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Abstract 

 

The wisdom of crowds is an effective way of reducing individual biases to get accurate 

predictions. When expertise is necessary to give an estimation for a certain problem no large 

samples can be obtained for a wisdom of crowds approach. These small expert samples can 

be combined with more advanced models that weigh individual predictions. Models that 

effectively achieve this are the Classical Model (Cooke & Goossens, 2008) and the 

Contribution Weighted Model (Budescu & Chen, 2014). However, their usefulness is limited 

by the types of data they require to function. Therefore, a new model is introduced that 

calculates expert weights to improve aggregate predictions that can be used with all types of 

numerical data. 

This model calculates the relative accuracy of an expert's past prediction to the expert’s 

peers and weighs expert’s scores accordingly. Values of future uncertainties can then be 

calculated using a weighted combination of expert predictions.  

The efficacy of the model was analysed using a total of 514 questions in 45 expert 

samples. Which exact specifications of the model optimize its effectiveness are calculated. On 

average, the model outperforms the best expert in the group and average predictions by 0.15 

and 0.05 standard deviations, respectively. It is also shown that calculated expert weights are 

positively correlated with better predictions. 

Future research is needed to determine how the model performs in practice and how 

the model’s usability compares to its alternatives. 

 

 

Key words: wisdom of crowds; expert bias; normalisation; relative accuracy; weighted 

estimation 
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1. Introduction 

 

The mean guess of a large crowd is surprisingly accurate at making predictions and usually 

exceeds the accuracy of the smartest individuals in that crowd. First shown by Galton (1907), 

a large crowd can extremely accurately estimate the weight in an ox weighing contest. 

Likewise, combining the knowledge of more players causes a higher performance when 

playing the game show The Price Is Right (Lee, Zhang, & She, 2011). It can also be used to 

explain aspects of the stock market and betting markets and to depend policy on (Surowiecki, 

2005). The wisdom of crowds, the combining of large samples, can be utilized to improve 

estimates regarding uncertain events. Nevertheless, several misconceptions exist concerning 

the wisdom of the crowds and expert judgements; people are often unable to recognize the 

increased accuracy of averaging values of different experts compared to their individual 

estimates (Larrick & Soll, 2006). This highlights the importance of the potential value there is 

in combining knowledge that is currently unrealised. This method can be applied in many fields 

of study, not only the financial or economic sector. 

 

Combining values in forecasting has been applied in multiple disciplines and can potentially 

improve estimations (Clemen, 1989). The wisdom of crowds approach works well with large, 

unbiased, and random samples. In certain cases, random sampling will not be a logical 

approach to calculate values using a wisdom of crowds approach. Some estimations can only 

be done by subject matter experts; people without sufficient knowledge will then not be able 

to contribute valuable data. Bates and Granger (1969) show how two combined forecasts can 

outperform the better forecast of the two. This analysis does require the forecasts to be 

unbiased. The idea of giving different weights to forecasts is also introduced, instead of using 

a simple average. Namely, by increasing the weights for predictions with a relatively lower 

mean square error.  

 

The wisdom of crowds is likely to increase with the size of the crowd. However, in several 

cases it is unlikely to find a sufficiently large sample to depend predictions on. Problems that 

require expertise from the respondents are defined by small sample sizes. It would therefore 

be beneficial to be able to obtain wisdom from small expert groups which is not affected by 

small sample sizes and biases. Still, from small samples wisdom can be extracted that 

exceeds the accuracy of the best expert in the group. Cooke and Goossens (2008) study the 

effectiveness of the wisdom of the crowds for cases that require expert judgement, such as 

volcanic activity and nuclear applications. By developing a model, they can improve the 

accuracy of combined estimates, even in small samples. It is important to improve the 
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accuracy of the prediction of uncertain events in studies that require expert judgements due 

to the potential societal effects accurate predictions can have.  

 

In certain fields experts have been criticized on their ability to make predictions in their field of 

expertise. Armstrong (1980) addresses this; even though experts have been unable to predict 

many important events in the past, people still seek their expertise. The Classical Model (CM) 

by Cooke and Goossens (2008) and the Contribution Weighted Model (CWM) by (Budescu & 

Chen, 2014) are wisdom of crowds models for expert data. These models combine expert 

judgements to create more accurate forecasts that outperform metrics such as the best expert 

and simple average prediction. Weighted predictions are used to combine expert judgement, 

similar to Bates and Granger (1969). In these models, weights are based on past performance. 

This way, the past is actively taken into consideration when estimating future events.   

 

However, the CM relies on predicted confidence intervals and the CWM on specific probability 

data. It is at most uncertain whether experts are good at estimating confidence intervals 

accurately. Behavioural biases can affect estimates and confidence intervals (Soll & Klayman 

2004). Therefore, a model that does not rely on confidence intervals could be less prone to 

behavioural biases. Additionally, solely using a single (average) estimation per expert would 

make a model easier to apply in practice.  

 

This paper therefore aims to find a method to combine simple mean expert judgements by 

developing a new approach in combining expert judgements that increases the accuracy of 

the aggregate prediction. As well as to test a new model that only uses simple mean 

predictions and can be used on all types of numerical data, and to quantify to what extent 

predictions can be improved using a more practical weighted model. Thus, creating a model 

that can be used with all types of numerical data and does not require confidence intervals. 

 

The paper is structured as follows. First, the current literature is reviewed. In the Methodology 

section the model used to combine expert judgements will be introduced and the analysis and 

the necessary data for the analysis will be described. Then, the results will be presented and 

analysed. Finally, the results will be evaluated in the discussion, followed by a general 

conclusion. 
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2. Literature review 

 

Wisdom of crowds 

Similarly to the aforementioned ox weighing contest, wisdom of crowds can be applied to more 

complex cases. In such cases, having a crowd with more subject knowledge does not 

necessarily improve the estimations. More complex cases, such as stock market predictions, 

intuitively require more expertise than simple wisdom of crowds examples where the amount 

of beans in a jar has to be guessed or an ox has to be weighed. Nevertheless, the expert 

crowds result in higher shared statistical errors, likely because experts have similar knowledge 

and judgement (Treynor, 1987). This is in line with the result that crowd performance 

decreases when individuals in a crowd have access to the predictions of others (Lorenz et al., 

2011). Chen et al. (2014) investigates the wisdom of crowds in the stock market using opinions 

from people on the website Seeking Alpha. By investigating keywords in people’s online posts 

their opinion is found to be a significant predictor of unexpected aspects of earning report 

releases. Correctly estimating these values could arguably be ‘priced in’, and not be a surprise 

to the market itself. However, significantly higher abnormal returns are also positively 

correlated with positive terms used on social media. Therefore, an aggregate of the crowds’ 

opinion can make more successful stock predictions. This seemingly indicates that the crowd 

is wiser than the experts that make initial earning report predictions. Therefore, the question 

is when to ask a random crowd and when to consult experts. Cooke and Goossens (2008) 

argue that experts should be consulted when enough uncertainty exists within a field of 

expertise. Then, experts will likely disagree, there will be no structural bias, and statistical error 

is likely to decrease.  

 

This does not mean that the wisdom of crowds always leads to more accurate predictions. 

