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Abstract

Standard treatment evaluation methods typically rely on ordinary least squares, which is

sensitive to outliers. Outliers and missing values are likely to be present in the datasets used,

but the consequences are scarcely researched. Lately, such methods are also being designed in

the field of machine learning, but also without emphasis on outliers. In this paper we examine

the performances of treatment evaluation methods when the data is contaminated with

both outliers and missing values. In particular, we investigate the instrumental variables

and difference-in-differences methods. For the machine learning methods, we examine the

debiased machine learning and approximate residual balancing methods. We propose robust

alternatives for the instrumental variables and difference-in-differences methods as they rely

on ordinary least squares. We see that the robust difference-in-differences method is superior

when the data is contaminated. The robust instrumental variables method only outperforms

the instrumental variables method when the data closely resembles to an elliptical structure.

We apply the difference-in-differences type of methods to the data used in Card and Krueger

(1993), and conclude that vertical outliers are present. The instrumental variables type of

methods are applied to the data used in Dinkelman (2011). Although we detect outliers, no

proposed alternative outperforms the instrumental variables method.
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1 Introduction

Causal inference is an important research area in the field of econometrics. In general, it is

of importance to differentiate between causation and correlation. Within the field of causal

inference it is of interest to determine whether treatment causes a change in the response, and

to what extent. Determining these causal effects is however a task which is easier said than

done. The fundamental problem of causal inference states that it is impossible to measure the

treatment effect for a single observation, as one potential outcome is always unobserved (Rubin,

1974; Holland, 1986). To overcome this problem, numerous methods have been designed in the

past with some being popular and often used to this day.

As data is nowadays increasingly gathered, more problems arise when it comes to the qual-

ity of the data obtained. In general, a sample with a large number of observations is preferred

over a sample with a small number of observations, but that is under the assumption of well-

behaved data. With an increase in the number of observations and/or dimensions, outliers and

missing values are phenomena which become increasingly likely to appear. These are problems

which occurred less often back in the days, and were therefore paid less attention to. Standard

methods in all fields, but also within causal inference, were hence designed based on data as-

sumed to behave as expected.

In our research, we focus on two of the most popular treatment evaluation methods, namely

the Instrumental Variables
(
IV
)

and Difference-in-Differences
(
DiD

)
methods (Cameron and

Trivedi (2005), Chapter 25). Estimation within both of these methods is traditionally based on

Ordinary Least Squares
(
OLS

)
regression, a method which is proven to be non-resistant against

outliers (Rousseeuw and Leroy, 1987). It has a breakdown point of 0%, meaning that one outlier

can cause OLS to break down, leading to deceptive results (Donoho and Huber, 1983). Mod-

ern datasets are often high-dimensional and/or contain a large amount of observations, which

almost guarantees the presence of at least one outlier. High-dimensional means n < p in this

case, where n and p stand for the number of observations and regressors respectively. In such

cases, making use of OLS is not straightforward. Causal effect estimates may be biased, leading

to erroneous policies for example. Hence, dealing with outliers is of great importance, making

the use of robust regression techniques more attractive.

The main topic of our research is therefore to investigate the effect of outliers and missing

values on treatment evaluation methods, a topic which is scarcely researched. Due to the

well-researched robustness properties of OLS, treatment evaluation methods break down when

outliers are present. We are therefore also interested in examining robust alternatives and their

performances. For the IV method, a robust alternative is proposed in Freue et al. (2013),

which is a method resistant to outliers due to the use of robust covariance matrices instead of

sample covariance matrices. We extend the literature by investigating the performance of this

method within a causal inference setting, which we call the Robust Instrumental Variables
(
RIV

)
2



method. The extension specifically comes down to applying the method proposed in Freue et al.

(2013) to a problem with a binary endogenous variable. We also investigate a different robust

alternative in this paper, namely IV combined with the DetectDeviatingCells
(
DDC

)
algorithm

(Rousseeuw and Bossche, 2018), which we will from now on refer to as the IV-DDC method.

The RIV method is however the only method of which the robustification is purely model-based.

Designing a robust alternative for the DiD method is something which is done in Han et al.

(2018), the focus of their research however differs from ours. They mainly focus on vertical

outliers, while we are additionally interested in the effect of bad leverage points. Parallel trends

between the treatment and control groups is usually the only criterion which is checked for be-

fore applying the DiD method. Outliers can be present in the controls, with the parallel trend

assumption still being satisfied. Besides, vertical outliers can be witnessed after treatment. We

propose the Robust Difference-in-Differences
(
RDiD

)
method by combining the general frame-

work used in the DiD method with a robust regression technique.

Causal inference is a topic which has already been popular in econometrics for some time,

it is however a relatively new research area in Machine Learning
(
ML
)
. While there is not an

incredible amount of interest yet, it is gaining the attention of researchers in ML at a high pace.

Because the development of ML methods which suit causal inference type of problems is in an

early stage, checking these methods’ robustness properties with respect to outliers is something

which is currently not focused on. This is where we want to step in and extend the literature,

by evaluating the performances of these methods when outliers are present. Results from our

paper may inspire researchers in ML, as robust ML methods for causal inference are not yet

deliberately being designed.

We investigate robustness properties of two of the most popular ML methods designed for

causal inference, namely the Debiased Machine Learning
(
DML

)
and Approximate Residual

Balancing
(
ARB

)
methods, respectively proposed in Chernozhukov et al. (2018) and Athey

et al. (2018). Within the DML method, there are two models which we examine, namely the

Partial Linear Regression
(
PLR

)
and the Partial Linear Instrumental Variables

(
PLIV

)
models.

These models are specifically designed for obtaining Average Treatment Effects
(
ATEs

)
. There

are methods available for obtaining Heterogeneous Treatment Effects
(
HTEs

)
, but we leave the

investigation of the robustness properties of these methods for further research. All econometric

methods are designed for calculating ATEs, the current choice of ML methods makes it easier

to make comparisons across methods and draw general conclusions based on the findings.

This paper is structured as follows: In Section 2 we discuss all literature which is relevant

for the methods which we examine. In Section 3 we define all methods which we explore in our

research. Section 4 contains details about the simulation study which we conduct to study the

performances of all methods when the data is contaminated. In Section 5 we give a detailed

description of the real datasets which we use to demonstrate the application of some methods in
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practice. The results obtained from the simulation study and the real data are given in Section

6. Finally, we discuss our findings in Section 7. Additionally, we mention the limitations of our

research in this section, as well as interesting topics for further research.

2 Literature

In this section all literature which is relevant for our research is described. The DiD method is

popular in practice and has already been around for a while, but papers dedicated to exploring

this method and its details have been around for a shorter period of time. One of the first

papers where the approach followed was actually recognised to be a DiD method is the study

conducted by Card and Krueger (1993). By controlling for omitted variables they come to a

conclusion differing from what would have been concluded based on traditional economic the-

ory. They illustrate employment growth due to higher minimum wages, while theory suggests a

decrease in the employment level in such a case. The DiD method was studied more extensively

after this paper, its characteristics have been thoroughly investigated since.

A pitfall of the DiD method which arised later on is that standard errors are underestimated

in some cases. In Bertrand et al. (2004) this problem is proven to be present in case of a

serially correlated outcome measured over multiple time periods. Donald and Lang (2007) in

turn demonstrate the presence of this problem if the number of groups is small. In practice,

this problem is typically dealt with by clustering the standard errors. However, in the case

of a small amount of groups, Donald and Lang (2007) show that this solution may yield even

more inaccurate inference. When examining the real data, we overcome underestimation by

combining clustering with the bootstrap as in Cameron et al. (2008).

The IV method was first proposed in Wright (1928), strangely enough in an appendix. This

method is particularly useful in the field of causal inference, as it deals with the common phe-

nomenon of endogenous variables
(
Cameron and Trivedi (2005), Chapter 4.8

)
. In such cases,

OLS estimation results in biased parameter estimates, leading to a biased ATE. IV estimation

has been shown to successfully tackle the problem of endogenous variables in a causal infer-

ence setting in Angrist et al. (1996). It is important for an instrument to have a considerable

correlation with the endogenous variable, the IV parameter estimates will otherwise be biased

towards the OLS estimates (Bound et al., 1995).

The problem of both the standard DiD and IV methods is that they are not resistant to outliers,

as they typically make use of OLS. Hence, robust alternatives of these methods are preferred for

contaminated datasets. As mentioned in Section 1, we propose the RDiD method as a robust

alternative to the DiD method. The regression technique which it is based on is MM estimation

(Yohai, 1987), a method which is both robust and efficient. The method consists of a combina-

tion of the S-estimator (Huber, 1992) and the M-estimator (Huber et al., 1973), these methods

are known for their robustness and efficiency respectively. The RIV method which we examine
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comes down to a natural robustification of the IV method. The IV estimator can be decomposed

into multiple sample covariance matrices. As the sample estimator does not robustly estimate

the covariance, the idea of Freue et al. (2013) is to obtain parameter estimates by making use of

robustly estimated covariance matrices. We make use of the Minimum Covariance Determinant(
MCD

)
estimator in order to estimate the covariance matrices (Rousseeuw, 1985).

More and more researchers in ML are starting to see the relevance and importance of causal-

ity. Chernozhukov et al. (2018) propose the DML method which is partially based on the

econometric semi-parametric method proposed by Robinson (1988). This method makes use of

regularization, making it suitable for high-dimensional problems. As the standard DiD and IV

methods can not be applied instantly for high-dimensional problems, ML type of methods are

more attractive in such cases. The main idea behind the DML method is to tackle regularization

bias by making use of a doubly robust approach.

The DML method requires the propensity score to be consistently estimable for the ATE to be
√
n consistently estimated, where n stands for the amount of observations. Another popular

ML method which does not impose this restriction is the ARB method (Athey et al., 2018).

This method actually resembles to the DML method, as it also makes use of regularization.

Also, both methods build upon the work of Robinson (1988). The ARB method is however less

restrictive as already mentioned, and therefore more widely applicable.

The clear advantage of the ML methods is that they can deal with high-dimensional prob-

lems. Besides, researchers often select a fraction of the covariates based on common sense and

econometric intuition, possibly leaving out relevant variables. If there is uncertainty regarding

the relevance of some of the explanatory variables, choosing one of the ML methods is desirable.

The parameters of the covariates are shrunk towards zero due to regularization if they do not

affect the outcome.

3 Methodology

In this section all methods used for our research are explained in detail. We differentiate between

ML and econometric methods by explaining both types of methods in separate sections. The

econometric methods are explained in Section 3.1, with the proposed robust alternatives being

explained in Section 3.2. The ML methods are explained in Section 3.3. We let n denote the

amount of individuals throughout the rest of the paper, subscript i holds for i = 1, . . . , n if no

additional comments are made.

3.1 Standard Econometric Methods

In this section the standard econometric methods used for our research are explained in detail.

The DiD method is discussed in Section 3.1.1, the IV method in Section 3.1.2.
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3.1.1 Difference-in-Differences

The DiD method determines treatment effects by observing a group of individuals over different

periods of time. The simplest case, which we use for our research, is observing individuals over

two time periods. The main idea of the DiD estimator is to determine the treatment effect by

comparing the average change of the outcome between the treatment and control groups over

time. The DiD method is illustrated in Figure 1, where t = 0 and t = 1 stand for observations

measured before and after treatment respectively.

Figure 1: Illustration of the DiD method.

Figure 1 shows the average treatment effect given as ATE =
(
yD − yB

)
−
(
yC − yA

)
, it can

be interpreted as the difference in outcome with respect to the outcome expected based on the

trends. The control group is not treated, its trend is therefore assumed to remain stable after

treatment of the treatment group. Figure 1 shows parallel trends, the ATE however does not

closely resemble the actual treatment when these trends are not parallel. In order for the DiD

method to yield outcomes which make sense, the assumption of parallel trends must be satisfied.

If this assumption is violated, the ATE could stem solely from differing trends.

For the DiD method we define yi as the outcome of individual i, ti indicates whether the

time period is pre or post treatment by taking on values zero and one respectively. Vector

xi =
(
xi1, . . . , xik

)′
contains the controls, di indicates whether an individual is treated or not

given by values zero and one respectively. The final model is defined as

yi = β0 + x′iβ + βk+1di + βk+2ti + βk+3(di · ti) + εi, (1)

where β = (β1, . . . , βk)
′ and εi is an unobserved error term. The main parameter of interest is

βk+3, representing the treatment effect. The name of the DiD method stems from the way this
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parameter is estimated, a derivation is given as

β̂k+3 =
(
E[yi|di = 1, ti = 1]− E[yi|di = 1, ti = 0]

)
−
(
E[yi|di = 0, ti = 1]− E[yi|di = 0, ti = 0]

)
=
(
(β0 + x′

iβ + βk+1 + βk+2 + βk+3

)
−
(
β0 + x′

iβ + βk+1)
)
−
(
(β0 + x′

iβ + βk+2)− (β0 + x′
iβ)
)

=
(
βk+2 + βk+3

)
− βk+2

= βk+3.

(2)

Clearly, Equation (2) shows that the estimate of the treatment effect is obtained by calculating

a difference of differences.

