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Abstract 

The paper demonstrates the application of a Markov Switching Copula model on stock-bond 

relationships. This method is sufficiently flexible as it allows dependency to be modeled 

separately in two regimes, representing alternate bear and bull market climates. Each 

regime is described by a copula with asymmetric marginal density functions, allowing the so 

described Flight to Quality, a curious negative dependence in a bear market climate, to be 

described separately from the overall positive dependence in bull market climate. The 

optimization procedure combines Markov switching and copula theory to produce a well 

fitted description of the dependence structure between national stock and government 

bond indices. The model successfully identifies flight to quality movement and permanent 

shifts in market behavior. 
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1. Introduction 

Investors diversify portfolios to reduce the risk of loss. For this reason the manner in which 

the asset classes in which they invest are dependent upon one another is of great interest. 

The measure mostly used to characterize co movements between assets, including the 

assets studied in this paper, stocks and government bonds, is the correlation  measure, often 

assumed to be constant over time and by definition assuming linear dependence. 

In most liquid national financial markets, equities tend to be (overall) positively correlated to 

government bonds. This is logically derived from economic theory: Government bonds tend 

to respond to the assumed probability of that government defaulting on its debt. The price 

of equities tend to drop when the expectation of future revenues fall. In this manner both 

are dependent on the national economic climate. 

When studying the dependence between stocks and government bonds over time it is easy 

to demonstrate that the positive dependence described above is not constant. Figure 1 

shows the change in correlation between long term government bonds and an equity index 

over the same period of time. 

As equities experience extreme drops in value investors tend to shift away from equities and 

into safer assets, such as government bonds and real estate. This has the effect that 

extremely low returns in equities tend to be accompanied by increased returns in bonds at 

such times. This effect offers and exciting diversification opportunity in times of crises and 

bear markets. Note that this negative correlation is observed in the extreme case, when 

returns on equities are exceptionally low. This phenomenon labeled a flight to quality by 

Baur and Lucey (2008).  A flight from quality is the opposite effect, when investors shift away 

from bonds and into equities, so that the price of equities increases as the price of bonds 

fall.  

Contagion and flights to/from quality are effects that cast doubt on the normality of the 

distribution between financial assets and bivariate normality between stocks and bonds is 

disproven by Gulko (2002), Capiello et al. (2006) and Rodriguez (2007), among others. 

A flight to quality tends to occur in times of economic turmoil. In this paper we shall describe 

such a situation as a bear market. Beside the bear market the model used in this research 

assumes that a market can only be in one other situation, or regime. This shall be called the 

bull regime.  

Gulko (2002) finds that government bonds are positively correlated to the nation in 

question’s stock markets in bull times. This correlation becomes a negative one when 

markets are in a bear regime, and suggests a flight to quality. This not only implies that the 

correlation that is considered in the diversification of portfolios is dangerously unstable, but 

also that the assumed dependence between stocks and government bonds will be the 

furthest from the actual short term dependence level and structure at exactly the time they 
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are needed most (during a crisis). Note that the negative correlation found by Gulko does, 

however, suggest that when markets are in a bear situation, bonds become an interesting 

diversification mechanism if used correctly and can be considered a safeguard against 

extreme drops in asset values. 

Having shown that national stock-bond relationships take on unique structures in different 

economic climates, the separate distributions should be modeled using separate copulas for 

each regime, rather than the same copulas with varying parameters as has been done so far. 

In this manner a more flexible model is achieved. 

The goal of this research is to gain insight into the dependence structure between national 

stock and bond markets. Throughout this process we will consider the possibility of a change 

in economic climate so that the model may take on different parameter in a bear regime and 

in a bull regime. The dependence structure is modeled by a student t copula with skewed 

student’s t marginal distributions and Markov switching parameters. A secondary aim is to 

detect changes in the economic environment such as a flight to/from quality, a permanent 

change at a certain point in time, or other phenomena that may arise.  