Smaller samples can be affected by outliers, and if the entire group is affected by biases the 

mean results will also be (Simmons et al., 2011). Expert judgements can thus become 

inaccurate. Denrell and Fang (2008) investigate the accuracy of experts who have made 

impressive predictions in the past. They show that, even though people that have made 

unlikely predictions are often considered to be good experts, this is not the case. Having made 

bold predictions that have come true even seem to indicate an overall inaccuracy in terms of 

predictions. Not focussing on an individual but on a group of experts, therefore, has the 

potential to get rid of biases caused by recognition after making unlikely and true predictions.  
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Expert Bias 

The most prominent bias that causes inaccurate predictions by experts is overconfidence. 

Overconfidence can cause confidence interval estimates to become too narrow. When asked 

to estimate 80 or 90 percent confidence intervals, on average, overconfident answers are 

given. However, more accurate confidence intervals are estimated when also asked for a 

median value estimation (Soll and Klayman 2004). Thus, inaccuracy in estimated confidence 

intervals is also affected by the framing of the question. The appearance of overconfidence 

could alternatively be caused because experts are averse to showing their actual uncertainty. 

When experts are incentivised, overconfident predictions decrease (Cesarini, Sandewall, & 

Johannesson, 2006).  

 

Past success causes more confidence in the future. When analysing stock market analysts’ 

forecasting predictions, successful past estimations cause analysts to become overconfident 

in their abilities (Hilary & Menzly, 2006). The potential influence of self-serving bias, where 

individuals praise themselves for their success and blame other elements for failure, is also 

addressed, but no conclusive evidence is found in the analysis. On the contrary, research 

shows that unsuccessful past predictions can cause bolder predictions in the future. More risk 

will then be taken to correct these mistakes by analysts (Evgeniou et al., 2013). Therefore, 

both a successful and unsuccessful record can cause, respectively, overconfident and bold 

predictions.  

 

There are several additional biases that could logically affect expert judgement. Present 

judgements could be affected by trying to correct past imprecisions, and present predictions 

could be affected by the anchoring of past predictions. Meaning that the value of a new 

prediction can be affected by the values of old predictions (Tversky & Kahneman, 1974). 

Furthermore, experts might overestimate their own abilities by overestimating or misjudging 

their past performances. Hindsight bias causes the idea that previous uncertainties were 

already known (Fischhoff & Beyth, 1975). Even sophisticated subjects are generally unable to 

use disconfirming evidence to check predictions (Wason, 1968; Wason, 1969). This indicates 

that expert predictions may suffer because experts are inclined to only evaluate positive 

hypotheses.  

 

Nevertheless, there is also evidence that expertise reduces bias caused by overconfidence. 

The Dunning-Kruger effect states that a low amount of knowledge causes a large spike in 

overconfidence, whereas an increase in knowledge reduces the overconfidence and makes 

people more aware of their personal abilities (Kruger & Dunning, 1999). This is, however, a 
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relative measure; it is a relationship between confidence and expertise. Therefore, it does not 

argue that experts are immune to overconfidence biases. 

 

It is hard to determine which biases play a role in practice when it comes to expert judgements 

and probability estimates, or if this even is the case. For example, overconfidence appears 

when experts are asked to predict confidence intervals (Soll & Klayman 2004). Additionally, 

when asked to predict wide lower and upper bound values, the results can be affected by the 

perception of these percentages.  

 

Weighed wisdom of crowds 

In the literature, a distinction between mathematical and behavioural methods of combining 

expert judgement exists. The Classical Model by Cooke and Goossens (2008) could be 

considered a mathematical method of combining expert judgements. Combining judgements 

in groups of peers can alternatively be done with behavioural approaches. To exemplify, 

communication between peers can be used in forecasting methods (Rohrbaugh, 1981; 

Rohrbaugh, 1979; Flores & White, 1989). Flores and White (1989) conduct an experiment 

where subjects predict the Dow Jones Index both individually and in groups. The combined 

forecasts are, on average, more accurate than a combined (unweighted) prediction. This 

paper will focus on a mathematical approach, using a combination of independent 

observations to improve estimates and reduce bias. 

 

Different models have been designed in order to maximize the effectiveness of the wisdom of 

crowds approach. Cooke and Goossens (2008) use their Classical Model to combine expert 

judgements. On average, the CM effectively outperforms the values estimated by the best 

expert and the group average. The model uses a weighed system that calculates a combined 

estimation based on the performance of experts. The performance is measured using seed 

questions (or calibration questions); questions asked to the experts concerning their field of 

expertise to measure their performance. Meaning that experts must estimate a 5%, 50% and 

95% value for each question. The percentages define an experts’ perceived chance that the 

true value will fall below the 5%, 50%, or 95% quantile.  

 

Confidence estimates are used to calculate the accuracy of the predictions, and the size of 

the individual confidence intervals to calculate precision. The product of accuracy and 

precision determines the final score for each expert. The precision calculation is used to 

determine confidence for each expert. This measure’s score increases with more narrow 

confidence intervals. However, if larger precision causes more incorrect answers the algorithm 
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generally causes the overall score to decrease. Estimating narrow confidence intervals is a 

sign of confidence in an individual's personal ability to predict outcomes. The combination of 

the two elements therefore accounts for overconfidence. Additionally, the estimation technique 

that includes the estimation of a mean value, which improves the accuracy of estimated 

confidence intervals, has been shown to reduce biased estimation (Soll & Klayman, 2004).  

 

The CM has several disadvantages. It does not distinguish between accurate and slightly 

accurate answers. It uses a method similar to a chi-squared test to calculate accuracy of 

predictions of all the answers to seed questions. A chi-squared distribution is used for four 

intervals: two for values above and below the 5% and 95% quantile, and two for values 

between 5% and 50% and the 50% and 95% quantiles. Therefore, it is only decisive for 

estimates to be within the confidence interval, it does not matter how close the estimate is to 

the true value. Additionally, slight over and underestimations can cause individual scores to 

become lower than they maybe should be. For example, a relatively good expert that slightly 

overestimates values could have most of his estimates in the upper bound of his confidence 

intervals. Therefore, a relatively good expert could have a large reduction in score caused by 

the CM due to over precise estimations. Moreover, the model often causes individual experts 

to get a weighted score equal to zero. This could possibly result in an increase in statistical 

error which is generally decreased by larger sample sizes.  

 

There is some additional uncertainty regarding the CM and its effectiveness. Clemen (2008) 

elicited expert scores using the CM and out of sample data. Using these data resulted in 

different results than the original paper that used the TU Delft Structured Expert Judgement 

(SEJ) dataset. It even resulted in an adverse effect of the CM; it would only improve predictions 

in 40 percent of cases compared to the mean. In this analysis, a simple average outperforms 

the weighted score method. It is therefore questionable whether the method is effective in 

practice. The TU Delft SEJ data seems to have a wider variety than the data used by Clemen 

(2008), but the results, nevertheless, indicate uncertainty regarding reproducibility using 

different data. Certainty and consistency are important when eliciting expert wisdom since 

decisions that require certainty depend on the outcomes. Otherwise, policy makers could 

become reluctant to use (weighted) wisdom of crowds techniques in practice. 

