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Abstract

The vision of the Semantic Web is to structure the World Wide Web in such a
way that it is not only understandable for humans, but also for computers.
At the heart of the Semantic Web lay the ontologies, that describe the
meaning of concepts in a certain domain. These are mostly created and
maintained by domain experts.

In this Bachelor Thesis we propose a rule based ontology learning pro-
cess to help domain experts with this process. First we discuss the exiting
approaches in ontology learning and pattern matching. Inspired by those
approaches, we describe a syntax to describe information extraction rules
in order to update the ontology. We show that employing ontologies in the
rules, helps them to be created in a more generic manner. This way, different
kinds of information may be extracted with the same rule.
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Chapter 1

Introduction

The Internet is a vast collection of unstructured information. For human be-
ings it is readable and understandable, but for computers it is only readable.
With the Semantic Web [3] the World Wide Web Consortium (W3C) pro-
vides a framework to add structure to the information. One of the formats
to represent this structure is the Web Ontology Language (OWL) [2].

Ontologies can be used to store domain specific knowledge in the form of
concepts with all kinds of relations between the concepts. We denote these
relationships with triples that consist of an object, predicate and a subject.
For instance the competitor relationship between two companies can be
described with ‘CompanyX competitor-of CompanyY’. With an ontology
that is well-structured, it is possible to search for specific relations. For
example the question ‘Who are the competitors of Microsoft?’ can easily be
answered.

[14] proposes a personalized news service based on Semantic Web tech-
nologies. At the heart of this news service is a knowledge base in the form of
an ontology that contains concepts with all sorts of relations between them.
By linking the concepts from the news items to the concepts in the knowl-
edge base it provides us with the possibility to retrieve news items related
to specific concepts. For instance you are able to get all the news from Mi-
crosoft and its competitors. This saves an enormous amount of time when
compared to traditional text-based searching. Besides searching for news
items the ontology can also be used for recommending news items based on
the users previous read items.

Creating and maintaining a knowledge base requires a domain expert to
invest a lot of time. Certain events in the news will cause relations to stop
being valid. For instance, if Microsoft buys Google, it means that the com-
petitor relation between these companies no longer exists. In this bachelor
thesis we will focus on a (semi)automatic way of information extraction from
financial news with the purpose to decrease the time needed to maintain a
knowledge base.
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1.1 Research Goal

The main problem with domain ontologies is that it requires expert knowl-
edge and it is a time consuming job when building them manually. There-
fore methods for extracting knowledge from text in an automatic way are
required. Prior approaches have been focussing on lexico-syntactic patterns
for information extraction, which leaves room for ambiguity. In our approach
we will employ ontologies to create lexico-semantic patterns.

1.1.1 Research Question

In this thesis we will focus on pattern-based information extraction from
financial news items. To achieve the research goal, we will answer the fol-
lowing research question:

To what extent can we automatically discover and extract fi-
nancial information in emerging news by using ontologies?

In order to answer this question we will answer the following sub-questions:

1. How can we use patterns for information extraction?

2. What grammar can be used to describe information extraction rules?

3. How can we extend this grammar to employ ontologies in the infor-
mation extraction process?

1.2 Methodology

To be able to answer the research questions we use a few different method-
ologies. First we start with a literature review to evaluate the existing
technologies. Second, we construct a syntax for the rules that can be used
to extract information from text. This syntax is inspired by work that is
discussed in the literature review. After the rule syntax is formulated, an
implementation of the proposed framework is presented. To construct this
implementation some existing Java libraries will be used, like GATE [9] and
Jena [22]. The implementation will be an extension to the Hermes News
Portal [14], which is a personalized news service based on Semantic Web
techniques. To evaluate the ontology learning process based on information
extraction rules, we present two use cases that discuss the strengths and
weaknesses of the approach.

1.3 Structure

The structure of this thesis is as follows.
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In chapter 2 we focus on the related work, where we first discuss natural
language processing in general is discussed, followed by the ontology learning
process. Then we focus on pattern matching and the existing approaches.
We conclude this chapter with two examples of ontology learning projects.

Chapter 3 discusses the formulation of the rule syntax and the features
that can be used in the construction of the rules. We also discuss how
ontologies can be employed to add semantics to the rules.

After the formulation of the rule syntax, chapter 4 discusses the imple-
mentation that employs the information extraction rules to extract informa-
tion from news items.

The evaluation in chapter 5 presents two extensive use cases to highlight
the strengths and weaknesses of the proposed approach.

Chapter 6 concludes this thesis with the conclusions where we give an
answer to the formulated research question. In the end we identify future
research directions.
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Chapter 2

Related Work

When dealing with a knowledge based system it is important to construct
and maintain a good information base. This chapter discusses existing tech-
niques in the (semi)automatic information extraction from text. First in
section 2.1, we will present a short introduction to the field of Natural Lan-
guage Processing (NLP). Section 2.2 will discuss ontology learning, followed
by section 2.3 which will tackle the pattern matching approach for informa-
tion extraction. We conclude this chapter with section 2.4 which will show
two examples of information extraction systems.

2.1 Natural Language Processing

Alan Mathison Turing proposed in [24] that if a human judge engages in
a natural language conversation with one human and one machine, each of
which tries to appear human, and the judge could not distinguish the human
from the computer, the computer has passed the intelligence test. A small
part of the intelligence comes from the processing of the natural language.

We distinguish two forms of natural language processing. First, natural
language generation concentrates on creating human readable text from well-
structured computer databases. Second, natural language understanding
which has as goal to convert human readable text into formal representations
that are understandable for the computer.

For our research, we will focus on the understanding of human languages.
By ‘understanding’ we mean, knowing what a word represents in the current
context and how to relate it to other concepts in a meaningful way.

