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Abstract 

In the past decade, the Dutch government enacted that at least 80 % of all small-scale electricity users 

should be equipped with a smart meter connection by the end of 2020. With this target date quickly 

approaching, it is time to assess the effectiveness of this smart meter implementation policy. In this 

thesis, we did so by selecting a group of postal code areas in which the proportion of smart meter 

connections substantially increased to 80 % on average in 2016. After that, we selected a group of 

identical areas in which no such a large-scale implementation of smart meters occurred. As a result, we 

were able to compare the developments in average electricity use between the two groups over time. 

With this reliable methodology, we found a statistically significant reduction in electricity consumption 

that is caused by the large-scale implementation of smart meters. However, the measured effect is much 

weaker than expected, hence questioning the effectiveness of the policy.     

 

Keywords: smart meter, electricity grid, energy savings, difference-in-difference analysis.   
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1  –  Introduction 

The extraction, production and use of energy sources have major environmental implications. Perhaps 

the most important implication is the emission of pollutants (United Nations Development Programme, 

2000), such as carbon dioxide. During the 1960’s and early 1970’s, a truly global awareness on these 

environmental issues emerged (Haq & Paul, 2013; Lowe, 1985). At that time, new empirical knowledge 

and the – technical – possibilities to observe the devastating effects of human conduct across the globe, 

resulted in a wide recognition of the human ability to affect the natural environment. Although this 

increasing awareness has not specifically been a post-war development (Grove, 2002), it certainly 

revived and stimulated a new perception on the global environment and the sustainability of human 

conduct. Since then, many opportunities have been exploited to make energy consumption more 

sustainable, whilst other opportunities have only recently been discovered.  

 We can broadly divide these sustainability efforts into two categories. The first category comprises 

efforts that aim to reduce the ecological footprint at the supply side by extracting and/or generating 

energy sources more efficiently (e.g. Wüstenhagen & Bilharz, 2006). For instance, generating electricity 

by using windmills instead of coal facilities, which contributes to the reduction of air pollution. Efforts 

of the second category aim to reduce the total energy use at the demand side, mostly through altering 

behavior or through making devices and appliances more energy efficient (Behrangrad, 2015). In this 

research, we focus on one specific measure at the demand side which has become increasingly relevant 

in the past decade: the implementation of smart meters on large scale. Smart meters are advanced energy 

meters that measure the energy consumption of a consumer. But, compared to a regular energy meter, a 

smart meter also communicates real-time user data and provides added information to the utility 

companies (Depuru, Wang, & Devabhaktuni, 2011). This real-time communication entails several 

advantages, the most important one being the feasibility to provide feedback to the energy user. 

Providing feedback to consumers about their energy consumption stimulates more energy efficient 

behavior (e.g. Wilhite & Ling, 1995), which could potentially reduce energy consumption by up to 15 

% (Darby, 2006).   

 

In 2009, the European Commission introduced the Electricity Directive (Pöttering & Erlandsson, 2009). 

This directive intends to facilitate competition in the energy markets of the Member States, and to create 

a secure electricity infrastructure that allows for more efficient use of energy. One crucial precondition 

to achieve these objectives is the development of a smart grid, which is an advanced, automatic 

electricity delivery network that allows for unconventional power flows and the two-way exchange of 

information between consumer and net manager. (Zheng, Gao, & Lin, 2013). Therefore, through this 

directive, the European Commission demands the Member States to equip at least 80 % of their 

consumers – i.e. households, stores, offices etc. – with a smart electricity meter by the end of 2020. Prior 

to the implementation, however, each Member State had to economically assess all long-term costs and 

benefits to both the national energy market and the individual consumer. Whenever the expected costs 
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of implementation for a specific country exceeded its projected benefits in the long run, the European 

Commission could exempt its government from the responsibility to install smart meters on large scale.   

 Already one year later, the Dutch government presented a positive assessment regarding the 

realization of a smart grid (Van Gerwen, Koenis, Schrijner, & Widdershoven, 2010). According to this 

study, the benefits of energy savings, lower call center expenses, market forces, and the redundancy of 

meter reading, outweigh the estimated costs and investments by € 770 million in terms of net present 

value. Of course, non-monetary benefits also play a role, since a smart network makes the energy grid 

more stable and better enables decentralized electricity generation through solar panels for example 

(Pöttering & Erlandsson, 2009). But, according to the Dutch assessment, the most important benefit is 

the direct energy savings caused by the feedback mechanism, amounting to € 1.47 billion. This benefit 

in monetary terms is primarily attributable to a real average decline of both 3.2 % in electricity use and 

3.7 % in gas consumption.  

 The primary interest of our study is to find whether the provision of feedback on the use of electricity 

indeed induces a decline in electricity consumption. In general, feedback on energy use occurs either in 

a direct or in an indirect way (e.g. Darby, 2006). The former comprises any type of observations on the 

real-time consumption of the user, mostly through devices called In-Home Displays – IHD’s. This is the 

most effective form of feedback in terms of the potential reduction in electricity use (Darby, 2006). The 

latter type contains user data that the energy provider obtains through the communication from the smart 

meters. Subsequently, the provider sends this information to the user in the form of an overview which 

is called the indicative overview of user costs. To guarantee the privacy of the user, the energy provider 

may obtain the user data only once every two months (Van Gerwen et al., 2010). 

 The main message of the economic assessment is that the provision of indirect feedback to the user 

should already be enough to induce a reduction of 3.2 % in electricity consumption. The assumptions 

thereby are that the proportion of smart meter connections equals at least 80 %, and that the percentage 

of users who switch off the functionality of the smart meter – and hence do not receive indirect feedback 

– is less than 2 %. However, during the course of the smart meter implementations, other reports already 

raised concerns that this type of feedback may not be as effective as the Dutch government supposed  

(Delmas, Fischlein, & Asensio, 2013; Schleich, Faure, & Klobasa, 2017). This makes it even more 

interesting to study the effectiveness of the smart meter implementation on large scale in the 

Netherlands. 

 

1.1  –  Research Objectives 

Although we do not consider any heterogeneity in the provision of feedback to the consumer, our 

analysis is still valuable for several reasons. The first reason is academic in nature and entails a 

contribution to existing research that estimates the relationship between feedback and electricity 

consumption. Currently, this effect has only been studied in experimental settings, which leaves the 

societal impact of a large-scale placement of smart meters open to question. Hence, through examining 
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whether this relationship also holds in the context of a large-scale implementation throughout the 

Netherlands, we aim to enhance current knowledge on the effect that information could have on the 

electricity consumption of an average user. Second, our findings also serve as a recommendation to 

other Member States of the European Union. As mentioned before, the obligation to equip at least 80 % 

of all consumers with a smart meter applies to all Member States, but only if such an implementation 

on large scale is beneficial from an economical perspective. Our findings could help to make a better 

assessment for governments that have been reluctant in their implementation efforts thus far. 

Specifically, if the large-scale rollout of a smart grid did not result in the expected reduction of electricity 

consumption. In that case, our findings can serve as a justification that allows governments to reconsider 

the economic assessment and revise the implementation policy as a result. Conversely, the 

implementation efforts in the Netherlands could serve as an example for other countries if we find an 

effect that corresponds to the expected reduction in electricity consumption.   

 Interestingly, despite the relevance of this topic following the introduction of the Electricity 

Directive, there has not been any scientific research that evaluated the actual effect in electricity use 

attributable to the placement of smart meters on large scale. Therefore, in this master thesis, we aim to 

find whether there is any effect, and – if so – to provide a reliable estimate of its magnitude. We do so 

by posing the following research question:  

 

“What is the effect of a large-scale implementation of smart meters on the yearly average electricity 

consumption for a small-scale user in the Netherlands?” 

 

This statement forms the guideline for our study. The expected reduction in electricity consumption by 

3.2 % thereby serves as a hypothesis that we will empirically verify in the coming chapters.    

 

1.2  –  Thesis Outline 

In order to provide an answer to our research question, we first have to understand the functioning of 

the Dutch energy market, and specifically what role a smart meter can play in this context. We explain 

these topics in Chapter 2, in which we describe how the Dutch energy market developed, and who the 

main players are. In addition, we elaborate on the functionality of the smart meter and we pay attention 

to existing literature on the effectiveness of a smart meter in the efforts to reduce electricity consumption. 

After that, we start our empirical analysis to examine whether the expected relationship is present. We 

do so by applying a quasi-experimental study on a panel dataset that contains all user data on energy 

consumption in the Netherlands over a time period from 2013 to 2018. In Chapter 3, we clarify the 

variables this dataset contains and we introduce the empirical methodology, which results in a 

specification of the hypothesized relationship between the variables used. After that, we continue to our 

analysis in the next chapter. We start this analysis by describing the selection procedure we apply to 

obtain our sample. After that, we show the most important sample characteristics and describe why this 
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sample is suitable for our analysis. We conclude this fourth chapter by presenting the findings of the 

hypothesis test. We discuss these findings in Chapter 5, together with several implications and 

recommendations that follow from the results. Finally, we finish this master thesis with a conclusion in 

Chapter 6.   

 

2  –  Background 

As we already noted in the Introduction, we first have to explore the context in which the smart meter 

implementations took place. Therefore, in this chapter, we describe the functioning of the Dutch 

electricity market and the main purposes of a smart meter. After that, we focus on the potential reduction 

in electricity consumption as the main aim of the implementation policy. Subsequently, we discuss 

scientific research that examined the relationship between information provision and electricity 

consumption behavior. At the end of the chapter, we mention in what way our research contributes to 

the existing knowledge.     

 

2.1  –  The Dutch Electricity Market  

An electricity markets is a type of commodity market that deals with the generation and consumption of 

electrical energy (Lin, Magnago, Foruzan, & Albarracín-Sánchez, 2017). In a normal market, this would 

imply that parties supply electricity to other parties that consume electricity. In the 20th century, this was 

exactly how the electricity market functioned. In a specific region, one utility company generated 

electricity and maintained the power grid to serve the consumers within that area (Van Wezel & Van 

der Bie, 2015). This market organization of local monopolies and vertical integration was easy to 

understand, and even efficient from the perspective of the required infrastructure. However, the current 

electricity market is no such ordinary market anymore. Two major developments have caused the shift 

from these local monopolies towards a fully competitive market nowadays. First, the liberalization of 

the Dutch electricity market, which has been initiated by the introduction of the Dutch Electricity Act 

in 1998. This Electricity Act explicitly created a distinction between the suppliers of electric energy and 

the suppliers of the electricity network. Introducing competition for the latter type of suppliers would 

be very inefficient, because of the high expenses necessary to create and operate multiple networks in 

the same area. Therefore, the authority to operate the electricity network in the Netherlands has been 

geographically divided between net managers. Figure 1 shows the division of responsibilities for the 

network infrastructure between the seven net managers that are currently active in the Netherlands. To 

prevent any misuse of market power, the Electricity Act entitled the Dutch competition authorities to 

supervise the conduct of the net managers – and the entire electricity market in general (Van Wezel & 

Van der Bie, 2015).  
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Hence, the introduction of competition has been primarily applicable to the suppliers of electricity – 

energy providers henceforth. These providers are allowed to use the entire electricity grid, such that they 

can serve any customer throughout the country. In this way, consumers can freely choose a provider that 

offers the most attractive tariff or bundle. However, to make matters more complicated, the providers 

do not generate the electricity they sell to the consumer. Instead, production of electricity takes place by 

independent producers, both on centralized level – i.e. through power plants – and decentralized level 

(Van Wezel & Van der Bie, 2015). These producers sell their generated electricity to so-called Program 

Responsible parties who subsequently sell the generated electricity to the energy providers and large-

scale users. As already mentioned, the Electricity Act separated the task to operate the network from the 

production operations of the former utility companies. Thereby, the government also divided the 

responsibility for operating and maintaining the electricity grid in two categories. First, the transmission 

of electricity through the high voltage power lines – 110+ kV – which connect the power plants with the 

local infrastructure. An independent Transmission System Operator called TenneT operates this part of 

the network. The second category are the net managers, which we already identified as the parties 

responsible for the local electricity infrastructure. As we shall see, the net managers are of primary 

importance for our study, since the Dutch government made the net managers responsible for the large-

scale implementation of smart meters.  

