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Controlling and Mitigating Biases with Adversarial Ensemble-based Methods

by Nicholas SMEELE

Machine learning has become an integral part of society and business. Although
powerful, well-trained models can, even in the absence of intent, reflect and accen-
tuate harmful biases that are present in the training data. This thesis presents an
adversarial ensemble-based framework for mitigating unintended biases while con-
trolling for acceptable discrimination through admissible information. The input to
the network is segregated into two model components, here Mitigation Expert (ME)
and Control Expert (CE), and ensembled into the main task predictor. By introduc-
ing an adversarial game between the predictor and adversary, the unintended gen-
der bias is mitigated from ME. The CE, however, uses sample weights to decorrelate
the admissible information from the protected information. This ensures that main
task predictions and protected information are conditionally independent given the
allowable information to discriminate against.

Applied to a classification task using the Amazon Product Review Dataset, this
method results in a predictive model that does not lose much accuracy. Some fair-
ness measures, however, have not reduced significantly. This is explained as a nega-
tive and unavoidable side-effect of the fairness constraint that equalizes the predic-
tive rates across the gender groups and imbalanced target classes. But, by assessing
the level of discrimination per product category in more detail, the fairness con-
straint is nearly satisfied. Even though there are limitations and open questions that
need to be addressed in future studies to validate the robustness of the method, the
framework seems to be effective in improving fairness in the model.
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1 Introduction

1.1 Machine Learning in Society and Business

Machine Learning (ML) has become an integral part of society, impacting the me-
dia we consume, the stories we read, the people we connect to, the places we visit,
and the ads we see on the Web. Also, organisations are becoming more reliant on ML
since their databases are increasing in size and complexity. Most businesses are min-
ing huge amounts of data about their customers while governments are gathering
data on the public for their policy-making decisions. Among different ML models,
Deep Learning (DL) models have increased in industry usage. Their popularity can
partially be attributed to their state-of-the-art performance in many domains. Al-
though powerful, DL systems are often seen as a ‘black box’ which does not provide
clear insights into how decisions, i.e. predictions, are made on the data. This is prob-
lematic and makes it challenging to analyse whether decisions are made based on
justified, fair reasons. It is therefore of societal and ethical importance to ask whether
algorithmic models might perpetuate existing biases towards particular groups of
people sharing sensitive, or so-called protected, attributes such as race and gender.
Indeed, there is a growing concern that the use of DL and ML in general can lead,
even in the absence of intent, to a lack of fairness. This concern seems to be valid
since harmful biases in society could be reflected and accentuated by such models.

What makes it possible for ML models to capture unintended social biases? One
option is that ML algorithms are trained on historical data for which it can reflect
patterns from the past. Consider algorithmic models that are used for determining
credit rating, helping in hiring decisions, or helping judges to make bail decisions for
criminal defendants. When a company has hired mostly males for engineering po-
sitions or individuals from a demographic minority group continued their criminal
activity after being charged with a crime, the ML model would reflect this pattern.
It can label female applicants as less suitable for the same engineering position or
assign a higher risk of future criminal activity to defendants from the demographic
minority group while they are actually innocent (Chen et al., 2018; Courtland, 2018).
These discriminatory effects result in unfair and unethical outcomes.

Sensitive attributes do not have to be explicitly available. ML advancements have
enabled algorithmic models to learn complex relationships among the data. There-
fore, stereotypical effects can be learned by deriving latent sensitive attributes from
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the database. For instance, in their quest to show relevant ads to users, digital ad-
vertising platforms show a social bias in the delivery of employment and housing
ads related to some demographic groups; even when advertisers cannot add demo-
graphic information in the settings for their campaign (Sapiezynski et al., 2019). This
can occur due to the ad content, such as text, from which the ML algorithm could
derive sensitive attributes (Ali et al., 2018). Moreover, Recommender Systems (RS),
can also suffer from lack of fairness (Mansoury et al., 2019; Edizel et al., 2019). To
resolve rating sparsity and cold-start problem, review-based RS are developed to
incorporate textual information into the user modeling and recommending process
(Jakob et al., 2009; Zheng, Noroozi, and Yu, 2017; Seo et al., 2017). But, this could
expose the system to stereotypical effects which lead to antisocial recommendations.

To mitigate the unfair biases, the source of the sensitive information must be iden-
tified in the ML development lifecycle. This lifecycle can be categorized into three
stages: preprocessing, inprocessing or so-called model building and postprocessing.
Each stage requires a different approach to avoid antisocial predictions. For instance,
the protected attribute can be decorrelated with other features in the learning algo-
rithm instead of omitting the sensitive features from the database in the preprocess-
ing stage; which does not remove the bias entirely. The bias could still be present in a
latent manner. In some cases, however, it might be acceptable to discriminate among
protected groups through the dependency on admissible information. For instance,
in the context of RS, products must be recommended based on interest similarity
and without discriminating among gender. But, when product interests are dissimi-
lar, it can be viewed as admissible to recommend different products to each gender
group. More specifically, it can be reasoned that gender groups that are interested in
products from similar categories should be treated similarly; whereas discrimination
between the groups with dissimilar interest is considered to be reasonably fair. Thus,
the admissible discrimination could ensure that review-based RS are reasonably fair
in the predictive outcomes while maintaining as much information as possible.

Even though it requires policymakers, scientists and practitioners to consider com-
plicated ethical questions, it is important to understand the variety of situations in
which antisocial biases can manifest, what socially acceptable reasons are to vary
among protected groups, and how ethical systems can be designed. Therefore, it is
essential to design a robust debiasing framework such that unintended biases can
be controlled and mitigated. This thesis proposes an adversarial debiasing frame-
work based on DL methods and focuses on unintended gender biases in product
rating predictions. Based on customer reviews and structured data, the framework
aims to maintain fairness in the predicted product rating across gender groups while
allowing acceptable discrimination through admissible information.
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1.2 Research Question and Overview

In Section 2, the basic concepts of DL are addressed, the term ‘Fairness’ and the
Fairness constraints are defined. This to ensure that the reader is familiar with the
terminology used in this work and understands the basic mechanisms behind neural
networks. Moreover, this Section describes the possible sources of biases from the
perspective of the ML development lifecycle.

In the remainder of this work, the adversarial debiasing framework is discussed and
validated based on an experiment. There are three sets of research questions that are
addressed throughout this paper. The research questions are formulated as follows:

Research Question 1

What adversarial debiasing approaches do exist and are
effective to control and mitigate unintended biases in deep
learning models?

Section 3 discusses two adversarial methods from recent developments in DL. The
first method focuses on mitigating the protected information from hidden repre-
sentations in the model. The second method, on the other hand, addresses the ad-
versarial setup from the generated predictions to improve fairness. However, both
methods are capable of making the model oblivious from the protected information.

Research Questions 2

How can the adversarial learning method be adjusted to
debias hidden representations while allowing acceptable
discrimination through admissible features?

Section 4 addresses the proposed debiasing method, an adversarial ensemble-based
approach to control and mitigate unintended biases. To allow the predictions to dis-
criminate across protected groups only through admissible information, an ensem-
ble of expert model components must be designed. More specifically, each expert
model takes different input features such that the adversarial debiasing procedure
can be applied in a segregated manner. First, the extended adversarial learning algo-
rithm is discussed and theoretically proved. Afterwards, an extended backpropaga-
tion weight update-rule is suggested to improve the effectiveness of the framework.
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Research Question 3

To what extent can the adversarial ensemble-based method
control and mitigate unintended gender biases in product
reviews such that rating predictions and gender informa-
tion are conditional independent given the product cate-
gories?

Section 5 discusses the experiment, model architecture used to implement the adver-
sarial debiasing method and results.1 First, the database that is used for the exper-
iment is addressed and explored. Afterwards, the created model architecture and
evaluation metrics are addressed in more detail. Then, the experiment is performed.
The adversarial ensemble-based model is compared against a biased baseline model
for which an extensive analysis of the results is conducted. Finally, in Section 6, the
thesis is concluded and suggestions for future research is presented.

1The code is available in: https://github.com/nvrsmeele/adversarial_debias

https://github.com/nvrsmeele/adversarial_debias
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2 Background

This thesis starts with an introduction into Deep Learning (DL) and Fairness con-
cepts to ensure familiarity with the terminologies and mechanisms used in this work.
Section 2.1 introduces the basic concepts of neural networks. Section 2.2 defines the
term Fairness and the different perspectives of the term. Section 2.3 addresses the
measurements used to assess whether algorithmic models are generating fair pre-
dictions. Finally, Section 2.4 discusses the possible sources of antisocial biases from
the perspective of the ML development lifecycle.

2.1 Basic Concepts of Neural Networks

The objective of this thesis is to propose a debiasing framework based on DL meth-
ods to control and mitigate unintended biases. But, what is DL? In essence, a DL
system trains itself to process and learn from data through an artificial neural net-
work. The artificial neural network (NN) resembles the functioning of the human
brain which is made up of interconnected neurons. This ensures that the network
can learn and make decisions in a more human-like manner (Russell and Norvig,
2009). Like the human brain, a NN is a composed network of interconnected nodes,
so-called perceptrons. According to (Rosenblatt, 1958), perceptrons are computational
units that map some set of input values m to an output value as follows:

φ(θ0 +
m

∑
i=1

θixi) (2.1)

Where xi is i-th input value, φ is the activation function that transforms the input into
the output representation, θ0 is a constant value or so-called bias term and θi is the
associated link with its weight between connected perceptrons. More specifically,
the perceptron computes a weighted sum of the input representation as ∑m

i=1 θixi,
adds a constant bias term to provide more flexibility and better generalization into
the node, and transforms the weighted sum into the output representation by using
a (non-)linear activation function (Russell and Norvig, 2009). The node’s output rep-
resentation, however, can be used to feed into a subsequent perceptron for further
transformations. It can also be considered as the definite output representation. In
this context, the weights Θ are the only trainable variables for each node.
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Having defined the computational model for perceptrons, the concept can be ex-
tended to form an interconnected network of such nodes. In the most simplistic
form, a NN can have three layers of nodes: (i) input layer that takes the raw input
values and does not apply any computations, (ii) hidden layer to transform the values
taken from the input layer into the output values or so-called activation values, and
(iii) output layer that computes the actual output representation based on the activa-
tion values. This simplistic network is a so-called feed-forward network (Goodfellow,
Bengio, and Courville, 2016). It connects layers and nodes only in one direction
where each node receives input from preceding nodes and generates output values
for subsequent nodes. It is important to note that more complex architectures ex-
ist where recurrent networks are discussed in Section 4. For now, the objective is to
ensure familiarity with the most basic concepts of the method.

Consider again the simplistic feed-forward network. Each layer can have a different
number of nodes. The input layer, in most cases, has the same number of nodes as
the number of input values; where each input node takes one input value (Russell and
Norvig, 2009). The hidden layer uses the perceptron’s computational unit and may
vary in the number of nodes. These are often referred to as hidden nodes. In practice,
the number of hidden nodes used in this layer are seen as a tuneable hyperparameter.
More specifically, increasing or decreasing the number of hidden nodes affects the
network’s flexibility where the most optimal number of nodes can be determined by
trial-and-error to obtain the best, generalizable performance (Russell and Norvig,
2009). The number of nodes in the output layer, however, depends on the type of
problem at hand. For classification problems, this layer can have as many nodes as
the number of target classes. This is also known as multi-class classification where it
uses a softmax activation function to compute the predicted probabilities per class.
When the network is used to solve a binary classification task, the layer has one node
with a sigmoidal activation function. For regression tasks, the output layer only
needs one node and uses a linear activation function to generate predictive outcomes
(Hastie, Tibshirani, and Friedman, 2017). Thus, a single-layer network with only an
input and output layer can be used to represent linearly separable functions. A
multi-layered network or so-call deep networks, on the other hand, with one or more
hidden layers are more complex and can be used to map non-linear, convex regions
for high-dimensional representations (Russell and Norvig, 2009).

The power behind NN is that it can learn complex, non-linear representations in the
given data which, in some cases, outperforms traditional machine learning meth-
ods. But, how can these powerful networks be trained? To train a network, the set of
weights Θ are updated continuously such that a loss function, or so-called cost func-
tion, is minimized. Thus, the differences between the ground-truth and predicted
target values must be small. The general notation of a loss function can be given as:
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L(Θ) =
1
N

N

∑
i=1

l( f (xi, Θ), yi) (2.2)

Where f (xi, Θ) is the NNs computational notation to transform the input represen-
tation vector xi for i-th data observation into the output value based on the set of
weights Θ in the network (Goodfellow, Bengio, and Courville, 2016). Moreover, yi

is the ground-truth target value and l represents the loss function. Thus, the overall
loss L(Θ) is derived by taking the average over the combined loss values for each
i-th example. There are different types of loss functions where the selection depends
on the type of problem at hand. For instance, when having a classification tasks, the
cross-entropy function is generally used. For regression tasks, the squared error loss
function is usually used in practice (Goodfellow, Bengio, and Courville, 2016).

To obtain the optimal set of weights Θ, an optimization method is used which utilizes
the backpropagation algorithm (Russell and Norvig, 2009). Algorithm 1 describes the
backpropagation concept according to (Rumelhart, Hinton, and Williams, 1986). At
first, the weights are randomly initialized after which the training data is repeat-
edly passed into the network to obtain the predicted target values. This is known as
forward propagation or forward pass. Then, the loss value is derived for each observa-
tion such that the cost can be propagated backwards to compute the weight update
direction. The updated weights are determined by taking the gradients of the loss
with respect to the weights in the output layer. By iterating backwards through the
network, the gradients for every weight is derived from the latter layer via the chain
rule. This procedure is repeated until the entire training data went through the sys-
tem which is referred to as a training step or epoch. The training step is also repeated
multiple times until the model achieves the most optimal prediction performance,
i.e. converges at some optimum point, or some other stopping criterion is satisfied.

Algorithm 1: Backpropagation Pseudocode

Initialize network weights (W) with small random values;
for each training example xi do

predictioni = Forward Pass(xi, W);
errori = Loss(predictioni, true labeli);
for each layer (j) do

compute all ∂errori
∂Wj

;

update network weights W ←W − η ∂errori
∂Wj

;

end

end
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Algorithm 1 shows the backpropagation algorithm which updates weights per train-
ing example. This is known as stochastic gradient descent (SGD). However, this ap-
proach takes time to achieve one training step for large datasets and the loss de-
creases with fluctuations overtime (Goodfellow, Bengio, and Courville, 2016). An-
other approach that can be used is batch gradient descent (BGD) which takes all train-
ing data into consideration to achieve one training step (Goodfellow, Bengio, and
Courville, 2016). This considers the average gradient of all training observations
and uses the mean gradient to update the weights. The advantage of BGD is that it
smoothens the loss over the epochs and moves somewhat directly towards an opti-
mum solution. A disadvantage is that it requires more computational power com-
pared to SGD since all training examples must pass through the system before the
weights are updated (Goodfellow, Bengio, and Courville, 2016). To leverage both ap-
proaches and their advantages, mini-batch gradient descent (MGD) can be used. This
uses a batch of fixed number of training observations which is less than the entire
training database. Afterwards, the algorithm runs each mini-batch through the sys-
tem and updates the weights accordingly (Goodfellow, Bengio, and Courville, 2016).

Moreover, the backpropagation method uses some optimization method to update
weights. There are multiple types of techniques that can be used to effectively up-
date weights. However, the general formula for the weight update-rule is:

Θt ← Θt−1 − η
∂L(Θt−1)

∂Θt−1
(2.3)

Where Θt are the newly updated weights at training step t, Θt−1 are the weights
from the previous training step that are being updated, η is the learning rate that de-
termines the step size at each weight update iteration and ∂L(Θt−1)

∂Θt−1
is the gradient of

the loss with respect to the weights (Goodfellow, Bengio, and Courville, 2016). The
learning rate is often seen as a tuneable hyperparameter since it can affect the learn-
ing speed as well as overall performance of the network. There are two categories of
optimization methods: (i) methods with fixed learning rate such as stochastic gradient
descent and (mini-)batch gradient descent (Goodfellow, Bengio, and Courville, 2016),
and (ii) methods with adaptive learning rate schedules such as Adam (Kingma and
Ba, 2015) and RMSProp (Hinton, 2012). Instead of using the fixed learning rate, the
adaptive learning rate methods adjust the learning rate throughout the training pro-
cedure in response to the current performance of the model at each training step.
These methods utilizes (mini-)batch gradient descent approaches to improve their
efficiency. Some studies have shown that the Adam method avoids local minima and
saddle points, and converges fast without the requirement to tune many parameters
compared to other methods (Kingma and Ba, 2015; Ruder, 2016). This is achieved
due to the weight update-rule that uses adaptive learning rates. More specifically,
this method adjusts the learning rate at each training step by considering the results
of the weight updates in the preceding training step (Kingma and Ba, 2015).
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This thesis proposes a debiasing framework based on NNs. More specifically, it
utilizes deep, interconnected networks for which it is essential to be familiar with
the basic concepts and terminology used in this Section. Moreover, it is important
to note that this work focuses on fairness in classification tasks and uses the terms
neural networks and deep learning interchangeably without making any distinction
between the simplistic perceptron network or a deep, multi-layered model.

