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Abstract

This thesis performs a market-consistent valuation of inflation-linked liabilities by combining

the Jarrow-Yildrim (JY) model with an existing LIBOR market model (LMM). In the JY

model, the nominal interest rates, real interest rates and inflation rate are modelled simul-

taneously using a HJM framework. In this thesis, however, we replace the nominal short

rate projection by a nominal short rate approximation resulting from an LMM. The inflation

and real rate component of our model are calibrated to market data of zero-coupon inflation

swaps (ZCIIS), year-on-year inflation swaps (YYIIS) and inflation floors. We minimise the

sum squared difference of the model- and market prices by adjusting some of our model

parameters. The optimised parameters are utilised to generate our final inflation projection.

This inflation projection is used to price a dummy portfolio mimicking the inflation-linked

liabilities with an embedded floor at 0%, which is commonly found in practice. The model

is able to market-consistently price the ZCIIS, YYIIS, and 0% floors and finds that the floor

value of the inflation-linked liabilities is 0.3% of the present value without a floor.

Keywords— inflation risk, inflation-linked derivatives, JY model, LMM
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1 Introduction
Insurance companies have both assets and liabilities on their balance sheet and are therefore

subject to several financial risks. It is crucial to accurately estimate these risks in order to

give a clear insight in their potential impact on the assets and liabilities. The reason for this

is twofold. First of all, for the company itself it is important to understand the risks they are

facing. By understanding this, not only the impact of a change in one of the financial variables

will be known, but also this impact can be used for hedging the risk. Secondly, regulations

require insurance companies to be precise about the financial situation. An example is that a

requirement of Solvency II, a valuation framework for insurance firms in the EU, is that the

valuation needs to be market-consistent. By analysing inflation, this thesis covers one of these

financial risks.

Specifically, the purpose of this thesis is to perform a market-consistent valuation of inflation-

linked liabilities by extending an interest rate risk model to an inflation model with the focus

on estimating the non-linear inflation risk embedded in these liabilities. In previous literature,

inflation has had much less attention than for example interest rate risk. The first and main

reason is that the exposure to inflation risk is not that large. The second reason is that, his-

torically, inflation has had a low probability of falling below 0%. Recently, however, non-linear

inflation risk has become more realistic. Furthermore, exposure to inflation risk can always rise

when adapting the portfolio. It thus an interesting topic to investigate. As mentioned above,

insurance companies have a lot more exposure to interest rate risk and it is therefore likely that

they have some model to capture this risk. By assuming that these companies have an interest in

modelling inflation, the need for a compatible inflation model arises. We develop such a model in

this thesis. The main contribution of our thesis is thus that it extends an interest rate risk model

such that it can also be used to estimate inflation risk, a risk that has become more realistic the

last few years and has not received a lot of attention.

Inflation risk is a risk for companies whose portfolio consist of inflation-linked liabilities.

Inflation-linked liabilities are liabilities that are indexed with realised inflation (usually an in-

flation index such as HICPxT or NL CPI) to stabilise the policy holder’s purchasing power.

Since indices vary over time, the value of the liabilities becomes uncertain. To protect policy

holders against the uncertainty, the liabilities are not negatively indexed. This means that when

inflation falls below 0%, the liabilities are kept constant rather than being reduced. The policy

holder therefore has an embedded guarantee to receive at least 0% inflation; his pay-out can

be modelled as the maximum of 0% inflation and the actual inflation. This leads to non-linear

inflation risk for the pension insurer.
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The presence of the 0% floor affects the value of the liabilities through the guarantee and

therefore a stochastic valuation model is required. The guarantee can be split into the intrinsic

value and the time value. The intrinsic value refers to an investor’s perception of the inherent

value of an asset. The time value refers to the portion of an option’s premium that is attributable

to the amount of time remaining until the expiration of the option. To incorporate this time

value, the valuation should consider the possibility that a deflation will occur. It is important to

note that therefore the break-even inflation curve cannot be used for the valuation. This curve is

always above 0% and thus does not allow for the possibility that inflation will fall below 0% and

can therefore not incorporate the effect of this floor. In order to capture this effect, a stochastic

valuation is necessary that projects different inflation paths. Each path will have a different

evolution of inflation and allows inflation to be negative in some situations.