 

The second important development that further accelerated the shift towards a fully competitive market 

is the fact that the distinction between suppliers and consumers of electricity has become less and less 

transparent. Before the introduction of the Electricity Act, as we explained, the positions and tasks of 

suppliers and consumers were clearly arranged. After 1998, the distinction between different types of 

  FIGURE 1 - Regional Network Division between Net Managers 
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suppliers already resulted in a new arrangement of responsibilities at the supply side of the electricity 

market. However, the obvious distinction between consumers and suppliers has become disturbed as 

well, especially because of the evolution in decentralized electricity generation in the past decade. This 

development caused the emergence of the so-called prosumers (e.g. Parag & Sovacool, 2016) who 

generate electric power for direct use or even store energy for later use (Zipperer et al., 2013). The 

problem of this relatively new development is the possibility that prosumers generate more electricity 

than they can use or store. The resulting Reverse Power Flows – RPF’s – make administering the 

electricity grid much more complex (Sgouras, Bouhouras, Gkaidatzis, Doukas, & Labridis, 2017). On 

top of that, the increasing substitution of conventional energy sources by fluctuating renewable energy 

sources make the exact balancing of supply and demand an even more complicated challenge (Mattern, 

Staake, & Weiss, 2010). Whenever balancing supply and demand is not planned appropriately, RPF’s 

can seriously damage the electricity grid (Sgouras et al., 2017). The increasing instability in the 

generation of electric power exposes the necessity for stabilizing mechanisms within the electricity grid. 

A smart grid – as defined in the Introduction – offers this stability, since it enables the network operators 

to keep better track of local generation, peaks in demand, capacity needs etc. (Zheng et al., 2013). 

Besides, a smart grid is also desirable from the perspective of a competitive market, because it allows 

consumers to switch more easily between different providers (Van Gerwen et al., 2010). 

 

2.2  –  The Functionality of Smart Meters  

The fundamental instruments for a smart grid are smart meters, since these devices allow for a two-way 

exchange of information between net manager and consumer (Zheng et al., 2013). Therefore, in the 

context of a quickly developing electricity market, the Dutch government decided to make the electricity 

infrastructure ready for the future by transforming it to a smart grid (Van Wijnen, 2020). Earlier efforts 

started off with a legal proposal in 2008 that attempted to enact a countrywide implementation of smart 

meters (Vringer & Dassen, 2016). At that time, however, social resistance because of privacy- and 

security concerns caused a serious political discussion on the question whether a smart meter should be 

obligatory yes or no. As a result, the legislation has been adapted and enacted in 2012, with several 

amendments to ensure user privacy. Now, a central database stores all user data, which net managers 

and energy providers are allowed to access on particular occasions only. Moreover, an individual user 

can also choose to switch off or even refuse the smart meter device.  

   

Of course, just like a regular electricity meter, a smart meter registers the electricity use of the consumer. 

But as we mentioned earlier, a smart meter has a supplementary feature: it can also communicate this 

consumption data. This is the main reason why people have been concerned about their personal privacy, 

since this communication implies that energy providers and net managers can observe the real-time 

consumption of a user. The current position that smart meters have in the Dutch smart grid prevent such 

infringements of privacy. To see why, we schematically depict the functionality of a typical smart meter 
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in Figure 2. Note that, besides electricity use, the smart meter can also communicate supplementary data 

on gas- and water consumption. The P2 gate in Figure 2 facilitates this additional provision of 

information through connecting with the regular gas and water meters.  

 

 

FIGURE 2 - Schematic Depiction of the Smart Meter Infrastructure Design 

 

 Essentially, a smart meter transfers information in two directions. The first information flow is 

directly towards the consumer – known as direct feedback – which passes through the P1 gate. 

Subsequently, an In-Home Display – IHD – receives this information and shows the real-time energy 

consumption to the user. In this case, the information stays within the residency or building. Hence, 

more important from a privacy perspective is the second type of communication: the flow of user data 

to the outside world. The Figure depicts this information flow from the smart meter, through the P3 gate, 

towards a central database. This database stores all information on the user’s energy consumption, but 

is not immediately accessible to any other party. Privacy- and security rules restrict net managers and 

energy providers from having daily access to this central database. By default, user data is open to view 

once every two months for these parties, whereas more frequent access is allowed if and only if the 

consumer explicitly grants permission to retrieve their user data (Van Gerwen et al., 2010). If a consumer 

does not grant this permission, the P4 gate obstructs the service providers from retrieving the user data 

of this consumer. There are just three minor exceptions: at the end of the year, if a consumer moves 

away or switches from energy provider, the current provider has permission to compile a final electricity 

bill based on the stored user data. Ultimately, it is possible to switch off the smart meter whenever the 

design of operations still does not satisfy a consumer. In that case, the P3 gate is closed, and as a result, 

the user himself has to inform the energy provider about the annual electricity consumption.  

 

The Dutch Smart Meter Requirements – DSMR – guarantee that all smart meters operate in the described 

way (Van Gerwen et al., 2010). Hence, through this standardization, the government assures a correct 

exchange of information between consumer and net manager, and protects consumers against any 

infringement of personal privacy. It thus becomes clear that consumers do not have to worry about any 
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privacy issues related to smart meters. And if they do, they still have the option to refuse the installation 

of a smart meter.  

 But that raises another question: why should consumers accept one? How do they benefit from having 

a smart meter device? Van Gerwen et al. (2010). identify several advantages of having a smart meter 

over a conventional electricity meter. The first one is obvious: the automated communication implies 

that a consumer never has to send any user data anymore. Switching to another provider is thereby 

possible without any administrative efforts. Relatedly, the smart meter communication enables the 

energy providers to send a more accurate electricity bill which, in addition, can be specified with a lower 

electricity rate for off-peak consumption. The most important advantage, however, is that a smart meter 

can help consumers to gain a better understanding of their electricity use. More specifically, a smart 

meter provides the feasibility to provide feedback to the user, which raises more awareness among 

consumers on their electricity use. In the previous chapter, we already discovered two ways through 

which a smart meter can provide feedback. So far, we have mostly discussed direct feedback, which is 

the up-to-date communication about the current electricity use. Drawback of this type of feedback is 

that it requires an IHD, which can easily cost between € 150 and € 200,- (RVO, 2018). Obliging 

consumers to purchase such a display – despite its effectiveness (e.g. Burchell, Rettie, & Roberts, 2016; 

Darby, 2010) – is impossible, given the context of the designed legislation we described. However, one 

of the main societal purposes of the smart meter implementations has been to contribute to the reduction 

of electricity consumption (Vringer & Dassen, 2016). Hence, in order to comply with this purpose, the 

government intended to utilize the indirect type of feedback. To understand how this feedback 

mechanism works, we have to return to Figure 2 for a moment again. As we mentioned, this smart 

network design prevents net managers and other utility companies from obtaining confidential, real-

time user data. However, with the consumer’s permission, the Dutch government authorizes energy 

providers to access the central database once every two months in order to make providing feedback to 

the consumer possible. Based on the stored consumption data of each individual user over the past 

months, the energy provider creates a comprehensive overview of the electricity use and the related cost. 

This overview is called the indicative overview of user costs. The provision of information to the 

consumer through such an indicative electricity bill is a classic example of indirect feedback (Darby, 

2006).  

 The Dutch Smart Meter Requirements prescribe that these indicative overviews must comply to 

several standards, such that all users receive feedback of equivalent quality. First, the indicative 

electricity bill should be clearly communicated to the user, meaning that passively distributing a user’s 

indicative overview on a website portal is not acceptable. Second, it should contain both a historic 

comparison with the electricity use in previously recorded periods, and a normative comparison with 

the average consumption of a comparable user living in the same type of residency. Third, the overview 

should include an indication of the financial cost of the consumed electricity. Appendix A shows an 

example of an indicative overview.  
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2.3  –  Previous Literature 

According to estimations in the economic assessment of Van Gerwen et al. (2010), providing indirect 

feedback in this manner to all small-scale electricity users in the Netherlands should lead to a reduction 

of 3.2 % in the average electricity consumption of these users. In these estimations, Van Gerwen et al. 

(2010) and the Dutch government build on prior research by Darby (2006, 2010) that discusses the role 

of information provision on the behavior of consumers. In this section, we shortly review prior research 

on this relationship, thereby stressing the uniqueness of our research. 

 The concept of feedback creating consumer awareness has been an important dimension in the 

principles of psychology and communications for a long time (e.g. Bandura, 1969; Miller, Galanter, & 

Pribram, 1960). Presumably because of this strong theoretical base, the role of feedback became the 

focus of a variety of applied research studies as well (Hutton, Mauser, Filiatrault, & Ahtola, 1986). One 

of the areas in which the relationship between feedback and consumer behavior has been studied 

extensively, is the research on energy conservation. Already back in the 1980s, various empirical and 

conceptual analyses proved the usefulness of feedback for affecting energy consumption behavior (Cook 

& Berrenberg, 1981; Winett & Kagel, 1984). Ever since, scientists have contributed to this particular 

field of research on energy conservation. Several advancements that are worth mentioning are research 

on the effectiveness of different feedback types (Delmas et al., 2013; Fischer, 2008), feedback strategies 

(Abrahamse, Steg, Vlek, & Rothengatter, 2005; Cook & Berrenberg, 1981), environmental aspects that 

affect feedback effectiveness (e.g. Wood & Newborough, 2003), and the persistency of the relationship 

over time (Schleich et al., 2017).  

 

The introduction of smart meter devices on the electricity market has added a new dimension to this 

field of research. As mentioned, a smart meter device provides several possibilities to provide 

consumption feedback to a user. Smart meters thereby allow for the generation of extremely detailed 

data on energy use. Together with the ongoing development towards a digitalized society, a much wider 

range of feedback possibilities has emerged. And more specific, digitalization and the abundance of data 

can be used to provide reliable, highly accurate feedback to each individual user on a large scale. As a 

result of these relatively new circumstances, we are now able to study the relationship between providing 

information and electricity use without using an experimental setting. In this way, our research provides 

a valuable contribution to the existing literature. As it appears, current research has almost exclusively 

been conducted in experimental settings (Delmas et al., 2013) or even through the use of surveys (e.g. 