3.1.2 Instrumental Variables

The IV method is widely used and also useful for obtaining causal estimates. A common

problem within econometrics is obtaining biased parameters due to omitted variables, see for

example Chapter 4.7 of Cameron and Trivedi (2005). IV estimation tackles this problem by

using instruments, an instrument is valid if it is correlated with the endogenous explanatory

variable and uncorrelated with the error term. The latter condition implies that the instrument

should be uncorrelated with any omitted variable, as these are captured within the error term.

For IV estimation we make use of only one time period, hence we adapt the model as in

Equation (1) slightly. The model used for IV estimation is defined as

yi = α0 + x′iα+ αk+1di + νi, (3)

where α =
(
α1, . . . , αk

)′
and νi is an unobserved error term. It is common for the treatment

variable di to be endogenous, that is ρdiνi 6= 0, meaning that we need to find a valid instrument

for this variable. Instrument zi is valid if ρziνi = 0 and ρzidi 6= 0. IV estimation is also known as

Two-Stage Least Squares
(
TSLS

)
, as the final parameter estimates are obtained by sequentially

running two regressions. Due to the large amount of Greek letters needed for definitions in

this paper, we describe the TSLS procedure without defining additional models. In the first

stage, the endogenous variable is regressed on all exogenous variables and the instrument. From

this regression, fitted values for the endogenous variable are obtained. In the second stage, the

outcome is regressed on all exogenous variables and the fitted values obtained from the first

stage.

3.2 Robust Econometric Methods

As our research deals with investigating robustness properties, we are interested in the differ-

ences in performance of a method and its proposed robust alternative. Ideally, robust methods

prove to perform better in settings with outliers, indicating that using this method’s non-robust

version in such cases leads to less credible results. In this section we propose alternatives which

we expect to be more robust compared to the standard econometric methods. The RDiD

method is proposed in Section 3.2.1, the RIV and IV-DDC methods are proposed in Section

3.2.2.
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3.2.1 Robust Difference-in-Differences

The RDiD method which we propose comes down to applying a robust estimator to the model

as defined in Equation (1). We make use of the MM-estimator as already mentioned, it is one of

the most popular robust regression techniques in practice. Using such a robust estimator is in

essence a safe option, if the percentage of outliers does not attain the breakdown point. Always

using a robust alternative is however not an approach which is favoured. It is well-known that

OLS is efficient if all of its assumptions are met, meaning that robust regression is not optimal

in such cases.

If we continue on Equation (1) where the general DiD model is specified, we can define the

corresponding MM-estimator as

β̂MM = arg min
b0,...,bk+3

n∑
i=1

ρ2

(
yi − b0 − x′ib− bk+1di − bk+2ti − bk+3

(
di · ti

)
σ̂S

)

= arg min
b∗

n∑
i=1

ρ2

(
yi − x∗

′
i b
∗

σ̂S

)
,

(4)

where x∗i =
(
1, xi1, . . . , xik, di, ti, (di · ti)

)′
and b∗ =

(
b0, . . . , bk+3

)′
. Preliminary scale estimate

σ̂S = σ̂M

(
β̂S

)
is obtained from

β̂S = arg min
b∗

σ̂2
M(b∗

)
. (5)

Estimating σ̂M

(
b∗
)

in turn solves

1

n

n∑
i=1

ρ1

(
yi − x∗

′
i b
∗

σ̂M

(
b∗
) ) = δ, (6)

where ρ1 represents a loss function, δ = E
[
ρ1

(
Z
)]

with Z ∼ N
(
0, 1
)
.

The loss function is denoted by ρ2(·) in Equation (4), we make use of the Tukey bisquare

function for both ρ1 and ρ2, that is

ρi
(
x
)

=


x6

6c4
i

− x4

2c2
i

+
x2

2
if
∣∣x∣∣ ≤ ci, for i = 1, 2,

c2
i

6
if
∣∣x∣∣ > ci, for i = 1, 2,

(7)

where ci is a tuning constant. We set c1 = 1.548 and c2 = 4.685, yielding a breakdown point of

50% for β̂S and 95% efficiency for β̂MM. Analytically solving Equation (4) leads to

n∑
i=1

ψ

(
yi − x∗

′
i b
∗

σ̂S

)
x∗i = 0, (8)
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where

ψ(x) = ρ′2(x)

=


x5

c4
2

− 2x3

c2
2

+ x if
∣∣x∣∣ ≤ c2,

0 if
∣∣x∣∣ > c2.

(9)

The condition in Equation (8) can be rewritten, β̂MM is the solution of

n∑
i=1

wi

(
yi − x∗

′
i b
∗
)
x∗i = 0, (10)

where

wi = w
(
(yi − x∗

′
i b
∗)/σ̂S

)
=
ψ
(
(yi − x∗

′
i b
∗)/σ̂S

)(
yi − x∗

′
i b
∗
)
/σ̂S

. (11)

This procedure can be seen as a problem which can be solved by applying Iteratively Reweighted

Least Squares
(
IRLS

)
, with wi as the weights. If β̂t is given during step t of this procedure,

updates are executed as follows: the weights are updated according to Equation (11), that is

wi = w
(
(yi − x∗

′
i β̂t)/σ̂S

)
. Subsequently, the parameter estimates are updated according to

β̂t+1 = arg min
b∗

1

n

n∑
i=1

wi
(
yi − x∗

′
i b
∗)2. (12)

3.2.2 Robust Instrumental Variables

The robust variants of the IV method which we investigate are explained in this Section. The

RIV method relies on an estimation procedure from which the framework is equal to that of

the IV method.

Consider the regression model as in Equation (3) given in matrix form, that is
y1

...

yn

 =


α0

...

α0

+


x11 . . . x1k d1

...
. . .

...
...

xn1 . . . xnk dn



α1

...

αk+1

+


ν1

...

νn

 , (13)

which can be compactly written as y = α0 +Xα∗ + ν. The OLS estimates of the parameters

are given as

α̂∗OLS =
(
X ′X

)−1
X ′y

=
(
nΣ̂XX

)−1
nΣ̂Xy,

(14)

α̂0,OLS = µy − µ′Xα̂∗OLS, (15)

where Σ̂AB stands for the estimated covariance between A and B, µy and µX stand for the

estimated location of y and X respectively. When one or more of the explanatory variables
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are endogenous, parameter estimates obtained by OLS become biased. If there are valid instru-

ments available, IV is a useful alternative method. Endogeneity of di is the central problem in

causal inference, we build on that principle throughout the rest of this section.

In our simulation study, as well as with analyzing the real data, we use a single instrument

zi. Hence, we limit all further definitions to cases where di is solely instrumented by this vari-

able. Freue et al. (2013) propose a way of estimating models which contain binary exogenous

variables, we however assume all exogenous variables to be continuous in the rest of this section.

As the real data which we examine does contain binary exogenous variables, we demonstrate the

procedure proposed in Freue et al. (2013) in Section 6.2 by directly applying it to a real dataset.

The matrix containing the instrument is constructed as

Z =


x11 . . . x1k z1

...
. . .

...
...

xn1 . . . xnk zn

 , (16)

all exogenous explanatory variables serve as their own instruments inZ. We define the analogous

estimation procedure as described in Equation (3) for the model given in matrix notation. For

the first stage we define

x̃j = Zπ + η, j = 1, . . . , k + 1, (17)

where x̃j =
(
x1j , . . . , xnj

)′
, π =

(
π1, . . . , πk+1

)′
and η =

(
η1, . . . , ηn

)′
. For convenience, di is

contained in x̃j as xik+1.

We apply OLS to the model in Equation (17) for all covariates, the matrix of fitted values

of all these regressions is given as

X̂ = Zπ̂OLS

= Z
(
Z ′Z

)−1
Z ′X

= PZX.

(18)

It holds that P 2
Z = PZ and P ′Z = PZ , respectively meaning that PZ is both idempotent and

symmetric. Derivations of these results can be found in Equations 72 and 73 in Section A. For

the second stage we make use of

y = ∆0 + X̂∆ + Λ, (19)

where ∆ =
(
∆1, . . . ,∆k+1

)′
, Λ =

(
Λ1, . . . ,Λn

)′
and ∆0 =

(
∆0, . . . ,∆0

)′
, that is ∆0 ∈ Rn.

10



The IV estimators are obtained by applying OLS to Equation (19), that is

∆̂IV =
(
X̂ ′X̂

)−1
X̂ ′y

=
(
Σ̂XZΣ̂−1

ZZΣ̂ZX

)−1
Σ̂XZΣ̂−1

ZZΣ̂Zy,
(20)

∆̂0,IV = µy − µ′X̂∆̂IV. (21)

A full derivation of Equation (20) is given in Equation (74) in Section A. Such covariance

matrices are traditionally estimated by calculating sample covariances, a method which is not

resistant against outliers. Freue et al. (2013) propose to simply replace these sample covariance

matrices by robust estimates of the covariance matrix, they for example apply the S-estimator

(Rousseeuw and Yohai, 1984).

In our research, we make use of a more popular robust estimator, the MCD estimator to

be precise. The main idea of the estimator is to search for the h ≤ n points resulting in a

minimal value of the determinant of the covariance matrix. Estimators of location and scatter

are calculated based on these h points, filtering out all outliers in the ideal case. The subset size

is calculated as h = πn, where 0.5 ≤ π ≤ 1. The MCD estimator achieves maximum robustness

when π = 0.5, we however set π = 0.75 in order to avoid multicollinearity issues.

We define the estimator of location of subset H obtained from the variables of interest as

µ̂H =
1

h

∑
i∈H

x̌i. (22)

where x̌i =
(
yi, xi1, . . . , xik, di, zi

)′
. The estimator of scatter is in turn defined as

Σ̂H =
1

h

∑
i∈H

(
x̌i − µ̂H

)(
x̌i − µ̂H

)′
. (23)

All covariance matrices used in Equation (20) are extracted from Σ̂H . Subset H is in term

determined by solving

H = arg min
H̃:
∣∣H̃∣∣=h det

(
Σ̂
H̃

)
. (24)

The estimator of location is fisher consistent under a normal distribution, the estimator of scat-

ter however has to be corrected in order to achieve fisher consistency. Note that the assumption

of a normal distribution is not appropriate as di is binary, but we elaborate on this issue later

on in this section.

The raw estimates of location and scatter are given as µ̂raw = µ̂H and Σ̂raw = cxcnk+2Σ̂H

respectively, where cnk+2 is as in Pison et al. (2002) and

cx =
x

F
Γ
(

(k+2)
2

+1,1
)(χ2

x
2

) . (25)
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As h has to be manually chosen, it is likely to differ from the actual amount of good data

points. If h is initialized too high, the MCD estimator will make use of a subset still including

outliers. However, if h is chosen too small, the quality of the location and scatter estimates is

not maximal, as some useful data points are left out. In order to gain efficiency, a reweighting

step is applied based on the initial MCD estimator. This reweighting step is based on the

Mahalanobis Distance
(
MD

)
, which is defined as

MD
(
x̌i, µ̂raw, Σ̂raw

)
=

√(
x̌i − µ̂raw

)′
Σ̂−1

raw

(
x̌i − µ̂raw

)
(26)

for our model.

It holds that MD2
(
x̌i, µ̂raw, Σ̂raw

)
∼ χ2(k + 3) if x̌i comes from a normal distribution with

µ̂raw and Σ̂raw as location and scatter respectively. If an observation has a large MD, its loca-

tion and scatter lie far from the population’s locations and scatter, meaning that it is likely to

concern an outlier. The observations are weighted based on this relationship, that is

wi =

1 if MD2
(
x̌i, µ̂raw, Σ̂raw

)
≤ χ2

1−δ(k + 3),

0 if MD2
(
x̌i, µ̂raw, Σ̂raw

)
> χ2

1−δ(k + 3),
(27)

where χ2
1−δ(·) stands for the

(
1−δ

)
quantile of the corresponding distribution, we set δ = 0.025.

The reweighted estimates of location and scatter are now given as

µ̂weight =
1∑n
i=1wi

n∑
i=1

wix̌i (28)

and

Σ̂weight =
1∑n
i=1wi

n∑
i=1

wi
(
x̌i − µ̂weight

)(
x̌i − µ̂weight

)′
(29)

respectively. Estimation is carried out by making use of the FAST-MCD method (Rousseeuw

and Driessen, 1999).

An important thing to note about robustly estimating a covariance matrix in general, is that a

data matrix containing one or more categorical variables is not ideal. For the MCD estimator

which we employ specifically, it searches for a subset which results in the smallest determinant

of the covariance matrix. This determinant is in turn proportional to the volume of an ellipsoid,

meaning that a data matrix of which the points can be fit into an ellipsoid is desirable. Logi-

cally, categorical variables do not fit this picture. Besides, the estimates of location and scatter

are only fisher consistent under a normal distribution, and the MDs also assume the data to be

elliptically structured.
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In Freue et al. (2013) an alternative estimation procedure is proposed if the data consists

of both continuous and binary variables, this however does not necessarily solve our problem.

This particular method can deal with exogenous dummy covariates, within causal inference it is

however common for the binary treatment variable to be endogenous. Extending the procedures

as in Freue et al. (2013) for endogenous binary variables is however not possible, as the main

formula given in Equation (20) relies upon correlations between the endogenous variables and

the instruments. As we however think that the RIV method has the potential to be the best

robust alternative, we are interested in investigating the method, even when the data is not a

perfect fit for the method.

