
Minimization by Majorization for a quadratic hinge loss

adaptation of word2vec

Msc Econometrics and Management Science Thesis

Koen de Nijs - 412673

Supervisor: prof. Patrick Groenen

January 21, 2021

Abstract

The popular word2vec model allows us to learn vector representations of words

that map their properties and similarities to other words. The resulting ‘word embed-

dings’ can show the closest matching synonyms to a particular word, and even allow

us to solve analogical reasoning tasks such as ‘King’ stands to ‘X’ as ‘Man’ stands to

’Woman’, where ‘X’ needs to be solved for (e.g. ‘Queen’). Although already highly

optimised, remaining inefficiencies may include the gradient descent method of opti-

mization, and the required sigmoid function for calculating the cross-entropy loss. We

propose an alternative algorithm for word2vec which optimizes the word embeddings

with minimization by majorization, as well as an implementation of this algorithm

which substitutes the cross-entropy loss for a quadratic hinge loss function. We com-

pare the two specifications of the algorithm on computation time per iteration, as well

as classification accuracy and an analogical reasoning task set. Several sampling meth-

ods of the choice space are proposed to scale the model to larger vocabularies. We find

that the minimization by majorization algorithm converges to a parameter set with

better classification accuracy than our implementation of the conventional word2vec

method. The quadratic hinge implementation is found to offer better performance on

analogical reasoning tasks than the cross-entropy loss model. We also find that sub-

sampling of the choice set in training the model makes the model readily scaleable

to sizeable vocabularies, and that uniform random sampling offers better performance

than frequency-based sampling or sampling from the word context.

1

Contents

1 Introduction 3

1.1 Word2vec in the Literature . 7

2 Methodology 8

2.1 Word2vec Framework . 9

2.2 Stochastic Gradient Descent word2vec . 11

2.3 MM-trained word2vec . 13

2.4 MM-trained word2vec with quadratic hinge loss . 17

2.5 Sampling . 23

2.5.1 Sampling MM-trained word2vec . 24

2.5.2 Sampling MM-trained word2vec with quadratic hinge loss 26

2.6 Model Accuracy . 28

3 Data 28

3.1 Word Analogy Task . 31

4 Results 32

4.1 Minimization by Majorization in word2vec . 32

4.1.1 Time to convergence with N = 100,000, M = 200 . 33

4.1.2 Scaling relative to M , N and c . 34

4.2 MM-trained embeddings with quadratic hinge loss . 35

4.3 Sampling methods compared . 38

4.3.1 Effect of sampling on scalability of MM-optimized word2vec 38

4.3.2 Negative sampling methods compared . 40

4.3.3 Sensitivity to subsampling . 42

4.4 Application on full ’text8’ dataset . 43

5 Conclusion 45

6 Discussion 47

A Regularizing MM-optimized word2vec 51

B Algorithms 54

B.1 Gradient Descent word2vec . 54

B.2 MM-optimized cross-entropy word2vec with subsampling . 55

B.3 MM-optimized quadratic hinge word2vec with subsampling 56

2

1 Introduction

In 2014, Google introduced word2vec, a shallow neural network classification algorithm for

deriving word probabilities from their surrounding k words (Continuous Bag of Words), or

vice versa, predicting the surrounding k words around a particular word (Skip-Gram). As it

turned out, the word-specific estimated weight vectors (also named word embeddings) linking

a particular word to the surrounding words can be used to derive semantic relationships.

Specifically, similar, synonimic, words will have similar weight vectors, as the two words will

be used interchangeably and may therefore be equally probable for a particular word context.

Finding a synonym for a particular word is therefore as simple as finding the word with the

most similar parameter vector. Besides synonimy, we may also use the weight vectors to

derive more sophisticated word relations, such as “X stands to Spain” as “Paris stands to

France”, which may be solved by Vec(X) = Vec(Paris) - Vec(France) + Vec(Spain), for which

a viable solution is ‘Madrid’. If the text used to train the model contains all these terms and

makes their relation apparent, the word2vec model will be able to solve this analogy. This

means that the word2vec word embeddings may be used not just for filling in some blanks,

but that they may also have ontological value.

A particular issue in estimating word embeddings for large vocabularies, is that of

computation time. For a model with a word embedding size of c, estimated for a vocabulary

of size M, we require the estimation of 2Mc parameters (for input- and output-weights).

With c typically in the hundreds, and M likely to be in the ten-thousands for a sizeable

text corpus, this poses a magnificent computation challenge, particularly when we train the

model on text corpora numbering millions to billions of total words. Several alterations to

accelerate word2vec have already been proposed. Particularly, to use hierarchical tree-based

softmax for calculating word probabilities, as well as the use of negative sampling, which

only adjusts the weights of a small subset of words for which we want a negative outcome.

We propose to further accelerate the word2vec model by borrowing from Support

Vector Machine (SVM) optimization techniques, specifically the use of minimization by ma-

jorization, as well as the use of a quadratic hinge loss function. Minimization by majorization

has the benefit of guaranteed descent of the loss function across iterations. The stochastic

3

gradient descent method used in the conventional word2vec does not have this characteristic

and may more easily get stuck in the likelihood space Wang (2008). The proposed quadratic

hinge function is expected to be computationally less expensive than the sigmoid function

used in the word2vec model. The quadratic hinge only requires that we evaluate a word

‘score’ z against a particular threshold, then square the difference between the score and the

threshold. The cross-entropy loss function used by the conventional word2vec requires the

calculation of exp(z), and then divides this exponent by the exponent of the scores of all

the other possible words, which we expect to be relatively burdensome. The quadratic hinge

also has the benefit of only attaching a loss to misclassified instances. This may help more

efficient optimization efforts than the word2vec model, which incurrs a loss based on the es-

timated probability of correct classification. To test the benefits of both the MM algorithm

and the quadratic hinge loss function, we aim to answer the research question:

Can we use a quadratic hinge loss function optimized with minimization by ma-

jorization to accelerate word2vec learning, without sacrificing word embedding

quality?

To answer this research question, we describe and implement an MM-optimization of the

‘continuous bag of words’ version of word2vec, which predicts a word based on which words

directly surround it in the text. Our research has three key contributions. First, we study

whether minimization by majorization (MM) is a suitable method of optimization for the

word2vec model. Second, we propose an alternative loss function: the quadratic hinge loss,

which may be less expensive to compute. Third, we consider the issue of negative sampling

for the MM-optimized algorithm, comparing different techniques of sampling to improve the

scalability of the proposed models. We use an incremental approach, answering the following

three research sub-questions:

RQ1: Can minimization by majorization be used to accelerate word2vec learning?

The traditional word2vec algorithm uses a method of stochastic gradient descent. For each

word in the text corpus, the probabilities of positive classification for each word in the vo-

cabulary are calculated. The gradient of the loss function with respect to the parameters

is then calculated, and the parameters are increased with a given step size in the descent

4

direction. This method requires a suitable step size, and risks overshooting the descent,

or otherwise taking steps that are too small. Minimization by majorization performs iter-

ative minimization of a larger function than the loss function. This allows the algorithm

to achieve a decrease in the loss function with each iteration. The MM algorithm may

therefore find it easier to converge to the best set of parameters for the text corpus. To

answer the first research question, we implement a MM algorithm of the regular word2vec

loss function, adapting a previous implementation from Groenen and Josse (2016), and com-

pare its optimization to the stochastic gradient descent method. We observe progress in the

loss function over time to test whether the MM algorithm makes quicker progress than the

gradient descent algorithm.

RQ2: Does the use of a quadratic hinge loss function over the traditional cross-

entropy loss accelerate parameter learning, and are the resulting embeddings of

equal quality?

The word2vec loss function is normally a cross-entropy loss, which aims to maximize the

sigmoid transformation of the score attached to the correct word. The cross-entropy loss can

be interpreted as the log sum of the estimated probabilities of the correct words. This carries

the risk that the loss function may be occupied with increasing the certainty of classifications

that are already correct, rather than reclassifying incorrect observations. The quadratic hinge

loss function attaches a positive loss only to incorrect classifications, and does not require

the expensive sigmoid transformation. We are interested to know whether this may make

optimization more efficient, and improve classification performance. We study the time per

iteration for both the MM-optimized cross-entropy loss and the hinge loss function, and

evaluate classification performance by means of in-sample and out-of-sample classification

accuracy. This allows us to quantify whether the hinge loss function is equally suited to

the text classification task performed by the word2vec model, and whether it can achieve a

higher accuracy in a given amount of training time.

RQ3: Can we use negative sampling to scale the MM-optimized models to larger

text corpora?

5

To extend the models to applications with large text corpora and vocabularies, it may

be overzealous to consider the whole vocabulary as the classification space for each word

instance. In these larger implementations we may employ negative sampling, in which only

a selection of the vocabulary compete with the correct word. Mikolov et al. (2013b) show

that their word2vec model benefits from a frequency-based negative sampling method in

which frequent words are more often used as competing samples. We aim to test their result

for the MM-optimized word2vec model as well as the hinge loss model, and compare it to

random uniform sampling, as well as context sampling, in which we use the surrounding

words as competitors to the correct words. We first test the models with increasing text-

corpus and vocabulary sizes to observe the scalability of the sampled methods. We then

test the sampled models on classification accuracy, as well as a word analogy task (e.g.

solve ‘X’ stands to ‘Amsterdam’ as ‘Belgium’ stands to ‘Brussels’), to ensure that the word

embeddings show the same semantic characteristics as the traditional word2vec. We are

interested in comparing the performance of the hinge loss and cross-entropy loss models in

a sampled application, as well as finding which method of sampling best suits each model.

These three sub-questions together allow us to evaluate the primary research ques-

tion, assessing the efficiency of an MM-optimized quadratic hinge word2vec model, and allow

us to determine whether word2vec can benefit from MM-optimization, and whether it can

benefit further from a quadratic hinge loss function.

We find that in smaller text corpora N , the MM-optimization of word2vec is faster

to minimize the cross-entropy loss to within a relative convergence tolerance, and converges

to a set of word embeddings with a higher classification accuracy.

We find that the MM-optimized quadratic hinge loss function offers an improvement

in accuracy on the word analogy task when compared to the MM-optimized cross-entropy

loss, but generally shows slightly lower classification accuracy. Training with the quadratic

hinge loss results in word embeddings with intuitive word relations, and appears to present

the same semantic properties offered by the conventional word2vec algorithm.

Negative sampling is found to greatly increase the scalability of the MM-optimized

models to larger vocabularies. We find uniform random sampling to result in the best

classification accuracy, as well as the best performance on the word analogy task.

6

On an application on a larger corpus of N = 17,000,000, we find that the MM-

optimized models underperform on the word analogy task relative to a gensim implemen-

tation of stochastic gradient descent with identical hyperparameters. The quadratic hinge

loss offers the most competitive performance on the word analogy task presented by Mikolov

et al. (2013b) with 8.5% of tasks solved correctly per the provided solution, but this is still

significantly less than the gensim gradient descent word2vec performance of 32.0%. Over-

all, the MM algorithm is found to be a thorough optimizer of the word2vec loss in smaller

corpora, but not fast enough to compete with stochastic gradient descent on a larger scale.

The MM-optimized quadratic hinge loss shows notable promise, it achieves faster iterations,

and beats out the MM-optimized cross-entropy loss on the word analogy task on every scale

of implementation.

We continue with a summary of the literature on word2vec, after which Section 2

defines our methods, and Section 3 reports the data sets used. Section 4 reports the results

per research sub-question. Finally, Section 5 offers a conclusion, and Section 6 presents a

discussion of our limitations and considerations for future research.

1.1 Word2vec in the Literature

Word2vec was first introduced in 2013 by Mikolov et al. (2013b), although the concept of

word embeddings may be traced back to Rumelhart et al. (1986), who note the weights in a

neural network as containing important features of the task domain. Mikolov et al. (2013b)

describe two methods of obtaining vector representations of words by learning from their

co-occurrence in a text corpus, the skip-gram and the continuous-bag-of-words models. The

first model trains vector representations by finding the set of vectors that best predict the

words surrounding a particular singular word. Inversely, the continuous-bag-of-words model,

which we study in this thesis, is trained by finding the set of vector representations that best

classify a target word, based on the surrounding ’bag’ of context words. The classification is

improved by performing stochastic gradient descent with a cross entropy loss function. This

loss function has a probabilistic interpretation, and is identical to the loss function used

in multinomial logistic regression, as introduced in econometrics by McFadden (1973). This

essentially makes the word2vec model a large-scale multinomial regression problem, in which

7

we aim to predict the choice out of M words in the vocabulary, with as our predictors the

binary encoding of the word context of each of the other words in the vocabulary, although

the dimensionality of the parameter space is reduced as not to require M2 parameters.