Burchell, Rettie, & Roberts, 2016) to study the hypothesized effect. Correspondingly, by using accurate 

user data for almost all small-scale users in the Netherlands, we eliminate an important source of 

selection bias. And in this field of research, selection issues easily occur because of the many 

contingencies – as we just described – regarding the effectiveness of feedback on energy conservation 

behavior. This clearly emerges from earlier estimations of the effect of indirect feedback on average 
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electricity use, which widely range from a 12 % reduction (Wilhite & Ling, 1995) to less than 2 % 

(Delmas et al., 2013).  

 

3  –  Concepts and Methodology 

The problem statement and corresponding hypotheses defined in the previous chapters require that we 

obtain information on the use of electricity and how the smart meter network in the Netherlands unfolded 

over time. These are the central concepts of this study, with the former as the dependent variable and 

the latter as the independent variable. In this chapter, we explain these concepts and we show how these 

two variables evolved over time. Thereby we largely follow a protocol for data exploration to avoid 

estimating a misleading effect (Zuur, Ieno, & Elphick, 2010). The difficulty of testing our hypothesis is 

that many other variables likely influence the use of electric power. In Section 3 we provide an overview 

of all the factors that we can control for. However, despite the extensive number of control variables, 

we still find other important determinants which are impossible to control for. Therefore, we use a 

difference-in-difference analysis to minimize the possibility of any omitted variable bias. We describe 

this empirical methodology in the fourth Section, thereby specifying a mathematical expression of the 

expected relationship between the variables. We present the results of the hypothesis testing in Chapter 

4.  

 

3.1  –  Dependent Variable 

As mentioned, we use the consumption of electricity over time as the dependent variable, since we want 

to know whether the implementation of smart meters led to a reduction in electricity use. Unit of 

measurement for electricity use is the yearly average amount of kWh. Both the net managers as well as 

Statistics Netherlands – CBS – provide data on this consumption. However, the CBS provides estimates 

on household energy consumption only, whereas the data from the net managers comprises the 

consumption for small-scale users.  

The latter one is more interesting for our research for the following reasons. First, the smart meter 

network is designed for all small-scale users, which also includes small shops and offices for example. 

Moreover, the intention of the policy implementation to reduce energy consumption by 3.2 % applies to 

all small-scale users, not only households (Van Gerwen, Koenis, Schrijner, & Widdershoven, 2010). 

Second, in areas that are not solely residential in nature, it is hard to differentiate between the household 

energy consumption and the consumption for non-domestic activities. This occurs, for example, in areas 

where a relatively high share of people works from a home office or live in a residency that is attached 

to their business. In such cases it is almost impossible to determine the true household electricity 

consumption. This allocation problem means that if we use household electricity consumption for our 

analysis, we cannot make a precise estimation of the hypothesized effect. The third reason is that using 

the consumption of all small-scale users gives us several convenient advantages in conducting our 

analysis. For instance, it allows us to control for any technical aspects that affect the electricity 
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consumption, such as the type of connections. The technical information – provided by the net managers 

as well – applies to all small-scale connections per postal code area, and not just for the households. We 

further discuss the definition of small-scale users and the relevance of the technical factors in Section 3.  

 

Trend in Energy Consumption 

Hence, we use the average amount of kWh per active connection within a postal code area as the measure 

for electricity consumption. Formally, this consumption is the Standardized Yearly Consumption – SJV 

– which is the average consumption adjusted for local differences in weather conditions and normalized 

for exceptional circumstances such as power outages (Liander, 2020; Stedin, 2020). These adjustments 

are necessary to make appropriate comparisons of consumption possible, since even small differences 

in temperature and/or hours of sunshine can cause changes in space heating behavior and hence 

electricity consumption (Hart & De Dear, 2004). On top of that, it comprises the total consumption that 

is delivered through the grid and generated by own sources such as solar panels. We further discuss the 

role of own electricity generation in Section 3. 

  

 

FIGURE 3 - Average Electricity Use of Small-scale Users in the Netherlands over Time 

 

Overall, this average consumption equaled 4,235 kWh during the period, which is substantially higher 

than the average electricity consumption of 2,955 kWh of a Dutch household over the same period. This 

difference is simply the result of also including other small-scale users – shops, small offices – that 

appear to consume more energy on average. Interestingly, over the period, the per connection average 

shows a steady decline. Figure 3 shows how the average consumption decreased with 10.7% between 

2013 and 2018, which is comparable to the 11.4% decrease in household electricity consumption in the 

Netherlands over the same period (CBS, 2020). This may indicate that, within the group of small-scale 
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users, households have a relatively high potential for effectively reducing total electricity consumption 

(e.g. Yohanis, 2012). Two important developments induce this presumption: the improving efficiency 

of electronic appliances, and the rising consumer awareness of more energy-efficient household devices 

over the past decade (Pothitou, Hanna, & Chalvatzis, 2016). One development that can contradict this 

presumption is that the reduction in average electricity use is simply the result of a decrease in average 

household size (e.g. Kaza, 2010). However, the observations on average household size in our dataset 

show that this decrease – from 2.19 residents in 2013 to 2.15 by the end of 2018 – is negligible. 

 Our dataset also includes another important factor that may explain the decline in average electricity 

use. Over the period, 161,160 new dwellings have been constructed. Relatedly, the average energy label 

of the residencies improved. Postal code areas with a relatively high number of newly constructed houses 

also show a substantial improvement in the average value of energy labels within that area. Regarding 

other small-scale users, we see a similar interaction between energy label values and year of 

construction. Although we do not empirically test this interaction, it provides a reasonable indication 

that newly constructed buildings are more energy-efficient and hence contribute to the explanation of a 

declining average consumption.  

 

Data Distribution 

We continue to analyze the dependent variable by exploring the distribution of observations over the 

time period. Appendix B shows the yearly distributions in the observations on average electricity use 

per area. Clearly visible are two outliers in 2015 and 2016, where the average consumption exceeds 

50,000 kWh. Both observations come from the same postal code, an industrial area in Etten-Leur, 

Noord-Brabant, with just ten inhabitants populating the area. During the other years the electricity 

consumption in this area was also high, but never exceeded 25,000 kWh on average. We can therefore 

confidently identify the observations for 2015 and 2016 as measurement errors and correspondingly 

remove them from our dataset (Zuur et al., 2010).  

 The variance between the observations seems to be homogeneous over the years. In each year, there 

is hardly any variation between observations in the first quartile of observations, and the spread in the 

upper quartile arises from no more than 63 postal code areas – i.e. 1.6% of the yearly observations – 

with an average consumption that exceeds 15,000 kWh.  These areas are mostly industrial in nature. 

Typically, in such areas, the number of businesses per inhabitant is relatively high, together with a high 

percentage of heavy connections and on average 90% of the inhabitants employed. Contrarily, the first 

quartile of observations is mostly on densely populated postal code areas with a high degree of 

urbanization and a large share of Multi-Dwelling Units, such as apartments. Apart from two postal code 

areas, the average consumption for these observations does not fall below 2,000 kWh. A high share of 

unoccupied buildings in these two areas probably explains this low level of consumption.  

 To summarize, the data shows a right-skewed distribution of observations on the average energy 

consumption. This skewness persists over the years throughout the time period, and therefore also 



16 

 

explains why the average consumption of all small-scale users is considerably higher than the household 

electricity consumption.  

 

3.2  –  Independent Variable 

With this study, we aim to find whether there is a correlation between providing feedback to the 

consumer through smart meters on the one hand, and the average electricity use over time on the other 

hand. Hence, these smart meters serve as the mechanism that provides information to the consumers, 

which makes them the independent variable in our analysis. The measure we use is the percentage of 

the connections within a postal code area that have a smart meter device installed.  

 At the start of 2013, the percentage of smart meter connections was 5.3 %. Presumably, these smart 

meters have been installed before the large-scale implementation started – as described in the previous 

chapter. Figure 4 shows a constant annual increase of roughly five percent point during the first two 

years of the period, which results in an average implementation rate of 14.7 % by the end of 2014. A 

steady replacement of defective or outdated conventional meters likely explains this upward trend. After 

the policy has been enacted in 2015, we discover a more rapid increase. By the end of 2018, on average 

61.4 % of the total connections within a postal code area had a smart meter implemented. Appendix C 

shows the distribution of the percentage of smart meters installed per postal code area over the years. 

Clearly visible is the effectiveness of the policy for the treated areas; from 2016 onwards, a new bell-

shaped curve emerges with a median of approximately 80 % smart meter connections.  

  

 

                   FIGURE 4 - Average Percentage of Smart Meter Connections over Time 

 When we further analyze the spread of smart meter devices, we find that some of the observations 

show inconsistencies on the percentage of smart meters over time. After we subtract the percentage of 
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smart meter connections at the beginning of the year from the percentage at the end of the year – i.e. the 

implementation rate for a specific year – we find 82 observations where the implementation rate is 

negative. This can either be the result of the so-called smart meter refusals, or simply because of 

measurement errors. A refusal occurs if a consumer fully rejects the installation of a smart meter 

installation in the first place, but can also partly occur in case the user switches off the functionality of 

the smart meter. In the latter case, the smart meter does not communicate information on the energy 

consumption anymore, and consequently the user does not receive the bimonthly overview of user cost. 

Unfortunately, the net managers do not provide any information whether the measured percentage of 

smart meter connections includes or excludes the smart meters that have been switched off. As a result, 

we cannot identify if the negative implementation rates for 77 unique postal code areas are the result of 

measurement errors. Hence, we do not remove these observations from our dataset.  

 

3.3  –  Control Variables 

What becomes clear in the first section of this chapter is that there are many factors that affect the use 

of electric energy. In order to find an unbiased estimator of the effect of smart meters, we have to take 

into account as many factors as possible. In this section, we provide an overview of all the factors we 

control for in our analysis. Thereby we classify these control variables in four categories: consumption 

data, technical details, controls on postal code level and population controls. 

 

Consumption data 

Since we use the Standardized Yearly Consumption to measure electricity consumption, controlling for 

weather circumstances and power outages is not needed. What is necessary, however, is to control for 

the use of alternative sources of energy, which are gas consumption and district heating. Electricity 

consumption may act as a substitute for the use of gas in cooking – by means of glass-ceramic or 

induction stoves – and heating. Hence, controlling for gas consumption prevents us from overestimating 

the hypothesized effect. However, the effect of controlling for district heating is uncertain. On the one 

hand, district heating can certainly help to reduce energy consumption for heating purposes, but a 

connection to the heating network often requires a heat pump that also uses a considerable amount of 

electricity.  

 An important aspect of energy consumption is that consumers have several possibilities to contribute 

to their own electricity supply, for example by means of solar panels. Our dependent variable already 

includes such own generation of electricity, often referred to as net-metering (Gillingham, Deng, et al., 

2016). However, it is still important to include this aspect since it may reveal something about peoples’ 

attitudes towards energy conservation behavior (Gillingham, Rapson, & Wagner, 2016).  
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Technical details 

In the first section of this chapter we explained why we use the consumption data on all small-scale 

users instead of household consumption only. Small-scale users are defined by the maximum capacity 

of their connection (Liander, 2020; Stedin, 2020), i.e. the maximum number of hourly kilowatts that can 

flow through the connection. In the Netherlands, twelve types of small-scale connections exist, which 

range from 1x10 – i.e. the lowest capacity, mostly used for garage boxes – to 3x80. The first digit refers 

to the number of fuses, and the latter two digits refer to the maximum current that can flow through the 

connection. The most common connections are 1x35 and 3x25, which are the small- and standard 

household connections, respectively. The alternative for a small-scale connection is a large-scale 

business connection, which is heavier than the 3x80 connection and specifically designed for medium-

sized and large businesses only. We control for differences in the connection distribution between postal 

code areas by creating dummy variables that measure the percentage of each specific type of connection 

as part of the total connections within an area. Since 1x10 and 1x20 connections are so uncommon, we 

combine these connection types together with the 1x25 connections in the lowest category. Other 

technical factors that may affect the consumption of electricity are the total length of the cabling and the 

average transformer capacity in the postal code area. These factors are both associated with the 

transportation efficiency of electricity, which decreases with a longer cabling distance and/or a higher 

transformer capacity (Georgilakis, 2011). This in turn can lead to a slight overestimation of the true 

electricity use, which is why we control for these factors.  

