework, syntactic clustering, semantic clustering and improving

search and exploration. We close this chapter by a short conclusion.

Before we start, we should mention that the STCS framework is implemented

in Java. For collections, like sets, stacks, queues and lists, we used Trove [24] in

almost every case. This enabled us to have greater performance than the stan-

dard Java Developers Kit (JDK) implementation. There are some specific tools

and libraries which we used, which are discussed in each appropriate section.

4.1 Data Processing

This section shows an overview of how we obtained our data set and how we

performed the data cleaning. Section 4.1.1 describes the data collection and

Section 4.1.2 shows how we cleaned the data set.

4.1.1 Data Collection

For our experiments we collected a data set from the Flickr database. Our data

set contains 1, 683, 111 associations (U × T ×P). To lower the processing time,

the data was collected in parallel from two non-overlapping intervals [2008-01-

14, 2008-08-01] and [2008-08-12, 2009-02-28]. The total number of associations,

45

the number of (distinct) users, pictures and tags are shown in Table 4.1.

Table 4.1: The data set before and after applying filters
associations # users # pictures # tags

initial data set 1, 683, 111 57, 009 166, 544 317, 657
cleaned data set 1, 231, 818 50, 986 147, 132 27, 401

4.1.2 Cleaning the Data Set

After collecting the data, we first perform some cleaning steps. As already men-

tioned in Chapter 5, users have no limitations when they add tags to pictures.

Because of this, the pictures in our initial data set have many unusable tags.

To address this problem we apply the following filters (in this order):

(1) Remove tags with a tag length larger than 32 characters

The data set contained tags that are whole sentences, we want solely

individual tags in our data set.

(2) Remove tags containing unrecognizable signs

Non-Latin characters (like Arabic or Cyrillic signs), signs which are

not part of the Latin alphabet or of the numeric signs, are removed

(3) Remove tags which are complete sentences or enumerations

of tags

Some people use a tag to write a whole sentence, others use a tag to

represent multiple tags (separated by a space)

(4) Remove tags which occur in less than 6 different pictures

We identified tags which occurred less than 6 times to be a statistical

outlier (Averagetaglength− 1.5× IQR).

(5) Remove associations containing pictures that have only one

tag associated with them

An association like this is not useful, because the tag does not co-

occur with other tags in that picture. This implies that this asso-

ciation does not provide any information for a co-occurrence based

measure (used later in this thesis).

46

After applying these filters we have a final data set which we use as input for

our framework. The total numbers of (distinct) users, pictures, and tags after

applying the previously discussed filters, are shown in Table 4.1. The syntactic

clustering makes use of the full cleaned data set, the semantic clustering part

and the ‘improving search and exploration’ part use the data set of the top 5000

most frequent tags (for performance reasons).

4.2 Syntactic Variations

For the syntactic variations part, we created a command-line application which

implements the steps described in Section 3.3.3. The application creates map-

pings between tag labels and possible syntactic variations of tag labels.

To implement the syntactic clustering algorithm efficiently, we used Neo4j

[25] to handle the graph manipulation. Neo4j is a graph database. It is an

embedded, disk-based, fully transactional Java persistence engine that stores

data structured in graphs. We chose this library because it has good features

for traversing a graph, with easy customization possibilities.

4.3 Semantic Clustering

For the semantic clustering part, we implemented two separate applications,

one for the non-hierarchical clustering and one for the hierarchical clustering.

For the non-hierarchical clustering techniques we implemented a command-line

application. For the hierarchical clustering, we used a more convenient graphical

user interface application (GUI). A GUI is more appropriate here, because there

our more parameters (thresholds) to adjust.

Both of the applications produce ‘trees’ (clusters), the only difference is that

for the hierarchical clusters these trees are directed and for the non-hierarchical

undirected.

The output of the applications is a GraphML [26] file and a text file, which

can be read in a relational database. The GraphML file is a XML based format

which is used to describe graphs.

We used the application yED [27] to read the GraphML [26] files, and vi-

47

sualize them. The yED application has many features, including auto layout

algorithms which can be used to visualize graphs in a convenient way. The yED

application is useful, as we could easily inspect the created clusters. Figure 4.1

shows a screenshot of the yED working environment.

Figure 4.1: The work environment of yED

4.3.1 Non-hierarchical Clustering

We split the implementation of the non-hierarchical clustering process into two

steps. First, a Neo4j graph database is created with the initial nodes/tags,

this is the input graph as described in Section 3.3.1. Second, the created Neo4j

database is taken as input, and the clustering process starts by cutting the edges

(also described in Section 3.3.3). The final remaining Neo4j database is then

used to print the mapping text file and the GraphML file.

4.3.2 Hierarchical Clustering

For the hierarchical clustering part, we created a graphical user interface for our

application. Here the user can enter parameters and database information, as

shown in Figure 4.2.

Instead of using the Neo4j graph database, we used an in-memory graph

48

Figure 4.2: A screenshot of the Hierarchical Clustering Application

library called JGraphT [28]. The reason for this is that we needed quick access

to the generated trees/clusters, therefore an in-memory solution seemed more

feasible. Furthermore, the Neo4j graph database has great traversing possibili-

ties, but not many implemented graph algorithms. JGraphT has a large number

of graph algorithms implemented already, which are easy to use. We used, for

example, the Bellman-Ford algorithm to find the longest path in trees. This is

done by multiplying the edges by −1 and taking the shortest path. The result

of this, with the Bellman-Ford algorithm, is that the longest path is found. This

was our modification to the algorithm proposed by [4]. The output of this appli-

cation is also a GraphML file together with a text file which can be imported in

a relational database. The GraphML contains a collection of trees, to be more

precise, directed acyclic trees.

4.4 Improving Search and Exploration

For this project, a search engine, called XploreFlickr.com [8], is developed. With

XploreFlickr.com, the user can choose between different search methods, as

described in Section 4.4.1. In Section 4.4.2 the architecture of XploreFlickr.com

is explained.

49

4.4.1 The search methods

Figure 4.4 shows the search page of XploreFlickr.com. The user can enter a

query (comma separated) and the search engine returns results according to a

disjunction of the keywords in the query (OR query). If the user wants a tag

to be present in the pictures, a ‘+’ sign can be added in front of the keyword.

So for example, the query ‘taga, tagb, tagc’ initially results in pictures which

contain ‘taga’ or ‘tagb’ or ‘tagc’. If the query is ‘taga, tagb, +tagc’, the results

would have been ictures with (‘taga’ or ‘tagb’) and ‘tagc’. Note that this ‘+’

sign does not work for the Flickr and Dummy search methods.

We have also implemented an auto completer in XploreFlickr.com. When the

user enters parts of some tag in xPloreFlickr.com, the auto completer suggests

tag names from our data set. You can see an example of this in Figure 4.3. We

make use of a JavaScript framework called Prototype [29] and an auto completer

from [30].

Figure 4.3: XploreFlickr.com: Auto completer

We can also see that the user can choose six different search methods. Ac-

50

tually these are four different search methods, but some with different datasets.

Figure 4.4: The XploreFlickr.com Web application

The labels ‘Flickr’ and ‘Dummy’ are search methods outside the STCS

framework. The Flickr search method uses the Flickr API search method of

the most interesting photos, it is not considered in this thesis as it searches

the whole Flickr database. We implemented the Dummy searcher to simulate

‘standard’ search engines, it is searching for pictures in a trivial way, it only

retrieves pictures which have exactly the tags the user has specified.

