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Executive summary 
 
Green hydrogen is predicted a large future role to decarbonize hard-to-abate sectors, while 
also to complement world-wide electrification. The port of Rotterdam aims to use this 
potential to kickstart a hydrogen economy, producing, using, importing, converting, and 
putting though low-carbon hydrogen. The potential of green hydrogen in the port is subjected 
to its economic viability and hence, by reaching the predicted substantially lower cost levels, 
resulting from with cost reductions of renewable energy, scale, and learning effects. This 
study focused on the final, and important endogenous cost factor – the learning effects - to 
determine the potential cost reductions of green hydrogen and what this implied for the port 
of Rotterdam. 
 
Learning cure theory states that every product or technology has a constant learning rate, 
which gives the percental unit cost reduction each doubling of cumulative capacity, and 
hence, the theory states that cost reductions do not come with time, rather with increased 
production volumes. Learning curve has been frequently applied to renewable energy 
technologies. Additionally, it this learning-by-doing is sometimes expanded with learning-by-
searching, other than just the usual learning-by-doing, making it a two-factor learning curve, 
while learning rates can also be determined on a component basis.  
 
In determining the learning rate for green hydrogen this study encountered substantial 
disparities in the current and predicted cost levels for the different technologies. Therefore, 
this study first looked for the reasons behind the disparities, coming to the conclusion for this 
study to determine significant, up-to-date and state of the art learning rates, experts had to 
be consulted to provide for predictions for the cost reductions, structured as an expert 
elicitation. Furthermore, it was concluded that basing learning rates on investments cost only 
would not lead to meaningful results and thus, learning rates had to be based on levelized 
cost of hydrogen per kilogram, hereby enabling the inclusion of endogenous technological 
progress in other KPI’s beyond investment cost, most importantly, system efficiency and 
flexibility. The electricity costs and total yearly input of electricity (load factor) were assumed 
variable to enable variations per source, region and future prices, and thus learning rates were 
to also vary with electricity price and load factor. To in turn be able come to strategic 
implications, the results were translated into different cases relevant to kickstart a hydrogen 
economy. For local production, using electricity from the grid and directly connected to Dutch 
offshore wind, while for large-scale imports, large-scale production from cheap solar 
electricity.  
 
In general, the investment cost predictions of this study, EU’s deployment targets, showed 
that costs of green hydrogen are to decrease more rapidly, under 300 €/kW before 2030, than 
predicted by older commonly used studies using, such as the IEA. This confirms that green 
hydrogen by increasing deployment with strong policy and policy mechanisms, can be 
produced at substantially lower cost levels. Additionally, the often-mentioned future 
superiority of the PEM technology was challenged by the results of this study, as Alkaline 
showed a significantly steeper learning curve, mostly due to PEM limitation with its high use 
of precious metals. Moreover, Alkaline has recently made substantial technological progress 
not only affecting investment cost, but also other KPI’s.  
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The learning rates showed a significant variation with and dependence on electricity price and 
load factor. For Alkaline electrolysers the learning rate ranged from 3 to 16%, while for PEM 
electrolysers it ranged from 3 to 10%. This was confirmed by the with cost reductions 
increasingly larger contribution of electricity costs to the levelized cost of green hydrogen, 
around 70 to more than 90%. This showed the increasing dependence on electricity cost and 
load factor, and hence, the significance of improvements in system efficiency and flexibility, 
especially with the reduced future investment costs.  
 
The results from three different cases showed, among others, the potential or even necessity 
of system flexibility and integration with offshore wind, to capture more electricity at lower 
prices. The SOEL technology showed most potential in the grid-connected cases where the 
advantage of higher efficiency is stronger with higher load factor and electricity prices. The 
import case resulted in significantly lower levelized costs of hydrogen when produced at large 
scale taking advantage of cheap Solar PV electricity prices. 
 
For the port of Rotterdam, the overall results on the costs implied that for producing green 
hydrogen from Dutch offshore wind, energy efficiency, system flexibility and upstream 
integration is needed to complement the electricity system and to not further inflate 
demand for the elsewhere much needed renewable electricity, at least until massive 
expansion of offshore wind. The SOEL technology’s high learning rate for grid connected 
electrolysers, showed its potential to be deployed for production of e-fuels, combined with 
the in Rotterdam abundant CO2. The case on large scale imports showed already low levelized 
cost levels, implying a large potential, however, the resulting importance of transport cost 
make future overseas transport unattractive compared to cheaper pipeline transport. This can 
for instance be green hydrogen from cheap solar PV energy in the South of Spain or Portugal, 
hence, surpassing the port of Rotterdam. Hereby, the three cases showed the potential, but 
also the limitations of green hydrogen in the port of Rotterdam. Thus, although the potential 
of green hydrogen is great, especially in the port of Rotterdam, it needs to be applied in 
the right ways which in the end benefit, and not hamper, a fast and low-cost road to 
carbon neutrality by 2050. 
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1. Introduction  
 

1.2  Contextual background 
 

The world is in a transition to decarbonise and limit global warming well below 2 degrees, 
pursuing efforts to limit it to 1.5 degrees. This transition to reach the 2-or even 1.5-degree 
scenarios, targets set out by the United Nations’s COP-25 Paris agreement on mitigating 
climate change, seems problematic for number of sectors which are harder to abate or 
electrify. In these sectors, such as the chemical, industrial heating, heavy-duty trucking, 
aviation and shipping sector, an increasingly bigger role is assigned to green hydrogen, 
together with is potential to complement renewable energy sources and transport.  

The vast majority the hydrogen produced today is fossil-based, mainly using steam 
methane reforming (SMR) and to a smaller extent, coal gasification, commonly defined as 
grey hydrogen. However, when part (80-90%) of the emitted CO2 in these processes is 
captured and subsequently stored or used (CCUS), it becomes low-carbon hydrogen, 
referred to as blue hydrogen (IRENA, 2019). Turquoise hydrogen, which is produced using 

methane in the pyrolysis process emitting solid carbon instead of CO2, provides for another 
low-carbon emitting option (TNO, 2020). In water electrolysis, water is split in hydrogen and 
oxygen, using electricity from a renewable energy source (RES), the hydrogen produced is 
called green hydrogen. This carbon-free hydrogen can complement renewable energy 
sources and provide seasonal storage, be used as a fuel in fuel-cell vehicles, replace grey 
hydrogen in the industry, be blended in with natural gas, while it also can be converted into 
for instance ammonia, methanol or synthetic fuels, to decarbonize the aviation or shipping 
sector at the same time enabling overseas transportation. Hereby, it is also referred to as 
Power-to-X, where the ‘X’ can thus stand for a wide range of the applications of green 
hydrogen. The wide range of applications, the expected investment cost reductions, 
technologic progress, while also the reduction in costs of electricity of renewable sources, all 
give rise to the current momentum of green hydrogen, the main topic of this study. 

The momentum of green hydrogen is clearly visible as shares of hydrogen producers and 
manufacturers are soaring, with shares of some fuel cell producers even rising as far as 342% 
in 2020 (Sanderson, 2020). Moreover, in five months up to April 2020, the green hydrogen 
projects in the pipeline in the EU more than doubled from 3.2 to 8.2 GW of total capacity 
(European Commission, 2020). Meanwhile, governments all over the world are adding to this 
momentum. The recently announced hydrogen strategy of the European Commission adds 
to this by setting very ambitious targets of installing 40 GW of green hydrogen capacity by 
2030 (European Commission, 2020). The Dutch government wants to become a world leader 
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in production and use of low-carbon hydrogen using its unique starting position, with its 
extensive existing gas infrastructure, and also aims at a global market for green hydrogen 
(Janssen, 2020). More locally, the port of Rotterdam to become a i) production, ii) import,          
iii) trading and iv) usage hub for blue and green hydrogen, which is illustrated by the fact that 
recently, it was the first port which joined the Hydrogen council, the industry association 
which intends to kickstart the hydrogen economy. The roadmap found below in in Figure 1 
further illustrates the strongly diversified ambitions of the Port of Rotterdam, starting a 
hydrogen economy with blue hydrogen and eventually transitioning to green hydrogen 
production, imports, throughput and usage. 
 

Figure 1: Roadmap of the Port of Rotterdam to start the Hydrogen economy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Another region in the Netherlands with possibly the most ambitious plans for a 
hydrogen economy is the north, for which a total of €9 billion of investments related to 
hydrogen is expected in the region, following the phasing out of natural gas, this region so 
depends upon. Gas was found in Slochteren in 1959, which gave name to the “Dutch 
Disease” phenomena, while it is now causing earthquakes in the region, which has led the 
shift from grey natural gas to green hydrogen gas, emphasized by the following figure from 
Gasunie (2020a). 
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Figure 2: Indicative view of planned 2030 hydrogen ecosystem in 2030 

 
Source: Gasunie (2020a) 
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In terms of production, the Port of Rotterdam plans to increase production by reserving 2 
GW’s of offshore wind capacity for green hydrogen by 2030, and another port area in the 
Netherlands, Groningen Seaports, plans to exceed this the Groningen Seaports this by 
installing 3-4 GW’s of input capacity by 2030, also from offshore wind, together with Shell 
and Gasunie. Remarkably, this would mean 15% of the total green hydrogen production 
capacity in the EU by 2030 being based around two port areas in the Netherlands, although 
it should be noted that these plans are currently in an earlier phase and require substantial 
capacity increases in Dutch offshore wind energy. 

The ambitious targets to kickstart the hydrogen economy with the different hubs of the 
Port of Rotterdam are based on the general consent that production costs of green hydrogen 
are set to fall sharply, offsetting a worldwide low-carbon hydrogen economy. 

 The underlying reasons for these predicted cost reductions are, similarly to other 
renewable energy technologies such as solar PV and wind energy, found in scale and learning 
effects (Hydrogen Council, 2020) (IEA, 2019) (IRENA, 2018) (Schmidt et al., 2017). While the 
former is more straightforward, the latter is less obvious, yet result from a widely used 
concept, the learning curve. Learning curve theory states that accumulated experience leads 

to unit cost reductions, against a constant learning rate with each doubling of accumulated 
production, described by MacDonald & Schrattenholzer as (2001):  

 

“For most products and services, it is not the passage of time that leads to cost reductions, 

but the accumulation of experience. Unlike a fine wine, a technology design that is left on the 
shelf does not become better the longer it sits unused”.  

 

Hence, when deriving a learning rate, adoption speed and timing are factored out and it 
provides for a different approach, which shows the cost reductions possible when production 
accumulates in a growing green hydrogen economy. Also, recent developments in hydrogen 
from water electrolysis show green hydrogen is the perfect example, as it had sat unused on 
a shelf after being a more common technology mid 20th century and the technology already 
exists more than 200 years (Santos et al, 2013). Learning curve theory provides the foundation 
for the future of green hydrogen and hence, developing learning rates for green hydrogen 
production will be the main focus of this study. 

 

1.3 Research Aim and Questions 
 
The aim of this research is to analyse the production costs of various green hydrogen 
technologies by making use of learning curve theory in order to draw strategic implications 
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for the Port of Rotterdam’s hydrogen agenda. As previously mentioned, learning curve 
theory is the foundation of the projected cost reductions and hence, is the foundation 
potential of green hydrogen. This leads to the following central question, which this study 
tries to answer:  
 
“What is the learning curve of green hydrogen production and how does it impact the 

ambitions of the port of Rotterdam?” 
 
The central question has the following sub questions, which will be answered in chapters 2 
to 6, respectively. 
 

A. Why does this study apply learning curve theory? 
B. What are the expected cost reductions in literature and how do these align with 

learning curve theory?  
C. How will the learning rates for green hydrogen be determined?  
D. What are the learning rates for green hydrogen technologies and what do they?  
E. What are the strategic implications of the findings in for the ambitions of the port of 

Rotterdam to kickstart different hydrogen hubs? 
 