Mikolov et al. (2013b) find that word2vec training, whilst already relatively fast for

a neural network, can be sped up with undersampling of the most frequent words, to the

benefit of task performance for the less frequent words in the vocabulary. Specifically, to drop

a significant portion of common words such as ‘the’, prevents the model from overtraining on

these words, and increases performance for rare words such as ‘ninjutsu’. The authors also

extend the model to consider common multiword phrases as singular words, to extend the

vocabulary to personal, company and brand names. Additionally, the traditional softmax

is supplanted by a hierarchical tree-based softmax calculation. This saves the model from

having to evaluate each of M nodes in the output layer, reducing this to an average of

log2(M) nodes. By substituting the cross-entropy loss in word2vec by a hinge loss function,

we negate the need for calculating the softmax entirely, which may further accelerate the

word2vec as presented in Mikolov et al. (2013b).

The word2vec model has been adapted to domains outside of word pattern recog-

nition. Notably, Chung et al. (2016) propose ‘audio word2vec’, finding that the word2vec

may be successfully adapted for spoken term detection, outperforming conventional meth-

ods. The model may also be estimated with unsupervised learning, in which the model,

similar to conventional word2vec, finds ’sound-alike’ audio segments by comparing vector

representations. Another adaptation of word2vec outside the natural language domain is

presented by Ng (2017), who note the potential of the model for reducing the dimensionality

of vector representations of long DNA strands. Although our application will be limited to

the NLP domain, we note the potential value for a word2vec acceleration across other fields.

2 Methodology

We first define the theoretical framework of the encoding of a text corpus and the structure

of the word2vec model in section 2.1. The stochastic gradient descent method of word2vec

8

optimization, which will serve as a baseline, is given in section 2.2. To answer our first

research question, evaluating the efficiency of MM-optimization for word2vec, we derive

a majorizing function of the cross-entropy loss in Section 2.3. For our second research

question, the evaluation of a quadratic hinge version of word2vec, we derive a majorization

of the loss function in Section 2.4. To answer our third research question on the scalability

of optimization with negative sampling, we present separate sampled majorizations of both

loss functions as well as several negative sampling methods, in Section 2.5.

2.1 Word2vec Framework

The use case of the word2vec model is as follows. We consider the case of trying to predict

a word instance i out of a total text corpus of N words, with M total words in the possible

vocabulary. The text corpus may be considered a continuous space-separated string of words.

For ease of interpretation, we will introduce the example text corpus ‘a b a c b b d′, where the

letters a to d take the place normally taken by complete words. The text corpus has length

N = 7 and vocabulary size M = 4. We may encode such a corpus by a one-hot encoded

matrix Y of dimensions N ×M , which in this case will be specified as:

Y =



1 0 0 0

0 1 0 0

1 0 0 0

0 0 1 0

0 1 0 0

0 1 0 0

0 0 0 1


To estimate the word2vec model, we also need to denote the word context of a particular

word i in the corpus. For a context size of k, this means defining a N ×M matrix Q that

reports in each row vector qi which of the M words were in the context of word instance i.

9

Specifically, for our example ‘a b a c b b d′ (if we let k = 2):

Q =



1 1 0 0

1 1 0 0

1 1 1 0

1 1 1 0

0 1 1 0

0 1 0 1

0 1 0 1


Note that qim = 1 for every word l for which yjl = 1, with j ∈ [max(1,i−k/2),min(M,i+k/2)].

If we want to know only the surrounding words for word instance i, excluding the encoding

for the word itself, we may take X = Q − Y , where X is an N ×M matrix encoding the

surrounding words for each word instance. For our example, this would be:

X =



0 1 0 0

1 0 0 0

1 0 1 0

1 1 0 0

0 0 1 0

0 0 0 1

0 1 0 0


Note that under this specification, we encode only the presence of a word in the context,

not its frequency. The goal of the word2vec model, is to predict the outcomes encoded in

Y with the word context given by X. This may be done by defining an M ×M matrix

B, with elements βij. The weights βij reflect the relation of co-occurrence of words i and

j. A higher weight reflecting high co-occurrence, and a low weight reflecting very low co-

occurrence. With these weights, we can calculate word probabilities from their context. For

example, we may specify:

P [yim = 1|xi] =
exp (x′iβm)∑M
l exp (x′iβl)

= πim,

where x′i is row i of matrix X, and βm is column m of matrix B. However, this requires the

estimation of M2 parameters. For large corpora, with M often in the ten-thousands, this

10

may require more parameters than the number of unique observations in the corpus. This

creates a prohibitively large likelihood of overfitting the parameter set to the data, negating

the practical use of the model. The word2vec specification therefore restricts the M ×M

parameter matrix to be the matrix product of two smaller parameter matrices (U ,V), where

both U and V are M × c. With c typically in the range of 50-300, we define

B = UV ′.

This reduces the total number of weights to be estimated to 2Mc parameters, the elements

of U and V . This model definition can be interpreted, as it is presented in Mikolov et al.

(2013b), as a neural network with a single hidden layer of size c. The first matrix U contains

the parameters vectors u′m that report how the occurrence of a particular word m activates

the c nodes in the hidden layer. The second matrix V contains the parameter vectors v′m

that reflect how the activation of the hidden layer is related to the likelihood of a particular

word m being chosen for the word context. Together, the parameter vectors (u′m,vm) give

the word embedding of a particular word m. Word pairs (m,l) with high similarity between

their word embeddings are likely to be synonymic or thematically similar. Dissimilarity

between their word embeddings suggests low co-occurrence. We define the N ×M matrix

Z = XUV ′. For a given set of parameter matrices (U , V), the matrix entry zim = x′iUvm

reflects the score used in the exponent for calculating the estimated probability πim. A high

score zim therefore reflects that for the word instance i, we attach a high probability to the

word m being fitting, given the context x′i.

2.2 Stochastic Gradient Descent word2vec

We now define the method by which the conventional word2vec model optimizes the param-

eter matrices U ,V , as presented by Mikolov et al. (2013a) (another thorough explanation

of the algorithm is given by Rong (2014)). The model framework given in the previous

section can be used to predict word occurrences from their surrounding text, but requires

a method to find the set of optimal parameters U ,V that attach a high probability to the

correct words, and low probability to the wrong words across our corpus of N words. To this

11

end, we need to define a loss function that reports goodness-of-fit for a parameter set. The

conventional word2vec model makes use of the cross-entropy loss. For each word instance i,

we have an estimated probability P [yim = 1|xi] = πim. The cross-entropy is derived from

the total estimated likelihood of observing the text corpus, which we define as

L(U ,V) =
N∏
i=1

M∏
m=1

πyim
im =

N∏
i=1

M∏
m=1

(
exp (x′iβm)∑M
l=1 exp (x′iβl)

)yim

=
N∏
i=1

M∏
m=1

(
exp (x′iUvm)∑M
l=1 exp (x′iUvl)

)yim

,

where vm is column m of matrix V . Maximization of the likelihood function L(U ,V) is

equivalent to the minimization of the easier to compute negative log-likelihood

`(U ,V) = −
N∑
i=1

M∑
m=1

yim log

(
exp(x′iUvm)/(

M∑
l=1

exp(x′iUvl))

)
.

The application of word2vec presented by Mikolov et al. (2013b) estimates the set of

parameters (U ,V) by means of backpropagated stochastic gradient descent. The word2vec

gradient descent method is described in detail by Rong (2014). The model employs a version

of stochastic gradient descent, in which the gradient of the loss function for only a single

instance at a time is used. For each word i of the N words in the corpus, the probabilities

πim are calculated, and the gradient of the instance-specific loss `i(U ,V) relative to the

parameter matrices U , V is calculated. The parameter matrices are then adjusted with a

particular step size η > 0 in the descent direction relative to `(U ,V). Appendix B.1 shows

the full algorithm as it is implemented for this research. The benefit of this method is that

only a single row x′i is considered at a time. This makes the model very easily scalable to

large datasets, since the matrix X does not need to be kept in memory but can be ’streamed’

through the iteration as needed. A drawback of this method is that this large sequence of

N parameter updates is unlikely to converge to a global minimum for (U ,V). Since each

update only considers one word instance, the parameter updates are blind to their effect on

the complete loss function, and may contradict previous parameter updates and even cause

net increases in the loss `(U ,V).

For both outcomes, the adjustment happens with a particular learning rate η > 0. A

higher learning rate η means that bigger steps are taken in the adjustment of the parameters.

12

However, this also increases the risk of overshooting the optimal parameter value. When

this happens, the parameters may actually be adjusted to a value with a higher loss than

the previous iteration. This is a known drawback of gradient descent, which may have

trouble navigating valleys in the likelihood space (Wang, 2008). The proposed MM-algorithm

adaptation of word2vec has the benefit of guaranteed descent over iterations, and does not

require the specification of a suitable η.

In the commonly used stochastic gradient descent method of word2vec optimization,

such as in Rong (2014) or Mikolov et al. (2013b), parameter identification is generally not

enforced, which means that the estimated parameter set (U ,V) is not the unique global

minimum to the cross-entropy loss. For example, if we were to use (UT ,V T−1), with T

some invertible c× c matrix, we would have Z = XUTT−1V = XUV . This would result

in an identical loss `(UT ,V T−1) = `(U ,V). However, since the goal of the model is to

observe the similarity between the word embeddings, rather than obtain a unique solution

to the classification task, this is generally considered not to be an issue, but may be noted

as a drawback of the word2vec framework.

2.3 MM-trained word2vec

We are interested in the use of an alternative method of optimisation of the word2vec loss

function presented in the previous section. We therefore specify an algorithm for the op-

timization of the cross-entropy loss by Minimization by Majorization. Minimization by

Majorization (MM) allows for the optimization of functions that have no direct analytical

solution, by iteratively optimizing other functions that are similar, and strictly larger than

the objective function. For a particular function f(θ) that may be difficult to optimize, and

for which our current parameter set is θ0, the idea is to find another function g(θ) for which

f(θ0) = g(θ0), and for which f(θ) ≤ g(θ). If we can easily minimize g(θ), the resulting

optimal solution θ∗ will satisfy f(θ∗) ≤ f(θ0) = g(θ0), since otherwise g(θ∗) would not be

the true minimum for g(θ). This particular characteristic of the method guarantees descent

of the loss function across iterations. However, the method does require the availability of a

good g(θ). For optimal performance, the majorizing function must be reasonably close to the

objective function, and computationally easy to minimize. We consider the implementation

13

of the MM-algorithm first on the conventional cross-entropy loss word2vec, after which we

introduce an alternative model based on quadratic hinge loss.

We adapt the MM-algorithm for the cross-entropy loss function reported in Groenen

and Josse (2016). The authors consider the issue of multinomial multiple correspondence

analysis, to estimate the multinomial probability of a set of J categorical variables, each

with Kj options, conditional on the J−1 other categorical variables. Our application differs

in two regards. First, only one categorical variable is considered, the choice amongst M

different words on each of N word instances. Second, we have a very large choice set M ,

which requires the restriction of our parameters to the linear combination UV ′.

To majorize the function `(U ,V), we first need to find a proper majorizing func-

tion gi(θ,θ
0), to majorize the loss fi(θ) for a particular word instance i. Since the total

loss associated with a parameter set is given by the summed loss over all word instances,

the complete majorizing function can later be obtained by summing over i. Let fi(θ) be

our objective function, then the majorizing function must satisfy gi(θ
0,θ0) = fi(θ

0), and

gi(θ,θ
0) ≥ fi(θ). Based on these conditions, the iterative minimization of the majorizing

function will guarantee descent across iterations for our objective fi(θ).

