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Abstract

To combat climate change the EU has developed the European Union Emissions Trading

System (EU ETS) with the European Emission Allowances (EUAs) as the core carbon

credits traded. The combination of the EU ETS being a policy driven market and the

changing nature of its fundamentals builds a case for a more thorough investigation of

carbon price dynamics. This paper investigates and identifies the dynamics between the

EUAs and its fundamental drivers based on three different models: a Vector Autoregres-

sive (VAR) model, a Vector Error Correction Model (VECM) and a time-varying VECM

(TV-VECM). I investigate what the cointegration relationships are and whether they are

constant. Contrary to existing literature, all models incorporate indicators for growth in

clean technology and sustainability, in addition to the various traditional energy variables.

The TV-VECM shows that there is a time-varying cointegration relation present between

all the variables together. I find a significant cointegration relation between the EUA price,

gas price, coal price and an indicator of renewable energy growth in the EU. Without this

indicator, the relationship is not found, supporting the idea of adding various new renew-

able energy sources to the fundamental drivers. Based on a the time-varying cointegration

likelihood ratio test, the constant cointegration relation is rejected.
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1 Introduction & Literature Review

To combat climate change the European Union has developed an emissions trading sys-

tem that launched in 2005: the European Union Emissions Trading System (EU ETS).

(European Commission, 2015). At the base of the EU ETS lies the pricing of emissions.

However, ever since its debut, there is an ongoing debate about the best way to establish

a carbon price. It can be done either via carbon taxes or via cap-and-trade programs

like the EU ETS (Goulder and Schein, 2013). In theory, the cap-and-trade programs

ensure progress towards the goal of reducing emissions as it integrates a limit on both

the emissions (using the cap) and the price (by trading) directly into the policy design,

such that one has certainty on emissions rather than price through carbon taxes. The

implementation of the system has been divided into distinct trading periods over time,

known as phases: phase 1 (2005-2007), phase 2 (2008-2012), phase 3 (2013-2020), phase

4 (from 2021-2030), and beyond. At the time of writing, we are almost entering phase

4 of the system. Establishing a market determined price for carbon is crucial for a well

functioning trading system. But since the policy for each phase is adjusted, it is especially

difficult to capture long term carbon credit dynamics, stretching over multiple phases.

There is an extensive body of literature on modeling the price dynamics of carbon credits

and in particular the European Emission Allowances(EUAs). Chevallier (2011) exten-

sively analyses the influence of energy prices on the EUA price dynamics with simple

linear regression models using energy variables and find that brent crude oil, gas and

coal significantly influence EUA prices. Additionally, to capture the changes in pol-

icy between the phases, researchers have turned to more dynamic models. Lutz et al.

(2013) estimates a Markov regime-switching GARCH model that classifies a low and a

high volatility regime and show significant differences in the impact of the fundamentals

across states. Chevallier (2011) identifies an economic recession and economic expansion

based on data ranging from March 2007 to March 2009 to highlight the time-variation

of uncertainty. Although regime-switching models allows one to use less underlying as-

sumptions, it does not provide information on the fundamental drivers underlying the

regimes.

Hence, this thesis investigates the long-run relationship between the EUAs and its pos-

sible price drivers using cointegration. To investigate the fundamental drivers between
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fuel, electricity, and EUA prices, Fell et al. (2012) investigates the relationship between

electricity markets in multiple countries and continents and find different equilibria in all

markets, due to the different price series in each market. Rickels et al. (2015) find similar

results and argue that statistically significant cointegration equilibria might not explain

long-term carbon price dynamics. This cointegration relationship only strengthens the

need for more dynamic models, (Hintermann et al., 2016) as the previously mentioned

methods do not allow for the relationship between prices to change over time.

Allowing the cointegration relation to change over time, could be crucial in the light of

various new developments in the energy market (the Coronavirus/Covid-19 crisis, starting

March 2020), as the dynamics of oil, energy and carbon price has drastically changed.

First, more renewable energy players are entering the market for the past years and clean

technology is rapidly evolving leading to lower costs. Most recently, (Lewis, 2020) argues

that the need for green hydrogen points to higher carbon prices. Second, an article in the

Financial Times (Riding, 2020) states that ESG funds saw a record inflow in Q2 of 2020,

showing that trends in sustainable investing are changing. Third, the carbon market cap

is still being continually adjusted and will keep being adjusted in the future (European

Commission, 2015).

The combination of the EU-ETS being a policy driven market and the changing nature of

its fundamentals builds a case for a more thorough investigation of carbon price dynamics

and models that account for the changing relationships in the carbon market. This paper

investigates these dynamics based on three different models. Contrary to existing litera-

ture, all models incorporate indicators for growth in clean technology and sustainability,

in addition to the various energy indicators that influence the carbon credit prices. As

a base case, I use a Vector Autoregressive (VAR) model to link the EUA returns to the

other variables. To determine the long term equilibria between the various variables, I

model the carbon prices using a Vector Error Correction Model (VECM) and investigate

what, if any, the cointegration relationships are, based on the theoretical framework of

Johansen (1988).

Lastly, in addition to existing literature, I extend this traditional model by investi-

gating the hypothesis of time-variation in the cointegration relationship(s) based on a

time-varying VECM (TV-VECM), proposed by Bierens and Martins (2010). When you
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think of these cointegration relationships as slowly shifting equilibria in different peri-

ods throughout time, rather than abruptly shifting equilibria with clear break points in

time, the added value of time-varying cointegration over structural breaks becomes more

clear. Considering the changing dynamics in the carbon market are not driven by specific

events, but rather by gradually changing trends, policies and investor beliefs.

Bierens and Martins (2010) build this time-varying cointegration model via expansions

in terms of Chebyshev time polynomials, allowing the cointegrating relationships to vary

smoothly over time. Other notable research on the topic of time-varying cointegration is

conducted by Koop et al. (2011), who develop a similar model comparable to the random

walk variation used with time-varying VAR models. However, as Bierens and Martins

(2010) propose a likelihood ratio test for time-varying cointegration, with time-invariant

cointegration as the null hypothesis, the resulting extended VECM can be estimated

similar to the maximum likelihood approach by Johansen (1988) and hence can be more

easily compared to the regular, time-invariant VECM, explaining its use in this paper.

Based on the estimated VAR models and standard VECMs, in line with past literature,

oil, coal and gas are significant EUA price drivers. However, I am the first to my knowl-

edge, to find that sustainable investing indicators also significantly influence EUA prices.

In addition, I find a statistically significant cointegration relation for the regular VECM

between the EUA price, gas price, coal price and an indicator of renewable energy growth

in the EU. This shows that gas and coal are amongst the fundamental drivers of EUA

prices, however, without the indicator of renewable energy growth, the relationship is

not found, indicating the increasing role of renewable energy sources in the fundamental

drivers of the EUA prices. Lastly, the likelihood ratio test rejects constant cointegration

relations over time in multiple models and finds that there is a time-varying cointegra-

tion relation present in the variables. Hence, past literature might wrongly conclude that

there is a cointegration relation present between EUA prices and its fundamentals, which

is the same at all points in time. Therefore these models could be misspecified.

These results are not only important to improve the policy design of the EU ETS, but

also for traders and compliant companies under the EU ETS, as it is important to know

what the market fundamentals are and how they interact for forecasting the allowance

prices in the future.
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The remainder of the paper is structured as follows. Section 2 describes the EU ETS and

its regulations in more detail. Section 3 describes the choice of EUA prices drivers along

with descriptive statistics. In Section 4 discussed the methods used to estimate the VAR

models, VECMs and TV-VECMs. Section 5 summarizes the results for all considered

models. Finally, Section 6 concludes and suggests areas of future research.

2 EU ETS market

The European Union Emissions Trading Scheme (EU-ETS) is the biggest compliance

market in the world. In the cap-and-trade system, a company is paying someone else to

reduce your green-house-gas emissions elsewhere: i.e. as the purchaser of a carbon credit,

you compensate for your own companies’ emissions.

The rights to emit are equivalent to the global warming potential of 1 tonne of CO2

equivalent (tCO2e), these rights are called allowances. At the core of the scheme are the

EUAs, which are either bought from auctions, received free of charge, or traded among

participating companies. The price of the EUAs is determined by supply and demand,

regulated by the cap-and-trade system. The level of the cap determines the number

of allowances available in the whole system. The cap on the number of allowances is

designed to decrease annually from 2013 by 1.74 % per year. This allows companies to

gradually adjust their emissions. The system covers power and heat generation, energy-

intensive industry and commercial aviation. The main purpose of the EU ETS is to

achieve emission reduction targets at minimum costs and to promote global sustainable

innovation.

Set up in 2005, the EU ETS is the world’s first international emissions trading system.

It remains the biggest one, accounting for over three-quarters of international carbon

trading. The EU ETS has proved that putting a price on carbon and trading in carbon

credits can work. Emissions from installations in the system are falling as intended by

slightly over 8% compared to the beginning of phase 3. By the end of 2020, emissions from

sectors covered by the system will be 21% lower than in 2005 (This estimation is based

on pre-Covid forecasts). In 2030, under the regulations of phase 4 they will be 43% lower.
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The EU is taking away rights volume by volume and the price is expected to increase

because credits become more scarce. The buyers, suppliers and companies that are com-

pliant with the actual scheme range from small to mid-size greenhouse type of companies

(e.g. from tomato producers to companies like Tata Steel Europe). Not complying or

miscalculation of the carbon emissions can get very expensive. In the first half of 2020 in

the Netherlands alone, these fines ranged from 14 000 up to 376 490 EUR per company,

with a total of ten fines handed out by the Dutch Emissions Authority 1. A general

remark to note about the system is that there used to be (or still is) an over-supply.

Past literature argues that we have not reached the cap goal yet, but it is slowly being

diminished. As a consequence, companies are increasingly starting to feel more pressured

to transfer to green sources of energy. Together with the high fines, it adds to the sys-

tem being taken more and more seriously and the price is expected to get higher and

higher, mostly because of EU regulations and increasing participation. It seems that the

goal of the European Commission is that it becomes more expensive and eventually too

expensive to buy easily.

3 Data

The implementation of the EU ETS has been divided up into distinct trading periods over

time, known as phases: phase 1 (2005-2007), phase 2 (2008-2012), phase 3 (2013-2020),

phase 4 (from 2021-2030), and beyond.

An important time-period to note is between phases 1 and 2, where the EUA spot price hit

zero since banking from phase I to phase II was not allowed and the allowances for phase

I became worthless at some point. Figure 1 shows that the EUA spot price continued to

move around zero for the first part of phase 2. Using a structural break in 2006, Creti

et al. (2012) show that while a cointegration relationship exists for both phase 1 and 2,

the relationship is different across the two periods with an increasing role of energy prices

in phase 2.

After this time-period, the EUA spot price developed into a nonzero price toward the

end of phase II, despite a nonbinding cap for the phase and despite the financial crisis of

2007-2008. This could reflect expectations of a cap on overall emissions that is binding

1 www.emissieautoriteit.nl/over-de-nea/publicatie-van-boetes/gepubliceerde-boetebesluiten
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in the long-term, given the opportunity to bank allowances (Hintermann et al., 2016).

Even though the EUA spot price rebounded more quickly from the first financial crisis

as opposed to the market. The general view in the literature is that this period of the

market is most probably still inefficient. Most recently, Ibikunle et al. (2016) suggest that

trading quality in the EU-ETS matures from 2008 to 2011, in line with earlier research

by Frino et al. (2010) who find that aggregate long-term liquidity improves throughout

Phase I and during the early months of Phase II.

Figure 1: EUA prices from 01/01/2008 - 30/06/2020 - EU ETS phase 2 onward

Another important feature of the market is that every spring, participating companies

must close the previous emissions year, i.e. they must report their greenhouse gas emis-

sions and surrender allowances. At the time of writing, we are almost entering phase 4 of

the system. It is important to note that the EUAs that will be allocated in phase 4 will

not be valid for use in phase 3. However, any remaining emission allowances from phase

3 will continue to be valid in phase 4 and thereafter. The transitional year from phase

3 to phase 4 falls in 2021. In that year, companies will receive emission allowances from

phase 4, while closing the trading year for phase 3. Phases 3 and 4 will overlap until the

year-end closing in May 2021 (Dutch Emissions Authority). Previously it was possible to

use the EUAs allocated to firms in February for the new ’emissions year’ for the year-end

closing in April of the same year. This will not be possible during the transition from

phase 3 to phase 4, as phase 4 allowances are not valid anymore in phase 3. This makes

the period leading up to it very interesting as companies might prepare for the transition

more upfront.

The data set consists of 2217 daily time-series observations from 1 January 2012 to

30 June 2020, phase 2 onward. Given the fact that the market matures around the
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end of 2011 according to most literature, the carbon credit dynamics might be more

established starting in 2012. Besides, the EUA-low of zero in 2008, mainly driven by

poor initial construction of the system, will influence statistical models negatively and

might overshadow the carbon credit dynamics.

Hintermann et al. (2016) analyse the influence of different factors on allowance price

formation across different studies and find positive influences on allowance prices for

economic activity indicators, growth indicators and oil prices. More specifically, Creti

et al. (2012) find that in particular oil, gas and coal are cointegrated. Hintermann et al.

(2016) find that it is important to also add electricity prices to the analysis, as otherwise

some of the coal price results could be explained by omitted variables. This results in

Oil, Gas, Elec and Coal as the most important energy prices to consider.2 Rickels et al.

(2015) show that regression results, in particular for coal and gas prices are extremely

sensitive to choosing different price series of these potential influencing factors, hence

Gas, Elec and Coal are all obtained from the same source, namely the European Energy

Exchange (EEX), in an attempt to make the results as accurate as possible, as the data

they provide comes from more closely related markets as opposed to using different data

from different exchanges.

Overall, past literature suggests that macroeconomic variables and energy prices influence

EUA prices. However, there is another important factor that intuitively could drive

the EUA prices, namely factors involving sustainable growth and the development and

implementation of renewable energy sources. In the light of recent events (the Covid

crisis with its peak effect on the stock market in March 2020), these factors may be

crucial as more renewable energy players are entering the market, clean technology is

rapidly evolving leading to lower costs (Lewis, 2020), trends in sustainable investing are

changing (Riding, 2020) and in less than a year, there has been a threefold increase in

the number of companies committing to net zero (Tett et al., 2020). To account for these

developments, in addition to the energy prices I will investigate two other indicators: Sust

and Ren.

The remainder of the paper uses the natural logarithm of all series. This forms no issue

for any time-series except Elec. Throughout the data set, electricity prices in Europe

2 All data is obtained from Datastream. All variables together with their abbreviations used in this
research and their Datastream tickers can be found in Table A1 in Section A in the Appendix.

8



have turned negative, with the biggest dip into the negative for a total of exactly 97

hours between December 2012 and December 2013, with an average negative price of

negative 57.46 euros per megawatt-hour (De Vos, 2014). One of the reasons of negative

electricity prices are a result from a market distortion caused by renewable support mech-

anisms (De Vos, 2015). Treating the dips as outliers might therefore remove important

information about the long term dynamics between the energy prices.

The new Elec variable is constructed by the following transformation on the entire se-

ries: adding 1.1 and subtracting the minimum value of the series and taking the natural

logarithm after the transformation. Preliminary results show this does not affect model

estimation at all or only slightly but does not influence the significance. A summary of

the data is shown in Table 1 as well as a plot of all time-series in Figure 2. Even though

the final data set only starts in 2012 and excludes the period of the EU-ETS where the

EUA prices dropped to zero, it is important to note the high standard deviation of Eua,

besides it is also interesting to note the high standard deviation of Ren as opposed to

Sust.