 Despite the three advantages of using the small-scale user data on electricity use we mentioned in 

the first section, there is also one obvious limitation: we cannot make a distinction between the other 

types of small-scale users. As a result, we cannot control for the type of buildings in which non-

residential energy consumption takes place. In the next chapter, we provide more detail on how we take 

this issue into account.  

 

District controls 

The third category consists of factors that concern the urban characteristics of the postal code area. These 

characteristics include the address density and degree of urbanization of the area, together with various 

specifications on the residencies. Non-residential factors that we also include are the number of 

businesses, the total of electric vehicles registered, and the number of charging stations designed to 

recharge these vehicles. Regarding the housing characteristics, Kaza (2010) points out that the type of 

residency likely has an impact on the use of electricity. We categorize these types into two groups, 

Single-Dwelling Units – SDU’s – and Multi-Dwelling Units – MDU’s. The former includes all detached 

and semi-detached houses, whereas the latter includes any type of multi-family homes such as 

apartments and townhouses. We also include the average living space for both groups, because 

differences in floor area strongly affect the average electricity consumption across different types of 
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residencies (Yohanis, Mondol, Wright, & Norton, 2008). Thereby, the average living space in terms of 

square meters is typically lower for MDU’s compared to SDU’s.  

 Another important housing characteristic which we already discussed is the year of construction. 

Aksoezen, Daniel, Hassler, & Kohler (2015)  provide evidence that newly built houses are typically 

more energy efficient, after controlling for differences in consuming behavior. Interestingly, these 

authors show that there is no linear relationship between the year of construction and the consumption 

of electricity per cubic meter of housing space. Therefore, we classify the residential buildings into eight 

construction categories, with the first category containing the residencies constructed before 1945 and 

the final category the residencies constructed after 2014. However, as it appears, the relationship 

between electricity consumption and year of construction can also be misleading. Obviously, because 

the energy performance of a building can also be improved over time, for example because of 

renovations or the installation of more efficient electrical equipment. Controlling for all these individual 

improvements is impossible, but we can approximate such efforts by using the average energy label 

within the postal code area. An energy label shows the efficiency performance of a building and the 

corresponding possibilities to realize additional energy savings. The lower the label score, the more 

efficient the residency is. Hence, a reduction in the average label score over time indicates a general 

improvement of the energy efficiency within the postal code area. Of course, such an approximation can 

also be the result of self-selection – people with less energy efficient houses likely feel embarrassed and 

hence do not want to apply for an energy label – or the fact that newly constructed buildings are more 

energy efficient. Although the construction categories easily allow us to control for the latter, the self-

selection effect is hard to identify. Still, it can help us to identify and compare possible trends of 

improving energy efficiencies within a postal code area over time, especially if those areas are very 

similar to each other. In order to control for other small-scale users as well, we include the average 

energy label per year for non-residential buildings in the same area. To further complement this 

approximation, we also include the number of subsidies granted for renovations that improve energy 

performance, together with their total amounts within a postal code area. 

 Other evident factors that are necessary to control for is the average household size and the share of 

one-person households (e.g. Kaza, 2010), house ownership (e.g. Ndiaye & Gabriel, 2011) and average 

occupancy rate.   

 

Population controls 

The final category includes the characteristics of the residents that live within the postal code area. 

According to previous research, the most important characteristics that we need to include are average 

age and the number of children (Yohanis et al.), income – both on individual and household level – (e.g. 

Cayla, Maizi, & Marchand, 2011), gender and ethnical background (Brounen, Kok, & Quigley, 2012), 

and employment status (Pothitou et al., 2016)  Apart from average age and income, we measure these 

variables as a percentage of the total population within a specific area.    
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Before we continue to describe our analysis, we notice that one obvious control is missing in our 

description: energy prices (e.g. Asafu-Adjaye, 2000; Reiss & White, 2008). In the Netherlands, the price 

for electricity comprises taxes, a fixed component – a connection fee plus rent for the meter installed – 

and a variable component. The latter is the cost of delivery in terms of euro per kWh, which depends on 

the type of contract the consumer has with the energy provider, reductions during off-peak hours and 

whether the user also consumes gas. As a result, the actual price per kWh consumed can vary 

substantially between consumers (ACM, 2019). What further complicates a possible control for energy 

prices is the fact that an increasing number of small-scale users – 1.3 million users over 2018 – regularly 

switches from energy provider (ACM, 2019). 

 

Hence, it becomes clear that we cannot provide a reliable answer to our research question if we apply a 

standard regression analysis. There are too many factors that we cannot control for, such as differences 

in energy contracts or electricity prices, renovations that improve energy performances, differences in 

the types of small-scale users across different areas, etc. On top of that, as Nielsen (1993) shows, factors 

related to lifestyle – e.g. the number of weeks on holiday, the use of household appliances – are at least 

half as important as the socioeconomic factors we mentioned in this section. Therefore, we take a 

different approach that allows us to confidently assume that electricity prices, responsiveness to prices, 

individual lifestyles and any other unobserved factor do not substantially differ between the selected 

postal code areas over the time period. In the next chapter, we elaborate more on this approach and why 

it justifies this assumption. 

 

3.4  –  Data and Analysis 

In order to carry out our research, we first construct a panel dataset which allows us to track the 

mentioned variables over a time period from 2013 until 2018. This time period is specifically interesting, 

since it allows us to compare postal code areas over several consecutive year before the moment the 

policy was adopted. Unfortunately, by the time we conducted this analysis, there was still no public data 

available on housing and income in 2019. Therefore, we exclude all observations for 2019 from our 

analysis.  

As mentioned, the policy has been introduced with the purpose to make at least 80% of the small-

scale connections having a smart meter in 2020. The three large net managers in the Netherlands – 

Enexis, Liander and Stedin – publish yearly user data on connections and consumption within a postal 

code area over this period. The user data contains observations on 3,885 distinct postal codes at the four-

digit level, hence covering 95% of all the postal code areas in the Netherlands. The missing 187 areas 

are mostly located in Zeeland, a province where Enexis, Liander and Stedin do not serve the market.  

 Since we need many control variables to accurately analyze the changes in electricity consumption, 

we also make use of two other sources of data. The first source is the regional statistics dataset from the 
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Statistics Netherlands (CBS, 2020). Statistics Netherlands publishes public data on demographic factors, 

housing and income on a yearly basis, both at four-digit and six-digit postal code level. We use the four-

digit level, because at the latter level, many observations are omitted due to privacy concerns. The 

second source is Klimaatmonitor, which is a platform managed by Rijkswaterstaat (Rijkswaterstaat, 

2020). Klimaatmonitor connects data sources from several government institutions together to one 

database that comprises many of the efforts that address environmental issues in the Netherlands. From 

these institutions, the Netherlands Enterprise Agency, the Netherlands Vehicle Authority, and Eco-

Movement are of particular interest for our study, since they provide data on important control variables 

such as renovation subsidies, energy labels and the number of electrical vehicles registered per postal 

code area.  

  

The entire dataset that results from connecting the different data sources contains a total of 22,513 

observations on 3,885 different postal code areas. These postal code areas form the unit of analysis. As 

our dataset contains cross-sectional observations on each four-digit postal code over time, we have to 

apply a panel data study. Thereby we deliberately do not follow a standard fixed effects model analysis 

to explain the variation in average electricity consumption within each area (e.g. Stock & Watson, 2010). 

Instead, we use a more advanced methodology, which is necessary in order to estimate such a small 

average effect of 3.2 %. We select two groups of postal code areas; one in which a large proportion of 

smart meters had been implemented during a specific year – i.e. the treatment group – whereas in the 

control group no such implementation occurred. After including all postal codes that satisfy the 

implementation criteria, we can compare the change in average electricity consumption per postal code 

area between the two groups. More specifically, after 2015 we should find a stronger decrease in 

consumption in the treatment group compared to the control group.  

 

This is what the difference-in-difference estimator does. Mathematically, we can express this 

relationship in the following equation:  

 𝐶𝑖,𝑡 = 𝛼0 +  𝛾0 𝑃𝐶𝑖  +  ß1 𝐷𝑖  +  ß2 𝐷𝑖 𝑇𝑡  +  𝛾𝑡  + 𝑋𝑖,𝑡 Γ + 𝜀𝑖,𝑡     (1) 

where Di is a binary variable that equals one if postal code area i belongs to the treatment group, and Tt 

a binary variable that equals one in year t after the implementation of the policy. In this expression, the 

ß2 estimator equals the relationship of interest between the smart meter implementation and the average 

electricity consumption C for area i in year t. Furthermore, we add a vector of variables Xi,t Γ to control 

for any possible differences between the treatment and control group. These variables comprise the four 

control categories that we described in Section 3. Finally, we include a constant α0 , a categorical variable 

PCi to capture the fixed effects for each postal code area, an error term ε for area i in year t, and time 

dummies γt .  
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This sophisticated approach accounts for time-invariant differences between the treatment and control 

group. Furthermore, the year dummies eliminate any time-varying factors that affect both groups in the 

same way (Khandker, Koolwal, & Samad, 2009). Still, a bias in the standard error estimation can occur 

whenever there exists an unobserved codependence – both cross-sectional and/or autocorrelative – 

between one or more postal code areas within one of the groups (Moulton, 1990). To prevent such a 

problem to occur, we cluster our standard errors per year on postal code level (e.g. Bertrand, Duflo, & 

Mullainathan, 2004).  

 

4  –  Analysis 

After an exploration of the data and a description of the conceptual framework in the previous chapter, 

we now continue to our empirical analysis. First, we describe the selection procedure that we apply to 

isolate both the treatment and control group from the dataset. Thereby we carefully examine the common 

trend assumption, which is the crucial mechanism that allows us to identify an accurate estimation of 

the causal effect. After this elaboration, we start our empirical analysis in Section 4. In this section we 

present the estimation results of the difference-in-difference models. Afterwards, we interpret and 

discuss these results in Chapter 5. 

 

4.1  –  Treatment and Control Group 

Our dataset shows the proportion of connections within a postal code area that have a smart meter device 

installed. Measurement occurs once a year, on December 31st. Hence, we can construct a variable that 

measures the yearly implementation rate, simply by subtracting last years’ percentage of smart meter 

connections – i.e. at the start of the year – from the percentage at measurement point. We use this 

implementation rate to distinguish the treatment group and control group.  