We require a majorizing function for our particular cross-entropy loss objective

function. Groenen and Josse (2016) suggest the majorizing function

gi(θ,θ
0) = fi(θ

0) + (θ − θ0)′∇fi(θ0) +
1

4
||θ − θ0||2, (1)

where θ0 is the parameter set from the previous iteration of the algorithm. In our case we

let θ = Z, the N ×M matrix of scores XUV ′ which are used in the exponents to calculate

the word probabilities πim. We denote the rows of Z as z′i = x′iUV
′, and the elements as

zim = x′iUvm. To find iteratively better fitting weight matrices U ,V , we may majorize with

as our parameters the elements of Z and solve for U and V from there on.

We define the instance-specific loss fi(θ) as:

fi(θ) = `i(U ,V) =−
M∑

m=1

yim log

(
exp(x′iUvm)/(

M∑
l=1

exp(x′iUvl))

)

=−
M∑

m=1

yim log(

(
exp(zim)/(

M∑
l=1

exp(zil))

)
.

14

The gradient ∇fi(z′i) is given by the first derivative of the instance-specific loss

relative to the 1×M score vector zi. It can be shown that

∂fi(z
′
i)

∂zi
=

exp(zi)∑M
l=1 exp(zil)

− yi = πi − yi,

which gives the 1 ×M vector of derivatives of the instance-specific loss relative to each of

the elements of zi. Filling in the equation 1 with functions pertaining to our optimization

problem we obtain

gi(zi,z
0
i) =− y′i log(π0

i) + (zi − z0i)′(π0
i − yi) +

1

4
||zi − z0i ||2

=
M∑

m=1

(
−yim log(π0

im) + (zim − z0im)(π0
im − yim) +

1

4
(zim − z0im)2

)
.

The complete majorizing function, over all word instances i, is then given by

g(Z,Z0) =
N∑
i=1

M∑
m=1

(
−yim log(π0

im) + (zim − z0im)(π0
im − yim) +

1

4
(zim − z0im)2

)
.

To minimize g(Z,Z0), we need to find the point where the gradient of the summed instance-

specific losses is 0 relative to each of the elements of U and V . We first separate the

majorizing functions into all terms containing U and V , and terms relating to elements we

may regard as constant relative to (U ,V), such as π0
im, z

0
im and yim. We group these into the

constant term cim, as they may be disregarded for optimization purposes. After expanding

the brackets of the term (zim − z0im)2, this gives the reduced form expression

g(Z,Z0) =
N∑
i=1

M∑
m=1

(
zim(π0

im − yim −
1

2
z0im) +

1

4
z2im + cim

)
.

To further simplify, we define rim = π0
im − yim − 1

2
z0im, the elements of the N ×M matrix

R = Π − Y − 1
2
Z0. Substituting this into the equation gives the simplified expression

g(Z,Z0) =
N∑
i=1

M∑
m=1

(
zimrim +

1

4
z2im + cim

)
.

To optimize with respect to the parameter matrices U , V we replace zim with its original

definition of x′iUvm to obtain

g(Z,Z0) =
N∑
i=1

M∑
m=1

(
x′iUvmrim +

1

4
(x′iUvm)2 + cim

)
= tr(XUV ′R′) +

1

4
tr(V U ′X ′XUV ′) + c,

15

where c contains the sum of all cim over i,m. To find the update equations for our parameter

matrices, we first take the derivative of the majorizing function with U = U 0 with respect

to V (note that per the property of invariance with regards to cyclic permutations of the

trace function, we can let tr(XU 0V ′R′) = tr(R′XU 0V ′)) :

∂g(Z,Z0)

∂V
= R′XU 0 +

1

2
V U 0′X ′XU 0 = 0,

where 0 is a matrix of zeros that takes the dimension of whatever it is equated to. From

this we may derive that

V = −2R′XU 0(U 0′X ′XU 0)−1.

We can then update the values of Π , Z, and subsequently R with the new V , and then

perform a new iteration in which we update U . Similar to the update for V , we obtain

the derivative of the majorizing function with respect to U (again using the cyclic property,

where tr(XUV R′) = tr(UV ′R′X)):

∂g(Z,Z0)

∂U
= V 0′R′X +

1

2
V 0′V 0U ′X ′X.

This gives us the update equation

U = −2(X ′X)−1X ′RV 0(V ′0V 0)−1.

Algorithm 1 defines the optimization procedure. A particular issue in optimizing the cross-

entropy loss, is that we −log(πim) is susceptible to encouraging drift in our score matrix Z to

extreme values, as to optimise the πim to become as close to 0 or 1 as possible. This can lead

to trouble when we try to achieve convergence of the loss function to within a tolerance ε. We

consider the option of regularizing the cross-entropy loss function, and present a method for

doing so in Appendix A. However, we find it to carry a prohibitive computational burden, and

therefore do not conclude it as one of our main methods. Alternatively, we opt to set both a

relative convergence tolerance ε, and a time-limit on optimisation, which forces termination

of the algorithm when it continues to make small increments in `(U ,V) by drifting elements

of Z to extreme values.

16

Algorithm 1: MM-trained word2vec

Result: Optimization of paramater matrices U , V

Input: Text corpus d, convergence tolerance ε

Parameters: Context size k, embedding size c, vocabulary size M .

Let d be the text corpus as a vector of strings [str1, str2, ...,strN].

Let l be the vocabulary vector, the M most frequent strings in d.

Encode N ×M matrix Y from text corpus, where yim = 1 if di = lm, 0 otherwise.

Encode N ×M matrix Q from text corpus, where qim = 1 if

max(yi−k/2,m,...,yim,...,yi+k/2,m) = 1, 0 otherwise.

Set X = Y −Q.

Initialize M × c matrices U , U 0, V , V 0 with each of the elements drawn from a

N(0,1/c2) distribution.

Initialize Z = XUV ′.

Initialize πim = exp(zim)/(
∑M

l=1 exp(zlm)) for each i, m, to construct Π .

Initialize f(U ,V) =
∑N

i=1

∑M
m=1−log(πim)yim, f(U 0,V 0) =∞.

while |(f(U ,V)− f(U 0,V 0))/f(U 0,V 0)| > ε do

U 0 = U .

V 0 = V .

Z0 = Z.

Π0 = Π .

R = Π0 − Y − 1/2Z0.

On odd iterations, set V = −2R′XU 0(U 0′X ′XU 0)−1.

On even iterations, set U = −2(X ′X)−1X ′RV 0(V 0′V 0)−1.

Update Z, Π , f(U ,V).

end

2.4 MM-trained word2vec with quadratic hinge loss

We propose to further amend the word2vec model by using a quadratic hinge loss function.

The conventional cross-entropy loss requires the expensive calculation of the sigmoid for

deriving πim. This is needed in both the regular stochastic gradient descent evaluation, as

17

well as in the proposed MM-algorithm alternative. The benefit of such a sigmoid function is

that it gives exact probability values for each of the possible outcomes M for each instance i.

These probabilities give an accessible intuition to the model, and their maximization for the

correct word in each instance will definitely converge to a sensible set of parameters (U ,V).

However, in the word2vec setting these probabilities may be overzealous. Given the large

vocabulary size M , and the even larger corpus size N , estimated specific probabilities are

likely not needed for any use other than optimization, and their calculation may take up

valuable resources. We consider that a more parsimonious specification that directly targets

the scores Z rather than their sigmoid transformation, may achieve equal performance to the

cross-entropy specification at a quicker rate. To this end we employ a hinge loss function that

only evaluates whether zim > 1 for the correct words in an instance, and whether zim < −1

for all other words.

For our specification, we define the following loss function, for a parameter set

(U ,V), words i to N in the corpus:

H(U ,V) =
N∑
i=1

M∑
m=1

(
yim max(1− zim,0)2 + (1− yim) max(zim + 1,0)2

)
.

This loss function sets a target score zim of −1 for each incorrect word and a target score of

1 for the correct word. Figure 1 shows this loss function for one word instance in both the

case that yim = 1 and for yim = 0. We see that there is a positive loss associated for a score

zim being below the value of 1 when yim = 1, or being above the value of −1 when yim = 0.

A score between -1 and 1 always incurs a positive cost, as to encourage differences in the

word-specific parameters (um,vm) across the vocabulary M .

To find a majorizing function, we borrow from Groenen et al. (2008), who give

majorizing functions for the absolute, quadratic and huber hinge loss function in a Support

Vector Machine application. The authors note that the first component of the hinge loss:

f+(q) = max(1 − q,0)2, can be majorized by g1(q) = (1 − q)2 when q0 ≤ 1 and by g2(q) =

(q0 − q)2 when q0 ≥ 1. This piecewise specification achieves the required conditions for

majorization that g(q0) = f(q0), as well as achieving the same slope in q0 and having

g(q) ≥ f(q) for all q. We see that when q0 has not yet attained the optimal value in the

range greater than 1, the majorizing function is minimized at q = 1. When q0 is already in

18

Figure 1: Majorization of quadratic hinge loss function by value of yim

(a) Majorization for correct classifications (b) Majorization for incorrect classifications

the optimal range, there is no further incentive for the majorization to change the value of

q, since the majorization is minimized at q0.

Similarly, for the cost associated with instances for which yim = 0, of the form

max(q + 1,0)2, Groenen et al. (2008) suggest the majorization g−1 (q) = max(q + 1,0)2 when

q0 < −1, and g−2 (q) = max(q−q0)2. For these instances we can also see that the majorization

pushes for a smaller value when q0 is not yet below −1, attaining the minimum at q = −1,

and providing no incentive for change when q0 is already in the optimal range.

The majorizations are given in Figure 1. In Figure 1 (a) we see that for already

correct classifications, the minimum is attained at the previous value z0. In Figure 1 (b) we

see that for incorrect classifications the majorization coincides exactly with the loss function

itself, reflecting the quadratic loss associated with those instances.

We apply this majorization of our quadratic hinge loss for word embeddings, with

respect to the word scores zim. By finding the proper majorization of H(Z), we can then

derive an improvement on the parameter set (U ,V). First, we need to know for a given

initial parameter set (U 0,V 0), the scores Z0, and whether these scores are in the proper

range for their respective values in Y . For the first part of the quadratic hinge loss function,

19

we define sim = 1 if z0im < 1, 0 otherwise. For the second part of the loss function, we define

tim = 1 if z0im > −1, 0 otherwise. Together, sim and tim denote whether we already have

a suitable word score for the combination i,m, (in which case they are both 0), or whether

there is a positive loss associated with i,m (in which case either of them are 1). This gives

us the majorizing function

G(U ,V) =
N∑
i=1

M∑
m=1

(
yim
(
sim(1− zim)2 + (1− sim)(z0im − zim)2

)
+

(1− yim)
(
tim(1 + zim)2 + (1− tim)(zim − z0im)2

)
.

We see that the function can be split into the majorization for when yim = 1 and when yim =

0. Those two parts can then each be split into the majorization for when the classification

is already correct (sim = 0 or tim = 0, respectively) or for when the classification, per the

most recent score z0im is still incorrect (sim = 1 or tim = 1, respectively).

Since we are interested in the derivative with respect to zim we want to rewrite the

majorization as a quadratic function of zim, expanding the brackets in our majorization and

grouping all the coefficients for z2im and the linear part zim together:

G(U ,V) =
N∑
i=1

M∑
m=1

(z2im(yimsim + yim(1− sim) + (1− yim)tim + (1− yim)(1− tim))

+ zim(−2yimsim − 2yim(1− sim)z0im + 2(1− yim)tim − 2z0im(1− yim)(1− tim))

+ z0im
2(yim(1− sim) + (1− yim)(1− tim))

+ yimsim + (1− yim)tim).

To aid optimization with respect to zim, we may note that the coefficient for the term z2im

can be worked out to 1, since always exactly one of the terms evaluates to 1. We can also

perform the substitution aim = yimsim− (1− yim)tim + z0im(yim(1− sim) + (1− yim)(1− tim))

to reduce the linear term to a single coefficient. We can also group the terms that do not

contain zim, since these are not relevant for optimization with respect to zim. We then obtain

G(U ,V) =
N∑
i=1

M∑
m=1

(z2im − 2aimzim + cim),

where cim contains all the terms not dependent on zim. To facilitate the matrix notation of

G(U ,V), we define the N ×M matrix A, containing the elements aim. We can then rewrite

20

the majorization to

G(U ,V) = −2 tr(ZA′) + tr(Z ′Z) + c

= −2 tr(XUV ′A′) + tr(V U ′X ′XUV ′) + c.

