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Abstract

Standard treatment evaluation methods typically rely on ordinary least squares, which is
sensitive to outliers. Outliers and missing values are likely to be present in the datasets used,
but the consequences are scarcely researched. Lately, such methods are also being designed in
the field of machine learning, but also without emphasis on outliers. In this paper we examine
the performances of treatment evaluation methods when the data is contaminated with
both outliers and missing values. In particular, we investigate the instrumental variables
and difference-in-differences methods. For the machine learning methods, we examine the
debiased machine learning and approximate residual balancing methods. We propose robust
alternatives for the instrumental variables and difference-in-differences methods as they rely
on ordinary least squares. We see that the robust difference-in-differences method is superior
when the data is contaminated. The robust instrumental variables method only outperforms
the instrumental variables method when the data closely resembles to an elliptical structure.
We apply the difference-in-differences type of methods to the data used in Card and Krueger
(1993), and conclude that vertical outliers are present. The instrumental variables type of
methods are applied to the data used in Dinkelman (2011). Although we detect outliers, no

proposed alternative outperforms the instrumental variables method.
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1 Introduction

Causal inference is an important research area in the field of econometrics. In general, it is
of importance to differentiate between causation and correlation. Within the field of causal
inference it is of interest to determine whether treatment causes a change in the response, and
to what extent. Determining these causal effects is however a task which is easier said than
done. The fundamental problem of causal inference states that it is impossible to measure the
treatment effect for a single observation, as one potential outcome is always unobserved (Rubin,
1974; Holland, 1986). To overcome this problem, numerous methods have been designed in the

past with some being popular and often used to this day.

As data is nowadays increasingly gathered, more problems arise when it comes to the qual-
ity of the data obtained. In general, a sample with a large number of observations is preferred
over a sample with a small number of observations, but that is under the assumption of well-
behaved data. With an increase in the number of observations and/or dimensions, outliers and
missing values are phenomena which become increasingly likely to appear. These are problems
which occurred less often back in the days, and were therefore paid less attention to. Standard
methods in all fields, but also within causal inference, were hence designed based on data as-

sumed to behave as expected.

In our research, we focus on two of the most popular treatment evaluation methods, namely
the Instrumental Variables (IV) and Difference-in-Differences (DiD) methods (Cameron and
Trivedi (2005), Chapter 25). Estimation within both of these methods is traditionally based on
Ordinary Least Squares (OLS) regression, a method which is proven to be non-resistant against
outliers (Rousseeuw and Leroy, 1987). It has a breakdown point of 0%, meaning that one outlier
can cause OLS to break down, leading to deceptive results (Donoho and Huber, 1983). Mod-
ern datasets are often high-dimensional and/or contain a large amount of observations, which
almost guarantees the presence of at least one outlier. High-dimensional means n < p in this
case, where n and p stand for the number of observations and regressors respectively. In such
cases, making use of OLS is not straightforward. Causal effect estimates may be biased, leading
to erroneous policies for example. Hence, dealing with outliers is of great importance, making

the use of robust regression techniques more attractive.

The main topic of our research is therefore to investigate the effect of outliers and missing
values on treatment evaluation methods, a topic which is scarcely researched. Due to the
well-researched robustness properties of OLS, treatment evaluation methods break down when
outliers are present. We are therefore also interested in examining robust alternatives and their
performances. For the IV method, a robust alternative is proposed in Freue et al. (2013),
which is a method resistant to outliers due to the use of robust covariance matrices instead of
sample covariance matrices. We extend the literature by investigating the performance of this

method within a causal inference setting, which we call the Robust Instrumental Variables (RIV)



method. The extension specifically comes down to applying the method proposed in Freue et al.
(2013) to a problem with a binary endogenous variable. We also investigate a different robust
alternative in this paper, namely IV combined with the DetectDeviatingCells (DDC) algorithm
(Rousseeuw and Bossche, 2018), which we will from now on refer to as the IV-DDC method.

The RIV method is however the only method of which the robustification is purely model-based.

Designing a robust alternative for the DiD method is something which is done in Han et al.
(2018), the focus of their research however differs from ours. They mainly focus on vertical
outliers, while we are additionally interested in the effect of bad leverage points. Parallel trends
between the treatment and control groups is usually the only criterion which is checked for be-
fore applying the DiD method. Outliers can be present in the controls, with the parallel trend
assumption still being satisfied. Besides, vertical outliers can be witnessed after treatment. We
propose the Robust Difference-in-Differences (RDiD) method by combining the general frame-

work used in the DiD method with a robust regression technique.

Causal inference is a topic which has already been popular in econometrics for some time,
it is however a relatively new research area in Machine Learning (ML) While there is not an
incredible amount of interest yet, it is gaining the attention of researchers in ML at a high pace.
Because the development of ML methods which suit causal inference type of problems is in an
early stage, checking these methods’ robustness properties with respect to outliers is something
which is currently not focused on. This is where we want to step in and extend the literature,
by evaluating the performances of these methods when outliers are present. Results from our
paper may inspire researchers in ML, as robust ML methods for causal inference are not yet

deliberately being designed.

We investigate robustness properties of two of the most popular ML methods designed for
causal inference, namely the Debiased Machine Learning (DML) and Approximate Residual
Balancing (ARB) methods, respectively proposed in Chernozhukov et al. (2018) and Athey
et al. (2018). Within the DML method, there are two models which we examine, namely the
Partial Linear Regression (PLR) and the Partial Linear Instrumental Variables (PLIV) models.
These models are specifically designed for obtaining Average Treatment Effects (ATES). There
are methods available for obtaining Heterogeneous Treatment Effects (HTES)7 but we leave the
investigation of the robustness properties of these methods for further research. All econometric
methods are designed for calculating ATESs, the current choice of ML methods makes it easier

to make comparisons across methods and draw general conclusions based on the findings.

This paper is structured as follows: In Section 2 we discuss all literature which is relevant
for the methods which we examine. In Section 3 we define all methods which we explore in our
research. Section 4 contains details about the simulation study which we conduct to study the
performances of all methods when the data is contaminated. In Section 5 we give a detailed

description of the real datasets which we use to demonstrate the application of some methods in



practice. The results obtained from the simulation study and the real data are given in Section
6. Finally, we discuss our findings in Section 7. Additionally, we mention the limitations of our

research in this section, as well as interesting topics for further research.

2 Literature

In this section all literature which is relevant for our research is described. The DiD method is
popular in practice and has already been around for a while, but papers dedicated to exploring
this method and its details have been around for a shorter period of time. One of the first
papers where the approach followed was actually recognised to be a DiD method is the study
conducted by Card and Krueger (1993). By controlling for omitted variables they come to a
conclusion differing from what would have been concluded based on traditional economic the-
ory. They illustrate employment growth due to higher minimum wages, while theory suggests a
decrease in the employment level in such a case. The DiD method was studied more extensively

after this paper, its characteristics have been thoroughly investigated since.

A pitfall of the DiD method which arised later on is that standard errors are underestimated
in some cases. In Bertrand et al. (2004) this problem is proven to be present in case of a
serially correlated outcome measured over multiple time periods. Donald and Lang (2007) in
turn demonstrate the presence of this problem if the number of groups is small. In practice,
this problem is typically dealt with by clustering the standard errors. However, in the case
of a small amount of groups, Donald and Lang (2007) show that this solution may yield even
more inaccurate inference. When examining the real data, we overcome underestimation by

combining clustering with the bootstrap as in Cameron et al. (2008).

The IV method was first proposed in Wright (1928), strangely enough in an appendix. This
method is particularly useful in the field of causal inference, as it deals with the common phe-
nomenon of endogenous variables (Cameron and Trivedi (2005), Chapter 4.8). In such cases,
OLS estimation results in biased parameter estimates, leading to a biased ATE. IV estimation
has been shown to successfully tackle the problem of endogenous variables in a causal infer-
ence setting in Angrist et al. (1996). It is important for an instrument to have a considerable
correlation with the endogenous variable, the IV parameter estimates will otherwise be biased
towards the OLS estimates (Bound et al., 1995).

The problem of both the standard DiD and IV methods is that they are not resistant to outliers,
as they typically make use of OLS. Hence, robust alternatives of these methods are preferred for
contaminated datasets. As mentioned in Section 1, we propose the RDiD method as a robust
alternative to the DiD method. The regression technique which it is based on is MM estimation
(Yohai, 1987), a method which is both robust and efficient. The method consists of a combina-
tion of the S-estimator (Huber, 1992) and the M-estimator (Huber et al., 1973), these methods

are known for their robustness and efficiency respectively. The RIV method which we examine



comes down to a natural robustification of the IV method. The IV estimator can be decomposed
into multiple sample covariance matrices. As the sample estimator does not robustly estimate
the covariance, the idea of Freue et al. (2013) is to obtain parameter estimates by making use of
robustly estimated covariance matrices. We make use of the Minimum Covariance Determinant

(MCD) estimator in order to estimate the covariance matrices (Rousseeuw, 1985).

More and more researchers in ML are starting to see the relevance and importance of causal-
ity. Chernozhukov et al. (2018) propose the DML method which is partially based on the
econometric semi-parametric method proposed by Robinson (1988). This method makes use of
regularization, making it suitable for high-dimensional problems. As the standard DiD and IV
methods can not be applied instantly for high-dimensional problems, ML type of methods are
more attractive in such cases. The main idea behind the DML method is to tackle regularization

bias by making use of a doubly robust approach.

The DML method requires the propensity score to be consistently estimable for the ATE to be
/n consistently estimated, where n stands for the amount of observations. Another popular
ML method which does not impose this restriction is the ARB method (Athey et al., 2018).
This method actually resembles to the DML method, as it also makes use of regularization.
Also, both methods build upon the work of Robinson (1988). The ARB method is however less

restrictive as already mentioned, and therefore more widely applicable.

The clear advantage of the ML methods is that they can deal with high-dimensional prob-
lems. Besides, researchers often select a fraction of the covariates based on common sense and
econometric intuition, possibly leaving out relevant variables. If there is uncertainty regarding
the relevance of some of the explanatory variables, choosing one of the ML methods is desirable.
The parameters of the covariates are shrunk towards zero due to regularization if they do not

affect the outcome.

3 Methodology

In this section all methods used for our research are explained in detail. We differentiate between
ML and econometric methods by explaining both types of methods in separate sections. The
econometric methods are explained in Section 3.1, with the proposed robust alternatives being
explained in Section 3.2. The ML methods are explained in Section 3.3. We let n denote the
amount of individuals throughout the rest of the paper, subscript ¢ holds for ¢ = 1,...,n if no

additional comments are made.

3.1 Standard Econometric Methods

In this section the standard econometric methods used for our research are explained in detail.
The DiD method is discussed in Section 3.1.1, the IV method in Section 3.1.2.



3.1.1 Difference-in-Differences

The DiD method determines treatment effects by observing a group of individuals over different
periods of time. The simplest case, which we use for our research, is observing individuals over
two time periods. The main idea of the DiD estimator is to determine the treatment effect by
comparing the average change of the outcome between the treatment and control groups over
time. The DiD method is illustrated in Figure 1, where t = 0 and ¢t = 1 stand for observations

measured before and after treatment respectively.
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Figure 1: Illustration of the DiD method.

Figure 1 shows the average treatment effect given as ATE = (yD - yB) - (yc — yA), it can
be interpreted as the difference in outcome with respect to the outcome expected based on the
trends. The control group is not treated, its trend is therefore assumed to remain stable after
treatment of the treatment group. Figure 1 shows parallel trends, the ATE however does not
closely resemble the actual treatment when these trends are not parallel. In order for the DiD
method to yield outcomes which make sense, the assumption of parallel trends must be satisfied.

If this assumption is violated, the ATE could stem solely from differing trends.

For the DiD method we define y; as the outcome of individual i, ¢; indicates whether the
time period is pre or post treatment by taking on values zero and one respectively. Vector
x;, = (xil, ... ,xik)l contains the controls, d; indicates whether an individual is treated or not

given by values zero and one respectively. The final model is defined as

yi = Bo + B + Bry1di + Briati + Brys(di - i) + €, (1)

where 3 = (f1,...,0k)" and ¢; is an unobserved error term. The main parameter of interest is

Br+3, representing the treatment effect. The name of the DiD method stems from the way this



parameter is estimated, a derivation is given as

Brss = (Elyildi = 1,t; = 1] — E[yi|d; = 1,¢; = 0]) — (E[yild; = 0,t; = 1] — Ely;|d; = 0,¢; = 0])
= ((Bo + iB + Brt1 + Brtz + Brrs) — (Bo + B + Brr1)) — ((Bo + 2B + Brs2) — (Bo + iB))
= (Brt2 + Brts) — Brrz (2)

= Br+3-

Clearly, Equation (2) shows that the estimate of the treatment effect is obtained by calculating

a difference of differences.