1.4 Operationalizing the (sub)questions  
 

In chapter 2, first the questions what learning curve is and how it applies to energy 
technologies, need to be answered, as learning curve theory provide grounds for the potential 
of green hydrogen. In chapter 3, green hydrogen is further introduced, analysing predictions 
on the potential and costs in current literature. Hereafter, problem arisen from the differences 
in predictions are presented and solutions for these problems are proposed coming back to 
learning curve principles and introducing expert elicitation and levelized costs as a way to 
establish learning rates. In chapter 4, first assumptions on levelized cost are stated, which 
lead to the uncertain parameters for which the expert panel is consulted. The specifics of the 
expert elicitation survey and interviews are then discussed. In chapter 5, The learning rates 
based on levelized cost of hydrogen are presented and hereafter, these findings are signified 
by applying it to cases, hereby also absolute values of levelized costs of hydrogen are 
presented.   In chapter 6, the findings in chapter 5 are combined with the Port’s ambition to 
start the hydrogen economy with a i) production, ii) import, iii) trading and iv) usage hub. These 
hubs are based on the current businesses and strengths of the port, where the production 
hub is based on the favourable carbon capture use and storage environment for blue 
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hydrogen and the offshore wind potential in the North Sea area to the port for green hydrogen 
(Figure 1: Roadmap of the Port of Rotterdam to start the Hydrogen economy. The import and 
trading hub role for hydrogen is similar to the current fossil-based powerhouse role of the 
Port of Rotterdam. For this hub the port wants to profit from possible future hydrogen 
pipelines, comparable to the current role of the inland waterways, and other existing 
infrastructure in the hinterland to convert, trade and transport into the hinterland hydrogen 
imported from renewable energy abundant regions. The usage hub is based on the fact that 
many of the hard-to-abate sectors where green hydrogen has potential are located around 
the ports. These hubs reinforce one another and developing these hubs simultaneously, the 
port can develop a strong hydrogen position on a global level (Drift, 2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. The learning curve 
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2.2 Introduction to learning curves 

 

The learning curve made its way into economics in 1936, when Paul Wright studied the aircraft 
industry by plotting the average time spent on producing an aircraft against cumulative 
production. Wright discovered that with each doubling in cumulative capacity, the unit cost 
or labour time decrease with a constant percentage, described as the learning rate (Wright, 
1936). This effect, also known as learning-by-doing, shows how accumulating production 
experience leads to cost reductions. Product or technologies can differ in their ability to learn 
and hence, can have a different learning rate. In figure 1, a typical learning curve is presented, 
which at lower cumulative capacity levels shows a steep downwards curve, thus representing 
relatively large marginal unit cost reductions. As cumulative capacity increases, doublings of 
cumulative capacity occur less frequently and hereby, the learning curve flattens. 
 

Figure 3: Basic example of Wright’s Learning Curve 

 
 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
Source: Polinomics 

 
Using the power law, the learning curve is presented by the following equation (Loerch, 2013): 
Equation 1: Wright's Learning curve 
 
 

𝐶" = 𝐶$𝑄"&' 
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𝑊𝑖𝑡ℎ:	

𝐶" = 𝐶𝑜𝑠𝑡	𝑜𝑟	𝑙𝑎𝑏𝑜𝑢𝑟	ℎ𝑜𝑢𝑟𝑠	𝑝𝑒𝑟	𝑢𝑛𝑖𝑡, 𝑖𝑛	𝑦𝑒𝑎𝑟	𝑡	

𝑄" = 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛, 𝑖𝑛	𝑦𝑒𝑎𝑟	𝑡	

𝜀 = 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦	𝑜𝑓	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑖𝑛𝑑𝑒𝑥), 𝑎𝑙𝑠𝑜	𝑡ℎ𝑒	𝑠𝑙𝑜𝑝𝑒, 𝑑𝑒𝑓𝑖𝑛𝑒𝑑	𝑎𝑠:	

−	
log(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑟𝑎𝑡𝑒)

log(2)
 

 
Henderson at The Boston Consulting group later applied a similar, but more 

macroeconomic approach to a broad scope of products, renaming it as the experience curve, 
with the main difference of deriving the learning rate from prices instead of costs (BCG, 1970). 
Both showed unit cost reductions with each doubling of accumulated production, Henderson 
quantified this learning rate for the range of products studied between 20% and 30%, while 
Wright similarly concluded a learning rate at around 20% for aircraft production.  

 

2.3 Learning curve in energy analysis 

 

The learning curve theories have also become increasingly common in energy system models 
when predicting future costs for energy technologies (Söderholm & Sundqvist, 2007). The 
learning curve concepts, sometimes rebranded as technology learning or endogenous 
learning to analyse cost developments have been used frequently when analysing the cost 
developments of Photovoltaic (PV) and Wind energy (sources). More recently, also the cost 
developments of different energy carriers, such as green hydrogen, their applications and 
technologies were assessed using technology learning or experience curves (sources). 
Moreover, the learning curve concept has also laid the foundation for the push and the pull 

strategy of the EU, incentivizing new clean technologies along their cost reduction 
development curve (Joint Research Centre, 2012). Several improvements were proposed to 
overcome issues or to provide for a more extensive analysis, the two most commonly 
proposed improvements, respectively the component-based approach and the two-factor 
learning curve, are explained below. 
 

2.3.1 Component based learning curve 

 
In this approach, used by Ferioli et al. (2009) and Van der Zwaan et al. (2011), different cost 
components of the researched technology are separated into components which can and 
cannot learn. In this way, for technologies with a lower maturity or technology readiness level, 
a better fit of the data can lead to a higher significance of learning rates (Böhm et al., 2019) 
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(Joint Research Centre, 2012). Furthermore, in this approach each cost component can also 
be assigned a specific learning rate. This approach is, however, subjected to the data 
available and the cost data per component is sensitive information to share for companies. In 
addition, issues can arise when innovations lead to replacement or complete omittance of a 
cost component.  

 

2.3.2 Two-factor learning curve (TFLC) 

 
The traditional learning curve, as presented in equation 1, assigns cost reductions to a single 
explanatory variable, cumulative capacity and thus, incorporates solely the learning-by-doing 
effect. Yet, in many cases a different approach, which also incorporates other potential drivers 
of cost reductions, is required. In example, policy makers or companies, when allocating 
funds, can demand a quantitative assessment of the effect of investments in research and 
development (R&D) (Joint Research Centre, 2012.) Kouvaritakis et al. (2000) presented a 
solution by adding a learning-by-searching effect to the existing model in equation 1, which, 
by analogy, are the cost reductions following a doubling in R&D investment. This leads to the 
two-factor learning curve, with the two factors being cumulative capacity and cumulative R&D 
investments, or respectively, learning-by-doing and learning-by-searching. By separating 
between a learning-by-doing and learning-by-searching rate policymakers can establish a 
strategy to efficiently allocate funds per technology, either favouring deployment or 
investments in R&D. However, a major issue is the inability to separate cost reductions either 
coming from learning-by-doing or learning-by-searching, which also translates when deriving 
the learning rate in regressions. This was exemplified by the Joint Research Centre (2012) in 
an input note on the Danish policy and resource mobilization in wind energy. The Danish, in 

an early stage of wind energy development, focused on commercializing wind turbines next 
to research, development and demonstration (RD&D), which was the main focus of Germany. 
The resulting commercial experience led to technology development, innovations, 
deployment and cost reductions in Denmark using a significantly lower relative RD&D budget. 
The impact of this is still clearly visible today, with Danish company Vestas being the top 
producer of wind turbines world-wide, and with the second largest player in the market, 
Siemens Gamesa, partly originating from a Danish company (Wood Mackenzie, 2020). This 
example shows that RD&D budgets do not negatively affect unit costs and increase 
technology development and hereby in this case, separating learning-by-searching from 
learning-by-doing is problematic.  

2.4 Learning curves for energy technologies: Empirical Issues 
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As shown above, improvements can add value and solve existing issues of the learning curve, 
whilst on the other hand resulting in new issues. Söderholm and Sundqvist analyse the 
empirical side of these issues and their study can be seen as a foundation for the empirical 
technology learning curves for energy practices, serving as a guideline for learning curve 
implementation in energy models (2007). Their paper provides an extensive comparison of 
the different models for applying learning and experience curves to renewable energy 
technologies, based on wind energy from Germany, Denmark and the United Kingdom. 
Söderholm and Sundqvist start with the basic one-factor model, then add scale effects and 
hereafter, derive the two-factor model from a standard Cobb-Douglas1 function. Finally, 
different two-factor models follow when correcting for endogeneity, resulting from 
simultaneity and omitted variable bias. Based on this, the paper concludes a number of 
recommendations, which this study will carefully adhere to when developing the learning rates 
for green hydrogen and Power-to-X. A brief summary of the empirical issues is provided 
below. 

Söderholm & Sundqvist (2007) highlight four issues when estimating learning rates: 

 
1. Choice of dataset and definitions 

Removing outliers or early observations from the dataset, defining the variables and 
choosing the time period all affect the learning rate heavily and hence can lead to 
different learning rates, using the same starting dataset. 
 

2. Operationalization 
The question is if the positive trend of cumulative capacity really does capture 
learning-by-doing, or just an exogenous technological process, such as global 
automation, and robotization and this similarly holds for learning-by-searching and 
R&D knowledge stock. 

 
3. Endogeneity and Simultaneity 

The basic learning curve models assume that cumulative capacity is an exogenously 
determined variable and that the technology becomes cheaper due to higher 
cumulative capacity. On the other hand, investors invest and expand capacity of the 
energy technologies because R&D and learning lowers investment costs and 

 
1 Widely used production function depicting the relationship between two input (Capital and Labor) factors and 
the output factor 
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therefore, the variables are simultaneously determined. Simultaneity leads to a biased 
and inconsistent learning rate and consequently needs to be controlled for, which is 
not always the case. 
 

4. Omitted variable bias  

Omitted variable bias occurs when important explanatory variables are left out of the 
model, more specifically a variable which is a determinant of the independent variable 
and is correlated with the dependent variable. In this case it is clear to see that costs 
are affected by other variables which also correlate with cumulative capacity and R&D, 
most notably input prices and scale effects. Not controlling for these variables would 
lead to a positive bias in the learning rate. Besides, a different variable, which can be 
even harder to control for, is the impact of policy. This is for instance the 
implementation of feed-in-tariffs, which impact both the energy price and cumulative 
capacity. 
 

Söderholm & Sundqvist (2007) also present solutions for these issues, these guidelines 
consist of datasets and this strengthens the need for a complete data. Summarizing, the 
guidelines consist of including a sensitivity analysis, a time trend test, a statistical test for 
technology diffusion and including, amongst others, scale effects to test for omitted variable 
bias. All of these guidelines emphasize the need of an extensive dataset, containing not only 
R&D, cumulative capacity and cost variables, but also instrumental variables and variables 
such as scale effects, input prices and policy measures to prevent for omitted variable bias. 
These recommendations will be carefully adhered to when developing learning rates for green 
hydrogen. 
 