In the field of natural language processing, there are numerous soft-
ware packages available. We have chosen the General Architecture for Text
Engineering (GATE) [9] for text processing, because it is widely used and
the pipeline architecture enables new processing components to be easily
plugged in.
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2.1.1 General Architecture for Text Engineering (GATE)

The General Architecture for Text Engineering is a text annotation frame-
work which provides both a graphical development environment and a Soft-
ware Development Kit (SDK). GATE can be used for the development and
deployment of software applications that employ natural language process-
ing techniques. One of the advantages of GATE is its modular structure.
This enables developers and researcher, besides using out-of-the-box com-
ponents, to create their own components and adapt the system to their
needs.

Additionally, GATE is employed with several information extraction
tools, one of which is a Java Annotation Patterns Engine (JAPE) [10]. JAPE
provides finite state transduction over annotations based on regular expres-
sions. In our research we will implement a rule engine that processes the
rules in a similar manner.

2.2 Ontology Learning

A great deal of the technologies that employ the Semantic Web, as proposed
by [3], rely on ontologies. As [15] and [16] describe, the term ontology comes
from the field of philosophy that is concerned with the study of being or
existence. In the 1980’s researchers in the Artificial Intelligence field have
adopted the term to refer to both a theory of a modeled world and a compo-
nent of knowledge systems. The W3C proposes a Semantic Web standard,
OWL [2], to formally describe ontologies as specifications of conceptualiza-
tions.

The ontology consists of two layers, the Terminological-Box (TBox) and
the Assertion-Box (ABox) [1]. The TBox is the description of a domain in
the form of a terminology, for instance a set of classes and properties. The
ABox contains the actual knowledge about the individuals in the domain.

In ontology learning we deal with the acquisition of knowledge, and in
this context, particularly the acquisition of knowledge from text. Ontol-
ogy learning distinguishes itself from general knowledge acquisition in three
ways. First, because of the Semantic Web that is generally involved with
ontology learning, it attracts researches from a very broad variety of dis-
ciplines: knowledge representation, logic, philosophy, databases, machine
learning and natural language processing. Second, ontology learning com-
monly focuses on the extraction from and for Web content instead of homo-
geneous data collections. Third, the systematic evaluation methods that are
used in machine learning are now being applied to ontology learning. Due to
those well-defined evaluation methods, only competitive and demonstrable
approaches survive. [6]

The ontology learning layer cake [6], shown in figure 2.1, distinguishes six
tasks in ontology learning. In our approach we will use semantic-based rules
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to identify concepts and relations between concepts in news items, which
will cover the first five layers (from bottom to top) of the ontology learning
cake.

Figure 2.1: Ontology Learning Layer Cake

To cope with ontologies we use the Jena [22] package, which provides a
Semantic Web framework for Java.

2.3 Pattern Matching

Ontology learning can be done in several ways. For instance, concept induc-
tion, which tries to define a hypothesis about a relation, that is consistent
with examples. [20] proposes concept induction by using a term subsump-
tion formalism and a learning algorithm to construct a knowledge base. [21]
gives a comparison of the different methods that can be used to create on-
tologies from text, for instance clustering, association rules, classification
and conception mining. In our approach we will focus on pattern matching.
The major advantage of pattern matching above statistical methods is that
pattern matching only requires one expressed instance of a relation while
others require a statistically significant number of expressed relations [17].

[17, 18] proposes the use of lexico-syntactic pattern based information
extraction. This approach tries to find hyponym and hypernym relations
by discovering regular expression patterns in free text. An example is the
application of pattern 2.1 to sentence 2.2.

such NP as {NP,}* {(or—and)} NP (2.1)

... works by such authors as Herrick, Goldsmith, and Shakespeare. (2.2)

This results in the following found relationships:
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hyponym(“author”, “Herrick”)
hyponym(“author”, “Goldsmith”)

hyponym(“author”, “Shakespeare”)
(2.3)

Such patterns do not capture the context of the text. Our intent is
to explore the possibilities of adding semantics to the patterns by using
Semantic Web technologies. The main advantage of lexico-semantic patterns
are that such patterns take advantage of the corpus data which helps the
parser cope with the complexity and flexibility of real text [19].

2.3.1 ANNIE with JAPE Rules

GATE is being distributed with an Information Extraction (IE) system,
called ANNIE (A Nearly-New Information Extraction System) [11]. For in-
formation extraction ANNIE uses annotations. An annotation is character-
ized by a type and a set of features. The annotation sets store the annotation
in a structured manner and constitute independent layers of an annotation
over the text content. The generality of annotation sets enable them to
represent a wide variety of linguistic information. ANNIE relies on JAPE,
a Java Annotation Patterns Engine [10], to provide a rule-based pattern
engine to process annotated text. In JAPE rules there are a left-hand-side
(LHS) part and a right-hand-side (RHS) part. The left-hand-side consists
of an annotation pattern that may contain regular operators (e.g., ‘*’, ‘?’,
‘+’). The right-hand-side consists of annotation manipulation patterns.

There are three main modules in ANNIE. First the tokenizer, which
splits the text into simple tokens such as words, numbers, and punctuation.
Second the gazetteer lookup module, which is used to identify special key
words, like countries, currencies, or organizations. The third module is the
JAPE grammar. The following example (obtained from [10]) shows a rule
for recognizing an IP-address1 inside angled brackets:

Rule: IPAddress
({Token.kind == number}
{Token.string == "."}
{Token.kind == number}
{Token.string == "."}
{Token.kind == number}
{Token.string == "."}
{Token.kind == number}
)
:ipAddress -->
:ipAddress.Address = {kind = "ipAddress"}

(Rule 1)

1This rule ignores the range of the numbers.
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The example consists of five parts. First the definition of the rule, which
is called ‘IPAddress’ in this case. Second the rule itself, which is enclosed
by the rounded braces. This rule matches four consecutive occurrences of a
token of the kind ‘number’, followed by a dot. Third, the rule is assigned
a label, which is always denoted by a preceding colon. Fourth, information
about the annotation is transferred from the LHS of the rule using the label
just described, and annotated with the entity type (which follows it). Fi-
nally, attributes and their corresponding values are added to the annotation
[11].