As already mentioned, the procedure proposed in Freue et al. (2013) for data matrices con-

taining continuous and binary variables does not necessarily solve the endogeneity problem

faced within causal inference, it might however be useful in some cases. A less common prob-

lem is characterized by an exogenous treatment variable, and one or more endogenous control

variables, see Frölich (2008) for the discussion of some examples. If endogeneity is neglected in

such a case, regression estimates will also lead to a biased estimate of the treatment effect. In

Freue et al. (2013), the RIV method is proven to perform well for such data, meaning that it

will be the go to robust alternative. As this is however a problem rarely encountered in practice,

we do not include this scenario in our simulation study.

If the treatment variable is endogenous, the RIV method may not look like the most straight-

forward method to use. As the IV estimator given in Equation (20) can be estimated in a single

step, replacing OLS regression by a robust technique may yield better estimates. Note however

that X̂ consists of linear combinations of Z and X, meaning that the presence of only a small

fraction of outliers in these matrices is likely to result in more than half of the observations in

X̂ to be outlying, meaning that robust regression also breaks down.

As TSLS equals IV estimation, a different idea is to sequentially apply robust regression in

both of the stages. Applying robust linear regression in the first stage however fails, as the

treatment variable is perfectly predicted. MM estimation omits all observations where di = 0

and sets all parameters to zero, except for the parameter of the constant which is set to one.

Robust logistic regression techniques also exist (Rousseeuw and Christmann, 2003; Feng et al.,

2014), applying such a technique to the first stage would however result in the forbidden re-

gression as explained in Chapter 9.5.2 in Wooldridge (2010). Specifically, using robust logistic

regression for the first stage would lead to fitted values d̂i coming from a nonlinear function. In

this case, d̂i and the covariates are not guaranteed to be uncorrelated with the error terms of

the second stage, while using OLS in the first stage does ensure this relation.
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A different idea is to only robustify the second stage, while still using OLS in the first stage.

Fitted values from the first stage are affected by bad leverage points in this case, but the sec-

ond stage is robustly estimated. As mentioned in the preceding paragraph, a few bad leverage

points can already cause this strategy to break down. As the strategies from both this and the

preceding paragraphs are only expected to be robust in a limited amount of cases, we do not

conduct further research on these methods.

Hence, there is only one strategy additional to the RIV method which we examine, which

is the IV-DDC method. This method comes down to regularly applying the IV method, com-

bined with an intermediate step taken to detect cellwise outliers. It is outside the scope of this

paper to explain the DDC algorithm in detail, but the main idea of the method is to flag cells

as outlying or not by making use of correlations between the variables. We apply the DDC

algorithm before estimation, and set the cells detected as outlying to missing. Afterwards, we

impute these missing values to come up with a complete data matrix. In Section 4.2 we give a

more detailed description of the imputation strategy that goes along with our research.

3.3 Machine Learning Methods

In this section, the ML methods used for our research are explained in detail. Applying all

previously defined methods becomes infeasible if the data is high-dimensional, that is n < p

where p stands for the amount of covariates. In such cases, regularization techniques can be

applied for obtaining regression estimates. Both the DML and the ARB methods make use of

regularization, meaning that they can be applied in a high-dimensional setting. As investigating

cases where n < p however becomes computationally too expensive, we do not include such

cases in our simulation study. The DML method is discussed in Section 3.3.1, with the PLR

and PLIV models corresponding to the DML method being explained in Sections 3.3.1.1 and

3.3.1.2 respectively. The ARB method is discussed in Section 3.3.2.

3.3.1 Debiased Machine Learning

The DML method proposed by Chernozhukov et al. (2018) overcomes problems which arise

when ML techniques which rely on regularization are applied. Applying regularization possi-

bly leads to bias in the estimators, which is logically related to the word Debiased in DML.

Chernozhukov et al. (2018) show that almost all regularization bias can be overcome by making

use of orthogonalization, which is a concept based on Neyman-orthogonal moment conditions

(Neyman, 1959,9). Bias due to remaining terms is removed by making use of cross-fitting,

which is a more efficient way of sample splitting. Orthogonalization is too difficult to explain in

a non-technical way, we can however briefly describe the cross-fitting procedure before we dive

into all theory of the DML method.
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Cross-fitting is based on sample splitting, but it tackles the potential problem of efficiency

loss which can arise when sample splitting is applied. The cross-fitting method also makes use

of Neyman-orthogonal moments, but the main idea behind this method is to additionally swap

certain samples. By applying this technique, we obtain multiple estimates of which the average

is taken. The eventual outcome avoids a potential loss in efficiency, which is why it is preferred

over the sample splitting method.

Our main interest lies in obtaining the true value of ω0 of target parameter ω ∈ Ω, where

Ω ⊂ Rdω with dω denoting the dimension of ω. We assume that ω0 satisfies moment conditions

E
[
ζ
(
W ;ω0, µ0

)]
= 0, (30)

where W is a random variable and ζ =
(
ζ1, . . . , ζdω

)′
is a vector containing score functions.

Parameter µ0 denotes the true value of nuisance parameter µ ∈ T , where T is a convex subset

of a normed vector space. Neyman orthogonality is required for ζ, hence we introduce T̃ =(
µ− µ0 : µ ∈ T

)
and its pathwise derivative map Dr : T̃ → Rdω as

Dr

[
µ− µ0

]
= ∂r

(
E
[
ζ
(
W ;ω0, µ0 + r(µ− µ0)

)])
, r ∈

[
0, 1
)
. (31)

For r = 0, the pathwise derivative map boils down to

D0

[
µ− µ0

]
= ∂µE

[
ζ
(
W ;ω0, µ0

)][
µ− µ0

]
. (32)

We furthermore define Tn ⊂ T as a nuisance realization set such that the probability of the

estimators µ0 taking on values in this set is high. Fulfilling the moment conditions in Equa-

tion (30) is one of the requirements for score function ζ to meet the orthogonality condition at

(ω0, µ0). If the pathwise derivative map as in Equation (31) additionally exists for µ ∈ Tn and

fades at r = 0, that is D0

[
µ− µ0

]
= 0, function ζ is said to satisfy the orthogonality condition.

We continue our analysis with the application of cross-fitting to the data, a method which

we explain in detail this time on. We first of all assume that we have a sample
{
Wi

}n
i=1

at our

disposal, representing independent and identically distributed
(
i.i.d.

)
copies of random variable

W . The procedure of cross-fitting is defined as follows:

First, take a random K-fold partition
{
Ik
}K
k=1

of individual indices
{

1, . . . , n
}

. For each

k ∈
{

1, . . . ,K
}

, define Ick =
{

1, . . . , n
}
\ Ik. For convenience, let m = n

K denote the number of

observations in each fold. An ML estimator of µ0 is subsequently determined by calculating

µ̂0,k = µ̂0

({
Wi

}
i∈Ick

)
, (33)

where µ̂0,k is a random element in T . The estimate of the target parameter is denoted by ω̃0,k

15



and obtained by solving

1

K

K∑
k=1

Em,k
[
ζ
(
W ; ω̃0, µ̂0,k

)]
= 0, (34)

where Em,k[·] is the empirical expectation over data fold k, calculated as Em,k
[
ζ(W )

]
= 1

m

∑
i∈Ik ζ

(
Wi

)
.

If Equation (34) can not be exactly solved, ω̃0 is seen as an approximate solution if it sat-

isfies ∥∥∥∥ 1

K

K∑
k=1

Em,k
[
ζ
(
W ; ω̃0, µ̂0,k

)]∥∥∥∥ ≤ inf
ω∈Ω

∥∥∥∥ 1

K

K∑
k=1

Em,k
[
ζ
(
W ;ω0, µ̂0,k

)]∥∥∥∥+ ε̃m, (35)

where ε̃m = o
(
δmm

− 1
2

)
, with

(
δm
)
m≥1

representing some sequence of positive constants con-

verging to zero. The final estimator is obtained by averaging over all partitions, that is

ω̂0 =
1

K

K∑
k=1

ω̃0,k. (36)

This completes the general description of the orthogonalization and cross-fitting procedures. In

the coming paragraphs we define the models of interest, and explain how they are related to

the procedures described in this section.

3.3.1.1 Partial Linear Regression

In this section we define the main model coming from the DML method, namely the PLR model.

This model is defined as

yi = diω0 + g0

(
xi
)

+Ai, E
[
Ai|xi, di

]
= 0, (37)

di = m0

(
xi
)

+Bi, E
[
Bi|xi

]
= 0. (38)

The corresponding score function filled in with the arguments taken from Equations 37 and 38

is defined as

ζ
(
Wi;ω0, µ0

)
=
(
yi − diω0 − g0(xi)

)(
di −m0(xi)

)
, (39)

where Wi =
(
yi, di,xi

)
and µ =

(
g0(·),m0(·)

)
. Functions g0(·) and m0(·) are P -square-

integrable, and map the support of xi to R. Cross-fitting is applied to the PLR model, where

the score function used within the cross-fitting procedure is as in Equation (39). Note that

this score function is for individual i, these individual score functions are used to calculate the

empirical expectations in the cross-fitting procedure.

3.3.1.2 Partial Linear Instrumental Variables

As already explained, endogeneity of the treatment variable is the most common problem in

causal inference. Chernozhukov et al. (2018) show that the PLR model can be modified to allow

for IV estimation. As the IV method is also researched by us, investigating the PLIV method

may give an interesting direct link between the econometric and the ML estimators which aim

to solve the same problem. Besides, we can also conclude which type of estimation is more
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resistant to outliers, meaning that one of the two types may in general be a more preferred

direction of methods to build upon. The PLIV model is defined as

yi = diω0 + g0

(
xi
)

+Ai, E
[
A|xi, zi

]
= 0, (40)

zi = m0

(
xi
)

+Bi, E
[
Bi|xi

]
= 0. (41)

The score function corresponding to this model is defined as

ζ
(
Wi;ω0, µ0

)
=
(
yi − diω0 − g0(xi)

)(
zi −m0(xi)

)
, (42)

where Wi =
(
yi, di,xi, zi

)
and µ =

(
g0(·),m0(·)

)
. Functions g0(·) and m0(·) are defined similar

to those used in the PLR model.

As for the ML method used for estimation, we make use of post-lasso (Belloni et al., 2013).

There is no method which stands out performance-wise, which means that any other suitable

method may be chosen. The post-lasso method is more attractive than others when it comes

to computation time, which is of importance as we run an extensive simulation study. We use

K = 2 for the cross-fitting procedure described in Section 3.3.1. In Chernozhukov et al. (2018)

it is shown that choosing a larger value for K does not necessarily improve performance, and

to limit the computation time a low value for K is the convenient choice.

3.3.2 Approximate Residual Balancing

The ARB method (Athey et al., 2018) also makes use of debiasing, it is therefore not surprising

that it is linked to the DML method. The ARB method is however more widely applicable, as

it relaxes an assumption made by the DML method. Specifically, the DML method requires

consistent estimation of the conditional probability of receiving treatment given the features.

Given a linear model, the ARB method relaxes this assumption. In short, it combines weight-

ing with regression, two techniques which are generally used for treatment effect estimation.

We refer to Chapter 25.4 and the chapters on regression in Cameron and Trivedi (2005) for a

detailed explanation of weighting and regression respectively. For high-dimensional problems,

the performances of these techniques fall short when they are separately applied. Athey et al.

(2018) show that a combination of both techniques yields better estimators.

Pursuing the approach based on weighting, calculation of the weights typically involves propen-

sity scores. Inaccuracies in propensity score estimates therefore greatly impact the weights. As

estimates become poorer as the dimension increases, this approach is inappropriate for high-

dimensional problems. The regression-based approach on the other hand, falls short when the

propensity scores are not sparse. Combining both techniques as is done in the ARB method

overcomes both limitations.
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The estimand of the ARB method is defined as

τ = µT − µC, (43)

where µi = x̄′Tβi with βi denoting a vector capturing the parameters. This condition holds for

i ∈
{

T,C
}

, where T and C stand for the treatment and control groups respectively. In order to

obtain xT, the covariates are averaged over all treated individuals, that is x̄T = 1
nT

∑
{i:di=1} ẋi,

where nT denotes the amount of treated individuals and ẋi =
(
xi1, . . . , xik, di

)′
. The amount

of untreated individuals is logically given by nC. An unbiased estimator of µT is given as

µ̂T = ȳT =
1

nT

∑
{i:di=1}

yi. (44)

Obtaining an estimate of µC is however more difficult and involves multiple steps.

The procedure of the ARB method for obtaining ATEs is as follows: First, compute positive

approximately balancing weights Υ by solving

Υ = arg min
Υ̃

{
(1− ι)

∥∥Υ̃
∥∥2

2
+ ι
∥∥x̄′ −X ′TΥ̃

∥∥2

∞

}
s.t.

∑
{i:di=1}

Υ̃i = 1, 0 ≤ Υ̃i ≤ n−2/3
T ,

(45)

where XT =
(
ẋ1, . . . , ẋn

)′
, x̄ = 1

n

∑n
i=1 ẋi and ι ∈

(
0, 1
)

is a tuning parameter. Then, fit βC

by running an elastic net or lasso regression, that is

β̂C = arg min
β̌C

[ ∑
{i:di=0}

(
yi − x̌′iβ̌C

)2
+ λ

(
(1− α)

∥∥β̌C

∥∥2

2
+ α

∥∥β̌C

∥∥
1

)]
, (46)

where α ∈
(
0, 1
]

and λ > 0 are tuning parameters.