 
 
 
 
 
 
 
 
 

3. Green hydrogen  
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3.2 History and future of green hydrogen 

 

The chemical process of splitting water in oxygen and hydrogen using electricity, called water 
electrolysis, has already been around for more than 200 years. The commercialization was 
induced by the invention of the Gramme machine in 1869 and the “golden age” of electrolytic 
hydrogen development followed between 1920 and 1970 (Santos et al, 2013). Since mid 20th 
century already large-scale electrolysers of up to 165 MW were deployed (IEA, 2019) mainly 
in the ammonia fertilizer industry. In these years, electrolytic hydrogen profited from the 
steady load and the low-cost of hydropower. In 1966, General Electric developed a new type 
of water electrolyser, Polymer Electrolyte Membrane electrolysis (PEMEL), to overcome the 
drawbacks of the incumbent Alkaline electrolysis (AEL) technology, mainly relating to low 
system flexibility to handle and react to fluctuations in the electricity supply (Shiva Kumar & 
Himabindu, 2019). However, the exploitation of energy from fossil sources ceased the 
progress into hydrogen from water electrolysis, as coal gasification and natural gas reforming 
provided a low-cost alternative option, starting the development into the large market it is 
today. Driven by an energy transition away from the fossil energy sources and the cost 
reductions of renewable electricity, green hydrogen is assigned a bright new future. This also 
led to the introduction of new technologies, high temperature or Solide Oxide electrolysis 
(SOEL), which is highly efficient where steam is available, and this technology can be used 
for co-electrolysis for the production of e-fuels. More recently, a new technology emerged 
called Anion Exchange Membrane electrolysis (AEMEL), aiming to combine the best of the 
AEL and PEMEL technologies. The focus of this study will lie on the most mature technologies 
- AEL and PEMEL. Whereas SOEL and moreover AEMEL are currently on a lower technology 
readiness level, although both are still frequently touched upon. The bright future of green 
hydrogen also presents in the varieties roles it can play. In seasonal energy storage, 
complementing renewable energy sources, in mobility, for fuel cell vehicles and as a basis for 
synthetic fuels, in several industrial and chemical processes, as a basis for, among other 

things, ammonia, methanol, industrial heat in for instance steel production. A major part of 
these applications is located around ports and industrial port complexes in the Netherlands, 
where most of the current Dutch Hydrogen demand originates from, which in turn is ±15% of 
current EU hydrogen demand (FCH Observatory, 2020). Moreover, in the future industrial 
hydrogen can be transported by pipeline to industrial clusters in for instance Germany and 
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Belgium, where steel production and heat in the chemical sector can lead to substantial future 
hydrogen demand. In the following figure from Gasunie (2020), this idea is visualised.2 

 

Figure 4: Gasunie - Moving towards hydrogen in 2030 and 2050 

 
Source: Gasunie (2020b) 
 

3.3 Government incentives and limitations  

 
As history shows, the potential of green hydrogen is heavily subjected to its economic 
viability. The introduction of government incentives, which can be in the form of subsidies, 
taxation of fossil-based alternatives, but also carbon cap and trade systems, can make way 
for cost competitivity of green hydrogen as a low carbon alternative. Especially the carbon 
‘cap and trade’ can already allow for cost competitivity, such as the emissions trading scheme 
(ETS) in the EU, which shortly are different market systems based on putting a ‘cap’ on a 
company’s carbon emissions and when this “cap” is exceeded, the company needs to trade 
and buy emission allowances from companies, which did not reach their “cap”, leading to a 

 
2 This is only part of the figure, full figure also shows ongoing hydrogen projects and can be found in the  source 
mentioned in the references. 
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trading scheme with a resulting carbon price (EU ETS, 2017). The increasing importance of 
such a system is illustrated in Tesla Automotive’ recent quarterly results, where 7% of 
revenues resulted from selling emission allowances to industry competitors (CNBC, 2020). 
Such systems, similar to for instance the SDE subsidy schemes in the Netherlands, induce 
companies to decrease emissions, but at the lowest cost possible and thus to seek the 
solution with the lowest ‘carbon abatement cost’. For green hydrogen, this means again a 
focus on reducing costs, and those cost reductions, by learning curve theory, come with 
increases in cumulative capacity. Government policy is further discussed in the final chapter 
in this study. 

At the same time, next to the costs, it is critical to also acknowledge the limitations of 
green hydrogen and the main limitation relates to the renewable electricity needed for the 
production of green hydrogen. Green hydrogen production requires more electricity than it 
produces in hydrogen equivalent due to energy lost in the process. This green electricity is 
also much needed elsewhere in, for instance, the Netherlands, where only 18% of consumed 
electricity was generated from renewables in 2019 (CBS, 2020). Therefore, in regions such as 
the Netherlands, renewable electricity used to produce green hydrogen is in turn not used to 

decarbonize the still mainly grey energy systems. Here, green hydrogen needs to prove it is 
the only low-cost option in its potentially hard-to-abate end-use sectors to be able, thus 
providing for the lowest abatement costs, to claim a share of renewable electricity. This, of 
course, does not hold in cases where green hydrogen is produced complementing renewable 
energy sources and the electricity grid, by capturing otherwise curtailed energy and providing 
seasonal storage and transport. Nonetheless, in both cases, usually referred to as grid-
connected and off-grid, green hydrogen needs to show its potential as a low-cost 
decarbonization option. Thus, the leading first step is to analyse the investment costs of the 
different electrolyser systems and these are by many expected to decrease substantially 
along the learning curve (Hydrogen Council, 2020). As will be shown later in section 3.6, it is 
to be seen the first of several steps, as looking beyond investment costs is of great 
importance. In the Findings, differences between grid and off-grid systems are discussed in 
further detail, adding a quantitative assessment. 

 

3.4 Disparity in investment costs predictions 

 

In literature the general consensus is that production costs of green hydrogen will reduce, 
however, an analysis of literature and data on the investment cost of green hydrogen shows 
a large disparity in presented data. Different studies all claim different cost, cost reductions 
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and timing of cost reductions. The figure below (ASSET, 2020), shows how scattered the 
predictions from different sources are, with for instance the most mature water electrolysis 
technology, Alkaline, differing by a factor of five in 2020. This figure shows data points from 
recent studies, normalised to millions of euro per capacity of hydrogen output in megawatt. 
By presenting investment costs in hydrogen output, instead of the usual electricity input, 
efficiency of the system can be incorporated to provide for a more complete assessment.  
 
Figure 5: Investment costs for green hydrogen production technologies 

 
 
 
 
 

 
 
 
 
 
 
 
 
Source: ASSET (2020) 

 
The discrepancies in literature on the current and future costs, shown in the figure 

above, critically complicate the assessment of the learning rates of hydrogen and hence, the 
potential of green hydrogen. Therefore, it is good practice to first address the reasons behind 
the discrepancies, which lead to the different solutions and concepts necessary to accurately 
sketch the potential of green hydrogen. Four main reasons or problems for the discrepancies 
are explained, following the hypotheses that costs predictions diverge, resulting from: 

 
A. System boundaries are not or poorly defined 
B. The focus is too much on investment costs 
C. Used sources are recycled and outdated 
D. Discussions on the speed and timing of adoption/deployment 

 
The first two reasons relate more specifically to green hydrogen, while the last two reasons 

also highlight broad underlying problems about the analysis of renewable energy 
technologies.  
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3.5 Defining system boundaries  

 

First, one clear reason for the disparity in the data is the difference and lack of defining the 
system boundaries, as besides the basic electrolyser stack, the system includes a balance of 
stack, the balance of plant, and power electronics part. All which can make up a significant 
part of the costs and can include or exclude different parts. The cost breakdown of a 1MW 
PEMEL system in the figure of Mayyas et al., (2018) below, shows the great impact excluding 
one of those aspects would mean for PEMEL. 

 

Figure 6: Cost breakdown 1 MW PEMEL system 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Source: Mayyas et al. (2018) 
 

An underlying reason for differentiation in the system boundaries is that feedstock input 
and hydrogen output can differ in form. Electricity input differentiates in either alternating or 
direct current (AC or DC), water input in terms of purity or salt content and hydrogen output 
in terms of output pressure and purity. Grid electricity is usually AC, which would mean 
needing a rectifier to transform it to DC, while water may need purification or desalination and 
hydrogen output may need purification and compressing. Adding a rectifier, water or 

hydrogen purifier and compressor comes at a cost and thereby, the question is what each 
datapoint assumes as input and output and what it includes as part of the electrolyser system. 
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Most studies, if at all, only partly clarify what their investment cost include. Subsequently, this 
can lead to comparing different systems, and therefore, to comparing apples with oranges.  

 

3.6 Looking beyond investment costs 

 

Most studies, focus on investment cost when assessing the potential cost reductions of green 
hydrogen, in Figure 3 efficiency was included by assessing capacity in hydrogen output 
instead of electricity input, which is a first step. Next to investment costs, a usually mentioned 
cost factor are the operating expenditures, which is mostly taken as a percentage of the yearly 
capital expenditures and thus relates to the investment costs. However, by only focusing on 
investment cost, other factors which influence the production cost indirectly, are ignored. 
Below in table 1, the most important KPI’s, besides operating and capital expenditures, are 
summarized based on data from the Hydrogen Council (2020), interviews with electrolyser 
manufacturers, company brochures and load flexibility on IEA’s future of hydrogen (2019). 
The assumptions and system boundaries, of which the importance was explained in the 
previous section. Hereafter, the KPI’s are discussed, which is also critical, as the relevance 

of each KPI can differ substantially per case. 
 

Table 1: KPI’s green hydrogen technologies (Hydrogen Europe, 2020) (IEA, 2019) 
 

AEL PEMEL SOEL AEMEL 
1. Efficiency  67% 61% 83%3 61% 
2. Efficiency degradation 

(%/1,000hrs) 
0.12 0.19 1.94 >1.0 

3. Hot idle ramp up (sec) 60 2 600 30 
4. Cold start ramp up  (sec) 3.600 30 43.200 1.800 
5. Footprint (m2/MW) 100 60 150 90 
6. Load flexibility (% of 

nominal capacity) 
10-110 0-160 20-100 - 

7. Current density (A/cm2) 0.6 2.2 0.6 0.8 
8. Use of critical raw 

materials as catalysts 
(mg/W) 

0.6 2.7 - 1.7 

 

Source: Hydrogen Europe  (2020), only load flexibility from IEA (2019), confirmed and adjusted in interviews with 
electrolyser manufacturer and the electrolyser’ brochures 

 
3   Energy needed for steam generation is not included, as this usually available, when not available efficiency of 
SOEL would come down to 67%. 
4 Degradation at thermo-neutral conditions in percent loss of production rate (hydrogen power output) 
at constant efficiency, this is different than the definition for the other lower temperature technologies, since 
high-temperature SOEL faces material degradation due to the high termperatures 
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Assumptions, from Hydrogen Europe (2020a), except for (6), from the EA (2019): 
 

0) Input of AC power and tap water; output of hydrogen meeting ISO 14687-2 at a 

pressure of 30 bar and hydrogen purity 5.0. Correction factors may be applied if actual 
boundary conditions are different 

1) Electrical efficiency at nominal hydrogen production rate of the system at standard 

boundary conditions  
2) Stack degradation defined as percentage efficiency loss when run at nominal capacity.  
3) Time required to reach nominal capacity in terms of hydrogen production rate when 

starting the device from hot idle (warm standby mode - system already at operating 
temperature and pressure). 

4) Time required to reach nominal capacity in terms of hydrogen production rate when 
starting the device from cold standby mode. 

5) Average specific space requirement of a MW system comprising all auxiliary systems 

to meet standard boundary conditions) and built up as indoor installation. 
6) Load flexibility is the percental difference the system is able to differ from its nominal 

load, reported values should be seen as highly dependent on multiple other factors 

differing per system.  
7) Mean current density5 of the electrolysis cell running at operating temperature and 

pressure and nominal hydrogen production rate of the stack 

8) Raw materials used in the catalysts in the stack: 
a. AEL: ruthenium for the cathode (mostly as RuO2) 

b. PEMEL: iridium as the anode catalyst and platinum as the cathode catalyst 
(Also, titanium is used in the Anode) 

 

3.6.1 Efficiency and efficiency degradation 

 

For the production of green hydrogen, the two basic feedstock inputs are water and electricity 
and mainly the latter can play a significant role in the final cost of green hydrogen (Hydrogen 
council, 2020). The energy use needed for a kilogram of hydrogen can differ per system and 
is usually expressed in the efficiency – output of hydrogen divided by the electricity input of 
the complete system. This efficiency degrades with usage2 and besides for SOEL, in green 
hydrogen production to keep a steady level of output, electricity usage is increased as 

 
5 This KPI is very important for the manufacturers, influencing many of the other KPI’s, yet is not discussed 
here because the other KPI’s which its influences are discussed extensively 
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degradation increases. Efficiency degradation is often limited by replacing the stack of the 
electrolysers on a certain time frame, generally once every 10 years for AEL, which of course 
comes at a cost as well. In table 1, the differences between the systems are clearly visible 

Improvements in both efficiency and efficiency degradation can positively influence green 
hydrogen cost and with decreasing investment cost this effect becomes more important. The 
hydrogen council even states that by 2030 electricity cost will amount to 80% of the total cost 
of green hydrogen (2020). The importance of system efficiency and its degradation can result 
in a higher demand for systems with higher efficiency, even if the customer faces higher 
investment costs for those systems. For electrolyser manufacturers it can also be seen as a 
trade-off, where efficiency improvements can come at the cost of higher capital expenditures. 
Moreover, when a certain capital expenditures target cost reduction is reached the focus 
might shift to improving efficiency. This can undermine the importance of investment costs, 
and when relating this to the learning curve theory, it can also undermine the significance of 
relating learning-by-doing to investment cost. Ferioli et al., (2009) when faced by similar 
problems for the production of ammonia with scattered investment costs, even found more 
significant learning rates bases on system efficiency than on investment costs.  