2.2 Defining Fairness

Most traditional Machine Learning (ML) models are trained to process and learn
from data in a transparent manner. DL, however, trains itself given the boundaries
via the network’s architecture. It transforms the input representation via computa-
tional units into an output representation as discussed in Section 2.1. These mod-
els are, therefore, not directly transparent in how predicted decisions are made for
which it is referred to as a ‘black box’. This can be problematic and challenging.
As these systems often impact groups of individuals and society, it could generate
unfair outcomes in a non-transparent manner. To determine what fairness and dis-
crimination is, it becomes even a more difficult challenge. These concepts are already
complicated since it requires critical questions about social and ethical aspects. A
good starting point is to connect discrimination in ML to existing legal frameworks.
Many countries have anti-discrimination laws to avoid unfair treatments based on
on so-called protected or sensitive attributes such as age, gender and race (Zafar et al.,
2017). In general, these regulations evaluate fairness based on two notions:

Disparate Treatment These are decisions that are explicitly based on sensitive infor-
mation about individuals (Zafar et al., 2017). DL systems, however, are not designed
and trained to explicitly discriminate on the basis of the protected attributes. Still,
it can produce predictions based on these sensitive information. Section 2.1 have
shown that models are trained by minimizing some loss function which is not con-
strained to act fair. Thus, the optimized cost functions can enable models to generate
unfair predictive outcomes based on the reflection of antisocial patterns in the data.

Disparate Impact These are decisions that unintentionally discriminate against pro-
tected individuals (Zafar et al., 2017). More specifically, if sensitive features are not
explicitly included in the database, the protected information can be derived from
nonsensitive features that may be correlated with the sensitive features (Soundara-
jan and Clausen, 2018). Thus, DL systems can produce discriminatory outcomes
even without the intent to act unfair. This can be referred to as unintended bias.

In the optimal situation, it is desired to have an algorithmic model that does not
involve disparate treatment and disparate impact. However, it is challenging to
simultaneously control for both notions of unfairness. The naïve solution to avoid
disparate treatment is to ensure that the model cannot use the protected attribute.
In practice, though, the protected attributes are often not available due to privacy
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and other regulations (Sapiezynski et al., 2019; Mansoury et al., 2019; Edizel et al.,
2019). This does not necessarily imply that both notions are controlled. As addressed
earlier, the nonsensitive and sensitive features may be correlated which enables the
system to violate the notion of disparate impact (Chen et al., 2019; Chouldechova,
2017). This makes the definition and assessment of fairness more complex.

Most studies on fairness in ML have attempted to simplify the evaluation procedure
by focussing on classification tasks (Dwork et al., 2012; Binns, 2020; Chouldechova
and Roth, 2018). As mentioned, the main challenge for DL systems is to obtain
a well-optimized loss function while avoiding any discriminatory outcome against
protected groups. But, what are the levels on which fairness can be measured? There
are two levels to evaluate fairness:

Group Fairness This addresses fairness from the perspective of generalized groups
such as racial, gender or age groups. More formally, group fairness is the prop-
erty that demographic groups have equalized outcomes across protected and non-
protected groups (Dwork et al., 2012). In statistical terms, however, group fairness
can also be referred to as Demographic Parity or statistical parity. To ensure that group
fairness is maintained, the average correctly predicted outcomes must be equal for
each group. Section 2.3 formalizes the statistical measures in more detail.

Individual Fairness This notion involves constraints on individualistic level rather
than on an averaged group quantity level (Chouldechova and Roth, 2018). (Dwork
et al., 2012) argues that "similar individuals should be treated similarly". Therefore,
to satisfy this notion, a distance measure is often used to determine how similar in-
dividuals are based on features related to the prediction task. More specifically, the
individuals are mapped into a feature space without including the protect feature
after which the distance is measured among the individuals in database. Then, in-
dividuals that have the smallest distance between them are clustered in the same
group. When having new individuals for which a prediction must be generated, the
distance among all clusters and the new individuals are derived after which they are
assigned to the group with the smallest distance value. On this basis, individuals in
the same group are treated more similarly without considering the protected infor-
mation. In some cases, individual fairness can be seen fairer compared to group fair-
ness. Indeed, group fairness ensures that protected and non-protected groups have
equalized outcomes. This could, for example, result in unfair predictions to those
individuals who are more ’qualified’ than the ones who received positive outcomes
to equalize the average correctly prediction rates.

The fairness notions are quite complex and require the consideration of complicated
ethical questions. Since individual fairness require some assumptions about the se-
lected similarity metric and set of features used to cluster individuals, this thesis
focuses on group fairness. This notion is used to control and mitigate unintended
gender bias. The term bias has many definitions in ML. In this work, bias is defined
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as a type that introduces discriminatory patterns in algorithmic models. It is also
important to note that within group fairness more complicated social relationships
can exist such as subgroup fairness or so-called fairness gerrymandering. This suggests
that a model can act fair on each individual group while it violates constraints on
subgroup level (Kearns et al., 2018). For simplicity reasons, however, this thesis con-
siders group fairness and does not analyse the effects on subgroup level.

Example: Why could Statistical Parity be insufficient?

Let gender be the protected attribute where the objective is to not discriminate
among male and female. Suppose the University of Fairness uses an algorith-
mic model to help them decide whom to admit to their MBA-program. The
admission decision is mainly based on GMAT scores with the acceptance
threshold being a score of 600. When the model was created, the training
database contained more male than female applicants as shown in Table 2.1.
Moreover, the male applicants tend to be wealthier for which they can afford
GMAT preparation courses and take multiple tests. The female applicants,
on the other hand, take the test once with less practice and preparation. This
results on average in higher GMAT scores for male applicants. But, it turns
out that both groups have equal chances to succeed in the program.

TABLE 2.1: MBA-applicants at the University of Fairness

Applicant GMAT Score Succeeds

Male 720 Yes
Male 695 Yes
Male 675 Yes
Male 635 No
Male 610 Yes
Male 600 Yes
Male 595 No
Female 575 Yes
Male 560 Yes
Female 545 Yes
Female 520 No
Female 500 No

By using the acceptance threshold of a 600-score, the prediction model makes
exactly three mistakes: one male applicant above the cutoff and one male
and two female applicants below the cutoff. This means that two success-
ful female applicants are falsely rejected whereas only one successful male
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applicant is falsely rejected. In this case, female applicants can complain
and sue the university for being sexists. To avoid such an altercation and
justify for the discrimination, the university’s executive board could decide
between two options: (i) increase the cutoff to 610 which results in another
falsely rejected male applicant, or (ii) decrease the GMAT score cutoff to 575
which correctly accepts a female applicant. Both options equalizes the false
rejection rate among gender groups. But, it worsens the model’s accuracy as
more applicants are being falsely rejected or accepted to the MBA-program.

2.3 Measurements of Demographic Fairness

There are several evaluation criteria that measure different aspects of inequality and
fairness. As addressed in Section 2.2, this thesis is focused on group fairness which
can be assessed through several metrics. However, the two main measures are: (i)
Statistical Parity or so-called Demographic Parity (Zemel et al., 2013) and (ii) Equalized
Odds (Hardt, Price, and Srebro, 2016). To define these metrics, consider the Univer-
sity of Fairness again that uses an algorithmic model to help decide whom to admit
to the MBA-program. The objective is to predict whether an applicant will succeed
in the program. More formally, the goal is to train a binary predictor Ŷ from features
xi based on labeled training data yi while ensuring that each Ŷ is nondiscriminatory
with respect to a protected attribute Z. Moreover, yi = 0 implies failure and yi = 1
represents that the applicant will succeed in the MBA-program where the sensitive
feature Z ∈ (0, 1) is either male or female. The fairness measures can be defined as:

Demographic Parity This metric holds when the prediction Ŷ is independent of the
sensitive feature Z (Hardt, Price, and Srebro, 2016; Zemel et al., 2013). The relation-
ship between the protected feature and predictions should not be correlated. Thus,
this constraint requires that the proportion of each protected group should receive
equal positive outcomes with respect to a target class. In the university’s admis-
sion example, this means that the number of predicted successful male and female
applicants must be equalized. More formally, the constraint can be denoted as:

Pr(Ŷ = y|Z = 0) = Pr(Ŷ = y|Z = 1), y ∈ (0, 1) (2.4)

Equalized Odds This measure holds when predictions Ŷ and protected attribute
Z are conditional independent on the target outcome Y (Hardt, Price, and Srebro,
2016). It allows Ŷ to depend on Z through the actual outcome Y which is not allowed
in the demographic parity constraint. This also considers that each protected group
can be distributed differently in terms of the actual outcome Y. More specifically,
for outcome y = 1, the predictive outcomes Ŷ must have equal true positive rates
across the protected groups Z where it also equalizes the false positive rates for



Chapter 2. Background 13

y = 0 (Hardt, Price, and Srebro, 2016). In the university’s admission example, this
means that male and female applications have equal chance of being correctly and
falsely classified as a candidate that will succeed in the MBA-program. Hence, this
constraint can be formalized as:

Pr(Ŷ = 1|Z = 0, Y = y) = Pr(Ŷ = 1|Z = 1, Y = y), y ∈ (0, 1) (2.5)

Even though both measures are used to assess fairness, these constraints are difficult
to satisfy simultaneously (Dwork et al., 2012; Hardt, Price, and Srebro, 2016; Klein-
berg, Mullainathan, and Raghavan, 2016). Demographic parity can ignore qualified
individuals in Z = 0 and accept unqualified individuals in Z = 1 to equalize the
predicted proportion across the protected groups. This could occur when the train-
ing data is small or imbalanced in the sensitive attribute. As addressed in Section
2.2, group fairness can be interpreted as unfair based on this constraint. Moreover,
the prediction performance can also be affected by this measure since it forces the
model to balance the true positive rates. (Hardt, Price, and Srebro, 2016) argued that
the performance is affected since demographic parity does not allow the classifier to
depend on the actual outcome Y. The equalized odds metric, however, does allow
dependency between the prediction and the actual outcome Y. Thus, both measures
addresses fairness from different perspectives that conflict with each other when
both are attempted to satisfy simultaneously. It should be noted that there exists an-
other measure that relaxes some requirements of the equalized odds metric. This is
the equalized opportunity constraint that only equalizes the true positive rates among
the protected feature given the actual outcomes (Hardt, Price, and Srebro, 2016).

Even though demographic parity and equalized odds can be used, these constraints
are focused on maintaining fairness in the overall model. In this thesis, however, the
objective is to achieve fairness such that only acceptable discrimination can occur
through the dependency on admissible information. Section 1 have addressed that
such discrimination can be considered to be reasonably fair. Therefore, the following
adjusted fairness constraint is formalized:

P(ŷ|z = 0, xadm) = P(ŷ|z = 1, xadm) (2.6)

where ŷ represents the predicted class, z ∈ (0, 1) is the protected feature and xadm

are the admissible data. Thus, the constraint holds when predictions ŷ and protected
feature z are conditionally independent given the admissible features. In the univer-
sity case, this notion means that both male and female applicants should have equal
chance of being accepted or rejected for the MBA-program given, for example, their
academic background. More specifically, the number of predicted (un)successful
male and female applicants must be equalized. Thus, this fairness notion is used to
assess the effectiveness of the proposed debiasing framework.
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2.4 Sources of Unintended Demographic Biases

The previous Sections have addressed the background context for this thesis in which
the term fairness and evaluation metrics are defined. Before the existing and pro-
posed debiasing methods can be introduced and assessed, it is essential to under-
stand how unintended biases can occur in algorithmic models. In other words, what
are the potential sources from which unintended biases can emanate? The main
sources for distortions can be identified in the ML development lifecycle. The stages
in the lifecycle are: (i) data collection, (ii) data preprocessing, (iii) model building
and (iv) model deployment and inference. However, the three main sources in the
development lifecycle that could introduce unintended biases are discussed below.

Dataset The database used to train ML systems can contain human, unintended bi-
ases. Based on historical patterns in the training data, the models can reflect and
perpetuate the patterns from the past. Of course, this does not mean that all data
used for training contain unfair patterns. But, it can be possible that it is skewed or
so-called imbalanced towards some protected group. Since algorithmic systems are
optimized to fit the data, it can naturally reflect these imbalanced patterns which
results in unfair predictive outcomes (Chouldechova and Roth, 2018). There are
studies that have identified such biases (Chen et al., 2018; Angwin et al., 2016). For
instance, (Angwin et al., 2016) found that a prediction system used to help judges
to make bail decisions for criminal defendants was biased. The system predicted
high recidivism rates that were correlated with darker skin color. This antisocial
prediction behavior was caused by the skewed database used to train the model in
which dark skinned individuals were overrepresented over light skinned individu-
als. In practice, preprocessing methods can be used to control and mitigate these data
imbalances. Some studies have shown the effectiveness of data augmentation and
reweighting methods (Dixon et al., 2018; Kamiran and Calders, 2011). Moreover, in-
processing methods can also be used to constrain the learning algorithm based on op-
timization approaches (Zemel et al., 2013). It is important to note that each method
could have unintended side-effects for which the approach selection must be done
carefully. For instance, when constraining the learning algorithm, the overall pre-
diction accuracy may be affected. Or, when sampling methods are used, the training
database can change significantly in size and could lose valuable information.

Learning algorithm This enables a system to produce antisocial outcomes without
the intent to discriminate. As addressed in Section 2.2, ML systems are trained to
minimize some optimization function which is not constrained to achieve fairness.
The models can, therefore, sacrifice fairness to achieve higher prediction accuracies.
Though there are some inprocessing methods that can be used to mitigate these unin-
tended biases. One option is to add fairness constraints to the loss function via regu-
larization terms (Ross, Hughes, and Doshi-Velez, 2017; Liu and Avci, 2019; Du et al.,
2019). This minimizes the association between the predictive outcomes and sensitive
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attributes where it forces the system to focus more on correcting features relevant to
the task. However, regularization requires feature-wise annotations that specifies
whether each input feature correlates with the protected attribute (Ross, Hughes,
and Doshi-Velez, 2017; Du et al., 2019). Moreover, the learning algorithm could also
learn the sensitive relationships through encoded data representations when the pro-
tected features is not explicitly available in the database (Chen et al., 2019). This is
well-studied in the field of natural language processing where embeddings are used
to create text representations. Some work has found that these text representations
can contain biases (Bolukbasi et al., 2016; Caliskan, Bryson, and Narayanan, 2017;
Zhao et al., 2019; Kurita et al., 2019). Usually, mitigating biases via the learning algo-
rithm is an effective approach but it is often complex to identify the actual source of
the bias. This thesis is focused on the unintended biases via the learning algorithm.

Decision-level The algorithmic decisions made on calibrated thresholds can intro-
duce unintended biases in the model deployment and inference stage or so-called
postprocessing stage of the ML development lifecycle. More specifically, postprocess-
ing calibration considers the system’s predictions and sensitive attributes to adjust
the generated outcomes at inference time (Zhao et al., 2017; Hardt, Price, and Sre-
bro, 2016). It can, therefore, be used to enforce the model’s performance to satisfy
some specific fairness measure which is proved to be effective to reduce discrim-
inatory outcomes (Kleinberg, Mullainathan, and Raghavan, 2016; Chouldechova,
2017). (Hardt, Price, and Srebro, 2016) shows how a probabilistic classifier can cali-
brate demographic-wise thresholds to achieve some fairness constraints. However,
when only postprocessing methods are used to mitigate unintended bias, it can be
complex to ensure model fairness completely. As discussed in Section 2.3, the main
fairness measures cannot be satisfied simultaneously.

Since the fairness objective for this thesis is to allow dependency between the predic-
tions and protected information only through admissible data, this work is focused
on inprocessing methods to address unintended group biases. More specifically,
this thesis proposes an adversarial debiasing framework to control and mitigate un-
intended biases. This method is validated in the setting of omitting unintended gen-
der biases in product rating predictions. Based on customer reviews and structured
data, predictions are generated where biases are removed from the encoded repre-
sentations while allowing acceptable differences through the product categories. By
considering the adjusted fairness constraint as addressed in Section 2.3, the frame-
work is validated and compared to some baseline model.
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3 Understanding Adversarial
Representation Learning Methods

This Section introduces existing adversarial learning methods that are able to mit-
igate unintended biases and ensure fairness in models. First, an adversarial rep-
resentation learning method is introduced in Section 3.1. Afterwards, the model
specifications are given and learning algorithm is explained. Then, in Section 3.2,
an adversarial method that uses predictions instead of representations is discussed.
This utilizes another model structure to ensure that fairness constraints are satisfied.