Finally, we balance the covariates and apply the weights to the residuals, yielding

τ̂ = ȳT −

(
x̄′Tβ̂C +

∑
{i:di=0}

Υi

(
yi − ẋ′iβ̂C

))
. (47)

For our research, we follow the advice of Athey et al. (2018) and set α = 0.9 and ι = 0.5, λ is

determined by cross-validation.

4 Simulation Study

In this section we describe the simulation study which we conduct for all methods. The goal

of our research is to investigate whether the treatment evaluation methods we investigate are

robust or not. For our research, it is of interest to evaluate the performances when there are

outliers and missing values present in the data. Another way of determining whether a method
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is robust or not is by checking a method’s performance when one or more of the underlying

assumptions are not met. Such a check is also of added value, but as we compare multiple

methods this is not convenient. The assumptions differ per method, which leads to too much

assumptions which can be relaxed or not. We hence evaluate all methods’ performances for

the case where the underlying assumptions are met. Investigating performances across methods

when the data is contaminated is much easier as the only difference compared to a regular

problem lies in the data.

For our simulation study we make use of S = 100 runs which enables us to make claims

about the methods and the behavior of the corresponding estimators. We drop the subscript of

the simulation run in the remainder of this section. Occasionally, we include the subscript of

the simulation run in definitions, but only for cases where the definition becomes vague when it

is omitted. We set n = 350 and k = 4 for all scenarios. Although the ML methods are particu-

larly suited for high-dimensional problems, we have decided not to investigate such cases due to

computational limitations. It is however an interesting topic for further research to investigate

the performances of the ML and econometric methods in settings with high-dimensional data.

The model specifications are given in Section 4.1, an explanation of how the data is contam-

inated and subsequently imputed is given in Section 4.2. In Section 4.3 we give a general

definition of the nonparametric bootstrap, and specify how it relates to our simulation study.

Finally, we define all performance measures used for assessing the performances of all methods

in Section 4.4.

4.1 Model Specifications

In this section we define all models used in our simulation study. We start off with defining

the Data Generating Process (DGP) for the DiD type of methods, these methods rely on the

model as in Equation (1). We draw all controls from a multivariate normal distribution with

mean zero such that they are i.i.d., that is xi ∼ N
(
0k,Σk

)
. Covariance matrix Σk has ones

on the diagonal, the off-diagonal elements are calculated as Σij = (−0.9)i+j−2, where i and j

respectively stand for the row and column numbers of the matrix. Variables di ∼ Bin
(
1, 0.5

)
and ti ∼ Bin

(
1, 0.5

)
are i.d.d. and separately drawn. The error terms are drawn from a stan-

dard normal distribution such that they are i.i.d., that is εi ∼ N
(
0, 1
)
. The true parameters

are generated as βi−1 = −
(
1.1
)i

+ 2 · sgn
(
(−1.1)i

)
for i = 1, . . . , k + 4. The dependent variable

is calculated according to Equation (1).

For the IV type of methods, we make use of the model as in Equation (3). The instruments zi

and error terms νi are separately drawn from a standard normal distribution such that they are

i.i.d., that is zi ∼ N
(
0, 1
)

and νi ∼ N
(
0, 1
)
. The controls are generated differently compared

to the DiD type of methods, we draw the first k− 1 controls from a multivariate normal distri-

bution such that they are i.i.d., that is (xi1, . . . , xik−1)′ ∼ N
(
0k−1,Σk−1

)
. Matrix Σk−1 again

has ones on the diagonal, but the off-diagonal elements are now given by Σij = (−0.9)2k−(i+j).
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The k’th control is drawn such that it is i.i.d. and separately drawn from a standard normal

distribution in order to avoid correlation with the other controls, that is xik ∼ N
(
0, 1
)
.

We generate di based on both xik and zi, ensuring a correlation with both of the variables.

Variable di is generated as

di =

1 if xik < x̄k for i = 1, . . . ,
n

2
− 1, or if zi < z̄ for i =

n

2
, . . . , n,

0 otherwise,
(48)

where x̄k = 1
(n
2
−1)

∑n
2
−1

i=1 xik and z̄ = 1
(n
2

)

∑n
i=n

2
zi. The parameters are generated according to

the same formula used for the DiD type of methods, note that the index now only runs until

k+2. The dependent variable is calculated according to Equation (3). Control xik is afterwards

omitted for estimation, ensuring a correlation between di and the error term as the error term

now contains xik.

Finally, we show how the data is simulated for the ML type of methods. Both methods make

use of the same data, and the data generation overlaps with the DiD and IV type of methods.

In fact, the model used for these methods equals the one given in Equation (3), meaning that

it resembles with the model used for the IV type of methods. The controls and error terms

are created similarly as with the DiD type of methods, the parameters are generated just as

with the IV type of methods. The treatment variable is created just as with the DiD type of

methods, and the dependent variable is calculated according to Equation (3).

4.2 Data Contamination and Imputation

In this section we describe how the data is contaminated and imputed afterwards for all meth-

ods. We do vary the percentages of outliers and missing values while we keep the amount of

individuals and controls fixed. We give a general description of how the data is contaminated, as

this procedure is applied to data across multiple methods. Note however that not all variables

across all methods are contaminated, we explain per method in detail how contamination takes

place.

For a given dataset, we generate one missing value in
(
100 · εcont

)
% of the observations ac-

cording to the Missing At Random (MAR) mechanism. We refer to Little and Rubin (2002)

for a detailed explanation of all missing data mechanisms used in this paper. Likewise, we

generate an outlier for one cell within
(
100 · εcont

)
% of the observations. When we choose to

generate vertical outliers, the cell corresponding to the dependent variable is always contami-

nated. When we generate bad leverage points, one of the covariates is randomly selected and

subsequently contaminated. Missing values can in practice be present within a binary variable,

we have however chosen not to generate missing values for these variables in our simulation

study.
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In our simulation study and in causal inference in general, these binary variables contain infor-

mation about the treatment status. All values of these variables are usually known in practice.

As estimation of the treatment effect is already a difficult task by itself, uncertainty about the

treatment status would only complicate things even more. Hence, we have chosen to mimic

real datasets for these variables, meaning that all variables possessing information about the

treatment status are not contaminated.

When we generate vertical outliers, the dependent variable is calculated according to

ỹi = yi + 100pi, (49)

where pi ∼ Bin
(
1, εcont

)
. This means that the dependent variable remains the same in about(

100 ·(1−εcont)
)
% of the cases, and is incremented with 100 in the remaining cases. We are only

interested in investigating the biases arising from contamination, the way we contaminate the

variable is therefore not of great importance. Note that there are numerous ways to contaminate

variables, we increment the dependent variable with 100 as it is sufficient for the comparison of

different methods in our paper.

The bad leverage points are generated in a different way, as we randomly select a variable

to be modified. Let us denote the randomly selected variable as xil, where l ∈
{

1, . . . , p
}

. If

we investigate the DiD and ML type of methods, p = k. When we examine the IV type of

methods, we set p = k+ 1 as outliers are also generated in the instrument, we include zi as xip

in this case for convenience. The variable randomly selected is updated according to

x̃il = xil + 15pi. (50)

The same reasoning of the value chosen to add to the dependent variable to come up with

vertical outliers also holds for the generation of bad leverage points.

With the DiD type of methods, we contaminate all non-binary variables. These methods rely on

the parallel trends assumption in practice, but vertical outliers can be present after treatment.

Meeting the parallel trend assumption excludes the presence of vertical outliers in observations

measured over the corresponding time period. The parallel trend assumption gives however no

guarantee of the behaviour of the observations after treatment, meaning that the presence of

vertical outliers is not excluded after treatment. Bad leverage points can on the other hand

be present even when the parallel trend assumption is justified. Hence, generation of vertical

outliers and bad leverage points is desirable as they can go unnoticed in practice. Missing val-

ues are also created for all non-binary variables, all outliers and missing values are generated

according to the procedure described earlier in this section.
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With the IV type of methods, variables are contaminated similarly as with the DiD type of

methods. Additionally, missing values and outliers are also generated for the instrument. The

vertical outliers are generated as described in the general procedure, the generation of bad

leverage points differs slightly for the IV type of methods. The instruments we generate in our

simulation study are continuous, as they are continuous in most of the real datasets. In such

cases, outliers are as likely to be present in both the instruments and controls. Hence, when we

generate bad leverage points, either one of the cells of the controls or the cell of the instrument

is contaminated with an outlier. As the endogenous variable is fitted by making use of the in-

struments within the first stage of IV estimation, outliers in the instrument cause bad leverage

points. Simultaneously generating vertical outliers and outliers in the instrument is undesir-

able, as this can lead to good leverage points which in turn do not bias the parameter estimates.

Finally, all non-binary variables are contaminated with both outliers and missing values within

the ML type of methods.

If the missing values in a dataset are Missing Not At Random
(
MNAR

)
or MAR, omission

of missing values corrupts the data. Missing values in real data often follow the MAR mecha-

nism, which is why we have chosen to generate the missing values according to this mechanism as

well. Instead of deletion, imputation is the better way of dealing with missing values. Numerous

imputation techniques exist, the appropriateness of a technique however depends on the data.

As we generate correlated data, in turn drawn from a distribution, model-based imputation can

be expected to perform well. Model-based imputation is however computationally expensive,

which makes it unsuitable for our research. Instead, we make use of k Nearest Neighbor (kNN)

imputation (Troyanskaya et al., 2001), this technique is computationally less expensive, and

using the median for aggregation makes it robust to outliers.

As we make use of imputation to handle the missing values, standard inference which is based

on a fully observed data matrix is not valid anymore. We have to take extra uncertainty into

account as some elements of the imputed data matrix are estimated. One way of incorporating

such additional uncertainty is by applying the bootstrap (Efron, 1992,9). The bootstrap ap-

proximates an estimator’s distribution by sampling with replacement from the observed data.

The bootstrap works if the asymptotic distribution of an estimator is normal (Mammen, 2012).

We can also utilize the bootstrap to simulate the missing data mechanism prior to imputing the

missing values (Efron, 1994), resulting in the nonparametric bootstrap. We define the nonpara-

metric bootstrap in the next section, and subsequently explain when the method works properly.

Finally, we would like to make a note on which observations are used for estimation. Although

we contaminate the dependent variable with outliers and missing values, it is not desirable to

use all of these observations for estimation. We make use of the approach opted in Von Hippel

(2007), in this paper the idea is proposed to delete all observations with imputed dependent

variables after the imputation step. Due to this strategy, additional information regarding the
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known values of these observations is used for the imputation of missing values in the covari-

ates. Omitting these observations prior to imputation would result in a loss of information.

On the other hand, keeping the observations with imputed values for the dependent variable

is not desirable. As these values are unknown, it comes down to regressing a prediction on

the covariates. As uncertainty arises from imputation, such an approach is likely to bias the

parameter estimates.

We investigate two different contamination scenarios in our simulation study, we set εcont = 7.5%

for the first scenario. Due to the nature of our cellwise contamination, an observation containing

a cellwise outlier automatically becomes a rowwise outlier. Due to the programmed nature of

the simulation, the total contamination ranges from 7.5% to 15%, as missing values and cellwise

outliers may or may not simultaneously occur within an observation. For the second scenario

we set εcont = 20%, meaning that the amount of contaminated observations lies between 20%

to 40%.

4.3 Nonparametric Bootstrap

For R bootstrap replications, the nonparametric bootstrap is defined as follows:

For r = 1, . . . , R, generate bootstrap sample
(
x∗1r, . . . ,x

∗
nr

)′
by sampling with replacement

from the data containing missing values, that is
(
x1miss, . . . ,xnmiss

)′
where xjmiss contains

all variables of a single observation for j = 1, . . . , n. Next, impute missing values in X∗r =(
x∗1r, . . . ,x

∗
nr

)′
to obtain imputed matrix X̂∗r . Finally, compute bootstrap replicate T ∗r = T

(
X̂∗r
)

and store this replicate for further calculations.

After calculating all replications, parameter estimates are obtained by averaging over all repli-

cations, that is T̄ ∗ = 1
R

∑R
r=1 T

∗
r . Standard errors are also calculated based on all bootstrap

replications, that is σ̂T̄ ∗ =
√

1
R−1

∑R
r=1

(
T ∗r − T̄ ∗

)2
. There is debate about what number of

bootstrap replications is sufficient, the amount of replications needed namely depends on the

data. In most of the problems, one thousand replications show to approximate the estimator’s

distribution. A larger number of replications is always better, due to computational limitations

we however have to make a trade off. In order to limit the computation time, we follow this

number accepted by the majority of the researchers and set R = 1000.

As already mentioned, we make use of the nonparametric bootstrap, but the parametric boot-

strap logically also exists. The difference between the appropriateness of both models relies

on the missing data mechanism. For data which is MAR or Missing Completely At Random(
MCAR

)
, the nonparametric bootstrap works properly. If the data is MNAR, the parametric

bootstrap has to be used. If the data is MAR or MCAR, nonresponse is ignorable, meaning

that no additional problems arise during estimation. If the data is MNAR, nonrepsonse is

not ignorable, meaning that additional data analysis has to be performed before the method

which was intentionally meant to be used can be employed. In particular, this means that the
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missing data mechanism should be explicitly modelled. For our simulation we however generate

MAR data, as this resembles with the majority of the missing data mechanisms in real datasets.