ANNIE focuses on lexical-syntactic analysis, which is fairly limited. As
the lexical-syntactic patterns do not take into account the semantic context
of the text, which leaves room for ambiguity, in our approach we aim at
exploiting the lexico-semantic patterns to overcome this issue.

2.3.2 CAFETIERE

CAFETIERE (Conceptual Annotations for Facts, Events, Terms, Individ-
ual Entities, and RElations) [4] is another rule-based system for ontology
driven temporal text mining. First CAFETIERE applies several prepro-
cessing techniques to the text, i.e., tokenization, part-of-speech tagging, and
gazetteer lookup. To extract information from text, a rule notation is de-
fined. A rule has the following form:

A => B \ C / D (Rule 2)

where A represents the phrase that is recognized, B (optional) represents
the text prior to C, C defines the text elements that are part of the phrase
and D (optional) is the neighboring text immediately following C.

A simple example of a rule that would match an expression like ‘40 mg’
is:

[syn=NP, sem=QTY] => \[syn=CD], [sem=measure]/; (Rule 3)

In this rule syn and sem indicate the syntactic and respectively semantic
category, which are here NP (noun phrase) and QTY (quantity) on the left
hand side, while on the right hand side requires the syntactic category of
CD (cardinal digit) followed by the semantic category measure. If the right
hand side matches, the text will be annotated as described by the left hand
side. This rule is context free, since it has no text units to the left of \ and
none to the right of /. CAFETIERE also takes into account the ordering
of the rules. When one rule matches the text and annotates the text, the
original annotation might no longer be visible to the next rule. For instance
consider the following tokens with the corresponding syntactic and semantic
category:
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Token: Junior programmer
syn: JJ NN
sem: job

Suppose we have the following two rules:

[syn=NN] => \[syn=JJ|NN]{1,3}, [syn=NN]/; (Rule 4)

[syn=NN, sem=job] => \[syn=JJ|NN]{1,3}, [sem=job]/; (Rule 5)

Rule 4 will match the text “Junior” and “programmer” to rewrite the token
sequence as

Token: Junior programmer
syn: NN
sem:

Since “Junior programmer” is now annotated as one single text unit, rule
5 can no longer succeed. This also holds for when rule 5 is being applied
before rule 4.

In our work we will benefit from the work that is done in the CAFETIERE
project, e.g., the rule notation. The limitation for CAFETIERE is the
same as for ANNIE. As the rules are defined on lexico-syntactic level the
approach fails to include domain semantics. Both the gazetteer and the
lexico-semantic rules might benefit from an ontology-based approach.

2.4 Example Projects

2.4.1 KnowItAll

KnowItAll [12] is a system that aims at the automatic extraction of knowl-
edge from the web. By using information extraction rules, similar to the
rules described in [17, 18], a search engine and statistics they managed to
extract 54.753 facts in four days. Different from our approach is that they
use text gathered by a search engine while we use news items coming from
RSS feeds, to update the ontology. Additionally, we make use of Semantic
Web techniques, while their approach uses traditional relational database to
store the extracted relations.

2.4.2 PANKOW

Another project that tries to overcome the tedious work that comes with
the annotation of text, is PANKOW [7, 8]. As we try to exploit the lexico-
semantic patterns to extract information from news items, we differentiate
from PANKOW, because in their approach lexico-syntactic patterns are used
to annotate text found on the Web by using Google.
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Chapter 3

Rule Syntax

To be able to extract information from text we will be using rules. With
these rules patterns in the text can be described. These patterns can con-
tain new concepts that are not yet known in the knowledge base. Besides
discovering new concepts, rules can also be used for the discovery of events,
i.e., a company introduces a new product will add a new relation between
the product and the company. This chapter focuses on the formulation of
the rule syntax. In section 3.1 we will describe the syntax of the patterns
that will be used. After that, section 3.2 will describe how to describe lexico-
semantic patterns by employing ontologies in the rules. Finally we will give
some concluding remarks in section 3.3.

3.1 Patterns

The texts are mined for the occurrence of the pattern that is defined. Defin-
ing such a pattern can be done in two different ways. The first definition is
intuitive and is based on the approach proposed by Hearst [18]. The second
definition is inspired by CAFETIERE [4] and is somewhat more extended.

3.1.1 Basic Syntax

With the description of the basic syntax we will explain how one can employ
ontologies in the description of information extraction rules.

The sentence “Google introduces its new browser Chrome”, contains
three main parts. The first is Google, which is the subject. The second
is introduces, which defines the relation and the third is the object of the
relation, Chrome

The ontology consists of classes, such as companies, relations and prod-
ucts. If we assume that Google is in the ontology known as an instance of the
class Company and Introducing is an instance of the class Relation. With
Rule 6 we can annotate this sentence. In this rule, the prefix cls refers to
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a class in the ontology and the prefeix inst refers to an instance of a class
(denoted by the part after the prefix, i.e., Introducing) in the underlying
ontology. NNP stands for Proper Noun, which is a noun that starts with a
capital letter.

cls:Company inst:Introducing NNP (Rule 6)

If this rule matches a sentence, one can decide to annotate the token
that is annotated with NNP with the class Product. This requires additional
features added to the rule syntax. In the next section we will discuss how
we can define a syntax that is able to annotate the found tokens.

3.1.2 Extended Syntax

In this section we will focus on the definition of a new rule syntax that
is inspired by the syntax proposed by [4] and the programming language
Prolog. In Prolog clauses are defined as follows:

Head :- Body (Rule 7)

where head is true if body is true. Based on this we can define the syntax
of the grammar. Each rule has the following form:

A :- B \ C / D (Rule 8)

where A is the phrase that is recognized and will be annotated as such if
the right hand side is true. C represents the text elements that are part of
the phrase. B, which must be present immediately prior to C and D, which
must be present immediately following C, can used to add context to the
rule. Both, B and D are optional. A context free rule can be described as
follows:

A :- \ C / (Rule 9)

Note that we have replaced the "=>", that was proposed in [4], with ":-",
because we found "=>" confusing, since it is generally used as an implication
sign.