Due to the quadratic nature of both this majorizing function, and the majorization used for

the cross-entropy loss, we may note the parallel in the two majorizations. Both have a linear

component and a quadratic component, with the primary difference between the two being

in the linear term, tr(XUV ′R′) for the cross-entropy loss, and tr(XUV ′A′) for the hinge

loss function. The potential benefit to hinge loss majorization may be in the linear term

being less expensive to calculate, since it no longer requires the calculation of Π . Similar to

the optimization of the regular word2vec loss, we first optimise G(U 0,V) relative to V . To

this end, we derive

∂G(U 0,V)

∂V
= 2V U 0′X ′XU 0 − 2A′XU 0 = 0,

from which we may obtain the update equation

V = A′XU 0(U 0′X ′XU 0)−1.

We may then re-estimate Z to obtain an updated A before updating U . We then take the

derivative of G(U ,V 0) with respect to U :

∂G(U ,V 0)

∂U
= 2XX ′UV 0′V 0 − 2X ′AV 0,

which gives us the update equation

U = (X ′X)−1XAV 0(V 0′V 0)−1.

The resulting Algorithm 2 for finding hinge-loss minimized word embeddings is similar to

the former, save for the differences in the weight updates and loss calculations.

21

Algorithm 2: MM-trained word2vec with quadratic hinge loss.

Result: Optimization of paramater matrices U , V .

Input: Text corpus d, convergence tolerance ε.

Parameters: Context size k, embedding size c, vocabulary size M .

Let d be the text corpus as a vector of strings [str1, str2, ...,strN].

Let l be the vocabulary vector, the M most frequent strings in d.

Encode N ×M matrix Y from text corpus, where yim = 1 if di = lm, 0 otherwise.

Encode N ×M matrix Q from text corpus, where qim = 1 if

max(yi−k/2,m,...,yim,...,yi+k/2,m) = 1, 0 otherwise.

Set X = Y −Q.

Initialize M × c matrices U , U 0, V , V 0 with each of the elements drawn from a

N(0,1/c2) distribution.

Initialize Z = XUV ′.

Initialize f(U ,V) =
∑N

i=1

∑M
m=1 (yim max(1− zim,0)2 + (1− yim) max(zim + 1,0)2),

f(U 0,V 0) =∞.

while |(f(U ,V)− f(U 0,V 0))/f(U 0,V 0)| > ε do

U 0 = U .

V 0 = V .

Z0 = Z.

Construct S, where sim = 1 if z0im < 1, 0 otherwise.

Construct T , where tim = 1 if z0im > −1, 0 otherwise.

Construct A, where

aim = yimsim − (1− yim)tim + z0im (yim(1− sim) + (1− yim)(1− tim)).

On odd iterations, set V = A′XU 0(U 0′X ′XU 0)−1.

On even iterations, set U = (X ′X)−1XAV 0(V 0′V 0)−1.

Update Z, f(U ,V).

end

22

2.5 Sampling

Our final research sub-question concerns the scalability of the algorithms proposed thus far

by means of negative sampling. To this end, we present three distinct methods of sampling,

and derive the MM-optimizations for the word2vec model with a sampled, sparse Z. So

far, the methods for training the word embeddings, for both the traditional cross-entropy-

and hinge-loss functions, has relied on the computation of the full N × M score matrix

Z = XUV ′. This matrix is dense, in that every element is expected to be non-zero, and for

the cross-entropy loss it also needs to be transformed with the sigmoid function to calculate

Π . These factors together make the calculation of scores or probabilities for each algorithm

computationally very expensive. The efforts for calculating all M scores for each word

instance i may also be needlessly thorough, as it evaluates the whole choice set given by the

vocabulary at each instance. A possible gain in efficiency may be reached by significantly

reducing the density of XUV ′ by evaluating the score of only a sample of the vocabulary.

This changes the training task from classifying the correct word from the whole vocabulary,

to trying to find the correct word relative to a small selection of competing words. Mikolov

et al. (2013b) also suggest negative sampling to speed up their stochastic gradient descent

implementation of word2vec. The authors suggest negative sampling of the incorrect words

in m, for each instance i, and find that the optimal sampling method uses the most frequent

words in the vocabulary (e.g. ‘the’, ‘and’, ‘of’) more often as negative samples.

To get meaningful word embeddings, this sample should contain the target word for

which yim = 1, and a small selection of other words in the vocabulary. We define the N ×M

matrix P as the sampling matrix, which has p non-zero elements in each row i to denote

which of the M words in the vocabulary are included in evaluating the instance-specific loss.

Here, pim = 1 to denote the word m being sampled for instance i, and 0 otherwise, where

pim = 1 always if yim = 1. To evaluate the effects of sampling we evaluate three methods,

specifically:

• Uniform random sampling: we set pim = 1 if yim = 1, and otherwise the value of pim

is determined by a uniform random distribution, with P [pim = 1] = (p − 1)/M , 0

otherwise. May be performed repeatedly with every iteration.

23

• Frequency-based weighted sampling: Mikolov et al. (2013b) suggest a weighted sam-

pling method, making use of the unigram distribution (the sample frequency of the

word in the corpus) raised to the power 3/4 as the negative sampling distribution

Specifically, the probability of being included as the negative sample is given by

P [pim = 1] = (
∑N

i=1 yim)3/4)/(
∑M

l=1(
∑N

i=1 yil)
3/4)). Using popular words more fre-

quently may balance out their frequent occurrence as positive samples.

• Context sampling: we let p = k + 1 and P = Q, in which the context words are

evaluated against the target word.

The increase in the sparsity in the score matrix Z will allow quicker calculation of the loss

function, as well as quicker parameter updates. We implement uniform random sampling,

weighted frequency-based random sampling and context sampling, for both the MM-hinge

and the MM-word2vec algorithms and evaluate the resulting performance on word analogy

tasks, and in- and out-of-sample classification accuracy.

2.5.1 Sampling MM-trained word2vec

The update equations for our MM algorithms change slightly when we include negative

sampling. In this section, we derive the parameter update equations for the MM-optimised

word2vec model when we include negative sampling. The application of a sampling matrix

pim to our loss function means that we evaluate the loss only for the combinations i,m for

which pim = 1. This means that we only need to evaluate the score zim and probabilities

πim for those instances for which pim = 1. If we define

z∗im = pimx
′
iUvm = pimzim,

we obtain the instance-specific loss function

fi(U ,V) = −
M∑

m=1

pimyim log(

(
exp(z∗im)/(

M∑
l=1

pim exp(z∗il))

)
= −

M∑
m=1

yim log(π∗im),

where we used the fact that when yim = 1, pim = 1, such that yimpim = yim. Note that the

probability π∗im now reports the estimated probability of the word m being the correct word

relative to all the other words for which pim = 1, rather than as evaluated against the entire

24

vocabulary. This has the benefit of being easier to compute, but with the drawback that

the estimated probability may not accurately reflect the position of the embedding relative

to the rest of the vocabulary. There may be another word that has a higher score zim than

our target word, but this is not accounted for in the loss function, or the majorization.

The majorization of this function, using the same steps as used in the previous

majorization of the cross-entropy loss, is given by

gi(zi,z
0
i) =

M∑
m=1

(
−yim log(π∗0im) + (z∗im − z∗0im)(π∗0im − yim) +

1

4
(z∗im − z∗0im)2

)
.

However, the quadratic part of the majorizing function now contains the term 1/4(z∗im −

z∗im
0)2. The dependence on the sampling matrix P makes this term difficult to optimize with

respect to our parameter matrices U ,V . We may however perform a further majorization

by substituting zim for z∗im in the quadratic part only, to obtain:

hi(zi,z
0
i) =

M∑
m=1

(
−yim log(π∗0im) + (z∗im − z∗0im)(π∗0im − yim) +

1

4
(zim − z0im)2

)
.

Since the quadratic term is centered around z0im, this majorization still satisfies hi(z
0
i ,z

0
i) =

fi(z
0
i), as well as fi(zi) ≤ hi(zi,z

0
i) and ∂fi/∂zi(z

0
i) = ∂hi/∂zi(z

0
i ,z

0
i). This majorization

has the benefit of pim only occurring in the linear term, where it can be easily included in

the partial derivative of the majorizing function.

Summing this instance-specific majorization hi(zi,z
0
i) over all instances i, and

grouping by the terms independent- and dependent of z∗im gives

gi(z
∗,z∗0) =

N∑
i=1

M∑
m=1

(
z∗im(π∗0im − yim)− 1

2
zimz

0
im +

1

4
z2im + cim

)
.

We may then substitute r∗im = pim(π∗0im − yim) − 1
2
z0im, and rewrite to matrix notation to

obtain

g(Z∗,Z∗0) = tr((XUV ′)R∗′) +
1

4
tr((XUV ′)′(XUV ′)) +

N∑
i=1

M∑
m=1

cim.

Note that this is the same majorization we obtained for the unsampled MM-optimized cross-

entropy loss function, save for the filtered equivalent R∗. By the same steps outlined in the

section 2.3, we can obtain the parameter update equations

V = −2R∗′XU 0(U 0′X ′XU 0)−1,

25

and

U = −2(X ′X)−1X ′R∗V 0(V 0′V 0)−1.

If we write out R∗ = (Π∗ − Y)− 1
2
Z0, we obtain as our update equation for V

V = Z0′XU 0(U 0′X ′XU 0)−1 − 2(Π∗ − Y)′XU 0(U 0′X ′XU 0)−1

= V 0U 0′X ′XU 0(U 0′X ′XU 0)−1 − 2(Π∗ − Y)′XU 0(U 0′X ′XU 0)−1

= V 0 − 2(Π∗ − Y)′XU 0(U 0′X ′XU 0)−1.

Similarly for U , writing out R∗ and substituting XU 0V 0′ for Z0 reduces the update equa-

tion for U to

U = U 0 − 2(X ′X)−1X ′(Π∗ − Y)V (V ′V)−1.

2.5.2 Sampling MM-trained word2vec with quadratic hinge loss

For our hinge loss function we may take the same steps to obtain the sampled parameter

update equations. First, we note the instance-specific loss

fi(U ,V) =
M∑

m=1

(
yim max(1− zim,0)2 + (1− yim)pim max(zim + 1,0)2

)
.

We again invoke the definition of the matrices S, T , where sim = 1 if z0im < 1 and tim = 1 if

zim > −1, and use this to define the majorization

G(U ,V) =
N∑
i=1

M∑
m=1

(
yim
(
sim(1− zim)2 + (1− sim)(z0im − zim)2

)
+

(pim − yim)
(
tim(1 + zim)2 + (1− tim)(z0im − zim)2

)
.

We now again substitute the linear component to obtain a reduced form expression of the

form G(U ,V) =
∑N

i=1

∑M
m=1 z

2
im − 2aimzim + cim, but work this out a bit further by setting

a∗im = yimsim − (pim − yim)tim + z0im(yim(1− sim) + (pim − yim)(1− tim))

= z0im − yimsim(1− z0im) + (pim − yim)tim(1 + z0im)

= z0im + dim,

26

where dim = −yimsim(1 − z0im) + (pim − yim)tim(1 + z0im). We may then write this out in

matrix notation by defining D as the N ×M matrix containing the elements dim:

G(U ,V) = −2 tr((Z0 +D)′XUV ′) + tr(V UX ′XUV ′) + c,

where c contains all the terms constant with respect to Z. From this point on, we can use

the same steps as in section 2.4 to obtain the update equations

V = (Z0 +D)′XU 0(U 0′X ′XU 0)−1

= V 0 +D′XU 0(U 0′X ′XU 0)−1,

and

U = (X ′X)−1X ′(Z0 +D)V 0(V 0′V 0)−1

= U 0 + (X ′X)−1X ′(D)V 0(V 0′V 0)−1.