 As mentioned in the previous chapter, the yearly average implementation rate has been relatively 

constant at roughly five percent point in 2013 and 2014. Interestingly, in 2015 – i.e. the first year of the 

policy enactment – we only find a minor increase in the average implementation rate to 6.7 %, whereas 

in 2016 this rate almost doubles to 12.4 %. This suggests that we should aim our attention at 2016 as the 

year of treatment. When we thereby focus on the observations that have at least 50 % of smart meters 

placed within a specific postal code area, we find 266 areas that meet this criterion in 2016, compared 

to only 67 in 2015. We deliberately did not take into consideration the 317 and 396 areas with an 

implementation rate of at least 50 % for 2017 and 2018, respectively, because of the absence of 

observations for 2019. As a result, the period after the treatment would have become too short or even 

absent for those years. Hence, we take these 266 areas from the year 2016 as our starting point in the 

selection of the treatment group. As we noticed, it is important that the treatment and control group 

should be similar to each other. This also applies to the pre-treatment average proportion of smart meters 

within both groups. Hence, we apply a second criterion that there should be no more than 20 % of smart 

meter connections within a postal code area at the beginning of 2016. The resulting group of 200 postal 
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code areas shows a slightly increasing trend in the average smart meter percentage before 2016 that is 

just below the average depicted in Figure 3.   

 To consider an implementation rate of 50 % to be appropriate for treatment is somewhat arbitrary, 

but the justification is that it provides the treatment group with a very important characteristic. As a 

result, the average percentage of smart meter connections within these 200 areas raises to 78.1 % after 

the treatment, and subsequently increases to more than 80 % during 2017 and 2018. This is exactly what 

the policy aims to accomplish: to equip at least 80 % of all small-scale connections with a smart meter 

device by the end of 2020 (Van Gerwen et al., 2010). Hence, it helps us to find the true effectiveness of 

the policy in its aim to reduce small-scale energy consumption by 3.2 %. Moreover, if our hypothesis is 

true, an implementation rate of 50 % should be large enough to discover at least some reduction in the 

average electricity consumption.   

 

Regarding the selection of the control group, we can identify two important criteria. We already 

mentioned the first one: the pre-treatment trend in smart meter connections should be comparable 

between treatment and control group. The second criterion is that the treatment does not affect the smart 

meter percentage in the control group, meaning that the trend in this group behaves in a similar fashion 

post-treatment. We obtain the control group by selecting the 242 postal code areas in which the 

proportion of smart meters does not exceed 15 % in 2016, 20 % in 2017 and 25 % in 2018. These 

benchmarks allow the smart meter percentages in the control group to further develop in line with the 

average pre-treatment trend (Figure 4).  

 Before we assess the similarity of the two groups, we first remove four postal code areas that show 

measurement inconsistencies that persist over time. For example, an area in Amsterdam with only five 

residencies reported over the entire period, but where the registered number of households in that area 

equaled 95. In addition, we also remove 38 areas that do not provide evidence on key variables – e.g. 

income, year of construction, various population characteristics – over time. These observations are 

mostly on industrial areas where the number of residents is so low, that the CBS does not publish 

accurate information for that area due to privacy concerns. What further defines these areas is a very 

high level of energy consumption – i.e. 8,495 kWh on average – and a large number of firms per 

inhabitant. Appendix D shows the distribution in electricity consumption before and after adapting the 

sample. The result is a strongly balanced sample with a treatment group that contains 191 postal code 

areas, compared to 213 areas in the control group. 

 Figure 5 depicts the resulting average percentage of smart meters for both the treatment and control 

group. Clearly visible is the constant development in the percentage of smart meter connections for the 

control group and the instantaneous increase for the treatment group after 2015. In addition, the gradual 
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FIGURE 5 - Development in the Percentage of Average Smart Meter Connections within the Sample 

 

development in the implementation of smart meters in the treatment group seems to persist again after 

the treatment took place. The average implementation then equals 2.4 percent point per year in this 

group, which hardly differs from the yearly average implementation rate of 3.2 percent point in the 

control group. What may explain this development is the fact that, under normal conditions, all newly 

constructed buildings receive an active smart meter connection.  

 

4.2  –  Common Trend Assumption 

In the previous chapter we already explained how the difference-in-difference methodology accounts 

for possible differences between the treatment and control group. However, there is one crucial 

requirement that we further need to examine in order to make this framework successful: the common 

trend assumption (e.g. Angrist & Pischke, 2014) – also referred to as parallel trends assumption (e.g. 

(Khandker, Koolwal, & Samad, 2009). The idea of this assumption is that, in absence of treatment, the 

average electricity use in the treatment group would have evolved in the same way as it actually evolved 

in the control group. There are two reasons why we can justify this assumption. First, the fact that the 

two groups show similar average values on all observable characteristics – i.e. the four categories we 

described in Section 3.3. Table 1 displays figures on the most important control variables over the entire 

period. In this comparison between the two groups, we discover that there are no significant differences 

present over the years between the treatment and control group. Still, it appears from the table that an 

area within the treatment group contains a higher number of inhabitants – and hence more connections 

and residencies – on average. However, this difference is far from significant as well. Moreover, the 

population density score appears to be almost identical between the two groups, which therefore means 

that the space area is larger in the treatment group on average. More important is the fact that the number 
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of connections within an area – regardless which group it belongs to – hardly differs from the number 

of residencies on average. More specifically, areas in both the treatment and control group consist for 

more than 95 % of residential connections, which illustrates that our sample primarily contains areas 

that are residential in nature. Furthermore, this correspondence resolves the limitation that we cannot 

identify the different types of small-scale users, since both groups appear to be identical in the proportion 

of non-residential small-scale users. Ultimately, the treatment status did not affect any of the control 

variables from 2016 onwards, which also strengthens the validity of the assumption (Khandker, 

Koolwal, & Samad, 2009).  

 The second reason is an identical trend in average electricity use that we find in both groups before 

the treatment. Figure 6 clearly shows that, before 2016, the average consumption hardly differs between 

both groups and develop in a similar trend. Combined, on average, this consumption is 102 kWh lower 

than the consumption average in the total dataset (Figure 3). Hence, based on the observables and the 

similarity in trends, we can infer that both groups are the same, apart from their treatment status. 

Therefore, it is reasonable to assume that the electricity consumption in both groups reacted equivalently 

to – either visible or invisible – changes after the treatment as well. In other words, we can use the trend 

in the control group as the counterfactual for the treatment group.  

 

 

FIGURE 6 - Development in the Average Use of Electricity across Treatment and Control Group 

 

A very convenient implication follows from this assumption. In the previous chapter, we discussed how 

we included various factors that serve as an approximation to control for characteristics that are hard to 

measure. For example, the average energy label values to approximate the improvements in energy 

performance of buildings. Thereby our conclusion was that we cannot control correctly for particular 

variables, especially the factors on individual household level related to lifestyle or the type of energy 

contracts. However, these concerns become irrelevant if the treatment and control group are the same 
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on average, because it implies that not only the quantifiable variables are similar – as we verified in 

Table 2 – but also the unobservable characteristics. Hence, controlling for these characteristics in our 

analysis is not necessarily useful from the perspective of the estimator (e.g. Angrist & Pischke, 2014; 

Lechner, 2010). On the other hand, not including such factors induces two minor disadvantages to our 

analysis. First, the missing factors could have helped us to detect possible heterogeneity in the causal 

effect estimation. For instance, whether different types of energy contracts influence the effectiveness 

of the indicative overview of user cost. Second, it makes the clustered standard error estimation less 

precise (Angrist & Pischke, 2014). 

 

4.3  –  Credibility of the Common Trend Assumption 

Table 1 shows that the treatment appears to have no effect on any of the variables that characterize our 

sample. This provides a solid base for the credibility of the common trend assumption. However, the 

Table also raises a point of concern: the percentage of connections with district heating shows a 

persistent dissimilarity over time. In the treatment group, 19.4 % of the connections use district heating 

on average, compared to only 4.7 % in the control group. However, both groups show large variation in 

the distribution of the average percentages of district heating across postal code areas. As a result, this 

difference in the average percentage is not significant, but it may still explain why the average electricity 

consumption is somewhat lower in the treatment group. In addition, when we compare the distribution 

in the percentage of district heating over time, it is easy to observe that the standard deviations hardly 

change over time. Moreover, the trend in the average percentage of district heating connections appears 

to be identical in the two groups. That is to say, these percentages are very stable over the years, apart 

from one sudden increase in 2015 which occurred in both groups. Since this particular trend does not 

differ between the groups, including them into our regression analysis prevents a possible violation of 

the common trend (e.g. Angrist & Pischke, 2014). 

 A second point of concern that may lead to a violation of the common trend assumption is the 

percentage of users who switched off their smart meter. Since small-scale users in the control group did 

not – yet – receive an offer of smart meter placement, this proportion of users is reasonably larger in the 

treatment group. In this regard, the treatment group might differ from the control group. Unfortunately, 

the percentage of smart meter connections that have been switched off is unobservable for each postal 

code area. As a result, we cannot control for it, but the question is whether this can affect our estimation. 

In 2016, only 2 % of the installed smart meters – i.e. 0.007 % of all connections in our dataset – have 

been switched off. By the end of our time period, this percentage barely increased to 3 % (RVO, 2018), 

which is so low that it can only affect our analysis if and only if a disproportionate number of users in 

treatment group areas switched off their smart meter. However, as Figure 7 shows, the spread in treated  

  



27 

 

 

Mean values as of December 31st; yearly standard deviations in parentheses and denoted in percent points for the variables measured in percentages. a n = 191; b n = 213;  
*
 29 postal code areas 

in the treatment group do not have any gas connections, compared to 4 areas in the control group. 

 

 
2013 

 
2014 

 
2015 

 
2016 

 
2017 

 
2018 

 Treatment Control  Treatment Control  Treatment Control  Treatment Control  Treatment Control  Treatment Control 
                  
Electricity Use (kWh) 4,374.13 4,391.96   4,228.03 4,246.24   4,137.91 4,165.59   4,061.77 4,095.20   4,011.06 4,040.46   3,891.89 3,946.63 

 (1,204.53) (1,080.56)  (1,152.27) (1,037.13)  (1,129.26) (1,025.84)  (1,097.98) (1,002.71)  (1,094.00) (1,002.68)  (1,072.90) (977.62) 

  -  Avg. Delivery (%) 97.6% 97.8%   96.9% 97.0%   95.9% 96.1%   94.8% 95.3%   93.5% 94.3%   91.4% 91.9% 

 (2.71) (1.85)  (3.04) (2.18)  (3.38) (2.66)  (3.81) (3.00)  (4.35) (3.56)  (5.22) (4.47) 
                  

Number of Connections 2,428 1,715   2,435 1,718   2,447 1,721   2,468 1,730   2,510 1,761   2,503 1,745 

 (1,995) (1,861)  (1,995) (1,862)  (2,007) (1,868)  (2,018) (1,879)  (2,057) (1,919)  (2,037) (1,895) 

  -  % Smart meters 6.6% 4.2%   9.7% 6.6%   13.2% 9.3%   78.1% 12.6%   81.1% 15.7%   82.8% 20.0% 

 (2.66) (1.47)  (3.18) (1.83)  (3.65) (1.81)  (7.20) (2.05)  (6.23) (2.57)  (5.48) (3.17) 

  -  % Heavy Connections 0.4% 0.4%   0.4% 0.4%   0.4% 0.4%   0.4% 0.4%   0.4% 0.4%   0.4% 0.4% 