3.1 Adversarial Invariant Feature Learning

This thesis is interested in identifying adversarial debiasing approaches that can con-
trol and mitigate unintended biases in Deep Learning (DL) classification models. As
discussed in Section 2.4, antisocial behaviour in algorithmic systems can be embed-
ded through several sources. One source is the learning algorithm used to train
models. Since data representations can contain biases, the protected attributes does
not have to be explicitly available in databases. Advanced learning algorithms can
enable models to reflect the implicit biases in predictive outcomes. This can have a
severe impact on the fairness maintained in the model without the intent to be unfair.
For instance, when text data is used for Natural Language Processing (NLP) tasks,
the antisocial biases can implicitly be present in the encoded representations which
can be captured by algorithmic models. Many researchers have identified gender
biases in existing language modeling techniques such as Word2Vec (Mikolov et al.,
2013; Bolukbasi et al., 2016), GloVe (Caliskan, Bryson, and Narayanan, 2017; Prost,
Thain, and Bolukbasi, 2019), ELMo (Zhao et al., 2019) and, even in the state-of-the-
art method, BERT (Kurita et al., 2019). Other studies also examined the impact of
these biases in sentiment analysis tasks (Kiritchenko and Mohammad, 2018). Thus,
when the protected features are not explicitly available, this does not imply that
fairness is maintained in DL models. The systems could still derive the sensitive at-
tributes and learn the discriminatory patterns in hidden representations through the
algorithm. One method that can be used to mitigate such unintended biases is adver-
sarial learning. This Section discusses an adversarial approach suggested by (Ganin
and Lempitsky, 2015; Beutel et al., 2017; Xie et al., 2017; Elazar and Goldberg, 2018)
that focuses on debiasing the hidden representation of the model.
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3.1.1 Specifications of the Learning Setup

The adversarial learning method is used to hide information from the main pre-
diction model by penalizing the overall loss function. In essence, this method si-
multaneously trains two networks: (i) the main task model or so-called predictor is
learned to be maximally informative for the main task and (ii) the adversarial model
or so-called adversary is trained such that its ability to predict the protected attribute
based on the predictor’s encoded representations is minimized. (Elazar and Gold-
berg, 2018) have experimented with this method. Their study was focused on de-
biasing downstream models via adversarial learning such that the predictive power
for some demographic features, i.e. race, gender and age, in raw text is reduced.
Figure 3.1 shows the learning setup used in their work which follows earlier studies
from (Ganin and Lempitsky, 2015; Beutel et al., 2017; Xie et al., 2017).

FIGURE 3.1: Model learning setup by (Elazar and Goldberg, 2018)

To ensure fairness and invariant representations, the learning setup is inspired by
recent advancements in adversarial learning (Goodfellow et al., 2014) and can be re-
ferred to as a minimax game between three players: (i) an encoder which transforms
the observed data into a feature space, (ii) a predictor which uses the representation
to generate main task predictions, and (iii) an adversary which uses the encoder’s
representation to identify the protected information that must be mitigated from the
features. Moreover, (Elazar and Goldberg, 2018) have used a fourth model or so-
called attacker model that uses the encoder’s representation to verify whether it is
invariant for the protected feature after the adversarial minimax game is played.
More specifically, consider a database that contains text documents x1, ..., xn with a
protected attribute z and task labels y1, ..., yn. The objective is to train a predictor
F that accurately predicts the task labels y while ensuring that the encoder’s rep-
resentation is invariant for the protected feature z. To achieve this objective, the
encoder transforms x into representation henc. Based on representation henc, the pre-
dictor F is trained to model the conditional distribution p(y|henc). However, the F
is considered to be fair when henc does not depend on z or if henc cannot be used to



Chapter 3. Understanding Adversarial Representation Learning Methods 18

predict z. To make henc invariant for z, the adversary A is simultaneously trained
to fit p(z|henc) where henc attempts to make A fail in its prediction. Thus, while F
and A are optimized to minimize their loss function, the encoder henc is trained such
that it is maximally informative for F and minimizes A’s ability to predict z. To as-
sess whether the main task predictions are invariant for z after training, (Elazar and
Goldberg, 2018) have used an attacker model Att that attempts to predict z based
on henc. The difference between A and Att, however, is that A is considered in the
adversarial game during training whereas Att is separately trained by using the pre-
trained henc. When Att is not able to predict z above chance or p(z) > 0.5, the model
is considered to be fair in generating its predictions.

3.1.2 Adversarial Minimax Algorithm

The adversarial learning algorithm between the encoder henc, predictor F and adver-
sary A focuses on ensuring that henc is invariant for the protected information while
it remain maximally informative for F. In this setting, the predictor F is trained to
fit the distribution q f (y|henc) whereas the adversary A attempts to model q f (z|henc).
More specifically, (Ganin and Lempitsky, 2015; Xie et al., 2017) have suggested an
adversarial minimax game that jointly optimizes the following:

min
henc,F

max
A

J(henc, F, A) (3.1)

J(henc, F, A) = E
henc,z,y∼p(henc,z,y)

[− log q f (y|henc) + γ log qa(z|henc)] (3.2)

Where γ controls the invariance trade-off between the two objective functions for F
and A, log qa(z|henc) and log q f (y|henc) are the conditional entropies and p(henc, z, y)
is the joint distribution. The conditional entropies, however, have opposite signs
with log qa(z|henc) and and − log q f (y|henc). This ensures that the adversarial game
makes henc oblivious for the sensitive information while maintaining most of the
predictive information for F. More specifically, the entropy metric measures the pre-
diction certainty and is derived by taking − log2(P) with P as the probability for a
specific event (Goodfellow, Bengio, and Courville, 2016). Since P ranges between
[0, 1], the logarithm obtains negative values in the range between [−∞, 0] for which
the negative logarithm it taken to derive positive values that ranges between [0, ∞].
Thus, when the metric obtains an entropy value near zero, the model is considered
to be accurate in generating the correct predictions. On the other hand, when the
measure approaches ∞, the predictions generated by the system are highly uncer-
tain to be correct (Goodfellow, Bengio, and Courville, 2016). Hence, by considering
log qa(z|henc) in equation (3.2), the entropy values in A are negative and penalizes
F’s entropy metric when henc is predictive for z.
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In both (Xie et al., 2017) and (Elazar and Goldberg, 2018), the adversarial learning
algorithm is implemented by using the Gradient-Reversal Layer (GRL) method as
proposed by (Ganin and Lempitsky, 2015). This layer is inserted between henc and
A, and acts as an identity transform during the forward pass. Then, the gradients
of A’s loss with respect to the trainable weights in henc and A are transformed by
−λ during backpropagation. Here, −λ simply multiplies the gradients with -1 such
that the gradients are backpropagated with opposite signs. In this case, the encoder
receives the gradients with opposite sign from the adversary multiplied by the in-
variance parameter γ. Thus, by jointly optimizing (3.2) and using the GRL method,
representation henc becomes maximally informative for the predictor while it mini-
mizes the adversary’s ability to predict the protected feature (Xie et al., 2017; Elazar
and Goldberg, 2018). Therefore, the learning algorithm is referred to as an adver-
sarial minimiax game. Even though the adversarial method should ensure that the
hidden representations henc are invariant for the protected information, (Elazar and
Goldberg, 2018) have shown that a fair amount of the protected information can
still remain in the model. However, it is doubtful that this consistently occurs in
different settings since the adversary aims to remove all sensitive information from
the encoded representation in the system. A possible reason that could explain their
finding is that the adversary have not been stabilized during training, i.e. converged,
for which the learning algorithm has to be trained over more training steps. When
the model does not converge, the hidden representations can still contain some sen-
sitive information which can be reflected in the prediction task at hand.

3.2 Adversarial Debiasing Through Predictions

The second adversarial method that can be used to effectively mitigate protected in-
formation and ensure fairness in algorithmic models addresses the problem from an-
other perspective. Where the adversarial game in Section 3.1 was inspired by recent
advancements in adversarial learning, (Zhang, Lemoine, and Mitchell, 2018) have
presented a framework that follows the Generative Adversarial Network (GAN)
setup from (Goodfellow et al., 2014). More specifically, the presented framework en-
sures that the overall model is oblivious from the protected attribute by considering
the predictive outcomes as starting point in the adversarial game. This Section dis-
cusses the adversarial setup and learning algorithm proposed by (Zhang, Lemoine,
and Mitchell, 2018) in more detail.

3.2.1 Specifications of the Learning Setup

As briefly mentioned, the adversarial learning method proposed by (Zhang, Lemoine,
and Mitchell, 2018) replicates the GAN setup as suggested by (Goodfellow et al.,
2014) in which both a main classifier or so-called predictor F and adversary A are
trained simultaneously. The adversarial game, however, separates the models such
that it only considers these two components in the algorithm. More specifically,
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predictor F generates the main predictions where adversary A is trained to predict
the protected attribute based on the predicted values from F. Thus, F is trained to
generate main predictions as accurately as possible while attempting to fool A such
that A’s ability to predict the sensitive feature is minimized. This is different from
the learning setup used by (Ganin and Lempitsky, 2015; Xie et al., 2017; Elazar and
Goldberg, 2018; Beutel et al., 2017). In their work, the adversarial minimax game was
played between three components: (i) an encoder, (ii) predictor and (iii) adversary.
This setup was focused on making the encoder’s hidden representation invariant
of the protected information through the interaction with the adversary. Figure 3.2
shows the model structure used by (Zhang, Lemoine, and Mitchell, 2018).

FIGURE 3.2: Model learning setup by (Zhang, Lemoine, and Mitchell,
2018)

To ensure that F is invariant for the protected information, (Zhang, Lemoine, and
Mitchell, 2018) have initialized the learning setup such that the predictive outcomes
from F are fed into A. Consider a database that contains samples x1, ..., xn with a pro-
tected attribute z and task labels y1, ..., yn. In this setting, predictor F must be trained
to accurately predict y based on x and independently from the sensitive information
z. More specifically, predictor F models the conditional distribution p(y|x) whereas
adversary A uses the main predictions ŷ to fit p(z|ŷ). It should be noted that a
classification problem is considered for which ŷ is referred to the derived softmax
or sigmoid values. Thus, by training F to accurately predict y and minimizing A’s
ability to predict z, the predictor F becomes oblivious for the protected informa-
tion for which fairness can be maintained in the main predictive outcomes. In other
words, the main predictions ŷ are decorrelated from the sensitive feature z through
the adversarial game between predictor F and adversary A. (Zhang, Lemoine, and
Mitchell, 2018) have stated and proved the theoretical guarantees that the demo-
graphic parity and equalized odds fairness constraints can be satisfied by using this
adversarial setup. Indeed, (Zhang, Lemoine, and Mitchell, 2018) have achieved bet-
ter results on the equalized odds constraint than (Beutel et al., 2017).
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3.2.2 Adjusted Backpropagation Weight Update-rules

In essence, the adversarial algorithm used by (Zhang, Lemoine, and Mitchell, 2018)
is comparable to the learning method as suggested by (Ganin and Lempitsky, 2015;
Beutel et al., 2017; Xie et al., 2017; Elazar and Goldberg, 2018) and as discussed in
Section 3.1.2. A similar objective function is defined which is focused on maintaining
fairness in the main predictions generated by predictor F. Consider the following
adversarial game that is jointly optimized as:

min
F

max
A

J(F, A) (3.3)

J(F, A) = E
z,y∼p(z,y)

[− log q f (y|x) + γ log qa(z|ŷ)] (3.4)

Where γ controls the degree of debiasing in predictor F based on adversary’s A ob-
jective function, log qa(z|ŷ) and log q f (y|x) are the conditional entropies, and p(z, y)
is the joint distribution. Thus, the same minimax algorithm is used as addressed
in Section 3.1.2 in which the gradients are reversed in its sign via the GRL method.
However, (Zhang, Lemoine, and Mitchell, 2018) have made an improvement in the
weight update-rule for the trainable weights in predictor F. This to ensure that the
gradients and updated weights in F cannot help A during the training procedure.
More specifically, the adjusted weight update-rule can be formalized as:

θ f ← θ f−1 − η(
∂L f

∂θ f−1
− proj ∂La

∂θ f−1

∂L f

∂θ f−1
− γ

∂La

∂θ f−1
) (3.5)

θa ← θa−1 − η
∂La

∂θa−1
(3.6)

Where L f and La defines the loss functions for predictor F and adversary A respec-
tively, θ f and θa represent the trainable weight matrices in F and A, η is the learning
rate, γ is the invariant trade-off parameter and the updated weights are derived by
the partial derivatives of the loss with respect to the trainable weight matrix at each
training step. It can be seen that adversary A updates its weights θa by following the
standard backpropagation method as introduced in Section 2.1. But, when imple-
menting the adversarial game, predictor F uses an adjusted backpropagation setting
compared to (Ganin and Lempitsky, 2015; Xie et al., 2017; Beutel et al., 2017; Elazar
and Goldberg, 2018). The interaction between F and A still uses the identity trans-
form during the forward and backward pass as suggested by (Ganin and Lempitsky,
2015). However, an additional term is subtracted in (3.5) which is the middle term
proj ∂La

∂θ f−1

∂L f
∂θ f−1

. This ensures that F’s gradients are orthogonal to A’s gradients at each

training step. In other words, it prevents F’s updated weights and its gradients from
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moving in a direction that can help A decrease its loss which could result in a lack
of convergence to the optimum during training.

Hence, the approach suggested by (Zhang, Lemoine, and Mitchell, 2018) seems more
robust to obtain unbiased results than the learning algorithms used by (Elazar and
Goldberg, 2018; Xie et al., 2017; Ganin and Lempitsky, 2015; Beutel et al., 2017). It
considers the possibility that the predictor and adversary can help each other dur-
ing training. Even though robust, both adversarial methods are tested and validated
when the entire system must be debiased. In other words, the unintended biases can-
not be mitigated while controlling stereotypical biases that are acceptable at the same
time in these approaches. This can be a disadvantage in practice. As addressed in
Section 1, in some cases, acceptable discrimination can be allowed in the predictive
outcomes only through admissible information. Based on the existing adversarial
methods, the question remains whether an improved debiasing framework can be
designed to mitigate unintended biases while controlling stereotypical biases. Sec-
tion 4 proposes such a framework that extends the adversarial learning algorithm to
control acceptable biases through admissible information.
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4 Adversarial Ensemble-based
Framework

This Section introduces the proposed adversarial ensemble-based framework which
is build upon the adversarial algorithms as discussed in Section 3. The objective is to
generate predictions without discriminating among protected groups while allow-
ing acceptable dependency between predictive outcomes and sensitive information
through admissible features. In Section 4.1, the improved adversarial learning al-
gorithm is theoretically proved. Moreover, it is theoretically proved that a sample
weighting scheme is required to ensure that the formulated fairness constraint holds.
Afterwards, in Section 4.2, the backpropagation weight update-rule is extended to
maintain the effectiveness of the adversarial ensemble-based framework.

4.1 Extending the Adversarial Learning Algorithm

The aim of this thesis is to propose an adversarial ensemble-based framework to con-
trol and mitigate unintended gender biases in (un)structured data representations.
As addressed in Section 3, there exist two adversarial debiasing approaches that are
effective and efficient to use in deep learning (DL) models. However, the learn-
ing setups were designed to omit all protected information in the model. To allow
acceptable dependency between predictions and protected features, the bias miti-
gation procedure must be controlled in a segregated manner. This work validates
and applies the suggested debiasing framework to a multi-class classification prob-
lem. Based on unstructured customer reviews, the model must generate product rat-
ing class predictions without discriminating among gender; while allowing justified
dependency between class predictions and gender through permissible structured
features. Section 5 discusses the collected data, model architecture used in the ex-
periment and experimental results in more detail. For now, it is important to know
that the database contains unstructured text attributes referred to as contaminated
features, and structured features defined as admissible features where both include
discriminatory stereotypical gender biases. More specifically, the model removes
the protected information from contaminated features by leveraging the adversar-
ial minimax game while controlling the dependency between main task predictions
and the protected attribute through admissible features. It should be noted that
this work considers the contaminated and admissible features to be unstructured
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and structured respectively. However, in practice, the features can be substituted or
mixed with different data types which depends on the problem at hand. Figure 4.1
shows the overall model structure.