3.1.2 Instrumental Variables

The IV method is widely used and also useful for obtaining causal estimates. A common
problem within econometrics is obtaining biased parameters due to omitted variables, see for
example Chapter 4.7 of Cameron and Trivedi (2005). IV estimation tackles this problem by
using instruments, an instrument is valid if it is correlated with the endogenous explanatory
variable and uncorrelated with the error term. The latter condition implies that the instrument

should be uncorrelated with any omitted variable, as these are captured within the error term.

For IV estimation we make use of only one time period, hence we adapt the model as in

Equation (1) slightly. The model used for IV estimation is defined as
Y = g + wga + 06k;+1dz' + v, (3)

where a = (ozl, R ozk), and v; is an unobserved error term. It is common for the treatment
variable d; to be endogenous, that is pg,,, # 0, meaning that we need to find a valid instrument
for this variable. Instrument z; is valid if p,,,, = 0 and p,,q, # 0. IV estimation is also known as
Two-Stage Least Squares (TSLS), as the final parameter estimates are obtained by sequentially
running two regressions. Due to the large amount of Greek letters needed for definitions in
this paper, we describe the TSLS procedure without defining additional models. In the first
stage, the endogenous variable is regressed on all exogenous variables and the instrument. From
this regression, fitted values for the endogenous variable are obtained. In the second stage, the
outcome is regressed on all exogenous variables and the fitted values obtained from the first

stage.

3.2 Robust Econometric Methods

As our research deals with investigating robustness properties, we are interested in the differ-
ences in performance of a method and its proposed robust alternative. Ideally, robust methods
prove to perform better in settings with outliers, indicating that using this method’s non-robust
version in such cases leads to less credible results. In this section we propose alternatives which
we expect to be more robust compared to the standard econometric methods. The RDiD
method is proposed in Section 3.2.1, the RIV and IV-DDC methods are proposed in Section
3.2.2.



3.2.1 Robust Difference-in-Differences

The RDiD method which we propose comes down to applying a robust estimator to the model
as defined in Equation (1). We make use of the MM-estimator as already mentioned, it is one of
the most popular robust regression techniques in practice. Using such a robust estimator is in
essence a safe option, if the percentage of outliers does not attain the breakdown point. Always
using a robust alternative is however not an approach which is favoured. It is well-known that
OLS is efficient if all of its assumptions are met, meaning that robust regression is not optimal

in such cases.

If we continue on Equation (1) where the general DiD model is specified, we can define the

corresponding MM-estimator as

ﬁMM = arg min Z P2

bo,-sbk43 51

_ b*
)

b* i—1 S

Yi — bo — xjb — bpy1d; —
os

birati — brys(di - 1) )

where ] = (1, Tily ooy Tiky diy iy (di - ti))/ and b* = (bo, - bk+3)/. Preliminary scale estimate
0s = oM (,@s) is obtained from

~

Bs = arg min o3;(b*). (5)
b*

Estimating o (b*) in turn solves

oM

1 & Yi — w;f‘,b* B
n g P1 <A(b*)) =9, (6)
where p; represents a loss function, 6 = E [pl (Z)] with Z ~ N(O, 1).

The loss function is denoted by pa(:) in Equation (4), we make use of the Tukey bisquare
function for both p; and po, that is

6 2

4
— 5+
’L

z
if <g¢, fori=1,2
66;1 50 i ‘m} <g¢, fori , 2,

r
: (7)
if ‘:n} > ¢, fori=1,2,

pi(r) = 2
71
6
where ¢; is a tuning constant. We set ¢; = 1.548 and ¢y = 4.685, yielding a breakdown point of

50% for Bs and 95% efficiency for Byn. Analytically solving Equation (4) leads to

22w< — o w)mrza ®)



where

x° 213 .
_ %—g‘i‘iv lf’JI‘SCQ, (9)
0 if ’x‘ > Co.

The condition in Equation (8) can be rewritten, ,@MM is the solution of
n

w; <yi —x b*)w;‘ =0, (10)
=1

)

where ) N
Y((ys — x b*)/55)
(yi —='b) /55

This procedure can be seen as a problem which can be solved by applying Iteratively Reweighted

wi = w((y; -} b*)/5s) =

(11)

Least Squares (IRLS), with w; as the weights. If ,@t is given during step t of this procedure,
updates are executed as follows: the weights are updated according to Equation (11), that is

w; = w((yz —x; /Bt) / 33). Subsequently, the parameter estimates are updated according to
2 _ 1 g *’b* 2
B+1 = argbfnlng ;wi (i — =} b%)". (12)

3.2.2 Robust Instrumental Variables

The robust variants of the IV method which we investigate are explained in this Section. The
RIV method relies on an estimation procedure from which the framework is equal to that of
the IV method.

Consider the regression model as in Equation (3) given in matrix form, that is

n ) 11 ... T di|| oq 12
=+ . : P I ol (R (13)
Yn ag Tnl . Tpp dp||opg1 Un

which can be compactly written as y = ag + X a* + v. The OLS estimates of the parameters

are given as
aps = (X'X) ' X'y
= (nixx)_lnixy,

a0,0LS = Uy — HIXaT)Lsa (15)

(14)

where 3 AB stands for the estimated covariance between A and B, iy and px stand for the

estimated location of y and X respectively. When one or more of the explanatory variables



are endogenous, parameter estimates obtained by OLS become biased. If there are valid instru-
ments available, IV is a useful alternative method. Endogeneity of d; is the central problem in

causal inference, we build on that principle throughout the rest of this section.

In our simulation study, as well as with analyzing the real data, we use a single instrument
z;. Hence, we limit all further definitions to cases where d; is solely instrumented by this vari-
able. Freue et al. (2013) propose a way of estimating models which contain binary exogenous
variables, we however assume all exogenous variables to be continuous in the rest of this section.
As the real data which we examine does contain binary exogenous variables, we demonstrate the

procedure proposed in Freue et al. (2013) in Section 6.2 by directly applying it to a real dataset.

The matrix containing the instrument is constructed as

r11 ... Tk 21

Inpl .- Tpk <n

all exogenous explanatory variables serve as their own instruments in Z. We define the analogous
estimation procedure as described in Equation (3) for the model given in matrix notation. For
the first stage we define

xj=2Zr+mn, j=1,...k+1, (17)

~ !/ / / . .
where z; = (:Ulj, . ,xnj) , T = (7r1,...,7rk+1) and n = (171,...,77”) . For convenience, d; is

contained in T; as ;1.

We apply OLS to the model in Equation (17) for all covariates, the matrix of fitted values

of all these regressions is given as

-27(22)'7X (18)
— PzX.

It holds that P2 = Pz and P}, = Pz, respectively meaning that Pz is both idempotent and
symmetric. Derivations of these results can be found in Equations 72 and 73 in Section A. For

the second stage we make use of
y=2Ag+ XA +A, (19)

where A = (Aq,...,Apg1)', A= (Ar,...,A,) and Ag = (Ag,...,Ag), that is Ay € R™,

10



The IV estimators are obtained by applying OLS to Equation (19), that is
AIV = (X'X)_ley
= (gxziglzizx)_lixziélzizw

Aoy = 1y — Wy Ary. (21)

(20)

A full derivation of Equation (20) is given in Equation (74) in Section A. Such covariance
matrices are traditionally estimated by calculating sample covariances, a method which is not
resistant against outliers. Freue et al. (2013) propose to simply replace these sample covariance
matrices by robust estimates of the covariance matrix, they for example apply the S-estimator
(Rousseeuw and Yohai, 1984).

In our research, we make use of a more popular robust estimator, the MCD estimator to
be precise. The main idea of the estimator is to search for the h < n points resulting in a
minimal value of the determinant of the covariance matrix. Estimators of location and scatter
are calculated based on these h points, filtering out all outliers in the ideal case. The subset size
is calculated as h = wn, where 0.5 < 7 < 1. The MCD estimator achieves maximum robustness

when m = 0.5, we however set m = 0.75 in order to avoid multicollinearity issues.

We define the estimator of location of subset H obtained from the variables of interest as

~ 1 §
HH = 7 Z €T;. (22)

i€eH
where &; = (yi, Tily - Tik, di, zi),. The estimator of scatter is in turn defined as
~ 1 . N . PN
EHZEZ(%—HH)(%’—HH) ) (23)
i€H

All covariance matrices used in Equation (20) are extracted from Sy. Subset H is in term
determined by solving
H = arg min det(Z5). (24)
H:|A|=h
The estimator of location is fisher consistent under a normal distribution, the estimator of scat-
ter however has to be corrected in order to achieve fisher consistency. Note that the assumption
of a normal distribution is not appropriate as d; is binary, but we elaborate on this issue later

on in this section.

The raw estimates of location and scatter are given as fyaw = fy and Xiaw = CoCpkioXy

respectively, where ¢,k is as in Pison et al. (2002) and

x

Cp = — (25)
FP(@HJ) (%)

11



As h has to be manually chosen, it is likely to differ from the actual amount of good data
points. If A is initialized too high, the MCD estimator will make use of a subset still including
outliers. However, if h is chosen too small, the quality of the location and scatter estimates is
not maximal, as some useful data points are left out. In order to gain efficiency, a reweighting
step is applied based on the initial MCD estimator. This reweighting step is based on the
Mahalanobis Distance (MD), which is defined as

MD (j:ia ﬁraw; i\lmw) = \/(iz - ﬁraw),ilg%v (jzz - ﬁraw) (26)
for our model.

It holds that M D? (ﬁ:i, Hraw iraw) ~ x%(k + 3) if &; comes from a normal distribution with
Hraw and f]raw as location and scatter respectively. If an observation has a large MD, its loca-
tion and scatter lie far from the population’s locations and scatter, meaning that it is likely to

concern an outlier. The observations are weighted based on this relationship, that is

(27)

e — 1 if MD ($17Hraw 2raw) < X%-&(k’_{—?’)?
;=
> i

0 if MD? (&, firaw, Zraw) > Xi_s(k + 3),

where x7_,(-) stands for the ( 1— 5) quantile of the corresponding distribution, we set § = 0.025.

The reweighted estimates of location and scatter are now given as

ﬁweight Z Wi x4 (28)
=1 Wi i
and "
~ 1 ~
2Weight = <n Z wz( Z; Hwelght) ( “weight)/ (29)

Z?Zl Wi i=1
respectively. Estimation is carried out by making use of the FAST-MCD method (Rousseeuw
and Driessen, 1999).

An important thing to note about robustly estimating a covariance matrix in general, is that a
data matrix containing one or more categorical variables is not ideal. For the MCD estimator
which we employ specifically, it searches for a subset which results in the smallest determinant
of the covariance matrix. This determinant is in turn proportional to the volume of an ellipsoid,
meaning that a data matrix of which the points can be fit into an ellipsoid is desirable. Logi-
cally, categorical variables do not fit this picture. Besides, the estimates of location and scatter
are only fisher consistent under a normal distribution, and the MDs also assume the data to be

elliptically structured.

12



In Freue et al. (2013) an alternative estimation procedure is proposed if the data consists
of both continuous and binary variables, this however does not necessarily solve our problem.
This particular method can deal with exogenous dummy covariates, within causal inference it is
however common for the binary treatment variable to be endogenous. Extending the procedures
as in Freue et al. (2013) for endogenous binary variables is however not possible, as the main
formula given in Equation (20) relies upon correlations between the endogenous variables and
the instruments. As we however think that the RIV method has the potential to be the best
robust alternative, we are interested in investigating the method, even when the data is not a
perfect fit for the method.

As already mentioned, the procedure proposed in Freue et al. (2013) for data matrices con-
taining continuous and binary variables does not necessarily solve the endogeneity problem
faced within causal inference, it might however be useful in some cases. A less common prob-
lem is characterized by an exogenous treatment variable, and one or more endogenous control
variables, see Frolich (2008) for the discussion of some examples. If endogeneity is neglected in
such a case, regression estimates will also lead to a biased estimate of the treatment effect. In
Freue et al. (2013), the RIV method is proven to perform well for such data, meaning that it
will be the go to robust alternative. As this is however a problem rarely encountered in practice,

we do not include this scenario in our simulation study.

If the treatment variable is endogenous, the RIV method may not look like the most straight-
forward method to use. As the IV estimator given in Equation (20) can be estimated in a single
step, replacing OLS regression by a robust technique may yield better estimates. Note however
that X consists of linear combinations of Z and X, meaning that the presence of only a small
fraction of outliers in these matrices is likely to result in more than half of the observations in

X to be outlying, meaning that robust regression also breaks down.