The labels ‘NHC’ and ‘NHC STCS’ represent the non-hierarchical clustering

search method. The label ‘NHC STCS’ uses clusters created by the modified

non-hierarchical clusterings algorithm.

The labels ‘HC’ and ‘HC STCS’ represent the search methods which are

using hierarchical clusters. The label ‘HC STCS’ is different from ‘HC’ as it

uses the clusters/trees which are created by using the longest path method,

instead of the step-by-step method (see Section 3.3.2 ‘Hierarchical clustering’).

The methods ‘NHC’, ‘NHC STCS’, ‘HC’ and ‘HC STCS’ initially all return

the same images. We have chosen for this, as already explained in Section 3.3.3.

The search engine of STCS lets the user relax the query if necessary, based on

the information received of the search method. This information, of course,

differs per search method.

51

Syntactic Variation Recognition

As already discussed in Section 3.3.3, we mapped syntactic variations to tag

labels. These mappings are saved in a database table. When a user queries

in XploreFlickr.com, then for each tag in the query, syntactic variations are

searched, i.e., every tag in the query is replaced for the corresponding tag label.

Finally, when the search results are shown, the output is as in Figure 4.5

with respect to the syntactic variation detection. As a result of this syntactic

variation detection, also pictures with only a misspelling or syntactic variation

of a term are shown when somebody searches on the correct spelling of a specific

term. For instance, in Figure 4.5 also pictures tagged only with ‘self portait’ or

‘self portraits’ are returned.

Figure 4.5: XploreFlickr.com: Syntactic variation detection

Homonym Recognition

In Section 3.3.3 we have explained how we detect homonyms in our clusters. This

method differs per clustering type. We use different techniques for homonym

detection in hierarchical clusters than for homonym detection in non-hierarchical

clusters.

If a homonym is detected the user is asked to select one of the detected

meanings of the homonym. After the selection the search results consist of

images related to that specific meaning. For instance, when somebody searches

on ‘Apple’ the user should be asked to select the meaning of ‘Apple’ by proposing

two different clusters. One cluster related to ‘fruit’ and one cluster related to

the ‘brand’. An example of this is presented in Figure 4.6. The last column is

not an actual cluster, but a choice not to select a meaning. After selecting one

of the two clusters, only pictures which are tagged with ‘apple’, and tagged with

at least one of the tags in the cluster, are shown in the search results. So, more

concrete: if the cluster with ‘Apple’, ‘iphone’, ‘iPod’ is chosen, only pictures

52

tagged with ‘Apple’ and (‘iPod‘ or ‘iPhone‘) are shown in the results. So, a

picture must always be tagged with ‘Apple’ in combination with at least one

other tag in the chosen cluster.

Figure 4.6: XploreFlickr.com: Homonym detection

Non-hierarchical Clustering

The non-hierarchical clustering search method is using a relational database for

the cluster information and other information. We use a Microsoft SQL 2008

database that is stored on the same server as the Web application, as we discuss

in Section 4.4.2.

Figure 4.7 shows an overview of the most important tables. An association

links a user, a picture and a tag. Notice that the association table contains

two tag identifiers, one for the tag label and one for the original, old, tag.

We have chosen to replace, in the original associations table, all tags by their

corresponding tag labels. This way, we can easily solve the problem of syntactic

variations by converting the query to tag labels (replacing syntactic variations

by their tag label), and then searching on the ‘tagid’ column. An example is

shown in Table 4.2. Here tag 2 is identified as a syntactic variation of one or

more tags, and is assigned to tag 6, which has now become a tag label. The

same holds for tag 3, which is assigned to tag label 7.

For quick access to the syntactic variation mapping, we made a separate

table called ‘SYNTACTIC_VARIATIONS’ to store them. We could have used the

association table for this purpose (the same data is stored there), but we would

need to query a much larger table each time a syntactic variation had to be

53

IMAGES

PK picid

userid

title

secret

serverid

farm

orig_secret

SYNTACTIC_VARIATIONS

PK,FK1 taglabel

PK,FK2 old_tagid

TAGS

PK tagid

tagname

ASSOCIATIONS

PK id

FK2 tagid

old_tagid

userid

FK1 picid

contains

contains

Maps

variations

Figure 4.7: XploreFlickr.com: The tables in the database

Table 4.2: An example of the syntactic variations and tag labels
Old associations table

id tagid userid picid
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4

New associations table
id tagid old_tagid userid picid
1 1 1 1 1
2 2 6 2 2
3 3 7 3 3
4 4 4 4 4

retrieved. Furthermore, the ‘TAGS’ table stores the mapping between the tag

ids and the tag names. The table ‘IMAGES’ contains Flickr-specific information.

Without this information we could not have rendered the pictures on the results

page, the source URL is created by using a combination of this information. We

decided not to store the URLs in the database as these might change when the

Flickr decides to construct the URLs in a different way.

When the user submits a query, the search methods ‘NHC’ and ‘NHC mod-

ified’ return the pictures which meet the query. For each tag in the query the

methods present their associated non-hierarchical clusters, if there are any for

the tags in that query. This information is a textual representation. An example

54

of this is given in Figure 4.8.

Figure 4.8: XploreFlickr.com: An example of a non-hierarchical cluster repre-
sentation

Hierarchical Clustering

For the hierarchical clustering, we stored all the information about the clusters

internally, i.e., in-memory. We actually implemented a service which operates

on a JGraphT object. As the server starts, the nodes and edges of the trees

are read. The service contains many helper methods, for example, finding a

child of a tag, the parent of a tag, or the siblings of tag. For the syntactic

variation detection the hierarchical clustering methods make also use of the

table ‘SYNTACTIC_VARIATIONS’.

When the user submits a query, the search methods ‘HC’ and ‘HC modified’

also return the pictures which meet the query. For each tag in the query the

methods return information about the tag in the tree. This information is a

textual, hierarchical, representation of the tree where the actual tag is present.

The actual tag is printed bold. An example of this is given in Figure 4.9

4.4.2 Architecture

XploreFlickr.com is running on a Tomcat [31] server. We use Spring [32] together

with their ‘Web Model View Controller’ module to handle the Web application

logic. With the Spring Web MVC we do not only benefit from the MVC pattern,

but we also enjoy the power of dependency injection. Dependency injection is

55

Figure 4.9: XploreFlickr.com: A textual tree representation

a specific form of inversion of control where the concern being inverted is the

process of obtaining the needed dependency. To give an example, all classes

operate on interfaces, and not an actually objects. The objects are injected at

runtime by the Spring container, the objects to be injected are specified in xml

configuration files. This means that the classes are only dependent on interfaces

and not implementations (real objects).

For both of the clustering techniques we needed to have fast access to co-

sine values between two tags. We have chosen to store this in-memory as the

server starts up. There are approximately 12 million combinations which had

to be stored. For this purpose, the Trove library is useful as the collections

of Trove have a far more smaller memory footprint than the standard JDK

implementations.

We modeled the search process for both of the clustering search methods

according to the same flow of operations. When a user submits a query, the

system follows this predefined flow of operations. The difference between each

clustering search method is that each search method has its own implementation

of these operations.