 

Another model is the Contribution Weighted Model, used for probabilistic judgement (Budescu 

& Chen, 2014). This model, similarly to the CM, calculates a weight for individuals of the crowd 

based on their performance. Budescu and Chen (2014) argue that the CM tends to overweight 

certain experts, which can cause the model to calculate extreme outcomes. Therefore, the 
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authors argue that a model which calculates expert weights based on the performance of the 

group when the experts is included, compared to when the expert is not included, would be 

an effective method of calculating expert weights. 

 

The CWM uses probability data. The model focuses on binary events and probability estimates 

whereas the CM is used for continuous variables with confidence intervals. Meaning that 

experts have estimated an expected likelihood for an event to occur. The quadratic scoring 

rule is used to measure the aggregated predictive accuracy of the experts. The following 

formula is used to calculate the performance of the crowd for event j: 

 

(1) 𝑆𝑗 = 𝑎 + 𝑏 ∑ (𝑜𝑗𝑟 − 𝑚𝑗𝑟)
2𝑅𝑖

𝑟=1
 

 

Where a and b are constants and ojr and mjr the binary indicator of the true outcome and the 

unweighted prediction of the crowd, respectively, for each event j (j = 1,..., J) and each 

outcome r (r= 1,..., R). The performance of the crowd is then calculated using: 

 

(2) 𝑆 = 𝑎 + 𝑏 ∑ (∑ (𝑜𝑗𝑟 − 𝑚𝑗𝑟)
2

)
𝑅𝑖

𝑟=1

𝐽

𝑗=1

 

 

Afterwards, for every single expert the overall score of the group is measured with and without 

their contribution to calculate their expert score (Ci). Thus, performance is based on the 

individuals of the crowd including and excluding individual experts. Only positive scores are 

used as expert weights to calculate final predictions with. Therefore, experts are rewarded a 

higher score for providing a positive contribution to the crowd. Formula (3) is used to calculate 

the input of each individual i (i = 1,..., N). 

 

(3) 𝐶𝑖 = ∑
𝑆𝑗−𝑆𝑗

−𝑗

𝑁𝑖

𝐽

𝑗=1

 

 

There are some potential limitations to the CWM. Most notably, it can only be applied to a 

limited set of (probability) data. Additionally, it is unclear whether largely inaccurate predictions 

that converge a group average closer to the mean should cause a high individual expert score. 
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The efficacy of aforementioned models, the Classical Model and the Contribution Weighted 

Model, are analysed in their respective papers. Since the CWM (Budescu & Chen, 2014) is 

used for probabilities, a homogeneous scale from zero to one is used. Therefore, relative 

performance of the model can be expressed on this scale. The Classical Model (Cooke & 

Goossens, 2008) uses data on a variety of scales. Therefore, a different approach must be 

taken to test the model. This is done by using the model to calculate weighted predictions, 

then comparing the output to the individual experts. In 27 out of 45 cases the weighted 

prediction outperformed the unweighted prediction and the best expert. The model is also 

tested in practical situations, such as predicting the AEX and on real estate risk; where the 

true outcomes are within the confidence intervals predicted by the model. 

 

Cooke and Goossens (2008) address in their conclusion how eliciting expert judgement using 

seed questions is both expensive and time-consuming. This means that a choosing for a better 

estimation becomes a trade-off between costs and accuracy. If expert opinions using only a 

single value can be used to calculate expert weights and improve a prediction it would be 

possible to use simple past predictions to apply to future predictions. This would make the 

model easily implementable and presumably less expensive to apply.  

 

There are also more general criticisms on expert elicitation methods. Morgan (2014) argues 

that expert elicitation is not an effective method to apply in research. For example, when 

experts base their opinions on different models or methods, combining judgements could lead 

to inaccuracy. Alternatively, when making judgements, experts are unconsciously susceptible 

to biases. The availability heuristics and the anchoring and adjustment heuristic (Tversky and 

Kahneman, 1974; Kahneman, Slovic and Tversky, 1982) therefore affect predictions.  

 

In summary  

A wisdom of crowds approach can be a useful method to improve predictions. In certain cases, 

however, expertise is required since too much uncertainty exists for randomly chosen subjects 

to make predictions. But even experts suffer from biases when making predictions. Therefore, 

weighted models can be used to reduce biases and optimize combined predictions in small 

expert samples. 

 

The CWM and CM effectively outperform metrics such as the best expert of the group and the 

simple average, as was analysed in their complementary papers (Budescu & Chen, 2014; 

Cooke & Goossens, 2008). This indicates that weighted models have potential to improve 

predictions. Therefore, the hypothesis is that a weighted model will increase performance even 
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if only mean predictions are used. This paper does not necessarily aim to develop a method 

that will improve the accuracy of current models but to develop an effective model that does 

not require experts to define complex confidence intervals or give predictions that require 

binary outcomes. Thus, minimizing the possible effects of biases that come with the estimation 

of probabilities.  

 

 

3. Methodology 

 

3.1 Relative accuracy model 

 

In order to combine expert judgements a model will be used that weights experts’ scores 

performance relative to the group of experts. The intuition of the model is as follows. In general, 

experts get rewarded a higher score for outperforming their group of peers and a lower score 

for underperformance. This assessment is based on relative performance. If the entire group 

of experts performs poorly for a question, a worse performance will result in a relatively lower 

reduction of score. Similarly, when the entire group of experts is accurate, a more accurate 

result will only result in a slight increase in expert score. Moreover, when an expert performs 

contrary to the group average, the effect on the score will be larger. An accurate prediction 

will result in a higher score when the group average is inaccurate. Likewise, an inaccurate 

prediction causes a large decrease in score when the group average is accurate. The following 

equation is used to calculate expert scores (Si) for the individual expert i: 

 

(4) 𝑆𝑖 = 𝑎 +
𝑏

𝑄
∑ (|𝐺𝑞 − 𝑇𝑞| − |𝐼𝑖𝑞 − 𝑇𝑞|)

𝑄

𝑞=1
 

  

Where Q (q = 1,...,Q) is the total amount of questions, and constants b and a respectively 

affect the multiplier of the calculated score per question and the initial score per expert. Since 

different estimates require different scales, no absolute numbers can be used to calculate 

expert scores. The relative difference from an individual expert estimate (Iiq) to the group 

average of experts (Gq), in terms of the true value of the estimate (Tq), is normalized to be 

comparable between different types of questions. This is done by calculating the difference in 

terms of a z-score; the statistical difference of a prediction from the mean of the group. The 

calculation of the z-scores for individual estimations per question (Iziq) and true values per 

question (Tzq) are shown in formulas (5) and (6), respectively. Where (Eiq) is the estimation 

made by expert i, (Rq) the real value, and (Mq) the mean for question q.  
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(5) 𝐼𝑧𝑖𝑞 =
𝐸𝑖𝑞−𝑀𝑞

𝜎𝑞
  

 

(6) 𝑇𝑧𝑞 =
𝑅𝑞−𝑀𝑞

𝜎𝑞
   

 

The values Iziq and Tzq  are subsequently used to calculate a corresponding normalised value 

using a cumulative normal distribution using formulas (7) and (8). Where 𝜙 is the cumulative 

normal distribution function. This method has two advantages. Firstly, the scores are scaled 

from 0 to 1 using a cumulative normal distribution. To exemplify, average predictions are equal 

to 0.5 and values that largely exceed the mean prediction approach a value of 1. Secondly, 

the normalization takes the size of the standard deviation of a question into account. The data, 

in most cases, will not follow a normal distribution and therefore not satisfy the assumptions 

for the calculation of p-values. The scores themselves should therefore not be interpreted and 

should solely be used to enable the possibility of normalizing all expert judgements to a scale 

from 0 to 1. Since a scale from 0 to 1 is used for the calculations the group average (Gq) equals 

0.5 on this scale. What the ideal values are for the constants a and b will be analysed (see 

analysis section).  