Due to the quadratic nature of the loss function, we may observe a similarity in the update

equations to the solution of ordinary least squares regression. Particularly, for the update

equation to V , we see that the update performs multiple linear regression of the elements

of D on the N × c matrix XU 0, finding which parameter update for V best minimizes the

square of the errors in (D −XUV ′), where each element of D reports the ideal change in

zim. Note that per the sparsity of D, the target value for the update to zim is 0 for any

value for which pim = 0. Otherwise, the target D is (1−z0im) if yim = 1 and z0im < 1 (i.e. the

score is not yet high enough to warrant correct classification of i,m). The ideal update to

U ,V increases zim by dim, which for this case would be (1−z0im). For any instance for which

yim = 0 and z0im > −1 (i.e. the score is not yet low enough to correctly classify i,m), the

target update to zim is (−1− z0im). Ideally, the sparsity of D increases with every iteration,

since its sparsity is directly proportional to the number of correctly classified values in the

i,m domain. Any value which has pim = 0 or any value which is correctly classified has

dim = 0. This allows the updates to focus on the instances for which we do not yet have a

correct score, rather than further increasing the value of already correct values. This may be

a potential upside of the quadratic hinge loss over the cross-entropy loss, which maintains the

(Π −Y) loss matrix in the update equation throughout optimization, which has a constant

27

density proportional to the density of P . It redirects optimization to the problem cases, and

also allows for quicker iterations, since we only have to use the non-zero elements in D to

perform our parameter updates.

2.6 Model Accuracy

To compare the models presented in the previous sections, we use as a performance metric

their classification accuracy. That is, the proportion of instances i in the text corpus for

which the model suggests the correct word m∗ for which yim∗ = 1. We also use the top-10

classification accuracy, which reports the proportion of instances i for which the correct word

appears among the 10 first suggestions offered by the model.

We can first define the accuracy metric as

A(U ,V) =
1

N

N∑
i=1

M∑
m=1

(yimI[m = arg max
l

zil]),

where I[·] is an indicator function that equals to 1 if the condition in brackets is true, 0

otherwise. In this case, it reports whether the word m has the maximum score zim for

instance i. Similarly, we can define the top-10 accuracy as

A10(U ,V) =
1

N

N∑
i=1

M∑
m=1

(yimI[m ∈ Li]),

where Li is the set of 10 words with the largest zim in zi.

We calculate in-sample classification accuracy, but also out-of-sample classification

accuracy (i.e. word instances i which do not appear in our training data). Unless stated

otherwise, we use an out-of-sample data set that is of the same size N as our training data,

with word instances i being randomly allocated to either the training set or the out-of-sample

test set.

3 Data

The primary dataset used to train the model will be ‘text8’. This dataset contains the first

108 bytes of text on the English wikipedia as of March 2006. Interpunction and HTML

28

tags are removed to produce a raw text corpus of 17 million words, containing 253 thousand

unique words. This includes both conventional English words, as well as various types of

names that may appear more sparsely in the corpus. For the estimation of word embeddings,

the vocabulary size is commonly truncated to a particular value (e.g. 10,000), keeping only

the most frequent words, so as not to waste computation efforts on the sparse occurrences

of particular names or misspellings of regular words, for which robust word embeddings are

unlikely to be calculable.

The data is freely available online 1. The text8 document contains a space-separated

string of 17,005,208 words. A total of 253,855 unique strings are contained in the document.

Across all unique strings, the median number of occurrences in the document is 2, with a

mean number of occurrences of 67. 47,314 words have an occurrence of 10 or more, 11,815

occur 100 times or more. Table 1 shows the top 10 most frequent words, as well as a few

others. Overall, we find that numbers, prepositions and articles take primacy in the text

corpus.

Table 1: Most frequent words in the ’text8’ corpus

Rank Word Count

1 the 1,061,396

2 of 593,677

3 and 416,629

4 one 411,764

5 in 372,201

6 a 325,873

7 to 316,376

8 zero 264,975

9 nine 250,430

10 two 192,644

100 where 12,347

1000 takes 1,783

10000 beria 126

Figure 2a shows the distribution of the logarithm of the word frequencies. We see

1http://mattmahoney.net/dc/textdata.html

29

a clear left skew of the data, even after logarithmic transformation. This indicates that a

vast majority of the text consists of infrequently used words. These may be personal names,

technical subject-specific terms or misspellings of more common words. Restriction of the

vocabulary M to 10,000 words results in the word frequency distribution shown in Figure

2b. This subsample of the vocabulary contains all words with at least 126 occurrences.

Together, this subsample of the total vocabulary in the dataset accounts for 15.3 million

words in ’text8’, or 89.8% of the whole dataset. In testing the models presented in the

previous section, we consider various subsets of the text8 dataset. For the unsampled model

estimations, even a subset of 100,000 words leads to a significant pressure on memory, since

we keep the N × M matrix Π in memory. Subsampling drastically reduces this memory

pressure, allowing for the use of larger subsets of the dataset.

Figure 2: Distribution of word frequencies in the full ’text8’ dataset (a), and for the 10,000

most frequent words (b). The blue line shows the base 10 logarithm of the mean word

frequency.

(a) Full data (b) 104 most frequent words

30

3.1 Word Analogy Task

The quality of the obtained word embeddings can be assessed by testing their accuracy in

predicting words from the surrounding context, the task which the word embeddings are

trained to perform. However, we would ideally also like to see some of the word embedding

behaviours shown in the literature, in which relations between words are reflected in the

similarities in their word embeddings, such that we can solve tasks like (‘girl’ stands to ‘boy’

as ‘woman’ stands to ‘X’) by solving vec(′girl′)− vec(′boy′) + vec(′woman′) = vec(X), with

the closest match for vec(X) in our embedding set. To test this type of analogical reasoning

in our obtained embeddings, we use the task set set forth by Mikolov et al. (2013a). The set

is freely available online2 and contains 19,544 questions. Each task has 4 words, with the first

three words setting up the analogy: w1 stands to w2 as w3 stands to x, and with the fourth

word w4 giving the solution to x. In line with the literature (e.g. Mikolov et al. (2013b),

Pennington et al. (2014)), we solve for x by finding the closest embeddingm in our vocabulary

M by measure of the cosine similarity3 of vec(um,vm) to vec(w1)− vec(w2) + vec(w3). The

idea is to find the word which most closely matches w1, but without the properties defining

w2, and with the properties that define w3 added to it. For example, for ‘father’ stands

to X as ‘man’ stands to ‘woman’, we subtract the ‘man’ properties from ‘father’, and add

the ‘woman’ properties, such that the best match to the resulting vector representation is,

hopefully, ‘mother’. The task set has several distinct categories:

1. Capital-Country pairs: e.g. Paris - France, Brussels - Belgium.

2. Gender pairs: e.g. Man - Woman, Son - Daughter

3. Grammatical pairs: Calm - Calmly, Quiet - Quietly

4. Opposite pairs: Certain - Uncertain, Decided - Undecided

2http://download.tensorflow.org/data/questions-words.txt
3The cosine similarity of two vectors θ1, θ2 of length L is given by

sim(θ1,θ2) =

∑L
l=1 θ1lθ2l

(
√∑L

l=1 θ
2
1l)(
√∑L

l=1 θ
2
2l)

31

5. Comparative pairs: Big - Bigger, Bad - Worse

6. Present participle pairs: Read - Reading, Run - Running

7. Plural pairs: Child - Children, Road - Roads

For a given embedding set and vocabulary, we evaluate what percentage of the tasks can be

executed exactly, and what percentage of tasks have the correct answer within the closest

10 matches. The latter metric allows us to distinguish whether a model shows promise, even

when the allocated text corpus size or training time has not resulted in high performance

in exact task execution. We note that the entire task set may not be completed for every

embedding set, since the vocabulary taken from the text corpus must overlap with the words

in the task set. Especially for the more obscure capital-country pairs, the vocabulary may not

cover the whole task. In this case, we report the number of tasks covered by the vocabulary,

and evaluate performance as the percentage of tasks for which the correct word is found.

4 Results

4.1 Minimization by Majorization in word2vec

We first test the performance of the MM-optimization of word2vec, relative to the stochastic

gradient descent method. We look at computation time per iteration, as well as the progress

over time in minimizing the cross-entropy loss. We also observe how the time per iteration

scales with respect to the hyperparameters N , M , and c. Since the mm-optimized algorithm

primarily uses matrix operations to update the parameters, it is implemented completely

in numpy, which efficiently handles matrix multiplications. The gradient descent word2vec

algorithm loops over the complete corpus in order to update the parameters. It is therefore

implemented in cython to achieve a performance increment relative to conventional python,

which would be particularly slow in performing such a looped operation.

32

4.1.1 Time to convergence with N = 100,000, M = 200

For the first 100,000 words in the text8 corpus, we run word2vec both through regular

stochastic gradient descent, and with minimization by majorization. We use a gradient

descent step size η = 0.025 for the stochastic gradient descent algorithm, since it is the

default value for the popular ‘gensim‘ implementation. The step size is shrunk by 1% every

iteration, to a minimum value of 0.001. Both algorithms are run for a period of 2,000

seconds, with a word embedding size of c = 25. Figure 3 shows the progression in the loss

function across iterations. Convergence to within the relative convergence criterion ε = 10−5

is reached after 506 seconds for the MM optimization algorithm, and after 1996 seconds

for the gradient descent optimized algorithm. We find that the stochastic gradient descent

Figure 3: Optimization progress towards minimum loss and classification accuracy for MM

and stochastic gradient descent algorithms, for N = 100,000, M = 200, k = 10, c = 25.

algorithm achieves a quicker initial minimization of the loss function within the first iteration.

However, the MM-optimization quickly surpasses the gradient descent method. This may be

symptomatic of the stochastic gradient descent algorithm performing updates for every word

instance, performing N updates to the parameter set even in just one iteration. This may

be beneficial for the first few iterations, but inefficient for long-term optimization, in which

we find the MM algorithm performing better. By considering the corpus as a whole with

each update, the MM algorithm converges to a set of word embeddings with slightly better

classification accuracy of 27.1%, relative to 26.9% for the gradient descent implementation.

33

Out-of-sample, accuracy at convergence is 25.3% and 25.2% for MM and stochastic gradient

descent, respectively. We see no drop in out-of-sample performance across iterations, which

would be a sign of harmful overfitting.

Average time per iteration was .35 seconds for the MM algorithm, and 6.17 seconds

for the stochastic gradient descent algorithm. This also reflects the elaborate computational

requirement of calculating word probabilities and updating the parameter set upon each

word instance, rather than aggregating the parameter update for the complete corpus. We

find that optimization progress by measure of classification accuracy mirrors the progress by

measure of the loss function.

4.1.2 Scaling relative to M , N and c

We repeat the previous experiment, but vary the hyperparameters to observe how each

method of optimization scales with respect to the corpus size N , the vocabulary size M ,

and the dimension c of the parameter matrices U ,V . We perform 100 iterations of each

algorithm for increasing values of the hyperparameters and note the mean time taken for

parameter updates per iteration.

Figure 4(a) shows the performance of both optimisation methods relative to the

vocabulary size M . Here we observe a potential bottleneck for the MM optimisation of

word2vec. Time taken per iteration appears to increase more than linearly relative to M .

For the gradient descent implementation, performance appears to be linear in M . We also

observe this in the difference in computation time per iteration between the two methods.

For M = 50, the stochastic gradient descent algorithm took 21.9 times longer, on average, per

iteration. For M = 1500, the algorithm only took 3.3 times longer per iteration. From this

we conclude that traditional gradient descent scales better relative to the vocabulary size M .

A quadratic complexity in M will make the MM-optimization unsuitable for implementations

with M in the thousands.

Figure 4(b) shows the performance of the algorithms for increasing values of N .

We see that for both algorithms, computation time is roughly linear in N , making both

applications suitably scaleable over large corpora, provided that no memory issues arise. We

see that for each value of N , our implementation of the stochastic gradient descent word2vec

34

Figure 4: Computation time per iteration by optimization method, relative to vocabulary

size M (a), corpus size N (b) and embedding size c (c), with base values N = 100,000,

M = 100, c = 25, linear extrapolations of computation time given in dotted lines.

has a longer computation time per iteration than the MM algorithm.

Figure 4(c) reports performance relative to the embedding size c. We find that

both algorithms scale well with c, showing increases in computation time per iteration that

trend less than linearly with c. The required matrix multiplications are efficient enough in c

that an increase in c carries very little penalty for these values of M and N . For purposes of

optimization, it is therefore most important which vocabulary size M is selected, rather than

the size of the embedding c, which can be increased without much additional computation

cost. For the sake of obtaining interpretable word embeddings, it may be advisable to increase

c in tandem with M , to allow the larger vocabulary more room to express the differences

between the constituent words.