 (0.22) (0.20)  (0.22) (0.20)  (0.22) (0.20)  (0.20) (0.20)  (0.22) (0.20)  (0.22) (0.20) 

  -  % District Heating 15.9% 3.6%   16.1% 3.5%   20.9% 5.2%   21.2% 5.4%   21.2% 5.3%   21.3% 5.3% 

 (33.74) (14.47)  (33.51) (14.35)  (35.57) (18.49)  (35.58) (18.44)  (35.08) (18.25)  (35.23) (18.33) 
                  

Gas Consumption (m3)
 * 1,791.84 1,792.70   1,736.46 1,731.09   1,697.24 1,624.79   1,680.73 1,674.45   1,655.02 1,677.81   1,650.10 1,671.52 

 (629.11) (563.15)  (633.19) (535.49)  (634.15) (517.00)  (622.91) (513.35)  (596.99) (513.35)  (639.64) (511.36) 
                  

Number of Inhabitants 5,449 3,708   5,473 3,709   5,387 3,638   5,412 3,640   5,442 3,648   5,477 3,658 

 (4,561) (4,212)  (4,613) (4,205)  (4,392) (4,131)  (4,408) (4,134)  (4,430) (4,147)  (4,455) (4,161) 

  -  Avg. Age 39 40   39 40   40 41   40 41   40 41   40 41 

 (3.28) (3.91)  (3.28) (3.83)  (3.26) (3.71)  (3.22) (3.63)  (3.17) (3.54)  (3.18) (3.48) 

  -  % Male 49.6% 49.4%   49.7% 49.4%   49.8% 49.5%   49.8% 49.4%   49.8% 49.5%   49.8% 49.5% 

 (1.61) (1.57)  (1.60) (1.56)  (1.56) (1.55)  (1.54) (1.51)  (1.46) (1.48)  (1.49) (1.51) 

  -  % Dutch 76.2% 78.4%   75.8% 78.2%   76.3% 78.8%   75.6% 78.5%   75.0% 77.8%   74.6% 77.3% 

 (14.14) (16.51)  (14.22) (16.47)  (14.99) (17.32)  (15.56) (17.47)  (15.62) (17.69)  (15.69) (17.87) 

  -  % Active 57.8% 59.4%   57.7% 58.6%   57.6% 58.4%   58.0% 58.9%   58.5% 59.2%   59.5% 60.2% 

 (8.31) (7.62)  (7.06) (7.27)  (6.84) (7.12)  (6.70) (6.95)  (6.53) (6.73)  (6.43) (6.53) 

TABLE 1 

Means and Standard Deviations on the Variables across Treatmenta and Controlb Group over Time. 
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** Average value of valid labels, on scale 1 (i.e. best, A-label) to 4 (i.e. worst, F- or G-label);  *** Measured in number of addresses per ¼ square kilometer.  
 

 

 

 

 
2013 

 
2014 

 
2015 

 
2016 

 
2017 

 
2018 

 Treatment Control  Treatment Control  Treatment Control  Treatment Control  Treatment Control  Treatment Control 
                  
Number of Households 2,436 1,635  2,443 1,635  2,422 1,618  2,376 1,623  2,394 1,632  2,416 1,637 

 (2,128) (1,852)  (2,143) (1,843)  (2,085) (1,826)  (2,100) (1,828)  (2,112) (1,840)  (2,144) (1,847) 

  -  Avg. Household Size 2.22 2.24  2.22 2.24  2.21 2.23  2.21 2.22  2.20 2.21  2.19 2.20 

 (0.32) (0.32)  (0.31) (0.32)  (0.31) (0.32)  (0.30) (0.31)  (0.30) (0.31)  (0.31) (0.31) 

  -  Avg. Income (€ 1,000) 21.979 22.744  22.643 23.379  23.607 24.614  24.125 25.307  25.084 26.231  24.782 26.177 

 (3.120) (5.330)  (3.349) (5.825)  (3.980) (7.157)  (3.960) (7.242)  (4.823) (7.830)  (4.699) (7.703) 

Number of Residencies 2,361 1,645  2,389 1,660  2,362 1,636  2,376 1,642  2,394 1,646  2,416 1,652 

 (2,009) (1,822)  (2,038) (1,834)  (1,979) (1,815)  (1,988) (1,822)  (1,997) (1,827)  (2,017) (1,834) 

  -  Year of Construction 1975 1972  1975 1972  1975 1972  1976 1972  1976 1972  1976 1972 

 (14.29) (14.85)  (14.32) (14.86)  (14.34) (14.88)  (14.25) (14.86)  (14.14) (14.99)  (14.05) (14.89) 

  -  % Rental 44.2% 41.8%  42.8% 40.6%  42.1% 40.6%  42.3% 40.4%  42.4% 40.6%  42.3% 40.4% 

 (17.32) (14.57)  (17.67) (15.04)  (17.20) (14.15)  (17.33) (14.34)  (17.18) (14.36)  (17.15) (14.33) 

  -  % MDU's 33.5% 34.5%  33.8% 35.0%  33.7% 35.8%  33.7% 35.8%  33.9% 36.2%  33.9% 35.6% 

 (24.07) (27.62)  (23.98) (27.52)  (23.60) (26.82)  (23.44) (26.83)  (23.41) (27.06)  (23.26) (26.76) 

  -  Avg. Living Space  116.62 113.14  115.38 112.74  115.31 112.53  115.37 113.75  115.36 115.82  115.59 116.83 

 (21.37) (41.82)  (20.07) (41.38)  (20.31) (41.17)  (20.35) (38.17)  (20.26) (35.28)  (20.10) (34.40) 

  -  Avg. Energy label** 2.41 2.46  2.39 2.44  2.33 2.40  2.29 2.40  2.27 2.39  2.19 2.32 

 (0.35) (0.39)  (0.35) (0.39)  (0.38) (0.40)  (0.38) (0.41)  (0.40) (0.42)  (0.39) (0.41) 

                  

Number of Businesses 382 278  388 283  400 293  412 303  422 309  442 325 

Density*** 1,719 1,693  1,737 1,692  1,771 1,708  1,780 1,716  1,793 1,726  1,804 1,737 

                  

TABLE 1 (CONT.)  

Means and Standard Deviations on the Variables across Treatment and Control Group over Time. 

over Time. 
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postal code areas across the country makes any of such inferences unreasonable. On top of that, the 

difference in the percentage of smart meters that have been switched off does not harm our analysis. 

 

We just described that both groups are not similar regarding the district heating connections, and that 

we have to control for this dissimilarity. Let us consider this point from a different perspective. What if 

the net managers prioritized postal code areas with a high proportion of district heating connections in 

their implementation efforts? If this argument holds, the common trend assumption remains valid. 

However, it may indicate that the policy has been applied selectively to such areas, which distorts the 

exogeneity of the policy and subsequently causes an undesired correlation between district heating and 

smart meter percentages. To find out whether this is the case, we first describe the development from 

policy enactment to the large-scale implementation of smart meters. After that, we provide several 

arguments that validate the exogeneity of the policy, and we elaborate more on the suggested 

presumption.     

As we described in Chapter 2, the Dutch government enacted the implementation policy in 2012 

with the aim to equip at least 80 % of all connections with a smart meter device by the end of 2020. 

Based on earlier calculations by Van Gerwen et al. (2010), regularly informing consumers on their 

energy consumption behavior could result in a 3.2 % reduction in small-scale electricity use on average. 

Consequently, consumers benefit from a smart meter through a lower electricity bill. But are they also 

responsible for purchasing and installing a smart meter device?  

This would unnecessarily complicate things. Therefore, after the policy enactment in 2012, the 

government made the net managers responsible for the placement of the smart meters. Hence, the net 

managers have to purchase the devices from a producer and subsequently install them on their own 

initiative (Vringer & Dassen, 2016). Net managers thereby have to offer a smart meter device to all 

small-scale consumers for free. In return, net managers earn back this investment through the meter rent 

which users pay as part of the yearly electricity bill. Consumers receive this offer in the form of an 

official letter which users receive three months prior to the upcoming installation, hence reducing the 

possibility that consumers develop any kind of anticipatory behavior in their consumption of energy 

(e.g. Heckman, Lalonde, & Smith, 1999). Consumers can refuse the offer, but if they do so, any future 

installation is at their own cost. Hence, if he/she changes opinion or if the old electricity meter breaks 

down after the offer has been rejected, the net manager is allowed to charge the full cost of € 72,60  to 

the consumer (ACM, 2019).  

 At first, the net managers started their implementation efforts according to some sort of trial. Newly 

constructed buildings received a smart meter, as well as existing buildings that underwent major 

renovations or in case the old electricity meters had to be replaced (De Lange, 2018). After these 

experiences, the government decided to further expand the implementation program. Hence, from 2015 

onwards, the efforts have been extended to all small-scale users across the country. Thus, by contracting 

out the duty to install the smart meters, the government did not design a specific order or protocol which 
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areas or buildings had to be treated first. This already provides a weak indication why we can consider 

the implementation policy as exogenous. To validate their independent responsibilities in their 

implementation efforts, Enexis, Liander and Stedin provide overviews of the treatment status per four-

digit postal code area and the year and quarter in which treatment occurred (Enexis, 2020; Netbeheer 

Nederland, 2020). When we sort the observations by year and by the quarterly implementations, we 

discover a random spread in the treated postal codes across the different provinces in the Netherlands 

within each quarter. This is also logical from a staffing perspective, since it is not very efficient to let 

all the installation technicians work in only one district at the time. Figure 7 shows a map of the 

Netherlands that categorizes all 4,069 postal code areas by their percentage of smart meter connections 

as from the 1st of April 2020. Even a year after our period ended, the random distribution in the clusters 

of treated- and non-treated areas is clearly visible. Thereby we do not find any evidence that net 

managers have been prioritizing densely populated areas over rural areas, since many areas in Gouda, 

The Hague, Arnhem, Leeuwarden and several other large cities still await a smart meter implementation 

on large scale. When we further specify the criteria to the treatment group in our sample, we obtain the 

same conclusion. In Figure 7, we visualize the random assignment of treatment by means of blue dots 

to indicate the exact location of the 191 treatment areas. Since Enexis, Liander and Stedin do not serve 

the Zeeland province, we do not find any observations there. 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, if the treatment has been assigned randomly to postal code areas, why then is the percentage 

of district heating connections persistently higher in treated areas? To understand the reason behind this 

phenomenon we first note that, in the Netherlands, the use of a district heating infrastructure is not only 

FIGURE 7 - Spread in Smart Meter Connections across the Netherlands 
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limited to cities or city agglomerates. In 2016, a total of 356 postal code areas across the entire 

Netherlands utilized this source of energy, of which 81 areas comprised small cities and even villages. 

However, when we consider areas in which more than half of all connections make use of city heating, 

it becomes clear that 72 % of these areas are located in central provinces Utrecht and Flevoland, and 

western provinces Noord- and Zuid-Holland. Hence, city heating is strongly represented in the central-

western region relative to the other parts of the Netherlands. This fact may cause the problem we want 

to understand, since Figure 7 clearly shows that there are several – clusters of – treatment areas located 

in those four provinces.  