 

3.6.2 System flexibility: load flexibility and ramp up times 

 

Another important factor or key performance indicator the ability of the system to handle lower 
or higher capacities of electricity input than its design capacity, for a certain period of time. 
This is crucial in the foreseen roles of green hydrogen complementing renewable energy 
sources, providing seasonal storage and flexibility in for instance periods of low or high winds 
or cloud formation, or in cases where supply-demand gaps lead to low or even negatively 
priced electricity. More flexible systems would allow the capture of otherwise (economically) 
curtailed electricity from renewable energy. Absorbing intermittent energy with flexible 
electrolyser systems shows a great potential with the expected rise of installed wind and solar 
energy capacities. In order to do this, electrolyser systems would need to allow for a longer 

period of flexible input electricity loads, which is seen as a main advantage of a PEM over an 
Alkaline system, for which a longevity of low or variable loads would stress and degrade the 
electrochemical system (interviews). On the other hand, recently a Thyssenkrupp alkaline 
electrolyser was approved for primary frequency control (interviews), while also flexibility can 
be added in the form of short-term battery storage, which can be integrated, an example of 
this system is referred to as a battolyser (Battolyser, 2020). This further shows that the 
advantage to handle flexible loads in some cases would allow for compromising on higher 
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investment cost, or lower efficiency. The load flexibilities presented in Table 1 not to be 
assumed definite numbers, since under-or-overload, dependent on the longevity, can also 
result in higher efficiency degradation. Integrated systems are currently in a demonstration 
phase and therefore actual results are scarce and generally unknown. 

For flexibility, also the hot idle and cold start ramp up times of electrolyser systems play a 
role. Shortly put, this is the time it takes for the system to start up, from standby or “hot” and 
from start or “cold”. PEMEL again gains an advantage, this time because of having lower cold 
and hot idle ramp-up times, shown in Table 1. This can be of importance especially where a 
fast response to the renewable energy source is required to capture curtailed energy. 
Nonetheless, this advantage can be limited, as getting a PEMEL system to the required 
pressure level also can take up to 5 minutes (interviews). Additionally, it can be argued that 
there simply is only a limited necessity of systems responding in seconds to wind or solar 
energy is, as energy from a wind turbine does not suddenly stop in seconds, and for solar, 
cloud formation is limited in many areas where PV farms are located. 
 

3.6.3 System footprint 

 

Thirdly, another important factor not incorporated in the costs is the footprint of the total 
system. Footprint of the system can be of importance, as there are applications for 
electrolyser systems where land is scarce or expensive and a smaller system is needed or 
moreover, when the system is fitted into containers for permitting or transport reasons. As 
shown in the graphs below, currently smaller PEMEL systems have a significant smaller 
footprint, although this advantage decreases in the future, as in the future Alkaline systems 
are expected to make improvements (Hydrogen Europe, 2020a), and this advantages is also 
reduced with larger system capacities, as shown by analysing Nel’s PEMEL and AEL 
electrolysers (Bloomberg, 2019).  

Cases where there is a need for systems with a smaller footprint are for instance a 
hydrogen refuelling station in an urban area or when considering a new concept, where an 
electrolyser is placed offshore directly connected in different ways to an offshore wind park, 
hereby using possible advantages with integration and lower energy transport costs. The 
latter currently being a hot topic in countries in Western Europe surrounding the North Sea, 
where offshore wind is seen as the main option for renewable electricity generation. In these 
integrated offshore systems electrolysers with different qualities are preferred, such as 
footprint and the previously mentioned, system flexibility, which can justify for higher costs. 
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3.6.4 Use of precious metals 

 

Additionally, the use of precious metals in the stack and in the system can make system costs 
dependent on fluctuating prices of precious metals. The use of precious metals is, as shown 
by the fin table 1, mainly a problem for PEMEL. For AEL and AEMEL this problem is non-
pertinent and even more so for SOEL, where it is non-existent. PEMEL mostly requires iridium 
and platinum in stack, whereas in the complete system, excluded in table 1, it also requires 
titanium. AEL does require ruthenium, but also steel and nickel in the complete system. 

Nonetheless, for PEMEL systems there is a lot of R&D going into the search for new 
inexpensive stack materials, and retrieving and recycling precious metals used, to solve this 
issue, but this remains an uncertain factor. Overall, for all technologies, decrease in material 
use is seen as a main contributor to the predicted cost reductions. 

 

3.7 Outdated sources 

 
The third reason for the discrepancies in the data relate to the used sources for these 
continuously improving technologies. To exemplify this problem, this study looks into an often 
used and quoted study, the IEA’s Future of Hydrogen. When comparing the Future of 
Hydrogen (IEA, 2019) to other recent studies by the Hydrogen council (2020) and the 2x40 
GW initiative (Hydrogen Europe et al., 2020b), some of IEA’s estimates seem conservative. In 
terms of cost, the IEA seems to base their predictions around Schmidt et al. (2017), which 
when looking at other studies into projected cost reductions is a commonly used source. 
However, the data gathered in this study is collected in 2016 which arguably is, for a 
continuously improving technology, already outdated. Moreover, the estimates from Schmidt 
et al. (2017) come from a small expert panel of mostly academic experts and their expert 
knowledge is in most cases not based on actual production cost data from a company, but 
rather from other studies and cost data elsewhere available, which in most cases would 
originate from before 2016. This would mean most knowledge and related data points 
originate back to studies and their predictions from before 2016. This example shows an 
underlying problem in an energy analysis, not just relating to green hydrogen, while more 
specifically relating to the IEA. In the next section, this underlying problem is amplified, when 
considering the speed and timing of the adoption of renewable technologies. 
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3.8 Speed and timing of adoption 

 
This final reason for the discrepancies in cost predictions originates from discrepancies in the 
speed and timing of the adoption of green hydrogen. Visible when analysing Figure 5: 
Investment costs for green hydrogen production technologies, as it does show some level on 
agreement that the investment costs will reduce to certain level. All but one datapoint in 2050 
is below 1.5 million, and it can therefore be concluded that the divergence is largest in terms 
of speed, timing and the current cost in 2020. Reports understating the speed and timing of 
adoption, also underestimate future deployment levels, and below, reports from the IEA are 
used as an example to illustrate this problem. A reason for this conservatism originates from 
the discussion is the time it takes to adopt renewable energy and its technologies. This can 
also be seen as a one of “chicken and egg” problems facing renewable energy technologies, 
such as green hydrogen. An issue which is also visible for the transmission of renewable 
energy, whilst even more clearly on the infrastructure side of battery and fuel cell vehicles: no 
infrastructure is built when there is no demand for it, while no BEV’s or FCEV’s will sell when 
there is no infrastructure to support it. When relating such an “chicken and egg” problem to 
cost reductions and increased deployment, it translates in investors holding back investments 
to wait for future cost reductions, while cost reductions depend on scale and learning effects 
and thus increased deployment, which will not come with time but with deployment.  

Once again the problem clearly shown in reports from the IEA on renewable 

technologies, this time the IEA underestimates speed and timing of adoption, adding to the 
problem of the IEA studies mentioned in section 3.7. This exemplifies the larger underlying 
problem of the IEA underestimating renewables. This is typically illustrated in the figure below, 
which shows the actual annual additions in PV capacity versus the additions the IEA predicted 
in their yearly New Energy outlook on a log scale, showing IEA predicting linear growth while 
the actual growth is exponential. 
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Figure 7: Actual annual PV capacity addictions vs. IEA’s New Energy Outlook (Installed 
capacity in GW, log scale) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 

 
Source:  Hoekstra (2018)  

 
This ongoing understating of the deployment of renewables, together with recycling data, 

showed in the example from section 3.7 can be seen as main reasons for the conservatism 
of the IEA. Subsequently, since the IEA is a commonly used source and its estimates regularly 
provide data input for other studies, consequences be substantial. Carrington and 
Stephenson (2017) conclude that the conservativism of the influential IEA hampers growth of 
renewables, in their study also using solar PV projections as an example. They argue that 
conservative projections deter investors and therefore can lead to delayed adoption of 
renewable energy technologies. This stresses the importance of accurately projecting the 
potential of renewable energy technologies, especially in well-read reports. Additionally, it 
reveals the complicated task of predicting speed and timing of adoption with scenario 
analyses, or in other words, projecting cumulative capacity on specific time periods.  

However, in learning curve theory speed and timing of adoption do not affect costs 
directly, rather indirectly through increased deployment. Consequently, the solution for this 
problem presents itself in the learning curve theory, where time is an independent variable 
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and thus, the speed and time of adoption do not play a role in deriving learning rate. Referring 
back to the quote from MacDonald & Schrattenholzer (2001) on page 9: ” For most products 

and services, it is not the passage of time that leads to cost reductions, but the accumulation 
of experience”.  Hence, when deriving a learning rate there does not necessarily exist a need 
for assessing the speed and timing of the adoption of green hydrogen and its technologies. 
Still, issues on system boundaries, looking beyond investment costs and outdated data, 
remain when deriving learning rates, adding to the already mentioned empirical issues in 
section 2.4.  

 

3.9 Solutions 
 

3.9.1 Expert elicitation 

 

Deriving learning rates already was presented as an adequate assessment to study the 
potential of green hydrogen in. However, deriving unbiased and significant learning rates 
require an extensive data set, which also results from the empirical issues summarized in 
section 2.4. However, installed capacity for green hydrogen is currently at low levels and a 
market for green hydrogen has not yet emerged (Hydrogen Europe, 2020a), providing for a 
limited dataset to begin with. Furthermore, similar to Ferioli et al. (2012) deriving learning rates 
for the ammonia production, green hydrogen, although to a lesser extent, is dependent on 
feedstock costs. Thus, the significant effect of efficiency and efficiency degradation need to 
be acknowledged when deriving the learning rates. Otherwise, when not incorporating 
possible improvements in efficiency, derived learning rates can become negatively biased, or 
even insignificant, such as in the ammonia production (Ferioli et al., 2012). Including both 

variables once more adds to the comprehensiveness of the dataset needed, with data which 
already is limitedly available. Proxies can be used such as PEM fuel cells, the reverse process 
of PEMEL, or the Chlorine Alkali process, which is similar to AEL. However, the proxies were 
seen as too different with all other important KPI’s previously mentioned, basing the cost 
development or learning rates on proxies would not provide for a valuable analysis. Hence, 
another method to replicate a structured and comprehensive data set is proposed, namely 
an expert elicitation, which additionally addresses the remaining problems related to the 
disparity in the data. 