FIGURE 4.1: Adversarial Ensemble-based Model Setup

4.1.1 Specifications of the Learning Setup

The learning setup is closely related to (Elazar and Goldberg, 2018; Ganin and Lem-
pitsky, 2015; Xie et al., 2017). But, as discussed in Section 3.1, their adversarial de-
biasing method is designed to mitigate all protected information in the model. To
allow acceptable discrimination in the predictive outcomes through admissible in-
formation, the proposed debiasing framework follows the Product of Experts struc-
ture as shown in Figure 4.1 and suggested by (Hinton, 2002). Consider the database
that contains samples x ∈ X with structured xs1, .., xsi, unstructured xu1, ..., xui, and
protected attributes z, and ground-truth labels y1, ..., yi. Moreover, the structured xs

and unstructured xu features are considered to be the admissible xadm and contam-
inated xcon features respectively. The objective is to train the main classifier F such
that it accurately predicts y conditionally independent from the sensitive attribute z
given the admissible features xadm. Thus, the adversarial debiasing algorithm must
only be applied on the contaminated features xcon. To control the debiasing proce-
dure, the overall model structure is initialized as an ensemble of two components:
(i) Control Expert (CE) that considers the admissible features xadm and (ii) Mitigation
Expert (ME) that takes the contaminated attributes xcon. Each expert model takes
different input features so that each focuses on other patterns in the data. Other
work has used this method to control known database biases (Clark, Yatskar, and
Zettlemoyer, 2019). However, in this setup, only ME is affected by the adversarial
learning game and enables the ensembled model to be trained simultaneously.

Unlike vanilla models that generate conditional distributions p(y|x), the main clas-
sifier F models p(y|hce ∩ hme). The F maintains fairness such that predictions ŷ and
protected attribute z are conditionally independent given the admissible features
xadm. To achieve this objective, the CE transforms xadm into representation hce where
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ME encodes xcon and z into representation hme. It should be noted here that z is used
as an additional feature into the unstructured contaminated features xcon that derives
representation hme = (xcon, z). By considering z as an additional input feature as part
of xcon, the implicit and explicit bias would be amplified. This helps the adversarial
algorithm to be more effective in mitigating the protected information from the en-
coded representation hme without reducing the quality of the generated predictions
significantly. The protected information in the admissible features xadm, on the other
hand, are present in a latent manner via the distribution of the observations. Thus,
given representations hce and hme, the main classifier or so-called predictor F models
the distribution q f (y|hce ∩ hme) to generate the main task predictions ŷ.

In order to make hme oblivious from z while controlling the admissible associations
through hce, an adversarial game is designed by introducing an adversary A. The ad-
versary A is trained to predict z based on the encoded representation hme and models
qa(z|hme). Simultaneously, ME encodes representation hme such that it minimizes the
likelihood of inferring z correctly by the adversary. Thus, in an intuitive sense, rep-
resentation hme must be maximally informative for F to predict the main task labels
while minimizing A’s ability to predict z to ensure that ŷ and z are conditionally
independent given representation hce.

4.1.2 Optimization of the Adversarial Algorithm

The predictor F and adversary A are trained to predict y and z respectively by mini-
mizing their cost functions. But, instead of representation hce, hme is trained to make
the adversary fail in predicting z. More formally, representations hce and hme, predic-
tor F and adversary A jointly optimizes the following adversarial minimax game:

min
hce,hme,F

max
A

J(hce, hme, F, A) (4.1)

J(hce, hme, F, A) = E
hce,hme,z,y∼p(hce,hme,z,y)

[γ log qa(z|hme)− log q f (y|hme ∩ hce)] (4.2)

Where γ controls the intensity of the debiasing effect in hme from the adversary,
log qa(z|hme) and log q f (y|hme ∩ hce) are the objective functions and conditional en-
tropies for F and A, and p(hce, hme, z, y) is the joint distribution with hce(xadm) and
hme(xcon, z). To prove the optimality of the minimax game, the optimal adversary A∗

and optimal predictor F∗ are deduced given fixed CE and ME.
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Claim 1: Adversarial Minimax Game Optimum

Given a fixed CE and ME, the optimal adversary generates q∗a(z|hme) = p(z|hme)

and the optimal predictor outputs q∗f (y|hme ∩ hce) = p(y|hme ∩ hce). Then, when
γ is infinitely large, representation hme is oblivious for z.

Proof. First, the optimal solution to obtain the stationary point for adversary qa is
proved which assumes convexity in the objective with respect to each distribution.
Given a fixed CE and ME, the following optimization problem is defined:

min
A

− J(hce, hme, F, A) s.t. ∑
z

qa(z|hme) = 1, ∀hme (4.3)

Then, L = J(CE, ME, F, A) − ∑hme
λ(hme)[∑z qa(z|hme) − 1] is the lagrangian dual

function with λ(hme) as the dual variables introduced for equality constraints. The
optimal adversary satisfies the following:

0 =
∂L

∂q∗a(z|hme)
(4.4)

⇔ 0 = − ∑
hce,hme,z,y

∂J
∂q∗a(z|hme)

p(hce, hme, z, y)− λ(hme) (4.5)

⇔ 0 = − ∑
hce,hme,z,y

p(hce, hme, z, y)
q∗a(z|hme)

− λ(hme) (4.6)

⇔ 0 = − ∑
hme,z

p(z, hme)

q∗a(z|hme)
− λ(hme) (4.7)

⇔ λ(hme)q∗a(z|hme) = −p(z, hme) (4.8)

Given ∑z q∗a(z|hme) = 1 and summing both sides with z, the following is obtained:

λ(hme) = −p(hme) (4.9)

Then, substituting equation (4.9) back into equation (4.8), the A∗ is derived as:

q∗a(z|hme) =
p(z, hme)

p(hme)
= p(z|hme) (4.10)

In the same setting, taking the partial derivative with respect to q f (y|hme ∩ hce) and
setting it equal to zero, it can be proved that q∗f (y|hme ∩ hce) = p(y|hme ∩ hce). Thus,
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by substituting q∗a and q∗f back into the minimax objective function (4.2), it can be
rewritten as a minimization problem only with respect to ME and CE as follows:

min
hme,hce

J(hme, hce) = E
hce,hme,z,y∼p(hce,hme,z,y)

[γ log pa(z|hme)− log p f (y|hme ∩ hce)] (4.11)

When the optimum for A∗ is log pa(z|hme), the predictions in A∗ are equal to pa(z|hme).
To ensure that hme is oblivious for z, pa(z|hme) = p(z) must hold which is achieved in
equation (4.11) with an infinite γ. This can be proved by considering the conditional
entropy H(z|hme) for A∗ and the entropy H(z) for z. By definition, H(z|hme) in the
adversarial game is formalized as:

H(z|hme) = ∑
z

pa(z|hme) log pa(z|hme) (4.12)

Given pa(z|hme) > 0 and z ∈ (0, 1), then (4.12) is maximized in (4.11) as:

0 =
∂H(z|hme)

∂pa(z|hme)
(4.13)

⇔ 0 = log pa(z = 0|hme) + 1− log[1− pa(z = 0|hme)]− 1 (4.14)

⇔ 0 = log pa(z = 0|hme)− log[1− pa(z = 0|hme)] (4.15)

⇔ 0 = log
pa(z = 0|hme)

[1− pa(z = 0|hme)]
(4.16)

Then, the maximum for H(z|hme) is obtained as:

pa(z = 0|hme)

[1− pa(z = 0|hme)]
= 1 (4.17)

With pa(z|hme) = 1/2 for each z. To verify, substituting (4.17) back into (4.16) derives
zero. Thus, when pa(z|hme) = 1/2 for z ∈ (0, 1), H(z|hme) = H(z)) such that hme is
not informative for z. But, if hme contains predictive information for z as:

pa(z|hme) = p(z) + ε , z = 0

p(z)− ε , z = 1
(4.18)
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With ε as a small positive, then H(z|hme) 6= H(z) and (4.12) is not maximized. How-
ever, since the overall objective function in (4.11) is minimized, the H(z|hme) is max-
imized with infinite γ which satisfies H(z|hme) = H(z) or pa(z|hme) = p(z). Thus,
when H(z|hme) is maximized in the adversarial minimax game, pa(z|hme) = p(z)
holds for which hme and z become independent from each other.

In theory, the entropy function is a measure of disorder where its value ranges be-
tween [0, ∞]. When the measure approaches zero, the predictive outcomes are con-
sidered to be accurate with a high certainty. On the other extreme, when the metric
approaches ∞, the predictions are inaccurate or highly uncertain to occur (Goodfel-
low, Bengio, and Courville, 2016). Then, the average entropy value over all gener-
ated predictions approaches one or ∞ which can be considered to be equal to ran-
domness. It should be noted that the average entropy value can be greater than one
which depends on the number of prediction classes. Thus, when equation (4.11)
is minimized with infinite γ, equation (4.12) is maximized such that hme) = H(z)
or pa(z|hme) = p(z) holds. Hence, representation hme is oblivious for z when the
optimum for adversary A∗ is log pa(z|hme) and γ is infinitely large.

4.1.3 Satisfying the Fairness Constraint

In Section 2.3, the fairness constraint that must be satisfied by the proposed adver-
sarial ensemble-based framework is introduced. It was argued that when the main
predictions ŷ and protected attribute z ∈ (0, 1) are conditionally independent given
the admissible features xadm, the following fairness constraint holds:

P(ŷ|z = 0, xadm) = P(ŷ|z = 1, xadm) (4.19)

However, based on the proof for claim 1, the fairness constraint is not satisfied yet
by the adversarial minimax game. Since predictor F consists of an ensemble of ex-
pert components and representation hce(xadm) is not affected by the adversarial al-
gorithm, it must be ensured that xadm and z are uncorrelated to ensure conditional
independence between predictions ŷ and protected feature z given an admissible
feature xadm. Otherwise, ŷ can still differ among the protected groups z in each xadm.
To achieve this objective, xadm and z can be decorrelated by using sample weights
that balances the distribution of z given xadm.

Claim 2: Decorrelate the relationship between xadm and z

When sample weights are derived as wi =
1

p(z|xadm)
, the predictive outcome ŷ and

protected attribute z are conditionally independent given the admissible features
xadm such that p(ŷ|z, xadm) = p(ŷ|xadm) holds.
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Proof. The conditional independence relationship among the predictive outcome ŷ,
protected attribute z and admissible features xadm can be formalized as:

p(ŷ|z, xadm) =
p(ŷ ∩ z|xadm)

p(z|xadm)

=
p(ŷ|xadm)p(z|xadm)

p(z|xadm)

= p(ŷ|xadm)

(4.20)

To ensure that xadm and z are uncorrelated, p(z|xadm) must be uniformly distributed
such that randomness is achieved. Given that all p(z|xadm) > 0, the uniform distri-
bution is obtained by the expected value for all z classes as:

E[I(z = i)|xadm] =
1
Z

s.t.
z

∑
i=1

E[I(z = i)|xadm] = 1 (4.21)

With total Z values. Suppose z ∈ (0, 1) and p(z = 0|xadm) < p(z = 1|xadm). Then,
p(z|xadm) is not uniformly distributed and equation (4.21) does not hold for all z.

To ensure that all p(I(z = i)|xadm) = E[I(z = i)|xadm], each z must be reweighted
such that each value of z is equally likely given xadm. By using inverse probability
weighting, the weights for each z element are obtained as:

wi(xadm) =
1

Z ∗ p(I(z = i)|xadm)
(4.22)

Given equation (4.22) and considering that each I(z = i) conditioned on xadm should
not be predictive for z, the weighted expected value is derived as:

E[wi(xadm) ∗ I(z = i)|xadm] =
1
Z

(4.23)

Given that all z values are mutually exclusive and summing all weighted Ew[I(z =

i)|xadm], the constraint in equation (4.21) is satisfied as:

z

∑
i=1

Ew[I(z = i)|xadm] =
z

∑
i=1

1
Z

= 1 (4.24)
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When equation (4.24) holds, pw(z|xadm) is uniform with xadm and z being indepen-
dent from each other. Then, substituting the weighted probability distributions and
expected value back into equation (4.20), the conditional independence relationship
among ŷ, z and xadm is proved as:

p(ŷ|z, xadm) =
pw(ŷ ∩ z|xadm)

Ew[z|xadm]

=
pw(ŷ|xadm)Ew[z|xadm]

Ew[z|xadm]

= pw(ŷ|xadm)

(4.25)

The inverse probability weighting is used to ensure that each z value is equally likely
given xadm such that p(z|xadm) is uniform. In other words, xadm and z become inde-
pendent and uncorrelated from each other. Hence, the predictive outcome ŷ and
protected attribute z are conditionally independent given the admissible features
xadm such that p(ŷ|z, xadm) = p(ŷ|xadm) holds.

Based on the proof for q∗a and q∗f in claim 1, it can be concluded that the adversar-
ial minimax game ensures that information about z is mitigated from representation
hme. The optimal q∗a(z|hme) is maximized to ensure that representation hme is obliv-
ious from z, i.e. p(z|hme) = p(z), while the optimal q∗f (y|hme ∩ hce) is minimized
to obtain the best main task predictions. Moreover, to ensure that ŷ and z are con-
ditionally independent given xadm, the proof for claim 2 has shown that a sample
weighting scheme can be used. This ensure randomness and balances the distribu-
tion of p(z|xadm) such that xadm and z are uncorrelated. Hence, given the proofs for
both claim 1 and claim 2, the fairness constraint in equation (4.19) holds in which
acceptable discrimination can occur in the predictive outcomes ŷ only through the
dependency on the admissible features xadm.

4.2 Extending the Backpropagation Weight Update-rules

In order to avoid that the gradients and updated weights in Mitigation Expert ME
helps the adversary A in predicting the protected attribute z in the adversarial min-
imax game, the extended backpropagation weight update-rules are used as sug-
gested by (Zhang, Lemoine, and Mitchell, 2018). As shown in Section 4.1, it has been
proved that the adversarial minimax game in combination with sample weights en-
sures that the formulated fairness constraint is satisfied. In this setting, the predic-
tor F and adversary A are both minimizing their entropy functions. Instead of the
Control Expert (CE), the Mitigation Expert (ME) is optimized such that its repre-
sentation hme = (xcon, z) is maximally informative for F and minimizes A’s ability to
predict protected attribute z. The Control Expert CE, however, uses sample weights
to ensure that the acceptable discrimination in predictions ŷ can occur only through
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the dependency among the admissible features xadm. In other words, CE, ME, F and
A jointly optimizes equation (4.2) by updating the set of weights [θce, θme, θ f , θa] in
the model. As addressed in Section 2.1, the set of weights in a model are iteratively
updated by taking the gradients of the loss with respect to the weights until the
model converges at some optimum point. But, without constraining the gradients
and updated weights in ME, the effectiveness of the adversarial learning algorithm
could be affected. Therefore, the backpropagation weight update-rule for the set of
weights is extended and can be formalized as:

θme ← θme−1 − η(
∂L f

∂θme−1
− proj ∂La

∂θme−1

∂L f

∂θme−1
− γ

∂La

∂θme−1
) (4.26)

θce ← θce−1 − η
∂L f

∂θce−1
(4.27)

θ f ← θ f−1 − η
∂L f

∂θ f−1
(4.28)

θa ← θa−1 − η
∂La

∂θa−1
(4.29)

Where η is the learning rate and weight updates are derived by the partial deriva-
tives of the F’s loss L f or A’s loss La with respect to the set of weights at each training
step. It can be seen that the weight update-rule for θce, θ f and θa follow the standard
update procedure as introduced in Section 2.1. The weights θme, however, differs
where the update-rule is extended as suggested by (Zhang, Lemoine, and Mitchell,
2018). To prevent the gradients in ME and A move into opposite directions and
avoid lack of convergence to the optimum point, the middle term proj ∂La

∂θme−1

∂L f
∂θme−1

is added. This ensures that gradients of L f with respect to θme are orthogonal to
the gradients of La with respect to θme. In other words, this prevents ME’s updated
weights and gradients helping A decrease its loss. Appendix A shows the derivation
of projection term in more detail.
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5 Debiasing Performance on
Product Review Data

This Section focuses on validating the extended adversarial learning method on a
multi-class classification task. Section 4 have proved that the adversarial ensemble-
based framework ensures that main predictions and protected attribute are condi-
tionally independent such that acceptable discrimination can occur only through
the dependency among admissible features. To validate the proposed debiasing
method, the model is used to generate product rating class predictions without dis-
criminating among gender given the product categories. Section 5.1 introduces the
database and addresses the preprocessing steps. Afterwards, in Section 5.2, the
model architecture and evaluation metrics used in the experiment are addressed.
Finally, Section 5.3 presents the training procedure and experimental results.

5.1 Amazon Product Review Database

This thesis focuses on proposing an adversarial ensemble-based framework to con-
trol and mitigate unintended gender biases in (un)structured data representations.
Section 4 have presented and proved the adversarial minimax game in combination
with the sample weighting scheme and extended backpropagation weight update-
rule. To validate the effectiveness of the debiasing approach, a reasonably large
database is needed in which both the main task y and protected feature z labels are
available. Therefore, for this experiment, the Amazon Review Database with 233.1
million reviews is used to predict product rating classes based on product reviews
and other metadata features (Ni, Li, and McAuley, 2019). However, to reduce the
computational time and required resources, a subset of the data with 75.26 million
reviews is used in which all customers and product items have at least five reviews.