As TSLS equals IV estimation, a different idea is to sequentially apply robust regression in
both of the stages. Applying robust linear regression in the first stage however fails, as the
treatment variable is perfectly predicted. MM estimation omits all observations where d; = 0
and sets all parameters to zero, except for the parameter of the constant which is set to one.
Robust logistic regression techniques also exist (Rousseeuw and Christmann, 2003; Feng et al.,
2014), applying such a technique to the first stage would however result in the forbidden re-
gression as explained in Chapter 9.5.2 in Wooldridge (2010). Specifically, using robust logistic
regression for the first stage would lead to fitted values CZ coming from a nonlinear function. In
this case, (Z and the covariates are not guaranteed to be uncorrelated with the error terms of

the second stage, while using OLS in the first stage does ensure this relation.
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A different idea is to only robustify the second stage, while still using OLS in the first stage.
Fitted values from the first stage are affected by bad leverage points in this case, but the sec-
ond stage is robustly estimated. As mentioned in the preceding paragraph, a few bad leverage
points can already cause this strategy to break down. As the strategies from both this and the
preceding paragraphs are only expected to be robust in a limited amount of cases, we do not

conduct further research on these methods.

Hence, there is only one strategy additional to the RIV method which we examine, which
is the IV-DDC method. This method comes down to regularly applying the IV method, com-
bined with an intermediate step taken to detect cellwise outliers. It is outside the scope of this
paper to explain the DDC algorithm in detail, but the main idea of the method is to flag cells
as outlying or not by making use of correlations between the variables. We apply the DDC
algorithm before estimation, and set the cells detected as outlying to missing. Afterwards, we
impute these missing values to come up with a complete data matrix. In Section 4.2 we give a

more detailed description of the imputation strategy that goes along with our research.

3.3 Machine Learning Methods

In this section, the ML methods used for our research are explained in detail. Applying all
previously defined methods becomes infeasible if the data is high-dimensional, that is n < p
where p stands for the amount of covariates. In such cases, regularization techniques can be
applied for obtaining regression estimates. Both the DML and the ARB methods make use of
regularization, meaning that they can be applied in a high-dimensional setting. As investigating
cases where n < p however becomes computationally too expensive, we do not include such
cases in our simulation study. The DML method is discussed in Section 3.3.1, with the PLR
and PLIV models corresponding to the DML method being explained in Sections 3.3.1.1 and
3.3.1.2 respectively. The ARB method is discussed in Section 3.3.2.

3.3.1 Debiased Machine Learning

The DML method proposed by Chernozhukov et al. (2018) overcomes problems which arise
when ML techniques which rely on regularization are applied. Applying regularization possi-
bly leads to bias in the estimators, which is logically related to the word Debiased in DML.
Chernozhukov et al. (2018) show that almost all regularization bias can be overcome by making
use of orthogonalization, which is a concept based on Neyman-orthogonal moment conditions
(Neyman, 1959,9). Bias due to remaining terms is removed by making use of cross-fitting,
which is a more efficient way of sample splitting. Orthogonalization is too difficult to explain in
a non-technical way, we can however briefly describe the cross-fitting procedure before we dive
into all theory of the DML method.
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Cross-fitting is based on sample splitting, but it tackles the potential problem of efficiency
loss which can arise when sample splitting is applied. The cross-fitting method also makes use
of Neyman-orthogonal moments, but the main idea behind this method is to additionally swap
certain samples. By applying this technique, we obtain multiple estimates of which the average
is taken. The eventual outcome avoids a potential loss in efficiency, which is why it is preferred

over the sample splitting method.

Our main interest lies in obtaining the true value of wy of target parameter w € €2, where

Q Cc R% with d, denoting the dimension of w. We assume that wg satisfies moment conditions

E[C(W;wo,ﬂo)] =0, (30)

where W is a random variable and ¢ = (CL .. .,de)/ is a vector containing score functions.
Parameter pg denotes the true value of nuisance parameter p € T', where T is a convex subset
of a normed vector space. Neyman orthogonality is required for ¢, hence we introduce T =

(,u — o € T) and its pathwise derivative map D, : T — R% ag

Dy [ — po) = 0r <E [C(W;WO,MO +7r(p— Mo))D, re [0,1). (31)

For r = 0, the pathwise derivative map boils down to

Do[p — po] = 9, E [C(W; wo, MO)MU - Mo]- (32)

We furthermore define 7, C T as a nuisance realization set such that the probability of the
estimators g taking on values in this set is high. Fulfilling the moment conditions in Equa-
tion (30) is one of the requirements for score function ¢ to meet the orthogonality condition at
(wo, o). If the pathwise derivative map as in Equation (31) additionally exists for u € 7, and
fades at r = 0, that is Dy [u — MO] = 0, function ¢ is said to satisfy the orthogonality condition.

We continue our analysis with the application of cross-fitting to the data, a method which
we explain in detail this time on. We first of all assume that we have a sample {Wi}?:1 at our
disposal, representing independent and identically distributed (i.i.d.) copies of random variable

W. The procedure of cross-fitting is defined as follows:
First, take a random K-fold partition {Ik}le of individual indices {1,...,n}. For each

ke {1, .. .,K}, define I{ = {1, e ,n} \ 1. For convenience, let m =  denote the number of

observations in each fold. An ML estimator of pg is subsequently determined by calculating

ﬁo,k = ﬁo({Wi}ieIg>’ (33)

where i is a random element in 7. The estimate of the target parameter is denoted by wg
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and obtained by solving

K
1 ~ o~
= > Bk [ C(WiGo,Tiok) | =0, (34)
k=1
where E,, 1,[] is the empirical expectation over data fold &, calculated as E,, [C (W)] = % Y ic 1. ¢ (Wl)

If Equation (34) can not be exactly solved, wy is seen as an approximate solution if it sat-

isfies

K
1 ~ ~
it E Ep k [C(WQWOa#OJc)}H + €m, (35)
k=1

K
H;ZEmk [C(WWT)OaﬂO,k)} H < inf
pa}

where €, = o(5mm7%), with (5m) representing some sequence of positive constants con-

m>1
verging to zero. The final estimator is obtained by averaging over all partitions, that is

1 K
wo — E ;WQJC. (36)

This completes the general description of the orthogonalization and cross-fitting procedures. In
the coming paragraphs we define the models of interest, and explain how they are related to

the procedures described in this section.

3.3.1.1 Partial Linear Regression
In this section we define the main model coming from the DML method, namely the PLR model.
This model is defined as

yi = diwo + go(xi) + A, E[Ailei, di] =0, (37)
d; = mg (.’BZ) + B;, E[BZ’:I:J =0. (38)

The corresponding score function filled in with the arguments taken from Equations 37 and 38

is defined as
¢(Wiswo, o) = (yi — diwo — go(x4)) (ds — mo(;)), (39)

where W; = (yi,d;,@;) and p = (go(-),mo(+)). Functions go(-) and mg(-) are P-square-
integrable, and map the support of x; to R. Cross-fitting is applied to the PLR model, where
the score function used within the cross-fitting procedure is as in Equation (39). Note that
this score function is for individual ¢, these individual score functions are used to calculate the

empirical expectations in the cross-fitting procedure.

3.3.1.2 Partial Linear Instrumental Variables

As already explained, endogeneity of the treatment variable is the most common problem in
causal inference. Chernozhukov et al. (2018) show that the PLR model can be modified to allow
for IV estimation. As the IV method is also researched by us, investigating the PLIV method
may give an interesting direct link between the econometric and the ML estimators which aim

to solve the same problem. Besides, we can also conclude which type of estimation is more
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resistant to outliers, meaning that one of the two types may in general be a more preferred
direction of methods to build upon. The PLIV model is defined as

yi = diwo + go (i) + As, E[Alx;, 2] =0, (40)

The score function corresponding to this model is defined as

¢(Wiswo, o) = (yi — diwo — go(@4)) (2 — mo(x3)), (42)

where W; = (yi, d;, x;, zi) and p = (go(-),mo(-)). Functions go(-) and mq(-) are defined similar
to those used in the PLR model.

As for the ML method used for estimation, we make use of post-lasso (Belloni et al., 2013).
There is no method which stands out performance-wise, which means that any other suitable
method may be chosen. The post-lasso method is more attractive than others when it comes
to computation time, which is of importance as we run an extensive simulation study. We use
K = 2 for the cross-fitting procedure described in Section 3.3.1. In Chernozhukov et al. (2018)
it is shown that choosing a larger value for K does not necessarily improve performance, and

to limit the computation time a low value for K is the convenient choice.

3.3.2 Approximate Residual Balancing

The ARB method (Athey et al., 2018) also makes use of debiasing, it is therefore not surprising
that it is linked to the DML method. The ARB method is however more widely applicable, as
it relaxes an assumption made by the DML method. Specifically, the DML method requires
consistent estimation of the conditional probability of receiving treatment given the features.
Given a linear model, the ARB method relaxes this assumption. In short, it combines weight-
ing with regression, two techniques which are generally used for treatment effect estimation.
We refer to Chapter 25.4 and the chapters on regression in Cameron and Trivedi (2005) for a
detailed explanation of weighting and regression respectively. For high-dimensional problems,
the performances of these techniques fall short when they are separately applied. Athey et al.
(2018) show that a combination of both techniques yields better estimators.

Pursuing the approach based on weighting, calculation of the weights typically involves propen-
sity scores. Inaccuracies in propensity score estimates therefore greatly impact the weights. As
estimates become poorer as the dimension increases, this approach is inappropriate for high-
dimensional problems. The regression-based approach on the other hand, falls short when the
propensity scores are not sparse. Combining both techniques as is done in the ARB method

overcomes both limitations.
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The estimand of the ARB method is defined as

T = HUT — HC, (43)

where p; = &'3; with 8; denoting a vector capturing the parameters. This condition holds for
1€ {T, C}, where T and C stand for the treatment and control groups respectively. In order to
obtain xT, the covariates are averaged over all treated individuals, that is T = % > (i:di=1} T,
where nt denotes the amount of treated individuals and x; = (%’1, e, Tik, di)/. The amount

of untreated individuals is logically given by nc. An unbiased estimator of pr is given as

P 1
fir =71 = > (44)

Obtaining an estimate of uc is however more difficult and involves multiple steps.

The procedure of the ARB method for obtaining ATEs is as follows: First, compute positive
approximately balancing weights T by solving

T = arggnin{(l — L)H'YH; + LH@, - X,TTHio}
T

~ ~ 45
st > Ti=1,  0<T;<ngl? (45)

{i:d;=1}

where X1 = (dzl, .. ,a'cn)/, T = %Z?:l x; and ¢ € (0, 1) is a tuning parameter. Then, fit 8¢

by running an elastic net or lasso regression, that is

Bc = argvmin[ Z (i — 1230)2 + >‘<(1 - O‘)HBCHE Ta
Bc {i:d;=0}

BCHl)], (46)

where a € (0, 1] and A > 0 are tuning parameters.

Finally, we balance the covariates and apply the weights to the residuals, yielding
T=9yr— (ﬂU/T,@C + > <yz - igﬂc)) : (47)
{i:d;=0}

For our research, we follow the advice of Athey et al. (2018) and set a = 0.9 and ¢ = 0.5, A is

determined by cross-validation.

4 Simulation Study

In this section we describe the simulation study which we conduct for all methods. The goal
of our research is to investigate whether the treatment evaluation methods we investigate are
robust or not. For our research, it is of interest to evaluate the performances when there are

outliers and missing values present in the data. Another way of determining whether a method
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is robust or not is by checking a method’s performance when one or more of the underlying
assumptions are not met. Such a check is also of added value, but as we compare multiple
methods this is not convenient. The assumptions differ per method, which leads to too much
assumptions which can be relaxed or not. We hence evaluate all methods’ performances for
the case where the underlying assumptions are met. Investigating performances across methods
when the data is contaminated is much easier as the only difference compared to a regular

problem lies in the data.

For our simulation study we make use of S = 100 runs which enables us to make claims
about the methods and the behavior of the corresponding estimators. We drop the subscript of
the simulation run in the remainder of this section. Occasionally, we include the subscript of
the simulation run in definitions, but only for cases where the definition becomes vague when it
is omitted. We set n = 350 and k = 4 for all scenarios. Although the ML methods are particu-
larly suited for high-dimensional problems, we have decided not to investigate such cases due to
computational limitations. It is however an interesting topic for further research to investigate

the performances of the ML and econometric methods in settings with high-dimensional data.