Several stochastic models are available and to choose our own model, we first review multiple

existing inflation models with the main focus on the model by Jarrow and Yildirim (2003). As

for interest rate models, the inflation models can essentially be divided into two main groups:

market models and short rate models. Short rate models have the purpose of modelling the

unobservable instantaneous rate. One of the first short rate models to model inflation is the JY

model of Jarrow and Yildirim (2003). In the JY model, the nominal rates, real rates and inflation

are modelled simultaneously using a HJM framework. This is exactly the reason we focus on

this model when studying short rate models. Since all these three variables are modelled, it is

quite intuitive to combine a nominal interest rate risk model with the JY model.

The JY model contains three possible shortcomings or rather simplicities. First of all, the

volatility is assumed to be deterministic. Secondly, the model does not allow for jumps in the

inflation rate. Thirdly, it is driven by only three factors. Since the introduction of the JY

model, more models have been suggested that all try to overcome some of these simplicities.

One extension of the JY model is suggested by Hinnerich (2008). This model allows for jumps in

the inflation rate. There is strong empirical evidence that interest rates have embedded jumps,

mainly caused by information surprises like macroeconomic announcements. Therefore jump-

diffusion models should more accurately capture the behaviour. Since this also holds for real

interest rates and inflation, it is natural to allow inflation to jump as well. Furthermore, it allows

for more than three factors. In other words, the random process describing the instantaneous

rates and inflation is driven by a multidimensional Wiener process. Lastly, the model introduces

stochastic volatility to capture the smile effect in inflation derivatives.

Market inflation models adopt dynamics for certain observable inflation-related variables,

like the CPI or the forward price of real zero-coupon bonds. Well-known market models are
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those of Belgrade et al. (2004) and Mercurio (2005). The first market model adopts dynamics

for the forward CPI. The second one uses lognormal dynamics of the forward CPI together with

the assumption that forward rates follow a lognormal LIBOR model to obtain dynamics for the

forward price of inflation zero-coupon bonds. Market models have also been adapted in several

ways. The market model by Mercurio and Moreni (2006) extends the model of Mercurio (2005)

by introducing stochastic volatility instead of deterministic volatility. Later on, a multi-factor

SABR model by Mercurio and Moreni (2009) was proposed. This model is based on a multi-factor

volatility structure and leads to SABR-like dynamics for forward inflation rates. The advantage

of this model is that it is able to jointly price zero-coupon products and year-on-year products.

In our thesis, we assume that a nominal LIBOR market model (LMM) is used by insurance

companies to capture interest rate risk and we model the inflation by using the JY model.

Short rate models have the drawback that they do not capture the current curve, a feature that

market models do contain. On one hand, market models are more advanced. On the other

hand, they are usually more complex and require more input parameters. Because of their

increased dimensionality, market models may not be best choice in less liquid markets. Or, as

van Haastrecht and Pelsser (2011) put it, "due to a lack of calibration instruments in less liquid

markets (such as inflation options), hedges and calibrations may become unstable when using

market models" (p. 683). This is crucial for our model selection, which is mainly driven by

the combination of the given exposure and the liquidity of the specific market. The exposure to

interest rate risk is large and hence an advanced model is required. The interest rate market is

large and liquid and allows us to make this choice. Inflation risk exposure is small, making it

less necessary to use an advanced model. Furthermore, the inflation market is not that liquid

and hence market models may possess calibration problems, due to which in this thesis the JY

model is studied.

This thesis examines the stochastic valuation by using the JY model, where the nominal

evolution is replaced by the LMM. The JY model uses the foreign currency analogy so that

nominal dollars correspond to domestic currency, real dollars to foreign currency and inflation

index to the spot exchange rate. In that setup, the fluctuations of the real and nominal interest

rates and the inflation rate will be correlated. The nominal projection, however, can also be

developed by another model and this is exactly what we do. We use the LMM to make a

projection of the forward curve for all projection years. The shortest maturity belonging to

every forward curve is then extracted to create a nominal short rate evolution which replaces the

nominal projection of the initial JY model. In our final model, the real rate and inflation rate

will thus depend on the JY model, whereas the nominal interest rate will depend on the LMM.
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To be able to market-consistently price the inflation-linked liabilities, we calibrate our model

to inflation products. Since we assume that the LMM is calibrated to nominal swap data, the

nominal rate projection should be able to market-consistently price these products. The real rate

and inflation component are driven by the JY model and do need to be calibrated. Initially, we

base the parameters driving these two components on time series of the inflation rate and the real

rate. Afterwards, we optimise the values of the volatility parameters by calibrating our model to

market data of zero-coupon inflation-indexed swaps (ZCIIS) year-on-year inflation-indexed swaps

(YYIIS), and inflation floors. In this calibration process, we minimise the sum squared differ-

ence of the model- and market prices by using the Broyden-Flether-Goldfarb-Shanno (BFGS)

algorithm.

