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Abstract

Train timetabling is an important step in efficient railway transportation planning.
In this thesis a new exact model is established and variable reduction and bound
restriction techniques are applied to reduce the computation time needed to solve it.
These techniques can lead to a decrease in computation time of up to 95% in some
instances. The improved exact formulation can solve instances up to 100 trains to
(near) optimality within hours of computation time. A GRASP is designed to solve
large real-life instances. Within one hour of computation time feasible timetables with
a gap of at most 6% on average can be constructed using the GRASP for instances up
to 100 trains. For a large real-life instance consisting of 227 trains a gap of at most 26%
and an expected gap of around 10% can be achieved given 10 hours computation time.
A method for bottleneck identification is added to the GRASP to provide an indication
of which segments could benefit most from an extra piece of track. Adaptations are
discussed to make the GRASP applicable in case of delays and disruptions. One of the
main advantages of the GRASP is that it allows for complete parallel implementation.
Thus given enough computing power, a large number of iterations could be performed
in limited time. It is concluded that the GRASP constructs adequate timetables for
both small and large real-life problems and can be regarded as an interesting addition

to current heuristics for the train timetabling problem.
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1 Introduction

As global production levels among virtually all sectors continue to rise, efficient access to
production goods and ways to easily distribute finished products are more important than
ever. A considerable amount of cargo worldwide is moved by rail. Depending on the region
this can be between 5 and 50% of total cargo haulage, according to Eurostat. Efficient use
of railway networks is crucial to keep transportation cost low, yet in large railroad networks
this proves to be a considerable challenge. The logistical problem of railway transportation
is typically divided up in the following stages: First, the demand needs to be determined and
sufficient rolling stock must be made available to accommodate it. Next, loads are assigned
to specific trains in a way that efficiently utilizes the trains capacity and the nature of the
load. Then, a timetable must be constructed that assures the railway network is used in
such a way that unnecessary delays are kept to a minimum and no collisions occur in the
network. The objective of this step may differ depending on whether passengers or goods
are being transported. After the construction of a timetable, crew and shift assignments are

made to conclude the transportation planning process.

In this research the focus will be on train timetabling. It is of paramount importance that
this step in the transportation planning process is executed precisely, as a single wrong track
assignment or departure time could have disastrous consequences for an entire schedule.
There are a few key distinctions one can make to specify train timetabling problems. Is
the timetable to be made cyclical? And if so, what is the period? Or is the set of trains
to be scheduled changing continuously? A cyclical schedule is more often encountered in
passenger transport, but can also occur in cargo transportation, although is it more common
to have larger periods. The next big distinction is passenger vs cargo transport. Cargo
transport planning is often less affected by small delays than passenger transport. Usually
passenger transport will have more frequent stops as well as shorter stopping times than
cargo transport. Passenger transport will usually take priority over cargo transportation if
there is heavy traffic for both. In many European networks this means that cargo must
be moved mostly outside of peak hours for passenger travel. In more spaced out networks,
on the North American continent for example, this is less of an issue as on large sections
of the network there is barely any passenger traffic. Finally, there is the topic of network
topology. The complexity of the problem changes drastically depending on whether the
entire network consists of single-track segments, whether or not there are passing loops,
double-track segments, or multiple main tracks in general. The main goals of this research

is to construct and benchmark a greedy randomized adaptive search procedure(GRASP) to



solve a cargo variation of the train timetabling problem. The constructed schedule will be
cyclical, meaning that it can be repeated every period. The network under consideration
consists of both single and double track sections and includes passing loops at which trains

can wait to be overtaken.

Besides effective timetabling, network extensions could be considered to increase efficiency
and prepare for an expected increase in demand. The network on a corridor can be extended
by adding an extra track to a section or adding some passing loops. The main question
is where in the network a piece of extra track would be most effective. A good candidate
could be a part of the network that given a timetable has a lot of trains passing each other.
Extending the network on such a ”bottleneck” could allow for a new timetable in which trains
will have to wait less. In this thesis a method will be proposed to assist in selecting portions
of the network that could benefit from an extra piece of track. As delays and maintenance
occur often in real life cases, some information will also be provided on how to adjust the

Algorithms proposed in this thesis to deal with these disturbances.

This thesis is part of an internship at Ab Ovo. Ab Ovo is a consultancy company based in
the Netherlands that is specialized in logistic and supply chain optimization solutions. The
problem tackled in this thesis is inspired by a case provided by Ab Ovo based on a railway

network on the North American continent.

In section 2 literature relevant to the problem and the proposed solution methods is discussed
as well as the relevance of the solution techniques applied in this thesis. In section 3 a clear
problem description is presented, followed by the research questions based on this problem.
In section 4 the methodology is presented. The GRASP algorithm and its parts are discussed
in detail, an exact model for reference is established and some ideas for variable reduction
are discussed as well as the aforementioned bottleneck identification method. In section 5
relevant results are presented after applying both the exact model and the GRASP to test
instances and run-time and solution quality are compared. Relevant meta-parameter choices
will also be discussed in this section. Afterwards the results of a real-life case study provided
by Ab Ovo will be presented in which the GRASP algorithm is applied. Section 6 contains
the discussion of the results, the overall performance of the algorithm and its usefulness in
light of the assumptions made as well as ideas for further research and development. This is

followed by a conclusion summarizing the most relevant findings.



2 Literature

As this thesis is mainly concerned with the problem of finding an efficient feasible time-table
for the trains specified, first a compact overview of existing literature on the train scheduling
problem and proposed solutions for it will be given. First an overview of effective heuristics
will be given, then solution techniques based on exact formulations will be discussed. As
the goal of this research is to investigate the use of a GRASP, some literature will also be
discussed regarding the successful application of this type of optimization scheme. Finally
a brief overview of current research on network extending, timetable disturbances and

stochastic train delay will be presented.

2.1 Heuristics

Over the past few decades, multiple heuristic approaches to different variations of the train
scheduling problem have been proposed. Cai et al. (1998) used a greedy algorithm which
finds feasible solutions within a short computation time. While this heuristic is designed for
single-track railway networks, it could be adapted to also work for mixed single/double-track
networks. This heuristic is reported to be able to solve instances up to 100 trains in a
reasonable time. A broad overview of heuristics including local search, genetic algorithms and
tabu search was presented in Higgins et al. (1997). They conclude that a hybrid algorithm
combining a genetic structure and tabu search yields the best results, followed by genetic
algorithms, which have a significantly smaller computation time. A side note that needs
to be placed is that the generation of the original solution pool is not accounted for in the
computation time of the genetic algorithm applied. Again these heuristics are applied to
the single-track variant of the problem. The local search approach presented is to select a
conflict between two trains that has been resolved by letting one train wait for the other. The
algorithm then checks if it is feasible to let the other train wait instead. If this is feasible a new
objective value is computed. This idea will form the basis of the adaptive search used in the
GRASP in this thesis. Caprara et al. (2006) have used a Lagrangian heuristic to solve large
real world instances quickly. While unlike the previous heuristics it can handle double-track
sections, a drawback is that this heuristic is only applicable to one-way traffic, and thus
solves a severely simplified problem as collisions between trains in opposing directions are
not considered. An ant colony inspired heuristic is proposed in Ghoseiri & Morshedsolouk
(2005). This is only tested on much smaller instances than relevant for this research. The
heuristics mentioned above all focus on speed rather than solution quality. This makes them
good candidates to be used in a situation where a large number of solutions is generated and

improved upon, like a GRASP framework. While these heuristics have been used and cited



often, no literature could be found that uses them in such a context as will be attempted in

this research.

2.2 MIP formulations and methods

Besides heuristics, many solution techniques have been proposed that formulate the problem
in an exact way, which will also be the starting point of this research. In Harbering et al.
(2015) a simplified version of the problem is modelled as a job shop problem and solved
via dynamic programming. The problem is simplified in that it only accounts for one track
networks and assumes equal maximum speed for all trains. While the results look promising,
the formulation is only used for relatively small instances and does not easily seem to lend
itself to adaptation, making it less suitable for multi track applications. Cacchiani et al.
(2008) formulate a model for the train timetabling problem on a one-way corridor and solve
it using a column generation approach. While the performance of this approach in terms of
computation times is promising, it does not easily lend itself to be extended to heavy traffic
two-way corridors. Ghoseiri et al. (2004) constructed a multi-objective formulation of the
problem to balance tardiness and fuel consumption. They use a two step solution method,
first defining a Pareto frontier, followed by a multi-objective optimization scheme based on
this frontier. Castillo et al. (2011) models the problem in a way that is closest to the problem
discussed in this thesis, trying out multiple solution techniques on a corridor which is part
single-track and part double-track. An algorithm which uses bisection rules to guarantee
sharp upper bounds and some variable reduction techniques are applied to keep the algorithm
computationally tractable. Their algorithm performs well in a case study, it does however
differ from the problem central to this research in that there are no passing loops, hence
making overtaking outside of stations not possible. The tackled instances are also smaller
than the problems this research aims to tackle. The ideas that are used for the variable
reduction form the inspiration for some variable reduction strategies applied in the model
constructed in this thesis. In general, the literature is very rich concerning train timetabling
for single-track corridors with sidings, and quite some models were also formulated for mixed
single and double-track, but relatively limited research has been performed considering mixed

track networks with sidings that are subject to heavy traffic in both directions.

2.3 Network capacity and bottleneck analysis

Network capacity analysis is a topic that has mostly been studied in the past 15 years.
Different approaches have been developed depending on the network structure. A method

to estimate the capacity of a double-track network is applied in Landex (2008). They divide



the network into sections and use the concept of compressing the timetable to assess the
approximate total capacity of a network. Things become slightly more complicated in
single-track networks as there is more risk of collision problems. Jamili (2018) propose
a similar strategy but tailored to single-track railways. The goal of this research is not
necessarily to assess the total capacity of a network, but to quickly and efficiently find
potential bottlenecks in the current network. Wahlborg (2004) used a method that uses
the current timetable on a network for practical capacity computations. The goal of this
research is not necessarily to construct a heuristic for finding the best possible extensions,
but to incorporate a method in the GRASP algorithm to indicate potential bottlenecks in

the network. These can then be further evaluated and investigated.

2.4 GRASP algorithms

A GRASP algorithm is used to find a good feasible solution in a setting where the optimization
problem at hand involves a large finite number of alternative choices. The general idea is
to iteratively construct solutions in two phases. In the first phase, a greedy algorithm is
used to construct a solution, however, there needs to be some form of randomness included
in this greedy algorithm. This can be done in a variety of ways. The second stage is to
perform a form of local search on the solution found by the greedy algorithm in which the
goal is to find the optimal solution in a certain neighbourhood. The best solution found
is kept as a reference point and this iterative process is repeated for a certain number of
iterations or until a time limit is reached. The term was first used by Feo & Resende (1995).
They explain the benefits of this intuitive procedure and use it to solve a few variations
on the set covering problem with promising results. Since then the procedure has been
used in numerous contexts. Marques-Silva & Sakallah (1999) and Silva & Sakallah (2003)
have used the procedure to solve variations of the satisfiability problem (SAT). Vianna &
Arroyo (2004) have used it to obtain fast solutions to the multi-objective knapsack problem.
Countless other NP-hard optimization problems have been tackled using this framework.

Timetabling problems are a notable exception.

2.5 Timetable disruptions and stochastic delay

Delays and disruptions occur relatively often in the day to day world of cargo transportation.
Ideally, solution methods to timetabling problems should take these events into account so
that when they occur the current planning can be simply and efficiently adjusted opposed
to creating an entire new timetable from scratch. Liebchen & Stiller (2009) consider the

possibility of taking expected delays into account at the moment of scheduling and discuss



two heuristics to arrive at a certain level of delay resistance. This is more of an a priori
approach to tackling delays. As covering for delays that may not occur leads to loss of
efficiency, an additional goal of this research is to find a way to use a GRASP algorithm to
repair the timetable quickly once a delay occurs. Albrecht et al. (2013) uses a problem space
search heuristic to reschedule trains after disruptions occur. Their idea is to construct a set
of decisions from the moment the disruption occurs that lead to a feasible solution. This
is repeated in a randomized fashion and the best solution is kept. The suggestions in this

thesis are inspired by this idea.