4.5 Conclusions

We have seen that several tools and libraries have been used to simplify the

development of the STCS framework. For the syntactic variations and the non-

56

hierarchical semantic clustering, the most important library is the Neo4j library.

The hierarchical semantic clustering benefited the most from the JGraphT li-

brary. Throughout the implementation the collections library Trove proved to

be a valuable resource for high performance collections. Furthermore, the Web

application development is greatly simplified by using Spring Web MVC.

57

Chapter 5

Evaluation

In this chapter we present and explain the results of removing syntactic varia-

tions, creating semantic clusters, and the improvement of search and exploration

in tag spaces, i.e., we present and explain the complete STCS framework. In

Section 5.1 we evaluate the detection of syntactic variation. In Section 5.2 we

discuss the results obtained from our semantic clustering process. Section 5.3

evaluates our search results, based on the three aspects as stated in Section 3.1.

Finally we present our conclusions from this chapter in Section 5.3.

5.1 Syntactic Variations

Table 5.1 shows we have 27, 401 unique tags, 50, 986 users, and 147, 132 pictures

after cleaning the data. After applying the process of removing syntactic varia-

tions, as described in Section 3.3.1, we have 25, 714 tags left. Thus, we removed

1, 687 tags and replaced each of them with their corresponding tag label. We

did not encounter any similar work in the literature where a larger data set is

used.

To build the input graph for Algorithm 1, we calculate the normalized Lev-

enshtein values for all the 27, 401 × 27, 401 combinations. For this, we employ

a Java library called SimMetrics [33]. We choose α = 0.7, because we assume

that tags combinations with lower Levenshtein values than 0.7 are no syntactic

variation of each other.

We apply a threshold value β of 0.62 (for cutting edges). This threshold

59

Table 5.1: Our data set obtained from Flickr: before and after applying syn-
tactic clustering

associations # users # resources # tags
cleaned data set 1, 231, 818 50, 986 147, 132 27, 401
final data set 1, 231, 818 50, 986 147, 132 25, 714

gives the best result on our test data set of 200 randomly chosen possible syn-

tactic variations. Some examples of syntactic identical clusters are presented

in Table 5.2. The tag on the top of every cluster, the base tag, is the most

frequently occurring tag in our data set. The other tags in that cluster are

replaced by their base tag.

Table 5.2: Some example clusters with syntactic variations
self portrait Canon EF 50mm f/1.8 II Black and white
Selfportrait Canon EF 50mm f/1.8 blackandwhite
self-portrait Canon 50mm f/1.8 Black & White
self portraits EF 50mm f/1.8 II black&white
selportrait 50mm f1.8 II blackwhite
selfportait canon 50mm f/1.8 II & black white

selbstportrait Canon EF 50mm f1.8 II
self-portraits
selfportraits
self potrait

Table 5.3 shows a cluster of 10 tags that is created when excluding step 3

of our framework. These 10 tags are actually part of a larger cluster (with a

size of 72), but for simplicity we show only 10 random tags. Clearly this cluster

is not correct as it groups several different type of lenses together. Table 5.4

shows what happens to four randomly chosen tags from Table 5.3 after including

step 3 from our framework. The different type of lenses are now separated and

grouped correctly.

In order to analyze the performance of our system, we define a test data set

X that contains 200 randomly chosen tag combinations (X ⊂ T ×T) which the

STCS framework classified as syntactic variations of each other. The distribu-

tion of the tag length for the test data set and the original data set is shown

in Figure 5.1. This figure shows that the tag lengths approximately follow the

same distribution.

The test data set X contains 313 distinct tags representing 139, 277 associa-

60

Table 5.3: Wrongly classified syntactic variations, no domain specific step
Canon EF 70-200mm f/4 L IS USM
Canon EF 24-105mm f/4L IS USM
Canon EF 24-70 f/2.8L USM
Canon EF 200mm f/2.8L II USM
Canon EF 200mm f/1.8L USM
Canon EF 24mm f/1.4L USM
Canon EF 35mm f/1.4L USM
Canon EF 50mm f/1.8 II
Canon EF 85mm f/1.8 USM

Table 5.4: Three examples of correct clusters, created by using a domain specific
step
Tag from old cluster Grouped with
Canon EF 70-200mm f/4 L IS USM Canon EF 70-200mm f/4L USM

Canon EF70-200mm f/4L IS USM

Canon EF 24-105mm f/4L IS USM CanonEF24105mmf4LISUSM
Canon EF 24-105mm f/4 L IS USM

Canon EF 24-70 f/2.8L USM Canon EF 24-70mm f/2.8 L USM
Canon EF 24-70mm f2.8L USM
Canon EF 24-70mm f/2.8L USM
EF 24-70mm f/2.8L USM

tions (U ×T ×P). We manually check all the 200 combinations in the test data

set on correctness. The framework produces 10 mistakes. Thus, for this test

data set, the precision error rate is 0.05. The 10 errors are shown in Table 5.5.

5.2 Semantic Clustering

In this section the non-hierarchical and hierarchical clustering approaches are

evaluated. In Section 5.2.1 the results of the non-hierarchical approaches are dis-

cussed and in Section 5.2.2 we have a close look at the results of the hierarchical

approaches.

5.2.1 Non-hierarchical Clustering

For the non-hierarchial clustering algorithm, we choose the threshold values

which gave the best results when performing experiments. The threshold χ

that determines whether or not a tag is added to a cluster during the initial

61

Tag length

302520151050

F
re

q
u

e
n

c
y

60,0

50,0

40,0

30,0

20,0

10,0

,0

Test data set

Tag length

302520151050

F
re

q
u

e
n

c
y

4.000,0

3.000,0

2.000,0

1.000,0

,0

Original data set

Figure 5.1: Distributions of the tag length of our syntactic variations

Table 5.5: Syntactic clustering test data set, the 10 mistakes and 10 correct
examples

10 mistakes 10 correct examples
clouds colours lavender lavendar
fars pars airbrush airbrushed

hand embroidery machine embroidery Larsphotography Larsphotography.com
clouds Colores autumn automne

Western Australia BestOfAustralia paisaje paisagem
original originalart turquoise turqoise

Bangalore mangalore nature natuur
clouds color full moon fullmoon

blueberry blackberries Main Street USA Main Street, USA
weed seed flat-coated retriever flatcoatedretriever

cluster creation is set to 0.8. For the threshold δ we choose a value of 0.7. This

threshold defines the minimum average cosine similarity when merging two sets

when the smaller one has elements that the larger set does not have.

As parameters for the function that defines the dynamic threshold ε we use

φ = 0.8, as this gave the best results after experimenting. Figure 5.2 shows a

plot of the threshold for φ = 0.8.

Figure 5.3 and 5.4 illustrate the effect of using a dynamic threshold instead

of a static one. One can notice that the maximum allowed different elements

for the dynamic threshold is not a linear function. With the constant threshold

you have more cluster sizes for which a merge never occurs than with a dynamic

threshold.

Just like with the syntactic clustering process, we create a test data set to

estimate the error rate. For this test data set, we randomly choose 100 clusters.

The distribution of the sizes of these 100 random clusters and all clusters are

62

Cluster size

302520151050

T
h
re

s
h
o
ld

0,80

0,70

0,60

0,50

0,40

0,30

0,20

0,10

0,00

Figure 5.2: The threshold distribution for φ = 0.8

Cluster size

50403020100

f(
|c

|)

12

10

8

6

4

2

0

Figure 5.3: Maximum allowed different elements for a constant threshold, with
ε = 0.2

approximately the same, as shown in Figure 5.5.