A stock-bond portfolio that ignores regime switching behavior is not considered, is likely to 

utilize incorrect value weights for the different asset possibilities. Failure to consider a 

regime switching behavior can cause misspecification of the diversifying nature of 

government bonds in exceptionally bad economic climates and would underestimate the 

level of dependence between equities in these same periods. This will cause an overreliance 

on stocks in the portfolio. When the economic climate worsens drastically, the benefits of 

the diversifying nature of the bonds will be underused and the dependence will increase 

between equities causing this asset type to lose much of its diversifying effect due to 

contagion. Okimoto (2008) shows that ignoring asymmetry in bear markets caused VAR 

calculation at the 99% level to be undervalued by an average of 10%. 

In both these situations a copula model with Markov switching parameters can fine tune 

these calculations so that an accurate risk assessment is possible, based on a risk model that 

does not rely on false the assumptions of normality and symmetry.  

The remainder of this paper will be organized as follows: I will briefly explain research done 

on the relationship of similar datasets and research done with similar models. I will then 

explain the methodology and the theory that underlies it. This will include a description of 

the copula and its marginal density functions, Markov switching theory and this theory is 

combined to derive the overall model underlying this research. Following this I shall describe 

the data that is used and why I have chosen to structure it in a certain manner. I will then 

discuss the results and lastly I will analyze these results, draw conclusions on them and 

discuss the validity of these conclusions. 
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2. Literature 

Ang and Bekaert (2002) have estimated dependence between US, UK and German equity 

markets using a Markov Switching Multivariate Normal (MSMVN) model. This has given 

weak evidence for the existence of a bear regime. Okimoto (2008) builds on Ang and 

Bekaert’s method but suggests that the normal distribution of returns in bear markets is an 

assumption that leads to a poor match of this particular model and should be adapted with 

an asymmetric distribution. Okimoto proposes a flexible framework by introducing copulas 

in a Markov semi Switching Asymmetric Copula model and uses this to measure the effect 

that international equity markets have on one another. In this manner Okimoto describes 

the bear regime with a separate (asymmetric) copula. 

The manner in which two financial markets affect one another is most often described by 

the (linear) correlation or the covariance measure. Correlation only measures the scale of 

the dependence but fails to describe the dependence structure. The contagion effect on 

international equity markets (Ang and Chen (2002)) and the flight to/from quality in stock – 

bond relationships (Baur and Lucey (2008)) show that the structure of the dependence 

should be described as well as the scale. In this manner one can achieve a much more 

accurate description of diversification possibilities, VAR calculations and other common 

financial applications. 

Ang and Chen (2002) demonstrate how financial data is seldom (bivariate) normally 

distributed. The distribution between financial markets exhibits fat tails and conditional 

correlation tends to increase in times of exceptionally high returns and in times of extremely 

low returns. 

A model that describes the stock-bond relationship thus needs to allow two (or more) 

separate regimes (market situations), each with a different error distribution and 

parameters. Furthermore the relationship in each regime should be able to take on a 

negative and/or skewed distribution. 

Hamilton (1994) describes a Markov switching model that allows precisely this flexibility 

when creating univariate models. Zhou (2006) and Capiello et al. (2006) demonstrate the 

effectiveness of modeling with different regimes and allow the copulas that describe the 

distributions in these regimes to take on different parameters. 

Rodriguez (2007) introduced a model that uses  Markov switching to alternate between 

copulas. Okimoto (2008) allows a different copula type to be associated with each of two 

regimes. 

Okimoto (2008) defines a model that describes the relationship between national equity 

markets. The author uses a Markov switching model that allows the error terms to take on 

separate asymmetrical distribution structures. As the error terms of each the models for 
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each state could be negatively related and/or skewed in nature, the skewed student t copula 

is ideal to investigate the nature of this relationship. 

A copula is a distribution function that links together two (or more) marginal distributions to 

form a joint distribution. First introduced by Sklar (1959), the approach has only historically 

recently been applied to finance, by Nelson (1999), Cherubini and Luciano (2002) and Patton 

(2004, 2006), among others. Copulas capture non linear dependence and contain all 

information about the dependence structure of a vector of random variables. 

Hansen (1994) illustrates a skewed Student’s t distribution. This distribution can take the 

form of a Student’s t distribution if its parameter λ takes on the value zero. If in addition the 

parameter ν approaches infinity, the distribution approaches a normal distribution.     