2.6 Summary

The exact formulation constructed in this thesis is in part based on the model presented
in Castillo et al. (2011). The variable reduction techniques discussed in section 4.2 are
inspired by the idea of considering the likeliness of two trains to come into conflict. The
approach in this thesis differs from Castillo et al. (2011) in that passing loops and fleet
heterogeneity are considered, making the model applicable to more complex networks and
train sets. The greedy part of the GRASP discussed in section 4.4 is an extended version of
the algorithm proposed in Cai et al. (1998). The main difference is that the greedy algorithm
used in this research can handle multiple track. The adaptive search part of the GRASP
is inspired by a local search algorithm inHiggins et al. (1997) in which a neighbourhood is
defined by saving all conflicts that were resolved in constructing an initial solution. The
bottleneck identification process of section 4.5 is inspired by Jamili (2018) in the sense that
it investigates which part of the network is busiest given the current timetable. The main
difference is that instead of working with a predefined timetable, we use all feasible timetables
generated by the GRASP to identify the busiest sections of the network. To my knowledge
a GRASP has not yet been used in the current literature to tackle this variant of the time
tabling problem. As greedy algorithms and search algorithms exist, and GRASP schemes
have been useful for finding solutions to many NP-hard problems, a GRASP scheme for this

time tabling problem would be an interesting addition to the current state of the art.



3 Problem description and research questions

3.1 Problem description

The specific problem at hand is a variation of the train timetabling problem. The network
under consideration is a mixed single and double-track network and has passing loops at
which trains can pass or overtake each other. The focus will be on a cyclical, freight
transportation version of the problem, with the period of a week. The rolling stock will be
predefined, meaning that a given set of trains will transport a given set of cargo. Cancellations
and back-up trains will not be taken into account and neither will decoupling or other
alterations to the fleet. The fleet is not assumed to be heterogeneous. Maximum speed,

length and weight may vary among trains. A list of relevant terminology is presented below:

e Station: A station in the network. Trains can wait at station. Some trains may have
mandatory stops at some stations. There may be a different number of tracks going

into the station and going out of the station.

e Passing loop: A small section of double track that can be used to let a train wait until

another train passes.

e Switch: a point in the network where trains can switch track, but which is not a station.
There may be a different number of tracks going into a switch and out of a switch and

trains can be appointed to any track to continue their journey.

e Decision point: a node in the network at which a decision has to be made that affect
the schedule for a train. These consist of all the stations, passing loops and switches

in the network.
e Segment: The part of the network between two decision points.
e Track: a single track on a segment. A segment can consist of multiple parallel track.

e Waiting point: The points in the network at which a train can wait to let other trains

pass. These consist of the stations and passing loops.

e Capacity: The number of trains that are allowed to wait at a certain waiting point at

once. This is generally only one for passing loops.

The goal is to minimize the total travel time of a predetermined set of trains traversing
the network. The focus will be on a single mainline corridor in the network, where trains

enter the corridor from side branches at their origin station and leave the corridor at their



destination. These side branches are not part of the scope and will be disregarded. The
trains traversing the corridor all have a set trajectory of stations where they may need to
stop. On this corridor no collisions may occur and the stations waiting capacity may not
be exceeded during any period in the timetable. The three main decision points in the
network are stations where trains can wait (or have to in some cases), switches where trains
can switch tracks, and passing loops where trains can wait to let other trains pass or be
overtaken. Overtaking is important for efficiency as the trains may have different maximum
speeds. Whether a train can switch track or use the passing loop is dependent on a number
of attributes including the length and weight of the train. The network is divided up into
segments. A segment is defined as the piece of railway between two decision points of the
network. The trajectory of a train thus consists of a set of segments and a direction. A
solution to this problem consists of the individual timetable and track selections for all
trains. The decision variables needed to construct these timetables, are the departure times
of the trains at their origin, the track selection on double-track segments for all segments on
their trajectory, and the waiting times of the trains at stations and passing loops on their
trajectory. If a set of these values presents a solution with no collisions and while respecting
all stations waiting capacity on the entire timetable, the solution is feasible.For testing, three
networks will be considered consisting of 10, 20 and 30 decision points. The number of trains
traversing these networks will vary between 10 and 100. A larger instance based on a real

life case is described in more detail in Section 5.4.

3.2 Assumptions

Trains enter the network at stations

All trains enter the corridor at their origin station. Cai et al. (1998) have shown that this
guarantees the existence of a feasible solution without the need for physical backup of trains
and they also provide a simple pre-processing method that can be applied in case an instance
heavily violates this assumption. As discussed in the introduction the side branches of the
network are not taken into account but only the corridor itself to which the entry points are

thus regarded as stations.

No backup

Trains are not allowed to travel backwards. As the backward speed of most trains is
considerably lower than their regular speed, it is unlikely that allowing for backup will
improve solution quality. Furthermore, it complicates the problem considerably and as stated

in the previous assumption, it is not needed to guarantee feasibility. If physical backup would
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unexpectedly be needed in a situation, this will need to be manually adjusted by the planner,

as it is assumed that in a world without deviations from the timetable it will not be necessary.

Waiting before entering the corridor
As the side networks are not part of the problem scope, the assumption is made that before
entering the corridor, there is no restriction as to how long a train can wait in the side

network. This also implies that the capacity of the side branches is not taken into account.

No strict time deadlines for departure from origin and arrival at destination

As the subject of interest is bulk cargo, there is more lenience towards delays and early
arrivals than when dealing with passenger trains. The preferred departure time at the
origin station of the train is given, but it will be assumed that deviations are allowed
under penalisation. As the goal is to maximize the average speed of the trains, additional
penalisation for delays is not needed. Penalisation can be added in case the decision is made
to depart from the origin station prior to the specified time. This can be done by including

early departure in the objective function with a weight coefficient.

all tracks on a segment have access to the same decision points

In order to properly define a segment on the network, it will be assumed that all decision
points are accessible from all tracks on a segment. That is, if a passing loop is only accessible
from one of the tracks on a segment, it will be treated as if it is also accessible from the
other track.

No stopping and constant speed

It will be assumed that trains travel at a constant speed on network segments and that
stopping is not allowed on segments. This assumption should not cause any practical
problems, as the speed of trains may still vary on a segment, it will just be assumed in
the model that the train travels constantly at its average speed. There is no benefit to
stopping on a segment, as passing is not possible there, thus it will always be preferable to
stop at a passing loop or station instead. The same argument as before with physical backup

applies to practical scenarios where trains must stop on segments.

Trains can stop at all stations This implies that if there is a station on the network at
which at least a single train must stop, then all trains are allowed to stop at that station.
This does not hold true for passing loops, as no train has any a priori required stops at

passing loops.

11



Stopping requirements are hierarchical

It is assumed that if a certain train is allowed to stop at a passing loop or station and some
other train cannot, then it is assumed that the former can stop at all stations at which the
later can stop. This assumption mainly exists to avoid the check for unrealistic conflicts, as

will be explained later.

Single line network

It will be assumed that the entire corridor under consideration can be viewed as a single
line from south to north. There can be multiple tracks parallel to each other and trains
travel in one of two directions, north or south on this corridor. This implies that pieces of
double-track and passing loops are always accessible from both directions. In Figure 1 one

an example of such a representation of a corridor will be given.

Station C

Segment 4 (single track)

.

.
L
.

.
.
.

Segment 3 (double track)

Station B
Segment 2 (single track)
: Passing
Senn loop
Segment 1(single track)
Station A

Figure 1: A small example of a network with double-tracks and passing loops
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3.3 Explanation of conflict types

Building an efficient timetable is all about conflict resolution. As the objective is to minimize
the total travel time of all trains, a lower bound on the objective is the total travel time
of all trains from origin to destination accounting for required stops. This lower bound is
strayed from because of conflicts that have to be resolved by trains waiting at stations or
passing loops for longer than required. In order to clearly explain how the greedy part of the
GRASP deals with conflict resolution, first a clear description of the type of problems that
may occur is needed. In this section the main conflict types encountered will be discussed,

as well as the precise circumstances in which they occur.

3.3.1 Overtaking conflict

Overtaking conflicts occur when a fast train is travelling behind a slow train and at a certain
point in the schedule, the fast train will collide with the slow train somewhere in between
two waiting points. Specifically, this will happen when a slow train is at its current station,
and the location of collision between the two trains lies before the next possible waiting point
for the slower train. What complicates the identification of such a conflict is the fact that
not all trains can stop at all waiting points. In figure two the possible scenarios in which
an overtaking conflict can occur are depicted. Scenario one is the simplest scenario, where
the current station at which both trains are residing and the next stop for both is equal. In
scenario two the current station for both trains is equal, but the next station for train one
is not accessible for train two. Scenario three has train two currently located at a station
prior to train one’s current station and has the next waiting point after the next station for
train one. Scenario four is similar to scenario three but has the second trains next waiting
point be the same station as for train one. Scenario five is perhaps the most interesting,
where the current station is the same for both trains, but there are one or multiple waiting
points for the second train before the collision. In this case, the second train could wait at
any of these waiting points to resolve the conflict. Scenario six is similar, but this time the
waiting points for the second train lie beyond the conflict location. Note that a lot of other
possible configurations that could result in conflict have been left out due to the assumptions
in section 3.2, which ensure that the set of stopping points of one train has to be a subset
or superset of the other. The conflict is viewed from the perspective of train one. Therefore
no stations for train one lying outside its current segment are presented as reaching the next
station without any conflict will count as a resolution in this stage. In this representation,

it is assumed that train two is the faster train.
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Figure 2: The possible scenarios in which an overtaking conflict may occur

3.3.2 Collision conflict

Collision conflicts occur when two trains travelling in opposing directions are bound to meet
on a segment between two waiting points. Specifically, when two trains depart their current
station and one train’s next potential waiting point lies beyond the departure point of the
other, and their departure happens before the arrival of the opposing train. Figure three

shows the possible scenarios in which a collision conflict may occur. The scenarios are
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comparable to those explained in the section on overtaking conflict, so will not be repeated

here.
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Figure 3: The possible scenarios in which a collision conflict may occur

3.3.3 Capacity conflicts

A capacity conflict occurs when a train is scheduled to wait at a station during an interval

in which at some point there is no capacity for this train to wait there. It is assumed that
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this does not occur for a train at its arrival or destination station, as by the assumptions
of section 3.2 a train can wait just outside of the corridor in the side branch, and once the
train arrives at its destination station, it leaves the corridor to another side branch which
is not under consideration. For other trains, such a capacity conflict can occur either when
it arrives and there is no capacity, or if more trains are scheduled to arrive in the waiting
interval than to depart. The solution to such conflict would be to have some trains wait at
earlier waiting points until sufficient capacity is available. In figure 4 a visual representation

of such a conflict is given at a waiting loop with a capacity of one.

t1
13:00-13:30

2
13:25-13:50

Figure 4: An example of a capacity conflict

3.4 Research questions

The following questions are to be answered by the research that will be conducted.

e Can an exact model be formulated for the train timetabling problem with single and
double-track segments and passing loops that can solve instances up to 50 trains within

hours of computation time?

e [f the exact model does not allow for adequate computation times for larger instances,

can it be used to benchmark a heuristics performance on small instances?

e Can an efficient greedy randomized adaptive search procedure (GRASP) be created
for the train timetabling problem with single and double-track segments and passing
loops that yields solutions for instances up to 100 trains within hours of computation

time with a gap not exceeding 20%7?

e How does the GRASP compare to the exact model in terms of solution quality and

computation time?

e Can the GRASP also be used to help identify bottlenecks in the current network to

aid in decision making for network extensions?

e Can the GRASP be adapted for use in case of maintenance, unexpected alterations on

the network and/or delays?
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4 Methodology

This section starts by defining the problem at hand through the introduction of the relevant
parameters and notations. This is followed by a mixed integer program that represents
the problem. Variable reduction and bounding techniques are presented in subsections 4.2
and 4.3. Afterwards the GRASP heuristic employed to solve the problem is explained in
detail. This is followed by a method to detect potential bottlenecks in a network. Finally
in subsection 4.6 some ideas for altering and using the GRASP scheme in case of delays or

track maintenance are discussed.