For each cluster we count the number of misplaced tags, i.e., elements that

should be placed in another cluster. The total number of tags in this randomly

selected test data set is 458 and we encounter 44 misplaced tags. Thus, for this

data set, the error rate equals 44/458 ≈ 0.096.

One should note that most of the misplaced tags are part of a large cluster

(size of 20 or larger). For example, a cluster of size 49 contained 21 misplaced

63

Cluster size

50403020100

f(
|c

|)

5

4

3

2

1

0

Figure 5.4: Maximum allowed different elements for a dynamic threshold ε, with
φ = 0.8

Cluster size

302520151050

F
re

q
u

e
n

c
y

60,0

40,0

20,0

,0

Test data set

Cluster size

302520151050

F
re

q
u

e
n

c
y

400,0

300,0

200,0

100,0

,0

Complete data set

Figure 5.5: Non-hierarchical clustering: distribution of the cluster size, NHC
Modified

tags. This cluster contains tags about subjects like ‘outdoor’ and ‘nature’.

There are also, for example, tags which represents colors. Although colors do

have something to do with ‘nature’, we mark these tags as misplaced as well.

We encounter also one error in a small cluster: {jeans, feet}.

In general, the algorithm finds many relevant clusters. Examples are {rainy,

Rain, wet, raining}, {turquoise, aqua, clear, cyan}, {iPod, iphone, mac} and

{South, north, west}. Furthermore, a lot of clusters are found that actually

contain tags from different languages. Examples of these clusters are {Praha,

64

Czech republic, praga, Czech}, {paris, frankreich, francia}, {Eau, Wasser} and

{springtime, primavera}.
To benchmark our algorithm, we also implement the original, unadapted

algorithm proposed by [3]. The difference between their approach and our

approach is that they essentially use the heuristics 1 and 3 described in Sec-

tion 3.3.2, with a constant threshold ε for heuristic 3. For the constant threshold,

we find after conducting several experiments that the best results are achieved

with a threshold of ε = 0.2.

Again, we create a test data set with 100 randomly chosen clusters to esti-

mate the error rate. The distribution of the size of these clusters and the size of

the clusters in the original data set is also shown in Figure 5.6. Both histograms

show approximately the same distribution of cluster sizes.

Cluster size

302520151050

F
re

q
u
e
n
c
y

40

30

20

10

0

Test data set

Cluster size

302520151050

F
re

q
u
e
n
c
y

200

150

100

50

0

Complete data set

Figure 5.6: Non-hierarchical clustering: distribution of the cluster size, Specia
and Motta’s algorithm

Once more, for each cluster we count the number of misplaced tags. The

total number of tags in the test data set is 467. We encounter 61 misplaced

tags, and thus, for this data set, the error rate equals 61/467 ≈ 0.131. When we

compare this error rate to the error rate of our algorithm (9.6%), we conclude,

based on the error rate on our test data set, that our algorithm outperforms the

algorithm proposed in [3]. Furthermore we see that our algorithm produces 739

clusters, and the algorithm in [3] produces 421 clusters. Thus, our algorithm

discovers more relationships between tags. The distribution of the cluster sizes

is approximately the same for both methods. A performance summary is given

in Table 5.6.

65

Table 5.6: Non-hierarchical semantic clustering, performance summary on the
test data set

Error Number Avg. Min. Max.
rate of cluster cluster cluster

clusters size size size
Specia & Motta 13.1% 421 4.6 2 63
STCS framework 9.6% 739 4.4 2 67

5.2.2 Hierarchical Clustering

To determine the thresholds (t, Dx and Ux) for the hierarchical semantic clus-

tering, we performed several experiments. Table 5.7 shows the results of these

experiments. The columns ‘original’ represent the original algorithm proposed

by [4], which uses the step-by-step method to find a path from a leaf up to a

root. The ‘modified’ column represents the adapted algorithm, which utilizes

the longest path between a leaf and a root as criterion for path selection.

Table 5.7: Evaluation of the parameters for the hierarchical semantic clustering
methods
Parameters # Tags # Tags # Tags

t Dx Ux Original Modified Original Modified Original Modified
0.4 30 30 1817 1825 367 362 1450 1463
0.4 30 50 1115 1115 255 254 860 861
0.4 50 35 1388 1393 298 295 1090 1098
0.4 100 30 792 795 192 192 600 603
0.45 30 30 1592 1601 358 354 1234 1247
0.65 30 15 960 961 268 269 692 692

We finally choose the parameters to be t = 0.40, Dx = 30 and Ux = 30.

This gave the best trade-off between the number of correct edges and the error

rate. Higher values than 0.40 for the parameter t resulted in the absence of

valid subsumption pairs. We find that this is in contrast with the findings of

[4], who reported an optimal t value of 0.80. For our data set, this value is too

high. Although the author of [4] did not investigate the topic of searching tag

spaces, the data set that is used for the semantic clustering is many times larger

than our data set. This could be a factor which influences the optimal value

of t. Figure 5.7 and 5.8 show us an example of what the difference is between

0.40 and 0.65 for the parameter t. We can see that with t = 0.65 we miss many

useful subsumption pairs.

66

Figure 5.7: An example of a hierarchical cluster obtained with parameters t =
0.65, Dx = 30 and Ux = 15.

Figure 5.8: An example of a hierarchical cluster obtained with parameters t =
0.40, Dx = 30 and Ux = 30.

To evaluate both hierarchical clustering methods, we took 91 (roughly a

third) clusters from the total data set of clusters. Figure 5.9 shows that the

distribution of the cluster sizes, of the test data set and the total data set of

the original algorithm, is approximately equal. Figure 5.10 shows the same

comparison, but this time for the results obtained from our adaption to the

algorithm of [4] (longest path instead of step-by-step). We can see that both

figures show an equal distribution of the cluster sizes, thus, we can conclude

that our test data set is representative with respect to the complete data set.

For each cluster, the proposed subsumption pairs, i.e., the edges, are eval-

uated. Each proposed subsumption pair is marked as correct, related, synony-

mous (including language variants), inverted, or noise (wholly erroneous). The

edges that are marked as correct are truly of a ‘type of’ relationship. For exam-

ple, Color → red is marked as correct, because red is a type of color. An other

example of a correct edge, which is not strictly of the relationship type ‘type

of’, is New York → Central Park. For generic terms like ‘lake’ and ‘park’, we

considered instances of lakes or parks to be reasonable children.

An example of an edge that is of type ‘related’ is restaurant → food. The

‘synonymous’ relationship type is used when the parent and the child are two

67

Cluster size

403020100

F
re

q
u

e
n

c
y

40

30

20

10

0

Hierarchical Clustering - Test data set

Test data set

Cluster size

403020100

F
re

q
u

e
n

c
y

150

100

50

0

Hierarchical Clustering - Total data set

Complete data set

Figure 5.9: Distribution of the cluster size of original semantic clustering algo-
rithm

Cluster size

403020100

F
re

q
u

e
n

c
y

40

30

20

10

0

Hierarchical Clustering Modified - Test data set

Test data set

Cluster size

403020100

F
re

q
u

e
n

c
y

125

100

75

50

25

0

Hierarchical Clustering Modified - Total data set

Complete data set

Figure 5.10: Distribution of the cluster size of the modified semantic clustering
algorithm

synonyms, or syntactic variations, this can be also in different languages. An

example of this type of edge is eyes → ojos and eyes → eye.