We use the optimised set of parameters to estimate a dummy portfolio mimicking the

inflation-linked liabilities with the embedded floor. After our calibration process, the model

should be able to market-consistently price the several inflation products. Our final inflation

paths are those used in that valuation. We then adapt the projected indices to incorporate the

floor at 0% inflation. Using both the original and adapted index, we index the cash flows be-

longing to a dummy portfolio that approximates the inflation-linked liabilities. This procedure

allows us to finally determine the present value for both the cash flows indexed with the original

index and the cash flows indexed with the adapted index. The floor value is the present value

without the embedded floor subtracted by the present value incorporating the 0% floor. Lastly,

we perform a sensitivity analysis be pricing several other floors. The result of this analysis can

eventually be used to hedge the inflation risk.

This thesis finds that, by calibrating to 0% floors only, the model is able to almost perfectly

match the market prices of 0 % floors. As an out-of-sample test, we use those parameters to

value the ZCIIS, YYIIS and 2% floor. The outcome is that, compared to the market prices, the

ZCIIS and YYIIS model prices have a maximum deviation of 1%. The 2% floor prices have a

larger deviation from the market prices. To investigate if we can improve this result, we calibrate

to ZCIIS, YYIIS and 0 % floor prices simultaneously. It follows that the 0% floor prices remain

almost the same, whereas the ZCIIS and YYIIS prices do get closer to the market value, but only

by a little. This fit is thus not significantly better than the first fit. As a last fit, we calibrate on

the 0% floor and 2% floor. The result is that the 2% floor prices better reflect the prices observed

in the market, but that the 0% floor prices deviate away from the market prices compared to

the first and second fit. Our model thus struggles to market-consistently price the 0% and 2%

floors simultaneously.

Since our focus is on estimating inflation-linked liabilities, with an embedded floor at 0%, we
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use the parameter set belonging to fit 1 to price the dummy portfolio. The result is that the value

of the floor is around 0.3% of the present value without the floor. The sensitivity analysis shows

that the valuation is sensitive to a negative change in inflation. More specifically, if the actual

inflation turns out to be 1%/2% lower than projected, the floor value is equal to around 1.65%

/11% of the present value. The overall conclusion is that the model is able to market-consistently

price 0% floors, ZCIIS and YYIIS using a specific set of parameters, but that it does struggle

to match the market prices of 0% and 2% floors simultaneously. Using the parameter set of the

first 1, the value of the floor in our specific inflation-linked liabilities is 0.3% of the present value

without the floor, but the result is quite sensitive to a change in inflation.

The thesis is organised as follows. Section 2 gives an overview of the inflation market and the

inflation floor affects our valuation of the liabilities. Section 3 explains the methodology used in

this thesis, which covers the chosen model, the calibration procedure and the valuation of the

inflation-linked liabilities. The data are discussed in section 4. The obtained results are shown

and analysed in section 5. The thesis ends with the conclusion in section 6.

2 Inflation market
This section gives an overview of the inflation market and discusses several inflation products.

A crucial part in our thesis is calibrating the model and a key aspect concerning the calibration

procedure is the availability of the products and their liquidity. Therefore, in the process of

model selection, it is important to have a good oversight of the specific market. The inflation

market is a market that enables investors to trade on inflation for several purposes. Nominal

instruments embed views on inflation because inflation is incorporated in the interest rate, but

inflation-linked instruments allow investors to take inflation specific views. Inflation is used

for indexation and is an economic inference, but with the instruments also tradable itself. An

inflation instrument is linked to a specific price index. Several price indices exist, such as the

harmonised indices of consumer prices (HICP) which is a composite measure of inflation in the

Eurozone. Even though the inflation market is a lot smaller in size than the market for nominal

instruments, the inflation market has grown in size and liquidity over the recent years.