The relationship between stocks and government bonds tends to exhibit negatively 

conditional correlation in times of crisis. Baur and Lucey (2008) study the causality of these 

co movements and define the negative dependence as a flight to quality if stock markets are 

falling relative to bond markets and a flight from quality if stock markets are rising relative to 

bond markets. Cappiello et al. (2006) model this dependence by combining a Markov 

Switching Model with a GARCH model and extensions thereof. The aim of this paper is to use 

a methodology similar to that of Okimoto to allow a flexible model to be built that identifies 

bear and bull regimes and uses different copula structured to describe the distribution of the 

error term. As little research has been done into asymmetric negative dependence the 

challenge will be to find copulas that effectively describe the bivariate marginal distribution. 

3. Method 

The model will take the form of a copula with Markov switching parameters as described by 

Okimoto (2008). The main difference between this research and that of Okimoto is that the 

stock-government bond relationship is expected to be very different to the relationship 

between the international equity indices that Okimoto studied. Distributions such as the 

Gumbel copula are unable to present a negative relationship between data series. Typical 

copulas that are able to achieve this are the normal and Student’s t copula, among others. 

As the normal copulas can be achieved at certain parameter values of Student’s t copula, the 

latter shall be used to model the distribution of the data series.  

A. The model 

The overall model that will be used is given below. Its various elements and their underlying 

theories will be described in the remained of this section. 

    �� =  ����� + Σ�
� �
 ����������    ��� 1,2( 

rt is a 2x1 vector of returns of the stock and bond market at time t, µt(st) is a vector of each 

market’s marginal mean in regime st  and ∑1(st) is a diagonal matrix containing each 

(1) 
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variables’ marginal variance in regime st. St takes on values equaling 1 and 2 representing 

regime 1 and regime 2 and ∑1(st) takes on the following form: 

Σ�  =  �������� 0
0 ��������  ��� 1,2 

Each sigma above is dependent on st and is the standard deviation of the margins of the two 

markets in question and different for each regime. 

Ang and Berkaert (2002) created this model assuming that µ(st) and ∑1(st) are regime 

dependent only. Other factors that could affect these variables but are not taken up in the 

model are interest rates, their own past values.
 1

 

The states, or regimes, are an important element of the Markov switching model. In this case 

they take on the values 1 and 2 which are merely index numbers representing regimes. As 

the economic environment is often the most important factor in determining the next 

period’s economic state (see Hamilton (1989)), the stochastic process can be described as a 

Markov chain. The EM algorithm, developed by Dempster, Laird and Rubin (1977), can then 

be used to get reliable Maximum Likelihood estimates. 

Throughout this research it will be assumed that st will take on one of two states. The state 

affects the dependence structure between the two asset types, and it is assumed that the 

most significant difference in dependence structure is the change between bull and bear 

markets. If this is not the case then other changes in economic environment will maximize 

the likelihood of (1). If one supposed that the bear and bull regime are the most significant 

changes affecting the nature of the dependence structure, then a two state regime ignores 

the prospect of more specific states (recovery, depression or states that may represent a 

structural change). The returns of the time series are compared to the assumed states of the 

model to verify the validity of the bear/bull assumption and to determine if other changes, 

such as a permanent change in climate, take place. 

B. Markov Switching Model 

Markov switching models in finance are based on two or more regimes that represent 

different environments. This research assumes that two regimes exist, denoted st = 1 and st 

= 2. Several variables in a Markov Switching model are allowed to take on a separate values 

for each regime or environment at a certain time, t. 

St will follow a two-state Markov Chain with transition probability: 

                                                           
1
 Okimoto (2008) attempted to model these variables using a General Auto Regressive 

Conditional Heteroskedastic model (GARCH) with multiple time lags, but could not find such 

a relationship at a significant level. 

(2) 
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In (3), p11 denotes the probability that yt was generated from regime 1 at time t assuming 

that yt-1 was also generated from regime 1. The only alternative to the dependent variable 

being generated from state 1 is for it to be generated from state 2. The value 1-p11 thus 

denotes being in state 2 at time t given that yt-1 was generated from regime 1 also. 

��� = ���� = � |�� � = !]        !, � ∈ 1,2 

As mentioned, we presume that the bivariate dataset is drawn from a separate distribution 

for each state. In this section we will refer to these distributions as Dj(θj) (for the distribution 

in regime j). θj represents the parameters that describe distribution j. In the following 

sections one will come to realize that these bivariate distributions are copula distributions. 