Table 1: Descriptive statistics of all variables

Eua Oil Gas Coal Elec Ren Sust

Mean 2.1381 4.2383 2.9177 4.2719 4.5687 3.0586 4.4893
Std. dev. 0.6050 0.3760 0.3452 0.2457 0.1607 0.6668 0.1365
Min. 0.9858 2.9617 1.3137 3.6494 0.0953 1.2712 4.0647
Max. 3.3932 4.8380 3.3810 4.7023 5.1317 3.8285 4.7304

This Table shows the daily mean, standard deviation, minimum and maximum of all time series on
the sample 1 January 2012 - 30 June 2020. The abbreviations of all variables are elaborated upon
in Table A1 in the Appendix.
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(a) Eua price in relation to the energy prices

(b) Eua price in relation to the sustainability indicators

Figure 2: Log time-series, 01/01/2012 - 30/06/2020

Table 2 shows that the correlations between the EUA spot price (Eua) and the two

sustainability indicators (Ren and Sust) have increased drastically since the Covid-19

crisis (March 2020). Whereas in the past Oil price and Eua were negatively correlated,

these dynamics have also drastically changed with the peak of the crisis on Black Monday

(March 9th, 2020). The correlations between Eua and Gas remained rather constant,

as well as between Eu and Elec. The correlation between Eua and Coal, turned from

negative to positive after the peak of the crisis. The changing dynamics in the correlation

between the variables for this single break further motivate the use of time-varying models

in this research.
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Table 2: Correlation EUA prices, energy and climate variables

Panel A: Correlation - Full Data Set

Eua Oil Gas Coal Elec Ren Sust
Eua 1.0000
Oil -0.2444 1.0000
Gas -0.4030 0.7378 1.0000
Coal -0.2437 0.6663 0.7328 1.0000
Elec 0.0574 0.2633 0.3401 0.3594 1.0000
Ren 0.4069 -0.7360 -0.6470 -0.4924 -0.1896 1.0000
Sust 0.4406 -0.4686 -0.4037 -0.2973 -0.1223 0.8499 1.0000

Panel B: Correlation - Pre Covid

Eua Oil Gas Coal Elec Ren Sust
Eua 1.0000
Oil -0.1489 1.0000
Gas -0.2981 0.7021 1.0000
Coal -0.1466 0.6081 0.6846 1.0000
Elec 0.1286 0.1943 0.2748 0.3078 1.0000
Ren 0.3766 -0.7471 -0.7071 -0.4680 -0.1595 1.0000
Sust 0.4541 -0.5214 -0.5015 -0.3166 -0.1256 0.8632 1.0000

Panel C: Correlation - Post Covid

Eua Oil Gas Coal Elec Ren Sust
Eua 1.0000
Oil 0.6942 1.0000
Gas -0.2296 -0.1743 1.0000
Coal 0.0406 0.1748 0.5462 1.0000
Elec 0.2443 0.4472 0.1229 0.1650 1.0000
Ren 0.7819 0.7579 -0.5421 -0.1144 0.2747 1.0000
Sust 0.7995 0.6879 -0.4764 -0.0926 0.2725 0.9609 1.0000

This Table shows the cross-correlations between the EUA prices, energy and climate
variables based on daily log of the time series. The abbreviations of all variables
are elaborated upon in Table A1 in the Appendix. The correlations are calculated
on three samples: Panel A shows the correlation for the full data set (31/12/2007 -
30/06/2020), panel B for Pre Covid (31/12/2007 - 08/03/2020) and panel C for Post
Covid (09/03/2020 - 30/06/2020).

4 Methodology

I model the long-term carbon price behaviour of the EUAs by building further upon ideas

found by Bredin and Muckley (2011), who examine the extent to which several theoreti-

cally founded factors including, economic growth, energy prices, and weather conditions

determine the expected prices of the EUAs. They study both static and recursive versions
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of the Johansen multivariate cointegration likelihood ratio test as well as a variation on

this test with a view to control for time-varying volatility effects. In addition I try to add

ideas found by Chevallier (2011), who similarly to Bredin and Muckley (2011) proposes to

estimate a VECM, but extends the Johansen Cointegration Test with a Structural Shift

to explore the possibility of wrongly accepting a cointegration relationship. A thorough

literature analysis on carbon price dynamics by Hintermann et al. (2016) finds that even

though structural breaks are investigated, we need more dynamic models to investigate

the carbon price dynamics because of its environments’ changing nature. Even though

time-varying volatility or structural breaks in the model might help forecast performance,

it might be even more interesting to investigate a possible time-varying cointegration re-

lationship. As a time-varying cointegration relationship could be more relevant from an

economic and policy point of view. An example of a relationship like this that has already

been determined and is used for forecasting of energy prices, is the fuel-switching constant

(i.e. producing one unit of electricity based on coal-fired or gas-fired power- plants, and

switching between inputs as their relative price vary). It would be increasingly important

to establish fuel-switching constants between other energy sources, like switching from

coal to a certain type of renewable energy. I use the theoretical framework proposed by

Bierens and Martins (2010) to capture the time-varying dynamics of the carbon prices,

who built a time-varying cointegration model via expansions in terms of Chebyshev time

polynomials and propose a likelihood ratio test to test for time-varying cointegration,

with time-invariant cointegration as the null hypothesis.

I start by investigating the relationship between the variables by a simple VAR model in

section 4.1. I then explain how to extend this model to a VECM in section 4.2. Finally,

section 4.3 gives a detailed overview of the methods adopted in Bierens and Martins (2010)

to build the time-varying cointegration relation within the TV-VECM and describe how

they compare the model to a regular VECM.

4.1 VAR Model

As a base model, I will start investigating the relationships between the variables using

a Vector Autoregressive (VAR) model. VAR models are generally strong and flexible

methods to linearly model multivariate time series and are appropriate for modeling

stationary data, such as asset returns or growth rates of macroeconomic time series. A
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p− th order VAR, or VAR(p) is defined as follows:

Yt = c+ Γ1Yt−1 + Γ2Yt−2 + . . .+ ΓpYt−p + εt, t = 1, . . . , T, (1)

where Yt is a k × 1 vector with values of variables at time t, such that Yt−1 is the first

lag of Yt, c is the k × 1 vector of constants, Γi is a k × k matrix of parameters for lag

i = 1, . . . , p and εt is a k-dimensional white noise process.

The VAR model gives the ability to model the dynamics between the energy, climate

variables and the EUA spot price. To choose the correct order p, I use the following

model selection criteria in line with Bierens and Martins (2010): AIC (Akaike, 1969),

BIC (Schwarz et al., 1978) and HQIC (Hannan and Quinn, 1979).

It is however important to note that the variables could be non-stationary. To test for the

stationarity of the variables, I will conduct the Augmented-Dickey-Fuller test, which tests

the presence of unit roots. A VAR(p) model is said to be stable, and the corresponding

vector time series yt and each of its components is said to be stationary if all solutions

are outside the unit circle. If the variables are indeed non-stationary, a simple solution

to make the series stationary would be taking first differences and estimate a new VAR,

however, this would ignore a possible cointegration relation between the variables. To

investigate the cointegration, the VAR model needs to be extended to a Vector Error

Correction Model (VECM).

4.2 VECM & Cointegration

As the goal of this thesis is to investigate long-term carbon price behaviour it is inter-

esting to find long-run equilibrium relationships between the energy, climate and carbon

variables, i.e. cointegration.

It is firstly important to note that I use the definition of cointegration adopted by Engle

and Granger (1987): The components of the vector Yt = (y1t, y2t, . . . , ynt)
′ are said to be

cointegrated of order d, b, denoted by Yt ∼ CI(d, b) if:

I All components of Yt are integrated of order d.

II There exists a vector β = (β1, β2, . . . βn) such that the linear combination βYt =

β1y1t + β2y2t + . . .+ βnynt is integrated of order (d− b) where b > 0.
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The vector β is called the cointegrating vector and captures the long-term linear combi-

nations of the variables. There may be multiple stationary linear combinations of them,

meaning that there is more than one cointegrating vector. I first map the relation between

variables more thoroughly by investigating their correlations, autocorrelation and perform

the Granger Causality test. Engle and Granger (1987) discusses a cointegration test for

a two-variable system, whereas the test proposed in Johansen (1988) is easily applica-

ble for multiple variables. Hence I will test the cointegration relationships with the latter.

The cointegrated process Yt can be written as a VECM (p) in Granger representation

form (Engle and Granger, 1987) with deterministic terms as:

∆Yt = π0 + π1t+ Π′Yt−p +

p−1∑
j=1

Γj∆Yt−j + εt, (2)

Where ∆Yt = Yt − Yt−1 and π0 + π1t denote a constant and a trend. The Γj with j > 0,

are k × k and Π′ = αβ′, where α and β are fixed k × r matrices and have full column

rank, with r the number of linearly independent cointegrating vectors (the columns of β

), the εt are i.i.d. Nk(0,Σ) errors.

Johansen (1995) considers five cases where he imposes different restrictions on the con-

stant and trend term: π0 + π1t shown in parenthesis:

I The regression model contains no constants and no deterministic trends. (π0 = 0

& π1 = 0)

II The regression model contains constants but no deterministic trends while data

do not display linear trending patterns. The parameters for the intercepts are

restricted. (π0 = αγ0 and π1 = 0)

III The regression model contains constants but no deterministic trends while data

display linear trending patterns. The parameters for the intercepts are unrestricted.

(π1 = 0)

IV The regression model contains constants and deterministic trends, while the data

have linear trends but no quadratic trending patterns. The parameters for the

trends are restricted. (π1 = αγ1)
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V The regression model contains constants and deterministic trends, while the data

display quadratic trending patterns. The parameters for the trends are unrestricted.

(none)

It is important to note that these restrictions mainly impact whether Yt will have a drift

or not, since this is a special focus of section 4.3, I elaborate more on the implications of

the restrictions concerning the drift (or no drift) in Yt below.

Since non of the time-series have zero mean (Table 1), case I will not be investigated at all.

Case V, without any restrictions imposed, is used when data displays quadratic trending

patterns. Visual inspection doesn’t show this is evident for the time-series involved, and

hence not investigated in this thesis.

Case II imposes a restriction on the intercept parameters and assumes no trend, i.e. t = 0

and ∃π0, such that

π0 = αγ0. (3)

This reduces Equation 2 to:

∆Yt = α(γ0 + β′Yt−p) +

p−1∑
j=1

Γj∆Yt−j + εt. (4)

Imposing a constant within the cointegration relations. Here the term γ0 + β′Yt−p is

zero-mean stationary, ensuring ∆Yt is zero-mean stationary and Yt has no drift. It is

not expected this model will perform best using our data as some variables such as Eua

and Gas run approximately parallel without drift for some periods (from 2012 to 2018 in

Figure 2), but this is not true for all variables. Also, most time series run upward sloping.

Case III, imposes no restrictions on the intercept parameter, leaving a constant outside

the cointegration relation. However π0 is also able to generate drift in Yt because π0 acts

as a vector of drift parameters. Thus drift in the Yt process is no reason to include a time

trend in the VECM.

Hence I consider case IV, with a restriction on the trend parameter, resulting in a constant

outside the cointegration relation and linear trend within the cointegration relation by
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assuming that ∃π1, such that

π1 = αγ1. (5)

This reduces equation 2 to:

∆Yt = α(γ1t+ β′Yt−p) +

p−1∑
j=1

Γj∆Yt−j + εt. (6)

Since ∆Yt is stationary, we must have that γ1t+β
′Yt−p is stationary, hence β′Yt−p is trend

stationary. In this case the time series involved have drift, and veer apart, like for Eua

and Ren from mid 2013 to mid 2017.

Inference on standard cointegration for the rank of Π is done using two tests that both

check how many eigenvalues equal the unit vector. I firstly use the Trace test statistic by

Johansen (1988). The trace test, tests whether the the number of cointegration relations

equals r = r∗ < k, versus the alternative that r = k. The test statistic is given by:

Trace = −T
k∑

i=r+1

log(1− λ̂i). (7)

Where Testing proceeds sequentially for r∗ = 1, 2, . . . , k and the first non-rejection of the

null is taken as an estimate of r.

Secondly, I test the significance of the estimated eigenvalues themselves where the null

hypothesis for the maximum eigenvalue test is that the number of cointegration relations

equals r = r∗ < k, versus r = r∗ + 1. The test statistic is given by:

λmax = −T log(1− λ̂r). (8)

Testing proceeds sequentially for r∗ = 1, 2, . . . , k with the first non-rejection used as an

estimator for r. For both tests, λ̂1, . . . λ̂k denote the ordered (generalized) eigenvalues

resulting from solving the suitable generalized eigenvalue problem defined in Johansen

(1988).
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4.3 Time-Varying VECM & Cointegration

In addition to existing literature, I propose an alternative framework where the cointe-

grating vectors fluctuate over time by testing the time-invarying, regular cointegration

hypothesis against a time-varying cointegration.

I first consider a time-varying VECM (p) with Gaussian errors, without intercepts and

deterministic trends,

∆Yt = Π′tYt−1 +

p−1∑
j=1

Γj∆Yt−j + εt, t = 1, . . . , T, (9)

with εt ∼ i.i.d. Nk[0,Σ], Yt a k×1 vector containing all time-series, k the total number of

variables and T is the number of observations. The objective is to test the null hypothesis

of general cointegration, Π′t = Π′ = αβ′, where α and β are fixed k × r matrices with

rank r, against TV cointegration, where only the cointegration relation fluctuates over

time, with Π′t = αβ′t, α stays constant and the βt ’s are time-varying k× r matrices with

constant rank r. Again, Σ and the Γj ’s are fixed k × k matrices and 1 ≤ r < k. This

form of time-varying cointegration is explicitly chosen as it could clarify more about the

long-term dynamics between the time-series. An extension is briefly mentioned in the

discussion in section 6.1.

For most cointegrated macroeconomic time series, ∆Yt, and βtYt are nonzero-mean sta-

tionary processes. If so, the tests will be conducted under the "drift case" assumptions.

The time-varying cointegrating relation is expressed in β′tYt = εt, where the process εt

represents deviations from the cointegration relationship and

βt = (βEuat, βOilt, βGast, βCoalt, βElect, βRent, βSustt) is an unknown function over time. We

want this cointegration relationship to vary smoothly over time rather than abruptly

change. To achieve this, Bierens and Martins (2010) uses lower-order Chebyshev poly-

nomials and βt will be approximated by βt(m) =
∑m

i=0 ξiPi,T (t) where the ξi ’s are the

Fourier coefficients and m denotes the order of the Chebyshev polynomial. These poly-

nomials are rather smooth functions of i, allowing for gradual change in the cointegration

relationship.