There are only a few conditions which must be satisfied for the nonparametric bootstrap to

work properly, which makes it a popular method in practice. The main disadvantage of this

easily applicable method is its computation time, which can grow large compared to other meth-

ods. Another imputation method which also corrects for uncertainty regarding the estimations

of the missing values is the multiple imputation method (Rubin, 2004). This is the go to method

if computation times are wished to be small, but it imposes stronger assumptions. For example,

an estimator’s variance has to be calculable within a bootstrap replication.

As we investigate the RIV method as explained in Section 3.2.2, using the multiple imputation

method is inappropriate. In Freue et al. (2013), formulas of the standard errors are derived

for the S-estimator, these standard errors are however asymptotic. As convergence of the stan-

dard errors depends on the number of observations, we have chosen to employ the bootstrap.

Standard errors obtained from this method are more accurate when the sample size is low,

and therefore more reliable in general. Although most of the modern datasets contain a large

amount of observations, datasets with a small amount of observations can still be encountered.

In order to link the nonparametric bootstrap to our simulation study, we let β̂isr denote the es-

timator of the i’th parameter in replication r of simulation run s. At the end of every simulation

run, a parameter estimate is calculated by averaging over all replications, that is

β̂is =
1

R

R∑
r=1

β̂isr. (51)

Final parameter estimates are in turn determined by averaging over all simulation runs, that is

β̂i =
1

S

S∑
s=1

β̂is. (52)

Standard errors are estimated based on the parameter estimates retrieved from all simulation

runs, that is

σ̂βi =

√√√√ 1

S

S∑
s=1

(
β̂is − β̂i

)2
. (53)

In order to make claims about a method’s performance we have to make use of more metrics

than just the estimated parameters and standard errors. The performance measures on which

we base the methods’ performances in our simulation study are defined in Section 4.4.
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4.4 Performance Measures

In this section we define all metrics used to evaluate the performances of the methods investi-

gated. Besides metrics that assess the quality of estimates obtained from regression techniques,

we also define measures used for determining imputation quality. Starting off, we make use of

the Root Mean Squared Error
(
RMSE

)
, an error measurement which assigns higher weights

to estimates further away from the true parameter. As we are investigating causality, accu-

rate point estimates are of big importance, making the RMSE a suitable metric. The RMSE

averaged over all parameter estimates is calculated as

RMSE =

√√√√ 1

pS

p∑
i=1

S∑
s=1

(
βi − β̂is

)2
, (54)

where p denotes the amount of parameters estimated in a model. An intuitive explanation of

the RMSE as given in Equation (54) is that we average the Mean Squared Errors (MSEs) of all

parameter estimates in every simulation run. Eventually, we also average these MSEs over all

parameters to end up with a single number, which simplifies the comparison of RMSE scores

across different methods.

As the MSE can be written as a metric consisting of the bias and variance, a high MSE value

can be due to multiple reasons. Specifically, the MSE equals the sum of the squared bias and

the variance. A high MSE can therefore be due to a high squared bias, a high variance or

both. Measuring at least one of these components sheds light on the MSE, in this paper we

only measure the bias. The bias averaged over all parameter estimates is calculated as

Bias =
1

pS

p∑
i=1

S∑
s=1

(
βi − β̂is

)
. (55)

In order to determine standard error accuracy, we make use of the coverage defined as

Coverage =
1

pS

p∑
i=1

S∑
s=1

I
[
β̂is − t∗σ̂βi ≤ βi ≤ β̂is + t∗σ̂βi

]
, (56)

where t∗ is the distribution’s critical value for a certain significance level. For a two-tailed dis-

tribution, t∗ = tα/2, where we set significance level α = 0.05. We follow the same strategy as for

the RMSE, meaning that we eventually average coverages over all parameters and simulation

runs to end up with a single number. Standard errors are found to be accurate if the coverage

approximately equals
(
1 - α

)
, indicating that the amount of times which the parameters fall

within the confidence interval is as expected. This conclusion only holds if the parameters do

not vary to a great extent across simulation runs, which is in turn true if the variance component

of the RMSE is found to be low.
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We also investigate the predictive performances of all methods. For example within health-

care, it may be of interest to predict what the effect of treating a patient will be on an outcome

variable of interest. We omit the subscript of the bootstrap replication for convenience. A

logical consequence of the bootstrap is that a fraction of the observations do not appear in

the bootstrap sample. As both a training and test set are needed for a predictive analysis, we

can easily construct the test set by assembling the observations which do not appear in the

bootstrap sample. As explained in Efron and Tibshirani (1997), the training error is defined as

err =
1

n

n∑
i=1

L
(
yi, f(ẍi)

)
, (57)

where L(·) is a loss function, ẍi contains all covariates.

We use the MSE as the loss function, meaning that L
(
yi, f(ẍi)

)
=
(
yi − f(ẍi)

)2
. Solely

using the training error is discouraged, as it is downward biased. Predicting such a training set

by making use of a model fit to multiple bootstrap samples is a naive strategy, as they have

observations in common. We apply the leave-one-out bootstrap, where the out-of-sample error

is defined as

Êrr1 =
1

n

n∑
i=1

1∣∣I−i∣∣ ∑
b∈I−i

L
(
yi, fb(ẍi)

)
, (58)

where I−i is the set of indices of bootstrap samples that do not contain observation i. If all

samples contain a certain observation, we leave steps concerning that observation out of the

calculation. This measurement is however upward biased, as some observations occur more than

once in a bootstrap sample. As a reoccuring observation does not provide as much information

as a new one, the error term is overestimated.

To alleviate these biases, Efron (1983) proposes the .632 bootstrap which weighs the train-

ing and out-of-sample errors, therefore trying to find a balance between the down and upward

biases. When the predictions however overfit the data, that is err = 0, the .632 bootstrap will

underestimate the prediction error. The .632+ bootstrap proposed by Efron and Tibshirani

(1997) is based on the .632 bootstrap, but additionally measures the degree of overfitting. The

corresponding error measurement is defined as

Êrr.632+ =
(
1− w

)
err + wÊrr1, (59)

where

w =
0.632

1− 0.368R
. (60)

The degree of overfitting is in turn given by

R =
Êrr1 − err
γ − err

, (61)
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where γ is the no-information error rate, that is

γ =
1

n2

n∑
i=1

n∑
j=1

L
(
yi, f(ẍj)

)
. (62)

The intuition behind Equation (61) is that the degree of overfitting increases if the difference

between the training and out-of-sample errors increases, meaning that the predictions of the

training error correspond too closely to the data. As the degree of overfitting increases, a higher

weight is assigned to the out-of-sample error. If there is no overfitting, Êrr1 = err, which in

turn yields R = 0. This reduces to the .632 bootstrap, that is Equation (59) with w = 0.632.

Eventually, we average the errors over all simulation runs to come up with the final predic-

tion error. For convenience, we do not define a mathematical formula for this error measure

as it is likely to come over as confusing. In short, the final prediction error is calculated by

averaging over the .632+ bootstrap errors obtained from all simulations, where the .632+ boot-

strap error is as in Equation (59). We use this final error measurement to compare all methods’

predictive performances, the method corresponding to the minimal value excels at predicting

outcomes for new data.

As the outliers are simulated, we can pinpoint the exact location of these values within the

dataset. As both the IV-DDC and RIV methods flag outliers, we can evaluate both methods’

outlier detection accuracies. These methods however differ within this detection, as the IV-DDC

method flags cells as outliers. The RIV method flags observations as outliers, meaning that we

need separate measurements for both methods. In our simulation, we however generate one

outlier per observation, if an observation is selected for contamination. We determine outlier

detection accuracy of the RIV method by checking whether the observation flagged as outlying

contains an outlying cell or not. This way, the outlier detection abilities of both the IV-DDC

and RIV methods can be compared one on one.

Starting off with the IV-DDC, we evaluate the outlier detection performance as

OutAccCellwise =
1

no

n∑
i=1

p+1∑
j=1

Outij , (63)

where

Outij =

1 if x̃ij is an outlier and correctly detected,

0 otherwise.
(64)

With no we denote the number of outlying cells present in the data and x̃ij is as in Section 4.2,

note that we include ỹi as x̃ip+1 for convenience. We generalize this metric to a measurement

for evaluating how many observations are correctly detected as outlying by the RIV method,
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that is

OutAcc =
1

no

n∑
i=1

Outi, (65)

where

Outi =

1 if (x̃i1, . . . , x̃ip+1)′ is detected as outlying and contains an outlying cell,

0 otherwise,
(66)

In the end, we average both the metrics in Equations 63 and 65 over all simulation runs, just

as with the final prediction error, to end up with the final imputation errors.

Finally, we define metrics used for assessing the quality of the missing value imputations. For

these steps we make use of the metrics proposed in Templ et al. (2011), which distinguish

between error measurements for categorical, binary, continuous and semi-continuous variables.

We deal with binary and continuous variables in our simulation, but we only generate missing

values for the continuous variables. Hence, we adjust the metric proposed in Templ et al. (2011)

and measure the Absolute Relative Error (ARE) of the imputations for the continuous variables

as

AREimp =
1

nmiss

n∑
i=1

p+1∑
j=1

∣∣∣∣∣ x̃
orig
ij − x̃

imp
ij

x̃orig
ij

∣∣∣∣∣, (67)

where x̃orig
ij and x̃imp

ij stand for the original and imputed value respectively, nmiss stands for the

amount of missing values. A minimal value of the error measurement indicates an imputation

lying closer to the true value on average.

A disadvantage of the ARE metric is that it is likely to take on high values as the original

values approach zero. As we draw data from a multivariate normal distribution with zero mean

and relatively low covariances, values close to zero are likely to be present. Hence, we also

measure the Mean Absolute Error (MAE) of the imputations, that is

MAEimp =
1

nmiss

n∑
i=1

p+1∑
j=1

∣∣∣x̃orig
ij − x̃

imp
ij

∣∣∣. (68)

The MAE measures how much an imputation differs from the original value on average, without

taking the magnitudes of both values into account. Logically, just as with the ARE, a lower

value of the MAE is desirable. In cases where the ARE yields a large error due to an original

value lying close to zero, the MAE does a better job at capturing the quality of the imputation.

Finally, just as with the prediction and outlier detection measures, we average the AREs and

MAEs obtained from all simulation runs to end up with the final metrics of imputation quality.
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5 Real Data

In this section we describe the two real datasets to which some of the methods investigated

in this paper are applied to. The results which we replicate and extend are not based on

explanatory variables including missing values, meaning that making use of the imputation

strategy as given in Section 4.2 is superfluous. We do however check all datasets for outliers,

and pay specific interest to the outcomes of the proposed robust alternatives. An explanation

of the real dataset used for an application of the IV type of methods described in this paper

is given in Section 5.1. The second real dataset is used for an application of the DiD type of

methods, it is described in Section 5.2.

5.1 Dinkelman (2011)

For the IV type of methods we make use of the data regarding electrification and its effect

on employment in South Africa (Dinkelman, 2011). Results show that electrification causes a

significant increase in the female employment rate within a five year period. Besides this main

finding, other interesting relationships regarding male and female employment are obtained and

discussed. The majority of the South African population did not have access to electricity prior

to the elections of 1994. Based on the election outcomes, the South African government decided

to increase provisioning of such basic services. From 1995 onwards, a set amount of South

African households is annually provided with electricity.

An IV approach might seem unnecessary at first glance, as random assignment of electric-

ity seems feasible. Motivations behind this non-random assignment are given in Dinkelman

(2011), the non-random selection of communities which were to receive electricity was mainly

due to higher powers of politicians. Hence, the treatment variable indicating whether a house-

hold has received electricity on behalf of the project set up by the government is endogenous.

This variable is instrumented by a measure of land gradient, the choice of this instrument is

based on the fact that a higher gradient increases the costs of the household’s electrification,

which means that it plays a role in electricity assignment. In Dinkelman (2011) it is shown that

this instrument is indeed valid, leading to a proper application of the IV method.

All variables used in Dinkelman (2011) are continuous except for the binary treatment vari-

able. The number of controls used varies between 10 and 12, meaning that outliers in one or

more of these controls are possibly present. As we illustrate in Section 6.2, some variables are

large in magnitude, meaning that an extreme data point is likely to bias the results if the effect

of this variable on the dependent variable is significant and relatively large. A detailed analysis

of our replication and extension of the results of Dinkelman (2011) is given in Section 6.2.
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5.2 Card and Krueger (1993)

For the DiD type of methods we make use of the data originally used in Card and Krueger

(1993) to study the effects of an increase in minimum wage. This paper is a famous example

of the application of the DiD method, as it contradicts a pattern which was believed to hold

based on theoretical economic work. The main finding of Card and Krueger (1993) is that an

increase in the minimum wage leads to an increased level of employment. As mentioned earlier,

such a wage inrease was suspected to decrease the level of employment before this paper was

published. As this conclusion was striking to a lot of researchers, further research on this topic

gained a lot of interest.

In general, a potential problem for research conducted is using data which does not accurately

represent the problem. The sample used in Card and Krueger (1993) is relatively small, which

calls the sample’s representativeness of the population into question. In Neumark and Wascher

(2000) it is claimed that the results obtained from Card and Krueger (1993) paint a wrong

picture, as they obtain a negative relation between a minimum wage increase and the level of

employment by using different data. What makes it particularly interesting, is that Neumark

and Wascher (2000) make use of data regarding restaurants from the same food chains. As

these restaurants are also located in New Jersey and Pennsylvania, the potential problem of

differing characteristics is unlikely to be present in this case.