3.1.3 Regular Expression Operators

To be able to determine that certain parts of the expression are repetitive,
standard regular expression operators are used. First, to indicate that the
preceding element occurs zero or one time, we use the question mark (?).
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Second, for zero or more times an asterisk (*) should be used. Finally, to
indicate that the preceding element occurs one or more times, we use a plus
sign (+).

In addition to the unlimited operators it is also possible to add a limit to
the upper and lower boundaries. These limits should be put between braces,
e.g., {2,4} means that the preceding element must occur at least twice and
may occur up to four times.

3.1.4 Features

To be able to create strong and generic rules we propose to use the following
features: token, syntactic category and orthography. The semantic category
will be covered in section 3.2, since the lexico-semantic patterns will be
employed by using an ontology.

For each feature-value combination a comparison operator is required.
The operators that are allowed are = (equal) and != (unequal).

Token

In some rules it is often useful to employ plain text, this can be done by
using the token feature. In plain text you can define anything. An example
of using the token feature is:

[syn=NG] :-
[token="products by Google are:"]
\[syn=NN|JJ]*, [token=","]*/;

(Rule 10)

This rule matches a list with products manufactured by Google. The token
feature is used twice. First to indicate the context (“products by Google
are:“) and second to match a comma (“,”). The other feature, is syn will
be discussed in the next section.

The token feature might also contain wildcard characters. The asterisk
sign (*) is used to match zero or more characters and the question mark (?)
matches a single character.

Syntactic Category

Another feature that can be used in the description of a pattern, is the
syntactic category of a word, denoted by syn. Examples of possible values
of the syntactic category are shown in table 3.1.
In addition to the predefined part-of-speech tags, it is also possible to define
custom values. In Rule 10 for example, NG denotes a Noun Group.
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Abbreviation Meaning
CC Coordinating conjunction
CD Cardinal number
IN Preposition
JJ Adjective
NN Noun
NNP Proper Noun
PP Pronoun
RB Adverb
UH Interjection
VB Verb, base form
VBZ Verb, 3rd person singular present

Table 3.1: Basic Part-Of-Speech Tags

Orthography

A word is defined by a set of upper and lower case letters. A feature that
can be employed to denote the orthography of a word is orth. There are
four values defined: upperInitial, allCaps, lowerCase, mixedCaps. An
example of the use of this feature is when annotating a list of names, orth
may be set to the value upperInitial.

Labels

With labels, it is possible identify specific tokens in the text. For example,
when used on the right-hand side of a rule it can be referred to on the
left-hand side. This feature can be used in the following manner:

[label=labelname] (Rule 11)

3.2 Ontologies Employed in Rules

By employing ontologies in the rules it becomes possible to add semantics
to the rules. For instance if there is a news article about Google introducing
a new product, like Chrome, and Google exists in the knowledge base it is
possible to annotate the lexical representation of Chrome as a product and
add a product-relation between Chrome and Google. In our implementation
we make use of OWL to describe ontologies. When ontologies are employed
in the rules it is possible to use one rule to describe multiple lexical repre-
sentations. In this example three features of an OWL ontology occur. First,
company is a class. Second, Google and the product are an instance of a
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class, and third the relationship between Google and the product, which is
denoted as an object property. In this section we will discuss how those three
features of the ontology can be employed in information extraction rules.

3.2.1 Classes

Classes are a group of individuals that belong together because they share
the same properties [2]. For example, Google and Microsoft both belong to
the same class: Company. Other examples of classes are: Product, People
and Country. In information extraction it is useful to look for specific classes
in the text, such that it is possible to annotate new instances of classes. A
class in a rule is denoted by the feature class.

For example, the following headline: Google introduces Chrome, can be
annotated by:

[class=Product] :-
[class=Company], [token="introduces"]
\[syn=NN, orth=upperInitial]/

(Rule 12)

Assuming that Google already exists in the ontology, this rule will anno-
tate Chrome as being of the class Product. Note that the relation between
Google and the Chrome is not yet recognized, this is an object property and
will be discussed in section 3.2.3.

Class Reference

With the classOf feature it is possible to annotate a token with the same
class as another token that precedes or follows it in the context. The value
of classOf feature needs to be same as the label feature of the token it
refers to. In the first use case in section 5.2 we show how this feature can
be used.

Subclasses

The class structure is a hierarchy. For instance, Company is a superclass
of NasdaqCompany. If we assume that Google belongs to the class Nas-
daqCompany, we can infer in rule 12, that Google also belongs to the class
Company. The other way around is of course, not per definition true.

3.2.2 Instances

An object created by a class is an instance of the class. For example, Google
and Microsoft are instances of the class Company. Instances can be used
to be more specific and are denoted by the feature inst. Instances are
generally used on the right-hand side of the rule.
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Rule 12 is an example of a triple pattern, which consists of a subject
(Google), an object (Product) and a relation (introduces) between the sub-
ject and the object. While “Relation” is also a class in the ontology, it is
possible to describe multiple lexical representations of the relation “intro-
duces” with the same pattern. Rule 13 will also match the headline Microsoft
presents Windows.

[class=Product] :-
[class=Company], [inst=Introduce, class=Relation]
\[syn=NN, orth=upperInitial]/

(Rule 13)

3.2.3 Object Properties

An object property is a property for which the value is an individual (or
instance). Employing object properties in rule makes it possible to add spe-
cific relations between two annotated instances. For example the product-
relation between Google and Chrome. In an information extraction rule we
denote the object property feature as follows:

[(inst=subject|instref=subjectref),
prop=propertyname,
class=objectclass]

(Rule 14)

To create a link from the property to the subject, there are two options. The
first is to specify the subject manually by using the inst=subject feature.
The second option is to use the instref=subjectref to refer to a labeled
token in the rule. Besides the subject, it is also required to specify the
property name and the class of the object.