In an expert elicitation, a panel of experts is consulted to predict values for different 
uncertain parameters. Morgen (2014) describe the relevance of expert elicitations as follows: 
“Society often calls on experts for advice that requires judgments that go beyond well-
established knowledge”. Next to this, expert elicitation is known as good practice in situations 
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where structured and relevant data is only limitedly available (Meyer & Booker, 2001). In 
energy analysis it is commonly used, for instance by the US Department of Energy (the 
National academics, 2007) and for wind energy by Wiser et al. (2016) (Baker et al., 2015). The 
previously mentioned study Schmidt et. al (2017) similarly used expert elicitation to assess 
future potential of water electrolysis, and this study subsequently served as the basis for, 
among many other studies, predictions by the IEA (2019), adding to the significance of the 
expert elicitation method. In this way, expert elicitation is in fact a data collection method, 
hereby creating the possibility to accurately define system boundaries similar to all experts 
and thus, solving the problem of comparing systems with different systems, presented in 3.5. 
Next to this, experts can be requested to elicit values for scenario’s not relating to specific 
time periods, yet directly relating to levels of deployment or cumulative capacity. Moreover, 
to solve the problem presented in section 3.6 on the importance looking beyond investment 
costs, other uncertain parameters next to investment costs, can be elicited from the panel of 
experts. Yet, the challenge remains to integrate the factors influencing the performance of 
water electrolysis beyond investment costs, summarized in section 3.6, in the learning rate. 
As already proposed by the Joint Research Centre (2012), one way of tackling this is to derive 

the all-encompassing levelized cost of, in this case, hydrogen (LCOH). 
 

3.9.2 Levelized cost of hydrogen 

 

In energy analysis, calculating levelized costs is a common way of analysing production cost. 
Thereby, total costs over lifetime are transformed to cost per unit of energy, which in the case 
of hydrogen usually presented per kilogram or kilowatt-hour. In this way, using levelized cost 
to derive learning curves, important end-use cost drivers excluded in investment costs can 

be incorporated.  
To derive the total cost over lifetime and also, to the produced hydrogen over lifetime 

to in turn come to the cost per unit of energy feedstock input costs is needed, which is a 
variable normally considered as exogenous (Söderholm & Sundqvist, 2007). Feedstocks for 
hydrogen production include water and electricity and especially electricity input costs and 
capacity, normally referred to as load factor, for a large part determine the levelized cost of 
hydrogen (Bloomberg, Hydrogen Council, Hydrogen Europe 2020a+b). Normally feedstock 
costs is seen as an exogenous variable, however, endogenous variables Efficiency and 
efficiency degradation partly determine the hydrogen produced and thus the electricity input 

needed. Moreover, System flexibility, System footprint and Fout! Verwijzingsbron niet 

gevonden. simultaneously determine the electricity input and price. As systems more flexible 
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in load range, with a smaller footprint or with faster ramp up times, can profit from more input 
capacity or from running when electricity prices from RES are at low or even negative levels, 
for instance during peaks, also explained in section 3.3.. Therefore, this study concludes that, 
for green hydrogen production, feedstock input capacity and price need to be seen as 
variables which are partly endogenously determined and hence, cannot be assumed 
exogenous and subsequently need to be controlled for when deriving green hydrogen costs 
and learning curves.  Therefore, in this study, electricity costs and load factor are 
differentiated to come to a learning rate per case of assumed electricity costs and input. This 
leads to multiple variating learning rates, making the results and implications harder to 
comprehend. Therefore, results on the LCOH and learning are applied to specific cases, 
which are also especially applicable the port of Rotterdam. Hereby, learning curve theory 
remains of key importance, as the argued potential cost reductions still result from increased 
deployment. This results in the following hypothesis, which lays the foundation of how the 
results are presented in this report: 

 
It is of key importance to look further than learning rates based solely on investment costs, as 

other endogenous and exogenous factors have a significant impact on the actual costs of 
green hydrogen. 

 
This hypothesis is tested in this study: 
 

1) By developing variable learning rates based on the levelized cost, which leads to a 
more complete picture by showing differences in the ability to learn depending on 
electricity costs and load factor. 

 
2) By applying the variable learning rates in both grid-and off-grid cases, showing the 

effect of other KPI’s endogenously affecting electricity costs and load factor, and the 
potential of integration with renewable energy sources and, of possibly importing 
green hydrogen from locations with high renewable potential. 
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4. Methodology 
 

4.2 Levelized cost of green hydrogen 

 
In equation 2 for the levelized cost of hydrogen, electricity costs are explicitly separated to 
enable differentiating between electricity costs and the other cost variables. Additionally, 
stack replacement costs are incorporated, as generally stacks are replaced to limit cumulative 
efficiency degradation, which would drive up electricity costs. System flexibility, System 
footprint and ramp-up times influence the learning rate through load factor and electricity. 
Therefore, by differentiating electricity costs and load factor their influence can be assessed 
on a lower level.  
 

Equation 2: Levelized cost of hydrogen (LCOH) 

 
𝐿𝑒𝑣𝑒𝑙𝑖𝑧𝑒𝑑	𝑐𝑜𝑠𝑡	𝑜𝑓	ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛	(𝐿𝐶𝑂𝐻) =	

𝐶𝑜𝑠𝑡	𝑜𝑣𝑒𝑟	𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒
𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛	𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑	𝑜𝑣𝑒𝑟	𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 =

=	
∑ (𝐼" +𝑊" +𝑀" + 𝑅")

(1 + 𝑟)"
T
"UV

∑ 𝑈" × 𝜂"
(1 + 𝑟)"

T
"UV 	

+
∑ 𝑈" × 𝐿𝐶𝑂𝐸" × (1 + 𝑑")

(1 + 𝑟)"
T
"UV 	

∑ 𝑈" × 𝜂"
(1 + 𝑟)"

T
"UV 	

	

𝑊𝑖𝑡ℎ:																																																																																																																																																																											 
	𝐼" 							= 𝐶𝑎𝑝𝑖𝑡𝑎𝑙	𝐸𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒	𝑠𝑦𝑠𝑡𝑒𝑚	𝑖𝑛 € 𝑘𝑊\T]^"⁄ , 𝑖𝑛	𝑦𝑒𝑎𝑟	𝑡	 

𝑊"								 = 𝑊𝑎𝑡𝑒𝑟	𝑐𝑜𝑠𝑡𝑠	 𝑖𝑛	€ 𝑘𝑊\T]^"⁄ , 𝑖𝑛		𝑦𝑒𝑎𝑟	𝑡																																																																				 

𝑂" 							= 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠	𝑎𝑛𝑑	𝑀𝑎𝑖𝑛𝑡𝑎𝑛𝑎𝑖𝑛𝑐𝑒	𝑐𝑜𝑠𝑡𝑠	 € 𝑘𝑊\T]^"⁄ , 𝑖𝑛	𝑦𝑒𝑎𝑟	𝑡																									 

𝑅" 							= 𝑆𝑡𝑎𝑐𝑘	𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡	𝑐𝑜𝑠𝑡𝑠	 𝑖𝑛	€ 𝑘𝑊\T]^"⁄ , 𝑖𝑛	𝑦𝑒𝑎𝑟	𝑡																																											 

𝜂" 								= 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒	𝑠𝑦𝑠𝑡𝑒𝑚	𝑖𝑛	%, 𝑖𝑛	𝑦𝑒𝑎𝑟	𝑡																																									 
𝑈" 							= 𝑈𝑡𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝑖𝑛	𝑙𝑜𝑎𝑑	ℎ𝑜𝑢𝑟𝑠	𝑝𝑒𝑟	𝑦𝑒𝑎𝑟, 𝑖𝑛	𝑦𝑒𝑎𝑟	𝑡																																																							 
𝐿𝐶𝑂𝐸" = 𝐿𝑒𝑣𝑒𝑙𝑖𝑧𝑒𝑑	𝑐𝑜𝑠𝑡	𝑜𝑓	𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦	𝑖𝑛 € 𝑘𝑊ℎ⁄ , 𝑖𝑛		𝑦𝑒𝑎𝑟	𝑡																																											 
𝑛										 = 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒	𝑠𝑦𝑠𝑡𝑒𝑚, 𝑖𝑛	𝑦𝑒𝑎𝑟𝑠																																																									

𝑟										 = 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡	𝑟𝑎𝑡𝑒	𝑜𝑟	𝑊𝐴𝐶𝐶, 𝑖𝑛	%																																 
𝑑" 									= 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒	𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦	𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛, 𝑖𝑛	𝑦𝑒𝑎𝑟	𝑡																																																	

= 	 (𝑈"&V × 	𝑦𝑒𝑎𝑟𝑠	𝑎𝑓𝑡𝑒𝑟	𝑠𝑡𝑎𝑐𝑘	𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

− 1	 × 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛	𝑟𝑎𝑡𝑒	𝑝𝑒𝑟	ℎ𝑜𝑢𝑟)																					 
 
The following assumptions are made, based on Bloomberg (2019), Hydrogen Europe (2020 
and company (brochures), and subsequently reviewed by experts: 
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- Economic lifetime is assumed at 30 years, with sensitivity analyses for 20 and 40 
years. 

- Discount rate or weighted average cost of capital (WACC), is assumed at 6.5%, with 
sensitivity analysis for 3 and 10%. 

- Installation costs are considered to be 10% of CAPEX or 𝐼", however, as this is highly 

dependent on location, different per manufacturer and lower for containerized 
systems, sensitivity analysis is done for 0 and 20%. 

- Operations and Maintenance or 𝑂"	, is assumed at 2% of yearly CAPEX, sensitivity 
analyses are performed for 1 and 3%, as it is dependent on the service level 
agreement (SLA). 

- Cost of water (𝑊"), are neglectable, with water costs at €0.00036 per litre and usage 

at <0.09 litre per kg of hydrogen (Thyssenkrupp, 2020a). 
- Stacks are replaced every 10 years (AEL and PEMEL), and both stack costs6 and 

efficiency degradation of newly placed stacks are assumed to improve with increased 
deployment and time. Stack efficiency degradation is assumed to fall from 
0.11%/1000 hrs for AEL and 0.19% for PEMEL before the first stack replacement to 
a constant 0.1%/1000hrs for both, after the stack replacements at year 10 and 20 
(Hydrogen Europe, 2020a). With increased deployment levels, efficiency degradation 
is assumed constant at 0.1%/1000hrs 

 
Following the assumptions, the three key remaining uncertain parameters are: 
 

- Capital expenditures 
- Stack replacement costs  
- Efficiency 
 

Additionally, another usually studied uncertain parameter, lifetime of the stack in hours, is 
elicited from the experts, as most studies address efficiency degradation in the form of lifetime 
of the stack. Since efficiency degradation was seen as confidential information, this study 
assumes current levels degradation as presented by Hydrogen Europe (2020a). The elicited 
variable lifetime in fact represents economic lifetime, as it shows the cost-optimal time to 
replace the stack after efficiency has degraded to a certain level. Therefore, lifetime is also 
dependent on electricity costs and load factor, as those variables impact the economic 

 
6 Improvements in stack replacement costs come with deployment and in this study, it is assumed that stack 
replacement costs after 10 years come to the values of the 10x times deployment scenario explained further in 
subsection 4.3.1 
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incentive to replace stacks. However, this study focuses on the relative improvements in 
lifetime, which can only result from improvements in stack degradation. These relative 
percental improvements in lifetime are then transformed to improvements in stack 
degradation, and then compared with the predicted values from Hydrogen Europe (2020a). 
Current degradation levels are taken from Table 1 (Hydrogen Europe, 2020a). 
  

4.3 Expert elicitation 

 

The study by Schmidt et al. (2017) is used as a foundation for expert elicitation conducted in 
this study, but it differs with on a couple key points. Firstly, the values from experts are not 
elicited during the interview and instead are elicited beforehand in an online survey and 
afterwards, discussed in an interview, together with the insights and elicited values from other 
experts, where the expert also has the possibility to change his elicited values. This creates 
an interactive, iterative aspect, which can be seen as a scoped version of the Delphi method7. 
Secondly, this study focuses its attention to experts from within the industry, instead of mostly 
using academic experts, as industry experts get closer to the actual production and the actual 
cost data. Academic experts are contacted in a similar matter and both their insights and 
estimates in the survey are used, however, exclusively in a controlling function. Thirdly, the 
scenarios, for which experts are asked to predict values, are not based around time periods. 
As has been argued before in section 3.8, this eliminates the uncertainty about the timing and 
speed of adoption, which are independent variables in the learning rate. The scenarios used 
instead represent different levels of deployment, scale and R&D expenditures.  