2.1 Inflation-linked bonds

The simplest inflation product is the inflation-linked bond. In contrast to normal government

bonds, where the bond holder loans money to a government in return for an agreed rate of

interest, the outstanding principal and thus the face value increases when inflation occurs. The

interest paid out by the bonds is also adjusted for inflation. These features make that inflation-

linked bonds can diminish the real impact of inflation on the bond holder. This product has
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several purposes. Governments use it for inflation targeting monetary policy for example, while

investors thus use it to protect the real value of their investment.

2.2 Inflation swaps

The most common and most liquid inflation derivative in the market is the zero-coupon inflation

indexed swap (ZCIIS). For this product, the inflation buyer pays a predetermined fixed rate and

in return receives from the inflation seller inflation-linked payments. In the ZCIIS, there is only

one payment time, namely at maturity M . The predetermined fixed rate K is the expected

average inflation rate over M years by the seller. Let us assume that the seller and buyer agree

upon a particular nominal value N . Using the notation of Mercurio and Moreni (2006), the

buyer then pays the seller the following fixed amount at maturity:

N [(1 +K)M − 1], (1)

In return for the payment above, the buyer receives a floating payment dependent on the inflation

rate. Therefore, to determine the payoff of the buyer, we look at the index at maturity IM and

the initial index I0. So, at maturity, the seller then pays the buyer the following amount:

N
[IM
I0
− 1
]
, (2)

In an arbitrage-free economy, the two payoffs should be equal to each other. In other words,

(1 +K)M = IM
I0

. Hence, intuitively K indeed reflects the average inflation rate over M years the

seller expects. As shown, this product allows an investor to secure an inflation-protected return

with respect to an inflation index. Furthermore, the ZCIIS is highly flexible with maturities from

one to 30 years.

Another product, very much related to the ZCIIS, is the year-on-year inflation indexed swap

(YYIIS). This product pays the annual inflation at the end of each year. So, in contrast to the

ZCIIS, there are multiple payment dates. The intuition concerning the payoff structure is similar

to the ZCIIS, but now there is a payoff each year. Specifically, at each time t, the buyer pays

the seller the fixed amount

NψtK, (3)

where ψt is the contract fixed-leg fraction for the interval [t−1, t]. At each time t, the seller pays

the buyer the following amount:

Nψt

[ It
It−1

− 1
]
, (4)
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where It is the index in year t.

2.3 Inflation options

Next to swaps, there are options. Financial options can be split into call options and put options.

A call option is a financial contract that give the option buyer the right, but not the obligation,

to buy a stock, bond, commodity or other asset or instrument at a specified price (strike price)

within a specific time period. The buyer would thus earn money when the actual value of the

underlying asset is above the strike price. His payoff can be modelled as the maximum of the

actual value A minus the strike price κ and 0. Or mathematically, max(A− κ, 0). A put option

is a contract giving the purchaser the right, but not the obligation, to sell an underlying security

at a predetermined price within a specified time frame. The purchaser would thus earn money

when the value of the underlying asset is below the strike price. This payoff can be modelled as

the maximum of the strike price minus the actual value and 0. Or in formulae max(κ−A, 0).

When the underlying asset is inflation, we call them inflation options and these consist of

inflation-indexed caplets (IIClt) and floorlets (IIFlt). For a caplet, the buyer receives a payment

when the inflation rate is above the strike price. For a floorlet, the buyer receives a payment

when the inflation rate is below the strike price. Hence, an IIFLt is a put option on the inflation

rate, whereas an IICLt is a call option on this same inflation rate. Recall that we want to price

inflation-linked liabilities with an embedded floor at 0% inflation. Hence, the inflation floor, and

then especially with a strike of 0%, is an interesting product since it is the most similar available

product to the one we want to price. Therefore, we focus on this product. Using the payoff

structure of the put option described above and that A is the actual inflation rate It
It−1
− 1 and

N is the nominal value, the payoff of the IIFlt at time t is defined as:

Nψi

[
κ−

( It
It−1

− 1
)]+

, (5)

An inflation floor is a stream of floorlets. Therefore, a floor with with maturity M has the payoff

of the IIFlt in equation (5) at each time t for t = 1, 2, ...M .