The model specifications are given in Section 4.1, an explanation of how the data is contam-
inated and subsequently imputed is given in Section 4.2. In Section 4.3 we give a general
definition of the nonparametric bootstrap, and specify how it relates to our simulation study.
Finally, we define all performance measures used for assessing the performances of all methods

in Section 4.4.

4.1 Model Specifications

In this section we define all models used in our simulation study. We start off with defining
the Data Generating Process (DGP) for the DiD type of methods, these methods rely on the
model as in Equation (1). We draw all controls from a multivariate normal distribution with
mean zero such that they are i.i.d., that is x; ~ N(Ok, Ek). Covariance matrix Xj has ones
on the diagonal, the off-diagonal elements are calculated as X;; = (—0.9)"*7=2 where i and j
respectively stand for the row and column numbers of the matrix. Variables d; ~ Bin(l, 0.5)
and t; ~ Bin(l, 0.5) are i.d.d. and separately drawn. The error terms are drawn from a stan-
dard normal distribution such that they are i.i.d., that is ¢, ~ N (0, 1). The true parameters
are generated as (3;_1 = —(1.1)i +2-sgn((—1.1)") for i = 1,...,k + 4. The dependent variable

is calculated according to Equation (1).

For the IV type of methods, we make use of the model as in Equation (3). The instruments z;
and error terms v; are separately drawn from a standard normal distribution such that they are
iid., that is z; ~ N (O, 1) and v; ~ N (0, 1). The controls are generated differently compared
to the DiD type of methods, we draw the first k — 1 controls from a multivariate normal distri-
bution such that they are i.i.d., that is (z;1,...,Zgk—1)" ~ N(Ok,l, Zk,l). Matrix 351 again

has ones on the diagonal, but the off-diagonal elements are now given by X;; = (—0.9)2k—(i+1),
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The k’th control is drawn such that it is i.i.d. and separately drawn from a standard normal

distribution in order to avoid correlation with the other controls, that is z;; ~ N (0, 1).

We generate d; based on both x;; and z;, ensuring a correlation with both of the variables.

Variable d; is generated as

1 ifxy, < g forizl,...,ﬁ—l, orifzi<2fori:2,...,n,
d; = 2 2 (48)
0 otherwise,

n_q .
where Tj = (%%1) 2 T, and Z = @ Zf:% z;. The parameters are generated according to
the same formula used for the DiD type of methods, note that the index now only runs until
k+2. The dependent variable is calculated according to Equation (3). Control z; is afterwards
omitted for estimation, ensuring a correlation between d; and the error term as the error term

now contains ;.

Finally, we show how the data is simulated for the ML type of methods. Both methods make
use of the same data, and the data generation overlaps with the DiD and IV type of methods.
In fact, the model used for these methods equals the one given in Equation (3), meaning that
it resembles with the model used for the IV type of methods. The controls and error terms
are created similarly as with the DiD type of methods, the parameters are generated just as
with the IV type of methods. The treatment variable is created just as with the DiD type of

methods, and the dependent variable is calculated according to Equation (3).

4.2 Data Contamination and Imputation

In this section we describe how the data is contaminated and imputed afterwards for all meth-
ods. We do vary the percentages of outliers and missing values while we keep the amount of
individuals and controls fixed. We give a general description of how the data is contaminated, as
this procedure is applied to data across multiple methods. Note however that not all variables
across all methods are contaminated, we explain per method in detail how contamination takes

place.

For a given dataset, we generate one missing value in (100 . econt)% of the observations ac-
cording to the Missing At Random (MAR) mechanism. We refer to Little and Rubin (2002)
for a detailed explanation of all missing data mechanisms used in this paper. Likewise, we
generate an outlier for one cell within (100 . econt)% of the observations. When we choose to
generate vertical outliers, the cell corresponding to the dependent variable is always contami-
nated. When we generate bad leverage points, one of the covariates is randomly selected and
subsequently contaminated. Missing values can in practice be present within a binary variable,
we have however chosen not to generate missing values for these variables in our simulation

study.
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In our simulation study and in causal inference in general, these binary variables contain infor-
mation about the treatment status. All values of these variables are usually known in practice.
As estimation of the treatment effect is already a difficult task by itself, uncertainty about the
treatment status would only complicate things even more. Hence, we have chosen to mimic
real datasets for these variables, meaning that all variables possessing information about the

treatment status are not contaminated.

When we generate vertical outliers, the dependent variable is calculated according to

where p; ~ Bin(l, ecom). This means that the dependent variable remains the same in about
(100‘ (1— econt))% of the cases, and is incremented with 100 in the remaining cases. We are only
interested in investigating the biases arising from contamination, the way we contaminate the
variable is therefore not of great importance. Note that there are numerous ways to contaminate
variables, we increment the dependent variable with 100 as it is sufficient for the comparison of

different methods in our paper.

The bad leverage points are generated in a different way, as we randomly select a variable
to be modified. Let us denote the randomly selected variable as x;;, where [ € {1, . ,p}. If
we investigate the DiD and ML type of methods, p = k. When we examine the IV type of
methods, we set p = k + 1 as outliers are also generated in the instrument, we include z; as ;)

in this case for convenience. The variable randomly selected is updated according to
Ty = i + 15p;. (50)

The same reasoning of the value chosen to add to the dependent variable to come up with

vertical outliers also holds for the generation of bad leverage points.

With the DiD type of methods, we contaminate all non-binary variables. These methods rely on
the parallel trends assumption in practice, but vertical outliers can be present after treatment.
Meeting the parallel trend assumption excludes the presence of vertical outliers in observations
measured over the corresponding time period. The parallel trend assumption gives however no
guarantee of the behaviour of the observations after treatment, meaning that the presence of
vertical outliers is not excluded after treatment. Bad leverage points can on the other hand
be present even when the parallel trend assumption is justified. Hence, generation of vertical
outliers and bad leverage points is desirable as they can go unnoticed in practice. Missing val-
ues are also created for all non-binary variables, all outliers and missing values are generated

according to the procedure described earlier in this section.
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With the IV type of methods, variables are contaminated similarly as with the DiD type of
methods. Additionally, missing values and outliers are also generated for the instrument. The
vertical outliers are generated as described in the general procedure, the generation of bad
leverage points differs slightly for the IV type of methods. The instruments we generate in our
simulation study are continuous, as they are continuous in most of the real datasets. In such
cases, outliers are as likely to be present in both the instruments and controls. Hence, when we
generate bad leverage points, either one of the cells of the controls or the cell of the instrument
is contaminated with an outlier. As the endogenous variable is fitted by making use of the in-
struments within the first stage of IV estimation, outliers in the instrument cause bad leverage
points. Simultaneously generating vertical outliers and outliers in the instrument is undesir-

able, as this can lead to good leverage points which in turn do not bias the parameter estimates.

Finally, all non-binary variables are contaminated with both outliers and missing values within
the ML type of methods.

If the missing values in a dataset are Missing Not At Random (MNAR) or MAR, omission
of missing values corrupts the data. Missing values in real data often follow the MAR mecha-
nism, which is why we have chosen to generate the missing values according to this mechanism as
well. Instead of deletion, imputation is the better way of dealing with missing values. Numerous
imputation techniques exist, the appropriateness of a technique however depends on the data.
As we generate correlated data, in turn drawn from a distribution, model-based imputation can
be expected to perform well. Model-based imputation is however computationally expensive,
which makes it unsuitable for our research. Instead, we make use of k Nearest Neighbor (kNN)
imputation (Troyanskaya et al., 2001), this technique is computationally less expensive, and

using the median for aggregation makes it robust to outliers.

As we make use of imputation to handle the missing values, standard inference which is based
on a fully observed data matrix is not valid anymore. We have to take extra uncertainty into
account as some elements of the imputed data matrix are estimated. One way of incorporating
such additional uncertainty is by applying the bootstrap (Efron, 1992.9). The bootstrap ap-
proximates an estimator’s distribution by sampling with replacement from the observed data.
The bootstrap works if the asymptotic distribution of an estimator is normal (Mammen, 2012).
We can also utilize the bootstrap to simulate the missing data mechanism prior to imputing the
missing values (Efron, 1994), resulting in the nonparametric bootstrap. We define the nonpara-

metric bootstrap in the next section, and subsequently explain when the method works properly.

Finally, we would like to make a note on which observations are used for estimation. Although
we contaminate the dependent variable with outliers and missing values, it is not desirable to
use all of these observations for estimation. We make use of the approach opted in Von Hippel
(2007), in this paper the idea is proposed to delete all observations with imputed dependent

variables after the imputation step. Due to this strategy, additional information regarding the
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known values of these observations is used for the imputation of missing values in the covari-
ates. Omitting these observations prior to imputation would result in a loss of information.
On the other hand, keeping the observations with imputed values for the dependent variable
is not desirable. As these values are unknown, it comes down to regressing a prediction on
the covariates. As uncertainty arises from imputation, such an approach is likely to bias the

parameter estimates.

We investigate two different contamination scenarios in our simulation study, we set €cont = 7.5%
for the first scenario. Due to the nature of our cellwise contamination, an observation containing
a cellwise outlier automatically becomes a rowwise outlier. Due to the programmed nature of
the simulation, the total contamination ranges from 7.5% to 15%, as missing values and cellwise
outliers may or may not simultaneously occur within an observation. For the second scenario
we set €cont = 20%, meaning that the amount of contaminated observations lies between 20%
to 40%.

4.3 Nonparametric Bootstrap

For R bootstrap replications, the nonparametric bootstrap is defined as follows:

For » = 1,..., R, generate bootstrap sample (az’{r, e ,chw)/ by sampling with replacement
from the data containing missing values, that is (sclmiss, ... ,a:nmiss)/ where xjniss contains
all variables of a single observation for j = 1,...,n. Next, impute missing values in X} =

(mfr, ey m;kw)/ to obtain imputed matrix X: Finally, compute bootstrap replicate T, = T(X*)

r

and store this replicate for further calculations.

After calculating all replications, parameter estimates are obtained by averaging over all repli-
cations, that is T* = % Zle TY. Standard errors are also calculated based on all bootstrap
replications, that is o7. = \/ T 25:1 (T — T*)2. There is debate about what number of

bootstrap replications is sufficient, the amount of replications needed namely depends on the

data. In most of the problems, one thousand replications show to approximate the estimator’s
distribution. A larger number of replications is always better, due to computational limitations
we however have to make a trade off. In order to limit the computation time, we follow this

number accepted by the majority of the researchers and set R = 1000.

As already mentioned, we make use of the nonparametric bootstrap, but the parametric boot-
strap logically also exists. The difference between the appropriateness of both models relies
on the missing data mechanism. For data which is MAR or Missing Completely At Random
(MCAR), the nonparametric bootstrap works properly. If the data is MNAR, the parametric
bootstrap has to be used. If the data is MAR or MCAR, nonresponse is ignorable, meaning
that no additional problems arise during estimation. If the data is MNAR, nonrepsonse is
not ignorable, meaning that additional data analysis has to be performed before the method

which was intentionally meant to be used can be employed. In particular, this means that the
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missing data mechanism should be explicitly modelled. For our simulation we however generate

MAR data, as this resembles with the majority of the missing data mechanisms in real datasets.

There are only a few conditions which must be satisfied for the nonparametric bootstrap to
work properly, which makes it a popular method in practice. The main disadvantage of this
easily applicable method is its computation time, which can grow large compared to other meth-
ods. Another imputation method which also corrects for uncertainty regarding the estimations
of the missing values is the multiple imputation method (Rubin, 2004). This is the go to method
if computation times are wished to be small, but it imposes stronger assumptions. For example,

an estimator’s variance has to be calculable within a bootstrap replication.