4.1 Notation and exact model

Before this section delves into the details of the model, some notation needs to be introduced.
Below a quick overview of relevant parameters, sets and decision variables is provided in the

notation to be used in modeling.

4.1.1 Sets

e T: Trains.

T,: Trains travelling north.

T,: Trains travelling south.

S: Stations.

P: passing loops.

K: Switches.

e W: Waiting points, W = PU S.

e C: Decision points, C = SUPUK.

L : Segments between decision points.

e [ : The same set of Segments, but seen from the other direction, so with start and

end swapped.

e R;: The tracks of segment L.
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4.1.2 Parameters
e v; : The maximum speed of train t.
e 0; : The origin station of train t.
e d, : The destination station of train t.
e cs; : The time it takes for train t to stop when travelling at maximum speed.
e cd; : The time it takes for train t to reach speed again after stopping.
e 7, : The planned departure time of train t.
e J, : Trajectory, set of all segments t must travel.
e [, : Stops, set of all decision points t passes on its trajectory.
e cap, : Capacity of waiting point w, so the number of trains that can wait there.
e [ocy : The coordinate location of decision point d.
e start; : Starting decision point of segment 1.
e cnd; : Ending decision point of segment 1.
e 7, : The number of tracks on segment 1.

® §i 1, : Binary parameter that indicates whether ¢; and ¢, are travelling in the same

direction.
e rwy, : Required waiting time of train t at station s.
e 154 : Binary indicating whether train t needs to stop at station s.
® 0y, : Binary indicating whether train t is allowed to stop at waiting point w.

o My, My, M3, My, Ms, Mg : Big M type constants. Appropriate boundary values discussed
in 4.3.

e h: Minimum safety time between two trains going in the same direction. This is also

known as headway.
e ¢: Maximum earliness of departure.
e f: The weight for penalising early departure.

e hor: The planning horizon of the problem instance
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4.1.3 Decision variables

e X, €[0,¢] : The early departure of train t as compared to the planned departure time.
e Y, € [0, hor] : The waiting time of train t at waiting point w.

e Zy, € {0,1} : Binary variable ,indicates whether t uses track r on segment 1.

4.1.4 Derived variables

These are variables that are not necessarily decision variables but are needed to formulate a
complete model. Note that the travel time is in this section as it is intended to have trains

travel at the maximum speed that can be achieved while not causing violations.
® Q41 €{0,1} : Indicates whether train t1 enters segment 1 before t2.

e Gy €{0,1} : Indicates whether train t1 enters segment 1 before t2 enters | from the

other side.

o Fi 1,4 €{0,1} : Indicates whether train t2 arrives before t1 arrives at decision point
d.

o Hi1,a € {0,1} : Indicates whether train t2 leaves decision point d before train t1

arrives.
e W, €{0,1} : Indicates whether a train waits at a waiting point.
o Ay € [0, hor] : The arrival time of train t at decision point d.
e D;; € [0,hor] : The departure time of train t at decision point d.

e My € [0, hor] : The travel time of train t on segment 1.
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4.1.5 Exact model

min Z(rt — Dy o,) + fZXt

s.t.
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Equation (1) refers to the objective. The goal is to minimize the total travel time of all
trains which is represented here by the sum of the arrival time at their destination minus the
planned departure time at their origin station. A penalty is added in case a train departs
earlier than its originally planned departure time. Equation (2) indicates that the departure
time of a train at a decision point should equal its arrival time plus its waiting time. Equation
(3) states that the arrival time of any train at the end of a segment is the departure time
of that train at the beginning of the same segment plus the travel time on the segment.
Equation (4) dictates that for any pair of trains either one enters a segment first. Equation
(5) states that if two trains are on the same track for a certain segment, and t1 enters the
segment before t2, it has to arrive at the end of the segment before t2. This implies that
no collisions happen between trains travelling in the same direction. Equation (6) indicates
that if t1 enters a segment before t2, its departure time at the start of that segment should
be earlier than the departure time of t2. Equation (7) is the equivalent of equation (4) but
for a train travelling in opposite directions. Equation (8) dictates that if t1 enters a segment
before t2 from opposing directions, and both are on the same track on the segment, then t2
can only depart the starting point of the segment once t1 has arrived there. This avoids a
collision from opposing trains. Equation (9) can be seen as the equivalent of equation (6)
but for trains travelling in opposing directions. Equation (10) bound the travel time to the
length of the segment divided by the speed of the train, plus the stopping penalty if a train
has stopped at the previous station. Equation (11) defines the departure at the origin as
the planned departure plus waiting time and the early departure variable. Equation (12)
states that the waiting time at a station for a train has to be larger or equal to the required
stopping time at a station. Equation (13) bounds the early departure variable by a maximum
parameter. Equation (14) states that if a train waits at a waiting point, the number of trains
entering the station before this train minus the number of trains leaving the station before
this train has to be smaller than the capacity of the waiting point and still leave room for
this train to wait. Equation (15) ensures that the waiting time is set to zero if a train does
not wait at a waiting point. Equation (16) dictates that a train can only wait at a waiting
point if it is allowed to wait there. Equation (17) sets the correct value of the F variables,
by stating that if ¢; arrives at w before t5, then indeed its arrival time needs to be lower.
The same holds for equation (18) but now concerning the H variables and departure time of
to. Equations (19) and (20) can be seen as analogous to equation (4) but now for the F and
H variables, ensuring that for a pair of trains only one of the variables attains value one.
Finally, equation (21) deals with the track selection, stating that every train can only be on

one of the tracks on every segment.
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4.1.6 Note on circularity

As a sharp eye may have noticed, the model presented above does not explicitly take the
circularity of the train schedule into account. This is mainly to avoid adding needlessly
complicated notation. However, a feasible repeating schedule can simply be obtained by
enforcing constraints 5 to 9 and 16 to 20 between all trains that cross the planning horizon
and all those that do not. This would avoid a collision between a train leaving its origin
station on Sunday evening and a train departing the opposing station early on Monday

morning. A similar tactic will be applied in the GRASP heuristic of section 4.4.

4.2 Ideas for variable reduction

The model presented above contains quite a large number of binary variables, making it an
unlikely candidate to be useful to solve large real-life instances. Some variable reduction
techniques inspired by Castillo et al. (2011) can be used to decrease the number of binary
variables used. Two of these ideas were already implemented explicitly in the construction
of the model. Firstly, by only using the variables Q for trains going in the same direction
and only using variables G for trains travelling in opposing directions, it is ensured that no
irrelevant variables are needed to prevent overtaking and collision conflict. Secondly, the
variables F and H are only used for train combinations that both visit the station for which
the relevant constraint on capacity apply. Another interesting idea is to be more specific
about which variables are needed for which combination of trains when it comes to conflicts.
Theoretically, every pair of trains going in the same direction could face an overtaking conflict
at some point. There are some conditions that if not satisfied make it highly unlikely that
this pair of trains encounters a conflict. In a realistic scenario, such a conflict only occurs if
the faster train starts its journey behind the slower train and if the two are not so far apart
both in time and location that they are likely to meet. Regarding speed, one can simply
create the relevant QQ variables only for pairs of trains where one is faster than the other.
This can either be modelled directly or be done via an intermediate binary parameter that
indicates the speed relation between the two trains. To determine if it is likely that the trains
meet at all on a certain segment, a function can be constructed using the original departure
times, origin, and destination stations of the two types of trains. Let’s assume for the sake
of simplicity that there is a pair of trains t; and t, travelling in the same direction, where
t5 is the faster of the two, its expected arrival at the origin station of t; is greater than the
departure time of #; at that station. A good indication for the likelihood of a collision is to
compute the total time that ¢; would have to wait longer than ¢, to make the two collide.

This can then be seen in the light of total travel distance and number of stops of ¢;. Let
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T denote the expected arrival time of train t at waiting point w. This means that given
the current departure times and required waiting times at stations if no additional waiting
time was required for conflict resolution, the time that train t would arrive at waiting point
w. Similarly, let 7, be the expected arrival time of train t at coordinate location x. The

relation between these two can be expressed by the following equation:

Tt = Tw, + |l0Cw — x|/vy

The goal is to identify the likelihood that on a segment a situation occurs such that:
Tz = Ty

To find this location, both trains need to be observed at the same point in time first. This
is done by selecting the train with the earlier departure time, and computing its expected

location at the departure time of the later train. This location is calculated as follows:

locy, = max locy, + max (e, 4 + Wiy — Ty, 0) Vs,
WELty My, w<Tt;

Now that the location of the two trains at the same point in time are computed, the distance

between the trains can be taken:
Dy, 1, = locy, — locot1

And this distance can be transformed into a measure of how much longer t; would have to

wait than ¢, for a collision to happen:

Dtl’tQ .
loce,, + T Un min(locy, ,locq,,)

E ., =
t1,t2 o,

This number can then be divided by the number of waiting points on the trajectory of ¢; to
get the additional waiting time per waiting point. Finally, this value can be compared to a
threshold parameter, v. Such that Q variables are needed only for a pair of trains ¢; and t,
if t5 is faster than ¢q, it starts behind ¢; and if the following holds:

Ethtz <~

|It1|

This rule would either include all or no Q variables for a pair of trains. To reduce the
number of variables even more an alternative can be considered that also takes the segment
into account. The new measure of waiting time can be expressed as follows for a pair of

trains where t; is planned to enter segment 1 before t,:
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Et1,t2yl = Ty, start; T TWtgiary, — Tty ,end,

And The Q variables for the pair of trains on this particular segment should only be needed
if this value divided by the number of stops ¢; has from its origin until segment 1 is smaller

than a value .Thusweaddthesevariablesi fthe followingholds :

Etl t2 7l

|-[t1,l

A larger value for gamma will lead to a safer solution, with less risk of accidental conflict,
but also limits the reduction of variables. Different design choices can be made depending
on the desired outcome. Using a relatively low value for v would most likely result in
solutions with a few violations. This can be used to find lower bounds for the problem, or
be used as a heuristic in combination with a repair mechanic. For the application in this
research, a high value of v will be used, as the exact formulation is mostly used to benchmark
the performance of the GRASP heuristic discussed later in this text, so any conflicts in a
solution are not acceptable. Note that all calculations above are performed for trains heading
north. Computations for trains heading south are identical except for some Max statements

that have to be Min statements. The selected values for gamma will be discussed in section 5

A similar argument can be made for the reduction of the number of G variables dealing
with conflicts between trains travelling in opposing direction. Note that the model already
explicitly uses the variables G only if the trains share at least one segment on their trajectory.
The idea behind the wait time calculation is different in this case, as letting either one of
the trains wait does not necessarily reduce the chance of the trains colliding. Two opposing
trains will always interact with one another if they are on the same segment at some point
in time. In this light pairs of trains for which this is unlikely to happen can be disregarded

due to one train likely passing the other before it even leaves its origin station.

Once again the position of both trains is evaluated at the latest intended departure time
among them. Let t; be the train that departs later. The location of t, can be computed

using the following equation:

locy, = max locy, + max(m, 4 + TWiyw — Ty, 0)Ut,
WE Ty Mg, w<Tty

This time a decision can directly be made based on the location of the second train. The

idea is to see how far past the origin station of ¢; the second train is as t; departs it.