3 Methodology
This section explains how the model that was designed for this thesis is used to value the inflation-

linked liabilities with the embedded floor. First, we outline the model in section 3.1. Secondly, we

explain how our model is calibrated in section 3.2. Finally, section 3.3 shows how our complete

model is used to market-consistently price the inflation-linked liabilities.
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3.1 The model

Both market and short rate models show (dis)advantages. Contrary to short rate models, mar-

ket models model the entire curve and explicitly model observable quantities like year-on-year

inflation rates and provide more calibration flexibility because of their dimensionality. However,

there is also a downside to this particular aspect. The calibration of market models could be-

come unstable in less liquid markets due to a lack of calibration instruments (van Haastrecht

and Pelsser (2011)). In other words, a market model is the more advanced model, but may not

be best option in a less liquid market due to possible calibration problems. Furthermore, the

need for an advanced model is less since the exposure to inflation risk is much smaller than to for

example interest rate risk. Taking these aspects into account, we consider a short rate model as

the better option to model inflation risk. In particular, because of its analytical tractability and

the possibility of tackling the shortcomings by using suggestions from the discussed literature,

the JY model is considered as a good basis for modelling the inflation. The model in this thesis

indeed uses the JY model as a basis, but does adapt it in some important ways by combining it

with a nominal interest rate risk model. The upcoming section 3.1.1 will describe the JY model,

section 3.1.2 discusses the particular nominal interest rate risk model used in this thesis and

lastly section 3.1.3 explains how these two models are combined to reach our own model.

3.1.1 The JY model

The JY model uses the foreign currency analogy so that nominal dollars correspond to domestic

currency, real dollars to foreign currency and inflation index to the spot exchange rate. In

that setup, the fluctuations of the real and nominal interest rates and the inflation rate will

be correlated. Using the notatation of Jarrow and Yildirim (2003), the specification under the

real-world probability space of the nominal and real forward rates, fn and fr, respectively and

the inflation index I, is as follows:

dfn(t, T ) = αn(t, T )dt+ ζn(t, T )dWP
n (t); (6a)

dfr(t, T ) = αr(t, T )dt+ ζr(t, T )dWP
r (t); (6b)

dI(t) = I(t)µ(t)dt+ σII(t)dWP
I (t), (6c)

where (WP
n ,W

P
r ,W

P
I ) is a P-Brownian motion with correlations ρn,r, ρn,I and ρr,I ; αn, αr and µ

are the drift processes, ζn and ζr are deterministic functions and σI is a positive constant.

The real rate that is modelled is the expected real rate. The actual real rate is only known

when the CPI in the corresponding period is known. Therefore, there is no redundancy in
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modelling the expected real rate together with inflation index and nominal rate. As can be seen,

the inflation has its own Brownian motion influencing the dynamics, meaning that Jarrow and

Yildirim (2003) believe that the inflation is not just determined by the real and nominal interest

rate, but also by other factors that can influence the inflation rate like for example money supply,

the exchange rate, and GDP.

These evolutions are abitrage-free and the market is complete if there exists an unique proba-

bility measure Q such that Pn(t,T )
Bn(t)

, I(t)Pr(t,T )
Bn(t)

and I(t)Br(t)
Bn(t)

are Q-martingales. According to Jarrow

and Yildirim (2003), this is true if and only if the following holds:

αn(t, T ) = ζn(t, T )

(∫ T

t
ζn(t, s)ds− λn(t)

)
; (7a)

αr(t, T ) = ζr(t, T )

(∫ T

t
ζr(t, s)ds− σI(t)ρrIλr(t)

)
; (7b)

µI = rn(t)− rr(t)− σI(t)λI(t), (7c)

where we have that, by Girsanov’s theorem, there exists a market price of risk (λ) such that:

W̃k(t) = Wk(t)−
∫ t
0 λk(s)ds for k ∈ {n, r, I} are Q-Brownian motions.

The first restriction is the arbitrage-free restriction as in the original nominal interest HJM

model. The second one is the analogous abitrage-free forward rate drift restriction for real

forward rates. The third restriction is the Fisher equation relating the expected nominal rate to

the expected real rate and the expected inflation rate. Using these restrictions and the fact that

dW̃n(t) = dWn(t)− λn(t), we write the evolutions under the Q-measure as:

dfn(t, T ) = ζn(t, T )

∫ T

t
ζn(t, s)ds+ ζn(t, T )dW̃n(t); (8a)

dfr(t, T ) = ζr(t, T )[

∫ T

t
ζr(t, s)ds− ρr,IσI(t)]dt+ ζr(t, T )dW̃r(t); (8b)

dI(t) = I(t)[rn(t)− rr(t)]dt+ σII(t)dW̃I(t). (8c)