 

(7) 𝐼𝑖𝑞 = 𝜙(𝐼𝑧𝑖𝑞)  

 

(8) 𝑇𝑞 = 𝜙(𝑇𝑧𝑖𝑞)   

 

In formula (4), the absolute difference between the group average and the true value of a 

prediction (|Gq-Tq|) calculates the distance of the true value from the group average. The 

absolute difference between the individual estimate and the true value of a prediction (|Iiq-Tq|) 

calculates how much an individual experts’ estimate differs from the true value. The difference 

between the two aforementioned aspects of the model therefore calculates how much closer 

an individual expert is to the true value than the group is. Since the values Tq and Iiq are 

measured on a normalized scale from 0 to 1, the minimal score for every question is -0.5 and 

the maximum score is 0.5. The constant b allows for weighing the scores for each question 

and can therefore be used to increase or decrease the magnitude for each question. Average 

scores per question of 0 (estimating the exact average of the group prediction) will result in an 

average weight of constant a. The score for every individual question is summated and divided 

by the total number of questions (Q). Negative scores are only obtained when experts 

repeatedly underperform. Negative expert scores are excluded from the final aggregation to 

prevent the algorithm from using estimations by underperforming experts as adverse values 
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in calculating the final estimation. The score weights (Si) for each individual i can then be used 

to combine expert weights with individual expert estimations (Ei) using the following formula: 

 

(9) 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = ∑ (𝑆𝑖 ∗ 𝐸𝑖)
𝑁
𝑖 ∑ (𝑆𝑖)

𝑁
𝑖⁄  

 

Similarly to the CWM (Budescu and Chen, 2014), this model uses a relative scoring measure, 

where predictions that add to the accuracy of the group are rewarded. However, there are 

some notable differences. This model solely needs mean estimates and can therefore be 

applied to all types of numerical data. Additionally, the model uses the relative performance of 

experts compared to the group. Therefore, it is measured how accurate an expert is relative 

to the group, instead of how much he improves the overall performance of the group. The 

CWM would reward experts with estimations that are equally wrong as the rest of the group 

and that would shift the mean estimate closer to the true value. The relative accuracy model 

only rewards experts if their predictions are relatively more accurate. This could improve 

predictions since accuracy and consistency determine the expert scores. 

 

3.2 Normalised Contribution Weighted Model 

 

The relative accuracy model has several differences compared to the Contribution Weighted 

Model (Budescu & Chen, 2014). By applying the new method of normalisation on the CWM a 

comparison between the two methods can be made. In the classical wisdom of crowds 

approach a large number of predictions (ideally by a randomly selected sample) are combined 

to get an accurate average value. The intuition behind the CWM is more in line with the original 

wisdom of crowds theory because the values of scores are determined by contribution to the 

group. For expert judgement with small sample sizes it is, however, unclear what the best 

approach is. The model formulated in equation (4) can be adjusted to let it depend on 

contribution instead of relative accuracy. In formula (10) the relative improvement of the group 

due to contribution by expert i is calculated. Where a and b are the previously used constants, 

(Mq) the mean and (Mq-i) the mean excluding expert i for question q. The exact same formulas 

cannot be used on these data since they do not include binary events. Therefore, a method 

similar to the score calculation in formula (4) is applied, using the intuition from the CWM. 

Subsequently, the final combined estimates are calculated using formula (9).  

 

(10) 𝑆𝑖 = 𝑎 +
𝑏

𝑄
∑ (|𝑀𝑞 − 𝑇𝑞| − |𝑀𝑞−𝑖 − 𝑇𝑞|)

𝑄

𝑞=1
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It should, however, be noted that this formula is still different from the CWM. Since different 

types of data are used the models cannot be compared directly. This method allows for a 

general comparison between the two approaches; it is used to determine which approach 

results in better estimations. Which would give information about how the different methods in 

expert weight calculations compare. Therefore, it cannot be used to establish how the two 

models compare in overall accuracy.  

 

3.3 Data 

 

The TU Delft Structured Expert Judgement data is used to analyse the effectiveness of 

combining expert judgements. The same dataset was used by Cooke and Goossens (2008) 

to test the Classical Model. The data consist of 45 different expert judgement datasets from 

2006 and later. This includes a wide variety of topics, such as healthcare, volcanic activity, 

and space debris. Seed questions are included with their corresponding true values. The 

amount of seed questions per topic varies between 7 and 18, the mode is 10 seed questions. 

The data also include real predictions from experts that have not been realised. These values 

will not be used in the following analysis since the results cannot be tested without the true 

values. Therefore, the seed questions can be analysed to see how accurate an expert was 

when he estimated the seed questions values. This allows for the possibility to evaluate the 

true accuracy of a large part of the predictions in the data.  

 

Seed questions are measured either on a uniform or a logarithmic scale in the datasets. The 

logarithmic scales are used in certain cases to reduce the effects of outliers. Larger outliers 

increase the size of standard deviations which increases the variation in the calculation of 

expert scores. Therefore, the scales will not be changed for the use and analysis in this paper. 

 

It is, however, still uncertain how true predictions compare to seed questions in terms of 

accuracy. Whereas true predictions are incentivised, they are also prone to biases. Such as 

the aforementioned bias where experts become overconfident after successful predictions 

(Hilary & Menzly, 2006), or where more risk is taken to compensate incorrect predictions 

(Evgeniou et al., 2013). 

 

There are 45 different datasets with a wide variety of fields of expertise. Therefore, the data 

are diverse which should account for field specific biases. Additionally, there are a total of 514 

questions with their true values to be analysed and a total of 463 experts. Given the large 
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variety of the data and the quantity of the questions it is expected to be able to calculate 

relatively robust estimations.  

 

3.4 Analysis 

 

The accuracy of this model will be determined by calculating the accuracy of the weighted 

predictions in the TU Delft SEJ dataset. The results will be compared with the best expert of 

each group and the simple average (unweighted estimation) to determine if this method 

enhances the accuracy of the estimations. The best expert will be determined by calculating 

which expert has the highest expert score (Si) using formula (4). 

 

The model is tested for every question in a dataset with an estimated value and a 

corresponding realised value. The purpose of the model is to combine and estimate unrealised 

estimates. Therefore, the model can be tested using past predictions including realised values. 