Dy, 1, = locy, — loc,,,
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The extra time that ¢, would have to wait longer than ¢; in this case is then computed as:

Once again this extra waiting time is used to define a condition that needs to be passed in

order to construct the relevant G variables:

Alternatively, it could also happen that the initial distance between two opposing trains is
so large, that the train leaving the latest could arrive at its destination before the other train
reaches this point in the network. Similar calculations as before can be used. Again let t;
be the train to depart later. The location of t; at the expected arrival time of ¢y at the
destination of ¢; is needed to continue. All this is under the assumption that the origin of ¢,

lies further than the destination of ¢; otherwise conflict is unavoidable.
Dthtz = lOCdtl - (ﬂ-thdtl - rtz)vw

Thus the time that ¢; must wait longer than t, is equal to:

Dt1,t2

Et17t2 =
(%2

A similar condition can be created for this scenario, to only consider the G variables for the

pair of trains if:

Using similar argumentation as for overtaking conflicts, the decision to include the variables
in the model can be made on a segment level as well, leading to the following decision rule

for a pair of trains for which ¢; is bound to enter segment 1 before t5:

Etl,tz,l - th,endl - (ﬂ-tg,endl + thg,endl)

Et17t27l < 5

‘It1| -

For the values of 9 similar reasoning holds as for the value of . In this research again high
values will be used to ensure feasible solutions at all times. More details about selected

values will be given in section 5.
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4.3 Appropriate values for big M constants and upper bounds on

non-binary variables

To efficiently define the model good boundary values for the big Ms used in some of the
constraints must be set. Theoretically the differences in arrivals and departures between
trains can span the entire planning horizon. This means that a tighter bound than using the
planning horizon for the big M parameters is not possible. Fortunately, there is something
else we can do to improve the bounds related to these constraints. The goal of tightly bound
M parameters is to give good implicit bounds for the A, Y, M and D variables, which are
the only non-binary variables that appear in the relevant constraints. Instead of using a
stricter M to bound these variables, a reasonable restriction can be made that will allow for
a reduction of the solution space that is unlikely to exclude the optimal solution. Starting
with the M variables resembling travel time on a segment. In the assumptions of section 3.2
it is assumed constant speed on a segment and no stopping on a segment. The combination
of these assumptions makes it implicit that the travel time on a segment for a train in the
optimal solution should be equal to the length of the segment divided by the maximum
allowed speed on the segment. Thus to get a tighter bound of the M variables the greater
equal sign in constraint 10 can be replaced by an equality sign. For the arrival and departure
times of the trains, a boundary condition based on the expected arrival and departure times

can be constructed:

Upper BoundAy ., = n(Tew — 7¢) + 11 + €
Upper BoundD,, = 0Ty + 1wy — 1¢) + 1t + €

These restrictions state that the arrival/departure time of a train at a waiting point must
be within a factor n of its expected arrival/departure time plus some lenience parameter
epsilon. Finally, the waiting time at any waiting point can be bound to the total expected

travel time of the train on the network:
Upper BoundY; , = T4, — 7+ + €

Note that the reduction suggested in section 4.2 is in essence a relaxation, as some variables
are omitted from the model along with their relevant constraints. The bounds specified in
this subsection constitute a restriction on the model. The goal is to choose the 7,9, and
n parameters in such a way that the objective found remains the same while lowering the
computation time needed. A sensitivity analysis on the values of these parameters and

corresponding results are discussed in section 5.
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4.4 GRASP

In this section the proposed greedy randomized adaptive search procedure to solve the
timetabling problem will be discussed. First, the greedy part is explained, followed by a
thorough explanation of the adaptive search and a discussion on the neighbourhood used.
Finally, the whole algorithm is laid out and some notes are given on the meta-parameters

used.

4.4.1 Greedy Heuristic

The greedy part of this GRASP is inspired by and extended from Cai et al. (1998). The
main differences that need to be addressed are the following: the problem solved in Cai et
al. (1998) does not allow for sections with multiple tracks in the network. It also does not
consider the possibility that not all trains can stop at all stations or waiting points. These
two additions make the problem a lot more complex and thus a lot needs to be changed to
get a functional greedy heuristic. Like in Cai et al. (1998), the algorithm will be divided up
into routines that can be called whenever a problem is encountered. The idea of a location
time pair for every train in the network is also adapted, but instead of saving the location,
only the current station is used. Before the details of the GRASP are discussed, some
additional notation is needed. The notation not explicitly mentioned here is identical to the
notation discussed in section 4.1. Note that in this entire section, all computations will be
performed under the implicit assumption that ¢; is northbound whenever mentioned. To get
the correct computations for southbound trains, the exact same logic can be followed, but
as for southbound train travelling further leads to a lower value for their current location,
some pluses need to be exchanged for minuses. If this arises in non-trivial situations it will
be explicitly addressed, but for simple computations, this will not be repeated for the sake

of brevity.

e Y\, : The current station time pair for a train, representing its current station and the

departure time at that station.
e 7; : The current time of train t in the current state of the algorithm
e 0, : The current station t is residing at in the current state of the algorithm

e )\, : The current location of the station t is residing at in the current state of the

algorithm

e track;; : The track used by train t on segment | in the current state of the algorithm.
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next; : The waiting point that t is scheduled to visit next in the current state of the
algorithm.
previous; : The waiting point that t has visited right before getting to the current one.

ne; : Indicates whether t has already switched tracks on this segment during this

iteration.

prw © The expected departure of train t at waiting point w given the current state of
the algorithm. This is computed as expected arrival time m;,, plus the waiting time
Yiw

)

As explained in the assumptions of section 3.2 the initial time location pair for each train

consists of their planned departure time, and origin station. In addition, all trains are set to

use solely the main track on the entire network.
fort € T'do

Xt = {Otﬂ“t}
for j € J; do
| Zyn=1Zyy =0

end

for w € I, do
‘ Y;fw = "Wty

end

end

Algorithm 1: Initialisation

Now the different conflict types will be discussed. For the conflicts described in section 3.3,

a procedure will be introduced to detect them, and a routine will be constructed to solve

them.

A train t; is bound to be in an overtaking conflict with ¢, on the next segment it will traverse,

given the current state of the algorithm, if the following conditions hold.

t5 is travelling in the same direction as t;.
t5 has a greater maximum speed than t;.
tos next waiting point lies beyond ¢;s current location.

The expected departure of 5 at t;s current station is later than the expected departure
of tl .

The expected arrival of t5 at the next waiting point for ¢; is earlier than the expected

arrival of ¢;.
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e On the the point of collision, t; and ¢, are using the same track.

Most of these can be checked quite easily, the exception being the last condition, as computing
the collision location is not trivial due to the fact that there may be multiple waiting points
on the way for train two. Before continuing the method of finding the collision location
will be explained. The following computations are done under the assumptions that all
other checks are passed. First both trains need to be evaluated at the same point in time.
Therefore the location of t; is considered at the moment 5 is bound to depart from t¢;’s
current location.

loch = >‘t1 + (7Tt270't + Y;fwft - 7',52)?}751
1 1

Now the distance between the two trains is
D = lOCtl — Atl

It would seem that the collision location can be computed easily by

D
col = \yy + ——y,
'Ut2 — Utl
and this would be true, as long as there are no potential waiting points in between \;, and
the computed collision point. If there are any, the waiting time of ¢, at these waiting points

needs to be taken into account. This is done iteratively:

start = Ay, end = col
wart = EwEW:start<locw<end Y;QW + Wt,w(cst + Cdt)
Last = the last waiting point of ¢, before the collision

while wait > 0 do
loc,, = locy, + waitvy,

D= lOCt1 — )\tl
col = N\, +

Uty —Vtq Uty
start = locrgst
end = col

wait = ZwEW:start<locw<end Y;/Qw + Wt,w (Cst + Cdt)

Last = the last waiting point of ¢, before the collision

end

return col . ) o )
Algorithm 2: Algorithm to compute collision point

This will give us the actual collision location. Now a check needs to be performed to verify

whether the same track at the collision location. by checking that track;;, = track,,
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The total checking algorithm for ¢ can thus be defined as follows
forteT:g;=1v>uv do

if l0Cheot, > N & Tio, +Yio, > 1 & Tt meat; < T meat, then

loc = collision location between t and ¢

seg = segment on which loc lies.

if trackseg: = track,,, ; then

| return true, t, seg;

end

end
end

return false;
Algorithm 3: Subroutine to check for overtaking conflicts

When a conflicting train has been identified, the conflict needs to be resolved. This can be
done in four possible ways. Either the slow train or the fast train changes track, or one of
the trains waits at a waiting point. This will be the first time that randomness comes into

play, as which resolution method is selected is determined by a set of probability parameters.

® WyastTrack - The probability that the resolution method in which the fast train switches

track is selected.

® WyowTrack - Lhe probability that the resolution method in which the slow train switches

track is selected.
® Wyigswait - The probability that the fast train waits to resolve the conflict.

® Wyowwait - The probability that the slow train waits to resolve the conflict.

Track switching needs to be handled with care, as switching the same train back and forth
may result in an infinite loop of different conflicts. Because of this, a train will only be
allowed to switch track on every segment once during one iteration of the greedy algorithm.
For this 7, is used. The same problem occurs when the train that does not switch tracks
now encounters another conflict on the same segment. Therefore a conflict can only be
resolved by track switching if neither of the involved trains has switched tracks before on
this segment. In addition, track switching is only possible if there are multiple tracks on the
segment. When letting the fast train wait, there may be multiple options for a decision point
to wait at. Due to the assumptions of section 3.2 it is known that except for the current
decision point all of these are passing loops. As capacity is scarce on passing loops, the

decision is made to let the fast train wait at its current station rather than one of the other

30



options. The following subroutine is used to solve an identified overtaking conflict, where #;

is the slow train, t5 is the fast train, seg is the segment on which the conflict occurs.

rnd = random number between 0 and 1

if Nseg > 1 & Nt1,seg = MNto,seg = 0 & rnd < (wslowTrack: + wfastTrack) then
rnd = random number between 0 and 1

if rnd < wyowrreck then
trackseg s, = 2
771517869 = ntz,seg = lrue
end
else
tracksegt, = 2

Nt1,seg = Mto,seg = true
end

end
else
rnd = rdn(wfastWait + wslowWait)

if rnd < Wyowwai: then
Dtl,Utl = Tig,01 + Y;f,Utl +h

Y1;/17Ut1 = Dtl, - Atl,dzl

Utl
Tty = Dt170t1
end

else
wait = Tty ,next — th,nea:ttl

Dy, 01, = Dty 0y, + wait + h
}/752,0’152 = Dt2,Ut2 - At270't2
Tiy = th,UtQ

end

end
Algorithm 4: Subroutine to solve overtaking conflict

Next, an algorithm will be explained for dealing with capacity issues. For all trains a check
is performed to indicate whether the station or loop they are currently waiting at has enough
capacity to harbour them the entire waiting interval. The idea is to hold back the train at
its previous station for a time until sufficient capacity is available. The minimum required
waiting time at the station needs to be taken into account as well. The new arrival time
of this train at this station should be so that the train can wait until at least its current
departure time at the station, and wait for at least its minimum required waiting time. The

capacity of a station at time i can be defined as:
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capy,; = capy — {t € T : Ay < i A Dyyy > 1}