Inverted types of edges are edges where the actual child subsumes the actual

parent. An example of this is red → color, this is clearly wrong as red is a color,

and color is not ‘a red’. Error or noise edges contain either Flickr specific or

personal children or parents.

Table 5.8 shows what the evaluated results are for the original method pro-

posed by [4], and our adaption to that (utilizing the longest path instead of the

step-by-step method). We can see that the adapted method (with the longest

path selection criteria) has a slightly better result on the total correct and syn-

onymous relationships, i.e., more correct and less synonymous results. The

68

error rate is also approximately twice as low. Furthermore, the inverted rate is

slightly higher for the adapted method.

Table 5.8: Relationship classification for hierarchical clustering
Total Correct Related / Synonymous Inverted Error /

#edges Aspect of Noise
Original method 367 37.10% 19.35% 34.68% 3.23% 5.65%
Adapted method 360 39.70% 23.60% 30.34% 3.75% 2.62%

5.3 Searching Tag Spaces

In this section we evaluate the improvement of search and exploration in tag

spaces. In Section 5.3.1 we compare the ‘Dummy’ search engine with the sorting

algorithm of the cluster-driven search methods. Section 5.3.2 gives an overview

of the results of the syntactic variation detection. In Section 5.3.3 we look at

the results of the homonym detection and finally, in 5.3.4, we compare the extra

information given by the cluster-driven search engines.

5.3.1 Sorting the Results

In this section we compare the cluster-driven search engines (NHC, NHC Mod-

ified, HC, and HC Modified) with the ‘Dummy’ search engine. The comparison

is based on the ‘precision’ of the first 24 results when an user queries the system.

Other statistical measures like ‘accuracy’, ‘sensitivity’, or ‘specificity’ are diffi-

cult to derive. For these measures you also need to know the ‘false negatives’

and ‘true negatives’. This is difficult, because of the size of the data set. We

should have evaluate every image in the data set for every query.

To evaluate our sorting algorithm, we randomly picked 300 tags from our

data set. Subsequently we removed all the meaningless Flickr specific tags, like

‘interstingness4’, ‘copyright 2008’, and ‘bigpicture2008’. It is not possible to

evaluate the pictures when you query on terms like that. You do not know

whether a picture is correct or incorrect. After the removal process we ended

up with 107 tags. For all these 107 tags we entered a query in the ‘Dummy’

search engine and evaluated the shown results as correct (TP) or incorrect (FP).

We repeated the process for one of the cluster-driven search engines.

69

We only considered the first 24 results for every query, because this is the

number of results which is returned on the first results page. If a certain query

resulted in less than 24 results, we only considered this number of results. To

calculate the precision we used the formula as in equation 5.1.

precision =
TP

TP + FP
(5.1)

Our obtained results are shown in Table 5.9. We performed an one-tailed

Z-Test on our results to investigate whether our cluster-driven engines perform

significantly better than the ‘Dummy’ search engine. Our null hypothesis and

alternatives are defined as

u1 : mean precision cluster-driven engines

u2 : mean precision ‘Dummy’ search engine

H0 : µ1 ≤ µ2

HA : µ1 > µ2

We used an α of 0.0001, so the critical value is Z0.0001 ≈ 3.72. The Z value is

4.07. As 4.07 > Z0.0001 we reject H0. So we conclude that our cluster-driven

search engines perform significantly better than the ‘Dummy’ search engine with

respect to the ‘precision’.

Table 5.9: Obtained results from XploreFlickr.com, ‘Dummy’ vs cluster-driven
search engine

Precision Avg. # results # Syntactic
variations

‘Dummy’ engine 0.73 968 0
cluster-driven engines 0.85 1112 29

Our test data set consists of queries of only one tag, because it is not pos-

sible to randomly select queries with a length larger than one tag. You cannot

arbitrarily combine tags to construct a query. For instance, it makes no sense

to combine the tags ‘hamster’ with ‘self portrait’.

As shown in Table 5.9 the cluster-driven search engines perform significantly

better than the ‘Dummy’ search engine. Therefore we conclude, considering our

used search and sorting methods, that the cluster-driven engines also perform

70

better for queries containing more than one tag, when it comes to precision. We

illustrate this with an example, consider that the results for querying ‘Obama’

and the results for querying ‘election’ are both better with the cluster-driven

method than with the ‘Dummy’ search engine. It is then impossible to get better

results with the ‘Dummy’ search engine when you would query on a combination

of both tags.

5.3.2 Syntactic Variations

Table 5.9 shows that the number of results for the cluster-driven search engines

is much larger than the number of results for the ‘Dummy’ search engine (for

all the queries in the test data set). This is the result of the ‘syntactic variation

detection’ feature of the cluster-driven engines. For queries with no syntactic

variations the number of results is the same for both type of search engines. For

queries containing syntactic variations, like in Figure 4.5, the number of results

for the ‘cluster-driven’ engines are bigger than the results of the ‘Dummy’ search

engine. In Table 5.10 you can see five examples of syntactic variations where

the number of results is bigger for the cluster-driven engines in comparison with

the ‘Dummy’ engine.

Table 5.10: XploreFlickr.com: examples of syntactic variation detection
Results

Query ‘Dummy’ engine cluster-driven engines
clouds 4889 5647
trees 2294 4622
Selfportrait 1378 3659
animals 540 1528
drops 553 996

5.3.3 Homonym Recognition

When considering the homonym detection, we make the distinction between the

non-hierarchical and hierarchical clustering techniques.

Non-hierarchical Clustering

The method of [3] recognized 214 possible homonyms. Our adaption of that

method in the STCS framework found 368 possible homonyms. We define as a

71

possible homonym as a tag which occurs in at least 2 different clusters.

After an analysis of all proposed homonyms, we found that both methods ac-

tually did not discover many homonyms. There are just a few correct homonyms.

An example of this is the keyword ‘hot’. The system suggests, among others, the

clusters ‘vacation’, ‘Holiday’, ‘hot’, ‘journey’, ‘tourism’, ‘trip’, ‘travel’, ‘place’

and ‘hot’, ‘fire’. This is shown in Figure 5.11.

Figure 5.11: XploreFlickr.com: An example of a homonym

We have found that most of the time, the methods find ‘contexts’ for the

tags. An example of this is the tag ‘beautiful’. Because this tag occurs in

multiple different contexts, the user gets four large clusters presented where the

context of ‘beautiful’ is determined. This is shown in Figure 5.12. Another

example of a tag which can be put in different contexts, is shown in Figure 5.13.

Figure 5.12: XploreFlickr.com: An example of different contexts: ‘beautiful’

72

Figure 5.13: XploreFlickr.com: An example of different contexts: ‘daughter’

Table 5.11 shows the count of the found homonyms and contexts for the

non-hierarchical clustering search methods.

Table 5.11: XploreFlickr.com: homonym recognition results for the non-
hierarchical clusters

Possible # Homonyms # Different
homonyms contexts

NHC 214 0 1
NHC Modified (STCS) 368 1 10

Hierarchical Clustering

For the hierarchical clustering, we found that it is not possible to find an ap-

propriate value for λ, see Section 3.3.3 for more information on this threshold.