To continue the previous example, we can now add the relationship be-
tween the product and the company. The following rule will match the
sentence Microsoft presents Windows and will annotate Windows as being
a product of Microsoft.

[instref=comp, prop=productBy, class=Product] :-
[label=comp, class=Company],
[inst=Introduce, class=Relation]
\[syn=NN, orth=upperInitial]/

(Rule 15)
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3.2.4 Datatype Properties

As object properties link individuals to individuals, datatype properties link
individuals to data values. An example of a datatype property of the class
Company can be the year in which it was founded.

In the rules, the datatype property is defined by:

[(inst=subject|instref=subjectref),
dataprop=propertyname,
valueref=valueref]

(Rule 16)

where the instance is again either defined by a specific instance (by using
inst) or by the reference to a instance found in the right-hand side of the
rule (by using instref). The property name can refer to any datatype
property that is defined in the ontology. The value of the data property is
denoted by the valueref feature, which refers to a token on the right-hand
side of the rule.

For example the simple sentence “Apple is founded in 1976” can be
matched by the following rule:

[instref=comp,
dataprop=founded,
valueref=year] :-
[class=Company label=comp],
[class=Relation, inst=founding]
\[syn=CD, label=year]/

(Rule 17)

3.3 Conclusion

In this section we have described the rule syntax for extracting information
from news items. We first discussed the basics of syntax and the features that
can be used. Followed by a method to employ ontologies in the rules, which
results in powerful lexico-semantic rules. The advantage of such rules is that
with the annotation of news items it is possible to look for classes in the
text, discover new instances of specific classes, create relationships between
certain instances by using object properties and add datatype properties to
instances.
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Chapter 4

Implementation

In this chapter we will discuss the implementation of the rule syntax. The
information extraction component will be an extension to the Hermes News
Portal [14], which is a framework for personalizing news, using Semantic
Web techniques. The Hermes Framework and its implementation will be
discussed in section 4.1. In section 4.2 we discuss what is done in the GATE
pipeline before the rules will be processed. The rule engine will be discussed
in section 4.3. Section 4.4 presents the the rule editor, followed by the vali-
dation procedure in section 4.5. In section 4.6 we will give some concluding
remarks.

4.1 Hermes

4.1.1 Hermes Framework

The Hermes framework [14] is a proposition of steps to be followed in order
to build a personalized news service. The system can be described by input,
consisting of RSS feeds from various sources and output, news items fulfilling
the user needs. At the heart of this personalized news service is a domain
ontology, which is used to store information about the news items. The
ontology is developed by domain experts, starting with the most salient
concepts and then refining them using generalization/specification.

In addition to manually maintaining the ontology, Hermes also provides
a series of news classification steps that help in extending the ontology.
Techniques that are used are: tokenization, sentence splitting, part-of-speech
tagging, morphological analysis and word sense disambiguation.

4.1.2 Hermes News Portal

The implementation of the Hermes framework is the The Hermes News
Portal (HNP), which allows users to formulate queries and execute them on
the domain ontology in order to retrieve relevant news items.
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For the implementation various Semantic Web techniques are employed.
The domain ontology is represented in OWL [2], querying is done with
SPARQL [23], and time functionalities were added to SPARQL, which re-
sults in tSPARQL [14]. The classification of the news articles is done using
GATE [9] and the WordNet [13] semantic lexicon. The classification occurs
prior to our rules that will actually extract the information.

4.2 Preprocessing

Before the rules can be employed to match patterns in text, a few process-
ing tasks need to be performed, like tokenisation, sentence splitting, part-
of-speech tagging, morphological analysis and word sense disambiguation,
needs to be done first.

4.2.1 GATE

This preprocessing is done using GATE (General Architecture for Text Engi-
neering), which is an environment supporting the research and development
of language processing software [9].

GATE provides a pipeline consisting of different component, each of
which will handle a different part of the language processing. The compo-
nents that are part of the pipeline, and come with GATE by default, are
in order: Document Reset, ANNIE English Tokeniser, ANNIE Gazetteer,
ANNIE Sentence Splitter and the ANNIE Part-Of-Speech Tagger.

Document Reset

The Document Reset component is used to reset the document, in this case
a news item, to its original state. It will clear the document of all its current
annotations. This enables the program to reannotate the text.

ANNIE English Tokeniser

With the tokeniser the text is split into very simple tokens, such as numbers,
punctuation, and words of different types.

ANNIE Gazetteer

A gazetteer is a list with names of for example cities, countries, companies,
days of the week, world leaders, etc. With the ANNIE Gazetteer words are
looked up in the gazetteer lists in order to classify them. The work that
is done by the ANNIE Gazetteer is limited in our implementation to some
basic and static lists like days of the week, months of the year, etc. It is
more preferable to use well defined rules in order to recognize special words.
For example, a sentence like “The conference will be attended by CEO’s like
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Steve Ballmer and Steve Jobs”, gives us the opportunity to recognize Steve
Ballmer and Steve Jobs as CEO’s. And because of the fact that we use
news items, it is also possible to adapt the underlying ontology based on
certain events. For instance, “Steve Ballmer leaves Microsoft”, informs us
that Steve Ballmer is no longer the CEO of Microsoft.

ANNIE Sentence Splitter

With the Sentence Splitter, the text is split into sentences, which is required
for the part-of-speech tagger.

ANNIE Part-Of-Speech Tagger

The ANNIE Part-Of-Speech Tagger is a modified version of the Brill taggger
[5], which produces a part-of-speech tag as an annotation on each word or
symbol [11]. The part-of-speech tags, like for example the ones described in
table 3.1, can be used in the rules to describe certain patterns.

4.3 Rule Engine

After the preprocessing is completed the rules will be addressed. At the heart
of the implementation is the Rule Engine. This component will provide the
actual information extraction.