The individual scores will be calculated per question in a dataset and will subsequently be 

combined using the aforementioned algorithm. For each question in an expert group that 

includes a realised value, the remaining questions will be used to calculate expert weights 

with. These weights will then be used to calculate an estimation for that question. To exemplify: 

for question 1 in a given dataset, all questions except for question 1 will be used to calculate 

expert scores. These scores will then be used to calculate what the aggregate prediction for 

question 1 would be. This value can be compared with the realised value of that question, the 

average estimation, and the best expert’s estimation. This will be done for every question. 

 

Considering that predictions for different questions are done on different scales, the 

estimations by the algorithm, the unweighted score, and the best expert, need to be 

normalised. This is done by calculating the relative amount of standard deviations difference 

from the true value. So, standard deviations are calculated separately per question, and are 

used to calculate how the three prediction methods perform in terms of difference from the 

realised value. Formula (11) will, for each question q, be used to calculate the relative 

difference (Dq) between a prediction (Pq) and a realised value (Rq), using standard deviations 

in an expert sample (σq). Small samples and diverging predictions can cause the standard 

deviations in a sample to become large. Large standard deviations would cause the results of 

the model to overestimate the accuracy of the model. Therefore, seed questions with 

extremely large standard deviations will be excluded from the performance tests. In the 

analysis the threshold is a standard deviation which is 50 times larger than the true value of 

the corresponding prediction. This is an arbitrarily chosen number that causes the extremely 



 

 

16 

overestimated values to be excluded from the model while still including a large number of 

observations to calculate performance with. 

 

(11) 𝐷𝑞 =
|𝑅𝑞−𝑃𝑞|

𝜎𝑞
 

 

Additionally, the formula that is used to calculate expert scores per question (formula (4)) 

contains two constants that allow for modification of the expert weight calculations. Different 

values of the two constants will be tested to optimize the effectiveness of the model. The 

optimal values for constants a and b will be determined by calculating the accuracy of the 

model using different values of these constants. For the score multiplier (constant b), values 

from 0.5 to 15 will be tested. For the initial value (constant a), values 0, 0.5, and 1 will be 

tested. The lower the value of a, the more experts with low scores will be excluded from the 

prediction. When a is equal to zero, only experts with a positive performance will be taken into 

account. Therefore, all experts with a relatively negative score will not be included in the final 

estimation of a question. 

 

Furthermore, the performance of the normalised CWM and the relative performance model 

will be compared. Since the expert scores for a certain question are measured using seed 

questions it is also unclear if positive contributions (which can be relatively inaccurate 

predictions) also translate into better predictions in other questions. Therefore, it will also be 

analysed whether contribution or relative accuracy is more effective in determining expert 

scores. Finally, the effect of the number of seed questions and the number of experts on the 

accuracy of the predictions will be analysed. The data consists of 45 different datasets with 

alternating amounts of seed questions, ranging from 7 to 18. More seed questions or more 

experts means that more information is used to calculate expert weights. Therefore, it will be 

analysed to what extent these values improve the performance of the model. 

 

 

4. Descriptive statistics 

 

In the TU Delft SEJ dataset used in the analysis, the best expert outperforms the unweighted 

mean in 51.8 percent of the questions. This is not a statistically significant difference. 

Therefore, the mean and the best expert approach seem to perform reasonably equally. 
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In figure 1 can be seen that, for lower scores of b, the algorithm can significantly be closer to 

the actual value of a prediction than the simple mean on average. Furthermore, the difference 

decreases when the value of b is increased. This indicates that increasing the weight given to 

each question has a negative effect on the accuracy of the model. 

 

Interestingly, the weighted average seems to outperform the unweighted average for a low 

value of b. This difference is decreasing with an increase in b. The opposite can however be 

observed when comparing the weighted score and the best expert. This can be seen in figure 

2. Where, to a certain extent, an increase in b seems to improve the estimations of a weighted 

average relative to the best expert. 

 

 

Figure 1 and 2. Equal weight compared to weighted predictions using different values for constant b 

and a=1. The graphs show the percentage of cases where the model outperforms the unweighted value 

(1) and the best expert (2). 

 

A lower value for b, in general, means that the model will calculate less extreme expert 

weights, therefore it is possible that a low b causes small differences in estimations. Similarly, 

increasing b, thus increasing the differences in weight that will be calculated, seems to cause 

a relative improvement when comparing the model to the best expert approach. Since these 

measures are solely comparing which approach is closest to the true value of a question, it 

needs to be analysed how these different measures compare in terms of performance. 

 

The variations in expert scores per dataset are visualised in figure 3. Since constant a is set 

to zero, this figure shows the calculated difference in scores for all experts. In the majority of 

cases, on average, experts have slightly negative scores. Negative scores will be excluded in 

the final aggregation of weighted predictions. Since higher values of constant a can be used 

in the calculation of expert weights not all low scores need to be excluded. A higher value for 
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constant b will increase the number of experts to be excluded. A lower number of observations 

causes the wisdom of crowds effect to decrease. This could potentially explain the decrease 

in performance for higher values of b in figures 1 and 2. The effects of different constants and 

the performance of the model will be analysed in the results section. Furthermore, there are 

datasets with outliers. In these cases, there are experts that score significantly lower or higher 

than their peers.  

 

Figure 3. Expert scores for a=0 and b=1. Average scores and standard deviations are shown using 

boxplots for each of the 45 datasets. Dots depict outliers.  

 

 

5. Results 

 

Results are determined by calculating individual expert scores for each seed question using 

the remainder of the questions. So, in a dataset with ten seed questions, for all questions 

individual expert scores are calculated using the remaining nine questions. The results section 

is divided into separate parts. Firstly, the calculated expert scores and the differences between 

the 45 datasets will be analysed. Then, the impact of different values of the constant variables 

of the algorithm will be addressed. Afterwards, the general performance is evaluated. The 

differences in intuition of the current model will be compared with the intuition used in the 
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Contribution Weighted Model (CWM) (Budescu & Chen, 2014). Finally, the effects of more 

seed questions and experts in a dataset and the value of expert scores on the accuracy of the 

model will be examined. 

 

5.1 Model performance  

 

Figure 4. Expert weights for a=1 and b=1. Average scores and standard deviations are shown using 

boxplots for each of the 45 datasets. Dots depict outliers.  

 

Expert scores 

The expert weights which are used to determine final predictions with can be seen in figures 

4 and 5. In these figures, the scores are visualised using separate boxplots for each of the 45 

datasets. Expert weights have an average of 0.96 and have a minimum and maximum of 0.64 

and 1.21 when constant b is equal to 1 (figure 4). Logically, the variation increases with an 

increase in the constant b. This constant magnifies the effect of divergence from the true value 

(relatively to the rest of the sample). Therefore, the variation increases with an increase in b. 

The expert weights in figure 5, where b is equal to 10, have an average value of 0.70, with a 

minimum of 0 and a maximum of 3.13. For this value, 24.5 percent of experts are excluded 

from the final estimation (meaning their weight equals zero). Similarly, a lower value of a would 
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make the individual expert weights more likely to reduce to zero. This is discussed in the 

section below. 