As we investigate the RIV method as explained in Section 3.2.2, using the multiple imputation
method is inappropriate. In Freue et al. (2013), formulas of the standard errors are derived
for the S-estimator, these standard errors are however asymptotic. As convergence of the stan-
dard errors depends on the number of observations, we have chosen to employ the bootstrap.
Standard errors obtained from this method are more accurate when the sample size is low,
and therefore more reliable in general. Although most of the modern datasets contain a large

amount of observations, datasets with a small amount of observations can still be encountered.
In order to link the nonparametric bootstrap to our simulation study, we let @ST denote the es-

timator of the i’th parameter in replication r of simulation run s. At the end of every simulation

run, a parameter estimate is calculated by averaging over all replications, that is

~ 1 I~

Bio=5 ; Bisr- (51)
Final parameter estimates are in turn determined by averaging over all simulation runs, that is

~ 1 S
Bi=2D Bis (52)
s=1

Standard errors are estimated based on the parameter estimates retrieved from all simulation

runs, that is

1S /s =2
75, =1\ g > (ﬁz‘s - @') : (53)
s=1
In order to make claims about a method’s performance we have to make use of more metrics

than just the estimated parameters and standard errors. The performance measures on which

we base the methods’ performances in our simulation study are defined in Section 4.4.
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4.4 Performance Measures

In this section we define all metrics used to evaluate the performances of the methods investi-
gated. Besides metrics that assess the quality of estimates obtained from regression techniques,
we also define measures used for determining imputation quality. Starting off, we make use of
the Root Mean Squared Error (RMSE), an error measurement which assigns higher weights
to estimates further away from the true parameter. As we are investigating causality, accu-
rate point estimates are of big importance, making the RMSE a suitable metric. The RMSE

averaged over all parameter estimates is calculated as

P

RMSE = is S (5i- @5)27 (54)

p i=1 s=1

where p denotes the amount of parameters estimated in a model. An intuitive explanation of
the RMSE as given in Equation (54) is that we average the Mean Squared Errors (MSEs) of all
parameter estimates in every simulation run. Eventually, we also average these MSEs over all
parameters to end up with a single number, which simplifies the comparison of RMSE scores

across different methods.

As the MSE can be written as a metric consisting of the bias and variance, a high MSE value
can be due to multiple reasons. Specifically, the MSE equals the sum of the squared bias and
the variance. A high MSE can therefore be due to a high squared bias, a high variance or
both. Measuring at least one of these components sheds light on the MSE, in this paper we

only measure the bias. The bias averaged over all parameter estimates is calculated as

Bias = LS . Z </3i - B\zs) (55)

p i=1 s=1

In order to determine standard error accuracy, we make use of the coverage defined as

1 p S . A . A
Coverage = S ZZ; SZ:; I[Bis —ti0p8, < B < Bis + t*O',Bi], (56)

where t, is the distribution’s critical value for a certain significance level. For a two-tailed dis-
tribution, ¢, = {,/2, where we set significance level o = 0.05. We follow the same strategy as for
the RMSE, meaning that we eventually average coverages over all parameters and simulation
runs to end up with a single number. Standard errors are found to be accurate if the coverage
approximately equals (1 - a), indicating that the amount of times which the parameters fall
within the confidence interval is as expected. This conclusion only holds if the parameters do
not vary to a great extent across simulation runs, which is in turn true if the variance component

of the RMSE is found to be low.
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We also investigate the predictive performances of all methods. For example within health-
care, it may be of interest to predict what the effect of treating a patient will be on an outcome
variable of interest. We omit the subscript of the bootstrap replication for convenience. A
logical consequence of the bootstrap is that a fraction of the observations do not appear in
the bootstrap sample. As both a training and test set are needed for a predictive analysis, we
can easily construct the test set by assembling the observations which do not appear in the

bootstrap sample. As explained in Efron and Tibshirani (1997), the training error is defined as

err = %ZL(%JC(@)% (57)
i=1

where L(-) is a loss function, &; contains all covariates.

We use the MSE as the loss function, meaning that L(yi,f(fi:i)) = (yl — f(ar:l))2 Solely
using the training error is discouraged, as it is downward biased. Predicting such a training set
by making use of a model fit to multiple bootstrap samples is a naive strategy, as they have
observations in common. We apply the leave-one-out bootstrap, where the out-of-sample error
is defined as .

Erry = %Z ‘1.1_1‘ > Ly, fold)), (58)

i=1 bel—i

where 7% is the set of indices of bootstrap samples that do not contain observation i. If all
samples contain a certain observation, we leave steps concerning that observation out of the
calculation. This measurement is however upward biased, as some observations occur more than
once in a bootstrap sample. As a reoccuring observation does not provide as much information

as a new one, the error term is overestimated.

To alleviate these biases, Efron (1983) proposes the .632 bootstrap which weighs the train-
ing and out-of-sample errors, therefore trying to find a balance between the down and upward
biases. When the predictions however overfit the data, that is err = 0, the .632 bootstrap will
underestimate the prediction error. The .632+ bootstrap proposed by Efron and Tibshirani
(1997) is based on the .632 bootstrap, but additionally measures the degree of overfitting. The

corresponding error measurement is defined as

E’I“\’I“.632+ = (1 - w)W + wEr\rl, (59)

where 0.639
= 60
YT 170368R (60)

The degree of overfitting is in turn given by

R:Lﬁlﬁ (61)
¥ — err

26



where v is the no-information error rate, that is

Y= 5D L S, ©2)

The intuition behind Equation (61) is that the degree of overfitting increases if the difference
between the training and out-of-sample errors increases, meaning that the predictions of the
training error correspond too closely to the data. As the degree of overfitting increases, a higher
weight is assigned to the out-of-sample error. If there is no overfitting, Eﬁﬂl = err, which in
turn yields R = 0. This reduces to the .632 bootstrap, that is Equation (59) with w = 0.632.

Eventually, we average the errors over all simulation runs to come up with the final predic-
tion error. For convenience, we do not define a mathematical formula for this error measure
as it is likely to come over as confusing. In short, the final prediction error is calculated by
averaging over the .632+ bootstrap errors obtained from all simulations, where the .632+ boot-
strap error is as in Equation (59). We use this final error measurement to compare all methods’
predictive performances, the method corresponding to the minimal value excels at predicting

outcomes for new data.

As the outliers are simulated, we can pinpoint the exact location of these values within the
dataset. As both the IV-DDC and RIV methods flag outliers, we can evaluate both methods’
outlier detection accuracies. These methods however differ within this detection, as the IV-DDC
method flags cells as outliers. The RIV method flags observations as outliers, meaning that we
need separate measurements for both methods. In our simulation, we however generate one
outlier per observation, if an observation is selected for contamination. We determine outlier
detection accuracy of the RIV method by checking whether the observation flagged as outlying
contains an outlying cell or not. This way, the outlier detection abilities of both the IV-DDC

and RIV methods can be compared one on one.

Starting off with the IV-DDC, we evaluate the outlier detection performance as

n p+l

) 1
OutAccCellwise = p— Z Z Out;j, (63)

© =1 j=1

where
1 if @;; is an outlier and correctly detected,
Outij = (64)
0 otherwise.
With n, we denote the number of outlying cells present in the data and z;; is as in Section 4.2,
note that we include ¥; as Zjy41 for convenience. We generalize this metric to a measurement

for evaluating how many observations are correctly detected as outlying by the RIV method,
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that is

1 n
OutAcc = — Out;, 65
=3 ou (69
where
1 if (%1, ..., Zip+1) is detected as outlying and contains an outlying cell,
Outi = (66)

0 otherwise,

In the end, we average both the metrics in Equations 63 and 65 over all simulation runs, just

as with the final prediction error, to end up with the final imputation errors.

Finally, we define metrics used for assessing the quality of the missing value imputations. For
these steps we make use of the metrics proposed in Templ et al. (2011), which distinguish
between error measurements for categorical, binary, continuous and semi-continuous variables.
We deal with binary and continuous variables in our simulation, but we only generate missing
values for the continuous variables. Hence, we adjust the metric proposed in Templ et al. (2011)

and measure the Absolute Relative Error (ARE) of the imputations for the continuous variables

as . ) )
n p+ ~O0rig ~1mp
1 Tij ~ — Tij
ARFE;,, = E E . , (67)
Nmiss “ X 7o
i=1 j=1 1]

where a?gig and (Tcigﬂp stand for the original and imputed value respectively, nmiss stands for the

amount of missing values. A minimal value of the error measurement indicates an imputation

lying closer to the true value on average.

A disadvantage of the ARE metric is that it is likely to take on high values as the original
values approach zero. As we draw data from a multivariate normal distribution with zero mean
and relatively low covariances, values close to zero are likely to be present. Hence, we also
measure the Mean Absolute Error (MAE) of the imputations, that is

1 n p+1 ' '
] o ~orig  ~imp
MABmy = 3 1: > 1‘% i ) (68)
1= J:

The MAE measures how much an imputation differs from the original value on average, without
taking the magnitudes of both values into account. Logically, just as with the ARE, a lower
value of the MAE is desirable. In cases where the ARE yields a large error due to an original
value lying close to zero, the MAE does a better job at capturing the quality of the imputation.
Finally, just as with the prediction and outlier detection measures, we average the AREs and

MAEs obtained from all simulation runs to end up with the final metrics of imputation quality.
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5 Real Data

In this section we describe the two real datasets to which some of the methods investigated
in this paper are applied to. The results which we replicate and extend are not based on
explanatory variables including missing values, meaning that making use of the imputation
strategy as given in Section 4.2 is superfluous. We do however check all datasets for outliers,
and pay specific interest to the outcomes of the proposed robust alternatives. An explanation
of the real dataset used for an application of the IV type of methods described in this paper
is given in Section 5.1. The second real dataset is used for an application of the DiD type of

methods, it is described in Section 5.2.

5.1 Dinkelman (2011)

For the IV type of methods we make use of the data regarding electrification and its effect
on employment in South Africa (Dinkelman, 2011). Results show that electrification causes a
significant increase in the female employment rate within a five year period. Besides this main
finding, other interesting relationships regarding male and female employment are obtained and
discussed. The majority of the South African population did not have access to electricity prior
to the elections of 1994. Based on the election outcomes, the South African government decided
to increase provisioning of such basic services. From 1995 onwards, a set amount of South

African households is annually provided with electricity.

An IV approach might seem unnecessary at first glance, as random assignment of electric-
ity seems feasible. Motivations behind this non-random assignment are given in Dinkelman
(2011), the non-random selection of communities which were to receive electricity was mainly
due to higher powers of politicians. Hence, the treatment variable indicating whether a house-
hold has received electricity on behalf of the project set up by the government is endogenous.
This variable is instrumented by a measure of land gradient, the choice of this instrument is
based on the fact that a higher gradient increases the costs of the household’s electrification,
which means that it plays a role in electricity assignment. In Dinkelman (2011) it is shown that

this instrument is indeed valid, leading to a proper application of the IV method.

All variables used in Dinkelman (2011) are continuous except for the binary treatment vari-
able. The number of controls used varies between 10 and 12, meaning that outliers in one or
more of these controls are possibly present. As we illustrate in Section 6.2, some variables are
large in magnitude, meaning that an extreme data point is likely to bias the results if the effect
of this variable on the dependent variable is significant and relatively large. A detailed analysis

of our replication and extension of the results of Dinkelman (2011) is given in Section 6.2.
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5.2 Card and Krueger (1993)

For the DiD type of methods we make use of the data originally used in Card and Krueger
(1993) to study the effects of an increase in minimum wage. This paper is a famous example
of the application of the DiD method, as it contradicts a pattern which was believed to hold
based on theoretical economic work. The main finding of Card and Krueger (1993) is that an
increase in the minimum wage leads to an increased level of employment. As mentioned earlier,
such a wage inrease was suspected to decrease the level of employment before this paper was
published. As this conclusion was striking to a lot of researchers, further research on this topic

gained a lot of interest.

In general, a potential problem for research conducted is using data which does not accurately
represent the problem. The sample used in Card and Krueger (1993) is relatively small, which
calls the sample’s representativeness of the population into question. In Neumark and Wascher
(2000) it is claimed that the results obtained from Card and Krueger (1993) paint a wrong
picture, as they obtain a negative relation between a minimum wage increase and the level of
employment by using different data. What makes it particularly interesting, is that Neumark
and Wascher (2000) make use of data regarding restaurants from the same food chains. As
these restaurants are also located in New Jersey and Pennsylvania, the potential problem of

differing characteristics is unlikely to be present in this case.

In a reply to Neumark and Wascher (2000), Card and Krueger (2000) further investigate the
issue. They refute the conclusion drawn in Neumark and Wascher (2000), but dig deeper into
the problem as they now also doubt the credibility of the conclusion drawn in Card and Krueger
(1993). After investigating multiple datasets of which the appropriateness is illustrated, Card
and Krueger (2000) conclude that the increase in minimum wage does not have a significant
effect on the level of employment. Even though the original authors have already rejected their
claim themselves, a search for potential outliers has not yet been carried out. In Card and
Krueger (2000) they do highlight a couple of stores which show behaviour differing from the
majority, but using the RDiD method provides us with more information. At the time, robust
regression was not as widely used as it is today, we are therefore interested in applying our

proposed robust alternative of the DiD method to the data.