In his paper, Mercurio (2005) shows that the above specification can also be written in the

equivalent short rate formulation:

dnJY (t) = [θn(t)− ann(t)]dt+ σndW̃n(t); (9a)

drJY (t) = [θr(t)− ρr,IσIσr − arr(t)]dt+ σrdW̃r(t); (9b)

dIJY (t) = I(t)[nJY (t)− rJY (t)]dt+ σII(t)dW̃I(t), (9c)

where (W̃n, W̃r, W̃I) are Q-Brownian motions with correlations ρn,r, ρn,I and ρr,I ; θx(t) = ∂fx(0,t)
∂T +

axfx(0, t) + σ2x
2ax

(1 − e−2axt), for x ∈ {n, r}. The "JY" underscript is to clarify that these are
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JY projections.

We briefly mentioned the model parameters before, but we believe that a more elaborate

explanation is necessary to intuitively understand the model. A first important note is that all

the expressions consist of a drift (the term before dt) and a diffusion term (the term before dW̃ ).

The drift is the value the model moves around. The diffusion term determines by how much

the model moves around this drift. The parameters ar and an are called the mean reversion

speed parameters. These show how quickly the values of the variable of interest return back

to the initial model curve. Therefore, the parameters ar and an affect the behaviour of the

real short rate and nominal rate, respectively. As Moysiadis et al. (2019) states it: "A small

value would produce more trending simulation paths, while a larger value can result in steady

evolution of interest rate" (p.10). θr and θn are the functions to exactly fit the term structures

of the real and nominal short rate. Hence, these parameters, together with the mean reversion

speed parameters, make sure that we get our initial model curve back of the variable of interest.

So indeed, these two parameters make up the so-called drift for the interest rates. Do note that

there is a small correction term of σrσiρr,i for the real interest rate. For the inflation rate, the

drift is defined by n− r.

The fact that the model moves around the drift and is not exactly equal to this value is

because of the σy for y ∈ {n, r, i} parameters in our model. These parameters are the diffusion

terms and reflect the volatility in parameter y. So, for example σr is the volatility in the real

interest rate. In equation (9b), we can see that it is multiplied by the Brownian motion and it

thus influences how much the real short rate changes per one step forward in the simulation. The

last set of parameters are the correlations. Since these parameters determine how the Brownian

motions affect each other, they have an influence on the diffusion term.

3.1.2 Nominal LMM with displaced diffusion

Many insurance companies have a lot more exposure to interest rate risk compared to inflation

risk. It is therefore safe to assume that they have some model to capture this interest rate risk.

By assuming that these companies have an interest in modelling inflation as well, the need for

a compatible inflation model arises. Therefore, to make it as practical as possible, this thesis

extends an interest rate risk model to a model that is also able to capture inflation risk. Do note

that the focus in this thesis is on developing the inflation model and not on the interest rate

risk model. Hence, some exact choices within that model are beyond the scope of this thesis and

will not be motivated or explained in further detail. Rather, we just assume that the nominal

interest rate risk model used in this thesis is used by the company.
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The nominal model used in our thesis is a LMM with displaced diffusion (LMM-DD). The

LMM directly models the entire forward rate curve. This makes it intuitively easy to understand.

The downside of the LMM is that it cannot produce negative rates, which is inconsistent with the

market nowadays. This can, however, be solved by adding a displacement. Under the LMM-DD,

the forward rates are driven by the following stochastic differential equation:

dFi(t) = σ̃i(t)(Fi(t) + αDD)dW
Qi+1

i (t) for i ∈ {1, 2, ..., N}, (10)

where Fi(t) is the forward rate for period (ti, ti+1) observed at time t; αDD is the displacement

parameter; σ̃i(t) is the volatility of forward rate in LMM-DD model; Qi+1 is the measure using

P (t, ti + 1) as numeraire; WQi+1

i is the standard Wiener process under measure Qi+1 and ρi,j is

the linear correlation between increments of the i-th and j-th forward rates.

The problem in this situation, however, is that the number of drift terms is different for

different forward rates. For the process to have a steady number of drift terms, the numeraire

should move along with time. This is obtained by changing the numeraire to the spot measure.