 

Figure 5.  Expert weights for a=1 and b=10. Average scores and standard deviations are shown using 

boxplots for each of the 45 datasets. Dots depict outliers.  

 

Examination of constants a and b 

The formula used to calculate individual expert weights includes two constants. Formula (4) 

includes constants a and b. Constant a is used to set the range of the scores. If scores are 

below 0, they are excluded from the weighted estimation. Therefore, a lower value of a makes 

it more likely for underperforming experts to be completely excluded from the final estimation. 

A higher value of a will, therefore, make it more likely for experts to be included with a relatively 

lower weighted score. The effect that a change of a has on the accuracy of the model needs 

to be analysed.  

 

The nature of the data makes it difficult to concretely state the effectiveness of the algorithm 

compared to the equally weighted predictions and the best expert approach. Therefore, the 

performance will be calculated in terms of standard deviations. These are determined 
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separately for each question using the estimations of all experts that have answered a 

question.  

 

Different values for constant a are examined by analysing the performance of the algorithm 

using different values of b used in formula (4). The results are visualised in figure 6, where the 

performance of the model is compared for different values of constant a. A lower value in this 

figure means that predictions are, on average, closer to the true value. A difference between 

the values a=0.5 and a=1 yields no significantly different results for all question weights 

(values of b). This indicates that if a is not low enough to reduce scores to zero, no effect can 

be observed. For a=0 it is the case that many expert weights become equal to zero. In this 

case, the effect is that the performance is lower for all values of b. Therefore, constant a will 

henceforth be equal to 1 to optimize the performance of the algorithm. 

 

Figure 6. Difference in terms of standard deviations away from the true values for different values of 

constant a. The lines depict the difference in performance of the model due to a change of constant a. 

For a the values 0, 0.5, and 1 are used, as can be seen on the x-axis. The y-axis shows the difference 

between the estimated values by the algorithm and the realised values in standard deviations. Six 

values of b are used in the comparison. 
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Figure 7. The average difference between the estimations by the model and true values in terms of the 

standard deviations difference (a value closer to zero means the model gives an estimation closer to 

the true value). This is calculated for all values of constant b between 0.5 and 15. 

 

Scores for all values of b between 0.5 and 15 are calculated and shown in figure 7. The optimal 

value for b can be determined by choosing the value for which the model estimates scores 

that are relatively closer to the true outcomes. Which is the case when constant b equals a 

value between 3 and 4. For the value of 3 of the constant b, on average, the model predicts 

and estimation 1.29 standard deviations from the true value. To further illustrate the 

performance for different values of constant b the estimations by the model are compared to 

the mean and the best expert in figure 8. An optimal relative performance is again achieved 

when constant b approximately equals 3. In this case, the model outperforms the calculated 

mean estimation with 0.05 standard deviations, on average. Additionally, it outperforms the 

best expert by 0.15 standard deviations, on average. Both values are significant at a 1 percent 

level.  
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Figure 8. The average amount of standard deviations the estimation by the model is closer to the true 

value than the mean and best expert (lower is better). This is calculated for all values of constant b 

between 0.5 and 15. 

 

Performance 

The following three measures are used to determine the performance of the model: the 

estimations by the relative accuracy model, the unweighted average, and the best expert. The 

weighted aggregation is calculated by the new model, the unweighted average is the mean 

estimate of all experts per question, and the best expert is the prediction of the highest 

performing expert. To examine whether the new model improves predictions it is compared to 

the last two benchmarks. 

 

On average, using the optimal value of constant a (a=1) and b (b=3) this model will estimate 

values that are 5 percent of a standard deviation closer to the true value than using an 

unweighted model. Similarly, estimations are 15 percent of a standard deviation closer to the 

truth than using the best expert in a group (see figure 8). Both are significant at p<0.01. A 

simple comparison between the performance of the model and the weighted score shows an 

outperformance of the model in 57.5 percent (284/494) of questions after deleting large 

outliers. Compared to the best expert, the same is the case in 53.8 percent of questions. These 
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percentages simply indicate in how many cases the model’s predictions are closer to the true 

value. They should therefore not be used to interpret the relative performances of the different 

approaches.  

 

The relative performance of the model is compared to the mean and the best expert. This is 

visualised in figures 9 and 10, using the measure of standard deviations difference from the 

true value. The number of standard deviations the three measures are away from the true 

values of their corresponding estimates are used to visualise how well the predictions by the 

model perform in comparison to the mean and best expert approaches. The average distance 

to the true value in standard deviations is shown for 41 datasets, four outliers were excluded 

to improve the visibility of the results. The results show that the model is in most cases closer 

to the true value than both the mean and best expert. Therefore, this indicates that the relative 

performance tends to outperform the unweighted average and the best expert. Nevertheless, 

there are still many cases where the mean and best expert outperform the model. On average, 

the model outperforms the mean and the best expert in 60 percent of datasets (including the 

four outliers). Additionally, as was also shown in figure 8, the difference between the model 

and the mean is on average small (0.05 standard deviations).  

 

  

Figure 9 and 10. A comparison between the accuracy of the relative performance model (on the x-axis) 

and the mean estimations (figure 9) and the best expert (figure 10) (on the y-axis). Accuracy is 

measured by the number of standard deviations the estimations are from the true value (a value closer 

to zero means the model gives an estimation closer to the true value). Points above the line depict a 

higher performance by the relative performance model. The values are calculated per dataset and 

outliers are excluded. Constants: a=1 and b=3. 
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The standard deviations are relatively high. To illustrate this: in 43 percent of questions the 

standard deviation is larger than the true value. This is caused by the relatively low number of 

observations in the Structured Expert Judgement datasets. This number is also slightly 

increased by realised values that are close to zero.  

 

Due to large standard deviations the final performance is affected by outliers. In the 

aforementioned results the overly large outliers are excluded. Where the standard deviation 

is more than 50 times larger than the true value (which excludes 34 out of 514 observations). 

This is an artificially chosen number that causes the exclusion of large outliers that inflate the 

true performance of the model; including higher outliers slightly increases the calculated 

effectiveness of the model. 

 

5.2 Robustness 

 

In the following section the reliability of the results will be addressed. This will be done by 

evaluating the differences between datasets, the calculated expert scores, with a comparison 

with the modified version of the Contribution Weighted Method by Budescu and Chen (2014), 

and the effect of the number of seed questions and experts in an expert group on the 

performance of the model. 

 

Results per dataset 

Figure 11 visualises the results per dataset. For all 45 datasets the average difference from 

the true value (in terms of standard deviation from the true value per individual question) is 

shown. The confidence interval lines are used to visualise the intrinsic differences between 

the datasets. This analysis is used to determine whether the aforementioned results are 

consistent and affected by outliers. This graph shows a total of three datasets that are 

significantly different from the rest (or 6.67 percent of the total datasets). These datasets show 

a significantly lower performance, on average. There are no significantly higher performing 

datasets. Therefore, the performance is not inflated due to highly performing outliers. 

Additionally, the results are relatively consistent. 
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Figure 11. Average standard deviations difference from the true values calculated by the relative 

accuracy model per dataset (a value closer to zero means the model gives an estimation closer to the 

true value). The dashed lines depict the upper and lower bound of the 95% confidence interval. 