The difference in structure of these distributions can be expressed by the difference in θj. If 

θ1 = θ2 the distributions are identical. The density of yt conditional on the regime is thus 

equal to the above described distribution.  

$%&� | �� = �; (�) =  *��(��       � ∈ 1,2 

The term πj will refer to the probability that st is in regime j. 

+� = �,�� = �; (�-       � ∈ 1,2   
The probability of being in regime j is generated by equation (6) assuming particular starting 

values. Following probability theory we can combine (5) and (6) to show that: 

$�&�; (� =  ∑ �+�  ∙  $�&� | �� = �; (���0� ]       ( = �(� (�� 

We now have an expression for the density of yt. The maximum likelihood of the model, 

based on yt, is thus described as follows: 

 ℒ�(� =  ∑ log �$�&�; (�5�0� ]       ( = �(� (�� 

C. The EM Algorithm 

The probability that one is in regime j at time t is dependent on the distribution parameters 

of each state θ and of course on the observation itself in the following manner: 

���� = � |&�;  (] =  6,78,�90�| :-
;�78;:� =  <9 ∙ ;�78 | �80�;:�

;�78;:�  

Hamilton (1994) describes the EM algorithm which helps to maximize the likelihood of a Markov 

Switching Model with parameter vector θ. Each variable in the optimization of the model described 

in (1) has a high dependence on matrix P, described in (3). Optimization with a large number of 

parameters becomes difficult in this case. The EM method separates the elements of P and estimates 

them separately from θ, the regime switching elements of the copula. this estimate is the taken as 

(3) 

(5) 

(7) 

(6) 

(8) 

(4) 

(9) 
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constant in the optimization of θ. This estimate of theta is then again used to determine a new 

estimate of P. This process is repeated until the parameter vector converges. The process is 

explained more specifically below. 

By assuming the values of θ, one can derive a reasonable inference about the probability of 

each observation yt having been generated by state j based on the density function of the 

distributions Dj(θj). Once we have an inference (denoted ξt|t-1) of the probability that yt is 

generated in state j, we can form a forecast of a probability that each yt+1 is generated by 

state j. The transition matrix P can be used to calculate the probability of St+1=j for j = 1,2. 

A starting value ξ1|0 must be chosen for each state as these estimates cannot be based on 

historical data. Equations (10) and (11) are performed in succession for each t. Notice that 

these estimates are then used as the independent variables of the next equation. Logically 

the algorithm continues until t = T. The inference is calculated in (10); 

=>�|� =  ?@8|8AB C D8 
�E�?@8|8AB C D8�  

Note that the denominator of (10) is the sum of all ξt|t-1 ⊙ ηt values up point t. The forecast 
is calculated in �11�; 

=>�X�|� = � ∙  =>�|� 
⊙ - denotes element by element multiplication  

 

The likelihood is described in (8) and can now be estimated by using the forecast. 

 

ℒ�(� =  ∑ log �$�&�| Y� �; (�5�0� ] =  1Z�=>�|� � ⊙ [��  

Yt-1 – denotes all observations before time t. 

Smoothed inferences are denoted ξt|T. As the notation suggests, the estimate is based on 

information up to the end of the sample, time T. The last estimate ξt|t can be denoted ξT|T 

and is equal to the smoothed inference value as all information of the sample is included in 

the value. The smoothed inference of the probability that yt was generated from regime j 

can be calculated as follows: 

=>�|5 = =>�|� ⊙ {�Z ∙ �=>�X�|5 �÷�=>�X�|�]}   
Where (÷) is the sign for element by element division. This time one works backwards from 

time ξT|T tot calculate ξT-1|T, then ξT-2|T, etc.. 

 

(12) 

(10) 

(11) 

(13) 

(14) 
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The smoothed inferences are used to guide the optimization function. The likelihood 

estimate is calculated for each regime and I multiplied by the chance of being in that regime. 

The total likelihood estimate is simple the sum of this result, as is described in sub section E. 