6 Results

In this section the results obtained from both the simulation study, as well as from the real data
are given. In Section 6.1 we discuss the results obtained from the simulation study described
in Section 4, where we investigate multiple cases which differ in the extent to which they are
contaminated. In Section 6.2 we investigate the results obtained from analyzing the two real

datasets described in Section 5.
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6.1 Simulation Study

We start off with investigating the DiD type of methods. The results obtained from the DiD
type of methods for €.ony = 7.5%, where outliers are caused due to bad leverage points are given
in Table 1.

Table 1: The results of the DiD type of methods for €cont = 7.5% and outliers due to bad leverage points.

RMSE Bias Coverage ATE Prediction  Outlier Detection Imputation ARE Imputation MAE
DiD 1.609 0.097  69.125% 4.223 (1.824) 39.016 - 9541 0.481
RDiD 0.155 0.024 93.625% 4.143 (0.231) 1.027 0.999 ' ’

Notes: The standard errors are given in parentheses.

Table 1 shows the most important results from both the DiD type of methods, where the num-
bers in bold correspond to the best performing method for a certain metric. We see superior
performances for the RDiD method based on all metrics given in Table 1, but we will subse-
quently walk through all findings. The RMSE is denoted in the first column, which is minimal
for the RDiD method. As both biases are low, this indicates that the parameter estimates of
the RDiD method differ less on average from the true parameters than for the DiD method.
The coverage of the RDiD method is close to the in this case ideal value of 95%, the coverage
of the DiD method lies further away. The coverage of the RDiD method does not equal 95%,

but there is a logical explanation for this.

As we make use of the bootstrap, coverage deviations are either due to a too small number
of bootstrap replications, a too small number of simulation runs or both. The deviations are
however small, and due to computational limitations we do not investigate these cases for a
larger amount of bootstrap replicates and/or simulation runs. If we were to judge the standard
errors on these outcomes, we would argue only the standard errors of the RDiD method to
be accurate. The coverage however also depends on the parameter estimates, as the method
relies on calculating confidence intervals. The coverage may lead to wrong conclusions if the
parameter estimates vary considerably, as the confidence intervals become unrealistically large.
Combining the RMSE and the bias of the RDiD method, which gives us information about the
variance, shows that the variance is low. Hence, the corresponding parameter estimates do not

vary to a great extent, the standard errors are therefore accurate.

The ATEs of both methods lie close to the true value of 4.145, the corresponding standard
error of the RDiD method is however much smaller than that obtained from the DiD method.
As there is more uncertainty regarding the ATE obtained from the DiD method, the RDiD
method is superior in this case. The prediction error corresponding to the RDiD method is a
lot smaller than that of the DiD method, meaning that it excels at predicting outcomes for new
data. The superiority of the RDiD method can easily be explained, as 99.9% of the outliers are
on average correctly detected by the method. In this simulation setting, the outlying distribu-

tion differs from the population distribution to a great extent, making it relatively easy for the
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RDiD method to detect the outliers. Once this difference shrinks, we expect the percentage of
correctly detected outliers to decrease as well. Due to computational limitations, we leave this

for further research.

The ARE of the imputations shows that imputations on average deviate from the original value
by 254.1%, meaning that the missing values are imputed rather poorly. As noted in Section 4.4,
the ARE may be misleading when values lie close to zero. The MAE shows that imputations
on average deviate from the original value by a value of 0.481, meaning that the imputations
are not as poor as indicated by the ARE. Still, we demonstrate that kNN imputation is only

able to mimic the patterns in the original dataset to a certain extent.

The results of the IV type of methods under the same setting as the DiD type of methods
are given in Table 2. As already mentioned, the instrument can and therefore is also con-
taminated with outliers and missing values in our case. A method which breaks down when
outliers are present in the instrument may show promising results within a simulation study for

a dataset with a clean instrument.

Table 2: The results of the IV type of methods for €cont = 7.5% and outliers due to bad leverage points.

RMSE Bias Coverage ATE Prediction  Outlier Detection Imputation ARE  Imputation MAE
v 3.447 -0.590 63.400% 2.126 (6.121) 178.640 -
RIV 0.592 0.026 94.400% 3.962 (1.055) 157.860 0.793 9697 0.613
IV-DDC  4.864 -0.532 64.200% 2.273 (9.316) 237.812 0.799 ’ ’
PLIV 8.286 -1.896 95.000% 1.876 (8.107) - -

Notes: The standard errors are given in parentheses.

Table 2 shows superiority of the RIV method based on almost all of the measures given in the ta-
ble. An RMSE of 0.592 for the RIV method indicates that the parameter estimates do not vary
a lot between simulation runs. The RMSE and bias values of all other methods however indicate
the opposite, meaning that averaging over all simulation runs does not accurately represent all
simulation outcomes. Hence, the coverage is a metric which is nonsensical to interpret in this
setting for all methods except for the RIV method. For the RIV method, the coverage lies close
to the expected 95% mark, indicating accurate standard errors. Although the coverage corre-

sponding to the PLIV method equals 95%, its variance is too high for the coverage to be reliable.

The RIV method does best at estimating the treatment effect of 3.772, with a correspond-
ing standard error which is acceptable. The treatment effect estimates of all other methods
also come close to the true treatment effect, due to their large standard errors there is however
too much uncertainty about the parameter estimates. Prediction-wise, the RIV method outper-
forms the other methods, although the differences in performance are rather small in this case.
Note that predictions cannot be made for the PLIV method, as this method does not return
parameter estimates other than the ATE.
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Both the RIV and IV-DDC methods correctly detect almost 80% of the outliers on average.
As all outliers are similarly generated, differences between these methods are mainly due to
the quality of the imputations, which is something on which the performance of the IV-DDC
method highly depends. On average, an imputation differs almost 270% relative to the original
value. The MAE is however the metric of greater interest in this case. On average, an impu-
tation has a deviation of 0.613 from the original value, which can be argued to be acceptable.
The results in Table 2 however show that setting outliers to missing and imputing the values
afterwards performs worse than the IV method. This in turn indicates that the imputations

are of a quality which only worsens the results.

The results of the ML type of methods under the same setting as the previously examined
methods are given in Table 3. These methods are especially designed for calculating the ATE,
all results given in Table 3 are therefore not averaged over multiple parameters. All measure-

ments correspond to the estimated treatment effects obtained over all simulation runs.

Table 3: The results of the ML type of methods for €cont = 7.5% and outliers due to bad leverage points.

RMSE Bias Coverage ATE Imputation ARE  Imputation MAE

ARB 1.291 0.100  94.000%  3.871 (1.294)
PLR 1.079 0.096 96.000%  3.867 (1.081)

1.843 0.419

Notes: The standard errors are given in parentheses.

Table 3 shows similar results for the ARB and PLR methods. Both the RMSEs are relatively
small, this indicates that the estimate of the treatment effect accurately captures the estimates
from all simulation runs as the biases are low. We do however note that the PLR method ob-
tains a lower RMSE compared to the ARB method, meaning that the estimates obtained from
the PLR method vary less across simulations. Subsequently, we can draw conclusions from the
coverage values as the parameter estimates are found to be accurate. Both the coverages ap-

proach the desirable 95% level, meaning that the standard errors are accurate for both methods.

Both the ATEs are close to the actual treatment effect of 3.772, the standard error associ-
ated with the PLR method is however smaller, indicating less uncertainty about the ATE. The
ARE corresponding to the imputations again suggests poor imputations, as an imputation de-
viates 184.3% from its original value on average. The MAE shows the difference between an
imputed and the original value to equal 0.419 on average, meaning that the imputations are
not as bad as indicated by the ARE. Although the quality of the imputations is controversial,
both the PLR and ARB methods show to be robust in this setting.

Next, we investigate all methods in similar settings as the ones previously described. The

outliers now however concern vertical outliers instead of bad leverage points. The results of the

DiD type of methods are given in Table 4.

33



Table 4: The results of the DiD type of methods for €cont = 7.5% and outliers due to vertical outliers.

RMSE Bias Coverage ATE Prediction  Outlier Detection Imputation ARE Imputation MAE
DiD 4.658 0.842  87.375% 3.558 (6.234) 83.858 - 9 547 0.529
RDiD 0.155 0.024 94.375% 4.121 (0.224) 1.028 0.999 ’ '

Notes: The standard errors are given in parentheses.

The results obtained from Table 4 lead to the same conclusions drawn based on Table 1, where
the only difference between the datasets is the type of outlier generated. When vertical outliers
are present, the DiD method performs worse relative to the RDiD method, as can be seen from
the higher RMSE and prediction error values. The results obtained from the DiD method in
Table 1 were found to be credible to a certain extent, the ATE and its standard error were
somewhat accurate. When vertical outliers are present, the standard error increases so much

that the ATE is not even significantly different from zero anymore.

The results of the IV type for €cont = 7.5% when outliers are caused by vertical outliers are

given in Table 5.

Table 5: The results of the IV type of methods for €cont = 7.5% and outliers due to vertical outliers.

RMSE Bias Coverage ATE Prediction = Outlier Detection Imputation ARE  Imputation MAE

I\Y 5.517 1.476  89.400% 3.992 (8.156) 324.355 -

RIV 0.592 0.016 95.200% 3.867 (1.057) 159.492 1.000
IV-DDC  0.616 -0.006  94.200% 3.561 (1.065) 159.285 0.987
PLIV 8.065 0.256  96.000% 4.027 (8.102)

2.687 0.647

PRy

Notes: The standard errors are given in parentheses.

Table 5 shows results which lead to the same conclusions drawn from the setting where outliers
were caused due to bad leverage points. We shortly go through the results as the differences
between the methods’ performances have changed. The RMSE outcomes lead to the same
conclusions, we do however note that the RMSE of the IV-DDC method nears that of the
RIV method. Bad leverage points detected as outliers by the IV-DDC method were imputed
and used within the estimation. A similar strategy is followed with the vertical outliers, these
observations are however omitted before estimation, as already explained in Section 4.2. In
general, deletion of outliers in a dataset is not a straightforward procedure. Within this simu-

lation it yields favorable results, but it is not a strategy which can always be followed in practice.

Both the coverages of the RIV and IV-DDC methods approach 95%, indicating accurate stan-
dard errors. The coverages of the IV and PLIV methods are non-credible as their variances are
too large. All ATEs lie close to the true value of 3.772, with the RIV and IV-DDC methods
showing plausible standard errors. Prediction-wise, the RIV and IV-DDC methods show per-
formances which are roughly equal in quality. Compared to the RIV and IV-DDC methods,
the predictions from the IV method leave a lot to be desired. Bad leverage points were already

correctly detected to a large extent, but almost all vertical outliers are detected in this setting.
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The RIV method succesfully detects all outliers, while the IV-DDC method correctly detects
98.7% of the outliers.

Next we investigate the ML type of methods for e.ont = 7.5% when outliers are caused by

vertical outliers, the results obtained are given in Table 6.

Table 6: The results of the ML type of methods for econt = 7.5% and outliers due to vertical outliers.

RMSE Bias Coverage ATE Imputation ARE  Imputation MAE

ARB 3.100 -0.342 95.000% 3.429 (3.097)
PLR 3.081 -0.367 96.000%  3.404 (3.075)

2.069 0.482

Notes: The standard errors are given in parentheses.

Table 6 shows similar, and rather poor results for both methods. Both methods attain high
values for the RMSE and standard errors. Both coverages are close to the optimal value, these
values however have no meaning as the variances are large. The parameter estimates roughly
approach the true value of 3.772 of the treatment effect, but there is too much uncertainty

about these estimates due to the large standard errors.

Overall, we see superiority of the RDiD method with respect to the DiD method for econt = 7.5%,
making it the favoured method when outliers are present. The RIV method is the best per-
forming one out of all IV type of methods, meaning that the inclusion of a binary variable does
not necessarily harm its performance to a great extent. We do however draw all controls from a
multivariate normal distribution, meaning that all controls fit the elliptical structure very well.
If the controls do not suit an elliptical structure in practice, we do not promote the use of the
IV-DDC method if the imputation method performs poorly. Finally, the ARB and DML meth-
ods show similar performances. They are robust to bad leverage points, but the performances

visibly worsen in the presence of vertical outliers.

We also examine all methods for €cony = 20%, but the results lead to conclusions similar to
those drawn from the results of econt = 7.5%. As more data is contaminated, the results are
more extreme, but the order of methods’ performances and their superiority does not change.
These results can be found in Tables 12 to 17 in Section A.