4.2 MM-trained embeddings with quadratic hinge loss

In this section we study the second research question: ”Does the use of a quadratic hinge

loss function over the traditional cross-entropy loss accelerate parameter learning, and are

35

Table 2: Classification accuracy for gradient-descent word2vec, as well as MM-optimized

cross-entropy (CE) and Quadratic Hinge (QH) loss, in- and out-of-sample, N = 200,000,

M = 1000, c = 50

Algorithm

Time

Until

Convergence (m)

Accuracy
Top 10

Accuracy

Out-of-sample

Accuracy

Out-of-sample

Top 10 Accuracy

Word2vec - 21.8% 54.2% 18.7% 45.4%

MM CE - 25.1% 55.9% 20.9% 48.9%

MM QH 79 24.1% 55.5% 21.4% 48.0%

the resulting embeddings of equal quality?”. We train the model on a subsample of the

text8 dataset of N = 200,000 words. We set a vocabulary size of M = 1000, and c = 50 as

the size of the parameter matrices U ,V . We train the quadratic hinge model until relative

convergence of ε = 10−5. Table 2 reports the results. Convergence is reached after 79

minutes. In-sample classification accuracy at convergence is 24.1%. The correct word is in

the 10 highest values of zim for 55.5%. Out-of-sample, classification accuracy is 21.4%, and

48.0% of observations have the correct word within the 10 best estimates offered by the model.

The word2vec algorithm fails to converge within ε = 10−5 in two hours of optimisation, we

therefore compare performance after an equal optimization time of 79 minutes.

We find that the quadratic hinge model has slightly lower in-sample classification

accuracy than the MM-optimized cross-entropy loss model at 25.1%. However, its out-of-

sample performance is slightly better (21.4% for the quadratic hinge loss, 20.9% for the

cross-entropy loss), suggesting a lower propensity for overfitting the sample. Both models

outperform our implementation of the conventional gradient descent trained word2vec model.

This suggests that MM-optimization may provide better classification performance in equal

training time. However, we have also found that the MM implementation does not scale well

with M . This suggests that the higher observed level of accuracy offered by MM may not

extend to larger vocabularies.

We find no evidence in this implementation that the quadratic hinge loss offers a

36

Table 3: Most similar word embedding to a selection of words and analogical tasks, for

traditional word2vec and MM-models with cross-entropy (CE), and Quadratic Hinge (QH)

loss. Estimated with N = 200,000, M = 1,000, c = 50.

Most Similar Word to:

‘eight’ ‘october’ ‘president’

‘american’ -
‘america’+

‘europe’
(goal : ‘european’)

‘our’ -
‘we’ +
‘they’

(goal: ‘their’)

Word2vec
six,
five,
four

january,
july,

september

election,
public,
capital

american,
national,

other

than,
links,
they

MM CE
o,

open,
son

give,
january,
continent

party,
museum,

center

europe,
persian,

g

replaced,
politics,
troops

MM QH
five,

september,
december

november,
december,
koestler

election,
over,
wife

europe,
late,

amsterdam

there,
they,
these

performance improvement over the cross-entropy loss, but note that it is very competitive in

terms of classification accuracy, and that it has the benefit of converging to within a relative

convergence tolerance within a reasonable time.

For the quadratic hinge to compete with the cross-entropy loss model, we also need

to know that the word embeddings have some semantic quality, allowing us to find word

relations by comparing their embeddings. Table 3 shows the most similar word embedding

to a small sample of words and two analogical reasoning tasks. We find that both algorithms

offer thematically similar words to ‘october’ and ‘president’. The analogical task is not yet

solved by any of the models at this corpus size N . To extract the semantic properties of the

word embeddings, we likely need a larger corpus size to train on.

More exact testing of the semantic quality of the word embeddings requires the

evaluation of the word embeddings relative to a labeled set of semantic tasks. To estimate

the embeddings for the necessary vocabulary size M to include the words contained in the

19,544 standardized tasks also studied by Mikolov et al. (2013b), we evaluate the potential

of sampling for extending the vocabulary size.

37

4.3 Sampling methods compared

We now consider the third research question, the issue of negative sampling to improve

scalability of the models considered in the previous sections. We first observe computation

time per iteration under three sampling methods, as compared to the unsampled models to

observe whether the sampling method sufficiently extends scalability. We then run the MM-

optimized word2vec model with cross-entropy loss, and with the quadratic hinge loss, for

each of the subsampling methods. We compare classification accuracy in- and out-of-sample

to study the classification quality of the embeddings obtained, and also consider performance

on a word analogy task to observe semantic interpretability of the models.

4.3.1 Effect of sampling on scalability of MM-optimized word2vec

Figure 5: Computation time per iteration of word2vec MM-optimization, relative to vocab-

ulary size M , by sampling method and loss function ((a): Cross Entropy, (b): Quadratic

Hinge), for N = 100,000, k = 10, c = 25

Figure 5 shows computation time per iteration for the MM-optimized word2vec

algorithm for differing sampling methods, relative to the vocabulary size M . We find that

sampling greatly increases scalability of the algorithm relative to the vocabulary size, with

computation time trending less than proportionally with M . For this particular parameter-

isation, we also find no computation time penalty for repeated sampling, relative to one-off

38

sampling by using the context matrix Q as our sampling matrix P . This suggests that

the computational overhead of repeated sampling is small relative to the other steps in the

algorithm, and may be easily implemented if the resulting embeddings show an improvement

over one-off sampling. Especially for applications with a smaller corpus N relative to the

vocabulary size M , repeated sampling may benefit the robustness of the word embeddings

and prevent overfitting on Q.

We find that the negative sampling methods are successful in making the models

more scaleable in M . This makes the computational complexity of the models linear in

N , and less-than linear in M , which allows us to train the models on larger datasets, and

particularly, larger vocabularies.

Figure 6: Sampled MM-optimization computation time for updating Z (a), U (b), V (c) by

loss function, for N = 5,000,000, c = 50, M = 5000, k = 10.

In the methodology, we also hypothesized that the quadratic hinge model may

benefit from additional sparsity in its update equations. For any correctly classified word

instance, the entry dim in matrix D, which is used for the updates of U and V is equal to 0,

meaning those elements can be skipped in calculating the updated parameters. The cross-

entropy model does not have this benefit, since it still tries to optimise the probabilities of

already correct classifications. Figure 6 shows the computation time per important step in the

algorithm: updating the score matrix Z, updating the parameter matrix V and updating

U . We see here that the quadratic hinge algorithm, particularly for this application on

N = 5,000,000 words, is able to perform the updates to U and V up to 4 times faster. For

39

the first iteration, most instances are incorrectly classified, and the updates take roughly

equally long for both models. For this particular run, the P matrix has 50 million non-zero

elements. However, the matrix B used for the updates of the parameters only has 4 million

non-zero elements from the second iteration onwards. Given that the parameter updates

take up the most time in each iteration, this allows the quadratic hinge algorithm to iterate

much more frequently than the MM-optimized cross-entropy loss.

4.3.2 Negative sampling methods compared

With the sampling methods implemented, we may now scale our implementation of the

algorithms to a larger corpus, which will also allow for testing the word embeddings on a

word analogy task. We are interested to observe the performance for each sampling method,

but also to observe any differences in performance between the model with the conventional

cross-entropy loss, and the quadratic hinge loss. We implement the MM-optimization for

5,000,000 words from the ’text8’ dataset, and set the vocabulary to the M = 5,000 most

frequent words in the dataset. We employ the word analogy task set forth by Mikolov et al.

(2013a). The task set includes 19,000 analogical reasoning tasks, out of which 3,403 overlap

with our vocabulary. We test whether the word embeddings can solve the task exactly, but

also evaluate whether the correct answer is within the top 10 most similar suggestions offered

by the word embedding set, to observe whether the task is within the realm of solvability,

given perhaps an even larger corpus to train on.

Table 4 shows classification performance and analogy task performance for our three

sampling methods for each of the two loss functions implemented. We find that performance

with context sampling in both classification and the word analogy task is very poor. For

the quadratic hinge loss function in particular, even top-10 accuracy is only 3%. The cross-

entropy loss fares better with this sampling method, but also underperforms relative to the

other subsampling methods. This suggests that the context words are not suitable negative

samples to train on. We may need to show the model negative samples that are further

outside of its context of use to cluster the words in the vocabulary into distinct subjects.

Context sampling may prohibit this by only having the words compete with words which

are thematically similar, which would not allow us to distinguish a cluster of words from

40

Table 4: Classification accuracy and word analogy accuracy by loss function (CE: cross-

entropy, QH: Quadratic Hinge), and sampling method, for N = 5,000,000 and M = 5,000

after 2 hours of training

Loss

Function
Sampling Accuracy

Top-10

Accuracy

Out-of-sample

Accuracy

Out-of-sample

Top-10 Accuracy

Word

Analogy

Accuracy

Word

Analogy Top-10

Accuracy

CE Context 13.1% 39.3% 12.8% 38.3% 3.2% 19.4%

QH Context 2.7% 3.0% 2.6% 2.9% 0.0% 0.3%

CE Uniform Rand. 18.9% 44.6% 18.6% 43.6% 3.4% 21.3%

QH Uniform Rand. 14.5% 44.8% 14.2% 43.6% 5.8% 30.5%

CE Weighted Rand. 17.3% 44.3% 16.8% 43.0% 3.4% 21.7%

QH Weighted Rand. 13.8% 44.8% 13.5% 43.5% 5.1% 29.4%

another, since words in different clusters never compete for the same word instance.

We find that we cannot replicate the result presented by Mikolov et al. (2013b)

that a frequency-based weighted negative sampling method results in the best performance.

We test the suggested sampling distribution of the unigram frequency raised to the 3/4th

power, but find it slightly underperforms relative to a simple random uniform. This suggests

that the result may be particular to the stochastic gradient descent optimization algorithm

and does not extend to MM optimization. It may also be that the result is particular to the

larger scale of implementation. For our implementation, we give preference to the random

uniform negative sampling distribution for its simplicity and better performance in both

classification accuracy and the word analogy task.

In comparing the performance offered by each of the loss functions, we find that the

cross-entropy loss model shows better classification accuracy, even out-of-sample. However,

the quadratic hinge loss model shows better performance on the word analogy task. We

hypothesize that this is symptomatic of the quadratic hinge loss giving more consideration

to the misclassified words, which would allow for more sophisticated embeddings for each

word in the vocabulary. The cross-entropy loss, which optimizes classification probabilities,

may focus more on the few frequent words in the vocabulary, even if they are generally

already correctly classified.

41

4.3.3 Sensitivity to subsampling

Mikolov et al. (2013b) suggest the subsampling of the matrix Y , throwing away incidences of

the most frequent words in the vocabulary, which may prohibit productive parameter learn-

ing. They find a performance improvement by randomly discarding a row of Y with the

probability P [discard yi] = 1 − min[1,
√
t/f(mi∗)], with f(mi∗) the frequency of the word

mi∗ for which yim = 1 in row i, and t a chosen threshold, typically in the range [10−5,10−3].

For any word with a frequency in the corpus lower than t, this probability reduces to 0.

Words with a higher frequency than t are undersampled, with the undersampling rate pos-

itively related to the word frequency. The method aggressively undersamples very frequent

words such as ’the’, ’in’ and ’of’, and keeps all words in the vocabulary with a frequency

lower than t. This is said to spread optimization efforts more equally over the vocabulary

and prevents a model fit that only predicts a small set of words. To test whether the benefit

of subsampling extends to our implementation, we apply their subsampling method with

t = 10−3 to our implementation of the MM-optimized models, for both the cross-entropy

and the quadratic hinge loss. We do not find a replication of their improvement by this

method, finding that the addition of subsampling of Y actually detriments the performance

of the embeddings. For the MM-optimized model with cross-entropy loss, performance on

the word analogy task drops from 3.4% to 3.3%, for the quadratic hinge model the drop

is even more dramatic, from 5.8% to 0.2%. We hypothesize that the subsampling method

benefits the stochastic gradient descent method of optimization, since it makes a sequence

of N updates to the parameter matrices during an iteration. If a large number of these

updates are concerned with the small subset of most frequent words, the embedding space

may become imbalanced. Imbalance of word frequencies in the text corpus may also affect

the MM-optimization, but it may be more robust to the imbalance since it considers the

whole corpus with each update. Since the MM updates are not blind to their effect on the

complete likelihood the way the stochastic gradient descent updates are, the updates will

not focus on the most frequent words to an extent that may hurt the fit of the parameters

for the complete vocabulary.