The Chebyshev time polynomials Pi,T (t) are orthonormal and hence can be represented
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by

Pi,T (t) =
√

2 cos(iπ(t− 0.5)/T ), P0,T (t) = 1, t = 1, 2, . . . , T, i = 1, 2, 3, . . . . (10)

To model the time-varying βt’s, I substitute Π′t = αβ′t = α (
∑m

i=0 ξiPi,T (t))
′ in equation

9, which yields

∆Yt = α

(
m∑
i=0

ξiPi,T (t)

)′
Yt−1 +

p−1∑
j=1

Γj∆Yt−j + εt, (11)

for some k × r matrices ξi, which can be written more conveniently as

∆Yt = αξ′Y
(m)
t−1 + ΓXt + εt, (12)

where ξ′ = (ξ′0, ξ
′
1, . . . , ξ

′
m) is an r × (m + 1)k matrix of rank r, and Y

(m)
t−1 and Xt are

defined by

Y
(m)
t−1 =

(
Y ′t−1, P1,T (t)Y ′t−1, P2,T (t)Y ′t−1, . . . , Pm,T (t)Y ′t−1

)′
, (13)

Xt =
(
∆Y ′t−1, . . . ,∆Y

′
t−p+1

)′
. (14)

The null hypothesis of general co-integration corresponds to ξ′ = (β′, Or,k.m) , where β is

the k × r matrix of time-invarying co-integrating vectors from equation 9 and ξ′Y (m)
t−1 =

β′Y
(0)
t−1, with Y

(0)
t−1 = Yt−1.

Similarly to the approach by Johansen (1995), the null hypothesis is tested via a likelihood

ratio test.

LRtvc = −2
[
l̂T (r, 0)− l̂T (r,m)

]
, (15)

where l̂T (r, 0) is the log-likelihood of the regular VECM(p) (i.e. equation (12) in the

case m = 0), so that Y (m)
t−1 = Yt−1, and l̂T (r,m) is the log-likelihood of the VECM(p) in

equation (9) in the case where Y (m)
t−1 is given by equation 13. I refer to this likelihood ratio

test as the time-varying cointegration test (LR TVC) throughout the rest of the paper.

To estimate the time-varying model with Maximum Likelihood and perform the LR TVC,

Bierens and Martins (2010) defines:
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S00,T =
1

T

T∑
t=1

∆Yt∆Y
′
t − Σ̂′X∆Y Σ̂−1

XXΣ̂X∆Y , (16)

S
(m)
11,T =

1

T

T∑
t=1

Y
(m)
t−1 Y

(m)′

t−1 − Σ̂′XY (m)Σ̂
−1
XXΣ̂XY (m) , (17)

S
(m)
01,T =

1

T

T∑
t=1

∆YtY
(m)′

t−1 − Σ̂′X∆Y Σ̂−1
XXΣ̂XY (m) , (18)

S
(m)
10,T =

(
S

(m)
01,T

)′
, (19)

where Σ̂XX = 1
T

ΣT
t=1XtX

′
t, Σ̂X∆Y = 1

T
ΣT

t=1Xt∆Y
′
t , Σ̂XY (m) = 1

T
ΣT

t=1XtY
(m)′

t−1 and

λ̂m,1 ≥ λ̂m,2 ≥ · · · ≥ λ̂m,r ≥ · · · ≥ λ̂m,(m+1)k are the ordered solutions of the generalized

eigenvalue problem

det
[
λS

(m)
11,T − S

(m)
10,TS

−1
00,TS

(m)
01,T

]
= 0. (20)

The rank of S(m)
10,TS

−1
00,TS

(m)
01,T is k, such that λ̂m,k+1 = · · · = λ̂m,(m+1)k ≡ 0.

The log-likelihood l̂T (r,m), given the cointegration rank r and Chebyshev polynomial of

order m, takes the form:

l̂T (r,m) = −0.5T ·
r∑

j=1

ln
(

1− λ̂m,j

)
− 0.5T · ln (det (S00,T )) + C, (21)

where C is a constant.

The LR TVC test now takes the form:

LRtvc
T = −2

[
l̂T (r, 0)− l̂T (r,m)

]
= T

r∑
j=1

ln

(
1− λ̂0,j

1− λ̂m,j

)
, (22)

given the cointegration rank r and Chebyshev polynomial order m.

Using theorem 1 of Bierens and Martins (2010), we know that given m ≥ 1 and r ≥ 1,

under the null hypothesis of standard cointegration the LR statistic LRtvc
T defined in 22

follows an asymptotic χ2 distribution with mkr degrees of freedom. The power of the LR

TVC depends on the choice of the Chebyshev polynomial order m. The optimal choice
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for m can be compared to the optimal choice of the order of an AR model. Bierens and

Martins (2010) recommend to use the minimum of the HQIC for ideal the choice of m,

Martins (2018) recommends to estimate m = 1, . . . ,M with the maximum Chebyshev

order M = T/10 and choose the m corresponding to the minimum value of the HQIC.

For most cointegrated macroeconomic time series and energy variables, ∆Yt and β′Yt

are nonzero-mean stationary processes, which correspond to a modification of the time-

varying VECM. For the modified assumptions I refer to Bierens and Martins (2010)

as they don’t directly impact the previous results. These modified assumptions are be

referred to as "the drift case." The updated equation 12 corresponding to time-varying

VECM(p) with drift is now

∆Yt = c+ αξ′Y
(m)
t−1 +

p−1∑
j=1

Γj∆Yt−j + εt, (23)

where c is a vector of intercept parameters.

5 Results

The results are presented in the following subsections. Section 5.1 shows the results of

the Augmented Dickey-Fuller Test. Section 5.2 shows the VAR order selection criteria

and regression results, section 5.3 discusses the Johansen cointegration rank tests and

the VECM regression results. Finally, section 5.4 summarizes the estimated time-varying

cointegration relationship.

5.1 Preliminary Results

The Augmented-Dickey-Fuller test tests all variables for the presence of unit roots, the

results are shown in Table 3.
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Table 3: Results Augmented Dickey-Fuller Test

Eua Oil Gas Coal Elec Ren Sust

Constant, no trend
ADF -0.1358 -1.0640 -1.2010 -1.6044 -4.1262 -1.0686 -2.5467
P-value 0.9458 0.7292 0.6732 0.4814 0.0009∗∗∗ 0.7274 0.1045

Constant and trend
ADF -1.6807 -1.5762 -2.3810 -1.6217 -4.1566 -2.3883 -3.2210
P-value 0.7592 0.8016 0.3898 0.7838 0.0052∗∗∗ 0.3858 0.0803∗∗∗

This table presents the results of the Augmented Dickey-Fuller Test. The Null Hypothesis corre-
sponds to: the data has a unit root and is non-stationary. For a constant and no trend the critical
values are -3.433 at 1% , -2.863 at 5% and -2.863 at 10%. For a constant and a trend the critical
values are -3.963 at 1%, -3.412 at 5% and -3.412 at 10%. The abbreviations of the variables are
elaborated upon in Table A1 in the Appendix. All calculations are made on the sample 1 January
2012 - 30 June 2020.

Table 4: Results Augmented Dickey-Fuller Test after taking first differences

Eua Oil Gas Coal Elec Ren Sust

Constant, no trend
ADF -11.4444 -48.3843 -7.7134 -42.1811 -15.1485 -47.2285 -14.5218
P-value0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

Constant and trend
ADF -11.5171 -48.3733 -7.7483 -42.1727 -15.1417 -47.2179 -14.5405
P-value0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗

This table presents the results of the Augmented Dickey-Fuller Test on the first differences variables.
The Null Hypothesis corresponds to: the data has a unit root and is non-stationary. For a constant
and no trend the critical values are -3.433 at 1% , -2.863 at 5% and -2.863 at 10%. For a constant
and a trend the critical values are -3.963 at 1%, -3.412 at 5% and -3.412 at 10%. The abbreviations
of the variables are elaborated upon in Table A1 in the Appendix. All calculations are made on the
sample 1 January 2012 - 30 June 2020.

All series are non-stationary, except Elec. However, in the presence of outliers, unit

root tests lack robustness. In particular, Franses and Haldrup (1994) provide empirical

evidence that additive outliers may produce spurious cointegration. Hence the Dickey-

Fuller test will reject a unit root too frequently and as a consequence the Johansen test will

indicate too many cointegration vectors. I choose to continue analysing the cointegration

relationship by assuming that electricity is also non-stationary (i.e. the "Full model"),

but will also estimate a second model by excluding electricity from the analysis (i.e. the

"model without Elec"). Table 4 shows that after taking first differences all variables are

stationary.
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5.2 VAR Model

Table 5 shows the model selection criteria to determine the appropriate VAR order for

the 4 models, as I consider analysing a VAR for both the Full model and the model

without Elec, where for each one there are again two distinct models: one with solely

a constant, and one including a constant and trend. When the AIC, BIC and HQIC

indicate different VAR orders, the largest lag order is chosen, hence a VAR (4) model is

chosen for all models.

Table 5: VAR Order Selection criteria

Full model w/o Elec

AIC BIC HQIC AIC BIC HQIC
Constant, no trend
0 -21.0562 -21.0382 -21.0496 -17.0572 -17.0417 -17.0515
1 -52.0003 -51.8560* -51.9476* -47.6945 -47.5863* -47.6550*
2 -52.0245 -51.7539 -51.9257 -47.7258 -47.5247 -47.6523
3 -52.0387 -51.6418 -51.8937 -47.7332 -47.4393 -47.6259
4 -52.0456* -51.5223 -51.8545 -47.7397* -47.3530 -47.5984
5 -52.0283 -51.3787 -51.7910 -47.7307 -47.2513 -47.5556

Constant and trend
0 -23.9709 -23.9348 -23.9577 -19.9719 -19.9410 -19.9606
1 -52.0093 -51.8469* -51.9500* -47.7041 -47.5804* -47.6589*
2 -52.0332 -51.7445 -51.9278 -47.7351 -47.5186 -47.6560
3 -52.0461 -51.6311 -51.8945 -47.7414 -47.4321 -47.6284
4 -52.0530* -51.5117 -51.8552 -47.7479* -47.3458 -47.6010
5 -52.0351 -51.3675 -51.7912 -47.7383 -47.2434 -47.5575

This table shows different order selection criteria for the full model and model without Elec. Firstly
calculated in a model with a constant shown in the first panel: Constant, no trend. Secondly calcu-
lated in a model with a constant and a trend shown in the second panel: Constant and trend. AIC:
Akaike information criterion, BIC: Bayesian information criterion, HQIC: Hannan-Quinn informa-
tion criterion. * indicates lag order selected by the respective criterion. All calculations are made on
the sample 1 January 2012 - 30 June 2020.

Tables A2, A3, A4 and A5 show the VAR (4) regression results for the equation of

Eua. The highest Log likelihood is found for the Full model with a trend included.

Both adding a trend and adding a variable increases the Log likelihood, explaining the

differences between the models.

For the full model including a constant, on a 5% significance level only the first, second

and fourth lag of Eua, first and second lag of Coal, second lag of Sust and the fourth

lag of Oil are significant. Adding a trend makes the second lag and fourth lag of Oil
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significant too.

Excluding Elec from the VAR results doesn’t impact the significance of the variables.

it is however notable that Gas become increasingly more significant in different lags by

excluding Elec and adding a trend.

5.3 VECM & Cointegration

Table 6 shows the results of the Johansen LR tests for the full model and the model

without Elec. For the full model, from the trace test results we can conclude that there

is one cointegration relation present in the model. And that the null hypothesis that

there are at most r0 = 0 cointegrated vectors is rejected, whereas the null hypothesis

that there are at most r0 = 1 cointegrated vectors is not rejected. The Lambda-max test

is not in line with the results of the trace test for the model with a trend, as the the null

hypothesis that there are r0 = 0 and r0 = 1 cointegrated vectors is rejected, whereas the

null hypothesis that there are r0 = 2 cointegrated vectors is not rejected.

The results presented by Lüutkepohl et al. (2001) justify the common practice in empir-

ical work of using either both types of tests simultaneously or applying the trace tests

exclusively. Hence I proceed with estimating the VECM for the full model with only one

cointegration relation, but it is important to note, that this cointegration might not exist.

After excluding Elec from the model, very different results appear. Based on the trace

test, there is no cointegration relation present in the model. And that the null hypothesis

that there are at most r0 = 0 cointegrated vectors is not rejected. Again, the Lambda-

max test is not in line with the results of the trace test for the model with a trend, as the

the null hypothesis that there are r0 = 0 cointegrated vectors is rejected, whereas the null

hypothesis that there are r0 = 1 cointegrated vectors is not rejected. Even though the

tests indicate otherwise, I will proceed by estimating the VECM model excluding Elec,

for better comparison with the TV-VECM.
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Table 6: Johansen cointegration test results

r0 r1 Test statistic Critical value: 1% / 5% Rank: 1% / 5%

Full model
Constant, no trend
Trace Test 0 7 314.3 136.0 / 125.6

1 7 82.02 105.0 / 95.75 1 / 1
λmax Test 0 1 232.2 52.31 / 46.23

1 2 27.48 45.87 / 40.08 1 / 1

Constant and trend
Trace Test 0 7 338.7 150.1 / 139.3

1 7 106.3 117.0 / 107.3 1 / 1
λmax Test 0 1 232.4 55.82 / 49.59

1 2 44.16 49.41 / 43.42
2 3 23.52 - / 37.16 1 / 2

w/o Elec
Constant, no trend
Trace Test 0 6 82.28 105.0 / 95.75 0 / 0
λmax Test 0 1 27.47 45.87 / 40.08 0 / 0

Constant and trend
Trace Test 0 6 106.6 117.0 / 107.3 0 / 0
λmax Test 0 1 44.29 49.41 / 43.42

1 2 23.81 - / 37.16 0 / 1

The table shows the results of two Johansen cointegration tests (Johansen (1988)): the trace test and
the maximum eigenvalue test. The null hypothesis for both tests r0 vs. the alternative r1. The test
statistic of the trace test and maximum eigenvalue test is given by equation 7 and 8 respectively with
the results (column 4), with corresponding critical values on a 1% and 5% significance level (column
5) and the resulting suggested rank (column 6). Both tests are conducted for two different models,
with a Constant and no trend or both a Constant and trend and with or without Elec included. All
calculations are based on the sample 1 January 2012 - 30 June 2020

For a comparison of the three cases considered in Johansen (1995), (i.e. Case II, III

and IV), the results of a regular VECM for the full model are presented in tables A6,

A7 and A8 respectively. The lag order is chosen in accordance with the VAR lag order,

namely one lag less. The tables show the parameter estimates for the regression of the

lagged parameters on Eua and deterministic terms outside the cointegration relation in

the upper panel. It also shows the loading coefficients for the equation of Eua, i.e. the

error correction term. The third panel of the table shows the cointegration relations of

the loading-coefficients and the last panel, the log likelihood.

The significance of the variables is similar to the the VAR Regression results. For case II,

table A7 shows that the first and second lag of Coal, second lag Eua and third lag Oil
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are significant. Table 7 shows an overview of the estimated cointegration relations of all

models including Elec. In the cointegration relation of case II, the deterministic constant

and all variables are significant, except Oil, the relation is shown in figure A3. For case III,

the significance of both the variables and the cointegration relation is the same, except,

by definition, there is no deterministic term within the cointegration relation (figure A2).

For case IV, again the variable significance is the same, but the cointegration relations

include an insignificant deterministic trend (figure A4). The log likelihood is the smallest

for Case II, case III and IV do not differ much.
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Table 7: VECM(3) estimation results: Johansen Case II

Variable Coefficient Std. Error t-Statistic Prob.