If we choose the value to be λ = 0.3, no homonyms are suggested. If we choose

λ = 0.5, then the system suggests many homonyms that are actually contexts,

just as described above.

We performed the same analysis on the suggested homonyms for the hierar-

chical clusters. The results of this analysis, with λ = 0.5, are shown in Table

5.12. Both the HC and the HC Modified method have only ‘contexts’, instead

of actual homonyms. The HC Modified search method does have slightly more

contexts suggestions. Also the total number of possible homonyms is higher.

Two examples of tags which can be put in different contexts are ‘pet’ and

‘blanket’. Figure 5.14 shows the suggested contexts for ‘pet’. The system sug-

gests a cluster with ‘dog’ and a cluster with ‘hamster’. One can see this as two

73

different contexts for the tag ‘pet’. Figure 5.15 shows the same, but this time

for the tag ‘blanket’. We see that the system suggests two contexts for ‘blanket’,

namely two types of blankets.

Table 5.12: XploreFlickr.com: homonym recognition results for the hierarchical
clusters

Possible # Homonyms # Different
homonyms contexts

HC 46 0 16
HC Modified (STCS) 54 0 20

Figure 5.14: XploreFlickr.com: An example of different contexts: ‘Pet’

Figure 5.15: XploreFlickr.com: An example of different contexts: ‘Blanket’

5.3.4 Query Information

When you search on a regular tag search engine, you do not get any extra in-

formation about your query. Homonyms won’t be detected, syntactic variations

74

are not taken into account, related tags are not shown, and relationships be-

tween tags are not revealed. This is the case with our so called ‘Dummy’ search

engine. Our cluster-driven search methods do have this features of informa-

tion presentation about a query. In this section we evaluate whether this extra

information improves the searching in a tag space as Flickr’s.

To evaluate the extra information provided by the cluster-driven search en-

gines, we picked the same 107 tags from our data set as in Section 5.3.1. For all

these 107 tags we entered a query in all our cluster-driven search engines. Thus

we performed 107×4 = 428 queries to get our results. Initially the results for all

four methods are the same, as explained in Section 3.3.3 (except for the queries

where homonyms are detected). To get different results for the four methods,

we used the information retrieved from the clusters to narrow or relax the query.

We explain this in more detail with an use case.

Consider we query on ‘laugh’. In our data set, querying on ‘laugh’ results

in pictures with laughing people, but also pictures as in Figure 5.16 are shown.

This is not what you want. A more specific query might help. Therefore we

Figure 5.16: XploreFlickr.com: An example of a picture when querying on
‘laugh’

can use the information gained from a cluster containing ‘laugh’. In Figure 5.17

this cluster is shown. We adjust the query in ‘laugh, smiling’. This improves

our results, but we see in Figure 5.18 that another cluster is retrieved based

on the tag ‘smiling’. Thus, we add also a tag from that cluster to the query.

Now our query looks like ‘laugh, smiling, laughing’ as shown in Figure 5.19.

Analyzing the results, we conclude that adding the retrieved information from

75

Figure 5.17: XploreFlickr.com: Querying on ‘laugh’

Figure 5.18: XploreFlickr.com: Querying on ‘laugh, smiling’

Figure 5.19: XploreFlickr.com: Querying on ‘laugh, smiling, laughing’

the clusters resulted not only in more results (64 versus 134), but also in more

precise results, considering the first page of the displayed results. For instance,

we now see the picture from Figure 5.20 on the first page, where the results of

the first query did not even contain this picture. Furthermore, the picture from

Figure 5.16 is not on the first page anymore. We calculated the precision for all

the 428 ‘optimized’ queries. With optimizing the query we mean, making use of

the cluster information as in the above example for the ‘laugh’ query. We tried

to achieve a precision as high as possible for every query.

To investigate whether or not the relaxation of the queries improves the

precision, we performed several z-tests. Our obtained results are shown in Table

5.13. To perform the z-tests we first define the precision averages as follows:

76

Figure 5.20: XploreFlickr.com: An example of a picture when querying on
‘laugh, smiling, laughing’

u1 : mean precision without relaxation

u2 : mean precision NHC relaxation

u3 : mean precision NHC Modified relaxation

u4 : mean precision HC relaxation

u5 : mean precision HC Modified relaxation

Table 5.13: XploreFlickr.com: Precision after query relaxation
Average Precision Standard deviation

Without relaxation 0.85 0.21
NHC 0.86 0.20

NHC Modified 0.88 0.20
HC 0.89 0.19

HC Modified 0.89 0.19

77

For each test we use an α of 0.05, so the critical value is Z0.05 ≈ 1.64. The

number of cases is for all samples equal to 107, i.e., n = 107.

First, we consider the non-hierarchical clustering method proposed by [3].

The null hypothesis and the alternative hypothesis is

H0 : µ2 ≤ µ1,HA : µ2 > µ1

The Z value is approximately 0.43. As 0.43 < Z0.05, we accept H0. So we

conclude that the extra information provided by the original non-hierarchical

clustering method does not significantly improve the precision, when compared

to the precision without relaxation.

The modified non-hierarchial does improve the precision slightly more than

the original non-hierarchical clustering method. The null hypothesis and the

alternative hypothesis in this case is

H0 : µ3 ≤ µ1,HA : µ3 > µ1

The Z value is more than twice as large, namely 1.19, but still note larger than

the critical value, 1.65. Thus, we conclude that the extra information provided

by the modified clustering algorithm also does not significantly improve the

precision when compared to the precision of a non relaxing search method.

We have found that the hierarchical clustering techniques provide better

information than the non-hierarchical clustering techniques. For the original

hierarchical clustering algorithm, proposed by [4], the null hypothesis and the

alternative hypothesis is

H0 : µ4 ≤ µ1,HA : µ4 > µ1

The Z value equals 1.75, which is higher than the critical value of 1.64. We

therefore conclude that the original hierarchical clustering algorithm does sig-

nificantly improve the precision when compared to the precision without relax-

ation.

The same is true for the modified version of the algorithm (using longest

path instead of the step-by-step approach), the Z value is even slightly higher,

78

namely 1.77. The corresponding null hypothesis and the alternative hypothesis

is

H0 : µ5 ≤ µ1,HA : µ5 > µ1

We can conclude that the hierarchical clustering techniques provide better in-

formation for improving precision on search results when user relax the queries.

Finally we can conclude that there is no significant different between the

original proposed algorithm for hierarchical clustering and our adaption to that.

A Z-Test with α = 0.05 shows that the is no significant difference between the

average precision rates of the two algorithms.

5.4 Conclusions

In this chapter, we have discussed several topics. The syntactic variations part

of the STCS framework is evaluated by using a test data set. This test data set

is manually checked for errors. We then calculated the precision error rate on

this test data set, which equals 0.05.

This chapter also contains an evaluation of the semantic clustering. Here,

we discussed the two non-hierarchical and the two hierarchical clustering tech-

niques. For the non-hierarchical clusters we considered also the precision error

in the clusters. We have seen that the precision error for the original non-

hierarchical clustering is larger than the one for the STCS version of the same

algorithm. For the hierarchical clustering techniques we evaluated a subset of

the proposed subsumption pairs. We have found that the STCS version of the

hierarchical clustering algorithm performs slightly better than the originally

proposed algorithm by [3].