Besides having product ratings and unstructured customer reviews, the database
must contain the protected feature. This sensitive attribute is considered to be gender
with levels z ∈ [male, f emale]. As in most real-life applications, however, this infor-
mation was not available in the data due to privacy concerns and regulations. Even
though not collected, the protected feature is derived from the Amazon usernames
that customers used by using a gender detector library 1. This library collected birth

1https://pypi.org/project/gender-detector/

https://pypi.org/project/gender-detector/
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record data from the United States (US) and the United Kingdom (UK) across a num-
ber of years via databases that were released by the two countries. More specifically,
in the US, the Social Security Administration has released records with name and
gender by year of births between 1880-2011 whereas, in the UK, the Office of Na-
tional Statistics made the same data publicly available for the years between 1996-
20112. However, only the name-gender combinations were considered that occurred
with a minimum of 5 births in the US and 3 births in the UK. In total, the gender
detector contains 101,749 unique names that were categorized into [male, f emale].
Before the protected attribute was derived from the Amazon usernames, the user-
names were cleaned by removing numbers and punctuations. Also, since the library
processed the names in lowercase letters, all username characters were set to lower-
case letters. After using the gender detector, all observations that were not matched
and labelled as unknown for gender were removed. Thus, the database used for the
experiment was reduced to 5,416,688 observations.

Throughout this work, it was argued that it might be desirable to discriminate in
the main predictions based on justified dependency among admissible information;
while ensuring conditional independence with sensitive information. Therefore,
the experimental database uses Product Category as the admissible feature since it
is likely that this feature contains stereotypical gender associations. The feature’s
categories are formatted as dummy variables. Originally, the database contained
20 product categories which are shown in Appendix B.1. However, 10 product cat-
egories that are heavily skewed in the gender distribution are selected to be used
in the experiment. This reduced the database to 3,575,999 observations. Table 5.1
shows the selected product categories. When the data is skewed towards some gen-
der group, the model can naturally reflect these patterns and discriminate in the
predictions as addressed in Section 2.4. However, as argued in Section 4.1.3, the
discrimination in product rating predictions can be considered as acceptable when
conditional independence with gender groups is ensured given the product cate-
gories. For instance, when male and female customers review products from the
same category, it is justifiable to assume similarity in product interests. Therefore,
the product rating predictions should not differ among gender which is considered
to be unfair otherwise. But, when male and female customers review products from
different categories, the difference in rating predictions is justifiable. Both the male
and female customers are not comparable in terms of product interests for which
the possible discrimination in ratings is acceptable. Moreover, the product category
feature can contain predictive information for the main prediction task. When beauty
category have on average a higher rating than sports category, a very positive review
for beauty products would strengthen a rating prediction for 4- or 5-stars compared
to reviews with a similar sentiment for the averaged lower rated sports products.
The prediction results would, therefore, be more realistic.

2https://github.com/OpenGenderTracking/globalnamedata

https://github.com/OpenGenderTracking/globalnamedata
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FIGURE 5.1: Data Dis-
tribution over Product

Rating Classes

Category Female Male

All Beauty 73.5 26.5
Amazon Fashion 83.1 16.9
Arts and Crafts 80.6 19.4
Automotive 9.0 91.0
Scientific 11.6 88.4
Luxury Beauty 75.2 24.8
Musical Instruments 10.8 89.2
Sports 20.9 79.1
Tools and Home 17.1 82.9
Video Games 20.6 79.4

TABLE 5.1: Categories
with Gender in %

Since the aim of the experiment is to classify customer reviews with the specific
product category in rating classes, the dependent variable is derived from the star-
rating feature in the database. The star-rating attribute, however, is factored and
releveled from a one- to five-star range to three levels: (i) negative rating which is
obtained by grouping all one- and two-star ratings, (ii) neutral rating which is based
on all three-star ratings and (iii) positive rating which is formed by combining all
four- and five-star ratings. Figure 5.1 shows the class distributions over the product
rating categories which indicates that the database is highly imbalanced. Since the
positive ratings can be considered to be the majority class, the minority negative and
neutral classes are harder to predict due to the imbalanced distribution. This means
that the model is challenged to learn from and differentiate the observations from
the minority classes from the majority class. To ensure that the prediction results
are reliable and after a training set containing two-thirds of the entire database is
created, the class reweighting method is used instead of applying sampling methods.
When sampling methods are used, it might be possible that the gender distribution
in the product categories are affected. However, this is not desired since the objec-
tive is to capture the stereotypical associations to mimic the real-world context as
closely as possible. In this setting, the observations from the positive rating class
gets a weight assigned that is relatively lower compared to negative and neutral
rating classes. Then, during training, the class weights are multiplied by the loss
value for each training example such that the overall model loss focuses more on the
minority classes instead of the majority positive rating class. This ensures that all
product rating classes are equally considered in the training procedure. In the ad-
versarial ensemble-based framework, the relationship between product categories
and gender information must be decorrelated. Section 4.1.3 has introduced the sam-
ple reweighting method which is derived from the training set. These sample weights
are applied similarly as the class weights.
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During the data preprocessing and model training phase, the validation and test
sets are untouched and created by splitting the remaining one-third of the database
evenly. Where the validation set is used for the model tuning procedure, the test set
is used to evaluate the prediction performance on unseen data. As mentioned, the
obtained database contains 3,575,999 examples. To further reduce the computational
time and required resources, a random sample of 50,000 observations is obtained
from the database such that the gender distribution in each product category and
product rating class distribution is proportionally maintained. Thus, on this basis,
the database that is used in the experiment contains 50,000 observations with each
related to four variables: (i) product reviews in text, (ii) product category for the
reviewed product which contains 10 categories as shown in Table 5.1, (iii) gender
which indicates whether the customer is a male or female and (iv) product rating
class which are categorized into negative, neutral and positive rating classes.

FIGURE 5.2: Doc.
Length Distribution

Length (in <=) # of Examples

50 25,890
100 30,196
150 31,693
200 32,383
250 32,735

TABLE 5.2: Number
of Examples per Doc.

Length

In Section 2.4, it was addressed that some studies have found that text representa-
tions can contain gender biases. These sensitive latent information could be learned
by the learning algorithm through the encoded data representations (Chen et al.,
2019). Therefore, to validate the extended adversarial learning algorithm, the cus-
tomer reviews are considered to be the contaminated features in this thesis. The
product reviews are provided in the unstructured form of natural human language.
The raw review documents, however, cannot directly be used to build the model
for which the text must be cleaned. To process the raw text, all upper-case charac-
ters were set to lower-case letters and numbers, punctuations, non-ASCII characters
and extra whitespaces were removed. All contractions and abbreviations, however,
were converted to their respective meaning. The stopwords are not removed in the
text documents. These terms can affect the context and meaning of specific words
and eventually influence the predicted rating classes. For instance, the short re-
view document “I do not like this product so I do not recommend it” would most
likely obtain a negative predicted rating compared to “like product recommend”
in which all stopwords are removed and most likely obtains a positive predicted
rating. Moreover, the text documents are formatted in sequences of words. More
specifically, the processed words in each document are tokenized into sequences of
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tokens. Then, a vocabulary is created based on the training set such that all words
with a minimum frequency of 2 in all documents are collected. Here, it is assumed
that all words with a frequency of 1 are imaginary or non-informative words. Thus,
by only considering terms that occur twice at minimum, the computational time and
required memory capacity can be reduced. Since pretrained 300-dimensional GloVe
Embeddings are used, it is essential to create a vocabulary with enough words to
ensure that most terms can be captured by the pretrained vectors. Section 5.2 ex-
plains the GloVe Embeddings in more detail. As a result, the vocabulary consists of
17,641 unique words. Then, word tokens in each document is substituted with the
related index where non-occurring terms get an index assigned that represents an
out-of-vocabulary token. Finally, each review must have the same length for which
the sequences are padded and truncated. As shown in Figure 5.2 and Table 5.2, the
gap in the number of observations between the document lengths reduces. Since the
train set contains 33,500 examples and most examples are captured, the sequences
are padded and truncated such that each document length is equal to 150 terms.

5.2 Model Architecture and Evaluation Measures

Before the extended adversarial learning algorithm can be tested, the model archi-
tecture and evaluation measures must be specified. As addressed in Section 4.1 and
shown in Figure 5.3, the overall model is structured as an ensemble of two compo-
nents: (i) Control Expert (CE) and (ii) Mitigation Expert (ME) that creates represen-
tations hce = (xadm) and hme = (xcon, z) respectively. The predictor F generates the
main task predictions ŷ based on the encoded representations hce and hme. While the
admissible features xadm is decorrelated with the protected attribute z via the sam-
ple weighting scheme, ME is initialized as a multi-output model. The transformed
hidden representation hme is fed into the predictor F to predict y and adversary A
to predict z. This setup makes it possible to implement the adversarial debiasing
algorithm and make hme oblivious from z as discussed and proved in Section 4.1.2.

FIGURE 5.3: Model Architecture used in the Experiment
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5.2.1 Control Expert

The Control Expert CE takes the structured product category features as input - which
are considered to be the admissible features xadm - is modeled as a feed-forward net-
work. As addressed in Section 2.1, this type of design is an interconnected structure
in which layers and nodes are only connected into one direction. Each node receives
input from preceding nodes and generates output values for subsequent nodes until
the output prediction is generated (Goodfellow, Bengio, and Courville, 2016). More
specifically, the architecture consists of two layer components. The input layer that
takes xadm and has a number of nodes which is set equal to the 10 product category
dummies. Before the transformed representation can be ensembled in predictor F,
the hidden layer component can be tuned. In theory, when multiple features are fed
into a network, interactions among input features can occur for which the most op-
timal architecture with the best prediction performance needs to be obtained. This
can be achieved by tuning and selecting the optimal number of nodes and hidden
layers. However, in this work, there are 10 mutually exclusive dummies that are fed
into CE. Thus, it is expected that there are no interactions among dummies. Still,
to validate that classification performance does not improve, the number of hidden
nodes and layers are tuned. As (Goodfellow, Bengio, and Courville, 2016) argued,
the optimal number of nodes is usually derived by trial-and-error between the num-
ber of nodes in the input ninp and output nout layer. Therefore, in this work, the
number of nodes in the hidden component is tuned by iterating over three equally
spaced values in the interval [nout, ninp]. More specifically, since the main task pre-
diction in the experiment is focused on classifying examples into three classes, the
hidden nodes are iteratively tuned over [4, 7, 10] to verify whether a minimum, aver-
age or maximum number of hidden nodes are needed. Even though more than one
hidden layer rarely improves the model performance, it must be validated that the
performance does not improve with more hidden layers (Saeed and Snášel, 2014).
Therefore, two variants for CE are initialized: variant (i) contains one hidden layer
and variant (ii) has two hidden layers. The number of hidden nodes in both variants
are tuned over the same set of [4, 7, 10]. Then, after transforming xadm, the represen-
tation from the last hidden component hce is fed into predictor F.

Since F focuses on a classification problem with three classes, the output layer in F is
initialized with the softmax activation function. Section 5.2.3 addresses F’s architec-
ture in more detail. However, one limitation of the softmax function is the potential
occurrence of the saturation problem. This problem can occur when sigmoidal func-
tions, like softmax, are used. The softmax function compresses activation values
into a space between [0, 1] where the derived probabilities over the output nodes
sum to one. The gradients around the boundaries, however, approaches zero. Small
gradients imply that the weights of the initial layers will not be updated effectively
with each training step, and can lead to overall inaccuracy of the network (Goodfel-
low, Bengio, and Courville, 2016; Pascanu, Mikolov, and Bengio, 2013). To prevent
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this problem, the activation values in the hidden layers in CE are derived with the
rectified linear unit, i.e. ReLU, activation function which can be formalized as:

φ(zj) = max(0, zj) (5.1)

With zj as the weighted activation value from the preceding layer where it returns
the weighted value if it is equal or above zero; otherwise the function returns zero.
This activation function avoids the saturation problem because its function and gra-
dients are strictly monotonic compared to the sigmoidal functions; where its gradi-
ents are non-monotonic (Goodfellow, Bengio, and Courville, 2016).

5.2.2 Mitigation Expert

Unlike the Control Expert CE that considers the admissible features xadm, the Miti-
gation Expert ME takes the contaminated features xcon from which all protected in-
formation must be mitigated. The ME encodes the contaminated xcon and protected
attributes z into representation hme which is fed into predictor F and adversary A.
In this setting, the adversarial minimax game is implemented to make hme oblivious
from z. However, in the experiment, the contaminated features xcon are considered
to be the customer reviews which can be viewed as a sequence of words whereas the
protected gender feature z can be defined in clear structured groups. Therefore, rep-
resentation hme is derived by using a Long Short-Term Memory (LSTM) module with
pretrained GloVe word embeddings3. Instead of passing the text features straight
through the network without considering the order, this module views the input
data as a sequence (Goodfellow, Bengio, and Courville, 2016; Minaee et al., 2020).
This is preferred over the feed-forward architecture since word dependencies and
text structures can be captured in more detail via sequential ordering (Sutskever,
Martens, and Hinton, 2011). As argued in Section 4.1.1, the protected attribute z is
used as an additional feature into xcon to amplify the implicit bias. Also, it would
help the adversarial learning algorithm to be more effective in omitting the sensi-
tive information from hme without reducing the quality of the generated predictions
with a significant number. In this context, the sensitive attribute z is added as an ex-
tra dimension in the GloVe embeddings to accentuate the latent gender association
among words. Hence, the 300-dimensional GloVe embeddings are expanded to be
301-dimensional in the model. The method and architecture are explained below:

Recurrent Neural Networks The LSTM model is a variant of a Recurrent Neural Net-
work (RNN). To understand the mechanisms of LSTM networks, it is a good start to
first evaluate RNNs. Intuitively, RNNs receive an input, updates its hidden states
and generates predictions. Figure 5.4 shows the mechanism in a so-called RNN cell.
In contrast with feed-forward networks, RNNs contain multiple RNN cells or so-
called recurrent units that incorporate a feedback loop through their connection. The

3https://nlp.stanford.edu/projects/glove/



Chapter 5. Debiasing Performance on Product Review Data 39

number of recurrent units, however, depends on the variable length of the input se-
quence or so-called timesteps in the sequences (Elman, 1990). Thus, the RNN can be
seen as a rich and dynamic model with memory that iterates over the sequence be-
fore generating a prediction. The feed-forward network is not able to learn this type
of information (Goodfellow, Bengio, and Courville, 2016).

FIGURE 5.4: Variable flow in RNN cell

The RNN can be formalized as follows: consider the database that contains samples
x ∈ X with unstructured text documents xu1, . . . , xun. Each xui is preprocessed into a
sequence of vectors or so-called word tokens x1, . . . , xt. Then, the RNN computes a
sequence of hidden states h1, . . . , ht and a sequence of outputs y1, . . . , yt by iterating
over the input sequence from t = 1 to T with the following equations:

ht = φ(θhxxt + θhhht−1 + bh) (5.2)

yt = θohht + b0 (5.3)

Where the input-to-hidden weight matrix θhx is multiplied by vector xt, summed
with a multiplication of the hidden-to-hidden weight matrix θhh and the hidden state
from the previous timestep ht−1, and summed with a bias vector bh. To obtain the
current hidden state, the computed value is transformed by using the tanh function.
Then, to derive the output at timestep t, the current hidden state ht is multiplied
by the hidden-to-output weight matrix θoh, summed with a bias bo and transformed
with some activation function. This is equivalent to the output layer in feed-forward
networks. At t = 1, however, the θhhht−1 is initialized with a bias vector hinit since
ht−1 is undefined (Goodfellow, Bengio, and Courville, 2016). This RNN generates an
output at each timestep which is referred to as so-called many-to-many architecture
(Goodfellow, Bengio, and Courville, 2016). In this thesis, however, a many-to-one
architecture is considered in which the sequences with word tokens are transformed
into a single output prediction. This output is equivalent to the hidden state value
from the last recurrent unit which is defined as representation hme.
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When training RNNs, an extension of the backpropagation algorithm - as addressed
in Section 2.1 - is used which is referred to as backpropagation-through-time (Good-
fellow, Bengio, and Courville, 2016). In this case, the ordered sequences of com-
putations connected through each timestep defines time (Goodfellow, Bengio, and
Courville, 2016). However, in practice, the training procedure can be highly unstable
since it can experience the vanishing gradient problem (Bengio, Simard, and Frasconi,
1994). Because recurrent units are related through multiplication, the gradients can
explode or vanish when frequently multiplied by gradients slightly greater or less
than one (Bengio, Simard, and Frasconi, 1994). Even though the exploding gradients
can be easily solved by truncating or squashing the gradients, the vanishing gradi-
ents can prevent the model from learning and are harder to solve in RNNs. Thus,
RNNs can experience difficulties when learning long-term dependencies is required.