In a reply to Neumark and Wascher (2000), Card and Krueger (2000) further investigate the

issue. They refute the conclusion drawn in Neumark and Wascher (2000), but dig deeper into

the problem as they now also doubt the credibility of the conclusion drawn in Card and Krueger

(1993). After investigating multiple datasets of which the appropriateness is illustrated, Card

and Krueger (2000) conclude that the increase in minimum wage does not have a significant

effect on the level of employment. Even though the original authors have already rejected their

claim themselves, a search for potential outliers has not yet been carried out. In Card and

Krueger (2000) they do highlight a couple of stores which show behaviour differing from the

majority, but using the RDiD method provides us with more information. At the time, robust

regression was not as widely used as it is today, we are therefore interested in applying our

proposed robust alternative of the DiD method to the data.

6 Results

In this section the results obtained from both the simulation study, as well as from the real data

are given. In Section 6.1 we discuss the results obtained from the simulation study described

in Section 4, where we investigate multiple cases which differ in the extent to which they are

contaminated. In Section 6.2 we investigate the results obtained from analyzing the two real

datasets described in Section 5.
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6.1 Simulation Study

We start off with investigating the DiD type of methods. The results obtained from the DiD

type of methods for εcont = 7.5%, where outliers are caused due to bad leverage points are given

in Table 1.

Table 1: The results of the DiD type of methods for εcont = 7.5% and outliers due to bad leverage points.

RMSE Bias Coverage ATE Prediction Outlier Detection Imputation ARE Imputation MAE

DiD 1.609 0.097 69.125% 4.223 (1.824) 39.016 -
2.541 0.481

RDiD 0.155 0.024 93.625% 4.143 (0.231) 1.027 0.999

Notes: The standard errors are given in parentheses.

Table 1 shows the most important results from both the DiD type of methods, where the num-

bers in bold correspond to the best performing method for a certain metric. We see superior

performances for the RDiD method based on all metrics given in Table 1, but we will subse-

quently walk through all findings. The RMSE is denoted in the first column, which is minimal

for the RDiD method. As both biases are low, this indicates that the parameter estimates of

the RDiD method differ less on average from the true parameters than for the DiD method.

The coverage of the RDiD method is close to the in this case ideal value of 95%, the coverage

of the DiD method lies further away. The coverage of the RDiD method does not equal 95%,

but there is a logical explanation for this.

As we make use of the bootstrap, coverage deviations are either due to a too small number

of bootstrap replications, a too small number of simulation runs or both. The deviations are

however small, and due to computational limitations we do not investigate these cases for a

larger amount of bootstrap replicates and/or simulation runs. If we were to judge the standard

errors on these outcomes, we would argue only the standard errors of the RDiD method to

be accurate. The coverage however also depends on the parameter estimates, as the method

relies on calculating confidence intervals. The coverage may lead to wrong conclusions if the

parameter estimates vary considerably, as the confidence intervals become unrealistically large.

Combining the RMSE and the bias of the RDiD method, which gives us information about the

variance, shows that the variance is low. Hence, the corresponding parameter estimates do not

vary to a great extent, the standard errors are therefore accurate.

The ATEs of both methods lie close to the true value of 4.145, the corresponding standard

error of the RDiD method is however much smaller than that obtained from the DiD method.

As there is more uncertainty regarding the ATE obtained from the DiD method, the RDiD

method is superior in this case. The prediction error corresponding to the RDiD method is a

lot smaller than that of the DiD method, meaning that it excels at predicting outcomes for new

data. The superiority of the RDiD method can easily be explained, as 99.9% of the outliers are

on average correctly detected by the method. In this simulation setting, the outlying distribu-

tion differs from the population distribution to a great extent, making it relatively easy for the
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RDiD method to detect the outliers. Once this difference shrinks, we expect the percentage of

correctly detected outliers to decrease as well. Due to computational limitations, we leave this

for further research.

The ARE of the imputations shows that imputations on average deviate from the original value

by 254.1%, meaning that the missing values are imputed rather poorly. As noted in Section 4.4,

the ARE may be misleading when values lie close to zero. The MAE shows that imputations

on average deviate from the original value by a value of 0.481, meaning that the imputations

are not as poor as indicated by the ARE. Still, we demonstrate that kNN imputation is only

able to mimic the patterns in the original dataset to a certain extent.

The results of the IV type of methods under the same setting as the DiD type of methods

are given in Table 2. As already mentioned, the instrument can and therefore is also con-

taminated with outliers and missing values in our case. A method which breaks down when

outliers are present in the instrument may show promising results within a simulation study for

a dataset with a clean instrument.

Table 2: The results of the IV type of methods for εcont = 7.5% and outliers due to bad leverage points.

RMSE Bias Coverage ATE Prediction Outlier Detection Imputation ARE Imputation MAE

IV 3.447 -0.590 63.400% 2.126 (6.121) 178.640 -

2.697 0.613
RIV 0.592 0.026 94.400% 3.962 (1.055) 157.860 0.793 .
IV-DDC 4.864 -0.532 64.200% 2.273 (9.316) 237.812 0.799
PLIV 8.286 -1.896 95.000% 1.876 (8.107) - -

Notes: The standard errors are given in parentheses.

Table 2 shows superiority of the RIV method based on almost all of the measures given in the ta-

ble. An RMSE of 0.592 for the RIV method indicates that the parameter estimates do not vary

a lot between simulation runs. The RMSE and bias values of all other methods however indicate

the opposite, meaning that averaging over all simulation runs does not accurately represent all

simulation outcomes. Hence, the coverage is a metric which is nonsensical to interpret in this

setting for all methods except for the RIV method. For the RIV method, the coverage lies close

to the expected 95% mark, indicating accurate standard errors. Although the coverage corre-

sponding to the PLIV method equals 95%, its variance is too high for the coverage to be reliable.

The RIV method does best at estimating the treatment effect of 3.772, with a correspond-

ing standard error which is acceptable. The treatment effect estimates of all other methods

also come close to the true treatment effect, due to their large standard errors there is however

too much uncertainty about the parameter estimates. Prediction-wise, the RIV method outper-

forms the other methods, although the differences in performance are rather small in this case.

Note that predictions cannot be made for the PLIV method, as this method does not return

parameter estimates other than the ATE.
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Both the RIV and IV-DDC methods correctly detect almost 80% of the outliers on average.

As all outliers are similarly generated, differences between these methods are mainly due to

the quality of the imputations, which is something on which the performance of the IV-DDC

method highly depends. On average, an imputation differs almost 270% relative to the original

value. The MAE is however the metric of greater interest in this case. On average, an impu-

tation has a deviation of 0.613 from the original value, which can be argued to be acceptable.

The results in Table 2 however show that setting outliers to missing and imputing the values

afterwards performs worse than the IV method. This in turn indicates that the imputations

are of a quality which only worsens the results.

The results of the ML type of methods under the same setting as the previously examined

methods are given in Table 3. These methods are especially designed for calculating the ATE,

all results given in Table 3 are therefore not averaged over multiple parameters. All measure-

ments correspond to the estimated treatment effects obtained over all simulation runs.

Table 3: The results of the ML type of methods for εcont = 7.5% and outliers due to bad leverage points.

RMSE Bias Coverage ATE Imputation ARE Imputation MAE

ARB 1.291 0.100 94.000% 3.871 (1.294)
1.843 0.419

PLR 1.079 0.096 96.000% 3.867 (1.081)

Notes: The standard errors are given in parentheses.

Table 3 shows similar results for the ARB and PLR methods. Both the RMSEs are relatively

small, this indicates that the estimate of the treatment effect accurately captures the estimates

from all simulation runs as the biases are low. We do however note that the PLR method ob-

tains a lower RMSE compared to the ARB method, meaning that the estimates obtained from

the PLR method vary less across simulations. Subsequently, we can draw conclusions from the

coverage values as the parameter estimates are found to be accurate. Both the coverages ap-

proach the desirable 95% level, meaning that the standard errors are accurate for both methods.

Both the ATEs are close to the actual treatment effect of 3.772, the standard error associ-

ated with the PLR method is however smaller, indicating less uncertainty about the ATE. The

ARE corresponding to the imputations again suggests poor imputations, as an imputation de-

viates 184.3% from its original value on average. The MAE shows the difference between an

imputed and the original value to equal 0.419 on average, meaning that the imputations are

not as bad as indicated by the ARE. Although the quality of the imputations is controversial,

both the PLR and ARB methods show to be robust in this setting.

Next, we investigate all methods in similar settings as the ones previously described. The

outliers now however concern vertical outliers instead of bad leverage points. The results of the

DiD type of methods are given in Table 4.
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Table 4: The results of the DiD type of methods for εcont = 7.5% and outliers due to vertical outliers.

RMSE Bias Coverage ATE Prediction Outlier Detection Imputation ARE Imputation MAE

DiD 4.658 0.842 87.375% 3.558 (6.234) 83.858 -
2.547 0.529

RDiD 0.155 0.024 94.375% 4.121 (0.224) 1.028 0.999

Notes: The standard errors are given in parentheses.

The results obtained from Table 4 lead to the same conclusions drawn based on Table 1, where

the only difference between the datasets is the type of outlier generated. When vertical outliers

are present, the DiD method performs worse relative to the RDiD method, as can be seen from

the higher RMSE and prediction error values. The results obtained from the DiD method in

Table 1 were found to be credible to a certain extent, the ATE and its standard error were

somewhat accurate. When vertical outliers are present, the standard error increases so much

that the ATE is not even significantly different from zero anymore.

The results of the IV type for εcont = 7.5% when outliers are caused by vertical outliers are

given in Table 5.

Table 5: The results of the IV type of methods for εcont = 7.5% and outliers due to vertical outliers.

RMSE Bias Coverage ATE Prediction Outlier Detection Imputation ARE Imputation MAE

IV 5.517 1.476 89.400% 3.992 (8.156) 324.355 -

2.687 0.647
RIV 0.592 0.016 95.200% 3.867 (1.057) 159.492 1.000
IV-DDC 0.616 -0.006 94.200% 3.561 (1.065) 159.285 0.987
PLIV 8.065 0.256 96.000% 4.027 (8.102) - -

Notes: The standard errors are given in parentheses.

Table 5 shows results which lead to the same conclusions drawn from the setting where outliers

were caused due to bad leverage points. We shortly go through the results as the differences

between the methods’ performances have changed. The RMSE outcomes lead to the same

conclusions, we do however note that the RMSE of the IV-DDC method nears that of the

RIV method. Bad leverage points detected as outliers by the IV-DDC method were imputed

and used within the estimation. A similar strategy is followed with the vertical outliers, these

observations are however omitted before estimation, as already explained in Section 4.2. In

general, deletion of outliers in a dataset is not a straightforward procedure. Within this simu-

lation it yields favorable results, but it is not a strategy which can always be followed in practice.

Both the coverages of the RIV and IV-DDC methods approach 95%, indicating accurate stan-

dard errors. The coverages of the IV and PLIV methods are non-credible as their variances are

too large. All ATEs lie close to the true value of 3.772, with the RIV and IV-DDC methods

showing plausible standard errors. Prediction-wise, the RIV and IV-DDC methods show per-

formances which are roughly equal in quality. Compared to the RIV and IV-DDC methods,

the predictions from the IV method leave a lot to be desired. Bad leverage points were already

correctly detected to a large extent, but almost all vertical outliers are detected in this setting.
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The RIV method succesfully detects all outliers, while the IV-DDC method correctly detects

98.7% of the outliers.

Next we investigate the ML type of methods for εcont = 7.5% when outliers are caused by

vertical outliers, the results obtained are given in Table 6.

Table 6: The results of the ML type of methods for εcont = 7.5% and outliers due to vertical outliers.

RMSE Bias Coverage ATE Imputation ARE Imputation MAE

ARB 3.100 -0.342 95.000% 3.429 (3.097)
2.069 0.482

PLR 3.081 -0.367 96.000% 3.404 (3.075)

Notes: The standard errors are given in parentheses.

Table 6 shows similar, and rather poor results for both methods. Both methods attain high

values for the RMSE and standard errors. Both coverages are close to the optimal value, these

values however have no meaning as the variances are large. The parameter estimates roughly

approach the true value of 3.772 of the treatment effect, but there is too much uncertainty

about these estimates due to the large standard errors.

Overall, we see superiority of the RDiD method with respect to the DiD method for εcont = 7.5%,

making it the favoured method when outliers are present. The RIV method is the best per-

forming one out of all IV type of methods, meaning that the inclusion of a binary variable does

not necessarily harm its performance to a great extent. We do however draw all controls from a

multivariate normal distribution, meaning that all controls fit the elliptical structure very well.

If the controls do not suit an elliptical structure in practice, we do not promote the use of the

IV-DDC method if the imputation method performs poorly. Finally, the ARB and DML meth-

ods show similar performances. They are robust to bad leverage points, but the performances

visibly worsen in the presence of vertical outliers.

We also examine all methods for εcont = 20%, but the results lead to conclusions similar to

those drawn from the results of εcont = 7.5%. As more data is contaminated, the results are

more extreme, but the order of methods’ performances and their superiority does not change.