Suppose a train is set to wait at waiting point w, for the interval [a,b]. The first step would
be to determine the capacity at time b. If this is insufficient already, the whole waiting
period will need to be moved to the previous station. If the capacity is sufficient, the last
arrival or departure before b is selected. In case of a departure, the capacity prior to this
event is one less. In case of an arrival, it is one more. The bottleneck point is moved back
until either a point at which there is no capacity for this train to wait or point a is reached.
If point a is found, there is no capacity conflict. If at moment c there is insufficient capacity

for the last time, either the following holds:
c—b>rpy

in which case the train is backed up and left to wait at the previous waiting point. The
waiting time will be set such that the train will arrive at its next station at time ¢ and
depart at time b. This covers the minimum required waiting time. If this does not hold,
look ahead of time b for r;,, — (b — ¢) and check if there still remains capacity for this train
to wait. If yes, it should be scheduled to arrive at w at time ¢, and let it wait there until
¢+ 1y 4. If there is no capacity, the required waiting time will be dealt with at a later stage.
For now, let the entire interval be waited at the previous station, so that for now the conflict
is resolved. The same train may encounter this conflict again if the state of the algorithm
changes but this is not a problem. The subroutine for checking a train for a capacity conflict

and solving it if found is:

32



bottleneck = cap,, — capy p;

time =10

while bottleneck > 0 A time > a do
LastDeparture = maxier:p, ., <b Diw
Last Arrival = maxer.a, , <b Atw

if LastDeparture > LastArrival then
bottleneck — —

time = last Departure
end

else
bottleneck + +

time = lastArrival
end

end

if time < a then
| return false // no conlfict

end

if b — time > 1,4V sufficient capacity on interval [b, time + 7, then
Dt,previoust = Dt,prem‘oust + (tzme - At,w)

Y;f,previoust = Dtmrevioust - At,previoust

Y;w = max{D;,, — time,r;,}

Op = Previous;

)\t = locprevioust

Ty = Dt,at

end

else

Dt,previoust - Dt,previoust + (b - At,w)
Y;E,prem'oust = Dt,previoust - At,previoust
Y;,w =Ttw

Op = Previous;

>\t = locprem‘oust

Tt = Dt,at
end
Algorithm 5: subroutine to check for and solve capacity conflict
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The above algorithm for resolving capacity conflicts can also be used to fix the situation
where a train is scheduled to wait at a decision point at which it is not allowed to wait
(a switch, or a passing loop for which the train is too long or too heavy). This decision
point will then be appointed a waiting capacity of zero for the corresponding train and the

procedure sets the train back to a station at which it can wait.

Finally, the last major conflict type to be discussed are collision conflicts between trains
travelling in opposite directions. As with overtaking conflicts, a list will be made of conditions
that indicate a conflict. The algorithm for computing the collision locations is discussed,
and afterwards, the algorithm for finding and resolving the conflict is provided. Northbound
train ¢; is bound to be in a conflict with Southbound train ¢ on the next segment traversed

by t; if the following conditions are met.

e 1, is travelling in the opposite direction of t;
e {5 is currently at a point in the network where it has yet to encounter ¢,

e the expected departure time of ¢, at the next waiting point for ¢; is earlier than the

expected arrival of ;
e the expected arrival of ¢, at the current station of ; is later than t;’s departure

e at the location of collision both trains are using the same track

To compute the collision location, assuming all other conditions have been met, both trains
need to be considered at the same time. The train that enters the segment under consideration
last will be taken as reference. If t; departs earlier from its current station than t, from the
next waiting point of ¢;, the location of ¢; at the moment that ¢, departs is considered, and

vice versa.
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lastDeparture = arg MAXuE I, 2pty w0 <ty w0 Pla,w
lastArrival = arg maXuer,, iy, <, w Ttow
if last Departure = last Arrival then

lf ptg,lastDeparture > Tty then
lOCtl - )\t1 + (ptz,lastDepm‘ture - tautl)vh

lOCtg = lOClastDeparture

D = locy, — locy, col = locy, + oo U

end

else
lOCtg - loclastDepa’rture + (Ttl - ptz,lastDeparture)Utg
lOCtl = )‘t1

D =locy, — locy, col = loc, + oo Ut

end

return col, this is the collision location.
end

else
| return false, the meet happens as t, is waiting at a loop or station

end
Algorithm 6: Algorithm for finding the collision location between two opposing trains

The algorithm to check for a collision conflict
fort €T :g,;=0,\ > A do

if locnextt > )\t‘ & pt,neztf < 7Tt17n6513tt1 & 7Tt2,a'i > Tty then
loc = collision location between t and ¢

seg = segment on which loc lies.

if trackseg, = track,,, ; then
| return true, t, seg;
end
end

end

return false;
Algorithm 7: The subroutine to check for a collision conflict

There are once again four options to resolve the conflict the s parameters represent the

probabilities for changing track. Contrary to letting either train wait according to some

fixed probability as in the overtaking conflict resolution, the probability that a train will

wait instead of the other is now based on which train needs to wait longer. In overtaking

conflicts it is usually locally optimal to let the slow train wait, but in collision conflicts, this

is not applicable, so the additional waiting time for both scenarios needs to be evaluated.
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rnd = random number between 0 and 1
if Nseg >1 & Nty ,seg = Mta,seg = 0 & rnd < (/{northTrack + /{southTTack:) then

if rnd < RnorthTrack then
tracksegs, = 2
Nt1,seg = Mto,seg = true
end
else
trackseg, = 2

Mty seg = Mtg,seg = LTUE

end

end

else
stat = arg Milye,, 1ocy, >col L0Cy
waitl = Ty, — Dy,

wait2 = Tty ,stat — Ptg,stat

waitl
waitl+wait2

if rnd < frac then
ti,00, = Tta,00

Yth = Dtl;

Ty, = Dtl,

frac =

- Atl?

O'tl Utl O'tl

end

else
KQ,Stat = }/tg,stat + wait2

if stat = o, then
Dy, stat = Y, stat + Aty stat

Ty = th ,stat

end

end

end
Algorithm 8: Subroutine to solve a collision conflict
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Before giving the total outline of the greedy heuristic, the pseudo code for moving a train to
the next station should be discussed. The following updates need to be made when moving

a train to its next waiting point.

At,nemtt = T¢,nexty

Dt,nextt = At,neztt + Y;‘/,nextt

oy = next;
Tt = Dt,at
At = loc,,

Algorithm 9: procedure to move a train to the next decision point

The total greedy heuristic can now be defined:

Step 0: Perform initialisation

while at € T : Ot 7é dt do
Step 1:

fort €T :0,# d; do

Use Algorithm 1 to check for overtaking conflict if conflict found then
Solve conflict using algorithm 2,

Go to step 1.
end
Use Algorithm 3 to check for and resolve a capacity conflict and illegal
waiting
if conflict found then
| Go to step 1.

end

end
Step 2:
Set the train with the lowest current time to be incumbent.

Check whether the incumbent train has any collision conflicts using algorithm 4

if conflict found then
| Solve the conflict using algorithm 5 Go to step 1.

end

else
Select the train with the lowest current time as incumbent. Move incumbent
train to next decision point.
end

end
Algorithm 10: The complete greedy heuristic
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4.4.2 Adaptive Search

The adaptive search part of the GRASP scheme will be based around the encountered
conflicts in the greedy part. Every conflict that is encountered will be recorded along with its
time of occurrence and its method of resolution. The neighbourhoods suggested in Higgins et
al. (1997) and Albrecht et al. (2013) change the resolution method of one or more encountered
conflicts, check if the problem is still feasible, and if so, evaluate the new objective. As
changing a track assignment in a solution will be very likely to lead to many new conflicts
and infeasibilities, the track assignment will not be a part of the adaptive search explained
here but will be fully determined by the greedy heuristic. The adaptive search takes a conflict,
changes its resolution method and from that point in time tries to construct a solution that is
feasible and as close as possible to the starting solution. Every time a conflict is encountered
between two trains, the resolution method chosen will be the one also used in the starting
problem. If a new conflict is encountered that did not occur in the starting problem, the
same strategy as in the greedy heuristic will be applied to obtain a feasible solution. Two
approaches can be investigated. The first is to accept an altered resolution as soon as its
resulting objective is better than the current objective, the second is to check all resolution
swaps and choose the best one. For smaller instances, the second will lead to better quality
solutions, but as it is much more computationally expensive, it is not suited to be used
for larger instances. Let C be the set of all conflicts encountered in the greedy heuristic.
High-level pseudo-code for a single iteration of the two adaptive search variations is given

below:

for c € C' do

Copy the starting solution up till the occurrence of conflict ¢

Finish the timetable, using the same resolution methods where possible
Obtain the new objective

rnd= random number between 0 and 1

if new objective< current objective XOR rndjSimulatedAnnealingProb then
| Replace current solution by adaptive search solution. Break loop;

end

Stop local search //a local optimum is found
end
Algorithm 11: adaptive search where the first improvement is selected
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for ce C' do
Copy the starting solution up till the occurrence of conflict ¢

Finish the timetable, using the same resolution methods where possible
Obtain the new objective
rnd= random number between 0 and 1

if new objectivejcurrent best search objective then
| Replace current best search solution by current adaptive search solution.

end

end

if best search objective | current objective XOR rndjSimulatedAnnealingProb then

end
Replace current solution with best search solution else
| Stop local search // a local optimum is found

end
Algorithm 12: adaptive search where the best improvement is selected

To prevent getting stuck in a local optimum too often, a simplified version of simulated
annealing can be applied. This will allow for the possibility of accepting a slight increase in

the objective value.

4.4.3 Algorithm structure and meta-parameters

Now with greedy heuristic and the adaptive search defined, a full overview of the GRASP
scheme can be given. In the description below, a solution is made up of all arrival and
departure times of the train, the actual timetable so to speak, as well as the encountered

conflicts and the chosen resolution methods.

BestObjective= oo
BestSolution=null

for i=0 to Greedylterations do
Run Algorithm 6 to get a current solution and objective

for j=0 to Searchlterations do
Run Algorithm 7 or 8 to improve on the current solution and save the best

found to current
end

if currentObjectivej BestObjective then
| Set BestObjective to currentObjective and BestSolution to CurrentSolution.

end

end
Algorithm 13: GRASP

39



An important design choice is deciding on appropriate values for ”Greedylterations” and
”Searchlterations”. If one uses the first improvement search tactic, a larger number of
iterations can be used as the computation time will be lower. As the track selection is
specified entirely by the greedy heuristic, the number of greedy iterations should not be too
low in favour of excessive searching, as this could increase the risk of getting stuck in local
optima. The probabilistic parameters that influence the resolution methods used should
also be set sensibly. It seems logical to assign equal probability to either train changing
track when possible. The total probability for track switching should not be set too high, as
trains may encounter multiple conflicts on a single segment, and tracks can only be changed
once. It should also not be set too low, as changing track is a ”free” resolution, meaning it
does not increase the overall waiting time. In case of overtaking conflicts, it seems logical
to assign a greater probability to the scenario where the slow train waits for the fast train,
as letting the fast train wait is likely to lead to another conflict between the two trains at
later segments. The last parameter to be discussed is the simulated annealing parameter
used in the local search scheme. The value of this probability should be according to the
number of iterations. If rather few iterations are executed the value should be kept very low,
as discarding good solutions makes it unlikely for them to be encountered again. If a very
large number of iterations is performed a larger value can be used, as it leads to exploring
more regions of the neighbourhood. Different parameter values will be tested and discussed

in section 5.