 

Expert scores 

Expert scores are calculated individually for each question in a dataset, then they are 

combined. Therefore, there is no systematic bias between the calculated expert weight and 

the accuracy of their prediction. Meaning that the relative accuracy only originates from the 

expert’s capabilities compared to the rest of the group. Therefore, it can be tested whether 

there is a relationship between the expert scores calculated by the model and the performance 

of an expert. 

 

A linear regression is used to examine if there is a relationship between the height of the expert 

scores and the performance of the expert. To prevent bias, similarly to the calculation of the 

scores, the performance is measured using all questions from a dataset except the question 

for which the score is calculated. The following linear regression will be used: 

 

(12) 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = β0  +  β1 ∗ Score +  ε 

 

Where Performance is the number of standard deviations the estimated value for a seed 

question differs from the realised value and Score the corresponding calculated expert score 

for a question. β0 is the constant and ε is the error term. The expert scores are calculated with 

the relative accuracy model that uses the optimal values for the constants a and b; these are, 

respectively, 1 and 3.  
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The average effect of expert scores on performance using these constants can be seen in 

table 1. An average significant decrease in difference from the true value with an increase in 

score is shown. A single point in score increase coincides with an average reduction of 1.66 

standard deviations difference from the true value (significant at p<0.1). Indicating that a higher 

expert score is correlated with better predictions.  

 

Table 1. Results for the linear regression shown in formula (12). Performance in terms of difference 

from the true value (measured in standard deviations) is the dependent variable. Constants: a=1 and 

b=3. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

VARIABLES Performance 

    

Scores -1.663* 

 (0.976) 

Constant 2.969*** 

 (0.934) 

  
Observations 5,640 

R-squared 0.001 

 

 

Comparison with normalised CWM  

Different approaches can be takes when calculating weighted expert scores, in terms of 

intuition. Whereas Budescu and Chen (2014) use the added contribution to the group to 

measure relative weights in the CWM, the relative accuracy model uses overall accuracy 

relative to the group to measure relative weights. The intuition from the CWM is used in the 

normalised CWM where expert scores are calculated using formula (10). This is a modified 

version of the CWM, where numerical data are used and normalised similarly to the new model 

introduced in this paper. The relative accuracy method (accuracy) and the normalised CWM 

(contribution) are compared in terms of performance in figure 12.  

 

The different approaches are compared using the same dataset. The formula used to compare 

the two approaches is equation (11); used to measure overall accuracy of the model relative 

to realised values. The CWM cannot be used on the types of numerical in the TU Delft SEJ 

dataset since they are not of a binary nature. So, simply the intuition behind the models is 

compared. 
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Figure 12. Average performance of the algorithm using the normalised CWM (contribution) and the 

relative accuracy model (accuracy). The y-axis shows the difference between the estimated values by 

the algorithm and the true values in standard deviations. Six different values of b are used in the 

comparison and a=1. 

 

In figure 12 the differences between the two methods are visualised. The accuracy method, 

on average, has a better performance for the entire range of tested amplification constants 

(b). This is the case when the performance of both models is calculated in terms of the 

difference in standard deviations with the true value. A more extensive analysis of the 

performance of the normalised CWM, compared to the best expert and unweighted prediction, 

for each value of constant b is shown in Appendix A. Using the SEJ TU Delft dataset, the 

normalised CWM method only performs significantly better than the unweighted prediction 

(Appendix, table 1) and not better than the best expert (Appendix, table 2). Still, this is not the 

case for the data used in the original paper, where the CWM increases the accuracy of 

predictions. 
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Table 2. Differences, in terms of standard deviation away from the true value, between the normalised 

CWM (contribution) and the relative accuracy model (accuracy). The differences are calculated for six 

values of constant b. Constant a=1.  

b Contribution Accuracy  Difference Difference (p-value) 

1 1.335 1.321 0.014 0.000 

3 1.321 1.294 0.027 0.001 

5 1.312 1.298 0.014 0.001 

7.5 1.308 1.303 0.005 0.007 

10 1.321 1.310 0.011 0.024 

15 1.336 1.327 0.009 0.065 

 

 

The differences between the two approaches can be seen in table 2. The accuracy method 

yields a relative lower difference from the true value for all values of b, the difference is 

significant for all values of b instead of b=15 (at p<0.05). This indicates that, using the TU Delft 

SEJ data, predictions by the relative accuracy model significantly outperform predictions by 

the normalised CWM. Still, no final conclusions can be drawn regarding the absolute 

difference in performance since a modified version of the CWM was used. Nevertheless, the 

results indicate that calculating scores based on relative performance slightly improves the 

final calculations made by the model.  

 

Number of seed questions and experts 

Datasets with more seed questions have more information to calculate expert scores with. A 

linear regression is used to estimate the effect of the total amount of seed questions in a 

dataset on the performance of the model in that dataset. Clustered standard errors are used 

since observations within a dataset are expected to be dependent. Where Performance is the 

relative performance in terms of standard deviations away from the true value, β0 and ε, 

respectively, the constant and the error term, and Seed the number of seed (or calibration) 

questions in a dataset: 

 

(13) 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = β0  +  β1 ∗ Seed +  ε 

 

A similar clustered linear regression is used to measure the effect of the number of experts in 

a dataset on the performance in that dataset, where Experts is the number of experts in a 

dataset: 

 

(14) 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = β0  +  β1 ∗ Experts +  ε 
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Table 3 shows the effects of the amount of seed questions and experts on the performance of 

the model. In the 45 datasets used, there is no significant increase of performance with an 

increase in seed questions. Therefore, no conclusions about an optimal amount of seed 

questions can be made. A higher number of experts does significantly improve the 

performance of the model. On average, every additional expert significantly decreases the 

difference between the true value of a question and the estimated value calculated by the 

model by 0.024 standard deviations (p<0.05).  

 

Table 3. Regression results for the effect of the number of seed questions (13), and the number of 

experts (14) on the relative performance of the model (a value closer to zero means the model gives 

an estimation closer to the true value). The linear regressions are shown in formulas (13) and (14). 

Constants: a=1 and b=3. Robust standard errors in parentheses. *** p<0.01, ** p<0.05,  * p<0.1. 

  (13)  (14) 

VARIABLES Performance  Performance 

       

Seed 0.011   

 (0.061)   

Experts   -0.024** 

   (0.012) 

Constant 1.165*  1.550*** 

 (0.637)  (0.336) 

    

Observations 494  494 

R-squared 0.000  0.001 

 

 

 

6. Discussion 

 

The relative accuracy model that is introduced in this paper uses average predictions by 

experts in datasets where expert data are characterised by its small sample sizes. It calculates 

expert scores based on how experts perform relative to their peers. Therefore, simple 

averages in these samples are generally inaccurate due to statistical error. More advanced 

models are needed to combine expert data to reduce inaccuracy and biases in expert 

judgement. 