 

4.3.1 Survey 

 
The uncertain factors influencing the cost of green hydrogen are the capital costs and the 
total electrical efficiency of the complete system, the lifetime and replacement cost of the 
stack. For both the CAPEX as well as the efficiency, it was emphasized to the experts in the 
survey that it concerned the complete system needing only non-purified water and AC 
electricity as input, to prevent for the problem of different definition of system boundaries. To 
reduce overconfidence and allow for uncertainty, values were elicited in ranges. Slider bars 
were used in the survey to limit the perceived sensitive data requests and increase time 

efficiency for the experts. Also, the experts were triggered by setting the standard range 

 
7 In the Delphi method, in multiple rounds questionnaires are sent out to an expert panel and after each round 
findings are discussed with the expert panel, creating an structured interactive discussion 
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values based on IEA’s Future of Hydrogen (2019), also quoting IEA’s estimates in the question 
to provide for a base value, probing the experts to cogitate. For all parameters first a current 
benchmark value was requested, based on a system with a 20 MW total stack. Hereafter, per 
parameter for different scenarios estimated ranges were elicited, with experts always being 
able to see their benchmark values. Afterwards, the experts were asked to argue their values 
with underlying reasons, and to specifically point the arguments to the scenarios. The 
scenarios in the survey are based around learning curve theory, while more specifically 
acknowledging the difference scale, R&D and deployment effects have on the uncertain 
parameters. For the learning curve theory to apply the survey lets experts think what effect a 
doubling of deployment would have in for the different parameters. However, the difference 
with larger scale stacks, which have a different cost reductions mechanism – economies of 
scale, needs to be stressed. Therefore, to control for experts overestimating deployment by 
mixing in scale it was stressed the scenarios all related to a 20MW system, besides the 
scenarios depicting different scales of course. Scenarios for R&D expenditure were included 
to enable comparisons between the effect of policy measures focusing on R&D or on 
deployment, hereby not serving the purpose of deriving a learning-by-searching rate. 

  

4.3.2 Interviews 

 

After conducting the survey, experts were asked if they would be willing to discuss results 
and share insights. Hereby, experts were allowed to change elicited values. The interviews 
were used interactively by noting opinions and insights of other experts to the expert to initiate 
a discussion. The interviews followed the following steps: 
 

1. Check for unanswered questions 
2. Check for possible outliers filled in by the expert and try to find its reasoning  
3. Discussion of elicited values vs general averages 
4. Discussion on system integration and system boundaries 

5. (Dis)advantages AEL vs PEMEL and to a lesser extent SOEL and AEMEL 
6. End-use sectors and renewable integration 
7. Recent developments and proposed policy advices 

 

4.4 Fixed effects 

 
The data from the expert elicitation is used levelized costs for hydrogen are derived per expert 
and per scenario. The resulting differences per industry expert were subsequently averaged 
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out to come to the learning rates. This is similar to the fixed effects model, a statistical model 
commonly used with panel data which excludes time invariant variables and hereby controls 
for omitted variable bias (Wooldridge, 2016). In this case, it controls for variables included by 
experts, which are invariant to the different scenarios.   
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5. Findings 
 

5.2 Comparison of CAPEX  

 

In this section, the results on CAPEX for Alkaline are compared to current literature and 
visualised below, whereafter the presented data again is used to touch upon the 
underestimation of renewables by the IEA.  This is done shortly, as mentioned before, it is 
very important to go further than CAPEX.  
 
Figure 8: Alkaline CAPEX learning curve vs current literature 

 
  
The figure above shows the learning curve for investment costs, based on capacities 
mentioned in the EC hydrogen strategy (2020). Here current cumulative capacity of 1000 MW 
for Alkaline is based on chlor alkali and additionally the assumption needs to be made that all 
of the installed capacity will be AEL and is in the EU, which are not optimal. However, this is 
needs to be seen as purely illustrative, enabling the introduction of the EC targets and 
comparison with other studies, and also; these are not the main results of this study. What 
figure 7 shows is that, besides compared to IRENA, this study estimates lower CAPEX levels 
are reached sooner than predicted. Also showing a steeper learning curve than the Hydrogen 
council (2020) with a learning rate for AEL8 of 16 ± 8%, compared the 9% from the Hydrogen 
council.   
 

 
8 All learning rates are based on the 10x times deployment scenarios, since it showed significantly lower 
uncertainty levels than the 2x times deployment scenarios, in all cases. 
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Figure 9: IEA underestimating renewables: also the case for green hydrogen 

 
Zooming in on the IEA (2019) in the figure above, it results in the confirmation that the IEA 
also underestimates the performance of Alkalinewater electrolysis. IEA’s CAPEX predictions 
for Alkaline in 2030 are to be reached even before 2024, or with first doubling of cumulative 
capacity. Moreover, IEA’s long-term targets, presumably around 2050, are even reached 
before 2030. The underlying reasons are already discussed in section 3.7 and 3.8, where also 
potential harming consequence is mentioned; investors being deterred by the 
underestimation the influential IEA which can hamper the growth. 

This also confirms the giant leaps in technological progress Alkaline electrolysers have 
already made in recent years, also confirmed in the interviews, resulting from among others 
increases in current density. This fast pace of progress makes older literature outdated, 
especially when this is literature summarizing or using data from again older literature. The 
future projected cost reductions are mainly the result of the industrialization in the 

manufacturing of stacks, with (semi)automation in production lines, but also increasing 
purchasing power for raw materials needed, but also for additional parts needed for the 
balance of plant (BoP).  The industrialization of AELs is confirmed by the recently announced 
substantial increases in electrolyser production capacities by Nel and ThyssenKrupp.  
 
Table 2: Announced capacity expansions for electrolyser production 9 
 
Company Sort Capacity and year 

Nel AEL 360 MW/a, further expansion to >1000 MW/a possible (Graré, 
2020) 

ThyssenKrupp AEL 1,000 MW/a (Thyssenkrupp, 2020b) 

 
9 Production capacity before these expansions for all OEMs were only several MWs per year (interviews). 
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ITM power PEMEL 1,000 MW/a (ITM, 2019) 

Enapter AEM 240 MW/a by 2022 (Enapter, 2020) 

 

Figure 10: PEMEL CAPEX learning curve vs current literature 

 
 
The main takeaway from figure 9, PEMEL’s investment costs learning curve, is that the 

predictions from current literature are more in line, while the Hydrogen council (2020) predicts 
a higher learning rate. This is underlined by insights gathered in the interviews, where experts 
stated the substantial technological progress of incumbent AEL in recent years, whereas the 
newer PEMEL never realised the expectations in terms of costs, due its high use of precious 
metals. This is also reflected in the learning rate 9 ± 2%, versus the 13% by the hydrogen 
council (2020). This is also an example of the problem mentioned in section 3.7,  of recycling 
outdated sources, which in this case it has led to a bias in literature where PEMEL is regarded 
as the main technology for the future of water electrolysis, also having a steeping learning 
curve, overlooking recent progress from AEL. Again, it should be noted that it important to 
look further than CAPEX. Mainly the flexibility, system size and integration options are fields 
where PEMEL is presumed to excel over AEL, although this has yet to be proven. Additionally, 
out of the interviews came that AEMEL, without the need for precious metals already provides 
an alternative to PEMEL, although learning rates are impossible to establish for this new 
technology10.The capacity expansion from Enapter, shown in Table 2  shows its potential. 
However, this section does not want to indicate that only one single technology will exist in 
the further future. On the contrary, this paper has shown the variety of applications for water 

 
10 Enapter, the company which holds the patent on AEM electrolysers, only exists for 3 years. 
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electrolysis, while the differences between the technologies show that while one technology 
may be more suited in one end-use sector, another is better suited in another. This is 
confirmed by all technologies expanding capacity, in Table 2. 

 

5.3 Variable learning rates 
 

5.3.1 AEL 

 

Referring to the first goal (0, the variable learning rates for AEL for the levelized costs are 
shown in table 2 below, based on levelized costs of hydrogen, and depending on electricity 
price on the vertical axis and load factor on the horizontal axis. Based on investment costs 
only, the learning rate for AEL11 is 16 ± 8%. 
 

Table 3: Variable learning rates AEL 
 

 
The variable learning rates in table 2 show that with differing electricity cost and load factor,  

the learning rates differs significantly as well, ranging from 3 to 16%. Compared to the 
investment cost learning rate of 16 ± 8%, the levelized costs of hydrogen show a lower overall 
potential to learn, and with increasing load factor and energy costs, the ability to learn 
decreases even further to a minimal learning rate of 3%. This is illustrated by the fact that 70-
90% of total costs are electricity costs in cases with learning rates below 7%, in the upper 
right cases in table 2. This shows that in these cases, green hydrogen costs are more 
dependent electricity costs and hence, on the learning rate of the renewable energy source. 
This leads to the conclusion that the variable learning rates shown are dependent on 

 
11 All learning rates are based on the 10x times deployment scenarios, since it showed significantly lower 
uncertainty levels than the 2x times deployment scenarios, in all cases. 
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electricity costs and load factor to transform into single constant learning, rate for the learning 
curve theory to apply to the LCOH. 
 

5.3.2 PEMEL 

 

For PEMEL the learning rates based on investment costs is 9 ± 2% and the variable learning 
rates table looks as follows: 
 

Table 4: Variable learning rates for PEMEL 

 
 
In table 4 for PEMEL, similarly as for AEL, it shows the dependence of the learning rate on 

electricity costs and load factor, although for PEMEL, the divergence across the variable 
learning rates is lower. This originates from efficiency improvements for PEMEL, which 
showed a higher ability to learn, and on the other hand, from the lower reductions in 
investment costs, which showed a lower ability to learn. The latter also shows in the 
significantly lower learning rate on investment costs of 9 ± 2%. The higher use of precious 
metals of PEMEL can be seen is one of the main reasons, which is reflected in the learning 
rate of the investment costs, whilst also in the limited reductions possible in the stack 
replacement cost, both making the part of technology which can learn lower. Although, when 
a new inexpensive stack material is discovered, this would result in a shock off shifting the 
learning curve downwards, however this could also be seen as a new technology. Next to 
this, overall lower efficiencies of PEMEL result in a lower total amount of hydrogen produced 
with the same electricity input, increasing electricity costs. Improvements in efficiency with 
increased deployment increase the variable learning rate relatively more in cases with higher 
load hours and electricity costs, where logically, improvements in efficiency have more impact 
on the LCOH. 

50 7% 6% 5% 4% 4% 4% 4% 3% 3% 
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However, the advantages of PEMEL of more load flexibility, lower ramp-up times and lower 
footprint, presented in by KPI’s summarized in Table 1: KPI’s green hydrogen technologies, 
are overlooked. These advantages can lead to PEMEL capturing more load hours at lower 
prices, shifting the variable learning rate to higher levels - in table 4 diagonally to the bottom 
right. Experts argued the necessity for ramp-up times in seconds are a necessity and if it 
would actually lead to capturing significantly more low-priced energy, hereby also noting that 
flexibility of PEMEL in terms of load was not proven on a larger scale. Next to this, it was 
shown in subsection 3.6.3 that with increasing system size, systems footprints of PEMEL and 
AEL converge. Also, for AEL, adding short-term battery storage would result in extra load 
flexibility, although the same time, this would result in higher CAPEX and lower overall 
efficiency. The load flexibility or the battery storage needed in MWh’s depends on the power 
fluctuations of the renewable energy source. This makes exact quantifications of these 
advantages difficult, differing per case with the power fluctuations of the renewable energy 
source, although in section 5.3 an illustrative example is presented. 
 