Long Short-Term Memory Networks One approach to deal with the vanishing gra-
dient problem is to modify the model by including memory units that can handle
long-term dependencies and memorization. The LSTM architecture contains such
memory units as proposed by (Hochreiter and Schmidhuber, 1997). Therefore, the
contaminated text documents xcon in ME are modeled via a LSTM module to ensure
word dependencies can be learned. Figure 5.5 shows the mechanism in a memory
cell. In essence, LSTMs use gated cells to control information such that the errors
are maintained over many timesteps. This avoids the vanishing gradients problem.
Moreover, gated cells can block or pass information based on their strength and are
filtered with their trainable weights (Hochreiter and Schmidhuber, 1997).

FIGURE 5.5: Variable flow in Memory cell

When the same setting is considered with the database that contains samples x ∈ X
with each text document xui tokenized into sequences of vectors x1, . . . , xt, the LSTM
iterates over the sequences from t = 1 to T as follows:

f 1
t = σ(θ f 1 [ht−1, xt] + b f 1) (5.4)
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f 2
t = σ(θ f 2 [ht−1, xt] + b f 2)� tanh(θ f 2 [ht−1, xt] + b f 2) (5.5)

h
′
t = σ(θh′t

[ht−1, xt] + bh′t
)� tanh(ct) (5.6)

Where (5.4) is the forget gate that filters long-term information to remember by taking
a sigmoid function over weight matrix θ f1 , concatenated hidden state from the pre-
ceding cell ht−1 and input vector xt, and some bias b f1 . Equation (5.5) is the input gate
that processes the new information into the cell state by considering again a sigmoid
function over weight matrix θ f 2, concatenated hidden state from the preceding cell
ht−1 and input vector xt, and some bias b f2 . But, instead of streaming this value into
the cell’s current state, the value is multiplied by a tanh function with the same pa-
rameters. Then, (5.4) and (5.5) are summed to derive the cell’s current state ct. This
summation maintains a constant error through the long-term sequence during train-
ing and solves the vanishing gradient problem (Goodfellow, Bengio, and Courville,
2016). Equation (5.6) is the output gate that computes the hidden state by taking a sig-
moid function over weight matrix θh′t

, concatenated hidden state from preceding cell
ht−1 and input vector xt, and some bias bh′t

. This is multiplied by tanh function with
the cell’s current state ct. The output gate, however, is an equivalent of the recurrent
unit in the simple RNN (Goodfellow, Bengio, and Courville, 2016).

As addressed, this thesis considers a many-to-one architecture for ME. The LSTM
output is equivalent to the hidden state value from the last memory cell hme which
is fed into predictor F and adversary A. The module is initialized with all biases
equal to zero at the start of the training procedure; except for the bias in the forget
gate which is initialized as b f1 = 1. (Jozefowicz, Zaremba, and Sutskever, 2015)
have shown that the performance improves when a bias of 1 is used in the forget
gate of every memory cell. The default activation functions - as mentioned in the
formal explanation - are used as suggested by (Hochreiter and Schmidhuber, 1997;
Jozefowicz, Zaremba, and Sutskever, 2015). In feed-forward networks, the number
of hidden nodes and hidden layers must be determined. However, in LSTMs, the
hidden nodes are referred to as the units in the memory cell which are initialized
equal to the dimension of the input vectors xt to capture all available information in
input tokens (Elazar and Goldberg, 2018; Goodfellow, Bengio, and Courville, 2016;
Sutskever, Martens, and Hinton, 2011). As addressed in Section 5.1, the experiment
uses 300-dimensional GloVe embeddings which are expanded to 301-dimensional
vectors by including the protected attribute z to each vector. Therefore, each memory
cell is initialized with 301 units. The number of memory cells, however, can be
referred to the number of time steps taken by the LSTM component through each
sequence. As determined in Section 5.1, all sequences are padded and truncated to
be of length 150 in the experiment. Thus, the number of memory cells are set to
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contain 150 cells. Moreover, the ME is initialized with one LSTM layer and is not
tuned with more layers for computational reasons.

Since LSTMs maintain information through memory cells, the overfitting problem
can occur. This problem refers to a model that fits the training data almost perfectly.
Specifically, overfitting occurs when models capture the noise in the training data
for which the performance cannot generalize on new data (Goodfellow, Bengio, and
Courville, 2016). To avoid this problem in the LSTM module, the dropout regulariza-
tion method is implemented between the embedding and LSTM module. This prob-
abilistically ignores nodes from the prior layer during training such that the weight
contributions to subsequent layers are temporally removed on the forward pass and
no updates are applied on the backward pass (Goodfellow, Bengio, and Courville,
2016). To implement dropout, the dropout rate is tuned over the set [0, 0.2, 0.5] where
the rate determines the percentage of nodes to ignores during training.

GloVe Word Embeddings Before the customer reviews xcon can be fed into the LSTM
module, the words in each document must be transformed into word vectors via
an embedding layer. Though, it is common practice to use pretrained embeddings
to leverage the semantics and syntactic relationships learned from a large text cor-
pus. However, as addressed in Section 2.4, some studies have identified that such
pretrained embeddings contain stereotypical gender biases. Since the presents of
gender biases in GloVe embeddings are more studied compared to other methods,
the pretrained GloVe embeddings with 300-dimensional vectors is used in this work.
But, what are word embeddings? Embeddings represent words w in a d-dimensional
vector w ∈ Rd where words with similar semantic meaning obtain closely related
vectors (Mikolov et al., 2013; Pennington, Socher, and Manning, 2014). Thus, the se-
mantic information in vectors enables downstream models to learn the relationships
among words (Allen and Hospedales, 2019; Mikolov, Yih, and Zweig, 2013).

The GloVe embeddings are trained over a Common Crawl corpus with 840 billion
tokens and vocabulary size of 2.2 million to create 300-dimensional word vectors.
Intuitively, this language modeling method has learned the word embeddings via a
log-bilinear model which takes a term co-occurrence matrix (TCM) based on a skip-
gram window as input (Pennington, Socher, and Manning, 2014). The skip-gram
window determines the considered size of the local context for a specific target word,
i.e. focal word. In other words, the GloVe model is trained to predict and transform
the focal word into a word embedding based on given contextual terms (Penning-
ton, Socher, and Manning, 2014). To use the pretrained embeddings, this work uses
the word vectors as weights in the embedding layer. This is often referred to as
transfer learning. To use the pretrained embeddings for other prediction domains, it
is common to retrain or so-called fine-tune the vectors during the training procedure.
However, for computing power reasons, the GloVe embeddings are not fine-tuned
in this thesis. Even though not retrained, it would be expected that fine-tuning the
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pretrained vectors amplifies and captures the stereotypical gender biases in more
detail which should be kept in mind for future studies.

5.2.3 Classification Components

In the experiment, the two expert components CE and ME are simultaneously trained
and combined via a shared hidden layer in predictor F to generate the main predic-
tions ŷ. The shared hidden layer concatenates the experts’ activation values as:

hF = Fδ(hce(xadm), hme(xcon, z)) (5.7)

With hF as the transformed hidden representation for the shared hidden layer in F
and Fδ as the weight matrix and activation function to derive representation hF. Pre-
dictor F is designed as a feed-forward module with one hidden and output layer.
As addressed in Section 5.2.1, the number of hidden nodes and layer components
can affect the performance. However, when a model contains more than one hidden
layer, it rarely improves the overall performance as (Saeed and Snášel, 2014) have
argued. Additionally, when more hyperparameters are tuned via the grid search,
the number of training models increases. Therefore, given these reasons, predictor
F is initialized with one hidden layer component. The number of hidden nodes,
however, is tuned by the same principle as addressed in Section 5.2.1. More specif-
ically, the number of nodes are tuned by iterating over three equally spaced values
in the interval [nout, ninp] or [107, 209, 311]. The number of output nodes, however,
is equivalent to the number of classes in the classification problem at hand. In this
work, the experiment is focused on predicting product rating classes which are di-
vided into three classes. Hence, the number of output nodes is set to three nodes.
Since the output layer has three nodes and focuses on a classification problem, the
layer is set to use the softmax activation function. This is a sigmoidal function that
distributes the predicted probabilities throughout each output node (Goodfellow,
Bengio, and Courville, 2016). When a binary classification problem is addressed,
the softmax function is equivalent to the sigmoid function (Goodfellow, Bengio, and
Courville, 2016). The hidden layer considers the ReLU activation function given the
fact that the saturation problem could occur as explained in Section 5.2.1.

Representation hme from the Mitigation Expert (ME), however, is not only fed into
predictor F. To implement the adversarial debiasing algorithm, hme is also fed into
adversary A to make hme oblivious from protected attribute z. In terms of model
architecture, adversary A is initialized with the same initialized design as used for
predictor F. But, the number of nodes in the hidden layer component is not tuned
over three equally spaced values in the interval [nout, ninp]. The A follows the same
number of hidden nodes proportionally. More specifically, when the F trains a model
with the minimum number of hidden nodes, i.e. 107 hidden nodes, the A uses also
the minimum number of hidden nodes. This holds for the average and maximum
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sets of hidden nodes as well. Hence, A uses the set [101, 201, 301] as the minimum,
average and maximum number of hidden nodes respectively. This ensures that both
the F and A have the same prediction capacity during the adversarial game. Also, it
reduces the number of training models in the grid search. Moreover, the number of
output nodes is set to the number of classes in protected feature z. Since experiment
focuses on debiasing representation hme with respect to gender, the number of output
nodes in the A is set to two which is equivalent to the binary [male, f emale] classes.
With respect to the activation functions, the sigmoid function is used in the binary
output layer whereas the hidden layer is initialized with ReLU function.

During training, F and A are trained to minimize some loss function. In this work,
the categorical cross-entropy and binary cross-entropy loss functions are used. These are
selected because the experiment addresses a multi-class problem in the main task
and binary problem in the adversarial task. The loss functions can be formalized as:

L(ŷ, y) = −
N

∑
i=1

K

∑
K=1

yik log Fk(hce(xadmi), hme(xconi, zi)) (5.8)

L(ẑ, z) = −
N

∑
i=1

(zi log A(hme(xconi, zi))− (1− zi) log(1− A(hme(xconi, zi)))) (5.9)

Where yik is the ground-truth label for class k and ith-example multiplied by the loga-
rithmic probability prediction of predictor F for each class k and ith-example in (5.8).
In (5.9), zi is the ground-truth label for each ith-example in the sensitive prediction
task. More intuitively, both cross-entropy measures how far away the prediction is
for each class from the true target classes, which is either zero or one, and averages
the error over the total number of training observations to obtain the overall loss
(Goodfellow, Bengio, and Courville, 2016). Moreover, all weights in the model are
being updated by using the Adam optimization method. As discussed in Section 2.1,
this optimization approach avoids local minima and saddle points, and converges
fast where only the initialized learning rate and mini-batch sizes can be tuned. To
obtain the best performing model, the learning rate (LR) is initialized with the de-
fault LR = 0.001 in combination with a LR scheduler that reduces the LR by a factor
of 0.1 when the training loss value has stopped improving after five epochs (Kingma
and Ba, 2015). The mini-batch sizes are tuned by considering the sizes [64, 128, 256].
(Keskar et al., 2017) have shown that batch sizes outside of [32, 512] are most likely to
be sub-optimal for which the three equally spaced batch sizes [64, 128, 256] are used
in training. Moreover, to avoid overfitting and reduce the computational time, early
stopping is used in this work. As discussed in Section 5.2.2, dropout is a regulariza-
tion method that can be used to avoid overfitting. Early stopping, on the other hand,
is another regularization method. This interrupts the training procedure when the
validation loss value does not improve for a number of epochs (Goodfellow, Bengio,



Chapter 5. Debiasing Performance on Product Review Data 45

and Courville, 2016). Hence, in the experiment, early stopping is used such that it
interrupts the training procedure after 15 epochs without improvements on the val-
idation loss. It is important to note that this method is only applied on the baseline
model that contains ME, CE and F as introduced in Section 5.2.4. The adversarial
debiasing setting, on the other hand, does not use early stopping during the training
procedure. This would allow the adversarial minimax game to have more time in
learning and mitigating the protected attribute z from representation hme. Thus, in
this work, the expert components ensembles in F where hme is also fed into A. In
the adversarial setting, both classifiers are simultaneously trained to predict ŷ and
ẑ by minimizing the loss functions while the adversarial minimax game attempts to
satisfy the desired level of fairness in predictor F.

5.2.4 Evaluation Setting and Measures

To evaluate the performance and the effectiveness of the extended adversarial learn-
ing algorithm, it is important to compare some measures among a baseline and de-
biased system. Therefore, two models are created and trained: (i) biased model and
(ii) debiased model. The biased model serves as a baseline and follows the same ar-
chitecture as previously introduced. However, instead of training the entire system
simultaneously, the baseline does not consider the adversary A. In other words, the
biased system trains the Control Expert CE, Mitigation Expert ME and predictor F
to obtain the best performance on the main prediction task without being debias-
ing through A. This baseline setup ensures that the optimal hyperparameters are
selected based on the main task performance in F. The debiased model, on the other
hand, considers the same model components including A and implements the ad-
versarial debiasing method as suggested in Section 4. However, instead of training
the debiasing model from start, this system uses the pretrained weights from the
baseline for CE, ME and F. This makes it possible to evaluate the effectiveness of the
adversarial minimax game and sample weighting scheme in more detail, and makes
the comparison more reliable. Moreover, as addressed in Section 4.1.2, the adver-
sarial minimax game contains γ that controls the intensity of the debiasing effect.
This trade-off parameter is, however, not tuned. Instead, the debiasing model incre-
ments γ over time as γ =

√
t where t is the train step counter. (Zhang, Lemoine, and

Mitchell, 2018) have shown that F experiences much easier time learning to make A
fail in predicting the protected attribute when the debiasing parameter is increased
as γ =

√
t. Also, the unintended gender bias that is addressed in the experiment

must be removed completely. It is not justifiable to maintain some bias in the model
since the protected groups can still be treated differently in that case. Hence, when
γ increments over time, the debiasing results are more ethically sound.

To compare the performances among the models, two measures are used. Since the
database is imbalanced in the target class distribution, the following class-specific
measures are used that can identify the class- and overall performance:
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Recall This measures the correctly classified examples compared to the total number
of examples that actually belong to the specific class, where its value is bounded
between [0, 1] (Tharwat, 2018). The metric is for m classes and with true positive
(TP) and false negative (FN) derived as:

Recall = ∑m
i=1 TPi

∑m
i=1 TPi + ∑m

i=1 FNi
(5.10)

Balanced Accuracy (BA) This computes the average accuracy rate per class between
[0, 1] which is more robust for imbalanced classes than the conventional accuracy
metric. The conventional measure may yield an optimistic result for over-represented
classes where the balanced accuracy will drop to chance when this occurs (Brodersen
et al., 2010). The formula to derive this metric for m classes and with true positive
(TP), false positive (FP), true negative (TN) and false negative (FN) is:

BA =
1
2
[

TPm

TPm + FNm
+

TNm

TNm + FPm
] (5.11)

Fairness measures As introduced in Section 2.3, the fairness constraint that must
hold after applying the adversarial ensemble-based framework is defined as:

P(ŷ|z = 0, xadm) = P(ŷ|z = 1, xadm) (5.12)

This constraint requires that the proportion of each gender group obtain equal pre-
dictive outcomes per class given some admissible feature. To assess the effectiveness
of the debiasing method, the Positive Rate (PR) is used which is derived as:

PRm =
TPm + FPm

TPm + FPm + TNm + FNm
(5.13)

With True Positive (TP), False Positive (FP), True Negative (TN) and False Neg-
ative (FN) for each m class. This metric is computed based on predictions given
some pre-selected product categories and assessed for each gender group separately.
Thus, the Positive Rate (PR) evaluates whether the fairness constraint in (5.12) holds
which is the main objective in the experiment.

5.3 Experimental Results

Before the effectiveness of the adversarial method can be assessed, the baseline and
debiased models must be trained. The first step is to tune the baseline system to
obtain the best architecture on the main prediction task. As introduced in Section
5.2.4, the model does not consider the adversary A for which only the Control Ex-
pert CE, Mitigation Expert ME and predictor F are considered. Section 5.2.1 have
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addressed that two variants of CE must be initialized: variant (i) containing one hid-
den layer and variant (ii) with two hidden layers. Both variants are setup with the
same parameters in ME and activation functions as explained in Section 5.2 to min-
imize the categorical cross-entropy cost function. The two variants are tuned over
the remaining hyperparameters such as (i) number of hidden nodes for each hidden
layer in CE and F iterates over [4, 7, 10] and [107, 209, 311], (ii) dropout rates in ME
iterates over [0, 0.2, 0.5] and (iii) mini-batch sizes in sets of [64, 128, 256]. In total, 162
models are trained with 100 epochs each where early stopping is used to interrupt
the training procedure given the non-improving validation loss criteria. Moreover,
the Adam optimizer is used with learning rate (LR) = 0.001 and LR scheduler that
factors the LR by 0.1 when the training loss has stopped improving for 5 epochs.