4.5 Bottleneck identification

As the GRASP algorithm is likely to traverse many feasible solutions, a nice opportunity
presents itself to identify potential bottlenecks on the network, for the current planning. For
every feasible solution, one can count for each leg how many conflicts occur on it. After
running the GRASP, the average number of conflicts for every segment on the network can
be evaluated, as well as the standard deviation of the number of conflicts on this segment.
The average additional waiting time per conflict on the segment can also be easily obtained.
These three statistics can be used as indicators to bottlenecks in the network that could
benefit the most from a piece of additional track, or perhaps one or more extra passing
loops. Another option is to weigh these statistics by the quality of solutions. An argument
for doing so it that it will show you how very good solutions can be made even better, an
argument against could be that when there are slight changes in planning an extension that
is specified too much on very good solutions may have less added value than an extension

that could help improve lower-quality solutions. The statistics recorded can be transformed
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into a score for a segment, which shall be named the bottleneck factor. Let X; be the average
number of incidents on segment | over all found feasible solutions, and let §; be the standard
deviation of the number of accidents and D; the average delay. A bottleneck factor can be
computed as: o
XD,
B =
! S,

The reason a larger standard deviation in the number of conflicts decreases the bottleneck

factor is that it indicates that over many solutions the number of conflicts is unreliable, and
may be larger or smaller, so the extension may be less useful in many scenarios. Let z*
be the best found objective value and z; be the objective value corresponding to a feasible
solution s. Let D, be the average increase in waiting time per conflicts on segment 1 in
solution s and X; s the number of conflicts on segment | in solution s. A weighted bottleneck
factor can be computed as follows:
Bl _ Xl,le,s
25/ 2*
Note that these two factors are not on the same scale and thus for decision support one

should compare two solutions using the same factor for both.

4.6 Adaptation to delays and disruptions

In this section, four different disruption types will be discussed, as well as how the greedy

algorithm can be used to deal with them.

4.6.1 Planned track maintenance

Suppose during some interval on the timetable a certain track needs maintenance and this
is known in advance. If the piece of track that needs maintenance is on the main track
at a point where there is no double-track, all trains scheduled to enter that segment after
maintenance starts must wait at their previous waiting points until the point where they are
bound to enter the segment after maintenance is done. Any capacity conflicts arising from
this process can be handled by algorithm 3. If the maintenance is performed on one track
of a double-track segment, all trains are scheduled to use the other track. This is achieved

by not allowing track switching as a resolution method in algorithms 2 and 5.
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4.6.2 Unplanned track maintenance

Suppose that while using the timetable a track breaks down. The greedy heuristic provided
can be used to efficiently find a new feasible solution. If the track in question is the only
track on the segment, all trains bound to enter the segment need to wait at their last possible
waiting point until after repairs are done. This is similar to how any a priori known repairs
would be handled. Any capacity conflicts can once again be dealt with by using algorithm
3. If the broken track is on a double-track segment, all trains need to be rescheduled on
the other track until repairs are done. This will likely result in some new collision and
overtaking conflicts. These can then be handled by Algorithms 2 and 5. There are two
options, either just use the greedy algorithm to complete the planning from the disruption
onward, or use the same idea as in the adaptive search, as to only make changes when the
current timetable is infeasible. Both would yield feasible solutions quickly and one does not
necessarily perform better in terms of objective, though from a communication and planning

point of view, preserving as much of the original timetable as possible may be preferred.

4.6.3 Delay robust timetable

Delays in the schedule may occur due to all sorts of circumstances. These delays may
cause new conflicts to occur, but may also occasionally prevent some other conflicts from
happening. Historical data on train delays can be used to estimate a distribution for the
percentage of trains that are delayed and their mean delay time. An intuitive approach to
robustness against delays of this type, is to change the way collision and overtaking conflicts
are detected. In the greedy algorithm, it is assumed the travel times on a segment are fixed.
However, these methods could be altered to also detect a conflict given the possibility of
delay. Suppose that from historical data it is known that v per cent of trains encounters a
delay, with an average delay time of D. Let n be the number of segments train t still needs to
pass before arriving at w given its current station. In conflict detecting, all expected arrival

times can be transformed into intervals as follows:
Tt w — Ht,w - {Wt,wa Tt w + n¢D}

and adapt the additional waiting time for the train selected to wait so that given any time
on this interval no collision occurs. This will of course lead to a less efficient schedule, but
it will be more robust to expected delays. The downside of such an approach is that delays
are not likely to be normally distributed, but follows more heavy-tailed distribution forms
as discussed in Yang et al. (2019). This means that this robustness might not hold very well

if the delay times vary a lot and may make the schedule needlessly inefficient. One might
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therefore consider fixing problems caused by delays in an a postiori manner.

4.6.4 Dealing with unexpected delays

Before altering the timetable, it needs to be assessed whether the delay in question causes
any new conflicts or changes the nature of any resolved conflicts. If it is possible for the
train in question to just subtract the delay from its waiting time at following waiting points,
whilst still meeting the required waiting times, and not altering any conflicts until it does
so no alterations to the timetable need to be made. This condition is easy to check by just
following the original timetable and inspecting the conflicts this train encounters before the
opportunity to compensate for the delay is given. If the delay causes new conflicts or alters
the resolution of existing conflicts, the simplest way to get back to a feasible timetable is
to fix all trains current time and current position to their latest before the delay occurred,
and use the greedy algorithm to construct the rest of the timetable taking the delay into
account. Again one can choose to use the same approach as in the adaptive search and only

alter the timetable where needed to reduce the chance of communication problems.
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5 Results

In this section the results will be discussed. First the performance of the exact model and the
effect of the variable reduction methods is presented. This is followed by the benchmarking
of the GRASP. The effectiveness and application of the bottleneck identification method is
discussed in section 5.3. Finally section 5.4 contains the results of a case study based on a

real-life problem supplied by Ab-Ovo.

5.1 Exact model

To test the effect of the variable reduction and bounding methods discussed in sections
4.2 and 4.3, 100 random instances of the time train timetabling problem were generated.
For each instance size in table 1, ten instances were generated. These instances consist
of a network with the specified number of nodes. The ratio of station to other decision
points is kept at around 0.5. Trains are then generated with random departure times origin
and destination stations, and departure times somewhere on the planning horizon. Table 1
contains the average computation time needed by CPLEX version 12.9 to reach the optimal
solution and a solution with a proven gap of at most 5%. The mean computation times for
this can be found in the columns with header ” Time opt” and ” Time opt 5%. It also contains
the computation times after variable reduction and bound improvement were applied. These
can be found in the columns with header ” Time opt red” and ”Time 5% red”. These tables
are used to asses the effectiveness of the variable reduction techniques. To set the ~,d,n
and e parameters a small sensitivity analysis was performed. Values where selected in such
a way that the maximum number of variables were removed, and the bounds set as tightly
as possible, without altering the optimal solution to the instances. The results sensitivity
analysis can be found in tables 2 and 3. The yandd parameters were set to 4, as for this value
all of the instances tested had the same objective value and solution as running without the
reduction, indicating that the resulting solution is feasible. The instances with 100 trains are
omitted as not all could be solved to optimality and thus the check whether the solution was
equal for different values of gamma could not always be performed. The relation between
feasibility and the selected value of gamma is not inherently dependent on the instance size,
so it is safe to assume that the selected value of v = 4 will yield feasible solution for most
instances. Table 3 contains the same results but for the choice of n. It contains the number of
test instances that kept the same objective after adding the variable restrictions of section 4.2
with different values for eta. The most efficient restriction that did not change the optimal
objective value found in any of the test cases is possible at n = 3 and ¢ = 4. These selected

parameter values were used to construct the results of table 1.
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Table 1: Mean and (standard deviation) of computation times in seconds. *0.5%gap
#trains | #nodes | 7&J | Time opt | Time opt red | Time 5% | Time 5%red
10 10 4 ]0.18(0.04) |0.05(0.02) 0.16(0.04) | 0.04(0.01)
20 10 4 ]04000.12) | 0.14(0.03) 0.25(0.03) | 0.09(0.02)
30 10 4 |223(094) | 0.55(0.14) 0.87(0.32) | 0.35(0.14)
40 20 4 18.23(5.36) | 2.98(1.11) 7.29(2.24) | 0.8(0.13)
50 20 4 | 355(63) 32(14) 72(25) 10(2)

60 20 4 |897(266) | 50(12) 09(32) 28(5)
70 30 4 [ 1355(344) | 169(32) 248(41) | 69(19)
80 30 4 3892(873)* | 589(124)* 928(233) 188(22)
90 30 4 | 5220(1282)* | 1606(367)* 2234(617) | 437(154)
100 30 4 ]- 3345(754)* 6243(1343) | 1989(432)
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Figure 5: Computation time in seconds for different instance sizes
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Table 2: Number of test instances with feasible optima for different values for

#trains | #nodes | y=1|~v=2|y=3 | y=4
10 10 0 4 10 10
20 10 1 6 10 10
30 10 0 3 8 10
40 20 1 5 10 10
50 20 2 5 9 10
60 20 0 3 7 10
70 30 1 5 8 10
80 30 0 4 9 10
90 30 0 3 8 10

Table 3: Number of test instances that kept the same optimum after variable restriction

#trains | #nodes | n=1,e=4 | n=2,e=4 | n=3,e=4
10 10 0 7 10
20 10 0 9 10
30 10 0 8 10
40 20 0 7 10
50 20 0 8 10
60 20 0 8 10
70 30 0 9 10
80 30 0 7 10
90 30 0 8 10

Figure 5 contains a plot of computation time against instance size. The applied variable
reduction methods bring down the computation time required significantly, solving some
instances up to 20 times faster than the regular model. With these reduction techniques,

the exact model can efficiently solve instances up to 100 trains within one hour on average.

5.2 GRASP

5.2.1 Parameter choices

Before discussing the performance of the GRASP some clarification must be given about

the parameter values that were used. Regarding the meta-parameters, the performance
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of the GRASP will be presented for an increasing number of iterations so only the local
search and simulated annealing parameters need to be decided on. Regarding the local
search, it seems sensible to have the number of iterations depend on the size of the problem
instance. More trains imply more potential conflicts, because more pairs of trains may need
to compute for use of the same tracks. As the size of our neighbourhood depends heavily
on the number of conflicts, the first improvement search method is used, and the number of
local search iterations is limited to the number of trains to avoid spending too much time
in the adaptive search. This value was selected as after trying multiple values it offered
a good balance between finding improvements in a neighbourhood, while not taking up
unreasonable amounts of computation time as compared to the greedy heuristic. For the
process of simulated annealing, the results presented in this section compare the performance
of the GRASP without simulated annealing and with an annealing probability of 0.1. Other
values were tried but did not yield any additional results that were of interest. Now to
decide on the parameters of the greedy algorithm itself, the decision comes down to whether
we prefer local optimality or not. The only parameters that still need to be set are the
probability to select track switching as a solution and the probabilities deciding which train
has to wait in an overtaking conflict. It is always locally optimal to change tracks if possible,
as this does not incur additional waiting time. Likewise letting a slower train wait to let a
faster one pass is always locally optimal as not doing so would imply the two would come into
conflict again at some later point in the network. After testing the alternatives it appeared
best to select the locally optimal path in most cases. The parameter values used in the
results shown below are such that if a track switch is possible, it is selected as a resolution
method with probability 0.8, and the probability that a fast train has to wait for a slow train
is set to 0.1. Multiple other values were tried, and results for parameter values leaning more
towards locally less optimal decisions can be found in the appendix. These values proved to

be most effective for the instances tested.

5.2.2 Performance

Table 4 shows the average percentage gap obtained after a certain number of iterations
without using simulated annealing. It also shows the computation time needed to perform
a single iteration of the GRASP. The same instances were used as in section 5.1. For
smaller instances, the GRASP finds solutions close to the optimal solution quite quickly. As
the number of trains increases, the number of iterations needed to obtain solutions with a
gap below 10 % also increases. Overall the GRASP outperforms the exact model without
variable reduction. It finds solutions of comparable quality much faster. The performance

of the GRASP is slightly worse than the exact model. As the instance size increases, the
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GRASP shows potential in that it finds solutions that are at most 6% worse than the optimal

solution consistently. The increase in computation time also is not as steep as for the exact

model as shown in Figure 6. This makes it the better candidate to use for instances too large

for the exact model to handle even after variable reduction. For instances up to 100 trains, it

seems there is a small preference for the exact model with variable reduction. Figure 7 shows

the improvement gradually decreases in the number of iterations and eventually converges

towards zero.