5.3.3 SOEL and AEMEL 
 

Regarding the two technologies with a lower technology readiness level (TRL), AEMEL and 
SOEL, SOEL in both the survey and interviews, showed to be more market ready than 
previously assumed. Therefore, quantitative estimates are made only for SOEL, while for 

AEMEL the future is more uncertain, although it is already currently used in remote areas in 
on small capacity scales. For SOEL the learning rate based on investment cost only is 
estimated at 27%12. A high rate, since SOEL investment costs are assumed to reduce 
significantly. For the variable learning rates for SOEL, 8000 load hours is assumed, resulting 
from the longer ramp-up times and for the foreseen applications for SOEL, which include for 
instance e-fuels production and steel production. Since the resulted stack lifetimes for SOEL 
were low, in this case stacks were replaced at year 5, 12 and 20, costing respectively 200, 
130 and 80 €/kWh, and hereby, stack efficiency degradation at the start of production was 
assumed at 1.9% and become 1.0%, 0.7% and 0.5%/1000 hrs after each respective stack 
replacement (Hydrogen Europe, 2020a). Again, it should be noted that here, it is assumed 
that steam is available and hence, that electricity needed steam generation is not included in 
the costs. This leads to variable learning rate ranging from 12% to 28%, for the electricity 
prices 0-50€/MWh.  

 
12 There is no uncertainty boundaries, since only values from one industry expert were elicited. 
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The learning rate for a grid connected system for SOEL is significantly higher than the 
learning rates of AEL and PEMEL, which can be explained by the high efficiency of SOEL, 
whilst also by the fact that SOEL does not need precious metals in the stack. Higher efficiency 
leads to a lower dependence on electricity costs, since a larger part of the costs is determined 
by the more endogenous cost drivers, as more hydrogen is produced with the same input of 
electricity thus total costs of electricity can be distributed over more kilograms of hydrogen 
in the LCOH. Illustrated for SOEL by the fact that only 71-83% of the costs come from 
electricity, lower than the 76-87% from AEL. By not requiring precious metals in the stack, a 
larger part of the investment costs can learn, also shown by the high investment cost learning 
rate and reflected in the substantially decreasing stack replacement costs. This high learning 
rate remains constrained by the fact that with lower investment costs, dependency on 
electricity costs increases and hence, the variable learning rate will decrease and learning rate 
for SOEL too will become dependent on the learning rate of the renewable energy source.  

To conclude, SOEL shows its potential to produce low-cost hydrogen where steam is 
available, next to this, SOEL technology can be used to produce electro-fuels in co-
electrolysis with CO2, for instance for the aviation or shipping sector. Although, it should be 

noted that longer stack lifetimes and thus, lower material degradation with the high 
temperatures, are yet to be demonstrated. 
 

5.4 Cases 
  
Referring back to second goal (2), based on the results from the previous section grid-and 
off-grid cases are used to illustrate the potential of green hydrogen, also in the port of 
Rotterdam. Interviews with experts and recent announcements from the port of Rotterdam, 
Amsterdam and Groningen lead to the following three most relevant cases, regarding the 
production of green hydrogen: 
 

1. Grid-connected 
2. Off-grid with possible integration 
3. Large-scale production and the possibility of imports 

 

5.4.1 Grid-connected 

 
In grid-connected cases, load hours are assumed at 800013 hours per year, and in these cases 

a Power Purchase Agreement (PPA) is agreed with a renewable energy provider. Price in this 

 
13 Maintenance and operations, stack replacements are among others, reasons for not reaching the full 8760 hrs   
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case are assumed using the predicted offshore wind prices in the Netherlands for 2023-2030, 
ranging from 25-50 €/MWh14 (CE Delft, 2017). In table 6 below, besides the resulting learning 
rates, also the absolute values from the benchmark and the 10x times deployment scenario 
are shown. Again, it should be noted that for SOEL steam is assumed available on-site, thus  
not energy costs for steam generation are not included.  
Table 5: Learning rates (LR) and LCOH in the grid-connected case 

 
The learning rates for AEL and PEMEL show that for grid-connected cases, the ability to learn 
is little due to the dependence of the LCOH on electricity prices with the high assumed load 
factor. Thus, again in fact making the learning rate of renewable electricity production more 
important. SOEL, however, shows a significantly higher learning rate. This, as previously 
mentioned, is due to the high overall efficiency and because SOEL lacks the need for precious 
metals. The higher variable learning rate, however, remains constrained by an increasing 
dependence on electricity costs, and thus again by the learning rate of renewable energy. 
 In this case, therefore, the absolute values for LCOH provide for a more distinctive 
analysis. Here, the results show again the high potential of SOEL, with costs coming down as 
far as 1.25 €/kg, although where steam is not available, AEL remains the leading technology. 
The implications of these LCOH’s will be discussed in the final chapter of this study. 
 

5.4.2 Off-grid with possible integration 
 

For off-grid cases, however, endogenous learning for electrolyser systems can also come in 
the form integration with the RES, load flexibility, and lower footprint or ramp up-times, which 
can lead to the system unlocking higher load factors at lower electricity prices. Therefore a 
different case is assumed, where at benchmark the electrolyser system has a load factor of 

4,000 hours6 of wind electricity per year at 40 €/MWh16 , and in the 10x times deployment 
scenario the system also “learns” additionally to capture 1,000 hours17, of otherwise curtailed 

 
14 Excluding additional grid costs, such as grid connection and balancing, but also taxes. 
15 For the 10x deployment scenario, efficiency degradation and stack replacements costs were adjusted 
according to survey results and Hydrogen Europe (2020a) 
16 Lower price estimate from PBL, 2019 for offshore wind energy, excluding grid connection costs. 
17 This means 25% extra wind energy captured, following from interviews where values ranged between 20-
40%, in Bloomberg (2019) currently estimate 15% energy cost reduction for wind, 20% for PV in integrated 
systems 

 AEL PEMEL SOEL 

Learning Rate  3-4% 3-5% 12-15% 

LCOH (grid current deployment) 1.84-3.05 €/kg 2.49-3.97 €/kg 2.27-3.83 €/kg 

LCOH (grid 10x deployment)15 1.63 –2.78 €/kg 2.22-3.68 €/kg 1.25-2.52 €/kg 
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energy at a lower price of 15€/MWh18. This case is not applicable for SOEL, as it is technically 
impossible.  
 

Table 6: Learning rates and LCOH in the off-grid case 

 
The substantially higher learning rate shows the significantly higher ability of off-grid green 
hydrogen production to endogenously learn and thereby, it shows the potential of integrated 
green hydrogen production complementing and integrating with renewable energy sources. 
This case is illustrative, since thoroughly quantifying this potential is difficult, as it is highly 
dependent on the power fluctuations of the RES. Moreover, with high level of integration 
system boundaries become less obvious - where does the wind turbine end, and the 
electrolyser start. Also, two important additional advantages of integration are not included. 
Firstly, grid connections are significantly, 10x-20x, more expensive than hydrogen pipelines 
(Vermeulen, 2017) (Hydrogen Europe et al.,2020) (Hygro, 2020) and secondly, certain parts of 
the system can be left out or replaced by cheaper alternatives, such as the rectifier (Hygro, 
2020). Hence, by optimally integrating both systems, and combining grid and pipeline 
connections, costs can be brought down further (Hygro, 2020). These cost reductions can be 
seen as a typical result of a combination of learning-by-doing and learning-by-searching. 
Therefore, for further research this study proposes an extensive cost analysis into the different 
integration options with renewable energy power. An example of high-level integration is the 
recently announced Crosswind consortium, consisting of Shell and Eneco, which plans to 
integrate offshore wind, floating PV, batteries and green hydrogen in a “Super hybrid” (Shell, 
2020). Here, 200MW of the 759MW produced electricity is allocated for the production of 
green hydrogen for one of Shell’s refineries in the industrial complexes in the port of 
Rotterdam. 

 
18 In other reports, this curtailed energy was assumed free, however, this report assumes a lower price, because 
with rising demand for curtailed energy, free energy becomes more unlikely. 
19 For the 10x deployment scenario, efficiency degradation and stack replacements costs were adjusted 
according to survey results and Hydrogen Europe (2020a) 
20 For the 10x deployment scenario, efficiency degradation and stack replacements costs were adjusted 
according to survey results and Hydrogen Europe (2020a) 

 
AEL PEMEL 

Learning Rate (off-grid 10x deployment) 5 ± 2% 5 ± 1% 

Learning rate (off-grid flexible and 10x deployment)19 19 ± 4% 18 ± 2% 

LCOH (off-grid current deployment) 2.77-2.86 €/kg 3.74-4.32 €/kg 

LCOH (off-grid 10x deployment) 2.39-2.82 €/kg 3.22-3.59 €/kg 

LCOH (off-grid flexible and 10x deployment)20 2.08-2.42 €/kg 2.75-3.04 €/kg 
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5.4.3 Large scale production and the possibility of imports 

 
The port of Rotterdam also envisions an import hub for large green hydrogen imports, this 
can be in the form of ammonia, liquefied hydrogen or methanol from countries with high 
potential of wind, solar or a combination of both. Recently, tenders of PV solar energy in the 
middle east showed electricity prices going even below 15 €/MWh, almost going down as far 
as 10 €/MWh (Bellini, 2020). Using the 1 GW scenario from the survey for AEL21, the following 
table shows the LCOH for gigawatt scale hydrogen production in regions with a high potential 
of renewables: 
 

Table 7: LCOH (€/kg) 1 GW scale 

 
Table 7 shows that large scale production with low energy prices, already currently 

can lead to hydrogen prices going below 1€/kg. However, the costs of shipping hydrogen 
across continents, with for instance costs of liquefication or conversion to ammonia or 
methanol, and the subsequent reconversion, need to be addressed as well. The low current 
share of renewables in electricity production in the Netherlands additionally make imports an 
interesting alternative. Still, it is highly dependent on the costs of conversion and 
transportation and these gives ground for further research. Another option is shown by the 
European Hydrogen Backbone (2020), as the consortium of 11 European transmission system 
operators (TSO’s) proposes to construct a hydrogen pipeline infrastructure across Europe by 
2030, partly retrofitting existing gas grids, and even reaching to solar energy abundant North-
Africa. This provides for a low-cost transport option, 0.09-0.17 €/kg/1000km (European 
Hydrogen Backbone, 2020), to unlock imports of green hydrogen produced by for instance 
Danish offshore wind, Southern European solar PV or PV/wind hybrids and even, by North-
African solar PV. 

Figure 11: Proposed European hydrogen backbone 

 
21 Only AEL is considered at which is currently the only technology feasible to produce at this scale and in the 
future it also remains economically the best option (interviews). 

20 1.51 €/kg 1.40 €/kg 1.34 €/kg 

15 1.25 €/kg 1.14 €/kg 1.07 €/kg 

10 0.98 €/kg 0.87 €/kg 0.81 €/kg 

5 0.72 €/kg 0.61 €/kg 0.54 €/kg 
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6. Strategic Implications 

 

6.2 Starting a hydrogen economy 

 
The overall ambition to start a worldwide green hydrogen economy is underlined by the 
absolute values for the levelized costs of hydrogen, which are already at significantly lower 
levels than previously assumed, by for instance the IEA (2019), which predict LCOH of 2.5 
€/kg for 2030 and 1.4-2.0 €/kg for 2050.  In the 10x times deployment scenarios, which in 
Europe, according to EC targets should be reached well before 2030 (2020), costs are shown 
to decrease faster than the IEA expects, however, the results also show LCOH remain highly 
dependent on electricity price and load factor. More easily comparable are the CAPEX or the 
investment costs, which the IEA predicts at around 380 €/kW22 fir AEL in the long term (beyond 
2030), while this study and also industry experts predict these or even lower levels of CAPEX 
to be reached before 2025. This once again confirms the conservatism of the IEA, 
underestimating potential of renewable energy technologies. More extensive comparisons of 
CAPEX are found in the Appendix, however, as concluded before in this report, comparing 
solely CAPEX leads to biased conclusions, since other important KPI’s are overlooked. 
Conclusively, the potential of the worldwide hydrogen economy for low-carbon hydrogen to 
kick-off is underlined by costs reductions of green hydrogen technologies, which outpaced 
predictions, where mainly the mature AEL and SOEL technologies exceeded expectations.  
For what values the levelized cost will become competitive in the different sectors is 
something that requires further research, and here shortly touched upon. For the industry 
hydrogen is already used heavily in the fertilizer (ammonia) and chemical (methanol) sectors, 
while in the future high temperature industrial heat, which cannot be electrified in these 

sectors such as the steel sector, provides for future potential. Ammonia is already used 
heavily in the fertilizer industry and seen as a fuel for shipping the future (IEA, 2019), while 
methanol is already used in mainly the chemical industry, and in the future maybe even more 
using “methanol-to-olefins23”, while it also seen as a e-fuel in the  transport sector.  
In these sectors this study identifies two key points 1) the competitiveness with alternatives 
both low-carbon and fossil, and 2) a constant supply is a necessity. For the competitiveness 
with fossil-based/grey alternatives, incentives are needed to make hydrogen competitive and 
this is heavily dependent on government policy. This includes the already very significant EU 
Emissions Trading Scheme (EU ETS, 2017). IN the future this system will become more 

 
22 Average of IEA predictions 200-700 $/kW for different system sizes for Alkaline system for the long term 
(IEA, 2019) 
23 Olefins are input to crackers, such as Ethylene and Propylene, used in the production of plastics. 
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important with the rising carbon price and lowering of emission allowances and importantly 
the phasing out of the exemptions24 for some sectors. The Dutch SDE system and the 
announced Carbon Contract for Differences for low-carbon hydrogen by the EC (Oxford 
Energy, 2020) also increases the potential of green hydrogen. Both are used to limit price gap 
and the unprofitable top margin for green hydrogen with its fossil-based alternatives. It should 
be noted that the recently announced, Dutch SDE++ also limits the subsidies for green 
hydrogen by maximizing load hours at 2000 to prevent the electrolysers from running on grey 
electricity, which would make carbon footprint of the produced hydrogen even higher than 
grey hydrogen (PBL, 2020).  
 