These results can be found in Tables 12 to 17 in Section A.

6.2 Real data

In this section we examine the two real datasets described earlier. The analysis of the dataset

used in Card and Krueger (1993) is given in Section 6.2.1, the results obtained from the data

used in Dinkelman (2011) are given in Section 6.2.2.
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6.2.1 Card and Krueger (1993)

For investigating the real data as described in Section 5, we start off with applying the DiD

and RDiD methods to the data used in Card and Krueger (1993). Except for in the dependent

variable, there are no values missing. Hence, we do not make use of the imputation strategy

as described in Section 4.2 as we would eventually delete all observations with imputations.

Rather, we omit all stores with at least one missing independent variable, meaning that we are

left with n = 384 stores where the employment level is known both pre and post treatment.

The model to be estimated is defined as

empit = β0,emp + β1,empDt + β2,empNJi + β3,emp

(
Dt ·NJi

)
+ εit, (69)

where t = 0 and t = 1 indicate observations pre and post treatment respectively. Variable

empit stands for the average employment of store i at time t, Dit equals one if t = 1 and zero

otherwise. Finally, NJi equals one if a store is located in New jersey and zero if a store is lo-

cated in Pennsylvania. The parameter of interest is β3,emp, which represents the treatment effect.

As stated in Cameron et al. (2008), clustered robust standard errors fall short in this case

as there are only two states. Hence, we apply the wild cluster bootstrap as also described in

Cameron et al. (2008). The results obtained are given in Table 7 for R = 1000.

Table 7: The results of the DiD and RDiD methods applied to the data used in Card and Krueger (1993).

DiD RDiD

β̂0,emp
23.42***
(1.19)

21.49***
(1.13)

β̂1,emp -2.32
(1.66)

-0.95
(1.49)

β̂2,emp -3.01**
(1.30)

-1.91
(1.22)

β̂3,emp 2.81
(1.83)

1.61
(1.63)

Notes: The standard errors
are given in parentheses, ***
denotes a variable that is sig-
nificant at the 1% level, ** de-
notes a variable that is signifi-
cant at the 5% level and * de-
notes a variable that is signif-
icant at the 10% level.

When we apply the wild cluster bootstrap, the ATE is not significant at the thresholds examined

for the DiD method. The ATE roughly equals the one obtained in Card and Krueger (1993),

the standard error is however larger in this case.

When we apply the RDiD method to the data, all parameter estimates decrease in magnitude.

We see a drop in the estimated treatment effect, meaning that there is even more uncertainty

regarding the effect of the policy change. Based on Table 7, we suspect results of the DiD
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method to be influenced by outliers. Due to the different outcomes obtained from the DiD and

RDiD methods, we take a closer look at the RDiD method. As the dependent variable is con-

tinuous with all independent variables being binary, vertical outliers is the only type of outliers

which can possibly be witnessed. Figure 2 shows the weights assigned to all observations by the

MM-estimator used in the RDiD method, averaged over all bootstrap replications.

Figure 2: The observation weights obtained from the RDiD method.

Figure 2 shows that the majority of the weights lie close to one, but a good share of the weights

reach values clearly lower. Some weights show to be close or equal to zero, leading to concerns

regarding the original dataset. As OLS can already break down when one outlier is present,

witnessing these low weights questions the appropriateness of the DiD method for this data. The

distance distance plot (Rousseeuw and Van Zomeren, 1990) corresponding to the data is given

in Figure 3. Robust mahalanobis distances cannot be calculated due to multicollinearity, the

horizontal axis is hence given by the leverages. As the only outliers which we potentially observe

are vertical outliers, the measurement given on the horizontal axis is not of much interest.

Figure 3: The distance distance plot of the RDiD method.
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Figure 3 shows the presence of some vertical outliers, which are the observations above the cut

off of the standardized residuals. Hence, the values of the employment variable for outlying

observations deviate from the majority of this variable’s values. For this particular dataset,

we conclude that the DiD method falls short and that the RDiD method is the preferred one.

Although the conclusion drawn based on the outcomes in Card and Krueger (1993) was already

shown to be too optimistic, as discussed in Section 5.2, these results show that robust regression

could have also been used in order to come to the conclusion’s rejection.

6.2.2 Dinkelman (2011)

For the analysis of the data used in Dinkelman (2011) we make use of the IV type of methods.

We do apply all IV type of methods to the data, but interpret all findings with caution. As

already mentioned, the RIV method does not perform equally well for all data. The method of

choice may therefore differ per dataset, which is why we investigate the appropriateness of the

RIV method in this case as well. Before we do so, we define the models which we examine.

For the analysis we have information regarding n = 1816 households. Besides controls, we

also have information about district fixed effects, which are the binary exogenous covariates.

We index communities by j, districts by d and time periods by t, where t = 0 and t = 1 are pre

and post treatment respectively. The model to be estimated is given as

∆yjdt+1 = α1,elec + α2,elec∆Tjdt+1 +Xjd0βelec + λd,elec +
(
δj,elec + ∆εjdt+1

)
, (70)

where ∆xjdt+1 =
(
xjdt+1−xjdt

)
, εjdt stands for the unobserved error term. Variable Tjdt equals

one if the community has received electricity by the government at time t, and zero otherwise.

The parameter vector corresponding to the controls is defined as βelec =
(
β1,elec, . . . , βD,elec

)′
,

if we assume that there are D districts. As we investigate two models examined in Dinkelman

(2011), outcome variable yjdt is given by the female and male employment rates in the separate

models.

Matrix Xjd0 contains the controls, λd,elec and δj,elec capture community and district fixed effects

respectively. The controls used are household density, the fraction of households living below a

poverty line, distances to the grid, road and town, the fraction of adults that are white or Indian

to proxy for local employers, the fraction of men and women with a high school certificate, the

share of female-headed households and the female/male sex ratio. Treatment variable Tjdt is

instrumented by Zj , that is the average community land gradient.

For this dataset, we will combine the RIV method as described in Section 3.2.2 with L1 re-

gression as proposed in Freue et al. (2013). For this method, which we will call L1-RIV, we

define yelec and Zelec as the vectors stacking all outcomes and instruments over all observations

respectively. MatrixXelec is defined as the concatenation of all controls and the treatment, both

stacked over all observations. We define λdistrict =
(
λ1,elec, . . . , λD−1,elec

)′
as the vector includ-
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ing district fixed effects, such that district D functions as the reference group. Furthermore, we

define Xdistrict as the sparse matrix, selecting the correct district fixed effect per observation,

and selecting no district fixed effect if an observation belongs to district D.

The L1-RIV method is an iterative procedure, the parameter estimates are updated accord-

ing to(
α̂

(q)
2,elec, β̂

(q)
1,elec, . . . , β̂

(q)
D,elec

)′
= RIV

(
Xelec,Zelec,yelec −Xelecλ̂

(q−1)
district

)
,

λ̂
(q)
district = L1

(
Xdistrict,yelec −Xelec

(
α̂

(q)
2,elec, β̂

(q)
1,elec, . . . , β̂

(q)
D,elec

)′)
, for 1 ≤ q ≤ Q,

(71)

where we set Q = 10. With RIV(·) we denote the application of the supplied data to the RIV

method as in Section 3.2.2. Note that the dependent variable is given in the latter argument,

and that the intercept is not iteratively updated. The L1(·) method returns parameter estimates

from regressing the second argument on the first. Vector λ̂
(0)
district has to be initialized, we refer

to Freue et al. (2013) and their Web Appendix for further details on how this is done. In the

end, an estimate of α̂
(Q)
1,elec is obtained in a similar way as in Equations 15 and 21, now only for

the model in Equation (70).

Starting off with the exploratory analysis, we determine the appropriateness of the RIV method

by checking whether the data mimics the desired elliptical structure. Figure 4 shows scatterplots

and spearman correlations of all variables used in the analysis, excluding the exogenous binary

covariates. A derivation of how the significance levels of the correlations are determined is given

in 75 in Section A. The variables from left to right are female employment rates, treatment, the

controls in the same order as described earlier, and the instrument. The pairwise scatterplots

of the male employment rate and all other variables barely differ from Figure 4, meaning that

the conclusions drawn from Figure 4 also hold for these scatterplots. For completeness, they

are given in Figure 6 in Section A.
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Figure 4: The pairwise scatterplots of the electrification data for the female employment rate.

Figure 4 shows elliptical type of shapes for about half of the variable pairs, the shapes of all

other pairs cannot be labelled as elliptical. Hence, the data used in Dinkelman (2011) is a poor

fit for the RIV method. Figure 4 does however show aberrant data points in a fair share of the

plots. Some variables are relatively large in magnitude, namely household density, distances to

the grid, road and town, and the average community land gradient. Most of the correlations

are also significant at the 1% level, meaning that outliers affecting the results is a potential

problem. Although the IV-DDC method does not necessarily outperform the IV method, it can

give us additional insights about the data due to its outlier flagging abilities. As Figure 4 is

difficult to interpret due to the amount of variables, we elaborate on the findings below.

We summarize the spearman correlations given in Figure 4 in Table 8. A summary for the

model with the male employment rate as the dependent variable is given in Table 11 in Section

A. Correlation rij is measured between variables i and j for i 6= j, where the same correlations

are calculated as in Figure 4.
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Table 8: A summary of the spearman correlations of the electrification data for the female employment rate.

* ** ***

|rij | < 0.3 7 5 5 45

|rij | ∈ [0.3, 0.5) 0 0 0 11

|rij | ∈ [0.5, 0.7] 0 0 0 3

|rij | > 0.7 0 0 0 2

ncor 78

Notes: The first column denotes
correlations which are not signifi-
cant, *** denotes a correlation that
is significant at the 1% level, ** de-
notes a correlation that is signifi-
cant at the 5% level and * denotes a
correlation that is significant at the
10% level. With ncor we denote the
amount of correlations calculated.

Table 8 shows that the majority of the correlations are weak, although most of them are sig-

nificant. We focus on the bivariate pairs with correlations larger than 0.5 in absolute value,

which we label as strong. The variables forming these pairs are distances to the grid, road and

town, the fraction of men and women with a high school certificate, the share of female-headed

households and the female/male sex ratio. A closer look at the pairwise scatterplots shows some

deviating points, making it interesting for us to apply the DDC algorithm. Depending on these

variables’ effects on the outcome, these potential cellwise outliers may be the cause of bias in

the parameter estimates.

The DDC algorithm detects 1039 cells as outliers, the variable measuring the fraction of adults

that are white or Indian to proxy for local employers is dropped from the procedure, as its vari-

ation is low. The 1039 cells detected as outlying are spread over 704 observations, meaning that

the DDC algorithm detects outlying cells in nearly 40% of the observations. The frequencies of

outliers found in the variables are visualized in Figure 5. The order of the variables is the same

as for Figure 4, the treatment variable is now however omitted. A histogram of the cellwise

outliers of the electrification for the male employment rate is given in Figure 7 in Section A.
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Figure 5: The histogram of the cellwise outliers of the electrification data for the female employment rate.

Figure 5 shows similar frequencies across the variables, except for the variable measuring house-

hold density. This variable is also the largest in magnitude, meaning that the cells detected as

outlying could potentially form a problem.

We also attempt to measure imputation quality, although this procedure is difficult for real

data. We denote the ARE and MAE of the imputations as defined in Section 4.4, these mea-

surements are however slightly adjusted for this dataset. First of all, we set one of the cells,

which are all known in this dataset, to missing in 7.5% of the observations according to the

MAR mechanism. This way, we can determine how kNN imputation would perform if there

would be missing values which are MAR. We split the variables for error calculation, as the

appropriateness of the ARE and MAE metrics depends on the type of data.

We calculate the ARE for the variables which are large in magnitude, that is household density,

distances to the grid, road and town and finally the average community land gradient. The

remaining continuous variables are used for calculating the MAE, except for the fraction of

adults that are white or Indian to proxy for local employers as it does not show enough devi-

ations. The values of the MAE show no outliers across the bootstrap replications, we hence

calculate it according to Equation (68). The ARE shows some outliers across the replications,

we hence take the median except of the mean over all replications in order to end up with the

final imputation error.

Table 9 shows the results obtained from the IV type of methods for R = 1000, where the out-

come is given by the female employment rate. We apply the cluster bootstrap as in Cameron

et al. (2008), applying a more sophisticated version of the bootstrap is superfluous as the num-

ber of groups is large enough in this dataset. For the RIV method, we set π as in Section 3.2.2

equal to 0.825, and omit bootstrap samples where multicollinearity is an issue. Lower values

of π results in too much bootstrap samples suffering from multicollinearity, with π = 0.825 we
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obtain estimates in 853 of the 1000 bootstrap replications. For convenience, we display the

same results as those reported in the tables of interest in Dinkelman (2011).

Table 9: The results from the IV type of methods applied to the electrification data for the female employment rate.

IV IV-DDC RIV PLIV Imputation ARE Imputation MAE

T 0.106
(0.089)

0.082*
(0.042)

0.009
(0.806)

0.204
(1.894)

0.852 0.082

Poverty 0.032***
(0.012)

0.016**
(0.008)

-1.079
(35.972)

-

Female HH 0.033
(0.027)

0.019
(0.016)

-0.018
(0.450)

-

Sex ratio 0.031**
(0.014)

0.016**
(0.007)

-0.001
(0.049)

-

Notes: The standard errors are given in parentheses, *** denotes a variable that is significant
at the 1% level, ** denotes a variable that is significant at the 5% level and * denotes a variable
that is significant at the 10% level.