The smoothed inference are used to describe the probability of being in each regime, rather 

than the forecast (11) as the smoothed inference take on more extreme values, which helps 

guide each iteration of the optimization process, and as they are less dependent on the 

assumed initial inference value. 

In the next section we will take a closer look at ηt and its components, f(yt|yt;θ), for each 

state. 

D. Copula theory 

 

Copulas are standard distributions that describe the dependence structure between the 

marginal distributions of (in this case) two different markets of time length t. Once a copula 

type has been chosen the optimal parameters can be estimated by using maximum 

Likelihood (ML) theory.  Copulas can be compared to one another by its likelihood measure 

(measure of model fit), Kendall’s tau (τ) (measure of dependence), Spearman’s rho (ρ) 

(measure of linear dependence) and Lower (Upper) lambda (λL (u) ) (measure of tail 

dependence). 

 

Theorem 1 (Sklar (1959)) Let H be a distribution function in kR with margins Fs and Fb, 

then copula C exists such that for all x in R
2
. 

`�a�, a�� =  ��b��c�� ≤ b��a��, b��c�� ≤ b��a��]  

If H is continuous, C is unique and can be expressed as    

e�f�, f�� =  `�b� ��f��, b� ��f���   

Where us, ub Є R
2
 and F

-1
(u) is the inverse of the marginal distribution function of u. 

Copulas thus consist of two parts. The marginal functions FS, FB , which describe the marginal 

behavior of each time series (error tem in (1)), and a copula C, which describes the 

dependence structure between FS, and FB, and thus the dependence structure between eS 

and eb. Due to this decomposition it becomes relatively easy to study the dependence 

structure between two markets. 

The copula used is the student’s t copula, which is based on student’s t distribution. The 

probability density function and cumulative density function of this copula can be found in 

appendix A. 

  

(16) 

(15) 
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E. Marginal distributions 

The marginal densities (Fs and FB) of the student’s t copula (in both regimes) are univariate 

skewed student t distributions, each with parameters lambda and nu. This function can take 

on parameter values so that it is identical to the (symmetric) student’s t function (lambda is 

equal to zero) and to the normal function (if in addition to lambda equaling zero, the 

degrees of freedom approach infinity). The probability density function and cumulative 

density function of a skewed student’s t distribution is shown in appendix A, as described by 

Hansen (1994). 

The skew Student’s t distribution gives flexibility in modeling the values, x and y (the state-

dependent error terms of (1) and allows an asymmetrical distribution. Values in the upper 

left and lower right quadrants can be described by setting the parameter rho (of the 

student’s t copula) to a negative value. 

F. Likelihood function 

The likelihood function is obtained by differentiating H (described in (18)) by xs and xb. This is 

equal to the density of C(us,ub) times the density functions of the marginal functions on 

which C(us,ub) is based: 

ℎ�a�, a�� =  h�ij,ik�
lijlik  

The likelihood function of a copula is simply the probability density  function of the copula 

multiplied by the probability density functions of the marginal probabilities as shown below: 

 

m�(� =   n�b��a�, (�� , b��a� , (��, o] ∙  $��a�, (��  ∙  $��a� , (��   
 

 pℎ��� (� , (� , o� (  
 

As mentioned earlier, the likelihood function of each observation assumes that yt is in a 

given regime j. The log likelihood value is therefore multiplied by the chance of being in 

regime j for each observation in each of the two regimes. The sum of these results is the 

likelihood estimate of the entire Markov switching model.  

 

 

4. Data analysis 

This research is based on the weekly returns of Morgan Stanley Country Indices (MCSI) and 

benchmark indices for 10 year government bonds of the United States, United Kingdom, 

Germany and Japan. Returns are based on the closing times every Thursday (to avoid end of 

week effects). These nations have been chosen as these have stable and liquid economies 

backed by separate, stable currencies. These markets have generally not suffered from 

(17) 

(18) 
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major financial or economic blockades since the Second World War. German bonds may be 

affected by the Russian threat during the cold war, although they are now known as some of 

the most prudent bonds available due to German fiscal responsibility. 

As this research does not consider international relationships, only the relationship between 

returns in the abovementioned national asset markets, we do not need to worry about time 

(hour lags) between closing times and all returns are based on local currency investments. 