 As we showed in Figure 1, both Liander and Stedin serve this central-western region. And exactly 

these two net managers account for the imbalance between the groups. After we categorize treatment 

and control group by net manager, we find that the average district heating percentage is twenty percent 

point higher in the treated areas served by these two net managers. Straightforwardly, because the 

treatment group contains 22 areas located in the central-western provinces and in which more than half 

of the connections utilize district heating. Since our entire sample contains only 53 areas – 42 treatment 

against 11 control areas – where the district heating percentage is larger than zero, it is easy to see that 

observations from this part of the country strongly influence the difference between the two groups. 

Conversely, the ten treatment and control areas served by Enexis show a slightly imbalanced district 

heating percentage in favor of the control group – 6.7 % versus 10.5 %, respectively.  

 

TABLE 2  

Number of Treated District Heating Areas per Year 

 

 

 

 

 

  

 

To see whether Stedin and Liander prioritized the implementation of smart meters in areas where the 

majority of connections includes a district heating connection, we compare the number of such areas 

that received treatment over time. In 2016, Stedin only treated four of such areas, which equals just 14 

% of their total treatments of that year. Clearly, these four treatments do not stand out from the number 

of district heating areas treated by Stedin in other years. Table 2 compares the number of areas in our 

entire dataset in which the percentage of district heating connections exceeds 50 % and in which a large- 

 
1 Areas in which the majority of addresses have a district heating connection, but where no major hike in smart 

meter implementation occurred – i.e. 3.8 % yearly average implementation, and less than 50 % smart meters by 

the end of 2018.  

 2015 2016 2017 2018 Untreated 1 

Enexis   2 2 2 0 4 

Liander   1 24 1 1 4 

Stedin   7 4 2 0 2 
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scale implementation of smart meters – i.e. more than fifty percent point – occurred within a specific 

year over our time period. Hence, based on observations in other years, we can confidently claim that 

Stedin did not prioritize areas where district heating is strongly present. For Liander, however, we 

cannot make such an inference. Obviously, the number of 24 district heating areas in 2016 shows how 

Liander prioritized areas with a large share of district heating connections over areas in which gas 

connections are more common. Unfortunately, our treatment group includes twenty of those areas, most 

of them clustered around the cities of Alkmaar, Almere and Purmerend. What disturbs the balance 

between our treatment and control group even more is the fact that, in these areas served by Liander, 

the average proportion of district heating connections equals 95.7 %. Hence, not all three net managers 

have been randomly placing the smart meters on a large scale, which partly violates the policy 

exogeneity. In the next section, we show how we solve this correlation issue.  

 

4.4  –  Regression Analysis 

In Figure 6 we can already observe that the treatment hardly affected the average energy consumption 

in the treatment group. After 2016, both lines seem to continue their identical trends, which may indicate 

that the smart meter implementation did not have an effect at all. Table 3 summarizes the levels and 

changes in average consumption of electricity per connection within both the treatment and control 

group. The data in the first column represents the average consumption per connection for areas in the 

control group, and the data in the second column represent those for the treated areas. In addition, before 

refers to average energy consumption over the years prior to the implementation, and after refers to the 

consumption over the years 2017 and 2018. The third row of the table presents the differences between 

the treatment and control group, both before and after the treatment. This allows us to make a basic 

estimation of the treatment effect, simply by subtracting the average decline in consumption in the 

control group from the average decline in the treatment group (e.g. Angrist & Pischke, 2014; Card & 

Krueger, 1994). The relative decrease in average energy consumption is thus equal to 20.79 kWh, which 

is not significant.  

TABLE 3 

 Average Energy Use per Connection, Before and After the Smart Meter Implementation 

  (I)  (II)  (III) 

 
 Control  Treatment  Difference 

1. Before 4267,80  4246,39  -21,41 

2. After 3993,76  3951,56  -42,20 

3. Change in avg.   

    consumption 
-274,04 

 
-294,83 

 
-20,79 

  
 

Moreover, is this effect entirely attributable to the large-scale implementation of smart meters? To see 

whether there is an actual decrease, we now continue to empirically test the effect of the implementation 
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on the average consumption of electricity. Table 4 presents the results of the difference-in-difference 

analysis. In order to accurately test the hypothesis, we first run a baseline specification with only the 

treatment dummy, together with the year- and area fixed effects. The resulting estimate is slightly lower 

compared to the basic exploration of the first estimation model in Table 3 and shows a weak 

significance. This inconsistency between the two estimates emerges because we cluster the observations 

on area- instead of group level. Moreover, it may also expose a bias in our simple comparison of 

averages that causes an underestimation of the true effect. As explained, we expect that the dissimilarity 

in district heating connections between the treatment and control group causes this bias. To discover 

the magnitude of the correlation, we add only the district heating percentage to the basic exploration. 

The resulting estimation of the treatment effect in the second model decreases by almost fifteen percent, 

which is a clear indication of a correlation between the two variables.  

 Therefore, our more extensive models all include the district heating percentage on postal code level. 

In addition, we add the average living space and the eight categories for the year of construction as 

additional control variables. Although these variables do not significantly differ between the groups on 

average, we include the former because of the large difference in standard deviations, and the 

construction categories based on the findings of Aksoezen et al. (2015). First, we run a regression with 

the control variables in which we exclude the treatment dummy (Column III). Subsequently, we include 

the dummy as well, and compare the outcomes of the estimators between the second, third and fourth 

model. Again, the correlation between the district heating estimator and the treatment effect is clearly 

visible. After leaving out the treatment dummy in the third model, the district heating estimator 

decreases considerably as a result. More important, however, is the fact that the treatment estimation is 

almost equal in the second and fourth model. Another interesting finding is that the estimators of the 

control variables displayed in Columns III and IV hardly differ. More important, however, is the fact 

that the treatment estimation is almost equal in the second and fourth model. These two findings provide 

clear evidence that there is no correlation between the estimated treatment effect and the other control 

variables.  

 What remains is the correlation between district heating and the smart meter implementation. To 

solve this correlation bias, we add an interaction term between the treatment variable and the district 

heating percentage (e.g. Bun & Harrison, 2019). In this way we allow for pre-treatment differences in 

district heating across particular areas within the treatment group. Column V in Table 4 shows the 

estimation results of this interaction model. The estimator for district heating is now almost the same 

as the estimate that results from the control regression (Column III), which indicates that the interaction 

adequately resolves the correlation. Moreover, compared to the third model, the interaction term 

attributes an additional increase to the treatment effect. 
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TABLE 4  

Estimation Results of the various Difference-in-Difference Models 

 (I)  (II)  (III)  (IV)  (V) (VI) 

Treatment -29.8* 
 

-34.204**  
  

-35.609** 
 

-39.877** -41.646** 

 (17.438)  (17.407)    (17.091)  (19.484) (19.250) 

 
          

District Heating   187.450**   155.067**  170.498***  159.350** 134.591*** 

 
     (64.366)   (61.044)   (62.677)  (65.961) (66.383)  

Avg. Living Space           

 -  SDU's       -0.978**  -1.053**  -1.046** -0.964** 

 
    (0.420)    (0.442)  (0.442) (0.432)  

 -  MDU's       1.057**  1.053*  1.037* 0.942* 

 
    (0.516)   (0.558)  (0.559) (0.541)  

Constant   3,626.3*** 
 

3631.857***     5,025.7*** 
 

  5,002.935*** 
 

4,994.466*** 4,516.641*** 

 (9.187)    (9.428)   (546.520)  (581.956)     (568.602)       (59.167)  

 
          

Net Manager No  No  Yes  Yes  Yes Yes 

Construction categories No  No  Yes  Yes  Yes Yes 

Time Fixed Effects Yes  Yes  Yes  Yes  Yes Yes 

Area Fixed Effects Yes  Yes  Yes  Yes  Yes Yes 

Interaction term No  No  No  No  Yes Yes 

 
          

Observations 2,424 
 

2,424  2,424 
 

2,424 
 

2,424 2,304 

R2 0.991  0.991  0.991  0.991  0.991 0.991 

Notes: * denotes significance at the 10 % level; ** significant at the 5 % level; *** significant at the 1 % level. The 

denoted estimators are measured in terms of kWh electricity use. Robust standard errors clustered by postal code 

area (404 clusters) and reported in parentheses. Net Manager is a categorical variable that indicates which manager 

serves the postal code area.  

 

 

 Two findings enhance the credibility of this final regression. First, we run the fourth model again, 

but thereby excluding the twenty prioritized areas in which the district heating percentage equals 95.7% 

on average. Column VI depicts the result of this supplementary regression. Clearly visible is the same 

shift in effects – which we already observed in Column V – between the treatment dummy and the 

district heating variable. Second, adding any other control variable in the fifth model hardly affects the 

treatment effect estimation. This is consistent with our expectations based on Table 1 which shows that 

there are no major differences on average between the treatment and control group. Hence, we can con- 

fidently state that there are no other correlations that could bias the results. The results of this final 

regression show that we cannot reject our main hypothesis that the smart meter implementation on large 

scale reduces the yearly average electricity consumption (P = 0.041). More specific, if a net manager 

equips the majority of all small-scale connections within an area with a smart meter, the yearly 

electricity consumption for a small-scale user in that area decreases by 39.9 kWh on average.  
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 Note that the explanatory power for all models is extremely high (R2 = 0.991), because we added 

the fixed effect dummies for each individual postal code. In this way, our specification captures all 

unobservable time-invariant effects for each specific area. This implicitly means that we run a specific 

regression for each postal code area instead of estimating one, generic regression for all observations in 

one of the two groups. Clearly, this specification is a better fit to the data, thereby leading to much 

smaller residuals (Angrist & Pischke, 2014). If we include a group dummy instead of the area fixed 

effects, the R-squared value equals a more moderate 0.301 in the fourth model.  

 

4.5  –  Robustness Check 

In this final section of our analysis, we conduct a robustness check to examine the validity of our 

estimation (Khandker, Koolwal, & Samad, 2009). We do so by running a panel regression on the same 

observations, but now with the smart meter percentage as the independent variable. Hence, we now 

estimate the effect of an increase in the proportion of smart meter connections instead of the effect of a 

binary treatment variable. This robustness check validates our main finding if we find a negative 

association between the smart meter percentage and the average electricity consumption. We estimate 

the relationship between electricity consumption and the smart meter percentage for the entire sample 

only – instead of two regressions for the treatment and control group separately. We do so, since the 

lack of district heating areas in the control group causes a strong bias in the district heating estimate and 

the interaction term. Appendix E displays the results of the fixed effects regression. As we already 

mentioned in the previous chapter, we are not able to include several important variables in this 

regression, which implies that an absolute interpretation is not appropriate. However, this model still 

provides valuable information, since it gives a weak indication of a small and negative correlation 

between the proportion of smart meters and the average electricity consumption.  
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5  –  Discussion 

This chapter presents an elaborate discussion on the empirical results we presented in Section 4.4. We 

thereby start with an interpretation of the results in the first section. After that, we discuss the 

implications that follow from our findings, and derive a recommendation for the Dutch government. 

We end this chapter by considering the limitations of our research and suggesting some possibilities for 

future research.   