For the part of improving search and exploration in tag spaces, we evaluated

4 aspects. First, we looked at the sorting of the results. We showed that the

cosine-driven sorting algorithm provides high precision rates when considering

the 24 first pictures on the results page. The syntactic variation detection is

also evaluated from the perspective of the user. Furthermore, we considered the

homonym detection for each cluster-driven search method and evaluated each

of these. Finally, we looked at the improvement of the precision rate when using

the provided information from the system. We performed several Z-tests to test

79

for the statistical significance and found that the hierarchical clusters perform

better than the non-hierarchical clusters.

80

Chapter 6

Conclusions and Future

Work

In this chapter we draw conclusions, answer our research questions, and discuss

future work. Section 6.1 answers the research questions and draws several other

conclusions. In Section 6.2 we discuss the possibilities of future work.

6.1 Conclusions

In this thesis we present the STCS framework for dealing with syntactic varia-

tions, and deriving semantic clusters. We answer the research questions in the

upcoming sections.

6.1.1 Syntactic Variations

The first research question,

How can one deal with syntactic variations and typographical mis-

takes?

is answered by the algorithm for creating syntactic clusters. For the syntactic

clustering process we propose a measure that uses the normalized Levenshtein

value in combination with the cosine value based on co-occurrence vectors. The

results show that domain specific tags can cause unwanted results. We expect

81

that this is also the case with tagging systems other than Flickr. The domain

specific step in the STCS framework is therefore highly recommended in this

context. Furthermore, abbreviations of words are not correctly clustered by the

syntactic variation clustering algorithm. This is a result of our assumption that

tag combinations are not syntactic variations of each other when the normalized

Levenshtein value is smaller than α.

6.1.2 Semantic Clustering

The second research question,

How can one deal with semantic symptoms (homonyms, synonyms,

and related tags) in tagging systems?

is answered by the comparison of two hierarchical clustering techniques and

two non-hierarchical clustering techniques. With these two types of clustering

techniques, we can provide information to systems for them to detect homonyms,

synonyms and related tags.

Non-hierarchical Clustering

The algorithm for the semantic non-hierarchical clustering process produces

promising results. We find that the algorithm is able to find clusters of tags

represented in different languages, besides the regularly semantic related tags.

An example of such cluster is {Praha, Czech republic, praga, Czech}.
There are also some problems. Certain clusters are quite large. The result of

this is that there are clusters which contain tags that are individually semanti-

cally related, but the semantic relatedness as a whole, is low. This is caused by

a large context, for example ‘outside’. Of course, many things are outside, like

‘trees’, ‘buildings’, ‘clouds’, and ‘sunny’. However, as a whole, their semantic

relatedness is low. Thus, this cluster is too large to consider it meaningful.

Nevertheless, on our test data set, the STCS version of the non-hierarchical

clustering algorithm outperforms the original method, as proposed in [3], by

using two new heuristics. The results obtained from our experiments show that

our method performs better in terms of precision, and produces finer-grained

clusters.

82

Homonyms are detected by looking at tags which appear in more than one

cluster. If a tag appears in more than one cluster, it can be considered as a

homonym. For the synonyms detection and related tags detection, the semantic

clusters are used. Within a non-hierarchical cluster, one has no information

about the structure or the type of the relationships between these tags.

Hierarchical Clustering

Like with the non-hierarchical clustering techniques, we implemented an existing

hierarchical clustering technique and an adaption to that. When considering the

precision increase of query relaxation with the knowledge that is provided by the

clustering techniques, we found that there is no significant difference between

the two implementations. We conclude that the adaption does not significantly

improve the clustering algorithm.

We propose an algorithm to find homonyms in hierarchical trees of tags by

looking at the average cosine similarity between the children and the parent

of a tag. If the average cosine similarity is below a certain threshold, the tag

can be considered to be a homonym. We find that this method does not find

homonyms, but different contexts for tags.

Synonyms are discovered by using the children or parent of a tag. With

a hierarchical clustering algorithm, one has the ability to navigate through a

cluster. This way, users can relax queries by going one level up or constrain

queries by going one level down in the tree. Related tags can then easily be

found.

6.1.3 Improving Search and Exploration in Tag Spaces

The third, and last, research question,

What kind of clustering techniques are best to be used for improving

search and exploration in tagging systems?

is answered by the evaluation of the search information in Section 5.3.4. We

conclude that querying, with information gained from hierarchical clusters, re-

sults in a significantly higher precision than querying without this information.

83

Querying with information gained from the non-hierarchial clusters did not lead

to a significantly higher precision rate.

Also the syntactic variation recognition feature resulted in significantly bet-

ter results with respect to precision and with respect to the number of results,

in comparison to a regular tagging system search engine. Furthermore, we con-

clude that using the cosine similarity measure on co-occurrence data, to sort

returned images when querying, results in better results with respect to preci-

sion.

6.2 Future Work

There are several aspects of the STCS framework which could be improved.

First, we would like to improve the syntactic variation process. Our assumption

that there is probably no syntactic variation between two tags when the nor-

malized Levenshtein value is below a certain threshold, could be investigated

further. For instance, ‘New York City’ and ‘NYC’ have a low normalized Lev-

enshtein value, but in fact these tags are syntactic variations of each other. In

general, one could research how to deal with syntactic variations in combination

with abbreviations of words.

Furthermore, in this thesis we consider only two types of clustering tech-

niques: ones that produce non-hierarchical clusters, and techniques that pro-

duces hierarchical clusters. The hierarchical clusters can only be clusters of

tags (relationships between tags). It is also possible that you have a hierarchy

of clusters (relationships between clusters), but we will not consider these type

of hierarchies. Investigating these hierarchies of clusters might be interesting

for future work.

The non-hierarchical semantic clustering leaves also room for improvement.

We proposed in this thesis two new heuristics for merging similar clusters. The

condition to merge was a disjunction of the two new heuristics and the earlier

proposed heuristic. One could also consider other combinations, like a conjunc-

tion of the two new heuristics, to see if this improves the clustering process.

For the hierarchical semantic clustering process, one could consider another

criterion than co-occurrence between two tags for the subsumption model. A

84

combination with cosine similarity and co-occurrence statistics would probably

improve the proposed subsumption pairs.

For the improvement of search and exploration, by using clustering tech-

niques, one could consider collecting, and analyzing real user statistics of users

using different cluster-driven search engines. This in order to evaluate several

search methods using different clustering techniques.

85

Bibliography

[1] Fake C., Butterfield, S.: Flickr - Online photo sharing service: http:

//www.flickr.com/.

[2] Schachter, J.: Delicious - social bookmarking: http://delicious.com/.

[3] Specia, L., Motta, E.: Integrating Folksonomies with the Semantic Web.

In: 4th European Semantic Web Conference (ESWC 2007), Innsbruck,

Springer (2007) 503–517

[4] Schmitz, P.: Inducing Ontology from Flickr Tags. In: 15th World Wide

Web Conference (WWW 2006), Edinburgh, IW3C2 (2006) 206–209

[5] Sanderson, M., Croft, B.: Deriving concept hierarchies from text. In:

22nd ACM SIGIR conference on Research and development in information

retrieval (SIGIR 1999), Berkeley, ACM Press (1999) 206–213

[6] Clough, P., Joho, H., Sanderson, M.: Automatically organising images

using concept hierarchies. In: 28th ACM SIGIR conference on Research

and development in information retrieval (SIGIR 2005), Salvador, ACM

Press (2005)

[7] Heymann, P., Garcia-Molina, H.: Collaborative Creation of Communal

Hierarchical Taxonomies in Social Tagging Systems. Technical Report 2006-

10, Stanford InfoLab (2006) http://ilpubs.stanford.edu:8090/775/.