6.2 Real data

In this section we examine the two real datasets described earlier. The analysis of the dataset
used in Card and Krueger (1993) is given in Section 6.2.1, the results obtained from the data

used in Dinkelman (2011) are given in Section 6.2.2.
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6.2.1 Card and Krueger (1993)

For investigating the real data as described in Section 5, we start off with applying the DiD
and RDiD methods to the data used in Card and Krueger (1993). Except for in the dependent
variable, there are no values missing. Hence, we do not make use of the imputation strategy
as described in Section 4.2 as we would eventually delete all observations with imputations.
Rather, we omit all stores with at least one missing independent variable, meaning that we are
left with n = 384 stores where the employment level is known both pre and post treatment.

The model to be estimated is defined as
empit = Bo.emp + B1,empDt + B2,empNJi + B3,.emp (Dt - NJ;) + €41, (69)

where t = 0 and ¢ = 1 indicate observations pre and post treatment respectively. Variable
emp;; stands for the average employment of store ¢ at time ¢, D;; equals one if £ = 1 and zero
otherwise. Finally, NJ; equals one if a store is located in New jersey and zero if a store is lo-

cated in Pennsylvania. The parameter of interest is 33 emp, which represents the treatment effect.

As stated in Cameron et al. (2008), clustered robust standard errors fall short in this case
as there are only two states. Hence, we apply the wild cluster bootstrap as also described in
Cameron et al. (2008). The results obtained are given in Table 7 for R = 1000.

Table 7: The results of the DiD and RDiD methods applied to the data used in Card and Krueger (1993).

DiD  RDiD
3 93.42%%% 9] 49H
Oemp(119) (1.13)
Biomp -2:32 -0.95
BEP166)  (1.49)
Byemp -3.01%%  -191
To(130)  (1.22)
Bsemp  2-81 1.61

(1.83) (1.63)

Notes: The standard errors
are given in parentheses, ***
denotes a variable that is sig-
nificant at the 1% level, ** de-
notes a variable that is signifi-
cant at the 5% level and * de-
notes a variable that is signif-
icant at the 10% level.

When we apply the wild cluster bootstrap, the ATE is not significant at the thresholds examined
for the DiD method. The ATE roughly equals the one obtained in Card and Krueger (1993),

the standard error is however larger in this case.

When we apply the RDiD method to the data, all parameter estimates decrease in magnitude.
We see a drop in the estimated treatment effect, meaning that there is even more uncertainty

regarding the effect of the policy change. Based on Table 7, we suspect results of the DiD
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method to be influenced by outliers. Due to the different outcomes obtained from the DiD and
RDiD methods, we take a closer look at the RDiD method. As the dependent variable is con-
tinuous with all independent variables being binary, vertical outliers is the only type of outliers
which can possibly be witnessed. Figure 2 shows the weights assigned to all observations by the

MM-estimator used in the RDiD method, averaged over all bootstrap replications.
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Figure 2: The observation weights obtained from the RDiD method.

Figure 2 shows that the majority of the weights lie close to one, but a good share of the weights
reach values clearly lower. Some weights show to be close or equal to zero, leading to concerns
regarding the original dataset. As OLS can already break down when one outlier is present,
witnessing these low weights questions the appropriateness of the DiD method for this data. The
distance distance plot (Rousseeuw and Van Zomeren, 1990) corresponding to the data is given
in Figure 3. Robust mahalanobis distances cannot be calculated due to multicollinearity, the
horizontal axis is hence given by the leverages. As the only outliers which we potentially observe

are vertical outliers, the measurement given on the horizontal axis is not of much interest.

The robust standardized residuals vs. the leverages

o
o -
- o
s
o
s < - T
o - o
A
© -3 o
P o~ o Pead
]
° S@
=
@
3 o 4 Q
o
]
o
R [e] [e]
T T T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

leverage

Figure 3: The distance distance plot of the RDiD method.
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Figure 3 shows the presence of some vertical outliers, which are the observations above the cut
off of the standardized residuals. Hence, the values of the employment variable for outlying
observations deviate from the majority of this variable’s values. For this particular dataset,
we conclude that the DiD method falls short and that the RDiD method is the preferred one.
Although the conclusion drawn based on the outcomes in Card and Krueger (1993) was already
shown to be too optimistic, as discussed in Section 5.2, these results show that robust regression

could have also been used in order to come to the conclusion’s rejection.

6.2.2 Dinkelman (2011)

For the analysis of the data used in Dinkelman (2011) we make use of the IV type of methods.
We do apply all IV type of methods to the data, but interpret all findings with caution. As
already mentioned, the RIV method does not perform equally well for all data. The method of
choice may therefore differ per dataset, which is why we investigate the appropriateness of the

RIV method in this case as well. Before we do so, we define the models which we examine.

For the analysis we have information regarding n = 1816 households. Besides controls, we
also have information about district fixed effects, which are the binary exogenous covariates.
We index communities by j, districts by d and time periods by ¢, where t = 0 and ¢ = 1 are pre

and post treatment respectively. The model to be estimated is given as

Ayjarr1 = 1 elec + a2,0lec ATt 1 + XjaoBelec + Adetec + (0j,elec + A€jart1), (70)

where Az g1 = (iﬁjdt+1 — a:jdt), €jqt stands for the unobserved error term. Variable T}4; equals
one if the community has received electricity by the government at time ¢, and zero otherwise.
The parameter vector corresponding to the controls is defined as Beec = (ﬁl’elec, cen /BD,elec)/7
if we assume that there are D districts. As we investigate two models examined in Dinkelman
(2011), outcome variable y;q; is given by the female and male employment rates in the separate

models.

Matrix X4 contains the controls, Agelec and d; clec capture community and district fixed effects
respectively. The controls used are household density, the fraction of households living below a
poverty line, distances to the grid, road and town, the fraction of adults that are white or Indian
to proxy for local employers, the fraction of men and women with a high school certificate, the
share of female-headed households and the female/male sex ratio. Treatment variable Tjq; is

instrumented by Z;, that is the average community land gradient.

For this dataset, we will combine the RIV method as described in Section 3.2.2 with L; re-
gression as proposed in Freue et al. (2013). For this method, which we will call L;-RIV, we
define Yelec and Zgjec as the vectors stacking all outcomes and instruments over all observations
respectively. Matrix X is defined as the concatenation of all controls and the treatment, both

stacked over all observations. We define Agjstrict = ()\Lelec, ce A D—l,elec)/ as the vector includ-
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ing district fixed effects, such that district D functions as the reference group. Furthermore, we
define X gistrict as the sparse matrix, selecting the correct district fixed effect per observation,

and selecting no district fixed effect if an observation belongs to district D.

The L;-RIV method is an iterative procedure, the parameter estimates are updated accord-

ing to
~@) 3 @ ) _ N(a—1)
<a2(,1elec’ 1?elec7 sy lg,elec> = RIV <X616C7 Z61667 Yelec — XelecAd?strict)a (71)

~ —~ ~ /
)‘Egitrict = L1 (Xdistric‘m Yelec — Xelec (ag,}glew Bﬁ]e)lew Tt g?elec) > ’ for 1 <

where we set @@ = 10. With RIV(-) we denote the application of the supplied data to the RIV
method as in Section 3.2.2. Note that the dependent variable is given in the latter argument,

and that the intercept is not iteratively updated. The L;(-) method returns parameter estimates

from regressing the second argument on the first. Vector Xé?itri ot

to Freue et al. (2013) and their Web Appendix for further details on how this is done. In the
(@)

1,elec

the model in Equation (70).

has to be initialized, we refer

end, an estimate of & is obtained in a similar way as in Equations 15 and 21, now only for

Starting off with the exploratory analysis, we determine the appropriateness of the RIV method
by checking whether the data mimics the desired elliptical structure. Figure 4 shows scatterplots
and spearman correlations of all variables used in the analysis, excluding the exogenous binary
covariates. A derivation of how the significance levels of the correlations are determined is given
in 75 in Section A. The variables from left to right are female employment rates, treatment, the
controls in the same order as described earlier, and the instrument. The pairwise scatterplots
of the male employment rate and all other variables barely differ from Figure 4, meaning that
the conclusions drawn from Figure 4 also hold for these scatterplots. For completeness, they

are given in Figure 6 in Section A.
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Figure 4: The pairwise scatterplots of the electrification data for the female employment rate.

Figure 4 shows elliptical type of shapes for about half of the variable pairs, the shapes of all
other pairs cannot be labelled as elliptical. Hence, the data used in Dinkelman (2011) is a poor
fit for the RIV method. Figure 4 does however show aberrant data points in a fair share of the
plots. Some variables are relatively large in magnitude, namely household density, distances to
the grid, road and town, and the average community land gradient. Most of the correlations
are also significant at the 1% level, meaning that outliers affecting the results is a potential
problem. Although the IV-DDC method does not necessarily outperform the IV method, it can
give us additional insights about the data due to its outlier flagging abilities. As Figure 4 is

difficult to interpret due to the amount of variables, we elaborate on the findings below.

We summarize the spearman correlations given in Figure 4 in Table 8. A summary for the
model with the male employment rate as the dependent variable is given in Table 11 in Section
A. Correlation r;; is measured between variables ¢ and j for ¢ # j, where the same correlations

are calculated as in Figure 4.
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Table 8: A summary of the spearman correlations of the electrification data for the female employment rate.

|T~;j| < 0.3 7 5 5 45
;| €0.3,05 0 0 0 11
;| €0507 0 0 0 3

|7’ij| > 0.7 0O 0 O 2

Ncor 78

Notes: The first column denotes
correlations which are not signifi-
cant, *** denotes a correlation that
is significant at the 1% level, ** de-
notes a correlation that is signifi-
cant at the 5% level and * denotes a
correlation that is significant at the
10% level. With n.or we denote the
amount of correlations calculated.

Table 8 shows that the majority of the correlations are weak, although most of them are sig-
nificant. We focus on the bivariate pairs with correlations larger than 0.5 in absolute value,
which we label as strong. The variables forming these pairs are distances to the grid, road and
town, the fraction of men and women with a high school certificate, the share of female-headed
households and the female/male sex ratio. A closer look at the pairwise scatterplots shows some
deviating points, making it interesting for us to apply the DDC algorithm. Depending on these
variables’ effects on the outcome, these potential cellwise outliers may be the cause of bias in

the parameter estimates.

The DDC algorithm detects 1039 cells as outliers, the variable measuring the fraction of adults
that are white or Indian to proxy for local employers is dropped from the procedure, as its vari-
ation is low. The 1039 cells detected as outlying are spread over 704 observations, meaning that
the DDC algorithm detects outlying cells in nearly 40% of the observations. The frequencies of
outliers found in the variables are visualized in Figure 5. The order of the variables is the same
as for Figure 4, the treatment variable is now however omitted. A histogram of the cellwise

outliers of the electrification for the male employment rate is given in Figure 7 in Section A.
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Figure 5: The histogram of the cellwise outliers of the electrification data for the female employment rate.

Figure 5 shows similar frequencies across the variables, except for the variable measuring house-
hold density. This variable is also the largest in magnitude, meaning that the cells detected as

outlying could potentially form a problem.

We also attempt to measure imputation quality, although this procedure is difficult for real
data. We denote the ARE and MAE of the imputations as defined in Section 4.4, these mea-
surements are however slightly adjusted for this dataset. First of all, we set one of the cells,
which are all known in this dataset, to missing in 7.5% of the observations according to the
MAR mechanism. This way, we can determine how kNN imputation would perform if there
would be missing values which are MAR. We split the variables for error calculation, as the

appropriateness of the ARE and MAE metrics depends on the type of data.

We calculate the ARE for the variables which are large in magnitude, that is household density,
distances to the grid, road and town and finally the average community land gradient. The
remaining continuous variables are used for calculating the MAE, except for the fraction of
adults that are white or Indian to proxy for local employers as it does not show enough devi-
ations. The values of the MAE show no outliers across the bootstrap replications, we hence
calculate it according to Equation (68). The ARE shows some outliers across the replications,
we hence take the median except of the mean over all replications in order to end up with the

final imputation error.

Table 9 shows the results obtained from the IV type of methods for R = 1000, where the out-
come is given by the female employment rate. We apply the cluster bootstrap as in Cameron
et al. (2008), applying a more sophisticated version of the bootstrap is superfluous as the num-
ber of groups is large enough in this dataset. For the RIV method, we set 7 as in Section 3.2.2
equal to 0.825, and omit bootstrap samples where multicollinearity is an issue. Lower values

of 7 results in too much bootstrap samples suffering from multicollinearity, with = = 0.825 we
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obtain estimates in 853 of the 1000 bootstrap replications. For convenience, we display the

same results as those reported in the tables of interest in Dinkelman (2011).

Table 9: The results from the IV type of methods applied to the electrification data for the female employment rate.