 

5.1  –  Interpretation of the Results 

We started our empirical analysis by asking what the effect of a large-scale implementation of smart 

meters on the average electricity consumption has been. Thereby we mentioned prior research that 

showed how a smart meter device could help to reduce the energy consumption of households. The 

mechanism that effectuates this reduction, is providing energy consumption feedback to the users. To 

see whether this mechanism also holds within the context of a large-scale implementation of smart 

meters, we employed a dataset containing cross-sectional observations on almost all four-digit postal 

code areas within the Netherlands over a time period from 2013 until 2018. Based on the information 

this dataset provides, we discovered that in areas where such an implementation took place, small-scale 

users in these areas subsequently reduced their yearly electricity consumption with 39.9 kWh on 

average. It is important to notice that we have to interpret this finding carefully, because the dataset 

reports the measure of electricity consumption as the average per-connection consumption for all 

connections within a postal code area. Hence, we must not presume that the implementation of smart 

meters reduces the electricity consumption for each individual user, simply because not all connections 

within a treated postal code area received a smart meter. Consequently, the true effect for an individual 

user who received a smart meter might be even stronger.  

 Why is this finding so important then? To have a correct understanding, we have to bring in mind 

the intention of the policy to equip at least 80 % of all connections with a smart meter. The government 

estimated that, if this intention has been accomplished, a reduction in small-scale electricity 

consumption by 3.2 % could be realizable. From our selected sample emerges that the average 

proportion of smart meter connections in the treated areas increased to more than 80 % on average as a 

result of the implementation efforts. The effect we found is thus useful in evaluating whether the 

implementation efforts had the desired effect. Straightforwardly, we can compare the measured 

reduction of 39.9 kWh with the pre-treatment average electricity consumption of 4,137.9 kWh in the 

treatment group, which implies a treatment effect of -0.96 %. Thus, to summarize, we cannot conclude 

that placing a smart meter device – and consequently informing the user – reduces the electricity 

consumption of this user by 39.9 kWh. What we can conclude, however, is that the implementation 

policy helped to reduce the average electricity consumption of an average small-scale user by almost 

one percent, which is a much weaker effect than expected.  
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5.2  –  Implications and Recommendations 

We can derive some meaningful academic and practical implications from this study. First, the fact that 

providing bi-monthly consumption feedback leads users to reduce their energy consumption serves as 

a validation of prior research. However, the measured reduction of 0.96 % is much weaker than the 

estimated effects that emerge from previous researches. As discussed in Section 2.3, these studies have 

mostly been based on experimental settings and have all been carried out on a smaller scale compared 

to our study. As a result, the true effect of a large-scale implementation is much weaker than expected, 

since the expectations of Van Gerwen et al. (2010) and the Dutch government have been based on 

estimated effects in experimental settings. 

 Three reasons explain why the measured effect does not match these expectations. First of all, people 

are known to behave differently in experimental settings – called the Hawthorne effect (Franke & Kaul, 

1978; Mayo, 2004). In other words, people are more likely to behave according to the expectations 

when they are involved in an experiment, whereas this willingness disappears in the context of the entire 

society. Second, and related to the first reason, not all users may be interested in the received feedback. 

For example, users do not take the time to read the indicative overview of user cost, do not understand 

what the overview says, or are simply not willing to change their consumption behavior for many 

reasons. The third reason why the measured effect does not match the estimations from experimental 

settings is because the latter measurements have been based on a binary condition: treated users receive 

a smart meter, whereas untreated users do not have a smart meter. However, the implementation efforts 

in our study are not binary in nature, since our unit of observations are the postal code areas in which 

the smart meter measure is a percentage of the total connections within that area. We thereby selected 

the areas with an increase of at least fifty percent point in the percentage of smart meters, which 

obviously lessens the strength of the treatment compared to the binary smart meter status in 

experimental settings. Moreover, the smart meter measure in the control areas is not equal to zero either. 

As a result, many users do not comply – unintentionally – to the treatment status of the area in which 

they live or work (Angrist, Imbens, & Rubin, 1996).  

 

Hence, in practice, it turns out that the effect of equipping small-scale users with smart meters is lower 

when implemented on a large scale. We can therefore derive a meaningful practical implication as well. 

Since the energy savings attainable from this type of information provision is only 0.96 % on average, 

the Dutch economic assessment of the smart meter implementation has been too optimistic. Other 

Member States of the European Union should therefore be cautious not to overestimate the benefits of 

a countrywide installation of smart meters. Furthermore, when thinking one step ahead, we can also 

derive a recommendation for the Dutch government in particular. As we described in the second chapter, 

the government justified the smart meter implementation policy primarily because of the expected 

reduction in energy consumption that smart meters facilitate (Van Gerwen et al., 2010; De Lange, 2018; 

RVO, 2018). However, by emphasizing the importance of reducing the consumption of electricity, the 
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implementation policy reveals a major discrepancy in the government’s intentions to actually reduce 

the total electricity use in the Netherlands. The cause of this discrepancy is the fact that small-scale 

electricity use comprises only 20 % of the total electricity use in the Netherlands (Hieminga, 2013). 

Now, illogically, net managers have spent an estimated € 3.3 billion (Kamp, 2014) – which will mostly 

be paid by the consumers in the long run – to realize a very optimistic reduction of 3.2 % that only 

applies to just 20 % of the total electricity use. Consequently, if reducing electricity use is such an 

important objective for the Dutch government, why did it not implement reduction measures that apply 

to the large-scale business users responsible for the other 80 % of the total electricity use? The Dutch 

government should therefore put a stronger focus on the large-scale business users in their efforts to 

effectively reduce the consumption of electricity in the future. 

 

5.3  –  Limitations and Future Research 

In Chapter 2 and Appendix A, we showed that the indicative overview of user cost has been 

standardized according to the Dutch Smart Meter Requirements. Consequently, in our analysis, we more 

or less assumed that the feedback provided to small-scale electricity users entailed homogenous 

information. However, there may still be heterogeneity in the type and frequency of the provided 

feedback for individual users. We already mentioned the fact that some users switched off their smart 

meter device. In addition, we did not take into account the users who received direct feedback from an 

In-Home Display. Although the percentage of all small-scale users with an In-Home Display was only 

equal to 4 % in 2018 (RVO, 2018), it still resulted in different types of feedback on electricity use that 

we could not control for. This heterogeneity in feedback is the first limitation of our analysis, since it 

could have influenced the measured effect on the average electricity use. The second limitation is that 

we have not been able to distinguish between the different types of users and their individual behavioral 

characteristics. As a result, we could only estimate a general treatment effect, without discovering any 

heterogeneity in the effect of indirect feedback among individual users. 

     Based on these limitations, we derive some suggestions for future research. First of all, it can be 

useful to gather additional data regarding the sources of feedback within each postal code area, and 

subsequently investigate the effectiveness of indirect feedback in the presence of direct feedback. In 

addition, it may be interesting to study other sources of heterogeneity as well. For example, to 

investigate whether the estimated effects vary across different cities or provinces. Or alternatively, 

whether different types of small-scale users respond differently to feedback on electricity use, and what 

behavioral characteristics cause these different reactions. Investigating these possible relationships 

provides better insight in the effectiveness of feedback on electricity use, which may help to improve 

the distribution of feedback in the future. Second, adding observations on the variables over 2019 can 

further enhance our analysis, since it offers the possibility to select treatment areas over different years. 

However, this in turn complicates the control group selection; a more sophisticated method called 

Matching (e.g. Khandker, S.R.; Koolwal, G.B.; Samad, 2009) facilitates this selection procedure. A 
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final suggestion is to investigate whether the described effect of a large-scale implementation persists 

in the long run as well.   

6  –  Conclusion 

Both in our study and in earlier research, it appears that the provision of feedback can significantly 

contribute to reductions in electricity use. In theory, regularly confronting consumers with their 

electricity use creates better awareness, which subsequently activates consumers to reduce their 

electricity use. In addition, previous literature described several factors that determine the effectiveness 

of this feedback mechanism, such as the type of feedback and the differences in feedback strategies.  

In this master thesis, we studied the effectiveness of providing indirect feedback to small-scale users 

in the Netherlands. Each small-scale user who has been equipped with a smart meter connection 

received this feedback through a bi-monthly indicative overview of user cost. In order to utilize this 

feedback mechanism, the Dutch government enacted that at least 80 % of all small-scale electricity 

users should be equipped with a smart meter connection by the end of 2020. The government’s primary 

justification for this implementation policy has been an estimated 3.2 % decline in the aggregate small-

scale electricity use. In our analysis, we empirically verified the accuracy of this estimation through 

using a dataset that contains observations on the average electricity use per connection within a postal 

code area. From this dataset, we selected a total of 404 areas that showed very similar characteristics 

over time, apart from their percentage of smart meter connections. In 191 postal code areas, a large-

scale implementation of smart meters took place in 2016, hence leading to an 80 % smart meter 

connection average within these areas. In the other 213 areas, no such implementation occurred over 

time. After selecting these two groups, we used several difference-in-difference estimations to calculate 

the effect of the large-scale implementation of smart meters in terms of the average electricity use. 

Interestingly, the measured reduction equaled 0.96 %, which is much lower than the expected reduction 

of 3.2 %. Hence, the policy has not been very effective in reducing the small-scale use of electricity in 

the Netherlands.  
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Appendix A – Example of an Indicative Overview of User Cost 

 

 

 

Explanation: the left-hand side of the overview contains the bi-monthly feedback on the electricity use  

1. Electricity use over the past period, including the estimated user cost;  

2. Normative comparison with the average consumption of a comparable user living in the same 

type of residency; 

3. Historic comparison with the electricity use in previously recorded periods; 

4. Comparison for dummies: you have done well.  
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Appendix B - Yearly Distribution in the Observations on Average Electricity Use 
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Appendix C – Yearly Distributions in the Percentage of Smart Meters per Postal Code Area 

The values on the X-axis denote the proportion of smart meter connections within a postal code, the values on the 

Y-axis denote the frequency of observations for that particular proportion. 
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Appendix D  –  Distribution of Observations: Before vs After adapting the Sample. 
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Appendix E – Robustness Check 

 

TABLE  5 

Estimation Results of the Fixed Effects Model 

Connections  
  -  Smart Meter (%) - 38.237 

  -  Avg. Delivery (%) 1,188.353** 

  -  Low Tariff Connections (%) - 135.111 

  -  District Heating (%) 15.196 

  -  Gas Consumption (m3)    0.316** 
  

Population 
 

  -  Male (%)  - 2,523.895 

  -  Dutch (%)  - 284.538 

  -  Active (%)    529.028 
  

Households  

  -  Household Size   305.631 

  -  Rental (%) - 251.000 

  -  MDUs (%)    593.729* 

  -  Avg. Income (€ 1,000)    10.643 
  

Avg. Living Space  

  -  SDU's (m2)   - 1.272* 

  -  MDU's (m2)     1.616* 
  

Other  
  -  Charging Stations   - 1.586* 

  -  EV's Registered   - 0.299 

  -  Density     0.009 

  -  Businesses     0.096 
  

Interaction   40.605 

Net Manager  Yes 

Age Categories  Yes 

Construction categories  Yes 

Energy Labels 

Area Fixed Effects 

 Yes 

Yes 

Time Fixed Effects  Yes 

Observations 2,002 

R2 0.362 

  

Notes: * denotes significance at the 10 % level; ** significant at the 5 % level; *** significant at the 1 % level. 

Robust standard errors clustered by postal code area (339 clusters) are included in the analysis, but not dis-

played in this Table. 

 