After tuning the hyperparameters, all model performances are evaluated by assess-
ing the loss curves on the training and validation data. This has shown that all sys-
tems with two hidden layers in CE either overfits the training data or have diverged
immediately from start. The models with one hidden layer, on the other hand, re-
sulted in six models that have converged. To validate these performances over the
set of hyperparameter values, some other training methods should be tested in the
learning setup. A simple method is to use multiple random weight initializations at the
start of the learning procedure; where each random start ensures that the model is
trained via different learning patterns. Another approach is to use different optimiza-
tion methods; where each method adjusts the weights and learning rates differently.
Also, the learning rate can be tuned with smaller values to reduce the learning speed
and step sizes at each weight update iteration. This could avoid overfitting because
it ensures that the updated weights are less likely to overshoot the optimum. It
should be noted that smaller learning rates are more likely to derive at local minima
and saddle points for which the learning rate must be initialized with some caution.
Finally, different regularization methods can be tested. In the experiment, dropout is
applied on the LSTM component. However, another regularization technique that
can be used is weight decay. This shrinks the weights at every training iteration by
multiplying the parameters with a factor slightly less than one (Goodfellow, Ben-
gio, and Courville, 2016). Hence, these methods could be used to validate whether
the six models that have converged are indeed the best and only model states with
generalizable performances. But, due to computational reasons, this work has only
applied the training setup as explained in Section 5.2.

From the six models that have converged, the two models with the smoothest learn-
ing curves - which refers to a stable training procedure - are used for further eval-
uation. Appendix C.1 shows the learning curves for both systems. One of the two
models - which is defined as variant A - contains 4 and 311 hidden nodes in CE and F
respectively, dropout rate of 0.2, and mini-batch size of 64. The other model - which
is defined as variant B - contains 10 and 209 hidden nodes in CE and F respectively,
dropout rate of 0.5, and mini-batch size of 64. In Table 5.3, it can be evaluated that
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variant B seems more balanced in the recall and balanced accuracy rates. Where the
recall rates in variant A are 0.4742, 0.5195 and 0.8486 for the negative, neutral and pos-
itive classes, variant B obtained recall rates with a relatively smaller gap in between
the classes. This seems to indicate that variant B is more balanced in its performance.
Specifically, variant B seems to predict the minority classes, i.e. negative and neutral
rating classes, relatively better compared to variant A. The balanced accuracy (BA)

rates validates this argument. As explained in Section 5.2.4, the BA rate drops to
chance when the majority class overpowers the minority classes. Table 5.3 shows
that the BA rates in variant A are relatively closer to randomness, i.e. BA = 0.5,
than variant B. Hence, variant B obtained an average balanced accuracy of 0.7105
whereas variant A obtained an average balanced accuracy of 0.6634. Moreover, to
select the best model, the objective function and its obtained values must be eval-
uated. Table 5.3 shows that variant A obtained loss values of 0.7477 and 0.9175 for
the training and validation data; whereas variant B obtained a training loss of 0.7296
and validation loss of 0.8602. As addressed in Section 5.2, the purpose of the train-
ing procedure is to minimize the objective function. Even though the differences
between variant A’s and variant B’s training loss are minimum, the gap between
the training and validation loss for variant A is relatively larger with ∆ = 0.1698
than the difference in variant B with ∆ = 0.1306. The larger gap between training
and validation loss could indicate that the training data does not provide sufficient
information to learn the prediction task. On the basis of the balanced accuracy and
result on the objective function, variant B is used in the remainder of the experiment.

Variant A Variant B

Recall Accuracy Recall Accuracy

Negative 0.4742 0.6492 0.6758 0.7372

Neutral 0.5195 0.6689 0.5479 0.6775

Positive 0.8486 0.6722 0.8186 0.7167

Train Loss 0.7477 0.7296

Validation Loss 0.9175 0.8602

TABLE 5.3: Classification performances for selected baseline models

The second step is to apply the adversarial ensemble-based framework by train-
ing the debiased system. As discussed in Section 5.2.4, the debiased model uses
the pretrained weights and architecture from baseline variant B for CE, ME and F.
However, to mitigate the gender biases, the adversary A is integrated such that the
adversarial minimax game can be used. Since baseline variant B contains 209 hidden
nodes in F, the debiased model is initialized with 201 hidden nodes in A which is
the average set of hidden nodes as explained in Section 5.2.3. All other parameter
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setups are set as explained in Section 5.2 with the objective to minimize the categor-
ical and binary cross-entropy cost function in F and A respectively. Even though
the baseline model is trained by using early stopping, the debiased system is trained
over 100 training steps without this method. This provided the model enough time
to train and converge in the adversarial minimax game. Figure 5.6 shows the adver-
sary (A) loss curves as training progresses during the adversarial game. It can be
identified that A’s loss was maximized and converged during training.

FIGURE 5.6: Adv. loss
curves over epochs

Recall Accuracy

Negative 0.6532 0.7507

Neutral 0.4078 0.6363

Positive 0.8834 0.7099

TABLE 5.4: Debiased
model performance

To validate whether A’s ability to predict the gender z based on ME, Appendix C.2
shows the F and A prediction accuracy on validation set as training progresses. It
was expected that the accuracy rate for A would stabilize around chance or p = 0.5
to ensure that ME is oblivious for the gender information z. But, it can be seen
that the accuracy curves have stabilized around p = 0.79. Even though it seems
that A can predict z, this is rather misleading and is not the case. Indeed, since
79 percent of the customers are males and 21 percent are females in the Amazon
database, A’s ability to predict z has achieved the level of chance. As (Brodersen
et al., 2010) have argued, classification models can assign every observation to the
majority class and achieve accuracy rates that mimics the imbalanced distribution.
When assessing F’s learning curve, Appendix C.2 shows that both the training and
validation loss curve remains constant which is as expected. The weights for CE, ME
and F were pretrained to obtain baseline variant B and has converged during the
base training. Nevertheless, the training loss curve have reduced slightly where the
validation loss increased with a relatively small difference. Thus, it can be expected
that the debiased main task performance does not differ much. Appendix C.2 shows
F’s prediction accuracy over the number of training steps which indicates an increase
in prediction performance. However, to verify whether the prediction performances
are not reflecting the imbalanced database, Table 5.4 shows the recall and balanced
accuracy rates. This indicates that the debiased system can be considered balanced
in its performance. The recall rate is balanced to some extent where the balanced
performance is validated by the balanced accuracy rates. Hence, the debiased model
obtained an average balanced accuracy rate of 0.6990.
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After training the baseline and debias models, the effectiveness of the adversarial
ensemble-based method can be assessed. As mentioned in Section 2.3 and Section
5.2.4, the fairness notion focuses on ensuring that acceptable discrimination can oc-
cur in the predictive outcomes only through the dependence among admissible in-
formation. Therefore, the Positive Rate (PR) is used and derived for each gender
group to assess whether the fairness constraint holds. Appendix D shows the confu-
sion matrices for each product category and gender group. To examine the fairness
notion, two product categories are selected to be assessed: (i) Tools and Home with
Do-It-Yourself (DIY) and other home improvement products, and (ii) Sport and Out-
doors with sports and outdoor products.

First, the Tools and Home category is evaluated. Table 5.5 shows the PRs for both the
baseline and debiased systems. When evaluating the discrimination in the baseline
performance, it can be identified that the model is biased to some extent. The PRs
shows that male written reviews were more likely to be classified as negative and
neutral rated products, whereas female written reviews were more likely to be pre-
dicted as positive rated products. The PRs for male and female groups across the
rating classes are: 0.1268 > 0.1223, 0.1609 < 0.1304 and 0.7123 < 0.7473. Based on
these rates, it can be ascertained that the baseline system discriminates in its classifi-
cation performance. Indeed, female reviewers are treated to be more positive in their
predicted product ratings for Tools and Home products whereas male reviewers are
considered to be more neutral en negative in their predicted ratings. Even though
male written reviews are more likely to be classified as negative, the difference be-
tween the PRs for both gender groups in the negative class is minimum.

Baseline Debiased

Negative Neutral Positive Negative Neutral Positive

Male 0.1268 0.1609 0.7123 0.1174 0.0998 0.7828

Female 0.1223 0.1304 0.7473 0.1170 0.0905 0.7925

∆ 0.0045 0.0305 0.0350 0.0004 0.0093 0.0097

TABLE 5.5: PR for Tools and Home category predictions for gender
groups, with and without adversarial debiasing

When the debiasing performance is assessed, it can be seen that some PRs are re-
duced and approaches zero in the proportional differences across the gender groups.
Indeed, the rates are approximately equal across male and female reviewers and
product rating classes compared to the baseline model; from ∆ = 0.0045 to ∆ =

0.0004 in the negative class, ∆ = 0.0305 to ∆ = 0.0093 in the neutral class and
∆ = 0.0350 to ∆ = 0.0097 in the positive class. Thus, the adversarial debiasing
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method seems to be effective in reducing the level of discrimination where the debi-
ased system nearly satisfies the fairness constraint in the Tools and Home category.

The second product category to assess whether the fairness constraint holds is the
Sport and Outdoors category. Table 5.6 shows the PRs for both the baseline and de-
biased systems. Based on the baseline performance, it can be identified that the
system was biased due to some differences in the predicted proportions across the
gender groups. The PR shows that female written reviews were more likely to be
predicted as either negative or positive rated products whereas male written reviews
were more likely to be classified as neutral rated products. The PRs for male and fe-
male groups across the product rating classes are: 0.0998 < 0.1039, 0.1871 > 0.1690
and 0.7131 < 0.7271. Thus, it can be ascertained that the baseline model discrimi-
nates in the rating predictions for Sports and Outdoor products to some extent. The
female reviewers are considered to be more critical and positive in their predicted
product rating towards Sports and Outdoor products whereas male reviewers are
treated to be more neutral in their predicted ratings. However, the bias seems to
be less severe compared to the baseline system for Tools and Home products. In-
deed, the PR differences across the gender groups are minimum with ∆ = 0.0041,
∆ = 0.0181 and ∆ = 0.0140 for the negative, neutral and positive classes.

Baseline Debiased

Negative Neutral Positive Negative Neutral Positive

Male 0.0998 0.1871 0.7131 0.0886 0.1219 0.7895

Female 0.1039 0.1690 0.7271 0.1039 0.1126 0.7835

∆ 0.0041 0.0181 0.0140 0.0153 0.0093 0.0060

TABLE 5.6: PR for Sports and Outdoors category predictions for gender
groups, with and without adversarial debiasing

After applying the debiasing method, it is expected that the differences in PRs be-
tween the proportion of each gender group becomes very close to zero since the dif-
ferences were already relative small in the baseline setting. Indeed, for the debiased
model, it can be assessed that the PRs are reduced and approaches zero in the pro-
portional differences across the male and female written reviews for the predicted
neutral and positive classes with ∆ = 0.0093 and ∆ = 0.0060. For the negative class,
however, the difference in the PRs across the male and female reviewers increased
from ∆ = 0.0041 in the baseline to ∆ = 0.0153 in the debiased model. This seems
to be odd and was not expected because the adversarial method should mitigate
gender information from the representation in ME. As seen in Table 5.6, the PRs
between the baseline and debiased system with respect to female reviewers remains
the same whereas the male’s PR in the debiased model have decreased compared to



Chapter 5. Debiasing Performance on Product Review Data 52

the PR in the baseline model. This pattern could be explained as a negative and un-
avoidable side-effect of the fairness notion as addressed in Section 2.3. Since the class
distribution is imbalanced, the constraint can misclassify qualified examples on pur-
pose to enforce equality in the positive class. Even though the increased differences
across the gender groups in the negative rating class, the adversarial ensemble-based
methods seems to be effective in reducing the gender bias in the model.

Category Baseline Debiased

All Beauty 0.1433 0.0627

Amazon Fashion 0.0647 0.0611

Arts and Crafts 0.0339 0.0304

Automotive 0.0257 0.0172

Scientific 0.0447 0.0382

Luxury Beauty 0.2194 0.1045

Musical Instruments 0.1233 0.1161

Video Games 0.0769 0.0432

TABLE 5.7: Average PR differences for all other product category pre-
dictions for gender groups, with and without adversarial debiasing

Based on these results, it can be determined that the adversarial debiasing method
seems to be effective in mitigating the discrimination; where it nearly obeys the
fairness constraint in both categories. However, to validate the consistency of the
results, Table 5.7 shows the average PR differences across the gender groups and
rating classes for all other product categories. It can be identified that the discrimi-
nation across the categories has reduced to some extent. For instance, the average PR
differences between the baseline and debiased model have reduced significantly in
the All Beauty, Automotive, Scientific, Luxury Beauty and Video Games categories. The
average PR differences for the other categories, however, reduced with a smaller dif-
ference. This could be explained with the same side-effect as addressed for the dis-
crepancy in the Sports and Outdoors category; where the constraint could misclassify
qualified observations to balance the PRs across the target classes. Another expla-
nation could be the number of examples per product category. Even though the test
data contains 8.250 observations, the number of observations per product category
could be too small. This could exaggerate or understate the differences across the
categories. However, the adversarial debiasing method seems to be effective and
nearly obeys the defined fairness constraint with only a small effect on the average
balanced prediction accuracy in the overall model performance (71.05% vs. 69.90%).
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6 Conclusion

Machine Learning (ML) has become an indispensable part of society. Due to the in-
creasing amount and complexity of data, organizations are more reliant on ML to
obtain insights and support decision-making. Among different ML methods, Deep
Learning (DL) models have increased in industry usage. But, there is a growing
concern that the use of DL can accentuate antisocial biases. Though, not all types
of discrimination are unfair, this thesis proposed an adversarial ensemble-based DL
framework such that acceptable discrimination can occur through the dependency
on admissible information. To explain admissible discrimination, consider a Rec-
ommender System (RS). This system is viewed as fair when it treats gender groups
with similar product interests similarly in the recommending process. But, when the
groups have dissimilar interests, the discrimination in the recommended products
across gender groups can be considered as reasonably fair. To create such a frame-
work, three research questions were formulated which are summarized below.

The first research question was formulated as: What adversarial debiasing approaches do
exist and are effective to control and mitigate unintended biases in deep learning models? In
Section 3, two adversarial learning methods were examined and both were effective
in their own setting. One method was focused on mitigating the protected informa-
tion from the hidden representations by introducing an adversarial minimax game
between two classifier components. The other approach achieved the same objective
by considering the generated predictions in the adversarial game instead of the hid-
den representation. However, it was concluded that the latter method seemed to be
more robust to obtain unbiased results. Since the weight update-rule is adjusted by
adding a gradient projection term, the approach considered the possibility that the
predictor and adversary can help each other during training. Based on this analysis,
it was found that both methods were not able to control and mitigate biases at the
same time. Both learning setups were designed to make the entire prediction model
oblivious for the protected information.

The second research question was defined as: How can the adversarial learning method
be adjusted to debias hidden representations while allowing acceptable discrimination through
admissible features? In Section 4, an adversarial ensemble-based framework has been
proposed which is defined as an ensemble of expert components. In this setting,
it is proved that the adversarial minimax game optimum ensures that latent pro-
tected information can be mitigated from hidden representations in the Mitigation
Expert while maintaining the information in the Control Expert. Also, it is shown
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that a sample weighting scheme is required to control and decorrelate the relation-
ship between admissible and protected features. To obtain more unbiased results,
the adjusted weight update-rule with the gradient projection term is integrated in
the framework. Based on these adjustments, it was proved that the acceptable dis-
crimination can only occur through the dependency among the admissible features.

The third research question was defined as: To what extent can the adversarial ensemble-
based method control and mitigate unintended gender biases in product reviews such that
rating predictions and gender information are conditional independent given the product cat-
egories? In Section 5, a debiasing experiment was conducted on an Amazon product
review database. This was used to validate the adversarial ensemble-based frame-
work and theoretical claims. By evaluating the Positive Rate (PR) measure across a
baseline and debias model, it is shown that the debiasing method indeed mitigates
the gender biases and nearly obeys the fairness constraint. Based on the pre-selected
Tools and Home and Sports and Outdoor product categories, it was ascertained that
the baseline model was biased towards a gender group for each rating class in both
contexts. After applying the adversarial debiasing method, the PR differences were
reduced and approach zero across the gender groups for the Tools and Home category.
For the Sports and Outdoor category, on the other hand, it was identified that the PR
differences were reduced and approach zero in the neutral and positive rating classes.
In the negative rating class, however, the PR difference increased. This performance
discrepancy occurred to ensure equality in the PR across gender groups in the posi-
tive rating class which can be seen as a negative and unavoidable side-effect. Since
the class distribution for each gender group is imbalanced, the constraint can mis-
classify qualified examples on purpose to balance the PRs across the classes. For all
other product categories, it was found that the discrimination across the categories
was reduced to some extent. While the average PR differences were reduced signifi-
cantly for most categories, the average PR differences in the Amazon Fashion, Arts and
Crafts and Musical Instruments reduced with a smaller difference. One explanation
for this result was focused on the same negative side-effect that possibly occurred in
the Sports and Outdoor category. Another explanation was that the number of exam-
ples per product category is not sufficient which could exaggerate or understate the
PR differences. Even though the discrepancies and small proportional differences in
the PRs, the adversarial ensemble-based method seems to be effective in reducing
unintended gender biases with a small effect on the average balanced accuracy in
the overall model performance.