Table 4: Average percentage gap and computation time per iteration for a different
number of iterations

Trains/Iterations | 10 |20 |[30 |40 |50 |60 |70 | 80 | 90 | 100 | Time(s)
10 53 |20 |04 (04 |04 |[04/04(03]03]0.3 |0.003
20 87 125 |14 |03 |03 [03]03(03/]0.3|03 |0.020
30 123165 |53 | 1.2 |03 [03[03/03]03]0.3 |0.312
40 143114165 |[1.1 0.8 [0.7]0.5]05|05]0.5 |1.040
50 1821132192 |64 |32 (2110080808 |2.855
60 202 | 14412776 |44 |31 21 (2113|133 |5422
70 2221871101 197 |76 |51 2218 |12]|12 | 8649
80 23.6 | 208|136 1109 |88 |62 4.7 (323229 |9.446
90 24.7 1199 | 185 | 11.7 195 | 7.1 5948|3939 |16.331
100 26.7 1229|182 1154|122 |88 |83 [ 6.3 59|59 | 26.267
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Table 5 contains results for the same instances using simulated annealing. For some instance
a slightly better solution is found, but overall the difference is small.

Table 5: average percentage gap and computation time per iteration for GRASP results
with simulated annealing

Trains/Iteraions | 10 |20 |30 |40 |50 |60 |70 | 80 | 90 | 100 | Time(s)
10 5.0 |20 (04 (04 |04 |04/04(04]04]|04 |0.003
20 90 |26 |14 |03 |03 |03[03]03[03]0.3 |0.022
30 12278 |54 |12 |03 [03[03/03]03]0.3 |0.328
40 14185 |67 |1.1 05 [05]05|05 (05105 |1.011
50 186 | 13388 |67 |31 [21[0808]08]0.8 |2993
60 19.7 1162103 |78 |46 2914|1413 |12 |5482
70 2151179 105192 |74 |53 2219 ]12|1.2 | 8640
80 227712141142 | 11.3 |87 |6.1 48]33 |3.1]28 |9.870
90 2531202 (1911115198 |69 5749|3939 | 14.645
100 2721229 |19.1 150|123 | 85|83 |6.1|6.0]|58 | 24.526

The tables containing the results for some other parameter sets leaning more towards not
selecting local optimal paths as well as tables containing the standard deviations of the gaps
presented in this section can be found in the appendix. To end this section figure 8 shows a
visual representation of a timetable constructed by the GRASP for a small instance where
four trains were scheduled on half a day from 0:00 A.M. until 11 A.M.

49



Example of a solution planning for four trains
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Figure 8: Example of a timetable generated by the GRASP

5.3 Bottleneck identification

The bottleneck identification method is tested on some small instances. Table 6 contains
the results for an instance with 10 decision points and 30 trains. To check whether relieving
some pressure from these bottlenecks results in more efficient planning, the smaller instances
of section 5.1 and 5.2 are used. Their bottleneck is determined and for the section with the
highest bottleneck score an additional piece of track is put in the network. The GRASP is
applied again and the average improvement in percentages from adding the piece of track
can be found in Table 7. From this we see that adding tracks as identified bottlenecks can

improve the objective by up to 8.2%.

50



Table 6: Bottleneck scores B for a small instance after 10 and 50 iterations of the GRASP

Section | B 10 iterations) | Weighted B10 | B 50 iterations | Weighted B50
1 3.242 1.864 3.080 2.036
2 1.477 0.962 1.492 0.837
3 1.495 0.864 1.584 1.031
4 4.704 3.091 4.234 2.858
5 6.076 4.065 6.805 4.512
6 7.207 4.475 6.990 3.558
7 1.563 1.068 1.563 0.960
8 1.451 0.982 1.639 0.852
9 0.000 0.000 0.000 0.000

Table 7: Improvement percentage in optimal solution from adding track to bottleneck
segment after 10 and 50 iterations of the grasp

Number of trains | Number of nodes | 10 iterations | 50 iterations
10 10 8.233 8.233
20 10 6.123 6.243
30 10 5.442 5.442

5.4 Case study: A real-life application
5.4.1 Case description

The data for this case study was supplied by Ab Ovo. The goal is to use the GRASP to
create a timetable for a week. The network under considerations consists of 64 decision
points, 11 of which are switches, 17 are stations and the remaining 36 are passing loops. 227
trains need to be scheduled in total. There are two different speed classes of trains and not
all trains are allowed to wait at all passing loops. Most trains have a few required stops on

their trajectory. The assumptions made in section 3.2 are all satisfied.

5.4.2 Lower bound

The instance specified above is much too large to be handled by the exact formulation of
section 4.1. Even after variable reduction the model could not find a feasible solution after
12 hours of running time. To discuss the performance of the GRASP a lower bound on the

total travel time is needed. A lower bound can be obtained by taking the expected total

51



travel time of all trains given that they do not encounter any conflicts along the way. This
lower bound will most likely be quite a bit lower than any optimal value could ever be. To
put this into perspective, the instances of section 5.1 and 5.2 are once again considered. For
these instances the average percentage difference between the optimal objective value and
this naive lower bound were computed and are presented along with their standard deviation
in table 8 below.

Table 8: The average percentage difference and its (standard deviation) between the lower
bound and optimal solution

Trains | 10 20 30 40 50 60 70 80 90
d 12.59(7.46) | 14.13(7.22) | 11.23(6.54) | 14.37(7.88) | 13.95(6.37) | 17.64(8.23) | 14.58(7.53) | 13.28(8.83) | 17.94(8.98)

There is no clear relation between instance size and the percentage difference between
the optimal solution and the proposed lower bound. The total mean over all percentage
differences is 14.41%. This can be used to give a slightly more detailed indication of the
GRASP performance.

5.4.3 Results

The following tables contain the results of the case study. To avoid results based on luck or
misfortune, the algorithm was applied to the instance 10 times and the average results are

presented below.

Table 9: Instance details

trains

nodes

mean t per iteration(s)

LB (hours)

Expected LB(hours)

227

64

368

2933.450

3356.160
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Table 10:

Average gap and adjusted gap in percentages after a number of iterations

Iterations | Average best objective(hours) | Average gap% | Average adjusted gap%
10 4746.617 61.8 41.4
20 4556.182 55.3 35.8
30 4393.878 49.8 30.9
40 4152.212 41.5 23.7
50 4051.992 38.2 20.8
60 3943.924 34.45 17.5
70 3845.980 31.0 14.5
80 3746.570 27.7 11.6
90 3708.328 26.4 10.5
100 3699.671 26.1 10.2

Thus in 100 iterations our GRASP finds a solution on average with a gap of at most 26%

and this gap is more likely to actually be around 10%. On average it takes around 10 hours

to obtain a solution of this quality.
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6 Discussion and conclusion

In this section, the results will be discussed further and the research questions posed in
section 3.4 will be answered. This is followed by suggestions for further research and a

summarizing conclusion.

6.1 Discussion

The constructed MIP formulation of the train timetabling problem can solve small instances
efficiently. The results in table 1 show that upwards of 90 trains the instance size becomes
too large to handle for the model as is. This exact method can be improved drastically
in terms of speed by applying better variable bounds and reducing the number of variables
based on the likelihood of trains coming into conflict. This strategy does have one significant
drawback. Using the variable reduction may accidentally relax the problem and this result
in an infeasible solution. Using a lenience parameter v = 4 resulted in no such violations
among our 100 generated test cases. However, this not a guarantee that no instances exist
or could be purposely constructed for which a higher value for gamma is needed to prevent
infeasibilities. A pleasant incidental is that using a low value for gamma, the exact solving
method can be used to construct lower bounds for large instances. On the other hand
setting tight variable bounds, while potentially improving the speed at which the optimal
solution is found, restricts the problem, and may thus exclude the optimal solution from the
search space if the value of the corresponding 1 parameter is set too low. Solving a tight
restriction of the problem may provide a useful upper bound for the optimal objective value.
A potential caveat is that restricting the domain of the variables too much may make the

problem infeasible, thus the usefulness of this restriction is limited for finding upper bounds.

While being useful for instances up to 100 trains, the exact model is no longer able to
consistently find good solutions for larger instances like the one provided in section 5.4. The
MIP formulation was used to determine the effectiveness of the GRASP scheme for instances
up to 100 trains and is useful from a benchmarking perspective. While after reduction the
exact model outperforms the GRASP for smaller instances, much larger real-life cases can
still be solved by the GRASP consistently with decent accuracy as the results obtained in
section 5.4 indicate that for this case study the found solution is at most 26% worse than the
optimal. The GRASP can solve instances up to 100 trains with an average gap of at most
6% within 90 minutes. For larger instances like the case study of section 5.4 more iterations
and computation time may be needed to obtain a satisfactory solution. A GRASP has not

been used for the train timetabling problem before in the current literature and this research
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shows that the scheme has the potential to be a good alternative to existing methods. One
of the main advantages of the GRASP scheme is that it can be used to both generate quick
solutions by using just a few iterations and good solutions if more time is available. This
makes it an excellent candidate to use both for disruption resolution as well as constructing
efficient planning beforehand. Besides being a direct solution method, the GRASP could
be used in combination with existing meta-heuristics like the one presented in Ghoseiri &
Morshedsolouk (2005) to generate large pools of starting solutions. In terms of parameter
choice, the results in section 4 indicate that parameters favouring locally optimal decisions
provide better solutions. In the context of the train timetabling problem, this does not come
as a big surprise as having a faster train stuck behind a slow one for longer than necessary
is rarely ever expected to yield good results. The results in table 4 and 5 also indicate that
the application of simulated annealing in this procedure did not significantly improve the
solution quality. This could be because the neighbourhood used by the adaptive search is
already diverse enough. Changing the outcome of a single conflict could radically impact
the possible resolutions for future conflicts. It could also cause or prevent conflict from
occurring. This results in a large neighbourhood with a complex structure, even without
using simulated annealing. The case study shows that the GRASP can be used to solve large
real life instances of the problem with decent quality within hours. In about ten hours a
gap of at most 26% is found, which is more likely to be around 10%. Given that our exact
formulation was unable to find a feasible solution this makes the GRASP the clear winner
to be used for large real-life instances. One final advantage of the GRASP is that it can
be executed in parallel. Only the current best solution needs to be saved and compared,
but every iterations can be performed independently from the others. Thus using enough

computing power many iterations could be performed simultaneously.