The process of Fi(t) under the spot measure is defined as:

dFi(t) = σ̃i(t)(Fi(t) + αDD)

(
i∑

j=m(t)

ρj,iσ̃i(t)(Fi(t) + αDD)

1 + Fj(t)
+ dW

Qi+1

i (t)

)
. (11)

In the LMM, a principal component analysis (PCA) is performed and the eigenvectors corre-

sponding to the three largest eigenvalues are extracted. These eigenvectors explain most of

the movements in the entire curve. In the end, the LMM is thus captured by three principal

components (PCs), where each PC is driven by a Brownian motion.

The interest rate risk model used in this thesis is characterised by a good balance between

complexity and forecasting performance and it will be satisfactory for medium-sized insurance

companies. There do exist several other possibilities for a nominal interest rate risk model.

As an example, one could use nominal short rate models. An important drawback of these

models, however, is that they do not model the evolution of the whole curve. To model long

term liabilities with a large exposure, a more advanced model is needed. Another possibility is

to extend the LMM by adding stochastic volatility to achieve an improved fit to the market.

We believe that this improved fit does not outweigh the added complexity and calibration time.

Another alternative model is a SABR model, which is a stochastic volatility model. It attempts

to capture the volatility smile in the derivatives market. The limitation of this model is that it

is a single forward model. For a more complete overview and a more detailed description of the

models, we refer to other articles/books, i.e. Brigo and Mercurio (2006).

11



3.1.3 Final Model

The final model is the JY model where the nominal evolution is replaced by the LMM. Further-

more, the real rate will be adjusted. The reason for this is that the projection of the real rate

in the JY model is very much related to the nominal rate projection. If we replace the nominal

projection by the projected based on the LMM, we need to adjust the real rate to preserve the

relation the real and nominal rate of the initial JY model.

First, we replace the nominal JY projection by the nominal LMM projection. From the

nominal forward curve projections, constructed using equation (11), the nominal short rate

evolution that we define as nLMM (t) is retrieved. For every projection year, we construct a

forward curve and use the forward rate belonging to the lowest maturity as a proxy for the

instantaneous forward rate. From theory we know that this is equal to the short rate. Going

through this procedure for all projection years yields the evolution of the short rate. This exact

procedure will be clarified with an example in section 5.2.1.

Second, the real rate is adjusted in order to preserve a correct relation between the nominal

and real interest rate. The LMM possesses log-normal dynamics, whereas the JY model is

characterised by normal dynamics. If we left the real rate unchanged, the real rate would thus

be normally distributed and the nominal rate log-normally. The inflation rate, depending on both

these rates, would then be driven by a process containing some extreme numbers. Therefore, we

decide to use a straightforward solution. Namely, we adapt the real rate in the following way.

We use the nominal and real rate projection of the JY model from equations (9a) and (9b) and

take the difference between these two projections: nJY − rJY . Hence, we make the assumption

that, after the LMM projection replaces the nominal JY projection, the difference between the

real rate and nominal rate stays the same as in the JY model. In this way, we reach a new real

rate projection which we define as rLMM . In formula: rLMM = nLMM − (nJY − rJY ). Or we

can rewrite it as rLMM = rJY + nLMM − nJY . Hence, our final model can be defined as:

dnJY (t) = [θn(t)− ann(t)]dt+ σndW̃n(t); (12a)

dFi(t) = σ̃i(t)(Fi(t) + αDD)

(
i∑

j=m(t)

ρj,iσ̃i(t)(Fi(t) + αDD)

1 + Fj(t)
+ dW

Qi+1

i (t)

)
; (12b)

drLMM (t) = [θr(t)− ρr,IσIσr − arr(t)]dt+ σrdW̃r(t) + dnLMM − dnJY ; (12c)

dILMM (t) = I(t)[nLMM (t)− rLMM (t)]dt+ σII(t)dW̃I(t). (12d)

As stated in section 3.1.2, the parameters of the LMM are not explained in more detail. The

model parameters relating to the JY model are all explained at the end of section 3.1.1. An
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important aspect that changes, however, is the correlation structure. If we would have used the

JY model as it was, there would have been three correlation variables, namely ρn,I , ρn,r and

ρr,I . In our situation we replace the nominal JY part by the LMM. Note that we do use the

nominal JY part to adapt our new real rate. Therefore, that Brownian motion still influences our

model. In other words, we have three extra Brownian motions belonging to the three principal

components because of this replacement. Hence, our correlation matrix will be a 6 by 6 matrix

with the variables n, I, r, pc1, pc2 and pc3. The exact correlation matrix is shown in section 5.1.