The rules are being processed by using a finite state automaton, which is
often used in the field of language processing. An example of a deterministic
finite state automaton that matches the simple grammar (a|b)*abb is shown
in figure 4.1

In a similar manner, the text of each news article will be processed.
Figure 4.2 shows an example of the finite state machine that matches rule 15.
The tokens of a text are processed in the order in which they occur. For
instance the sentence Google introduces Chrome will be processed in the
following order. At the start, the finite state machine will be in state S0.
First the token Google will be examined. Since it matches the first transition
the machine will move to state S1. The second token, introduces, again
matches the transition to S2. Finally Chrome matches the last transition
condition, which causes the automaton to move to S3, which is a final state.

In case one of the condition to move to the next state (S0, S1, S2 or
S3) is not met, the finite state machine ends up in the Error-state, which
means that the current token-sequence doest match the rule.
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Figure 4.1: Deterministic Finite State automaton

Figure 4.2: Finite State Automaton for Rule 15

4.4 Rule Editor

With the rule editor that we have created, knowledge engineers are able
to construct rules that are used for the information extraction. Figure 4.3
shows the user-interface of the rule editor. The rule editor consists of three
parts, the rule groups, the rules, and the editor.

4.4.1 Rule Groups

The rule groups can be used to denote a group of rules. In the extraction of
information from text it is often the case that a set of patterns can be used
to extract the same information. For example, the following two sentences
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Figure 4.3: Rule Editor

both can be used to extract a product of Apple, however the pattern that
should be looked for, is different:

Apple announces iPhone 3GS

Apple iPhone 3GS goes on sale today

4.4.2 Rules

Each Rule Group consist of one or more rules. Each rule describes a one or
more patterns that are looked for in the text.

4.4.3 Editor

The interface finalIn addition we have provided the possibility to automat-
ically check the syntax of the rule.

4.4.4 Rule Order

The order of the rules is important to extract the information in the right
manner. For example, the rule shown in figure 4.3, requires that the com-
pany that occurs in the text should either exist in the ontology or in previous
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annotations in order to be recognized as such in the text. This implies that
the Company-rule should be run before the Product-rule. The order of the
rules can be changed by using the blue arrow buttons at the bottom of the
list with rule groups and rules.

4.5 Annotation Validation

After a news item leaves the GATE pipeline and the rules, that were created
using the rule editor, are processed, the patterns that were identified will be
listed in the Annotation Validator, which is shown in figure 4.4.

Figure 4.4: Annotation Validator

In this validation environment, the knowledge engineer or domain expert
can review all the identified patterns. For each pattern that is found a set
of properties is shown in the table. The first columns shows the rule that
was matched, followed by the token (or set of tokens) that was found in
the text and matched the rule. The third column contains the proposed
annotation (e.g., the left-hand side of the rule) for the token that was found.
The columns Subject Class, Predicate and Object Instance are optional and
are only used when a the class of a token or an object property is to be
annotated. The seventh column shows the number of news items in which
the pattern was identified. Finally, the last column contains a check box
that should be checked if the domain expert finds the identified pattern to
be valid.
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The list at the bottom of the user interface contains the news items (in
this case only the titles) that belong to the selected pattern.

After the domain expert has verified the annotations that were found,
they can be saved so they can be considered in the next run. For example, if
in the first run the company rule was matched, the second run might identify
a product that is developed by that company.

Clearing the news items of all annotations will remove all annotation
that were found by the rule engine and then call the Document Reset from
the GATE framework, which will make certain that all previous identified
annotations, including tokenization, gazetteer lookups and part-of-speech
tags, will be removed.

4.6 Conclusions

In this chapter we have shown the core components of the implementation
of the rule based approach for information extraction from news items. The
implementation is an extension to the Hermes News Portal, which is an
Semantic Web based approach for personalizing news. We make use of the
OWL domain ontologies that serve as the knowledge base containing news
items and domain concepts with the corresponding relations.

We employ default GATE components to annotate tokens in text prior
to the rule engine, that is based on a finite state machine to look for patterns
described by the rules. The rules can be constructed by a knowledge engineer
by using the Rule Editor, where the expert can define rule groups containing
a set of rules that extract the same information. After the text is processed,
the domain expert can use the Annotation Validator to validate the patterns
that were found by the rule engine.
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Chapter 5

Evaluation

In this chapter we evaluate the proposed approach of ontology learning by
using extraction rules. To validate the results we examine two use cases
and compare the extracted information by the rules with the information
extracted by a domain expert.

5.1 Introduction

To evaluate the proposed approach we employ two use cases. For each use
case we will construct a set of rules that looks for a certain pattern. We
propose a very strict rule and a rule that is a little more relaxed and generic.

In the first use case we will create rules that try to identify new instances
of certain classes. In the second use case we the rule helps in identifying a
product that is created by a company.

5.2 Use Case 1: Discovering Classes

Many texts contain lists with tokens that belong to the same semantic class.
If at least one of the tokens is already known in the ontology or annotated
as such, it is possible to annotate the others in the list as well.

5.2.1 Headlines

The headlines for this use case are as follows:

Headline 1 Google revealed some official partners in the development of
Chrome OS, such as Acer, Adobe, ASUS and HP.

Headline 2 Steve Jobs, Bill Gates and Freedom
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Headline 3 What do Bill Gates, Steve Jobs, Steve Ballmer, Scott Mc-
Nealy and Eric Schmidt have in common?

5.2.2 GATE Preprocess Results

First the headlines are being processed by the components in the GATE
pipeline. After the news item exits the pipeline, each token is pre-annotated.
For these headlines we are only interested in the lists with instances. Each
token in such a list is either pre-annotated as a NNP (Proper Noun), a
comma (,) or the word “and”. With these annotations we create two rules.

5.2.3 Strict Pattern

With the first rule we assume that respectively Acer and Bill Gates are
already present in the ontology, belonging to respectively the class Company
and BusinessLeader.