Cointegration relations Johansen Case II - Full model
βEua 1.0000 0.000 0.000 0.000∗∗∗
βOil -0.2491 0.430 -0.580 0.562
βGas 2.2738 0.455 5.000 0.000∗∗∗
βCoal 1.9286 0.556 3.470 0.001∗∗∗
βElec -13.2832 0.802 -16.558 0.000∗∗∗
βRen 0.7584 0.371 2.042 0.041∗∗
βSust -4.0979 1.356 -3.022 0.003∗∗∗
Deterministic constant 60.9671 5.861 10.403 0.000∗∗∗

Cointegration relations Johansen Case II - Full model
βEua 1.0000 0.000 0.000 0.000∗∗∗
βOil -0.2495 0.430 -0.580 0.562
βGas 2.2717 0.455 4.991 0.000∗∗∗
βCoal 1.9341 0.556 3.477 0.001∗∗∗
βElec -13.2951 0.803 -16.558 0.000∗∗∗
βRen 0.7581 0.372 2.040 0.041∗∗
βSust -4.0985 1.357 -3.020 0.003∗∗∗

Cointegration relations Johansen Case IV - Full model
βEua 1.000 0.000 0.000 0.000∗∗∗
βOil -0.1111 0.515 -0.216 0.829
βGas 2.8004 0.643 4.353 0.000∗∗∗
βCoal 1.9525 0.694 2.814 0.005∗∗∗
βElec -15.3357 0.97 -15.81 0.000∗∗∗
βRen 0.8407 0.428 1.963 0.050∗∗
βSust -5.2569 1.847 -2.846 0.004∗∗∗
Deterministic trend 0.0003 0.000 0.887 0.375

This table shows the cointegration relations of the loading-coefficients in the VECM(3) estimation
results of Johansen (1995) for the full model, estimated based on the sample 1 January 2012 - 30
June 2020. The columns show the estimated coefficient, corresponding standard error, t-statistic and
p-value. βx correspond to the estimates specified by equation 9 The abbreviations of the variables
are elaborated upon in Table A1 in the Appendix. ***, ** or *, asterisk indicates significance of a
variable at the 1%, 5% and 10% level respectively.
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Table 8: VECM(3) estimation results: Johansen Case II

Variable Coefficient Std. Error t-Statistic Prob.

Cointegration relations Johansen Case II - Model excluding Elec
βEua 1.0000 0.000 0.000 0.000∗∗∗
βOil -0.7692 1.553 -0.495 0.620
βGas 6.3835 1.619 3.942 0.000∗∗∗
βCoal -8.5331 1.957 -4.359 0.000∗∗∗
βRen -0.889 1.339 -0.664 0.507
βSust 5.1093 4.894 1.044 0.297
Deterministic constant -0.8048 17.835 -0.045 0.964

Cointegration relations Johansen Case III - Model excluding Elec
βEua 1.0000 0.000 0.000 0.000∗∗∗
βOil -1.1977 2.827 -0.424 0.672
βGas 10.0592 2.947 3.414 0.001∗∗∗
βCoal -15.4448 3.562 -4.336 0.000∗∗∗
βRen -3.1165 2.437 -1.279 0.201
βSust 17.7418 8.907 1.992 0.046∗∗∗

Cointegration relations Johansen Case IV - Model excluding Elec
βEua 1.0000 0.000 0.000 0.000∗∗∗
βOil -1.1242 0.325 -3.455 0.001∗∗∗
βGas -1.9382 0.388 -4.998 0.000∗∗∗
βCoal 3.284 0.438 7.49 0.000∗∗∗
βRen 0.2851 0.271 1.052 0.293
βSust 3.0574 1.145 2.669 0.008∗∗∗
Deterministic trend -0.0022 0.000 -9.626 0.000∗∗∗

This table shows the cointegration relations of the loading-coefficients in the VECM(3) estimation
results of Johansen (1995) for the model excluding Elec, estimated based on the sample 1 January
2012 - 30 June 2020. The columns show the estimated coefficient, corresponding standard error,
t-statistic and p-value. βx correspond to the estimates specified by equation 9 The abbreviations
of the variables are elaborated upon in Table A1 in the Appendix. ***, ** or *, asterisk indicates
significance of a variable at the 1%, 5% and 10% level respectively.

The results of the regular VECM for the model excluding Elec are presented in tables

A9, A10 and A11 respectively. The significance of all variables across all cases is almost

the same compared to the full model, except two small differences, as Eua lag 3 is also

significant for case IV in table A11. However, quite a lot changes in the cointegration

relations, Table 8 shows an overview. For case II, the cointegration relations change

completely, only Gas and Coal remain significant (figure A5). For case III, there is a

significant deterministic constant outside the cointegration and within only Gas, Coal

and Sust are significant. The cointegration relation is plotted in A6 For case IV, the

cointegration relation includes an insignificant deterministic trend, but all variables are
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significant except Ren with the resulting cointegration relation plotted in figure A7. The

log likelihood is again smallest for Case II, however, this time Case IV is higher relatively.

5.3.1 Reduced dimensional model

Tests for cointegration become oversized and their power becomes low in case of large

systems, hence I also consider a lower dimensional case. I investigated all possible combi-

nations of the variables in different dimentions and tested them for possible cointegration.

All combinations that included Elec in the considered cointegration relation, found a coin-

tegration rank equal to one. Since Elec is found stationary by the Augmented Dickey

Fuller test, the Johansen test might indicate too many cointegration vectors, hence the

results of the remaining combinations including Elec are not presented. When Elec is

excluded, there are only a couple instances where the trace test and maximum eigenvalue

test indicate cointegration. Table 9 shows the test results for the one instance that ac-

tually produces a significant cointegration relation. This cointegration relation includes

Eua, Gas, Coal and Ren and follows Johansen case IV, it will be referred to as the

reduced model.

Table 9: Johansen cointegration test results reduced model

r0 r1 Test statistic Critical value: 1% / 5% Rank: 1% / 5%

Constant, no trend
Trace Test 0 4 40.57 54.68 / 47.85 0 / 0
λmax Test 0 1 22.00 32.72 / 27.59 0 / 0

Constant and trend
Trace Test 0 4 59.98 62.52 / 55.25

1 4 - / 35.01 0 / 1
λmax Test 0 1 36.71 36.19 / 30.82

1 2 16.70 29.26 / 24.25 1 / 1

The table shows the results of two Johansen cointegration tests (Johansen (1988)): the trace test
and the maximum eigenvalue test for the reduced model containing: Eua, Gas, Coal and Ren.
The null hypothesis for both tests r0 vs. the alternative r1. The test statistic of the trace test
and maximum eigenvalue test is given by equation 7 and 8 respectively with the results (column 4),
with corresponding critical values on a 1% and 5% significance level (column 5) and the resulting
suggested rank (column 6). Both tests are conducted for two different models, with a Constant and
no trend or both a Constant and trend. All calculations are based on the sample 1 January 2012 -
30 June 2020

Table 10 shows the results of the VECM(2) corresponding to the reduced model and

Figure 3 shows the corresponding cointegration relation.
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Table 10: VECM(2) estimation results: Johansen Case IV, reduced model

Variable Coefficient Std. Error t-Statistic Prob.

Deterministic constant -0.0236 0.015 -1.538 0.124
∆Eua−1 0.0304 0.021 1.417 0.156
∆Gas−1 -0.0177 0.029 -0.619 0.536
∆Coal−1 0.2823 0.056 5.03 0.000∗∗∗
∆Ren−1 -0.0245 0.032 -0.769 0.442
∆Eua−2 -0.0877 0.021 -4.1 0.000∗∗∗
∆Gas−2 0.0152 0.028 0.536 0.592
∆Coal−2 -0.1349 0.057 -2.347 0.019∗∗
∆Ren−2 0.0676 0.032 2.129 0.033∗∗
Error Correction Term 0.0019 0.001 1.585 0.113
Cointegration relations
βEua 1.000 0.000 0.000 0.000∗∗∗
βGas -2.2243 0.527 -4.219 0.000∗∗∗
βCoal 3.6578 0.617 5.93 0.000∗∗∗
βRen 1.3109 0.275 4.762 0.000∗∗∗
Deterministic trend -0.0022 0.000 -7.354 0.000∗∗∗

Log likelihood 21451.0443

This table shows the VECM(2) estimation results of Johansen (1995) Case IV, estimated based on
the sample 1 January 2012 - 30 June 2020 with Oil, Elec and Sust not included. ∆xp indicates
the first-differenced variable x at lag p. The columns show the estimated coefficient, corresponding
standard error, t-statistic and p-value. The table shows the parameter estimates for the regression
of the lagged parameters on Eua and deterministic terms outside the cointegration relation in the
upper panel. It also shows the loading coefficients for the equation of Eua, i.e. the error correction
term. The bottom panel of the table shows the cointegration relations of the loading-coefficients.
βx correspond to the estimates specified by equation 9 The last row shows the log likelihood of the
model. The abbreviations of the variables are elaborated upon in Table A1 in the Appendix. ***,
** or *, asterisk indicates significance of a variable at the 1%, 5% and 10% level respectively.

Figure 3: Cointegration relation (β′Yt) for the VECM(2) Johansen Case IV specified in
Table 10 - 1 January 2012 - 30 June 2020.

The model shows that in the equation of Eua, different lags of each variable are significant,
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except Gas. However, in the cointegration relations all variables and the deterministic

trend are significant, including Gas.

5.4 Time-Varying VECM & Cointegration

Figure A8 presents the plots of the time-varying cointegration vector and figure A9 the

corresponding cointegration relation (β′tYt) for

βt = (βEua,t, βOil,t, βGas,t, βCoal,t, βElec, βRen,t, βSust,t) for different Chebyshev polynomial

orders m. It is important to note, that βt is normalized with respect to the first beta

estimate corresponding to Eua, i.e. βEua1 = 1 , without loss of generality in all figure

plotting the time-varying cointegration vector.

Figure A10 presents the plots of the time-varying cointegration vector and figure A11 the

corresponding cointegration relation (β′tYt) for βt = (βEua,t, βOil,t, βGas,t, βCoal,t, βRen,t, βSust,t)

for different Chebyshev polynomial orders m.

The ideal Chebyshev polynomial order m is considered 2 in accordance with the Hannan-

Quinn criterion. The VECM order p was chosen in line with the regular VECM and

VAR: i.e. p = 3. For the standard time series, the Johansen approach indicated r = 1,

hence the number of cointegrating vectors is also chosen 1.

The results of the LR TVC Statistics and corresponding p-values, shown in table 11,

indicate to reject the null hypothesis of time-invariant cointegration strongly for the full

model and across all m. It also shows the effect of the Chebyshev polynomial order m in

more detail. As the order increases, the log likelihood does as well.

Table 11: Results Statistical Tests Time-Varying VECM(3)

Full model w/o Elec
m = 2 m = 3 m = 4 m = 2 m = 3 m = 4

LR TVC Statistics 39.257 50.256 51.897 44.719 59.123 87.050
P-Value 0.000 0.000 0.004 0.000 0.000 0.000
Log Likelihood 35593.928 35599.427 35600.248 34128.573 34135.775 34149.739
AIC -32.134 -32.097 -32.114 -30.811 -30.778 -30.780
BIC -32.036 -31.881 -31.944 -30.718 -30.572 -30.543
HQC -32.098 -32.018 -32.052 -30.777 -30.703 -30.693

The table shows the TVC Statistic, with corresponding p-values using the χ2(mrk), the time-varying
log likelihood, the AIC, BIC and HQIC for different Chebishev orders m, r = 1.

30



For the full model, figure 4 shows that there is more volatility in the coefficients around

2013 Q3 and 2020 Q1. This could be explained by the methodology, but also as a

consequence of structural changes in the carbon dynamics. Whereas the volatility around

2013 Q3, is less clear, but could possibly be explained by the increasing Eua and Ren

prices, the 2020 Q1 volatility can most logically be linked to the start of the Covid-19

crisis.

Figure 4: Estimates of (β′tYt) for the TV-VECM(3) including Elec - 1 January 2012 - 30
June 2020 for Chebyshev polynomial order m = 2

However, as the Chebyshev order m is increased, the volatility in figures A8 (b) and

(c) cannot be traced back easily to signature events in the market, supporting the ideal

Chebyshev order of m = 2.

The cointegration relation for m = 2 is shown in figure 5 and for comparison the same

graph is also plotted along with m = 3 and m = 4 in figure A9 in the Appendix. Whereas

a visual inspection would suggest very similar results, with the large negative electricity

price drop in 2013, there are very large differences in the range of the cointegrated series,

about 70, 120 and 40 respectively for m = 2,m = 3 and m = 4.
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Figure 5: Cointegration relation (βtYt) for the TV-VECM(3) including Elec - 1 January
2012 - 30 June 2020 for Chebyshev polynomial order m = 2

For the model excluding Elec, Figure 6 shows that there is again more volatility in the

coefficients around 2013 Q3. However the 2020 Q1 volatility is not visible at all.

Figure 6: Estimates of (β′tYt) for the TV-VECM(3) excluding Elec - 1 January 2012 - 30
June 2020 for Chebyshev polynomial order m = 2

As the Chebyshev order m is increased, the volatility in figures A10 (b) and (c) is much

higher (especially evident, taking into account their range), supporting the ideal Cheby-

shev order of m = 2.

The cointegration relation for m = 2 is shown in figure 7 and for comparison the same

graph is also plotted for m = 3 and m = 4 in figure A11 in the Appendix. The resulting

time-series differ much more compared to the models including electricity, with very

different patterns.
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Figure 7: Cointegration relation (β′tYt) for the TV-VECM(3) excluding Elec - 1 January
2012 - 30 June 2020 for Chebyshev polynomial order m = 2

5.4.1 Reduced dimensional model

Figure 8 presents the plots of the time-varying cointegration vector and figure 9 the

corresponding cointegration relation (β′tYt) for

βt = (βEua,t, βGas,t, βCoal,t, βRen,t) for Chebyshev polynomial order m = 1.

The ideal Chebyshev polynomial order m is considered 1 in accordance with the Hannan-

Quinn criterion shown in 12. The VECM order p was chosen in line with the regular

VECM in 10: i.e. p = 2. For the standard time series, the Johansen approach indicated

r = 1, hence the number of cointegrating vectors is also chosen 1.

The results of the LR TVC Statistics and corresponding p-values, shown in table 12,

indicate to reject the null hypothesis of time-invariant cointegration strongly for the full

model and across all m on a 5% siginifance level, however, contrary to the full model, the

time-varying cointegration for m = 1 is not significant.

Table 12: Results Statistical Tests Time-Varying VECM(2) - Reduced model

m = 1 m = 2 m = 3

LR TVC Statistic 12.9893 37.5980 41.3088
P-Value 0.0113 0.0000 0.0000
Log likelihood 21450.3177 21462.6221 21464.4775
AIC -19.3625 -19.3520 -19.3609
BIC -19.3213 -19.2489 -19.2784
HQIC -19.3475 -19.3143 -19.3308

The table shows the likelihood ratio time varying-cointegration statistic (LR TVC Statistic), with
corresponding p-value using the χ2(mrk), the time-varying log likelihood, the AIC, BIC and HQIC
for Chebishev order m = 1 and cointegration rank r = 1.
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Figure 8 shows that throughout the whole sample, Gas seems to be constant withing the

cointegration. Eua and Coal run parallel to each other and drift apart slightly. One

thing is very clear from the graph, the dynamics between Eua and Ren take completely

opposite directions. In line with previous results for the full model the cointegration

relations seems to be changing starting in 2013 Q3. This could be explained by the

methodology, but also as a consequence of structural changes in the carbon dynamics.

However contrary to the previous results, the 2020 Q1 volatility is not present.