To conclude, the adversarial ensemble-based framework is a reasonable method
to control and mitigate unintended biases such that acceptable discrimination can
only occur through admissible information. Policymakers and practitioners can add
this method to their toolbox and use the approach when DL systems are used in
business- as well as social-critical situations. In this work, one of the given example
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cases in which the framework can be used was in review-based Recommender Sys-
tems (RS). When facing the rating sparsity problem, the adversarial ensemble-based
method would ensure that customer reviews are classified in product rating classes
without discriminating across gender groups. Thus, the rating similarities in the RS
become more realistic and less biased such that gender groups that are interested in
products from similar categories are treated similarly. Also, instead of mitigating the
gender information from the entire model, allowing acceptable discrimination in the
predictions only through product categories ensures that most predictive informa-
tion is maintained without sacrificing the main task prediction performance.

As with any other research, this work contains some limitations and open question
for future studies. First, the limitations are discussed. One limitation is the limited
size of the database used in the experiment due to computational reasons. In the re-
sults, minimum differences in the average evaluation measures were identified for
some product categories. This pattern was explained as a side-effect of the small
number of observations per product category. More specifically, when product cat-
egories have little data, classifying observations differently could exaggerate or un-
derstate the actual debiasing effect. Thus, while the gender proportions per product
category were maintained in the experiment, increasing the database and validate
that each category has enough examples could solve the performance discrepancy.

A second limitation is that not all models have converged during training for which
it was not possible to select the most optimal model. For instance, the selected base-
line model that was used as starting point in the adversarial debiasing procedure
still improved to some extent. Due to lack of computing resources, some conces-
sions were made to reduce computational time in the training procedure such as the
implementation of early stopping. However, when having enough computing re-
sources, training the models over more train steps and use other training methods
could validate the performances over the set of hyperparameter values.

The last limitation is the model architecture used. In the experiment, a simple Long
Short-Term Memory (LSTM) model component is used to encode the text and pro-
tected data into a hidden representation while considering the word dependencies
and sequential text order. But, there exists more advanced sequential architectures.
For instance, extending the simple LSTM component to a bi-directional LSTM or
even to the state-of-the-art Transformer with attention component could capture the
stereotypical biases through the word dependencies in more detail. However, these
methods are not used to validate the adversarial ensemble-based framework due to
the required computational time and resources.

This thesis has some open questions that require future work to answer. One open
question is: does considering the protected attribute as an additional feature in the en-
coder indeed help the adversarial algorithm without sacrificing too much in the prediction
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accuracy? It was hypothesized that adding the protected attribute as an extra di-
mension into the contaminated embeddings help the debiasing method to be more
effective in omitting the sensitive information from the hidden representation with-
out reducing the quality of the generated prediction significantly. However, due to
computational reasons, this hypothesis was not tested. Hence, the hypothesis can
be validated by training the debiasing framework with and without considering the
sensitive attribute as an extra dimension into the contaminated features.

The second open question is: does the adversarial debiasing method remains effective
while fine-tuning the pretrained GloVe embeddings or using other language models? It was
hypothesized that fine-tuning pretrained word vector would amplify and capture
the gender biases in more detail. Since many studies have identified severe biases in
all language models, fine-tuning the pretrained vectors would learn and reflect the
discriminatory patterns for the prediction task at hand. Thus, to validate the effec-
tiveness of the adversarial debiasing framework, the pretrained word embeddings
should be fine-tuned and different language models should be used in different pre-
diction task settings.

The last open question is: is the adversarial debiasing method effective to satisfy the Equal-
ized Odds fairness constraint? This work focused on enforcing equal predictive rates
such that the predictive outcomes and protected attribute are conditionally indepen-
dent on the admissible information. This is fairness constraint is an equivalent of
the Demographic Parity notion. To validate the robustness of the debiasing frame-
work, the constraint could be extended by conditioning on the target class which
enforces the notion of Equalized Odds. It is expected that the sample weighting
scheme should be adjusted, but this must be proved and validated on its own.
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A Derivation of the Projected
Gradients

Section 4.2 introduced the extended backpropagation weight update-rule. This is
used to prevent gradients in the Mitigation Expert ME helping the adversary A re-
duce its loss. Moreover, the modification in ME’s weight update-rule ensures that
the effectiveness of the adversarial minimax game is maintained. Hence, the weights
in ME are updated according to the following defined backpropagation rule:

θme ← θme−1 − η(
∂L f

∂θme−1
− proj ∂La

∂θme−1

∂L f

∂θme−1
− λ

∂La

∂θme−1
) (A.1)

In Section 4.2, all terms were defined except for the projection term proj ∂La
∂θme−1

∂L f
∂θme−1

.

This term requires some computational steps and is derived as follows:

proj ∂La
∂θme−1

∂L f

∂θme−1
=

x ∗ u
||u||2 u (A.2)

proj ∂La
∂θme−1

∂L f

∂θme−1
= (x ∗ u)u (A.3)

||u|| = 1
||u||u (A.4)

Where ∂La
∂θme−1

is the partial derivative of weight matrix from ME w.r.t. the adver-

sary’s loss function La, and ∂L f
∂θme−1

is the partial derivative of ME’s weights w.r.t. the
predictor’s loss function L f . To compute the projected gradients, the computation

follows (A.2) in which x is the ∂L f
∂θme−1

vector and u is a unit vector of ∂La
∂θme−1

. However,
this expression can be simplified into (A.3) by considering ||u|| = 1. To ensure that
||u|| = 1, ||u|| must be normalized by (A.4). As a result, the gradients in ME are
prevented from moving in a direction that helps A decrease its loss by orthogonally
projecting the ∂L f

∂θme−1
vector onto ∂La

∂θme−1
.
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B Amazon Product Review
Database

B.1 Gender Distribution per Product Category (in %)

Product Category Female Male

All Beauty 73.5 26.5
Amazon Fashion 83.1 16.9
Appliances 31.0 69.0
Arts and Crafts 80.6 19.4
Automotive 9.0 91.0
Cell Phones and Accessories 36.1 63.9
Digital Music 45.3 54.7
Gift Cards 59.2 40.8
Grocery and Gourmet Food 58.5 41.5
Scientific 11.6 88.4
Luxury Beauty 75.2 24.8
Magazine Subscriptions 57.9 42.1
Musical Instruments 10.8 89.2
Office Products 48.7 51.3
Patio, Lawn and Garden 32.3 67.7
Prime Pantry 63.9 36.1
Software 20.9 79.1
Sports 20.9 79.1
Tools and Home 17.1 82.9
Video Games 20.6 79.4
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C Model Training Performances

C.1 Baseline Learning Curves

FIGURE C.1: The loss learning curve for Variant A and Variant B

C.2 Debias Learning Curves

FIGURE C.2: Conventional accuracy curves on validation data (left)
and Predictor loss curve on train and validation data (right)



65

D Debiasing Evaluation

D.1 Product Category Tools and Home Improvement

Baseline Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 89 32 6 127

Neutral 33 60 22 115

Positive 94 182 1,185 1,461

Total 216 274 1,213 1,703

TABLE D.1: Confusion matrix for Baseline model on Tools and Home
category predictions and Male customers

Baseline Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 22 4 2 28

Neutral 7 11 6 24

Positive 17 34 273 324

Total 46 49 281 376

TABLE D.2: Confusion matrix for Baseline model on Tools and Home
category predictions and Female customers
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Debiased Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 93 21 13 127

Neutral 30 45 40 115

Positive 77 104 1,280 1,461

Total 200 170 1,333 1,703

TABLE D.3: Confusion matrix for Debiased model on Tools and Home
category predictions and Male customers

Debiased Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 20 5 3 28

Neutral 7 10 7 24

Positive 17 19 288 324

Total 44 34 298 376

TABLE D.4: Confusion matrix for Debiased model on Tools and Home
category predictions and Female customers

D.2 Product Category Sports and Outdoors

Baseline Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 100 60 10 170

Neutral 41 99 35 175

Positive 90 274 1,605 1,969

Total 231 433 1,650 2,314

TABLE D.5: Confusion matrix for Baseline model on Sports and Out-
doors category predictions and Male customers
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Baseline Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 30 11 3 44

Neutral 12 21 11 44

Positive 17 64 399 480

Total 59 96 413 568

TABLE D.6: Confusion matrix for Baseline model on Sports and Out-
doors category predictions and Female customers

Debiased Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 94 54 22 170

Neutral 37 72 66 175

Positive 74 156 1,739 1,969

Total 205 282 1,827 2,314

TABLE D.7: Confusion matrix for Debiased model on Sports and Out-
doors category predictions and Male customers

Debiased Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 32 7 5 44

Neutral 13 17 14 44

Positive 14 40 426 480

Total 59 64 445 568

TABLE D.8: Confusion matrix for Debiased model on Sports and Out-
doors category predictions and Female customers
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D.3 Product Category All Beauty

Baseline Predicted

Male Negative Neutral Positive Total
A

ct
ua

l
Negative 10 4 3 17

Neutral 21 47 16 84

Positive 1 2 7 10

Total 32 53 26 111

TABLE D.9: Confusion matrix for Baseline model on All Beauty cate-
gory predictions and Male customers

Baseline Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 75 22 8 105

Neutral 8 39 12 59

Positive 9 18 108 135

Total 92 79 128 299

TABLE D.10: Confusion matrix for Baseline model on All Beauty cat-
egory predictions and Female customers

Debiased Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 13 3 1 17

Neutral 22 38 24 84

Positive 0 2 8 10

Total 35 43 33 111

TABLE D.11: Confusion matrix for Debiased model on All Beauty cat-
egory predictions and Male customers
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Debiased Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 76 24 5 105

Neutral 4 42 13 59

Positive 12 24 99 135

Total 92 90 117 299

TABLE D.12: Confusion matrix for Debiased model on All Beauty cat-
egory predictions and Female customers

D.4 Product Category Amazon Fashion

Baseline Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 13 6 2 21

Neutral 1 3 1 5

Positive 3 5 29 37

Total 17 14 32 63

TABLE D.13: Confusion matrix for Baseline model on Amazon Fashion
category predictions and Male customers

Baseline Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 28 12 7 47

Neutral 9 32 8 49

Positive 10 27 139 176

Total 47 71 154 272

TABLE D.14: Confusion matrix for Baseline model on Amazon Fashion
category predictions and Female customers
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Debiased Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 13 7 1 21

Neutral 0 4 1 5

Positive 4 7 26 37

Total 17 18 29 63

TABLE D.15: Confusion matrix for Debiased model on Amazon Fash-
ion category predictions and Male customers

Debiased Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 29 11 7 47

Neutral 13 28 8 49

Positive 10 33 133 176

Total 52 72 148 272

TABLE D.16: Confusion matrix for Debiased model on Amazon Fash-
ion category predictions and Female customers

D.5 Product Category Arts and Crafts

Baseline Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 2 1 0 3

Neutral 0 5 2 7

Positive 3 7 96 106

Total 5 13 98 116

TABLE D.17: Confusion matrix for Baseline model on Arts and Crafts
category predictions and Male customers
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Baseline Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 9 6 1 16

Neutral 4 12 3 19

Positive 9 43 316 368

Total 22 61 320 403

TABLE D.18: Confusion matrix for Baseline model on Arts and Crafts
category predictions and Female customers

Debiased Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 2 1 0 3

Neutral 0 3 4 7

Positive 3 5 98 106

Total 5 9 102 116

TABLE D.19: Confusion matrix for Debiased model on Arts and Crafts
category predictions and Male customers

Debiased Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 8 5 3 16

Neutral 5 10 4 19

Positive 12 27 329 368

Total 25 42 336 403

TABLE D.20: Confusion matrix for Debiased model on Arts and Crafts
category predictions and Female customers
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D.6 Product Category Automotive

Baseline Predicted

Male Negative Neutral Positive Total
A

ct
ua

l
Negative 60 16 4 80

Neutral 15 32 8 55

Positive 58 94 738 890

Total 133 142 750 1,025

TABLE D.21: Confusion matrix for Baseline model on Automotive cat-
egory predictions and Male customers

Baseline Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 10 1 1 12

Neutral 3 7 4 14

Positive 4 9 70 83

Total 17 17 75 109

TABLE D.22: Confusion matrix for Baseline model on Automotive cat-
egory predictions and Female customers

Debiased Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 56 20 4 80

Neutral 14 26 14 55

Positive 44 67 779 890

Total 114 113 797 1,025

TABLE D.23: Confusion matrix for Debiased model on Automotive
category predictions and Male customers
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Debiased Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 9 2 1 12

Neutral 4 7 3 14

Positive 1 4 78 83

Total 14 13 82 109

TABLE D.24: Confusion matrix for Debiased model on Automotive
category predictions and Female customers

D.7 Product Category Scientific

Baseline Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 0 1 0 1

Neutral 2 1 1 4

Positive 1 7 55 63

Total 3 9 56 68

TABLE D.25: Confusion matrix for Baseline model on Scientific cate-
gory predictions and Male customers

Baseline Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 0 0 0 0

Neutral 0 0 1 1

Positive 1 1 6 8

Total 1 1 7 9

TABLE D.26: Confusion matrix for Baseline model on Scientific cate-
gory predictions and Female customers
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Debiased Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 1 0 0 1

Neutral 1 3 0 4

Positive 7 7 49 63

Total 9 10 49 68

TABLE D.27: Confusion matrix for Debiased model on Scientific cate-
gory predictions and Male customers

Debiased Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 0 0 0 0

Neutral 0 0 1 1

Positive 1 1 6 8

Total 1 1 7 9

TABLE D.28: Confusion matrix for Debiased model on Scientific cate-
gory predictions and Female customers

D.8 Product Category Luxury Beauty

Baseline Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 0 0 0 0

Neutral 0 1 1 2

Positive 0 0 11 11

Total 0 1 12 13

TABLE D.29: Confusion matrix for Baseline model on Luxury Beauty
category predictions and Male customers
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Baseline Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 0 1 0 1

Neutral 0 0 3 3

Positive 0 7 16 23

Total 0 8 19 27

TABLE D.30: Confusion matrix for Baseline model on Luxury Beauty
category predictions and Female customers

Debiased Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 0 0 0 0

Neutral 1 0 1 2

Positive 0 2 9 11

Total 1 2 10 13

TABLE D.31: Confusion matrix for Debiased model on Luxury Beauty
category predictions and Male customers

Debiased Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 0 0 1 1

Neutral 0 0 3 3

Positive 1 1 21 23

Total 1 1 25 27

TABLE D.32: Confusion matrix for Debiased model on Luxury Beauty
category predictions and Female customers
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D.9 Product Category Musical Instruments

Baseline Predicted

Male Negative Neutral Positive Total
A

ct
ua

l
Negative 12 5 0 17

Neutral 2 8 4 14

Positive 11 22 149 182

Total 25 35 153 213

TABLE D.33: Confusion matrix for Baseline model on Musical Instru-
ments category predictions and Male customers

Baseline Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 2 4 0 6

Neutral 2 2 0 4

Positive 0 4 16 20

Total 4 10 16 30

TABLE D.34: Confusion matrix for Baseline model on Musical Instru-
ments category predictions and Female customers

Debiased Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 11 5 1 17

Neutral 3 5 6 14

Positive 7 10 165 182

Total 21 20 172 213

TABLE D.35: Confusion matrix for Debiased model on Musical Instru-
ments category predictions and Male customers
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Debiased Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 2 4 0 6

Neutral 2 2 0 4

Positive 0 1 19 20

Total 4 7 19 30

TABLE D.36: Confusion matrix for Debiased model on Musical Instru-
ments category predictions and Female customers

D.10 Product Category Video Games

Baseline Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 32 14 1 47

Neutral 10 30 6 46

Positive 27 75 241 343

Total 69 119 248 436

TABLE D.37: Confusion matrix for Baseline model on Video Games
category predictions and Male customers

Baseline Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 5 3 0 8

Neutral 3 1 1 5

Positive 1 17 64 82

Total 9 21 65 95

TABLE D.38: Confusion matrix for Baseline model on Video Games
category predictions and Female customers
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Debiased Predicted

Male Negative Neutral Positive Total

A
ct

ua
l

Negative 30 14 3 47

Neutral 11 20 15 46

Positive 24 33 286 343

Total 65 67 304 436

TABLE D.39: Confusion matrix for Debiased model on Video Games
category predictions and Male customers

Debiased Predicted

Female Negative Neutral Positive Total

A
ct

ua
l

Negative 5 2 1 8

Neutral 2 1 2 5

Positive 1 14 67 82

Total 8 17 70 95

TABLE D.40: Confusion matrix for Debiased model on Video Games
category predictions and Female customers
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