The solutions obtained by the GRASP can also be used to identify bottlenecks in the network.
The weighted bottleneck score often gives the same conclusion as the non-weighted score.
This is to be expected as the trajectory for the trains remains the same and bottlenecks are
expected to occur at heavily used segments of the network without passing loops or double
track. After adding a track to the identified bottleneck section, significant improvements
to the objective value could be realised. This procedure’s usefulness is limited to network
extension decision support for fixed demand, as the bottleneck score depends heavily on the
planned trajectories for the train. To use the method for finding general bottlenecks on the
network one could average the segment scores over multiple instances. However, for this goal

using methods like the one suggested in Jamili (2018) may prove more effective.
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6.2 Ideas for further research

Both the exact model and the GRASP scheme are currently specified to problem instances
where there are at most two tracks on each section of the network. To make these techniques
more generally applicable they could be extended to also include more complex network
structures. The exact model needs only minimal adjustment as it already uses binary
variables to indicate if a train is on a track on a segment, and variables can simply be added
for any additional tracks. The GRASP can be adapted to accommodate multiple tracks by
changing the track switching solution algorithm so that a train can switch to multiple tracks,
but can never switch back to a track is has already moved away from. Section 4.6 provides
some explanation on how to adjust the GRASP to be applicable to situations involving
random disturbances and delays. It could be interesting to compare the performance of the
GRASP in a setting with delays based on historical data against the performance without
any delays. An interesting extension of the bottleneck identification method could be to
devise a decision rule based on the additional cost of adding an extra track to a segment. An
iterative scheme could be designed to construct an efficient planning while identifying the
bottleneck segment, on which an extra track is added if the benefit of this would outweigh the
cost over a certain operational period. This way a more optimal network could be designed
and scenarios could be tested to estimate benefits of extending the network. Finally, an
interesting application of the exact model would be to use it in a dynamic programming
inspired context. One could split up the trains into different priority classes, and solve the
timetabling problem for the highest priority trains first, then setting their timetable as fixed
and solving for the next class. This could be a nice way to incorporate priority into the
model and could make for a heuristic that could solve large instances quickly if the priority
groups are small enough. An alternative way to incorporate priority into the exact model
is to add additional weight to the travel time of trains with a higher priority so that when
minimizing the total travel time the priority trains will not wait as long as the others unless
the difference in objective is significant. Similarly, priority could be included in the GRASP
by altering the decision rules for which train waits to avoid a conflict. These rules could be

designed so that trains with a higher priority have a lower probability of having to wait.
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6.3 Conclusion

Efficient timetabling is of incredible importance for cost-effective transportation. In this
thesis, a new exact model for the train timetabling problem was formulated that accommodates
single and double-track segments, passing loops, capacity limitations, and heavy traffic in
both directions. This model is improved upon in terms of efficiency, size and computation
time by applying variable reduction and bound restricting methods. This led to significant
improvements in performance. This model is able to effectively tackle instances up to 100
trains. Next, a GRASP is designed to solve the same problem. After investigating different
parameter sets, parameters favouring locally optimal resolutions of potential conflicts performs
best. This means favouring fast trains overtaking slow trains when possible and using
available track switching yields better results. The exact model is used to benchmark the
performance of the GRASP. For instances up to 100 trains, the GRASP performs better than
the original exact model in terms of computation time but is outperformed by the exact model
after variable reduction and bound improvements. The difference becomes smaller as instance
size becomes larger and for the larger instances solutions could be found by the GRASP in
slightly more than one hour with a gap of at most 6%. Simulated annealing was applied to
improve the adaptive search but this did not change the results significantly. A bottleneck
identification method was incorporated in the GRASP and for small instances it was shown
that bottleneck segments could be identified using this method. Extending the network to
alleviate some pressure on these bottlenecks led to an improvement in the objective value up
to 8%, though it must be said that this value is highly dependent on the instance and the
network the method is being applied to. When applied to a large real-world case, the GRASP
performed reasonably well, attaining a gap with an upper bound of 26.12% in little over 10
hours. This gap is likely to be much smaller. From this, it can be concluded that the GRASP
scheme defined in this research could be used by companies to construct efficient timetables
for their networks. The GRASP can also be used to generate quick feasible solutions when
unforeseen disruptions to the schedule happen. The improved exact model can be used
to solve smaller instances on part of the network. This model explicitly allows for heavy
two-way traffic, passing loops, varying train speed and station capacity. This should allow
adaptation to real-life cases with relatively limited adjustments. Concluding, the methods
developed in this research provide an interesting addition to existing methods, can handle
complex network structures and can provide adequate solutions to real-life problems within

reasonable time. Let them be used to keep cargo transport on the right track.
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7 Appendix

Table 11: GRASP results with higher probability of letting fast trains wait

T\I | 10 20 30 40 50 60 70 80 90 | 100 | time(s)
10 | 6.56 2.14 0.82 | 043 | 043 |043 |043 |[042 |0.39|0.39 | 0.003
20 | 9.06 2.67 1.42 1034 (032 |]0.30 |0.30 |0.303]0.29|0.29 | 0.019
30 | 11.95 | 7.58 525 | 133 |0.69 |0.36 |0.33 |0.32 |0.30|0.30 | 0.303
40 | 13.01 | 8.22 6.98 | 1.05 | 0.72 |0.55 |0.53 |[0.52 |052|0.52]1.113
50 | 19.838 | 13.596 | 9.207 | 7.104 | 3.328 | 2.226 | 0.864 | 0.842 | 0.84 | 0.77 | 2.622
60 | 2234 |17.09 |9.60 | 730 |[4.31 |[322 |299 |1.39 |1.37 | 1.25|6.048
70 | 2218 | 1993 | 11.12|10.68 | 836 |5.15 |4.15 |2.27 | 1.24|1.19 | 9.936
80 | 2596 |20.19 | 1297 |11.56|899 |6.76 |5.66 |4.75 | 3.30|3.01 | 9.870
90 | 28.58 |21.38 |20.24 | 1293 | 11.31 [ 10.79 | 949 | 7.90 | 6.82 | 5.33 | 18.728
100 | 26.968 | 24.44 | 23.24 | 16.59 | 12.93 | 11.63 | 9.61 | 8.99 | 8.98 | 8.68 | 36.663
Table 12: GRASP results with higher probability to not use track switching
T\I | 10 20 30 40 50 60 70 80 90 | 100 | time(s)
10 | 9.88 | 3.51 0.72 | 0.72 | 0.72 |0.69 |0.66 |0.64 |0.63| 0.56 | 0.004
20 | 12.23 | 4.25 2.11 [ 056 |[051 |050 |047 |0.47 |0.43 | 0.41 | 0.020
30 | 17.69 | 12.89 943 | 1.73 |0.56 | 0.51 | 0.490 | 0.48 | 0.48 | 0.41 | 0.36
40 | 20.63 | 14.1 11.77 1 2.02 [ 085 083 |0.79 |0.77 | 0.71 | 0.68 | 1.102
50 | 27.48 | 22.18 | 17.39 | 11.26 | 448 | 3.34 | 145 | 1.39 |1.26 | 1.22|2.793
60 | 36.54 | 24.49 | 15.38 | 11.43 | 8.01 | 4.68 | 2.26 | 2.12 |2.07 | 1.84 | 5.400
70 | 31.80 | 30.33 | 17.54 | 16.00 | 10.49 | 8.87 | 3.38 | 2.99 | 2.25| 1.65 | 10.368
80 | 36.77 | 34.40 | 24.57 | 17.39 | 13.17 | 8.43 | 6.86 | 4.93 | 4.73 | 4.45 | 9.870
90 | 40.10 | 34.22 | 26.7 | 21.88 | 14.49 | 10.15 | 7.96 | 7.15 | 5.62 | 5.34 | 22.84
100 | 38.47 | 35.958 | 28.67 | 24.84 | 17.32 | 14.69 | 12.01 | 11.53 | 8.53 | 8.24 | 46.66
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Table 13: Standard deviations of the gaps of table 4

T\I | 10 20 30 40 50 60 70 80 90 100

10 | 1.256 | 0.462 | 0.112 | 0.088 | 0.094 | 0.109 | 0.106 | 0.121 | 0.118 | 0.118
20 | 2.002 | 0.563 | 0.378 | 0.078 | 0.066 | 0.076 | 0.091 | 0.082 | 0.091 | 0.086
30 | 2.806 | 2.063 | 1.285 | 0.270 | 0.080 | 0.077 | 0.073 | 0.091 | 0.074 | 0.082
40 | 3.015 | 2.054 | 1.600 | 0.314 | 0.138 | 0.130 | 0.129 | 0.140 | 0.128 | 0.111
50 | 5.324 | 3.234 | 2.813 | 1.936 | 0.760 | 0.599 | 0.212 | 0.222 | 0.218 | 0.196
60 | 6.141 | 4.274 | 2.695 | 1.938 | 1.331 | 0.775 | 0.397 | 0.319 | 0.335 | 0.374
70 | 6.216 | 4.277 | 3.060 | 2.134 | 2.071 | 1.160 | 0.512 | 0.401 | 0.327 | 0.321
80 | 6.077 | 4.790 | 3.983 | 3.078 | 2.203 | 1.426 | 1.351 | 0.768 | 0.928 | 0.718
90 | 6.519 | 5.049 | 4.533 | 2.691 | 2.712 | 1.793 | 1.623 | 1.368 | 0.887 | 1.190
100 | 7.139 | 6.412 | 4.508 | 3.565 | 3.172 | 2.003 | 2.200 | 1.402 | 1.552 | 1.697

Table 14: Standard deviation of the gaps of table 8

T\I | 10 20 30 40 50 60 70 80 90 100

10 | 1.903 | 0.487 | 0.104 | 0.113 | 0.091 | 0.117 | 0.104 | 0.102 | 0.092 | 0.094
20 | 2.062 | 0.662 | 0.403 | 0.087 | 0.075 | 0.074 | 0.089 | 0.087 | 0.074 | 0.079
30 |3.168 | 1.799 | 1.181 | 0.370 | 0.078 | 0.080 | 0.073 | 0.071 | 0.072 | 0.078
40 | 3.834 | 1.808 | 1.849 | 0.293 | 0.147 | 0.116 | 0.152 | 0.150 | 0.140 | 0.153
50 | 5.852 | 3.773 | 2.141 | 1.829 | 0.907 | 0.662 | 0.200 | 0.229 | 0.206 | 0.219
60 | 4.968 | 4.316 | 2.641 | 2.098 | 1.261 | 0.959 | 0.407 | 0.344 | 0.403 | 0.368
70 | 5.045 | 5.779 | 2.807 | 2.614 | 1.881 | 1.417 | 0.589 | 0.414 | 0.337 | 0.279
80 | 5.841 | 5.754 | 3.694 | 3.091 | 2.719 | 2.011 | 1.424 | 0.839 | 0.783 | 0.799
90 | 7.217 | 5.186 | 5.718 | 3.039 | 2.590 | 2.800 | 2.657 | 2.270 | 1.842 | 1.532
100 | 5.933 | 5.622 | 6.565 | 3.773 | 3.104 | 2.405 | 2.763 | 2.380 | 1.709 | 2.649
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Table 15: Standard deviation of the gaps of table 9

T\I

10

20

30

40

50

60

70

80

90

100

10

2.372

1.184

0.185

0.195

0.150

0.236

0.167

0.241

0.208

0.228

20

3.303

1.392

0.592

0.140

0.133

0.094

0.144

0.140

0.145

0.135

30

4.511

3.720

2.712

0.583

0.109

0.162

0.124

0.162

0.133

0.139

40

6.294

3.951

4.151

0.668

0.226

0.209

0.195

0.251

0.180

0.211

50

6.802

7.207

5.783

2.732

1.165

1.119

0.278

0.365

0.344

0.411

60

10.962

6.122

4.077

3.449

2.823

1.568

0.792

0.742

0.574

0.425

70

11.053

8.084

5.570

5.322

3.278

2.285

1.070

0.744

0.626

0.462

80

14.620

10.063

7.310

6.173

4.248

2.150

1.887

1.255

1.234

1.615

90

9.423

6.950

7.615

7.603

3.805

2.767

2.509

2.110

1.530

1.883

100

9.529

12.888

8.942

8.459

5.370

4.025

3.893

3.315

2.494

2.636

Table 16: Standard deviation of the gaps of table 5

T\I

10

20

30

40

50

60

70

80

90

100

10

1.500

0.514

0.096

0.108

0.103

0.103

0.110

0.116

0.091

0.111

20

2.693

0.586

0.356

0.084

0.064

0.086

0.074

0.092

0.080

0.083

30

3.050

2.126

1.446

0.288

0.091

0.063

0.091

0.068

0.085

0.078

40

3.236

2.330

1.914

0.258

0.119

0.145

0.122

0.132

0.118

0.111

50

5.616

3.433

2.076

1.714

0.768

0.473

0.198

0.210

0.233

0.229

60

4.923

4.528

2.778

1.860

1.384

0.677

0.362

0.332

0.287

0.308

70

6.236

3.929

2.521

2.281

2.160

1.366

0.656

0.454

0.336

0.285

80

5.494

6.106

3.863

3.374

1.941

1.413

1.464

0.753

0.974

0.689

90

6.335

5.958

5.717

3.468

2.962

1.687

1.487

1.104

1.121

1.170

100

7.966

5.840

5.071

4.097

3.142

2.367

2.034

1.543

1.465

1.704
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