Table 9 shows similar results as those reported in Dinkelman (2011) for the IV method, except

for the ATE. The ATE was found to be just significant at the 10% level in Dinkelman (2011),

when applying the clustered block bootstrap we obtain an ATE which is not significant at the

10% level. Note that R may be interpreted as too low in order to make such a claim, but results

for larger values of R, which we do not include for convenience, support this claim.

When we look at the results from the IV-DDC method, we see a drop in magnitude for all

parameters. When we separately generate missing values, we see that the variables concen-

trated around zero are imputed well, with an MAE of 0.082. The other continuous variables are

however imputed rather poorly, with an ARE of 0.852. As the differences in magnitude of the

parameter estimates are small, and the variables used for calculating the ARE are the largest in

magnitude, we are sceptical about the performance of kNN imputation. Overall, the IV-DDC

parameter estimates seem plausible, but the IV parameter estimates are more reliable in this

case.

The third column of Table 9 shows the results obtained from the RIV estimator, which are

non-credible. They show no similarities whatsoever when compared to the results from the IV

and IV-DDC methods. When analyzing the results from all 853 replications which did not suffer

from multicollinearity, the RIV method has shown to have broken down multiple times. This

explains the relatively large standard errors, especially for poverty. Due to the inappropriate-

ness of the RIV method, it is not of interest to filter out the corrupted replications, as the results

which would remain would still not be credible. Although this estimator is the ideal method

when it comes to robust IV estimation, this example just shows how carefully the results should

be interpreted.
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Finally, the ATE obtained from the PLIV method is given in the last column of Table 9.

The estimated effect is larger than what is obtained from the other methods, but the associated

standard error is relatively large, and the ATE is not significant at the 10% level. Analyzing the

bootstrap replications revealed that the PLIV method also broke down multiple times, explain-

ing its relatively large standard error. As our simulation study showed no superiority of the

PLIV method when compared to the IV method, it is not of interest to filter out the replications

in which the PLIV method broke down.

Overall, we base our conclusions on the IV and IV-DDC methods and see slight influences

of outliers in the data. Above all, these outliers do not seem to distort the general patterns as

already observed in Dinkelman (2011), but we cannot say this with certainty as the quality of

the imputations remains questionable.

Table 10 shows the results obtained from the IV type of methods for R = 1000, where the

outcome is now given by the male employment rate.

Table 10: The results from the IV type of methods applied to the electrification data for the male employment rate.

IV IV-DDC RIV PLIV Imputation ARE Imputation MAE

T 0.030
(0.080)

0.069
(0.060)

-0.260
(5.538)

0.230
(2.547)

0.842 0.086

Poverty 0.064***
(0.016)

0.058***
(0.011)

2.393***
(49.102)

-

Female HH 0.225***
(0.030)

0.134***
(0.024)

-0.093
(2.041)

-

Sex ratio 0.017
(0.014)

0.024**
(0.010)

0.011
(0.256)

-

Notes: The standard errors are given in parentheses, *** denotes a variable that is significant
at the 1% level, ** denotes a variable that is significant at the 5% level and * denotes a variable
that is significant at the 10% level.

Table 10 shows results similar to those obtained in Dinkelman (2011) for the IV method. For

the IV-DDC method, the major difference lies in the parameter estimate corresponding to the

ratio of households which are female headed. This measured effect of a female headed household

on the change in the male employment rate is slightly more than half the magnitude when we

combine IV with the DDC, while remaining significant at the 1% level. The estimated treat-

ment effect is again not significant, meaning that the main conclusions drawn in Dinkelman

(2011) based on this dataset remain valid. It is also noteworthy that the parameter estimate

corresponding to the male/female ratio now is significant at the 5% level. These parameter

estimates again seem plausible, but the arguments as in the description of the results of Table

9 also apply here.
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The results of the RIV method show no overlap with those obtained from the other meth-

ods, which is again due to the non-elliptical structure of the data. Large standard errors are

again due to the method breaking down in some of the replications, we hence regard the results

obtained as non-credible.

For the PLIV method, the same conclusions can be drawn from Table 10 as is done for the

results obtained from Table 10. In this simulation, the method also broke down multiple times.

We follow the same strategy as with Table 9 to conclude on our findings. Combining the

IV method with the DDC algorithm leads to slightly different results, meaning that the claims

made in Dinkelman (2011) hold.

7 Discussion

In this paper we have examined robustness properties of causal econometric and ML methods

for contaminated data. In particular, we have investigated the IV, DiD, ARB and DML meth-

ods and proposed robust alternatives for both the IV and DiD methods. Results show that the

RDiD is indeed a DiD type of method resistant to outliers. Based on our simulation study, the

RIV method based on the work of Freue et al. (2013) also shows to be a robust alternative of

the IV method, but it is only applicable in a limited amount of cases. Its performance heavily

relies on the structure of the data, the results from the RIV method become unreliable if the

data is not elliptically structured.

Besides the RIV method, we have proposed the IV-DDC method, which incorporates the work

of Rousseeuw and Bossche (2018). Our simulation study however shows that this method may

perform worse than the IV method, when kNN imputation is used for imputing cells flagged as

outliers. Due to computational limits, we chose to make use of kNN imputation instead of a

more complex imputation technique. The IV-DDC method may therefore potentially outper-

form the IV method, depending on the imputation technique used.

Additional to our simulation study, we have applied some of the methods investigated in this

paper to two real datasets, namely the ones used in Card and Krueger (1993) and Dinkelman

(2011). We applied the DiD type of methods to the data used in Card and Krueger (1993),

and concluded that the data used suffers from vertical outliers. Usage of the RDiD led to

shrinkage of the parameter estimates towards zero. We applied the IV type of methods to the

data used in Dinkelman (2011), which required a more careful approach as the performances of

these methods highly depend on the data. An exploratory analysis revealed that the data does

not suit the RIV method. An application of the IV-DDC method revealed numerous cellwise

outliers, but kNN imputation was also shown to lead to relatively poor imputations. Hence,

applying the IV type of methods to the data used in Dinkelman (2011) emphasizes the caution

which should be used when applying robust alternatives.
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The main limitation of our paper lies in the simulation study. The amount of bootstrap repli-

cations and simulation runs are sufficient, but can be increased for more accurate results. Be-

sides, we have not investigated high-dimensional problems, for which the causal ML methods

are especially suited. Simulation studies can always be extended, but we mainly encourage the

investigation of high-dimensional problems.

As outliers and missing data are two phenomena scarcely researched in the causal inference

setting, there are numerous interesting directions for further research. First of all, using differ-

ent imputation techniques with the IV-DDC method can potentially lead to better performances

compared to the IV method, see Osman et al. (2018) for a survey of frequently used techniques.

Also, the cellwise outliers generated in our simulation study were extreme. Examining all meth-

ods when outliers are less extreme may reveal some interesting patterns. Finally, developing

robust alternatives of the causal ML methods, or focusing on robustification in general is an in-

teresting topic for researchers in the field of ML. Causal ML methods are extensively developed

at the moment, we can hence imagine that developing robust alternatives is not yet of interest

as there are numerous unexplored ways for coming up with a new type of method.
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A Appendix

The proof of PZ being idempotent is given as

P 2
Z = Z

(
Z ′Z

)−1
Z ′Z

(
Z ′Z

)−1
Z ′

= ZIk+1

(
Z ′Z

)−1
Z ′

= Z
(
Z ′Z

)−1
Z ′

= PZ .

(72)

The proof of PZ being symmetric is given as

P ′Z =
(
Z(Z ′Z)−1Z ′

)′
= Z

(
(Z ′Z)−1

)′
Z ′

= Z
(
(Z ′Z)′

)−1
Z ′

= Z
(
Z ′Z

)−1
Z ′

= PZ .

(73)

The full derivation of Equation (20) is given as

β̂IV =
(
X̂ ′X̂

)−1
X̂ ′y

=
(
X ′P ′ZPZX

)−1
X ′P ′Zy

=
(
X ′PZX

)−1
X ′PZy

=
(
X ′Z(Z ′Z)−1Z ′X

)−1
X ′Z

(
Z ′Z

)−1
Z ′y

=
(
nΣ̂XZ

1

n
Σ̂−1
ZZ nΣ̂ZX

)−1
nΣ̂XZ

1

n
Σ̂−1
ZZ nΣ̂Zy

=
(
Σ̂XZΣ̂−1

ZZΣ̂ZX

)−1
Σ̂XZΣ̂−1

ZZΣ̂Zy.

(74)

51



The pairwise scatterplots of the electrification data for the male employment rate are given in

Figure 6.

Figure 6: The pairwise scatterplots of the electrification data for the male employment rate.

A summary of the spearman correlations of the electrification data for the male employment

rate is given in Table 11.

Table 11: A summary of the spearman correlations of the electrification data for the female employment rate.

* ** ***

|rij | < 0.3 5 5 3 47

|rij | ∈ [0.3, 0.5) 0 0 0 13

|rij | ∈ [0.5, 0.7] 0 0 0 3

|rij | > 0.7 0 0 0 2

ncor 78

Notes: The first column denotes
correlations which are not signifi-
cant, *** denotes a correlation that
is significant at the 1% level, ** de-
notes a correlation that is signifi-
cant at the 5% level and * denotes a
correlation that is significant at the
10% level. With ncor we denote the
amount of correlations calculated.
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The histogram of the cellwise outliers of the electrification data for the female employment rate

are given in Figure 7.

Figure 7: The histogram of the cellwise outliers of the electrification data for the male employment rate.

Under the null hypothesis of zero population correlation, the test statistic used for determining

sample correlation significance is given as

tij =
rij√

1− r2
ij

·
√
n− 2. (75)

When we conduct a two-tailed test, the null hypothesis is in turn rejected if
∣∣tij∣∣ > tα/2,n−2,

where α is the significance level.
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The results from the DiD type of methods for εcont = 20%, where outliers are caused due to

bad leverage points are given in Table 12.

Table 12: The results of the DiD type of methods for εcont = 20% and outliers due to bad leverage points.

RMSE Bias Coverage ATE Prediction Outlier Detection Imputation ARE Imputation MAE

DiD 2.221 0.044 47.250% 4.679 (2.312) 89.482 -
2.383 0.559

RDiD 0.210 0.044 93.375% 4.148 (0.297) 1.068 0.999

Notes: The standard errors are given in parentheses.

The results from the IV type of methods for εcont = 20%, where outliers are caused due to bad

leverage points are given in Table 13.

Table 13: The results of the IV type of methods for εcont = 20% and outliers due to bad leverage points.

RMSE Bias Coverage ATE Prediction Outlier Detection Imputation ARE Imputation MAE

IV 17.916 -1.251 39.400% -2.546 (34.954) 1769.586 -

3.522 0.664
RIV 0.675 0.030 95.400% 3.844 (1.210) 159.924 0.805
IV-DDC 14.039 -1.291 37.600% -2.701 (27.294) 1157.876 0.810
PLIV 20.333 -0.680 92.000% 3.092 (20.424) - -

Notes: The standard errors are given in parentheses.

The results from the ML type of methods for εcont = 20%, where outliers are caused due to bad

leverage points are given in Table 14.

Table 14: The results of the ML type of methods for εcont = 20% and outliers due to bad leverage points.

RMSE Bias Coverage ATE Imputation ARE Imputation MAE

ARB 1.276 0.210 97.000% 3.981 (1.265)
2.751 0.515

PLR 1.161 0.137 92.000% 3.908 (1.159)

Notes: The standard errors are given in parentheses.

The results from the DiD type of methods for εcont = 20%, where outliers are caused due to

vertical outliers are given in Table 15.

Table 15: The results of the DiD type of methods for εcont = 20% and outliers due to vertical outliers.

RMSE Bias Coverage ATE Prediction Outlier Detection Imputation ARE Imputation MAE

DiD 9.207 2.482 83.250% 4.722 (9.048) 475.136 -
2.196 0.551

RDiD 0.214 0.046 93.750% 4.115 (0.299) 1.545 1.000

Notes: The standard errors are given in parentheses.
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The results from the IV type of methods for εcont = 20%, where outliers are caused due to

vertical outliers are given in Table 16.

Table 16: The results of the IV type of methods for εcont = 20% and outliers due to vertical outliers.

RMSE Bias Coverage ATE Prediction Outlier Detection Imputation ARE Imputation MAE

IV 11.071 3.851 79.000% 3.457 (11.357) 806.375 -

3.289 0.661
RIV 0.764 0.067 94.200% 3.736 (1.208) 130.440 0.993
IV-DDC 0.741 0.028 93.600% 3.812 (1.325) 153.291 0.969
PLIV 11.315 -0.458 100.000% 3.314 (21.156) - -

Notes: The standard errors are given in parentheses.

The results from the ML type of methods for εcont = 20%, where outliers are caused due to

vertical outliers are given in Table 17.

Table 17: The results of the ML type of methods for εcont = 20% and outliers due to vertical outliers.

RMSE Bias Coverage ATE Imputation ARE Imputation MAE

ARB 3.967 -0.032 96.000% 3.739 (3.987)
2.761 0.495

PLR 3.902 -0.047 96.000% 3.724 (3.921)

Notes: The standard errors are given in parentheses.
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