Rule 18 tries to annotate new companies by looking for lists of compa-
nies. This requires the pattern to start with a token of the class Company
followed by either a comma or the word “and”. The part that will be anno-
tated should have the syntactic category NNP and the orthographic category
upperInitial. And this pattern should occur at least ones, to be able to
capture both the first and last name.

[class=Company] :-
[class=Company], [token=","|"and"]
\ [syn=NNP, orth=upperInitial]+ /

(Rule 18)

Results

Each time the rule is run on the list with companies, it annotates one addi-
tional company. So, to annotate the whole list of companies it requires the
text to be processed by the rule as many times as there are companies in
the list. Each time it will extract one new company.

Headline 1 If we analyze the results produced by the GATE pipeline we
see that the first headline correctly matches the pattern in the first run,
because Acer is already known. So the result of the first run will be the
annotation of Adobe as the class Company. The second and third run will
also acquire ASUS and HP from the text.

Headline 2 The second headline will fail to match the pattern, because
it does not contain a token which belongs to the class Company.
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Headline 3 The same goes for the third headline, because this is also a
list of business leaders instead of companies.

5.2.4 Relaxed Pattern

Rule 18 is strong but the strength fails to capture information that can be
caught if we relax the rule. Rule 19 is changed in two ways. It makes use of
the classOf feature, which refers to the class on the right-hand side of the
rule that is labeled with the same value. Additionally on the right-hand side
we us the OR-operator (denoted by “|”) to also capture names that contain
mixed capitals, such as Scott McNealy.

[classOf=prevItem] :-
[class=Company|BusinessLeader, label=prevItem],
[token=","|"and"]
\ [syn=NNP, orth=upperInitial|mixedCaps]+ /

(Rule 19)

Results

Headline 1 This rule still extracts the same information from the first
headline.

Headline 2 The second headline will also succeed on the first run, be-
cause Bill Gates was already known in the ontology. On the second run,
Steve Jobs precedes “Freedom”. But Freedom does not belong to the class
BusinessLeader even though it matches the pattern. So we can conclude
that however the text matches the rule, it does not extract the correct in-
formation.

Headline 3 The third headline is correctly matched by this rule and an-
notates in four runs, all potential tokens with the class BusinessLeader.

5.3 Use Case 2: Company introduces Product

Financial news items often report about a company that introduces a new
product. We can use information extraction rules to identify this product
and annotate the relationship between the product and the company. In
this use case we will list three headlines that contain information about a
company, in this case Google, introducing a new product, Chrome. Subse-
quently, we analyze the headlines and show the annotations that resulted
from the GATE pipeline. In section 5.3.3 and 5.3.4 we present a strict and
a more relaxed rule and evaluate the effect of each rule on each headline.
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5.3.1 Headlines

The headlines for this use case are as follows:

Headline 1: Google introduces shiny new browser prototype, Chrome.

Headline 2: Introducing Google Chrome.

Headline 3: Today, Microsoft presents its new browser, Gazelle.

5.3.2 GATE Preprocess Results

Again the headlines are first being processed by the components in the
GATE pipeline. After the news item exits the pipeline, each token is pre-
annotated. The partial annotations of the three headlines are shown in
tables 5.1, 5.2 and 5.3.

Token Syntactic Category Orthography
Google NNP upperInitial
introduces VBZ lowercase
shiny JJ lowercase
new JJ lowercase
browser NN lowercase
prototype NN lowercase
, ,
Chrome NNP upperInitial
. .

Table 5.1: Use Case 2 Headline 1 Pre-annotations

Token Syntactic Category Orthography
Introducing VBG upperInitial
Google NNP upperInitial
Chrome NNP upperInitial
. .

Table 5.2: Use Case 2 Headline 2 Pre-annotations

5.3.3 Strict Pattern

The first pattern assumes that Google and Microsoft already exist in the
ontology and that they are known to belong to the class Company. In
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Token Syntactic Category Orthography
Today NN upperInitial
, ,
Microsoft NNP upperInitial
presents VBZ lowercase
its PRP lowercase
new JJ lowercase
browser NN browser
, ,
Gazelle NNP upperInitial
. .

Table 5.3: Use Case 2 Headline 3 Pre-annotations

addition for the strict pattern we also presume that Chrome already exists
in the knowledge base with as type Product. However the relation between
Google and Chrome does not yet exist. The second product, Gazelle, is not
yet present in the ontology.

On the right-hand side of Rule 20, first a token of the class Company is
expected. Followed by an unspecified number of tokens, except for the dot
(.), which would indicate the end of the sentence. Subsequently there should
be an instance of Introduce of the type Relation. After which, zero or more
unspecified tokens might follow. Finally the rule demands a token of type
Product. This token will then be annotated with the annotation, specified
by the left-hand side. Here we refer to the instance of Company found on
the right-hand side and add the object property, HasProduct, to it with as
subject the product found on the right-hand side.

[instref=company, objprop=HasProduct,
class=Product] :- [class=Company,
label=company], [token=*, syn!=.],
[class=Relation, inst=Introduce], [token=*, syn!=.]
\[class=Product]/

(Rule 20)

Results

Headline 1 With these assumptions in mind we run rule 20 on the first
headline. The first token matches the first part in the rule. Then it is
immediately followed by the verb “introduces” which is an instance of the
class Relation and it also corresponds to the expected instance. Then the
headline follows with some other tokens and ends with Chrome, which is
known to be an instance of the class Product.
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While the right-hand side of the rule matches this headline, the part
between the backward and forward slash will be annotated as denoted by
the left-hand side of the rule.

Headline 2 The first token in headline 2 will be ignored by the rule while
the second token matches the rule. Then the rule expects any token except
for the dot, which will succeed on the third token in the headline, but will
fail on the last token. So the second headline does not match Rule 20.