The data ranges from 1
st

 January 1987 until 1
st

 January 2009. This gives a total of 1174 

original data points (index points). 

Ideally short intervals are used as the purpose of this research is to separate extreme 

movements from calmer ones. If monthly returns were to be used the larger movements 

would be incorporated into the monthly average. The cause of the bear regime phenomena, 

flight to quality, is the aggregate selling of equities and buying of government bonds. Weekly 

returns are used rather than daily returns as this process could take one or two days as 

investors analyze different safe alternatives. 

The basic descriptive statistics of the data are given below. Certain details and graphs will 

only be shown for the data pertaining to the United States. In such a case the similar graphs 

for the other nations can be found in Appendix B.   

 

 

 

The weekly return of US Stock and US Bond indices  

 

 

 

 
 

Figure 1. The weekly return of US stock and US Bond indices 
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Note that (1) models the dependence of two time series, so their joint movement is of 

interest. The moments of extreme returns coincide and closer inspection reveals that at 

certain time points the returns of equities fall as those of bonds rise. The question remains if 

the dependence structure differs to such an extent that these points in time constitute 

significantly different distribution parameters. 

 

Varying Correlation between US stocks and Long Term US Government Bonds 

 

Figure 2. A (one year) moving window correlation of weekly returns of Morgan and Stanley Country Index 

USA and Government long term bond benchmark USA.  

Not only does the correlation vary over time, it is also fails to describe the dependence 

structure in which two asset classes are related. Several assumptions underlying this 

measure are invalid for the equity-government bond relationship.  

The descriptive statistics of the return of the mentioned asset classes are shown in figure 3 

and figure 4. The results for the dataset of the USA are typical of stock and bond markets in 

all nations’ studies. According to economic theory, stocks have a higher mean return than 

bonds and are more volatile. 

Notice that US stocks exhibit a negative skew, and bonds a positive skew. This too is typical 

of these asset classes, and can also be seen in the distribution of the other national return 

indices in appendix B. Figure 3 and figure 4 give a sound indication of the marginal density 

distribution of the dataset that will be linked by the copula. Bare in mind that it is not the 

values shown below, but the error term, that will determine the marginal density Fs or Fb. 

The marginal densities will most likely be the standardized version of the distributions shown 

below (with a mean equal to 0 and a standard deviation equal to 1). 
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MSCI Return series USA - Histogram and basic statistics 

 

 
Figure 3.  A Histogram and basic distribution statistics of the full MSCI US return series. 

 

 

 

US Benchmark Return Series - Histogram and basic statistics 

 

 
Figure 4. A Histogram and basic distribution statistics of the full US Benchmark Long term Government Bond 

return series. 

 

Following statistical theory, a Jarque-Bera recording follows a chi-squares distribution with 

two degrees of freedom and normality is rejected if the Jarque Bera statistic is higher than 

10.60 (at a 95% significance level). Notice that for these distributions and for the 

distributions in appendix B, normality is rejected. 
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5. results 

To demonstrate the presence of a dual state system, the US data has been split into extreme 

values for equity returns (in this case, below -0.02%) and regular returns (those above -

0.03%). The scatter plots of the two supposed regimes and their lines of best fit are shown 

below. This separation helped to shape the initial value in the optimization of the maximum 

likelihood of the MSSAC model. 

 

 

 

Returns in the Bear state 

 

 

Figure 5. US equity returns in the supposed “bear” regime (<-2%) and the matching return of the 10Y 

government bond index. 
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Returns in the Bull state 

 

Figure 6. US equity returns in the supposed “bull” regime (>-2%) and the matching return of the 10Y 

government bond index. 

Throughout this paper it has been assumed that states 1 and 2 of the Markov Switching 

Model represent a bear and a bull regime. As we know from econometric theory, a 

Markov Switching model can represent any change in model structure, and in this 

manner can also represent a split sample or other parameter changes. In this manner the 

two states represent different economic climates. The hypothesis that the bear and bull 

regimes are described by the two states can be tested by observing if extreme drops in 

market value coincide with the bear regime assumption. As mentioned earlier, the 

copula in each regime describes the dependence between the stock and bond time 

series. This implies that regimes will not necessarily change in extreme downturns or 

upturns, although this is suspected. 