Figure 8: Estimates of (β′tYt) for the TV-VECM(2) reduced model - 1 January 2012 - 30
June 2020 for Chebyshev polynomial order m = 1

Figure 9: Cointegration relation (β′tYt) for the TV-VECM(2) reduced model - 1 January
2012 - 30 June 2020 for Chebyshev polynomial order m = 1

Overall, for all three models, I find support for the TV hypothesis where the long-run

coefficients smoothly transition over the sample period.
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6 Conclusion

This paper analyses the long-term price dynamics of the European Emission Allowances

in the European Union Emissions Trading System. The EUAs are influenced by several

energy variables and the influence of sustainability and renewable energy market indica-

tors is tested in addition. I propose to model the long term carbon dynamics by a VECM

and find a cointegration relation. In addition to existing literature, I test whether this

cointegration relation could be time-varying.

There are three main findings. In line with past literature, the VAR models and VECM

show that coal and oil prices significantly influence the EUA price drivers, based on a

VAR and VECM. But in addition I also find that sustainability indicators are significant,

and play an increasingly important role in establishing the EUA price.

I do not find significant cointegration relations for the regular VECM including all vari-

ables. However, my extension, the TV-VECM showed that there is a time-varying coin-

tegration relation present between all the variables together.

Lastly, I find a significant cointegration relation between the EUA price, gas price, coal

price and variables to indicate the growth in renewable energy based on a regular VECM.

Without the indicator of renewable energy growth in the EU, this relationship is not

found, supporting the idea of adding various renewable energy sources to the fundamental

drivers of EUA prices. Based on a TV-VECM this cointegration relation is rejected, and

hence time-varying.

The energy prices changed drastically in the first quarter of 2020 and it is evident from

the peaks in the TV cointegration relations that this event did distort the dynamics

temporarily. However, the changing dynamics between the EUA prices, energy prices and

sustainability indicators evident from the estimated time-varying cointegration relations

have not changed abruptly, but are rather part of a slowly changing cointegration relation.

Although it could be that these time-varying cointegration relations are found because the

Time-Varying Cointegration likelihood ratio test by Bierens and Martins (2010), rejects

the null hypothesis of regular cointegration too often.
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6.1 Discussion

For future research, there could be improved in the following three fields: identifying

carbon price drivers, estimating/testing TVC and assessing/fine-tuning the discussed

models more.

A recent article of the Financial Times argues how important the role of green hydro-

gen might be in the drivers of carbon price (Lewis). For future research it would be

increasingly interesting to differentiate between the different types of renewable energy

technologies and measure their effect separately, as has been done in the past with the

more traditional energy sources.

To estimate the time varying VECM, a more general form of TV cointegration could

be considered. Yt = CtZt, where Ct is a sequence of nonsingular k × k matrices and

Zt ∈ Rk is a cointegrated I(1) process with a VECM (p) representation. This way, all the

parameters are functions of t, which could especially be relevant for the error correction

term.

To test the TVC better, Martins (2018) considers two alternative bootstrap algorithms to

the time-varying cointegration test with the same first-order asymptotic distribution un-

der the null hypothesis of standard cointegration. The bootstrap procedures did not show

severe size distortions and Monte Carlo results suggest that the bootstrap approximation

to the finite-sample distribution is very accurate, in particular for the wild bootstrap

case.

As mentioned by Martins (2018) proposing a test for restrictions on the cointegrating

space under the TV model could provide valuable insights. Especially to test whether

there are smaller equilibria within the cointegration relation overall. For example, be-

tween energy sources that are closely connected due to fuel switching, such as substituting

coal for natural gas.

Lastly, I suggest a very elaborate out-of-sample analysis. It would be interesting to

develop forecast methods for the TV-VECM approach and test the forecast performance

in comparison to regular VECM. Another extension would be to investigate the additive

outliers within the model more accurately, in particular Franses and Haldrup (1994)

propose to use outlier robust estimation techniques to reduce the effect of aberrant data
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points.
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A Appendix

A.1 Tables

Table A1: Detailed information EUA prices, energy and climate variables

Symbol Name Source Mnemonic
Eua EU CO2 Emissions E/EUA EEX EEXEUAS
Oil Brent Crude Oil Continuous ICE LLCCS00
Coal Coal ARA Month - Continuous EEX LFUTECMC
Gas Egix Gaspool Index European Union/Mw Hour EEX EEXGSPD
Elec Indicator, weighted average of

1. Elix Base Index EEX EEXIXBS
2. Phelix Base Index EEX EEXBASE

Ren Europe Total Market Renewable Energy Equipment Index STOXX S4TMRQE
Sust Indicator, weighted average of

1. EURO Sustainability Index STOXX DJEZSUE
2. EUROPE ESG LEADERS 50 Index MSCI MSEUSG$

This table presents the symbol, name, source and Datastream Mnemonics of all variables used in
this research. All symbols represent the natural logarithm of the time-series.
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Table A2: VAR(4) model estimation results. Full model with a constant

Coefficient Std. Error t-Statistic Prob.

Constant -0.0823 0.0514 -1.6023 0.1091
∆Eua−1 1.0333 0.0219 47.0934 0.0000∗∗∗
∆Oil−1 -0.0410 0.0315 -1.3011 0.1932
∆Gas−1 -0.0256 0.0290 -0.8824 0.3775
∆Coal−1 0.2797 0.0563 4.9710 0.0000∗∗∗
∆Elec−1 0.0019 0.0061 0.3147 0.7530
∆Ren−1 0.0097 0.0377 0.2583 0.7961
∆Sust−1 -0.1245 0.0808 -1.5405 0.1234
∆Eua−2 -0.1272 0.0315 -4.0398 0.0001∗∗∗
∆Oil−2 0.0791 0.0446 1.7732 0.0762∗
∆Gas−2 0.0355 0.0409 0.8675 0.3857
∆Coal−2 -0.3977 0.0852 -4.6706 0.0000∗∗∗
∆Elec−2 0.0003 0.0067 0.0380 0.9697
∆Ren−2 0.0248 0.0530 0.4677 0.6400
∆Sust−2 0.2433 0.1121 2.1703 0.0300∗∗
∆Eua−3 0.0487 0.0313 1.5540 0.1202
∆Oil−3 0.0542 0.0445 1.2163 0.2239
∆Gas−3 -0.0695 0.0409 -1.6985 0.0894∗
∆Coal−3 0.0822 0.0862 0.9537 0.3402
∆Elec−3 -0.0003 0.0067 -0.0512 0.9592
∆Ren−3 -0.0203 0.0529 -0.3838 0.7011
∆Sust−3 -0.0716 0.1123 -0.6375 0.5238
∆Eua−4 0.0430 0.0218 1.9681 0.0491∗∗
∆Oil−4 -0.0892 0.0314 -2.8364 0.0046∗∗∗
∆Gas−4 0.0517 0.0288 1.7989 0.0720∗
∆Coal−4 0.0453 0.0582 0.7780 0.4366
∆Elec−4 0.0028 0.0061 0.4677 0.6400
∆Ren−4 -0.0128 0.0376 -0.3413 0.7329
∆Sust−4 -0.0402 0.0808 -0.4976 0.6187

Log likelihood: 35811.5 BIC: -51.5223
AIC: -52.0456 HQIC: -51.8545

This table shows the VAR(4) estimation results, estimated with a constant added to the model
based on the sample 1 January 2012 - 30 June 2020. ∆xp indicates the first-differenced variable
x at lag p. The columns show the estimated coefficient, corresponding standard error, t-statistic
and p-value. The bottom panel shows the Log Likelihood, AIC: Akaike information criterion, BIC:
Bayesian information criterion and HQIC: Hannan-Quinn information criterion. The abbreviations
of the variables are elaborated upon in Table A1 in the Appendix. ***, ** or *, asterisk indicates
significance of a variable at the 1%, 5% and 10% level respectively.
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Table A3: VAR(4) model estimation results.. Full model with a constant and trend

Coefficient Std. Error t-Statistic Prob.

Contant -0.0711 0.0615 -1.1560 0.2477
Trend 0.0000 0.0000 0.3312 0.7405
∆Eua−1 1.0332 0.0219 47.0736 0.0000∗∗∗
∆Oil−1 -0.0406 0.0315 -1.2892 0.1973
∆Gas−1 -0.0250 0.0291 -0.8592 0.3903
∆Coal−1 0.2790 0.0563 4.9536 0.0000∗∗∗
∆Elec−1 0.0019 0.0061 0.3112 0.7556
∆Ren−1 0.0088 0.0378 0.2337 0.8153
∆Sust−1 -0.1248 0.0809 -1.5438 0.1226
∆Eua−2 -0.1272 0.0315 -4.0411 0.0001∗∗∗
∆Oil−2 0.0792 0.0446 1.7744 0.0760∗∗
∆Gas−2 0.0355 0.0409 0.8687 0.3850
∆Coal−2 -0.3979 0.0852 -4.6713 0.0000∗∗∗
∆Elec−2 0.0002 0.0067 0.0356 0.9716
∆Ren−2 0.0248 0.0530 0.4679 0.6399
∆Sust−2 0.2434 0.1121 2.1705 0.0300∗∗
∆Eua−3 0.0486 0.0313 1.5524 0.1206
∆Oil−3 0.0542 0.0446 1.2156 0.2241
∆Gas−3 -0.0693 0.0409 -1.6947 0.0901∗
∆Coal−3 0.0821 0.0862 0.9519 0.3411
∆Elec−3 -0.0004 0.0067 -0.0552 0.9560
∆Ren−3 -0.0202 0.0529 -0.3812 0.7030
∆Sust−3 -0.0718 0.1124 -0.6390 0.5228
∆Eua−4 0.0425 0.0219 1.9404 0.0523∗
∆Oil−4 -0.0887 0.0315 -2.8194 0.0048∗∗
∆Gas−4 0.0517 0.0288 1.7988 0.0720∗
∆Coal−4 0.0451 0.0582 0.7747 0.4385
∆Elec−4 0.0028 0.0061 0.4606 0.6451
∆Ren−4 -0.0122 0.0376 -0.3248 0.7453
∆Sust−4 -0.0423 0.0810 -0.5221 0.6016

Log likelihood: 35826.7 BIC: -51.5117
AIC: -52.0530 HQIC: -51.8552

This table shows the VAR(4) estimation results, estimated with a constant and trend added to the
model based on the sample 1 January 2012 - 30 June 2020. ∆xp indicates the first-differenced variable
x at lag p. The columns show the estimated coefficient, corresponding standard error, t-statistic and
p-value. The bottom panel shows the Log Likelihood, AIC: Akaike information criterion, BIC:
Bayesian information criterion and HQIC: Hannan-Quinn information criterion. The abbreviations
of the variables are elaborated upon in Table A1 in the Appendix. ***, ** or *, asterisk indicates
significance of a variable at the 1%, 5% and 10% level respectively.

43



Table A4: VAR(4) model estimation results. Model with a constant, without Elec

Coefficient Std. Error t-Statistic Prob.

Constant -0.0619 0.0413 -1.4986 0.1340
∆Eua−1 1.0334 0.0219 47.1404 0.0000∗∗∗
∆Oil−1 -0.0410 0.0315 -1.3041 0.1922
∆Gas−1 -0.0247 0.0289 -0.8524 0.3940
∆Coal−1 0.2805 0.0562 4.9956 0.0000∗∗∗
∆Ren−1 0.0108 0.0376 0.2883 0.7731
∆Sust−1 -0.1258 0.0807 -1.5577 0.1193
∆Eua−2 -0.1270 0.0314 -4.0386 0.0001∗∗∗
∆Oil−2 0.0792 0.0446 1.7753 0.0758∗
∆Gas−2 0.0352 0.0408 0.8631 0.3881
∆Coal−2 -0.3985 0.0849 -4.6942 0.0000∗∗∗
∆Ren−2 0.0236 0.0529 0.4472 0.6547
∆Sust−2 0.2438 0.1120 2.1776 0.0294∗∗
∆Eua−3 0.0485 0.0313 1.5487 0.1215
∆Oil−3 0.0545 0.0445 1.2245 0.2208
∆Gas−3 -0.0692 0.0409 -1.6937 0.0903∗
∆Coal−3 0.0826 0.0859 0.9610 0.3365
∆Ren−3 -0.0206 0.0528 -0.3909 0.6959
∆Sust−3 -0.0708 0.1122 -0.6310 0.5280
∆Eua−4 0.0434 0.0218 1.9874 0.0469∗∗
∆Oil−4 -0.0895 0.0314 -2.8514 0.0044∗∗∗
∆Gas−4 0.0515 0.0287 1.7939 0.0728∗
∆Coal−4 0.0456 0.0581 0.7842 0.4329
∆Ren−4 -0.0122 0.0375 -0.3260 0.7444
∆Sust−4 -0.0415 0.0806 -0.5145 0.6069

Log likelihood: 34133.6 BIC: -47.3530
AIC: -47.7397 HQIC: -47.5984

This table shows the VAR(4) estimation results, estimated with a constant added to the model
based on the sample 1 January 2012 - 30 June 2020 and Elec not included. ∆xp indicates the first-
differenced variable x at lag p. The columns show the estimated coefficient, corresponding standard
error, t-statistic and p-value. The bottom panel shows the Log Likelihood, AIC: Akaike information
criterion, BIC: Bayesian information criterion and HQIC: Hannan-Quinn information criterion. The
abbreviations of the variables are elaborated upon in Table A1 in the Appendix. ***, ** or *, asterisk
indicates significance of a variable at the 1%, 5% and 10% level respectively.
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Table A5: VAR(4) model estimation results. Model with a constant and trend, without Elec

Coefficient Std. Error t-Statistic Prob.

Constant -0.0502 0.0525 -0.9560 0.3391
Trend 0.0000 0.0000 0.3617 0.7176
∆Eua−1 1.0332 0.0219 47.1201 0.0000∗∗∗
∆Oil−1 -0.0407 0.0315 -1.2911 0.1967
∆Gas−1 -0.0240 0.0290 -0.8280 0.4077
∆Coal−1 0.2797 0.0562 4.9766 0.0000∗∗∗
∆Ren−1 0.0098 0.0377 0.2609 0.7941
∆Sust−1 -0.1261 0.0808 -1.5612 0.1185
∆Eua−2 -0.1271 0.0315 -4.0402 0.0001∗∗∗
∆Oil−2 0.0792 0.0446 1.7765 0.0756∗
∆Gas−2 0.0353 0.0408 0.8645 0.3873
∆Coal−2 -0.3987 0.0849 -4.6949 0.0000∗∗∗
∆Ren−2 0.0237 0.0529 0.4477 0.6544
∆Sust−2 0.2439 0.1120 2.1779 0.0294∗∗
∆Eua−3 0.0484 0.0313 1.5472 0.1218
∆Oil−3 0.0545 0.0445 1.2236 0.2211
∆Gas−3 -0.0691 0.0409 -1.6898 0.0911∗∗
∆Coal−3 0.0824 0.0859 0.9591 0.3375
∆Ren−3 -0.0205 0.0528 -0.3881 0.6979
∆Sust−3 -0.0710 0.1122 -0.6328 0.5269
∆Eua−4 0.0428 0.0219 1.9571 0.0503∗
∆Oil−4 -0.0891 0.0314 -2.8327 0.0046∗∗∗
∆Gas−4 0.0515 0.0287 1.7939 0.0728∗
∆Coal−4 0.0454 0.0581 0.7803 0.4352
∆Ren−4 -0.0116 0.0376 -0.3082 0.7579
∆Sust−4 -0.0438 0.0809 -0.5410 0.5885

Log likelihood: 34148.8 BIC: -47.3458
AIC: -47.7479 HQIC: -47.6010

This table shows the VAR(4) estimation results, estimated with a constant and trend added to the
model based on the sample 1 January 2012 - 30 June 2020 and Elec not included. ∆xp indicates
the first-differenced variable x at lag p. The columns show the estimated coefficient, corresponding
standard error, t-statistic and p-value. The bottom panel shows the Log Likelihood, AIC: Akaike
information criterion, BIC: Bayesian information criterion and HQIC: Hannan-Quinn information
criterion. The abbreviations of the variables are elaborated upon in Table A1 in the Appendix. ***,
** or *, asterisk indicates significance of a variable at the 1%, 5% and 10% level respectively.
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Table A6: VECM(3) estimation results: Johansen Case II

Variable Coefficient Std. Error t-Statistic Prob.