42

4.4 Application on full ’text8’ dataset

For a final comparison of the MM-optimized models, we run each model for 4 hours on the

complete text8 dataset and observe in-sample classification accuracy and performance on

the word analogy task. We use c = 100, k = 4, and M = 10,000. We use the uniform

random sampling method, which we found to perform best for N = 5,000,000. The larger

vocabulary allows us to cover 7,211 tasks in the word analogy task set. Within the 4 hours

of optimization, none of the models converge to within a tolerance of ε = 10−4. For a

sizable vocabulary and a large text corpus, there is likely still residual information on word

relations in the data, even after a long period of optimization. We again find that the

hinge loss majorization is able to perform quicker iterations, since it only needs to consider

the instances with incorrect classifications. The average iteration for the quadratic hinge

model takes 43.3 seconds, while the cross-entropy loss implementation takes 105.5 seconds

per iteration.

For sake of comparison to the fastest publicly available models, we also run the

implementation of gradient descent word2vec offered by the python package ’gensim’. The

implementation is highly optimised, and makes use of the fact that the gradient descent

method only considers one instance at a time, by streaming the dataset from memory. We

specify the model to be as similar as possible to our MM-models, using c = 100, k = 4,

M = 10,000 and N = 17,000,000, and uniform random sampling. We train the model for 5

complete passes of the data, and test its accuracy on the word analogy task.

We find that the cross-entropy loss function produces better in-sample classification

results, but that the quadratic hinge model performs better on the word analogy task, achiev-

ing a task accuracy of 8.5%, relative to 5.4% for the cross-entropy loss function. This supports

the previously obtained results on N = 5,000,000 words, suggesting that the quadratic hinge

model is better suited for extracting semantic relations from the words. We find that both

MM models underperform significantly relative to the gensim word2vec implementation on

the word analogy task, which is able to achieve a word analogy task accuracy of 32%.

We show some examples of the obtained embeddings in Table 6, which shows the

closest synonyms to a selection of words from the vocabulary. We see that there is significant

43

overlap between the extracted word clusters by each of the models, which are of course

primarily determined by the word co-occurrences in the text corpus. Table 7 shows the

solutions offered by both models to a selection of word analogy tasks. The solutions again

show significant overlap, with some minor differences in the rank of the solutions in the

closest matches to the word task.

Table 5: Classification accuracy and word analogy task performance for the full ‘text8’

dataset, by loss function (N = 17,000,000, M = 10,000, c = 100, k = 5)

Loss function Accuracy
Top-10

Accuracy

Word Analogy

Accuracy

Word Analogy

Top-10 Accuracy

cross-entropy 18.1% 44.2% 5.4% 24.6%

Quadratic Hinge 15.6% 44.6% 8.5% 31.7%

’gensim’ word2vec (5 epochs) - - 32.0% -

Table 6: Most similar word embedding to a selection of words for MM-models with cross-

entropy, and Quadratic Hinge loss. Estimated with N = 17,000,000, M = 10,000, c = 100.

Most Similar Word to:
‘eight’ ‘october’ ‘president’ ‘settlers’ ‘nietzsche’

MM cross-entropy
two,
zero,
five

november,
june,

december

bill,
presidential,

administration

immigrants,
invaders,
colonists

kant,
leibniz,
aristotle

MM Quadratic Hinge
two,
five,
zero

november,
june,

december

chairman,
administration,

presidents

immigrants,
colonists,
invaders

hegel,
kant,

leibniz

44

Table 7: Most similar word embedding to a selection of word analogy tasks for MM-models

with cross-entropy, and Quadratic Hinge loss. Estimated with N = 17,000,000, M = 10,000,

c = 100, correct solutions in bold.

Closest solution to the word analogy task:
father -
man +
woman

king -
man +
woman

heavier -
heavy +
small

running -
run +
dance

physician -
physics +
philosophy

MM cross-entropy
mother,
brother,
wife

henry,
pope,
charles

large,
single,
smaller

folk,
musical,
jazz

philosopher,
historian,
theologian

MM Quadratic Hinge
mother,
wife,
brother

henry,
emperor,
pope

large,
smaller,
simple

folk,
musical,
jazz

philosopher,
physician,
historian

5 Conclusion

In this thesis, we investigated the application of minimization by majorization for the

word2vec algorithm, as well as the implementation of a quadratic hinge loss function. We

considered three research sub-questions.

RQ1: Can minimization by majorization be used to accelerate word2vec learning?

We find that minimization by majorization, although initially slower in minimizing the

cross-entropy loss, is more thorough in optimizing the word2vec loss than the conventional

stochastic gradient descent algorithm. For smaller datasets in which the absolute best set

of parameters is wanted for the particular corpus, it may achieve better minimization than

the gradient descent algorithm. Without a negative sampling method applied, we find the

method to have a complexity that is quadratic in M , making it poorly suitable for large

applications without negative sampling. For applications on very large corpora, the data

streaming method of the word2vec stochastic gradient descent may still be preferable, since

our MM algorithm performs operations with large matrix representations of the text corpus.

An acceleration of word2vec learning is possible with minimization by majorization, but will

be dependent on the application, particularly the size of the vocabulary M and the corpus

N .

45

RQ2: Does the use of a quadratic hinge loss function over the traditional cross-

entropy loss accelerate parameter learning, and are the resulting embeddings of

equal quality?

The quadratic hinge loss function has shown good performance on finding vector represen-

tations of words, that also have the popular semantic properties of word2vec embeddings.

The resulting embeddings of quadratic hinge loss optimization show sensible word synonyms,

and outperform the MM implementation with the conventional word2vec loss function in an

analogical reasoning task. We find that the quadratic hinge model benefits from increased

sparsity in its update equations across iterations, allowing it to iterate more frequently than

the cross-entropy loss implementation, and focusing optimization efforts on misclassified

cases. By measure of computation time per iteration, the quadratic hinge model offers a

clear acceleration over the cross-entropy loss function. We also find it is quicker in extract-

ing word embeddings with semantic properties. The only measure by which the quadratic

hinge loss slightly lags the cross-entropy loss is the classification accuracy. We also find the

quadratic hinge more likely to converge to within a relative convergence tolerance for corpora

up to N = 200,000. For applications on a larger corpus, we find relative convergence unfea-

sible for any of the models implemented. For these applications, a set number of iterations

or a cut-off time may be preferable.

RQ3: Can we use negative sampling to scale the MM-optimized models to larger

text corpora?

We find that sampling greatly increases the scalability of the model to larger corpora and

vocabularies, and find that a random uniform sampling method offers the best performance

on both classification accuracy and the word analogy task, for both the cross-entropy loss and

quadratic hinge loss models. We do not find a benefit to undersampling frequent words in Y

for the MM-optimized model, which we hypothesize does not require such data preparation

to spread its computation efforts over the vocabulary. This benefits the ease of use of the

model, since it does not require the specification of a subsampling threshold, nor does it

need a gradient descent step size or an optimized sampling distribution.

Our central research question was given by

46

Can we use a quadratic hinge loss function optimized with minimization by ma-

jorization to accelerate word2vec learning, without sacrificing word embedding

quality?

Overall, we find an MM-optimized quadratic hinge loss function to offer a semantic perfor-

mance improvement relative to a similarly optimized cross-entropy loss function. However,

we find that both models do not compete with an efficient implementation of the stochastic

gradient descent method. Although differences in computational overhead in the implemen-

tations are certain to play a role in this performance gap, we may also hypothesize that the

parameter update structure of the MM algorithm is ill-suited for large corpora. Although

the consideration of the whole corpus with each update allows the algorithm to be more

thorough in the minimization of the loss function, this becomes inefficient for larger N . The

stochastic gradient descent method is learning throughout a single iteration, allowing it to

quickly learn a good set of word embeddings, rather than slowly learning the perfect set of

embeddings. Although we note the promise of a quadratic hinge loss for word embedding

learning, which has shown to be more efficient than an equally optimized cross-entropy loss

model, we have not succeeded in accelerating word2vec learning.

6 Discussion

A few key shortcomings of this work, as well as potential extensions for future research can

be identified.

We note the limited scale of our application, which does not have the size of imple-

mentations in the industry, where text corpora may have N in the billions. The performance

of the quadratic hinge loss word embeddings relative to the cross-entropy embeddings may

be different when trained with a larger corpus N relative to the vocabulary size M . However,

the algorithm has the potential to be altered for further scalability. We may consider batched

learning in which a sequence of smaller texts is used to update the parameter set (U ,V) in

steps, similar to the stochastic gradient descent algorithm of conventional word2vec, which

performs N smaller updates.

The MM-optimization algorithm with negative sampling may also be adapted for

47

streaming the text data from disk. This would allow the algorithm to borrow from achieve-

ments in the highly optimised ’gensim’ repository of word embedding models, likely offering

a significant acceleration to our implementation.

In this thesis, we also limited ourselves to the estimation of the continuous-bag-

of-words application of word2vec. The skip-gram model, which aims to predict the context

words from the target word rather than vice versa, may also benefit from an alternative

optimization method or loss version. A natural extension to this research would be to

evaluate the MM optimization and the quadratic hinge loss in the context of the skip-gram

model.

In investigating different sampling methods, we found that we could not replicate

the benefit of frequency-based sampling as proposed by Mikolov et al. (2013b). The MM-

optimized quadratic hinge loss function clearly reacts differently to the corpus composition

than the word2vec model, and may require a particular sampling solution. Further research

may pursue whether the uniform random sampling used in this thesis consistently outper-

forms frequency-based sampling in different scales of implementation, or whether another

sampling distribution can be found that best supports our quadratic hinge adaptation of

word2vec.

We also note that the quadratic hinge used in this research is only one of many

alternative loss functions that may produce accurate word embeddings without requiring

the calculation of choice probabilities. We may consider the absolute hinge loss, as well as

the Huber loss function as substitutes for the quadratic hinge loss function. Moreover, we

studied a quadratic hinge specification in which a separate loss term is associated with a

positive classification (yim(max(1−zim,0)2)), and a negative classification ((1−yim)(max(1+

zim,0)2))). A more parsimonious model could be limited to a loss for a positive classification,

and a parameter penalty term that encourages sparsity in (U ,V), which may further reduce

the computational requirements of the hinge-loss word2vec implementation.

48

References

Bartels, R. H. and Stewart, G. W. (1972). Solution of the matrix equation AX +XB = C.

Communications of the ACM, 15(9):820–826.

Chung, Y.-A., Wu, C.-C., Shen, C.-H., Lee, H.-Y., and Lee, L.-S. (2016). Audio word2vec:

Unsupervised learning of audio segment representations using sequence-to-sequence au-

toencoder. arXiv preprint arXiv:1603.00982.

Golub, G., Nash, S., and Van Loan, C. (1979). A Hessenberg-Schur method for the problem

AX +XB = C. IEEE Transactions on Automatic Control, 24(6):909–913.

Groenen, P. J. F. and Josse, J. (2016). Multinomial multiple correspondence analysis. arXiv

preprint arXiv:1603.03174.

Groenen, P. J. F., Nalbantov, G., and Bioch, J. C. (2008). SVM-Maj: a majorization

approach to linear support vector machines with different hinge errors. Advances in Data

Analysis and Classification, 2(1):17–43.

McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. Frontiers in

Econometrics, pages 105–142.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed

representations of words and phrases and their compositionality. In Advances in Neural

Information Processing Systems, pages 3111–3119.

Ng, P. (2017). dna2vec: Consistent vector representations of variable-length k-mers. arXiv

preprint arXiv:1701.06279.

Pennington, J., Socher, R., and Manning, C. D. (2014). GloVe: Global vectors for word

representation. In Proceedings of the 2014 conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1532–1543.