6.3 The four hubs 
 

In the hydrogen vision from the Port of Rotterdam (2020a), and in another recently published 
report from Drift (2020), four hubs are outlined to “seize hydrogen opportunities” –                            

i) production, ii) import, iii) trading and iv) usage hub. These are partly based around the usual 
functions and income flows of the port, such as conversion in industrial complexes and 
throughput into the Hinterland, however, the question this section will answer is if the 
ambitious targets set out for these hubs align with the potential of hydrogen based on the 
learning curve principles, and thus, the findings from the previous chapter. First, table 7 shows 
an analysis of the potential of the four hubs. 
 

Table 8: Potential of the four hubs 
 

HUBS Drivers Enablers Policy advice Potential 

Production Offshore wind growth 
(Offshore) Integration 
electrolyser w/ RES 

EU/National Policy 
(SDE, CCFD’s and ETS). 

Activate hub with blue 
hydrogen  
Incentivize industry to 
Decarbonise/ switch 
to H2 

High after 
2030 

Import Decrease in overseas 
transport costs 

Hinterland pipeline 
infrastructure 
Industry switching to H2 
(Usage hub) 

Connect with RE 
abundant countries 
(see DE with Morocco) 
Invest in infrastructure 

Low and 
Long term 

Trading Transport and conversion 
costs/efficiency  
Rise of other hubs 
 

Hinterland pipeline 
infrastructure 
EU policy 
 

Connect with RE 
abundant countries 
(see DE with Morocco) 
Invest in infrastructure 

Low and 
Long term 

Usage LCOH decrease  
Increase CO2 price  
Constant supply of H2 
Needs scale  

EU/National Policy 
(SDE, CCFD’s, and ETS) 
Increase NG price 

Activate hub with blue 
hydrogen  
Incentivize industry to 
decarbonise/ switch to 
H2 

High - scale 
up 2025 

 
24 Exemptions are made to prevent carbon leakage for sectors such as the steel and aviation sector; Including 
such sectors in the scheme would lead to production outside the EU, offsetting carbon emissions in other 
countries while losing businesses in the EU at the same time. 
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The varying learning rates, as mentioned before, show that the potential is constrained 
by electricity costs and load factor, leading to the different cases discussed to illustrate the 
derived learning rates. Below these cases are applied to the ambitions of the four different 
hubs, first the implications for the i) production hub of the results in the a) grid-connected and 
b) off-grid integrated cases are discussed, hereafter the implications for ii) import hub are 
discussed following the results in the c) large scale import case. Afterwards, the overall results 
are implied to the trading and usage hub, since both are dependent on the overall potential 
of the hydrogen, and on the other hubs.  

 In the grid-connected cases the low variable learning rates show a limited potential 

without substantial decreases in grid electricity prices or lower prices in the power purchase 
agreements (PPAs) the green hydrogen producer can negotiate. SOEL does initially show a 
higher ability to learn, which is applicable where steam is available and for the production of 
e-fuels, needing (air) captured CO2. Both for the production of e-fuels and regarding steam 
availability, usage hubs or industrial clusters are already present in the port. In these industrial 
clusters, synergies using for instance the SOEL technology, are a way of offsetting the low 
overall learning rates of grid-connected green hydrogen. However, in these grid-connected 
cases electricity price remains key, together with share of green energy in the Dutch electricity 
system, as the hydrogen does need to be green. Hence in grid-connected cases, the carbon 
emissions abated need to be significantly high, or serving sectors which are harder to abate, 
such as aviation, shipping and in several industrial applications to claim the elsewhere much 

needed renewable electricity at a high load factor. 

 The off-grid integration case shows significantly more potential to learn, and 
therefore, this is also implied for the integration of green hydrogen production in the Port of 
Rotterdam with offshore wind in the North Sea. Moreover, in this way, green hydrogen 

production complements offshore wind by allowing higher overall energy production, 
providing seasonal storage and reducing grid connection costs. In a sense, green hydrogen 
can in this case be seen as a by-product of green electricity production and hereby, it does 
not compete for the renewable electricity still needed in the Dutch electricity mix. The 
previously mentioned crosswind project from Shell is an example, which actually uses the 
generated green hydrogen in one of Shell’s refineries in the port of Rotterdam (Shell, 2020).  
This contradicts with the intentions of the Port of Rotterdam to dedicate 2 GW’s of offshore 
wind capacity to the production of green hydrogen by 2030, however, in the further future a 
greener Dutch electricity mix allows for dedicated production, where nonetheless integration 
still can play a large role. Further research needs to be done into integration of green hydrogen 
production with offshore wind, possibly adding floating solar PV and batteries to further 
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optimise in an extensive hybrid. Blue hydrogen can be used as an interim solution to start the 
hydrogen economy in the other hubs, allowing for infrastructure to be built and hydrogen 
knowledge and experience to accumulate and locally spill over to the learning rate of green 
hydrogen in the Port of Rotterdam. In this way, smaller integrated, and possibly subsidized, 
green hydrogen projects together with Blue Hydrogen can be seen as a first step to start the 
hydrogen economy in the Port of Rotterdam. 

Large scale imports of hydrogen overseas compressed or in different liquefied forms 

through an import hub at the port can also provide for an alternative solution here, to provide 
cheaply produced green hydrogen. However, considering the recent publication from the 
Hydrogen Backbone (2020), pipelines can be seen as competition, providing for a cheaper 
solution compared to intercontinental import per ship. To illustrate, costs for transporting 
hydrogen from the south of Spain to Rotterdam by pipeline are under 0.40 €/kg of hydrogen 
(European Hydrogen Backbone, 2020), significantly less compared to the 1-1.5 €/kg stated 
by the Hydrogen Council (2020) in the figure below. With a hydrogen backbone, the target of 
the port of Rotterdam to replace oil imports by massive green hydrogen imports overseas is 
heavily impacted. The findings in this report showed how critical the input electricity is in 
terms of price and load factor, with low levels of levelized costs which can already be reached 
at large scale, which all the more make transportation costs relatively more important. 
Possible export worldwide routes are shown below in figure 7, where the colour of the 
countries show if the country’s potential in terms of green or blue hydrogen production. For 

the port of Rotterdam specifically the route between Saudi-Arabia and Germany is of 
importance, where the Port Authority sees itself as importing green hydrogen, hereafter using 
the Hydrogen Backbone to transport it to Germany in a similar way the hinterland has been 
used. Hence, in this case a Hydrogen Backbone with pipelines enables hinterland transport 
in a similar way the waterways still do. The question is, however, if this is realistic given the 
various sun and wind abundant regions reachable by pipeline transport, highlighting again the 
high relative impact on the hydrogen price of transport costs in cases with low LCOH. 
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Figure 12: Transporting green hydrogen globally (US dollars per kg, in 2030) 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 
 
Source: Hydrogen Council (2020) 

 
Furthermore, as clearly visible in the oil industry, geo-political factors need to be 

considered. In typical oil-exporting countries, such as Saudi-Arabia, there will eventually 
come a need to diversify their usual fossil-based portfolio by producing low-cost green 
hydrogen, in a way to export abundant renewable energy, to countries such as Germany, 
which in the future is seen as an green energy importer. Moreover, new countries will emerge 
as green energy and hydrogen exporters, creating alternative and maybe even more 
preferable distribution channels, also dependent on the geo-political ties between countries. 
An example are the recent developments regarding Nord Stream 2, a gas pipeline through 
the Baltic sea connecting Russia with Germany, which has become a political minefield also 
involving the US protecting their gas exports to Europe (CNN, 2020).  

It shows the complexity of predicting future import flows, which depends on a 
country’s renewable energy potential, location and thus transportation options, geo-political 
factors and current energy mix. The current energy mix is of importance, because in countries 
and regions there may exists a need to first decarbonize before exporting green energy. This 
gives ground for extensive further research into the potential future import and-export flows 
of green hydrogen, combining these factors with the production costs analysis from this 
study. The foreseen role as trading hub follows from the import and conversion possibilities. 
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However, overseas hydrogen imports per ship via Rotterdam are, as discussed before, limited 
by transportation costs, while the possible conversion of hydrogen into liquid forms is logically 
done before transportation per ship. This makes the ambition to establish a large hydrogen 
trading hub converting and re-exporting hydrogen, similarly, as currently is done for crude oil, 
difficult to realise on the short-term. An option which can have more potential for an import 
hub in Rotterdam are to import a product (instead of a “gas”), for the transport sector, this 
could synthetic or electro fuels (e-fuels) or green methanol or ammonia, which both also have 
current and increasing potential in the industry. On the other hand, to form e-fuels CO2 is 
needed, which is, similarly to hydrogen, also not easily transported overseas. CO2 is expected 
to be available in port of Rotterdam with the planned CCUS infrastructure (Porthos, 2020), or 
even imported by pipeline from the port of Antwerp (Antwerp@C, 2020) or other industrial 
clusters. However, there is a difference between e-fuels using in this case CO2 captured from 
an industrial process (CCS) or when CO2 is captured directly from the air (direct air capture); 
only the latter is carbon neutral. This difference will show in the policy and subsidy systems, 
which e-fuels are reliant on. 
 

Conclusion 
 

This study, by using learning curve theory, expert elicitation and levelized costs, has 
concluded that the cost reduction potential for green hydrogen is higher and will come sooner 
than expected. This confirms the overall ambitions of the port of Rotterdam to start a 
hydrogen economy. However, by applying the results and learning rates to actual cases and 
zooming in on the different hydrogen hubs proposed by the port, challenges arise. Firstly, the 
limited availability and high price of local renewable electricity, at least on the short-term. 
Secondly, the relatively high costs of conversion and overseas transport of hydrogen, 
especially compared to transport by pipeline, hereby also making the comparison with the 
current oil business invalid. The first can be overcome by initially starting with the production 
of blue hydrogen. While on the other hand accelerating the deployment of offshore wind and 

moreover, electrolyser’ technological progress needs to focus on integration with renewables, 
to not further deflate green electricity demand, but rather complement the renewable energy 
source. The second challenge implies that the port needs to focus on importing and trading 
hydrogen-based products in liquid forms, like methanol, ammonia and synfuels, leaving 
import of gaseous hydrogen to pipelines. In conclusion, although the potential of green 
hydrogen is great, especially in the port of Rotterdam, it needs to be applied in the right ways 
which in the end benefit, and not hamper, a fast and low-cost road to carbon neutrality by 
2050. 
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