I\% IV-DDC RIV PLIV Imputation ARE  Imputation MAE

T 0.106 0.082%  0.009 0.204
(0.089)  (0.042)  (0.806)  (1.894)

Poverty 0.032***  0.016**  -1.079
(0.012)  (0.008)  (35.972)

Female HH  0.033 0.019 -0.018 0-852 0.082

(0.027) (0.016)  (0.450)

Sex ratio 0.031** 0.016**  -0.001
(0.014)  (0.007)  (0.049)

Notes: The standard errors are given in parentheses, *** denotes a variable that is significant
at the 1% level, ** denotes a variable that is significant at the 5% level and * denotes a variable
that is significant at the 10% level.

Table 9 shows similar results as those reported in Dinkelman (2011) for the IV method, except
for the ATE. The ATE was found to be just significant at the 10% level in Dinkelman (2011),
when applying the clustered block bootstrap we obtain an ATE which is not significant at the
10% level. Note that R may be interpreted as too low in order to make such a claim, but results

for larger values of R, which we do not include for convenience, support this claim.

When we look at the results from the IV-DDC method, we see a drop in magnitude for all
parameters. When we separately generate missing values, we see that the variables concen-
trated around zero are imputed well, with an MAE of 0.082. The other continuous variables are
however imputed rather poorly, with an ARE of 0.852. As the differences in magnitude of the
parameter estimates are small, and the variables used for calculating the ARE are the largest in
magnitude, we are sceptical about the performance of kNN imputation. Overall, the IV-DDC
parameter estimates seem plausible, but the IV parameter estimates are more reliable in this

case.

The third column of Table 9 shows the results obtained from the RIV estimator, which are
non-credible. They show no similarities whatsoever when compared to the results from the IV
and [V-DDC methods. When analyzing the results from all 853 replications which did not suffer
from multicollinearity, the RIV method has shown to have broken down multiple times. This
explains the relatively large standard errors, especially for poverty. Due to the inappropriate-
ness of the RIV method, it is not of interest to filter out the corrupted replications, as the results
which would remain would still not be credible. Although this estimator is the ideal method
when it comes to robust IV estimation, this example just shows how carefully the results should

be interpreted.
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Finally, the ATE obtained from the PLIV method is given in the last column of Table 9.
The estimated effect is larger than what is obtained from the other methods, but the associated
standard error is relatively large, and the ATE is not significant at the 10% level. Analyzing the
bootstrap replications revealed that the PLIV method also broke down multiple times, explain-
ing its relatively large standard error. As our simulation study showed no superiority of the
PLIV method when compared to the IV method, it is not of interest to filter out the replications
in which the PLIV method broke down.

Overall, we base our conclusions on the IV and IV-DDC methods and see slight influences
of outliers in the data. Above all, these outliers do not seem to distort the general patterns as
already observed in Dinkelman (2011), but we cannot say this with certainty as the quality of

the imputations remains questionable.

Table 10 shows the results obtained from the IV type of methods for R = 1000, where the

outcome is now given by the male employment rate.

Table 10: The results from the IV type of methods applied to the electrification data for the male employment rate.

I\Y% IV-DDC RIV PLIV Imputation ARE  Imputation MAE
T 0.030 0.069 -0.260 0.230
(0.080)  (0.060)  (5.538)  (2.547)
Poverty 0.064%**  0.058***  2.393%**

(0.016) (0.011) (49.102)

Female HH ~ 0.225%%* 0.134***  -0.093
(0.030)  (0.024)  (2.041)

Sex ratio 0.017 0.024** 0.011
(0.014)  (0.010)  (0.256)

0.842 0.086

Notes: The standard errors are given in parentheses, *** denotes a variable that is significant
at the 1% level, ** denotes a variable that is significant at the 5% level and * denotes a variable
that is significant at the 10% level.

Table 10 shows results similar to those obtained in Dinkelman (2011) for the IV method. For
the IV-DDC method, the major difference lies in the parameter estimate corresponding to the
ratio of households which are female headed. This measured effect of a female headed household
on the change in the male employment rate is slightly more than half the magnitude when we
combine IV with the DDC, while remaining significant at the 1% level. The estimated treat-
ment effect is again not significant, meaning that the main conclusions drawn in Dinkelman
(2011) based on this dataset remain valid. It is also noteworthy that the parameter estimate
corresponding to the male/female ratio now is significant at the 5% level. These parameter
estimates again seem plausible, but the arguments as in the description of the results of Table

9 also apply here.
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The results of the RIV method show no overlap with those obtained from the other meth-
ods, which is again due to the non-elliptical structure of the data. Large standard errors are
again due to the method breaking down in some of the replications, we hence regard the results

obtained as non-credible.

For the PLIV method, the same conclusions can be drawn from Table 10 as is done for the

results obtained from Table 10. In this simulation, the method also broke down multiple times.

We follow the same strategy as with Table 9 to conclude on our findings. Combining the
IV method with the DDC algorithm leads to slightly different results, meaning that the claims
made in Dinkelman (2011) hold.

7 Discussion

In this paper we have examined robustness properties of causal econometric and ML methods
for contaminated data. In particular, we have investigated the IV, DiD, ARB and DML meth-
ods and proposed robust alternatives for both the IV and DiD methods. Results show that the
RDiD is indeed a DiD type of method resistant to outliers. Based on our simulation study, the
RIV method based on the work of Freue et al. (2013) also shows to be a robust alternative of
the IV method, but it is only applicable in a limited amount of cases. Its performance heavily
relies on the structure of the data, the results from the RIV method become unreliable if the

data is not elliptically structured.

Besides the RIV method, we have proposed the IV-DDC method, which incorporates the work
of Rousseeuw and Bossche (2018). Our simulation study however shows that this method may
perform worse than the IV method, when kNN imputation is used for imputing cells flagged as
outliers. Due to computational limits, we chose to make use of kNN imputation instead of a
more complex imputation technique. The IV-DDC method may therefore potentially outper-

form the IV method, depending on the imputation technique used.

Additional to our simulation study, we have applied some of the methods investigated in this
paper to two real datasets, namely the ones used in Card and Krueger (1993) and Dinkelman
(2011). We applied the DiD type of methods to the data used in Card and Krueger (1993),
and concluded that the data used suffers from vertical outliers. Usage of the RDiD led to
shrinkage of the parameter estimates towards zero. We applied the IV type of methods to the
data used in Dinkelman (2011), which required a more careful approach as the performances of
these methods highly depend on the data. An exploratory analysis revealed that the data does
not suit the RIV method. An application of the IV-DDC method revealed numerous cellwise
outliers, but kNN imputation was also shown to lead to relatively poor imputations. Hence,
applying the IV type of methods to the data used in Dinkelman (2011) emphasizes the caution

which should be used when applying robust alternatives.
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The main limitation of our paper lies in the simulation study. The amount of bootstrap repli-
cations and simulation runs are sufficient, but can be increased for more accurate results. Be-
sides, we have not investigated high-dimensional problems, for which the causal ML methods
are especially suited. Simulation studies can always be extended, but we mainly encourage the

investigation of high-dimensional problems.

As outliers and missing data are two phenomena scarcely researched in the causal inference
setting, there are numerous interesting directions for further research. First of all, using differ-
ent imputation techniques with the IV-DDC method can potentially lead to better performances
compared to the IV method, see Osman et al. (2018) for a survey of frequently used techniques.
Also, the cellwise outliers generated in our simulation study were extreme. Examining all meth-
ods when outliers are less extreme may reveal some interesting patterns. Finally, developing
robust alternatives of the causal ML methods, or focusing on robustification in general is an in-
teresting topic for researchers in the field of ML. Causal ML methods are extensively developed
at the moment, we can hence imagine that developing robust alternatives is not yet of interest

as there are numerous unexplored ways for coming up with a new type of method.
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A Appendix
The proof of Pz being idempotent is given as
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The proof of Pz being symmetric is given as
Ntz (73)
1

The full derivation of Equation (20) is given as
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The pairwise scatterplots of the electrification data for the male employment rate are given in

Figure 6.
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Figure 6: The pairwise scatterplots of the electrification data for the male employment rate.
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A summary of the spearman correlations of the electrification data for the male employment

rate is given in Table 11.

Table 11: A summary of the spearman correlations of the electrification data for the female employment rate.

* k% kkk
|7’ij| < 0.3 5 5 3 47
|rij| €10.3,05) 0 0 O 13
|rij| €0.5,0.77 0 0 O 3
|rij| > 0.7 0 0 0 2
nCOr 78

Notes: The first column denotes
correlations which are not signifi-
cant, *** denotes a correlation that
is significant at the 1% level, ** de-
notes a correlation that is signifi-
cant at the 5% level and * denotes a
correlation that is significant at the
10% level. With n.or we denote the
amount of correlations calculated.
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The histogram of the cellwise outliers of the electrification data for the female employment rate

are given in Figure 7.

Histogram of cellwise outliers

Frequency
100
1

50
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Figure 7: The histogram of the cellwise outliers of the electrification data for the male employment rate.

Under the null hypothesis of zero population correlation, the test statistic used for determining

sample correlation significance is given as

ti]’ = L -vVn — 2. (75)

When we conduct a two-tailed test, the null hypothesis is in turn rejected if ‘tij‘ > to/2,n—2s

where « is the significance level.
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The results from the DiD type of methods for econt = 20%, where outliers are caused due to

bad leverage points are given in Table 12.

Table 12: The results of the DiD type of methods for €cont = 20% and outliers due to bad leverage points.

RMSE Bias Coverage ATE Prediction  Outlier Detection Imputation ARE  Imputation MAE
DiD 2.221 0.044  47.250% 4.679 (2.312) 89.482 - 2383 0.559
RDiD 0.210 0.044 93.375% 4.148 (0.297) 1.068 0.999 ' ’

Notes: The standard errors are given in parentheses.

The results from the IV type of methods for €cony = 20%, where outliers are caused due to bad

leverage points are given in Table 13.

Table 13: The results of the IV type of methods for €cont = 20% and outliers due to bad leverage points.

RMSE Bias Coverage ATE Prediction  Outlier Detection Imputation ARE Imputation MAE
v 17916 -1.251  39.400% -2.546 (34.954) 1769.586 -
RIV 0.675 0.030 95.400% 3.844 (1.210) 159.924 0.805

IV-DDC  14.039 -1.291  37.600% -2.701 (27.294 1157.876 0.810 3.522 0-664

)
PLIV 20.333  -0.680  92.000% 3.092 (20.424) - -

Notes: The standard errors are given in parentheses.

The results from the ML type of methods for econt = 20%, where outliers are caused due to bad

leverage points are given in Table 14.

Table 14: The results of the ML type of methods for €cont = 20% and outliers due to bad leverage points.

RMSE Bias Coverage ATE Imputation ARE  Imputation MAE

ARB 1276 0210 97.000% 3.981 (1.265)
PLR 1.161 0.137 92.000%  3.908 (1.159)

2.751 0.515

Notes: The standard errors are given in parentheses.

The results from the DiD type of methods for econt = 20%, where outliers are caused due to

vertical outliers are given in Table 15.

Table 15: The results of the DiD type of methods for e€cont = 20% and outliers due to vertical outliers.

RMSE Bias Coverage ATE Prediction  Outlier Detection Imputation ARE Imputation MAE

DiD 9.207 2.482  83.250% 4.722 (9.048) 475.136 -

RDiD 0.214 0.046 93.750% 4.115 (0.299) 1.545 1.000 2.196 0-551

Notes: The standard errors are given in parentheses.
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The results from the IV type of methods for econt = 20%, where outliers are caused due to

vertical outliers are given in Table 16.

Table 16: The results of the IV type of methods for e€cont = 20% and outliers due to vertical outliers.

RMSE Bias Coverage ATE Prediction  Outlier Detection Imputation ARE Imputation MAE
v 11.071  3.851  79.000% 3.457 (11.357) 806.375 -
RIV 0.764 0.067 94.200% 3.736 (1.208 130.440 0.993

)
IV-DDC  0.741 0.028 93.600% 3.812 (1.325) 153.291 0.969 3.289 0-661

PLIV 11.315 -0.458  100.000%  3.314 (21.156) - -

Notes: The standard errors are given in parentheses.

The results from the ML type of methods for e.ony = 20%, where outliers are caused due to

vertical outliers are given in Table 17.

Table 17: The results of the ML type of methods for €cont = 20% and outliers due to vertical outliers.

RMSE Bias Coverage ATE Imputation ARE  Imputation MAE

ARB  3.967 -0.032  96.000%  3.739 (3.987)
PLR 3.902 -0.047 96.000%  3.724 (3.921)

2.761 0.495

Notes: The standard errors are given in parentheses.
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