 

The graph below shows the smoothed inferences of Markov Switching state and the 

weekly returns of equities, separately for the US and the Japan. Recall that the smoothed 

inference is a probability assumption of being in a certain state, in this case state 1. The 

smoothed inference probability of being in state 2 is by definition equal to 1 minus the 

smoothed inference probability of being in state 1. 
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US MSSAC Model - Smoothed Inferences & Equity Returns  

 

 

 

Figure 7. US MSCI index returns and smoothed inferences – a comparison. 

 

PUS  = 

 

In the case of the US the change in economic climate that is detected seems to have 

happened around 1997. The suggested change in economic climate seems to be a change 

over time.  

The economic climate of the United Kingdom also appears to change in 1997. This suggests 

that a large scale impact, such as the Asian crisis, has changed the way in which investors 

behave after this time.  
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UK MSSAC Model - Smoothed Inferences & Equity Returns  

 

 

 

Figure 8. UK MSCI index returns and smoothed inferences – a comparison. 
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German MSSAC Model - Smoothed Inferences & Equity Returns  

 

 

 

 

Figure 9. German MSCI index returns and smoothed inferences – a comparison. 

 

PGER  =   

 

 

Figure 9 indicates that Germany most clearly breaks with its past dependence structure 

as it fails to return to its past economic state after 1999.   
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Japan MSSAC Model - Smoothed Inferences & Equity Returns  

 

 

 

Figure 10. Japanese MSCI index returns and smoothed inferences – a comparison. 

 

PJAP =  

 

The Japanese economy most clearly shows momentary switches in regime before returning 

to its regular state. Despite having a lower maximum likelihood value than its counterparts, 

Japan appears to show a clear change in dependence structure in times of turmoil in the 

financial markets. Notice that the spike in 1997 corresponds to the Asian crisis. The spike in 

1998 potentially points to default of the Russian government on its bonds at that time.  
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Results of MSSAC Model 
Nation Regime     µ σ ν λ ρ Log-Likelihood 

US 1 Stock   -0.088 0.503 5.32 -0.307   2276 

  

Bond 

 

0.050 0.210 7.38 0.708 

  

  

Copula 

   

20.00 

 

-0.921 

 

 

2 Stock 

 

0.082 0.085 3.27 0.496 

  

  

Bond 

 

0.091 0.354 2.20 0.802 

      Copula       20.00   0.982   

UK 1 Stock   -0.080 0.603 10.54 -0.257   1897 

  

Bond 

 

0.070 0.300 11.20 0.700 

  

  

Copula 

   

20.43 

 

-0.930 

 

 

2 Stock 

 

0.076 0.401 6.20 0.417 

  

  

Bond 

 

0.072 0.301 9.71 0.718 0.830 

     Copula       27.83   

 

  

Germany 1 Stock   -0.055 0.703 5.48 -0.123   1977 

  

Bond 

 

0.054 0.270 7.78 0.851 

  

  

Copula 

   

9.25 

 

-0.999 

 

 

2 Stock 

 

0.091 0.401 6.90 0.417 

  

  

Bond 

 

0.060 0.201 6.91 0.850 

      Copula       20.27   0.999   

Japan 1 Stock 

 

-0.039 0.553 5.37 -0.188 

 

1622 

  

Bond 

 

0.060 0.270 7.44 0.851 

  

  

Copula 

   

5.30 

 

-0.998 

 

 

2 Stock 

 

0.071 0.401 7.00 0.317 

  

  

Bond 

 

0.052 0.171 14.35 0.810 

      Copula       10.02   0.900   

Table 1. The optimal parameter values for the MSSAC model for each nation. 

 

 

The models based on US, UK and Germany data find (relatively) low values for the first 

regime stocks while bonds in the same regime derive an average value of around 0.05. For 

the second regime stock markets attain an average stock return value around 0.08. One 

notices that the standard deviation of the second regime is typically lower than that of the 

first regime. This in combination with a higher average and a strong positive rho of the 

copula in the second regime is in sharp contrast to the low average and strong negative rho 

of the copula in the second regime. This is consistent with the flight to quality theory. The 

second regime, containing a higher average and lower standard deviation consistently also 

displays a strong positive dependence between the stock and bond returns. 