[8] van Dam, J.W.J., Vandic, D.: XploreFlickr.com: http://www.

xploreflickr.com/.

[9] Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic Grounding of Tag

Relatedness in Social Bookmarking Systems. In: 7th International Seman-

87

http://www.flickr.com/
http://www.flickr.com/
http://delicious.com/
http://ilpubs.stanford.edu:8090/775/
http://www.xploreflickr.com/
http://www.xploreflickr.com/

tic Web Conference (ISWC 2008), Karlsruhe, Vol. 5318, LNCS, Springer

(2008) 615–631

[10] Echarte, F., Astrain, J.J., Córdoba, A., Villadangos, J.: Pattern Matching

Techniques to Identify Syntactic Variations of Tags in Folksonomies. In: 1st

World Summit on The Knowledge Society (WSKS 2008), Athens, Springer,

(2008) 557–564

[11] Ding, L., e.a.: Swoogle: A search and metadata engine for the Semantic

Web. In: 13th Conference on Information and Knowledge Management

(CIKM 2004), Washington D.C. (2004) 652–659

[12] Sanger, L., Wales, J.: Wikipedia, the free encyclopedia that anyone can

edit: http://www.wikipedia.org.

[13] Page, L. and Brin, S.: Google: http://www.google.com.

[14] Miller, G.A.: Princeton University: WordNet - a lexical database for the

English language: http://wordnet.princeton.edu.

[15] Begelman, G., Keller, P., Smadja, F.: Automated Tag Clustering: Im-

proving search and exploration in the tag space. 15th World Wide Web

Conference (WWW 2006), Edinburgh (2006) 22–26

[16] Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with

eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3) (1990) 430–452

[17] Newman, M.E.J., Girvan, M.: Finding and evaluating community structure

in networks. Physical Review E 69 (2004)

[18] Kome, S.H.: Hierarchical subject relationships in folksonomies. Master’s

thesis, University of North Carolina at Chapel Hill (2005)

[19] Abel, F., Henze, N., Krause, D.: Ranking in folksonomy systems: can

context help? In: CIKM ’08: Proceeding of the 17th ACM conference

on Information and knowledge management, New York, NY, USA, ACM

(2008) 1429–1430

[20] Abel, F., Henze, N., Krause, D.: Analyzing Ranking Algorithms in Folk-

sonomy Systems. Technical report, L3S Research Center (2008) http:

//groupme.org/papers/techreport-ranking-in-folksonomies.pdf.

88

http://www.wikipedia.org
http://www.google.com
http://wordnet.princeton.edu
http://groupme.org/papers/techreport-ranking-in-folksonomies.pdf
http://groupme.org/papers/techreport-ranking-in-folksonomies.pdf

[21] Abel, F.: Welcome to GroupMe! - The Social Semantic Web: http:

//groupme.org/.

[22] Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Folkrank: A ranking

algorithm for folksonomies. In: Proc. FGIR 2006. (2006)

[23] Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing web search

using social annotations. In: WWW ’07: Proceedings of the 16th interna-

tional conference on World Wide Web, New York, NY, USA, ACM (2007)

501–510

[24] Friedman, E.D.: GNU Trove - High performance collections for Java: http:

//trove4j.sourceforge.net/.

[25] Eifrem, E.: Neo4j - The graph database: http://neo4j.org/.

[26] GraphML - file format for graphs: http://graphml.graphdrawing.org/.

[27] yWorks.: yED - powerful graph editor: http://www.yworks.com/en/

products_yed_about.html.

[28] Naveh, B.: JGraphT - free Java graph library: http://jgrapht.

sourceforge.net/.

[29] Stephenson, S.: Prototype JavaScript Framework: http://www.

prototypejs.org/.

[30] Kirda, T.: Ajax AutoComplete for Prototype: http://www.devbridge.

com/projects/autocomplete/.

[31] Apache Tomcat: http://tomcat.apache.org/.

[32] Johnson, R.: Spring - platform for Java enterprise applications: http:

//www.springsource.org/.

[33] Chapman, S.: SimMetrics package: http://sourceforge.net/projects/

simmetrics/.

89

http://groupme.org/
http://groupme.org/
http://trove4j.sourceforge.net/
http://trove4j.sourceforge.net/
http://neo4j.org/
http://graphml.graphdrawing.org/
http://www.yworks.com/en/products_yed_about.html
http://www.yworks.com/en/products_yed_about.html
http://jgrapht.sourceforge.net/
http://jgrapht.sourceforge.net/
http://www.prototypejs.org/
http://www.prototypejs.org/
http://www.devbridge.com/projects/autocomplete/
http://www.devbridge.com/projects/autocomplete/
http://tomcat.apache.org/
http://www.springsource.org/
http://www.springsource.org/
http://sourceforge.net/projects/simmetrics/
http://sourceforge.net/projects/simmetrics/

	List of Figures
	List of Tables
	1 Introduction
	1.1 Problems and Goals
	1.2 Methodology
	1.2.1 Motivation
	1.2.2 Scope

	1.3 Structure

	2 Related Work
	2.1 Similarity Measures
	2.2 Syntactic Variations
	2.3 Semantic Symptoms
	2.4 Searching Tag Spaces
	2.5 Research Motivation
	2.6 Conclusions

	3 Framework Design
	3.1 Problem Definition
	3.1.1 Removing Syntactic Variations
	3.1.2 Finding Semantically Related Tags
	3.1.3 Improving Search and Exploration in Tag Spaces

	3.2 Similarity Measures
	3.2.1 Levenshtein Distance Measure
	3.2.2 Co-occurrence Data and the Cosine Similarity

	3.3 STCS Framework
	3.3.1 Removing Syntactic Variations from Tags
	3.3.2 Semantic Clustering
	3.3.3 Improving Search and Exploration in Tag Spaces

	3.4 Conclusions

	4 Framework Implementation
	4.1 Data Processing
	4.1.1 Data Collection
	4.1.2 Cleaning the Data Set

	4.2 Syntactic Variations
	4.3 Semantic Clustering
	4.3.1 Non-hierarchical Clustering
	4.3.2 Hierarchical Clustering

	4.4 Improving Search and Exploration
	4.4.1 The search methods
	4.4.2 Architecture

	4.5 Conclusions

	5 Evaluation
	5.1 Syntactic Variations
	5.2 Semantic Clustering
	5.2.1 Non-hierarchical Clustering
	5.2.2 Hierarchical Clustering

	5.3 Searching Tag Spaces
	5.3.1 Sorting the Results
	5.3.2 Syntactic Variations
	5.3.3 Homonym Recognition
	5.3.4 Query Information

	5.4 Conclusions

	6 Conclusions and Future Work
	6.1 Conclusions
	6.1.1 Syntactic Variations
	6.1.2 Semantic Clustering
	6.1.3 Improving Search and Exploration in Tag Spaces

	6.2 Future Work

	Bibliography