 

The model aims to improve the accuracy of estimations by calculating expert weights based 

on their relative performance. This means that calculated expert weights increase when an 

expert has better estimations than the rest of the experts per question. This method therefore 
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does only conform to the classic wisdom of crowds approach to a certain extent. Individual 

estimations in a usual wisdom of crowds setting can include large outliers of over- and 

underestimations, which are all included equally in the estimation. This combination of the 

large variety of data can make remarkably accurate predictions in large samples when no 

systematic biases exist (Surowiecki, 2005).  

 

Biases also exist in expert judgement. Overconfidence can be used to hide uncertainty 

(Cesarini, Sandewall, & Johannesson, 2006). Additionally, when experts have made 

impressive predictions in the past; their confidence increases but their prediction accuracy 

does not (Denrell & Fang, 2008). Budescu and Chen (2014) use relative contribution to 

determine expert weights. This is in line with the principal idea of wisdom of crowds. The 

relative accuracy model, introduced in this paper, uses a different approach. Expert 

judgements can be combined using all types of numerical data because of the data 

normalisation method and scores are calculated based on relative performance.  

 

The efficacy of the model is analysed by testing its performance on subjective expert 

judgement data. This method based on relative performance outperforms the unweighted 

method and the best expert method. In terms of standard deviations, the model outperforms 

the unweighted estimation and the best expert by, respectively, 0.05 and 0.15 percent (both 

significant at p<0.05). When comparing the model with the normalised version of the CWM, 

the relative accuracy model results in more accurate predictions. Additionally, experts with a 

higher score significantly outperform experts with a lower score. This indicates that expert 

weights are estimated effectively when calculated by relative performance. It is hard to 

precisely quantify to what extent the model effectively improves predictions. But, on average, 

it significantly improves estimations in the TU Delft SEJ dataset. Therefore, the model seems 

to effectively improve the accuracy of predictions by weighing and combining expert 

judgements in small samples.  

 

There are, however, some imprecise aspects of the model that need to be addressed. Most 

importantly, the model uses a cumulative normal distribution to scale the data from zero to 

one. This is needed to normalise wide varieties of data. In practice, however, a large variety 

in standard deviations can be observed. This is caused by the data used to calculate expert 

weights, which are characterized by small sample sizes. When datasets consist of a larger 

number of experts the performance of the model increases. Whether this is partially caused 

by an improvement in normalisation or solely by an increase of information to calculate scores 

with is unclear. 
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Large outliers, similarly caused by large standard deviations, were excluded when analysing 

the final performance of the model. This causes the performance tests to lose some of its 

statistical power. Additionally, the dividing line between outliers and non-outliers in this 

analysis is chosen arbitrarily; observations were excluded when the standard deviation of a 

question was more than 50 times larger than the realised value. This caused only extreme 

outliers to be excluded from the analysis. 

 

The results show that the algorithm improves estimations compared to the unweighted and 

the best expert measures. But due to the nature of the data it is difficult to quantify precisely 

how large the improvement is. The relative performance is analysed in terms of standard 

deviations because the varying data does not allow for a percentual comparison.  

 

The SEJ data from the TU Delft that are used in the testing of the model were originally 

collected to examine the performance of the classical model (Cooke & Goossens, 2008). This 

means the data include confidence intervals which are not used in the model. So, data are 

used which were originally collected with a different purpose. In general, this should not affect 

results; this can be ensured by testing the model on other data. 

 

Additionally, seed questions were used to determine scores. These questions were designed 

to measure expertise. The incentives for an expert when answering a seed question could be 

different from answering a real-world problem within their field of expertise. It is unclear to 

what extent seed questions are answered differently from real predictions. On the one hand, 

seed questions could potentially affect risk aversion and confidence of experts. I.e., real 

predictions are more important because mistakes have larger consequences. Therefore, due 

to the lack of loss aversion (Rabin & Thaler, 2001), experts could be willing to take more risk 

when answering seed questions. On the other hand, seed questions are incentivized by 

feedback; the existence of the true value makes expert predictions verifiable. In certain field 

of expertise bold predictions are incentivized because rare predictions are perceived as 

impressive, even though these bold predictions are an indication of lower future accuracy 

(Denrell & Fang, 2010). An objective calculation of performance could therefore incentivize 

more precise predictions. 

 

The relative accuracy model slightly outperforms the normalised CWM, which is a modified 

version of the CWM (Budescu & Chen, 2014), using the SEJ TU Delft data. This indicates that 

the method of calculating scores is improved by using relative accuracy. Since the models use 

different types of data no straightforward comparison can be made, however.  
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Additionally, there is some proof that weighted expert models do not perform in out of sample 

data, which is the case for the Classical Model (Clemen, 2008). In practice, however, weighted 

models seem to outperform simple methods such as taking the average (Lin & Cheng, 2009). 

Indicating that Cooke’s model can still be a useful way to make predictions, but that the true 

usefulness may have been overstated. How the method introduced in this paper performs with 

other data is still uncertain. 

 

 

7. Conclusion 

 

The wisdom of crowds, combining a large number of estimations, is generally an effective way 

of estimating answers to real-life questions. However, when sample sizes are too small to 

reduce statistical bias other approaches are needed. There are different methods to improve 

predictions due to this uncertainty. Currently, the CM (Cooke & Goossens, 2008) and the 

CWM (Budescu & Chen, 2014) are models that can calculate an aggregate estimation using 

small sample sizes. Alternative behavioural methods to elicit combined expert predictions 

exist, such as consultations between experts (Rohrbaugh, 1979, 1981; Flores & White, 1989). 

This paper introduces the relative performance model which calculates estimations based on 

expert weights determined by their relative accuracy. This model, alternatively, makes use of 

a more practical approach than current models since it can be used with any type of numerical 

data.  

 

The combined predictions by the relative accuracy model outperform both unweighted 

predictions and the best expert per expert group. Therefore, expert bias is effectively reduced 

by weighing and combining individual predictions. It is still unclear what improvements can 

currently be made and how the model compares to its alternatives in practice. It is difficult to 

test performance between models since different types of data are used. The advantage of 

the relative accuracy model is that no expert predictions that include confidence intervals are 

needed, but only a single prediction per expert. Predicted confidence intervals can be affected 

by biases, such as overconfidence (Soll & Klayman 2004). Additionally, since no confidence 

intervals are needed, the model can more easily be applied in real-world cases.  

 

Therefore, the model could be tested by collecting experts’ past predictions and evaluating 

how effective future predictions are. Or, more generally, by testing the model on different 

datasets. Furthermore, this model was tested to be used in small (expert) samples. It could be 

examined whether the model also outperforms a wisdom of crowds approach in larger 
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samples. These suggestions for future research are essential for determining whether the 

model performs consistently. 

 

All in all, the results indicate that the relative accuracy model based on relative performance 

can improve predictions. Additional research is needed to determine if the model can be 

applied in practice.  
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Appendix 

Table 1. Difference in performance of the normalised CWM (contribution) and the unweighted score 

(mean). Performance is calculated in standard deviations difference from the true value. The 

performance is calculated for different values of constant b, ranging for 0.5 to 15. Constant a=1. 
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Table 2. Difference in performance of the normalised CWM (contribution) and the Best Expert. 

Performance is calculated in standard deviations difference from the true value. The performance is 

calculated for different values of constant b, ranging for 0.5 to 15. Constant a=1. 

 