The lambda values indicate the level of skewness. Notice that these tend to be positive and 

high in the second regime and are typically, though not always, slightly negative in the 

second regime. 



   

 

22. 

 

 
The Japanese indices most clearly demonstrate a flight to quality pattern. Also here regime 

one (relative to regime 2) has a lower average combined with a higher volatility and a 

negative dependency between the asset types in question.  

 

6. Conclusion. 

The Copula based Markov Switching model provides interesting insight into the dependence 

between stocks and bonds. A flight to quality situation was discovered in the Japanese 

markets and a definite permanent change in economic climate is evident for the United 

Kingdom, United States and Germany at the start of the 1990’s.  Major changes taking place 

at this time were the Asian financial crisis, the impact of which was strongly felt in the 

western world due to an increase in globalization, the ruble crash and default on Russian 

Government bonds. The permanent changes in economic climate are most likely more 

significant than a flight to quality, which would involve relatively few data points. 

Incorporating another state in the model would make optimization exceptionally difficult 

(the two state model already has 22 parameters). In this case it would be most sensible to 

slit the data into two groups, the boundary being the point where the permanent change 

appears to take place. This would allow us to inspect each smaller set without significant 

change in economic climate. 

It is only natural that the economic environment and the manner in which financial markets 

behave change over time (consider the last few decades). For this reason further research 

should go into determining an effective time span so that enough periods of negative equity 

returns are present in the dataset but that the time span is not so great that the economic 

climate undergoes permanent structural changes. 

Another method would be to incorporate explanatory variables into the model (currently 

only an average is used.) The disadvantage of this procedure is once again that optimization 

would be more difficult yet due to the number of parameters involved. 

Furthermore one could consider the effect of interest rates on the model. Interest rates tend 

to move lower in bear markets and yet have a positive effect on bonds. This provides a 

further basis for the flight to quality phenomenon, with the additional advantage that the 

interest rate is measured and can be used as an independent variable in the model. 

An interesting pursuit for further research is most certainly the economic significance of 

ignoring the asymmetric nature of the distribution and the changes in dependency. One 

might then wish to know what assumptions can be based on phenomena such as the flight 

to quality. This paper provides a method for quantifying such observations. The next step is 

logically to use the parameter value and their standard deviations to demonstrate what 

assumptions one can make and possibly explore more effective risk management and 

newfound diversification opportunities. 
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Appendix A 

Student’s t copula 

 

Skewed student’s t distribution. 

 

This is the standard skewed student’s t distribution, which implies that the mean is zero and 

the variance equal to one. In this paper the skewed student’s t copula is multiplied by the 

state dependent standard deviation and shifted by mu (equation (1)). 
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Appendix B 

 

The weekly return of UK Stock and UK Bond indices  

 

 

 
 

Figure B1. The weekly return of US stock and US Bond indices 

 

 

The weekly return of German Stock and German Bond indices  

 

 
 

Figure B2. The weekly return of US stock and US Bond indices 
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The weekly return of Japanese Stock and Japanese Bond indices  

 

 

 

 
 

Figure B3. The weekly return of US stock and US Bond indices 
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MSCI Return series UK - Histogram and basic statistics 

 

 
Figure B4.  A Histogram and basic distribution statistics of the full MSCI UK return series. 

 

 

 

UK Benchmark Return Series - Histogram and basic statistics 

 

 
Figure B5. A Histogram and basic distribution statistics of the full UK Benchmark Long term Government 

Bond return series. 
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MSCI Return series Germany - Histogram and basic statistics 

 

 
Figure B6.  A Histogram and basic distribution statistics of the full MSCI German return series. 

 

 

 

German Benchmark Return Series - Histogram and basic statistics 

 

 
Figure B7. A Histogram and basic distribution statistics of the full German Benchmark Long term Government 

Bond return series. 
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MSCI Return series Japan - Histogram and basic statistics 

 

 
Figure B8.  A Histogram and basic distribution statistics of the full MSCI Japan return series. 

 

 

 

Japan Benchmark Return Series - Histogram and basic statistics 

 

 
Figure B9. A Histogram and basic distribution statistics of the full Japan Benchmark Long term Government 

Bond return series. 
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