∆Eua−1 0.0388 0.022 1.781 0.075∗
∆Oil−1 -0.0410 0.031 -1.31 0.190
∆Gas−1 -0.0208 0.029 -0.724 0.469
∆Coal−1 0.2851 0.056 5.108 0.000∗∗∗
∆Elec−1 -0.0027 0.007 -0.373 0.709
∆Ren−1 0.0062 0.037 0.165 0.869
∆Sust−1 -0.1250 0.080 -1.56 0.119
∆Eua−2 -0.0891 0.022 -4.112 0.000∗∗∗
∆Oil−2 0.0387 0.031 1.234 0.217
∆Gas−2 0.0157 0.029 0.55 0.583
∆Coal−2 -0.1162 0.058 -2.011 0.044∗∗
∆Elec−2 -0.0025 0.007 -0.366 0.714
∆Ren−2 0.0309 0.037 0.827 0.408
∆Sust−2 0.1188 0.080 1.48 0.139
∆Eua−3 -0.0400 0.022 -1.842 0.065∗
∆Oil−3 0.0930 0.031 2.979 0.003∗∗∗
∆Gas−3 -0.0524 0.029 -1.835 0.066∗
∆Coal−3 -0.0333 0.058 -0.576 0.565
∆Elec−3 -0.0028 0.006 -0.457 0.648
∆Ren−3 0.0110 0.037 0.296 0.767
∆Sust−3 0.0466 0.080 0.581 0.562
Error Correction Term -0.0004 0.001 -0.699 0.484

Cointegration relations
βEua 1.0000 0.000 0.000 0.000∗∗∗
βOil -0.2491 0.430 -0.580 0.562
βGas 2.2738 0.455 5.000 0.000∗∗∗
βCoal 1.9286 0.556 3.470 0.001∗∗∗
βElec -13.2832 0.802 -16.558 0.000∗∗∗
βRen 0.7584 0.371 2.042 0.041∗∗
βSust -4.0979 1.356 -3.022 0.003∗∗∗
Deterministic constant 60.9671 5.861 10.403 0.000∗∗∗

Log likelihood 35766.6945

This table shows the VECM(3) estimation results of Johansen (1995) Case II, estimated based on
the sample 1 January 2012 - 30 June 2020.∆xp indicates the first-differenced variable x at lag p.
The columns show the estimated coefficient, corresponding standard error, t-statistic and p-value.
The table shows the parameter estimates for the regression of the lagged parameters on Eua. It
also shows the loading coefficients for the equation of Eua, i.e. the error correction term. The
bottom panel of the table shows the cointegration relations of the loading-coefficients. βx correspond
to the estimates specified by equation 9 The last row shows the log likelihood of the model. The
abbreviations of the variables are elaborated upon in Table A1 in the Appendix. ***, ** or *, asterisk
indicates significance of a variable at the 1%, 5% and 10% level respectively.
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Table A7: VECM(3) estimation results: Johansen Case III

Variable Coefficient Std. Error t-Statistic Prob.

Deterministic constant -0.0221 0.032 -0.696 0.486
∆Eua−1 0.0383 0.022 1.758 0.079∗
∆Oil−1 -0.0402 0.031 -1.285 0.199
∆Gas−1 -0.0201 0.029 -0.699 0.484
∆Coal−1 0.2865 0.056 5.133 0.000∗∗∗
∆Elec−1 -0.0029 0.007 -0.387 0.699
∆Ren−1 0.0053 0.037 0.142 0.887
∆Sust−1 -0.1257 0.080 -1.569 0.117
∆Eua−2 -0.0895 0.022 -4.132 0.000∗∗∗
∆Oil−2 0.0394 0.031 1.256 0.209
∆Gas−2 0.0163 0.029 0.572 0.567
∆Coal−2 -0.1148 0.058 -1.986 0.047∗∗
∆Elec−2 -0.0025 0.007 -0.378 0.705
∆Ren−2 0.0300 0.037 0.804 0.421
∆Sust−2 0.1179 0.080 1.469 0.142
∆Eua−3 -0.0405 0.022 -1.866 0.062∗
∆Oil−3 0.0939 0.031 3.006 0.003∗∗∗
∆Gas−3 -0.0516 0.029 -1.808 0.071∗
∆Coal−3 -0.0320 0.058 -0.554 0.579
∆Elec−3 -0.0028 0.006 -0.464 0.642
∆Ren−3 0.0102 0.037 0.273 0.785
∆Sust−3 0.0457 0.080 0.570 0.568
Error Correction Term -0.0004 0.001 -0.719 0.472

Cointegration relations
βEua 1.0000 0.000 0.000 0.000∗∗∗
βOil -0.2495 0.430 -0.580 0.562
βGas 2.2717 0.455 4.991 0.000∗∗∗
βCoal 1.9341 0.556 3.477 0.001∗∗∗
βElec -13.2951 0.803 -16.558 0.000∗∗∗
βRen 0.7581 0.372 2.040 0.041∗∗
βSust -4.0985 1.357 -3.020 0.003∗∗∗

Log likelihood 35770.4461

This table shows the VECM(3) estimation results of Johansen (1995) Case III, estimated based on
the sample 1 January 2012 - 30 June 2020
∆xp indicates the first-differenced variable x at lag p. The columns show the estimated coefficient,
corresponding standard error, t-statistic and p-value. The table shows the parameter estimates
for the regression of the lagged parameters on Eua in the upper panel. It also shows the loading
coefficients for the equation of Eua, i.e. the error correction term. The bottom panel of the table
shows the cointegration relations of the loading-coefficients. βx correspond to the estimates specified
by equation 9 The last row shows the log likelihood of the model. The abbreviations of the variables
are elaborated upon in Table A1 in the Appendix. ***, ** or *, asterisk indicates significance of a
variable at the 1%, 5% and 10% level respectively.
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Table A8: VECM(3) estimation results: Johansen Case IV

Variable Coefficient Std. Error t-Statistic Prob.

Deterministic constant -0.0227 0.033 -0.692 0.489
∆Eua−1 0.0383 0.022 1.756 0.079∗
∆Oil−1 -0.0402 0.031 -1.284 0.199
∆Gas−1 -0.0201 0.029 -0.699 0.485
∆Coal−1 0.2865 0.056 5.132 0.000∗∗∗
∆Elec−1 -0.0028 0.007 -0.384 0.701
∆Ren−1 0.0053 0.037 0.143 0.886
∆Sust−1 -0.1259 0.080 -1.571 0.116
∆Eua−2 -0.0896 0.022 -4.134 0.000∗∗∗
∆Oil−2 0.0394 0.031 1.257 0.209
∆Gas−2 0.0163 0.029 0.573 0.567
∆Coal−2 -0.1148 0.058 -1.987 0.047∗∗
∆Elec−2 -0.0025 0.007 -0.376 0.707
∆Ren−2 0.0301 0.037 0.806 0.420
∆Sust−2 0.1177 0.080 1.467 0.142
∆Eua−3 -0.0406 0.022 -1.868 0.062∗
∆Oil−3 0.0939 0.031 3.007 0.003∗∗∗
∆Gas−3 -0.0516 0.029 -1.808 0.071∗
∆Coal−3 -0.0320 0.058 -0.555 0.579
∆Elec−3 -0.0028 0.006 -0.463 0.643
∆Ren−3 0.0102 0.037 0.274 0.784
∆Sust−3 0.0456 0.080 0.569 0.570
Error Correction Term -0.0003 0.000 -0.714 0.475

Cointegration relations
βEua 1.000 0.000 0.000 0.000∗∗∗
βOil -0.1111 0.515 -0.216 0.829
βGas 2.8004 0.643 4.353 0.000∗∗∗
βCoal 1.9525 0.694 2.814 0.005∗∗∗
βElec -15.3357 0.97 -15.81 0.000∗∗∗
βRen 0.8407 0.428 1.963 0.050∗∗
βSust -5.2569 1.847 -2.846 0.004∗∗∗
Deterministic trend 0.0003 0.000 0.887 0.375

Log likelihood 35770.552

This table shows the VECM(3) estimation results of Johansen (1995) Case IV, estimated based on
the sample 1 January 2012 - 30 June 2020
∆xp indicates the first-differenced variable x at lag p. The columns show the estimated coefficient,
corresponding standard error, t-statistic and p-value. The table shows the parameter estimates
for the regression of the lagged parameters on Eua in the upper panel. It also shows the loading
coefficients for the equation of Eua, i.e. the error correction term. The bottom panel of the table
shows the cointegration relations of the loading-coefficients. βx correspond to the estimates specified
by equation 9 The last row shows the log likelihood of the model. The abbreviations of the variables
are elaborated upon in Table A1 in the Appendix. ***, ** or *, asterisk indicates significance of a
variable at the 1%, 5% and 10% level respectively.
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Table A9: VECM(3) estimation results: Johansen Case II, model excluding Elec

Variable Coefficient Std. Error t-Statistic Prob.

∆Eua−1 0.0379 0.022 1.742 0.082∗
∆Oil−1 -0.0434 0.031 -1.386 0.166
∆Gas−1 -0.0185 0.029 -0.643 0.520
∆Coal−1 0.2734 0.056 4.881 0.000∗∗∗
∆Ren−1 0.0121 0.037 0.323 0.747
∆Sust−1 -0.1289 0.080 -1.61 0.107
∆Eua−2 -0.0895 0.022 -4.133 0.000∗∗∗
∆Oil−2 0.0363 0.031 1.16 0.246
∆Gas−2 0.0172 0.028 0.605 0.545
∆Coal−2 -0.1261 0.058 -2.181 0.029∗∗
∆Ren−2 0.0357 0.037 0.956 0.339
∆Sust−2 0.1149 0.080 1.432 0.152
∆Eua−3 -0.0407 0.022 -1.878 0.060∗
∆Oil−3 0.0907 0.031 2.906 0.004∗∗∗
∆Gas−3 -0.0517 0.028 -1.814 0.070∗
∆Coal−3 -0.0429 0.058 -0.742 0.458
∆Ren−3 0.0152 0.037 0.408 0.683
∆Sust−3 0.0439 0.080 0.549 0.583
Error Correction Term -0.0009 0.000 -2.041 0.041∗∗

Cointegration relations
βEua 1.0000 0.000 0.000 0.000∗∗∗
βOil -0.7692 1.553 -0.495 0.620
βGas 6.3835 1.619 3.942 0.000∗∗∗
βCoal -8.5331 1.957 -4.359 0.000∗∗∗
βRen -0.889 1.339 -0.664 0.507
βSust 5.1093 4.894 1.044 0.297
Deterministic constant -0.8048 17.835 -0.045 0.964

Log likelihood 34103.19034

This table shows the VECM(3) estimation results of Johansen (1995) Case II, estimated based on
the sample 1 January 2012 - 30 June 2020
∆xp indicates the first-differenced variable x at lag p. The columns show the estimated coefficient,
corresponding standard error, t-statistic and p-value. The table shows the parameter estimates
for the regression of the lagged parameters on Eua in the upper panel. It also shows the loading
coefficients for the equation of Eua, i.e. the error correction term. The bottom panel of the table
shows the cointegration relations of the loading-coefficients. βx correspond to the estimates specified
by equation 9 The last row shows the log likelihood of the model. The abbreviations of the variables
are elaborated upon in Table A1 in the Appendix. ***, ** or *, asterisk indicates significance of a
variable at the 1%, 5% and 10% level respectively.
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Table A10: VECM(3) estimation results: Johansen Case III, model excluding Elec

Variable Coefficient Std. Error t-Statistic Prob.

Deterministic constant 0.0159 0.007 2.200 0.028∗∗
∆Eua−1 0.0370 0.022 1.698 0.089∗
∆Oil−1 -0.0419 0.031 -1.340 0.180
∆Gas−1 -0.0175 0.029 -0.609 0.542
∆Coal−1 0.2760 0.056 4.935 0.000∗∗∗
∆Ren−1 0.0113 0.037 0.302 0.763
∆Sust−1 -0.1286 0.080 -1.607 0.108
∆Eua−2 -0.0903 0.022 -4.170 0.000∗∗∗
∆Oil−2 0.0378 0.031 1.207 0.227
∆Gas−2 0.0181 0.028 0.635 0.525
∆Coal−2 -0.1238 0.058 -2.142 0.032∗∗
∆Ren−2 0.0350 0.037 0.938 0.348
∆Sust−2 0.1147 0.080 1.430 0.153
∆Eua−3 -0.0417 0.022 -1.923 0.054∗
∆Oil−3 0.0924 0.031 2.962 0.003∗∗∗
∆Gas−3 -0.0506 0.029 -1.776 0.076∗
∆Coal−3 -0.0407 0.058 -0.705 0.481
∆Ren−3 0.0144 0.037 0.387 0.698
∆Sust−3 0.0440 0.080 0.550 0.582
Error Correction Term -0.0005 0 -2.111 0.035∗∗

Cointegration relations
βEua 1.0000 0.000 0.000 0.000∗∗∗
βOil -1.1977 2.827 -0.424 0.672
βGas 10.0592 2.947 3.414 0.001∗∗∗
βCoal -15.4448 3.562 -4.336 0.000∗∗∗
βRen -3.1165 2.437 -1.279 0.201
βSust 17.7418 8.907 1.992 0.046∗∗∗

Log likelihood 34106.2137

This table shows the VECM(3) estimation results of Johansen (1995) Case III, estimated based on
the sample 1 January 2012 - 30 June 2020
∆xp indicates the first-differenced variable x at lag p. The columns show the estimated coefficient,
corresponding standard error, t-statistic and p-value. The table shows the parameter estimates
for the regression of the lagged parameters on Eua in the upper panel. It also shows the loading
coefficients for the equation of Eua, i.e. the error correction term. The bottom panel of the table
shows the cointegration relations of the loading-coefficients. βx correspond to the estimates specified
by equation 9 The last row shows the log likelihood of the model. The abbreviations of the variables
are elaborated upon in Table A1 in the Appendix. ***, ** or *, asterisk indicates significance of a
variable at the 1%, 5% and 10% level respectively.
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Table A11: VECM(3) estimation results: Johansen Case IV, model excluding Elec

Variable Coefficient Std. Error t-Statistic Prob.