49

Rong, X. (2014). Word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by

back-propagating errors. Nature, 323(6088):533–536.

Wang, X. (2008). Method of steepest descent and its applications. IEEE Microwave and

Wireless Components Letters, 12:24–26.

50

A Regularizing MM-optimized word2vec

The cross-entropy loss function of word2vec, as defined in our methodology, is given by

`(U ,V) = −
∑N

i=1

∑M
m=1 yimlog(πim). Being based on the log of the estimated probabilities

πim, the cross-entropy loss may have difficulty converging to within a relative tolerance ε,

since there may always be remaining gains in optimising the probabilities πim to obtain a

lower −log(πim). For implementations in which we have a large set of parameters 2Mc rela-

tive to the size of the corpus N , it may benefit the loss function to keep increasing particular

values of Z to extreme values, which may prohibit convergence without contributing to a

sensible parameter set. In this appendix to our main research, we present a method of regu-

larization which circumvents this issue. Because the regularization comes at a computational

cost that prohibits its efficient use for larger vocabularies M , we do not include it as one

of our main methods. However, we can show for a smaller application with N = 50,000,

M = 500, that regularization can lead to faster convergence without sacrificing classification

accuracy.

We append the MM-optimization of the cross-entropy loss presented in Section

2.3, by adding a penalty for the elements of U and V . If calibrated correctly, this makes

increments of individual values of Z to keep increasing the probabilities Π too expensive,

and will allow for convergence of `(U ,V). Adding a ridge penalty to both U and V gives

us the revised loss function

`(U ,V) = −
N∑
i=1

M∑
m=1

(
yim log(exp(zim)/(

M∑
l=1

exp(zil)))

)
+ λ tr(U ′U) + λ tr(V ′V).

The additional terms can be carried over directly to the majorizing function. We skip a few

steps already shown in section 2.3 to obtain the majorizing function

g(Z,Z0) =
N∑
i=1

M∑
m=1

(
x′iUvmrim +

1

4
(x′iUvm)2 + cim

)
+ λ tr(U ′U) + λ(tr(V ′V))

= tr(XUV ′R′) +
1

4
tr(V U ′X ′XUV ′) + λ tr(U ′U) + λ tr(V ′V) + c.

If we optimize this function relative to the parameters in V , we obtain

∂g(Z,Z0)

∂V
= R′XU 0 +

1

2
V U 0′X ′XU 0 + 2λV = 0,

51

which results in the update equation

V = −2R′XU 0(U 0′X ′XU 0 + 4λI)−1,

where I is an identity matrix of size M . We see that this is almost exactly equivalent to

the regular update equation. For the matrix of input weights U the update equation is less

straight forward. We can derive the derivative of the majorizing function

∂g(Z,Z0)

∂U
= V 0′R′X +

1

2
V 0′V 0U ′X ′X + λU = 0.

Rewriting this further gives us a Sylvester equation (of the form AX +XB = C):

1

2
V 0′V 0U + 2λU(X ′X)−1 = −V ′R′X(X ′X)−1

which can be solved by means of the Bartels and Stewart (1972) algorithm. This carries

some additional computational cost relative to the unregularized update equations, and

therefore requires a tradeoff between the desire to achieve a convergence criterion and the

speed of optimization. Golub et al. (1979) show that the computational complexity of solving

the Sylvester equation is of a complexity O(M3 + c3). This means that for every ten-fold

increase in M , the complexity of our regularized parameter updates increase by up to 103.

However, for smaller texts, for which one is interested in obtaining embeddings for a M

in the hundreds, the implementation is feasible. To demonstrate, we apply the regularized

algorithm to a subset of ’text8’ of N = 50,000 words, and set M = 500, c = 25. Table 8

shows time to convergence for increasing values of λ. We find that higher values in λ aid in

reducing the time to convergence. However, the regularized updates are 2 to 3 times slower

per iteration than the unregularized algorithm. For a lower value of λ = 8, this results in the

algorithm actually being slower to converge to within ε = 10−5. We find that for λ = 16, the

algorithm converges 3 times faster than the unregularized model, with equal out-of-sample

classification accuracy. For larger values of λ, we find that the parameter cost starts to

interfere with classification performance.

For these smaller applications, regularized word2vec can therefore be value in

achieving convergence at a quicker rate, but the computational complexity quickly increases

with M . For larger vocabularies, we may give preference to the quadratic hinge adaptation

52

Table 8: Time-to-convergence and classification accuracy for regularized word2vec for varying

values of the parameter cost λ, using N = 50,000, M = 500, c = 25.

λ
Time to

convergence (s)
Iterations

Time per

iteration (s)

In-sample

Accuracy

Out-of-sample

accuracy

0 1648 2298 0.72 28.1% 21.8%

8 2282 965 2.36 24.6% 22.0%

16 988 721 1.37 24.6% 21.9%

32 799 550 1.45 23.0% 21.5%

64 1085 490 2.21 20.6% 20.2%

of word2vec, which does not have this issue of parameter drift. Because it attaches a zero

loss to any correctly classified zim, it will converge when it can no longer make gains in

classification, rather than continue to optimise probabilities piim. An alternative solution

is to rely on running the algorithm to a set number of iterations, or limiting optimization

to a particular learning time. For very large corpora, the computational burden of going

through the whole corpus even once means that convergence to within a small ε is likely

not even feasible to start with. For example, Mikolov et al. (2013a) train their model on a

corpus of 6 billion words by passing through the corpus only three times. For our research,

we consider regularization an interesting but suboptimal extension of the MM-optimized

word2vec model. Future research may explore methods of regularization that offer a smaller

computation cost.

53

B Algorithms

B.1 Gradient Descent word2vec

Algorithm 3: Gradient Descent word2vec with cross-entropy loss.
Result: Optimization of paramater matrices U , V .

Input: Text corpus d, gradient descent step size η, step size decay ν, convergence tolerance ε,

context size k, embedding size c, vocabulary size M .

Let d be the text corpus as a vector of strings [str1, str2, ...,strN].

Let l be the vocabulary vector, the M most frequent strings in d.

Encode N ×M matrix Y from text corpus, where yim = 1 if di = lm, 0 otherwise.

Encode N ×M matrix Q from text corpus, where qim = 1 if max(yi−k/2,m,...,yim,...,yi+k/2,m) = 1,

0 otherwise.

Set X = Y −Q.

Initialize M × c matrices U , U0, V , V 0 with each of the elements drawn from a N(0,1/c2)

distribution.

Initialize Z = XUV ′.

Initialize πim = exp(zim)/(
∑M

l=1 exp(zlm)) for each i, m, to construct Π.

Initialize f(U ,V) =
∑N

i=1

∑M
m=1−log(πim)yim, f(U0,V 0) =∞.

while |(f(U ,V)− f(U0,V 0))/f(U0,V 0)| > ε do

for i = 1 to N do

zi = xiUV
′.

πi = exp(zi)/(
∑M

m=1 exp(zim)).

e = yi − πi.

∂f(U ,V)/∂U = xi(V
′ei)
′.

∂f(U ,V)/∂V = ei(U
′xi)

′.

U = U − ν(∂f(U ,V)/∂U).

V = V − ν(∂f(U ,V)/∂V).

end

Update Z,Π,f(U ,V).

Shrink η by multiplying by ν.

end

54

B.2 MM-optimized cross-entropy word2vec with subsampling

Algorithm 4: MM-trained word2vec with quadratic hinge loss.
Result: Optimization of paramater matrices U , V .

Input: Text corpus d, convergence tolerance ε, context size k, embedding size c, vocabulary size

M , sampling method.

Let d be the text corpus as a vector of strings [str1, str2, ...,strN].

Let l be the vocabulary vector, the M most frequent strings in d.

Encode N ×M matrix Y from text corpus, where yim = 1 if di = lm, 0 otherwise.

Encode N ×M matrix Q from text corpus, where qim = 1 if max(yi−k/2,m,...,yim,...,yi+k/2,m) = 1,

0 otherwise.

Set X = Y −Q.

Initialize M × c matrices U , U0, V , V 0 with each of the elements drawn from a N(0,1/c2)

distribution.

Initialize N ×M sampling matrix P = 0, set pim = 1 if yim = 1, otherwise:

if using context sampling: set pim = 1 if xim = 1,

if using random uniform sampling: P [pim = 1] = 1/M ,

if using weighted frequency-based sampling: P [pim = 1] = (
∑N

j=1 yjm)3/4/(
∑M

l=1(
∑N

j=1 yjl)
3/4).

Initialize Z, with zim = pimxiUv
′
m.

Construct Π∗, where π∗im = pim exp(zim)/(
∑M

l=1 pim exp(zim)). Initialize

f(U ,V) = −
∑N

i=1

∑M
m=1 yim log(π∗im), f(U0,V 0) =∞.

while |(f(U ,V)− f(U0,V 0))/f(U0,V 0)| > ε do

U0 = U .

V 0 = V .

Z0 = Z.

R = P � (Π∗ − Y)− 1/2Z0.

V = V 0 +R′XU0(U0′X ′XU0)−1.

U = U0 + (X ′X)−1X ′(R)V (V ′V)−1.

Redraw P if using random uniform or weighted random sampling

Update Z, Π∗ f(U ,V).

end

55

B.3 MM-optimized quadratic hinge word2vec with subsampling

Algorithm 5: MM-trained word2vec with quadratic hinge loss.
Result: Optimization of paramater matrices U , V

Input: Text corpus d, convergence tolerance ε, context size k, embedding size c, vocabulary size

M , sampling method.

Let d be the text corpus as a vector of strings [str1, str2, ...,strN]

Let l be the vocabulary vector, the M most frequent strings in d

Encode N ×M matrix Y from text corpus, where yim = 1 if di = lm, 0 otherwise

Encode N ×M matrix Q from text corpus, where qim = 1 if max(yi−k/2,m,...,yim,...,yi+k/2,m) = 1,

0 otherwise

Set X = Y −Q

Initialize M × c matrices U , U0, V , V 0 with each of the elements drawn from a N(0,1/c2)

distribution.

Initialize N ×M sampling matrix P = 0, set pim = 1 if yim = 1, otherwise:

if using context sampling: set pim = 1 if xim = 1,

if using random uniform sampling: P [pim = 1] = 1/M ,

if using weighted frequency-based sampling: P [pim = 1] = (
∑N

j=1 yjm)3/4/(
∑M

l=1(
∑N

j=1 yjl)
3/4),

Initialize Z, with zim = pimxiUv
′
m

Initialize f(U ,V) =
∑N

i=1

∑M
m=1

(
yim max(1− zim,0)2 + pim(1− yim) max(zim + 1,0)2

)
,

f(U0,V 0) =∞

while |(f(U ,V)− f(U0,V 0))/f(U0,V 0)| > ε do

U0 = U

V 0 = V

Z0 = Z

Construct S, where sim = 1 if z0im < 1, 0 otherwise

Construct T , where tim = 1 if z0im > −1, 0 otherwise

Construct B, where b∗im = −yimsim(1− z0im) + (pim − yim)tim(1 + zim)

V = V 0 +B′XU0(U0′X ′XU0)−1

U = U0 + (X ′X)−1X ′(B)V (V ′V)−1

Redraw P if using random uniform or weighted random sampling

Update Z, f(U ,V),

end

56

	Introduction
	Word2vec in the Literature

	Methodology
	Word2vec Framework
	Stochastic Gradient Descent word2vec
	MM-trained word2vec
	MM-trained word2vec with quadratic hinge loss
	Sampling
	Sampling MM-trained word2vec
	Sampling MM-trained word2vec with quadratic hinge loss

	Model Accuracy

	Data
	Word Analogy Task

	Results
	Minimization by Majorization in word2vec
	Time to convergence with N = 100,000, M = 200
	Scaling relative to M, N and c

	MM-trained embeddings with quadratic hinge loss
	Sampling methods compared
	Effect of sampling on scalability of MM-optimized word2vec
	Negative sampling methods compared
	Sensitivity to subsampling

	Application on full 'text8' dataset

	Conclusion
	Discussion
	Regularizing MM-optimized word2vec
	Algorithms
	Gradient Descent word2vec
	MM-optimized cross-entropy word2vec with subsampling
	MM-optimized quadratic hinge word2vec with subsampling