Headline 3 This headline starts with Microsoft, which is known to be an
instance of the class Company. Followed by “presents”, which is corresponds
to the instance Introduce. The rule fails however on the dot, while Gazelle
is ignored, because it does not yet exist in the ontology as an instance of
the class Product.

5.3.4 Relaxed Pattern

The results of the strict rule show that two of the three headlines did not
match the rule. The second headline did not match, because the order of
the words was different. This requires a completely different rule. The
third headline however, failed because the last token was not yet known
to belong to the class Product. This can be solved by taking a closer look
at the annotations provided by the GATE pipeline. Table 5.1, 5.2 5.3
show that the product in all three headlines is annotated with the syntactic
category NNP (Proper Noun) and the orthographic category upperInitial.
So, instead of looking for a token with the class property set to Product, we
adjust the rule to look for a token that has this syntactic and orthographic
category, which results in Rule 21.

[instref=company, objprop=HasProduct,
Class=Product] :- [class=Company,
label=company], [token=*, syn!=.],
[class=Relation inst=Introduce], [token=*, syn!=.]
\[syn=NNP, orth=upperInitial]/

(Rule 21)

5.4 Conclusion

In the evaluation of the use of rules for information extraction we showed
some advantages and a few shortcomings. First, the use of a strict rule makes
it more likely to extract correct information, because the rule is specified to
fit a very specific pattern. However, in case the text is a little different from
the pattern, it will not be able to annotate it. Therefore we have used a
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more relaxed rule to be able to match more sentences. These rules make use
of OR-operators and different features, like classOf. We have also shown
that the sometimes it is required to run rules more than ones to extract
all the information. In addition to this, since each rule might extract new
information that can be used by another rule, it is thus desirable to keep
processing the text until there is no information left to extract by the rules
as they are defined.

We may conclude that rules are very useful in the process of ontology
learning. It requires the knowledge engineer to construct rules that are
relaxed enough to extract as much information as possible, but strict enough
to make sure that there are not too many false positives.
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Chapter 6

Conclusions and Future
Research

In this chapter we discuss our findings. In section 6.1, we answer the research
question based on our literature review and the method we have developed
and evaluated. In section 6.2 we discuss the future research.

6.1 Conclusions

We started with defining the following research question:

To what extent can we automatically discover and extract fi-
nancial information in emerging news by using ontologies?

In order to answer this question we will answer the following sub-questions:

1. How can we use patterns for information extraction?

2. What grammar can be used to describe information extraction rules?

3. How can we extend this grammar to employ ontologies in the infor-
mation extraction process?

In the literature review we have shown that for a long time research is
being done to the understanding of the natural language by computers. For
human beings it is easy to understand and to disambiguate sentences when
we have some basic knowledge of the language. Computers however, do not
grasp the semantics of the sentences. It is therefore rather difficult to extract
the right information from text. We have discussed some approaches that
help automating this extraction, like concept induction, association rules
and information extraction rules. In our approach we have focused on infor-
mation extraction rules. Such rules define a certain pattern to look for in the
text. Hearst [18] was one of the pioneers in the field and CAFETIERE [4]
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followed the same concept. With patterns, only one instance of a specific
relation is required, in contrast to statistical approaches that require a sig-
nificant amount of instances, before a relation can be identified. Inspired by
both, Hearst and CAFETIERE, we have defined our own syntax to describe
information extraction rules.

In addition to the syntactic features, we also added semantics by employ-
ing ontologies in the description of the rules. We proposed to add features
for classes, instances, object properties and datatype properties. By order-
ing the rules in a appropriate manner it is possible to annotate new instances
of classes and add properties to them.

To facilitate the domain expert in constructing these information extrac-
tion rules, we have built a rule editor. In this editor the knowledge engineer
can easily create and modify rule groups that contain a set of rules that help
in extracting the same information. By first mining the news items with the
default GATE components, like a tokeniser and a part-of-speech tagger, the
text is already partially annotated before the rule-engine will process the
rules. After the rules have been processed, the domain expert has to verify
each pattern that was found in the text by using the Annotation Validator.

In the evaluation, we have highlighted the strengths and weaknesses of
the rule-based approach for information extraction. Employing ontologies
in rules, helps them to be created in a more generic manner. This way,
different kinds of information may be extracted with the same rule. For
example, one rule can be used in order to extract new companies as well as
business leaders. We showed that with strict rules it is possible to extract a
fair amount of information. This will probably require more rules to be able
to extract a larger amount of information, since a strict rule focuses on one
specific pattern in the text. While relaxing the rule will enlarge the amount
of extracted information, the number of false positives will probably increase
as well. To limit the number of false positives, the domain expert is required
to verify each proposed annotation. We have also shown that each time the
rule-engine processes the text, new information might be extracted, because
one rule may depend on the information that was extracted by another rule
in the previous run.

Despite of the fact that maintaining the rules and the validation of the
annotations still requires a knowledge engineer, information extraction rules
certainly help domain experts in extracting information and extending the
knowledge base faster. With the help of ontologies, rules can be made more
generic in order to extract different sorts of information.

6.2 Future Research

In this bachelor thesis we have done an evaluation based on use cases to
point out the strengths and weaknesses of our approach. We propose to

32



extend this evaluation by creating a few rules and process a large amount
of articles and compare the extracted information with the information that
was extracted by a domain expert.

Besides doing a more extensive evaluation, our approach can be extended
by updating the ontology. After the tokens in the text have been annotated,
the annotations should be processed in order to update the ontology. A
way to do this is by using update rules. Such a rule can be related to the
extraction rule in order for the program to know how to proceed with the
annotations provided by the rule engine.

At this point, rules have to be defined by a domain expert. This re-
mains a rather tedious job. To overcome this, it would be interesting to
automatically learn new patterns. For instance, if Google is known to be an
instance of the class Company and Chrome of the class Product and they
are known to be related to each other, by mining text, new patterns can be
discovered. These patterns can then be used to discover new instances of
the class Company and Product with the same type of relationship.
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