Deterministic constant -0.0367 0.0300 -1.239 0.215
∆Eua−1 0.0355 0.0220 1.6240 0.104
∆Oil−1 -0.0392 0.0310 -1.254 0.210
∆Gas−1 -0.0190 0.0290 -0.659 0.510
∆Coal−1 0.2819 0.0560 5.045 0.000∗∗∗
∆Ren−1 0.0105 0.0370 0.279 0.780
∆Sust−1 -0.1342 0.0800 -1.670 0.095∗
∆Eua−2 -0.0918 0.0220 -4.225 0.000∗∗∗
∆Oil−2 0.0402 0.0310 1.283 0.200
∆Gas−2 0.0169 0.0280 0.594 0.553
∆Coal−2 -0.1190 0.0580 -2.060 0.039∗∗
∆Ren−2 0.0340 0.0370 0.908 0.364
∆Sust−2 0.1093 0.0810 1.357 0.175
∆Eua−3 -0.0429 0.0220 -1.974 0.048∗∗
∆Oil−3 0.0950 0.0310 3.045 0.002∗∗∗
∆Gas−3 -0.0515 0.0290 -1.806 0.071∗
∆Coal−3 -0.0355 0.0580 -0.614 0.539
∆Ren−3 0.0132 0.0370 0.354 0.723
∆Sust−3 0.0390 0.0800 0.485 0.628
Error Correction Term 0.0021 0.0020 1.263 0.206

Cointegration relations
βEua 1.0000 0.000 0.000 0.000∗∗∗
βOil -1.1242 0.325 -3.455 0.001∗∗∗
βGas -1.9382 0.388 -4.998 0.000∗∗∗
βCoal 3.284 0.438 7.49 0.000∗∗∗
βRen 0.2851 0.271 1.052 0.293
βSust 3.0574 1.145 2.669 0.008∗∗∗
Deterministic trend -0.0022 0.000 -9.626 0.000∗∗∗

Log likelihood 34114.93722

This table shows the VECM(3) estimation results of Johansen (1995) Case IV, estimated based on
the sample 1 January 2012 - 30 June 2020
∆xp indicates the first-differenced variable x at lag p. The columns show the estimated coefficient,
corresponding standard error, t-statistic and p-value. The table shows the parameter estimates
for the regression of the lagged parameters on Eua in the upper panel. It also shows the loading
coefficients for the equation of Eua, i.e. the error correction term. The bottom panel of the table
shows the cointegration relations of the loading-coefficients. βx correspond to the estimates specified
by equation 9. The last row shows the log likelihood of the model. The abbreviations of the variables
are elaborated upon in Table A1 in the Appendix. ***, ** or *, asterisk indicates significance of a
variable at the 1%, 5% and 10% level respectively.
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A.2 Figures

Figure A1: Empirical auto-correlation function of the daily first-differenced variables.
The abbreviations of all variables are elaborated upon in Table A1 in the Appendix.
(31/12/2007 - 30/06/2020).
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Figure A2: Cointegration relation (β′tYt) for the VECM(3) Johansen Case II specified in
Table A6 - 1 January 2012 - 30 June 2020.

Figure A3: Cointegration relation (β′Yt) for the VECM(3) Johansen Case III specified in
Table A7 - 1 January 2012 - 30 June 2020.

Figure A4: Cointegration relation (β′tYt) for the VECM(3) Johansen Case IV specified in
Table A8 - 1 January 2012 - 30 June 2020.
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Figure A5: Cointegration relation (β′tYt) for the VECM(3) Johansen Case II specified in
Table A9 - 1 January 2012 - 30 June 2020.

Figure A6: Cointegration relation (β′tYt) for the VECM(3) Johansen Case III specified in
Table A9 - 1 January 2012 - 30 June 2020.

Figure A7: Cointegration relation (β′Yt) for the VECM(3) Johansen Case IV specified in
Table A9 - 1 January 2012 - 30 June 2020.
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(a) Chebyshev polynomial order m = 2

(b) Chebyshev polynomial order m = 3

(c) Chebyshev polynomial order m = 4

Figure A8: Estimates of β′t for the TV-VECM(3) including Elec - 1 January 2012 - 30
June 2020 for Chebyshev polynomial order m.
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(a) Chebyshev polynomial order m = 2

(b) Chebyshev polynomial order m = 3

(c) Chebyshev polynomial order m = 4

Figure A9: Estimates of (β′tYt) for the TV-VECM(3) including Elec - 1 January 2012 -
30 June 2020 for Chebyshev polynomial order m.
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(a) Chebyshev polynomial order m = 2

(b) Chebyshev polynomial order m = 3

(c) Chebyshev polynomial order m = 4

Figure A10: Estimates of β′t for the TV-VECM(3) excluding Elec - 1 January 2012 - 30
June 2020 for Chebyshev polynomial order m.
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(a) Chebyshev polynomial order m = 2

(b) Chebyshev polynomial order m = 3

(c) Chebyshev polynomial order m = 4

Figure A11: Estimates of (β′tYt) for the TV-VECM(3) excluding Elec - 1 January 2012
- 30 June 2020 for Chebyshev polynomial order m.
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A.3 Python Code

Descriptive Statistics & Preliminary Analysis

[ ]: # IMPORT TOOLKITS

import time as time
import pandas as pd
import numpy as np
import datetime as dt

# Import Statsmodels
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.tsa.api import VAR
from statsmodels.tsa.stattools import adfuller
from statsmodels.tools.eval_measures import rmse, aic
from statsmodels.tsa.vector_ar import vecm
from statsmodels.tsa.api import VECM

# Import plotting tools
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.pylab import rcParams
rcParams['figure.figsize']=10,6
import seaborn as sns
from scipy.stats import boxcox

[ ]: #IMPORT DATA
path = '/Users/sophiahummelman/Documents/Master Thesis/Data/

,!Data.xlsx'
df = pd.read_excel(path, parse_dates=['date'],�

,!index_col='date')
df = df['01/01/2008' : '30/06/2020']
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# Plot full EUA series
df_EUA = df['Eua']
df_EUA.plot(figsize=(20,6), linewidth=2, fontsize=14)
plt.show()

df = df['01/01/2012' : '30/06/2020']

# Make a new indicator for sustainability, by taking an�
,!equally weighted average of Esg and Sust

Sust= (df.Esg+df.Sust)/2
df = df.drop('Esg',axis=1)
df = df.drop('Sust',axis=1)
df['Sust'] = Sust

# Make a new indicator for Elec and transform on Elec to�
,!account for negative electricity prices

df['Elec'] = (df.Elec+df.Elec2)/2
df = df.drop('Elec2',axis=1)
df.Elec = (df.Elec + 1.1 - df['Elec'].min())

# Transform data with natural log
df = np.log(df)

# Transform dataset by taking first differences
df_diff =df.diff().dropna()

variablenames = df.columns
pd.set_option('display.float_format', lambda x: '%.4f' % x)

[ ]: # Checking the correlations between X(t) and X(t-1)
fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1,�

,!figsize=(10,6))
df.plot(ax=ax1) # series plot
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pd.plotting.lag_plot(df) # lag plot
plt.show()

[ ]: descr=df.describe()
print(descr.to_latex())

# Plot Energy series
df_energy = df.drop('Ren',axis=1)
df_energy = df_energy.drop('Sust',axis=1)
df_energy.plot(figsize=(20,6), linewidth=2, fontsize=14)
plt.show()

# Plot Sustainability indicators
# Plot Energy series
df_sust = df.drop('Coal',axis=1)
df_sust = df_sust.drop('Elec',axis=1)
df_sust = df_sust.drop('Oil',axis=1)
df_sust = df_sust.drop('Gas',axis=1)
df_sust.plot(figsize=(20,6), linewidth=2, fontsize=14)
plt.show()

# Plot all variables together
df.plot(figsize=(20,6), linewidth=2, fontsize=14)
plt.show()

[ ]: #Full data set correlation
dfcorr=df.corr()

#Correlation Pre-Covid
dfprec = df['01/01/2012' : '03/03/2020']
dfprec_corr = dfprec.corr()

#Correlation Post-Covid
dfpostc = df['03/03/2020' : '30/06/2020']
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dfpostc_corr = dfpostc.corr()

print(dfcorr.to_latex(),"\n",dfprec_corr.
,!to_latex(),"\n",dfpostc_corr.to_latex())

[ ]: # Plot auto-correlations
for i, ax in enumerate(axes.flatten()):

data = df_diff[df_diff.columns[i]]
title = df_diff.columns[i]
sm.graphics.tsa.plot_acf(data.values.squeeze(), lags=50,�

,!title=title)
plt.tight_layout();

[ ]: #GRANGER CAUSALITY TESTS

# Constant is added by default

from statsmodels.tsa.stattools import grangercausalitytests
maxlag=12
test = 'ssr_chi2test'
def grangers_causation_matrix(data, variables,�

,!test='ssr_chi2test', verbose=False):
"""Check Granger Causality of all possible combinations of�

,!the Time series.
The rows are the response variable, columns are predictors.

,! The values in the table
are the P-Values. P-Values lesser than the significance�

,!level (0.05), implies
the Null Hypothesis that the coefficients of the�

,!corresponding past values is
zero, that is, the X does not cause Y can be rejected.
A constant is added by default

data : pandas datafrja ame containing the time series�
,!variables

62



variables : list containing names of the time series�
,!variables.

"""
df = pd.DataFrame(np.zeros((len(variables),�

,!len(variables))), columns=variables, index=variables)
for c in df.columns:

for r in df.index:
test_result = grangercausalitytests(data[[r, c]],�

,!maxlag=maxlag, verbose=False)
p_values = [round(test_result[i+1][0][test][1],4)�

,!for i in range(maxlag)]
if verbose: print(f'Y = {r}, X = {c}, P Values =�

,!{p_values}')
min_p_value = np.min(p_values)
df.loc[r, c] = min_p_value

df.columns = [var + '_x' for var in variables]
df.index = [var + '_y' for var in variables]
return df

print('Full Data set','\n', grangers_causation_matrix(df,�
,!variables = df.columns).to_latex())

print('Pre Covid Data set','\n',�
,!grangers_causation_matrix(dfprec, variables = df.columns).
,!to_latex())

print('Post Covid Data set','\n',�
,!grangers_causation_matrix(dfpostc, variables = df.columns).
,!to_latex())

[ ]: # AUGMENTED DICKEY FULLER TEST

def adfuller_test(series ,regression,signif=0.05, name='',�
,!verbose=False):

"""Perform ADFuller to test for Stationarity of given�
,!series and print report"""
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r = adfuller(series, autolag='AIC',regression=regression)
output = {'test_statistic':round(r[0], 4), 'pvalue':

,!round(r[1], 4), 'n_lags':round(r[2], 4), 'n_obs':r[3]}
p_value = output['pvalue']
def adjust(val, length= 6): return str(val).ljust(length)

teststat = output["test_statistic"]

critvals = []
for key,val in r[4].items():

new_critval= f' Critical value {adjust(key)} =�
,!{round(val, 3)}'

critvals = [critvals, new_critval]

ADF = pd.
,!DataFrame(data=[teststat,p_value],index=["ADF","P-value"],columns=[name])

return ADF,critvals

# RESULTS ADF

# ADF Test with “c” : constant only
ADF = pd.

,!DataFrame(data=[0,0],index=["ADF","P-value"],columns=['test'])
for name, column in df.iteritems():

new_ADF,critvals=adfuller_test(column,�
,!regression='c',name=column.name)

ADF = pd.concat([ADF, new_ADF],axis=1)
ADF=ADF.drop('test',axis=1)

print("ADF test ADF Test with “c” : constant only",'\n',ADF.
,!to_latex())

print('\n',"Critial Values",'\n',critvals,'\n')
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# ADF Test with “ct” : constant and trend
ADF = pd.

,!DataFrame(data=[0,0],index=["ADF","P-value"],columns=['test'])
for name, column in df.iteritems():

new_ADF,critvals=adfuller_test(column,�
,!regression='ct',name=column.name)

ADF = pd.concat([ADF, new_ADF],axis=1)
ADF=ADF.drop('test',axis=1)

print("ADF test ADF Test with #“ct” : constant and�
,!trend",'\n',ADF.to_latex())

print('\n',"Critial Values",'\n',critvals,'\n')
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VAR Model & VECM

[ ]: # IMPORT TOOLKITS

import time as time
import pandas as pd
import numpy as np
import datetime as dt

# Import Statsmodels
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.tsa.api import VAR
from statsmodels.tsa.stattools import adfuller
from statsmodels.tools.eval_measures import rmse, aic
from statsmodels.tsa.vector_ar import vecm
from statsmodels.tsa.api import VECM

# Import plotting tools
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.pylab import rcParams
rcParams['figure.figsize']=10,6
import seaborn as sns
from scipy.stats import boxcox

[ ]: #IMPORT DATA
path = '/Users/sophiahummelman/Documents/Master Thesis/Data/

,!Data.xlsx'
df = pd.read_excel(path, parse_dates=['date'],�

,!index_col='date')
df = df['01/01/2012' : '30/06/2020']

# Make a new indicator for sustainability, by taking an�
,!equally weighted average of Esg and Sust

Sust= (df.Esg+df.Sust)/2
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df = df.drop('Esg',axis=1)
df = df.drop('Sust',axis=1)
df['Sust'] = Sust

# Make a new indicator for Elec and transform on Elec to�
,!account for negative electricity prices

df['Elec'] = (df.Elec+df.Elec2)/2
df = df.drop('Elec2',axis=1)
df.Elec = (df.Elec + 1.1 - df['Elec'].min())

#Exclude Electricity from the analysis
df = df.drop('Elec',axis=1)

# Transform data with natural log
df = np.log(df)

# Transform dataset by taking first differences
df_diff =df.diff()

# Check input variables
variablenames = df.columns
print(variablenames)

# Set output to four decimal places significance
pd.set_option('display.float_format', lambda x: '%.4f' % x)

[ ]: # LAG ORDER SELECTION VAR MODEL
# VAR model must be indicated in trend , by “c” for constant�

,!only and “ct” for a constant and trend

#Fit VAR model
model = VAR(endog=df,freq=None)
res = model.select_order(maxlags=5, trend='ct')
varorder=res.summary()
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#Print VAR order selection criteria summary
print(varorder)

# Determine VAR order by taking the maximum of the order�
,!selection criteria

ressum = res.ics
varorder =(res.aic,res.bic,res.hqic)

#Print recommended varorder
print("recommended varorder:",varorder,"\n")
varorder =max(res.aic,res.bic,res.hqic)
ressum = pd.DataFrame(ressum)
ressum = ressum.drop('fpe', axis=1)

#Print latex table order selection criteria
print(ressum.to_latex())

[ ]: # FIT VAR model
# VAR model must be indicated by “c” for constant only and�

,!“ct” for a constant and trend

model_fit = model.fit(maxlags=varorder, trend='ct')
varorder=model_fit.k_ar

#Print a summary of the VAR
print(model_fit.summary())
varsumm = model_fit.summary()

[ ]: # DETERMINE IDEAL VECM RANK

# if det_order =
#-1 - no deterministic terms
#0 - constant term
#1 - linear trend

#Order of VECM = VAR order -1
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varorder = varorder-1

input_data = df

vecm_order = vecm.select_order(input_data, maxlags=8,�
,!deterministic='c', seasons=0, exog=None, exog_coint=None)

print((vecm_order))

# Initialize cointegration rank
cointrank = 0

from statsmodels.tsa.vector_ar import vecm
i=0
while i <=1:

# VEC Rank Test
vec_trace = vecm.select_coint_rank(input_data, det_order =�

,!i, k_ar_diff = varorder, method = 'trace', signif=0.01)
print(vec_trace.summary())

# Output and results VEC Rank test
print("Deterministic order:",i,"\n","Vec rank suggested by�

,!trace test:",vec_trace.rank)
if vec_trace.rank>cointrank:

cointrank = vec_trace.rank

if i == -1:
tracesumm_no_det = vec_trace.summary()
with open('/Users/sophiahummelman/Documents/Master�

,!Thesis/Data/tracesumm_no_det.tex','w') as fh:
fh.write(tracesumm_no_det.as_latex_tabular() )

if i == 0:
tracesumm_constant = vec_trace.summary()
with open('/Users/sophiahummelman/Documents/Master�

,!Thesis/Data/tracesumm_constant.tex','w') as fh:
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fh.write(tracesumm_constant.as_latex_tabular() )
if i == 1:

tracesumm_trend = vec_trace.summary()
with open('/Users/sophiahummelman/Documents/Master�

,!Thesis/Data/tracesumm__trend.tex','w') as fh:
fh.write(tracesumm_trend.as_latex_tabular() )

#Maximum-eigenvalue Statistic
vec_maxeig = vecm.select_coint_rank(input_data, det_order�

,!= i, k_ar_diff = varorder, method = 'maxeig', signif=0.05)
print(vec_maxeig.summary())

# Output and results Maximum-eigenvalue test
print("Deterministic order:",i,"\n","Vec rank suggested by�

,!maxeig test:",vec_maxeig.rank)
if vec_maxeig.rank>cointrank:

cointrank = vec_maxeig.rank
if i == -1:

maxeigsumm_no_det = vec_maxeig.summary()
with open('/Users/sophiahummelman/Documents/Master�

,!Thesis/Data/maxeigsumm_no_det.tex','w') as fh:
fh.write(maxeigsumm_no_det.as_latex_tabular() )

if i == -0:
maxeigsumm_constant = vec_maxeig.summary()
with open('/Users/sophiahummelman/Documents/Master�

,!Thesis/Data/maxeigsumm_constant.tex','w') as fh:
fh.write(maxeigsumm_constant.as_latex_tabular() )

if i == 1:
maxeigsumm_trend = vec_maxeig.summary()
with open('/Users/sophiahummelman/Documents/Master�

,!Thesis/Data/maxeigsumm__trend.tex','w') as fh:
fh.write(maxeigsumm_trend.as_latex_tabular() )

i = i+1
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[ ]: input_data = df

# Uses cointegration rank suggest by maximum eigenvalue test�
,!by default. To change add line: cointrank = X

print("Cointegration Rank equals:",cointrank)
print("VECM Order:",varorder)

# Change deterministic terms for the VECM in determ

#"nc" - no deterministic terms
#"co" - constant outside the cointegration relation
#"ci" - constant within the cointegration relation
#"lo" - linear trend outside the cointegration relation
#"li" - linear trend within the cointegration relation

# The four combinations of command used are
#ci
#co
#coli

# Current deterministic term settings
determ = 'ci'

#VECM on the prices with "varorder" lags, "cointrank"�
,!co-integrating relationship

vecm = VECM(endog = input_data, k_ar_diff = varorder,�
,!coint_rank = cointrank, deterministic = determ)

vecm_fit = vecm.fit()
vecmsumm=vecm_fit.summary()
#Print a summary of the model results
print(vecmsumm)

#Print the log-likelihood of the model
print("Log-likelihood",vecm_fit.llf)
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[ ]: # PLOT RESULTING COINTEGRATING RELATION
dfm=df
portfolio_insample = np.dot(dfm,beta)
portfolio_insample = pd.

,!DataFrame(portfolio_insample,columns=["Cointegrated�
,!series"])

portfolio_insample.index=dfm.index

portfolio_insample.plot(figsize=(20,6), linewidth=2,�
,!fontsize=14)

plt.show()
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Time-varying VECM1

[ ]: # IMPORT TOOLKITS

import time as time
import pandas as pd
import numpy as np
import datetime as dt
import matplotlib.pyplot as plt
import math

# Import Statsmodels
import statsmodels.api as sm
import statsmodels.formula.api as smf
from statsmodels.tsa.api import VAR
from statsmodels.tsa.stattools import adfuller
from statsmodels.tools.eval_measures import rmse, aic
from statsmodels.tsa.vector_ar import vecm

[ ]: #IMPORT DATA

path = '/Users/sophiahummelman/Documents/Master Thesis/Data/
,!Data.xlsx'

df = pd.read_excel(path, parse_dates=['date'],�
,!index_col='date')

df = df['01/01/2012' : '30/06/2020']
variablenames = df.columns
pd.set_option('display.float_format', lambda x: '%.4f' % x)

# Make a new indicator for sustainability, by taking an�
,!equally weighted average of Esg and Sust

Sust = (df.Esg+df.Sust)/2
df = df.drop('Esg',axis=1)
df = df.drop('Sust',axis=1)
df['Sust'] = Sust

1Code Based on pseudocode by Luis Filipe Martins: http://home.iscte-iul.pt/l̃fsm/
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# Make a new indicator for Elec and transform on Elec to�
,!account for negative electricity prices

df['Elec'] = (df.Elec+df.Elec2)/2
df = df.drop('Elec2',axis=1)
df.Elec = (df.Elec + 1.1 - df['Elec'].min())

#Exclude Electricity from the analysis
df = df.drop('Elec',axis=1)

# Transform data with natural log
df = np.log(df)

# Variable and data check
variablenames = df.columns
print("Final model contains variables:",variablenames)

[ ]: # INITIALIZE VARIABLES

data = df.rename_axis('ID').values

y = data

n = len(y)
k = len(y[0])

m=1

mmax= 4 # Set maximum dimension of�
,!Chebishev Polynomials

p=3 # Set VECM order

lrtvc = np.zeros((mmax,k)) # TVC Stat (row) m=1,...,mmax�
,!and (col) r=1,..,k
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lrtvcpv=np.zeros((mmax,k)) # P-values using the Asymp�
,!Distr (chisquare(mrk))

betat=np.zeros((n-p-1,k*mmax)) # beta_t for cointegration rank�
,!1, i.e. r=1. The rows display observation i and the columns�
,!1 up to k= (b1,...,bk) for m=1, columns k+1 up to 2k=(b1,...
,!,bk) for m=2

lnlikm=np.zeros((mmax,k)) # Log likelihood for different�
,!m and r

aic=np.zeros((mmax,k)) # AIC Akaike model selection�
,!criterion

bic=np.zeros((mmax,k)) # BIC Schwarz model selection�
,!criterion

hann=np.zeros((mmax,k)) # Hannan-Quinn model selection�
,!criterion

[ ]: # Create vector normalization function
def normalize(v):

norm = np.linalg.norm(v)
if norm == 0:

return v
return v / norm

[ ]: # Create function for Chebychev time polynomials

def ycheb(data, varord, chebdim):
nn = len(data)
k = len(data[0])
yst=np.zeros((nn-varord-1,(chebdim+1)*k))
yst[0:len(yst),0:k]=data[varord:nn-1,0:len(yst[0])]
if chebdim==0:

yst = yst
else:

n=len(yst[0:len(yst),1])
ind=np.arange(varord+2, n+varord+2, 1).tolist()
ind=np.array(ind)

i=1
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while i<=chebdim:
matrix1 = math.sqrt(2)*np.cos(i*math.pi*(ind-0.5)/n)
matrix2 = yst[0:len(yst),0:k]
yst[0:len(yst),i*k:(i+1)*k] = matrix2 * matrix1[:, np.

,!newaxis]
i=i+1

return yst

[ ]: # Function to take different lags of the data

def varlags(var,lags):
i=1
dy = var[lags:len(var),:]
b=var[0:len(var)-lags]
dylags = b
while i<lags:

af=var[i:len(var)-lags+i]
newaf = np.concatenate((af, b), axis=1)
b = newaf
i = i+1
dylags = newaf

return dy, dylags

[ ]: # Function to calculate eigenvalues, eigenvectors and�
,!determinants to calculate the time varying cointegration�
,!test statistic

def tvcoint(y,p,m):
ystar_1 = ycheb(y,p,m)
ysub,y_1=varlags(y,1)
dy=ysub-y_1
dy,dylags=varlags(dy,p)
T=len(dylags)
dylags = np.concatenate((np.ones((T,1)), dylags), axis=1)
betau,a,b,c = np.linalg.lstsq(dylags,dy)
resu=dy-dylags@betau
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betav,a,b,c=np.linalg.lstsq(dylags,ystar_1)
resv=ystar_1-dylags@betav
S00=(resu.T@resu)/T
S01=(resu.T@resv)/T
S10=S01.T
S11=(resv.T@resv)/T
S00inv=np.linalg.inv(S00)
S11inv=np.linalg.inv(S11)
A=S11inv@S10@S00inv@S01
evals,evec=np.linalg.eig(A)
idx = evals.argsort()[::-1]
evals = evals[idx]
evec = evec[:,idx]
detS00 = np.linalg.det(S00)

return evals, evec, detS00

[ ]: # MAIN FUNCTION

import scipy as scipy
from scipy.stats import chi2

ev0,evec0,det0=tvcoint(y,p,0) #perform standard�
,!cointegration with the Chebychev order equal to 0

ll0=np.log(1-ev0)
m=1 # Start with Chebychev order =�

,!1

while m<=mmax:
evals,evect,detm=tvcoint(y,p,m) # Output gives the�

,!eigenvalues, eigenvectors q1...qr...q(m+1)k and�
,!determinant(S00)

llm=np.log(1-evals)
#for r=1
ind = np.arange(p+2, n+1, 1).tolist()
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ind = np.array(ind)
c=1
while c <= k:

beta1sum = np.zeros((m,len(ind)))
beta2sum = np.zeros((m,len(ind)))
beta3sum = np.zeros((m,len(ind)))
beta4sum = np.zeros((m,len(ind)))
beta5sum = np.zeros((m,len(ind)))
beta6sum = np.zeros((m,len(ind)))
beta7sum = np.zeros((m,len(ind)))
c = c+1

mm = 1
while mm <=m:

cosin = np.sqrt(2)*np.cos(mm* math.pi*(ind-0.5)/
,!(n-p-1))

beta1sum[mm-1,:]=evect[k*mm,0]*cosin
beta2sum[mm-1,:]=evect[k*mm+1,0]*cosin
beta3sum[mm-1,:]=evect[k*mm+2,0]*cosin
beta4sum[mm-1,:]=evect[k*mm+3,0]*cosin
beta5sum[mm-1,:]=evect[k*mm+4,0]*cosin
beta6sum[mm-1,:]=evect[k*mm+5,0]*cosin
beta7sum[mm-1,:]=evect[k*mm+6,0]*cosin

mm = mm +1
# Add beta estimates together in a matrix
matrix2=np.column_stack((np.sum(beta1sum,axis=0),np.

,!sum(beta2sum,axis=0),np.sum(beta3sum,axis=0),np.
,!sum(beta4sum,axis=0),np.sum(beta5sum,axis=0),np.
,!sum(beta6sum,axis=0),np.sum(beta7sum,axis=0)))

eigenvectors = evect[0:k,0]
betat[:,k*(m-1):k*m]=eigenvectors.T+matrix2

r=2
while r<=k+1:
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lrtvc[m-1,r-2]=(n-p-1)*np.sum(ll0[0:
,!r-1],axis=0)-(n-p-1)*np.sum(llm[0:r-1],axis=0)

lrtvcpv[m-1,r-2]=1-scipy.stats.chi2.
,!cdf(lrtvc[m-1,r-2],(m*(r-1)*k))

lnlikm[m-1,r-2]=(np.log(r-1)-k-k*np.log(2*math.
,!pi))*(n-p-1)/2 - np.sum(llm[0:r-1],axis=0)*(n-p-1)/2 - (np.
,!log(detm))*(n-p-1)/2

npar=(m+1)*k*(r)+(r)*k+k^2+(k+(p-1)*k^2)
aic[m-1,r-2]= -2*lnlikm[m-1,r-2]/(n-p-1)+npar*2/(n-p-1)
bic[m-1,r-2]= -2*lnlikm[m-1,r-2]/(n-p-1)+npar*(np.

,!log(n-p-1))/(n-p-1)
hann[m-1,r-2]= -2*lnlikm[m-1,r-2]/(n-p-1)+npar*(np.

,!log(np.log(n-p-1)))*2/(n-p-1)

r=r+1
m = m + 1

[ ]: # Analyze output

hannmax = pd.DataFrame(hann)
# Convert beta estimates to a DataFrame
df2=pd.DataFrame((betat))

# Determine ideal chebichev order with Hannan-Quinn Criteria�
,!and re-run if necessary

hannmax=hannmax.idxmin(axis=0, skipna=True)+1
print("Ideal Chebichev order: ", hannmax)

#PRINT OUTPUT
print("Time Varying Cointegration Empirical Analysis - DRIFT�

,!CASE - Cointegration rank = 1")
print("Number of time series =",k, '\n',"Number of�

,!observations =",n, '\n'," Order of VECM =",p,'\n',"Current�
,!Dimensiion of Chebishev time-polynomial =",mmax,'\n')
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print("Likelihood Ratio Time-Varying Cointegration Test�
,!Statistics",'\n',lrtvc,'\n', "P-Value",'\n',lrtvcpv,'\n',�
,!"Using the Asymp Distr (chisquare(mrk)) with row = m =1,...
,!,mmax and col = r = 1,...,k")

print("Time-varying Cointegration log likelihood = (row=m,�
,!col=r)",'\n',lnlikm,'\n',)

print("AIC Akaike = (row=m, col=r)",'\n',aic,'\n',)
print("BIC Schwarz = (row=m, col=r)",'\n',bic,'\n',)
print("Hannan-Quinn = (row=m, col=r)",'\n',hann,'\n',)

#Create a DataFrame for a Latex summary table
A=(lrtvc[mmax-1],lrtvcpv[mmax-1],lnlikm[mmax-1],aic[mmax-1],bic[mmax-1],hann[mmax-1])
A=np.stack(A, axis = 0)
TVsummary = pd.DataFrame(A, index=["LR TVC�

,!Statistics","P-Value","TV Coint. log�
,!likelihood","AIC","BIC","HQIC"])

cointrank = 1
print("For chosen cointegration rank ,'", cointrank,"',")
print("Summary of time varying cointegration",TVsummary[0].

,!to_latex())

[ ]: # Displays non-normalized beta estimates

df2=pd.DataFrame((betat))

df4=df2[df2.columns[-k:]]

# Insert some empty values to match the dates of the original�
,!dataframe to create a new Dataframe containing time-stamps�
,!for the beta estimates

data = []

data.insert(0, {'Eua': 0})
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data.insert(0, {'Eua': 0})
data.insert(0, {'Eua': 0})
data.insert(0, {'Eua': 0})

df4.columns=variablenames
df4=pd.concat([pd.DataFrame(data), df4], ignore_index=True)
df4.index=df.index

df4_tail = df4.iloc[4:]

# Plot the beta estimates in one graph for m = mmax
df4_tail.plot(figsize=(20,6), linewidth=2, fontsize=14)

plt.show()

[ ]: # Displays normalized beta's in one graph for m = mmax

df4_norm=normalize(df4_tail)
df4_norm=df4_norm*(1/df4_norm['Eua'][0])

df4_norm.plot(figsize=(20,6), linewidth=2, fontsize=14)

plt.show()

[ ]: # Displays the normalized cointegration relation for m = mmax

dfm=df
dfm = dfm.iloc[4:]
portfolio_insample = np.dot((dfm),(df4_norm).T)

portfolio_insample=np.diagonal(portfolio_insample)
portfolio_insample=pd.

,!DataFrame(portfolio_insample,columns=["Cointegrated�
,!series"])

portfolio_insample.index=dfm.index
portfolio_insample.column='Cointegration Relation'
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portfolio_insample.plot(figsize=(20,6), linewidth=2,�
,!fontsize=14)
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