3.2 Model calibration

This section explains how the model is calibrated such that it is able to market-consistently

price inflation products. A general observation for all variables is that we make a distinction

between the short term and the long-term. Market products accurately capture, for example,

the behaviour of the volatility, but only have a maturity up to 30 years. Pricing inflation-linked

liabilities like pensions require a forecast of more than 30 years. This means that for the years

higher than 30, we need some other way of estimating the parameters. Possibilities include

historical data of the variable of interest or the targets of the European Central Bank (ECB).

One can assume that, in the long-term, the variable of interest converges to these particular

values and that these values should reflect some realistic number. Because of this, we decide

to use the long-term mean as our initial value for all parameters, after which we adjust some

parameter values by calibrating to market prices of inflation products. Section 3.2.1 describes

how we initially determined the parameter values exactly. Section 3.2.2 explains how we adjust

some of these parameters to reach an optimised model.

3.2.1 Initial parameters

Recall from section 3.1.1 that σy for y ∈ {n, r, i} reflects how much variable y changes per one

step in the model. A year as the step size in the model would thus reflect the yearly change in

the particular variable y. In that situation, this parameter can be estimated by using a time

series of variable y after taking the first differences on a yearly basis. Of those observations,

we just calculate the volatility to obtain σy. Hence, we obtain σr, σn and σi by calculating the

volatility of the first differences on a yearly basis of the real short rate, nominal short rate and

inflation rate, respectively.

The mean reversion speed parameters an and ar can be estimated in several ways. Possible

estimation methods of this parameter are mentioned in the paper of Moysiadis et al. (2019).

We opt for an regression procedure. To explain this procedure, we focus on an. Recall that
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we have dn(t) = (θn(t) − ann(t))dt + σndWn(t). The solution of this model is generally known

to be: n(t) = e−antn(0) + θn
an

(1 − e−ant) + σne
−ant

∫ t
0 e

anudWn(u). This is the solution for

rt|F0. We can, however, also take rt|Ft−1 = rt|rt−1 and write it as a regression. This leads

to the following expression: r(t) = µ + ψn(t − 1) − ε(t), where µ = θn
an

(1 − e−an), φ = e−an

and ε ∼ N(0, σ
2
n

2an
(1 − e−2ant)). From this regression formula, it follows that an = −log(φ).

Hence, we use the linear regression coefficient to determine the mean reversion speed. For ar,

the only aspect that differs from an is that the solution of the Hull-White model is defined as

dr(t) = (θr(t)− σiσrρr,i− arr(t))dt+ σrdWr(t). Note, however, that this only changes the value

of µ in the linear regression formula and that we can thus still use the regression coefficient in

the same way as we did for an.

Concerning θx for x ∈ {n, r}, we have that, as stated in section 3.1.1, θx(t) = ∂fx(0,t)
∂T +

axfx(0, t) + σ2x
2ax

(1 − e−2axt),, where fx(0, t) is the forward rate of variable x observed at time

0 for instantaneous borrowing at maturity t. This means that θx is a parameter that does not

need to be estimated on its own. Rather, we plug in the estimated parameters ar and σr and

use the forward curve of variable x to determine fx(0, t) for t = 1,2,..,T.

Regarding the correlations in our final model, we notice that the three Brownian motions of

the JY model are multiplied by their respective volatilities and are therefore closely linked to

these variables; see formulas 9a until 9c. Therefore, we also use the first differences of the data

used for the volatility parameters. So, for example, to calculate ρi,r, we calculate the correlation

between the first differences of the real short rate and the first differences of the inflation rate.

For the correlations relating to the LMM Brownian motions, we use the historical values of the

principal components. So, for example, ρi,pc1 is the correlation between the first differences of

the inflation rate and the historical values of the first principal component. By construction,

the three principal components have a correlation of zero. Based on this analysis, we derive a

particular correlation matrix which is shown in table 3 in section 5.1.

3.2.2 Optimising the parameters

As mentioned, we calibrate our model on market prices of several inflation products. More

specifically, we use the ZCIIS, YYIIS, 0% floor and 2% floor. To that end, we first need to obtain

model prices so that we can compare these to the market prices. There are two possibilities to

do so. Either we use pricing expressions or we use a simulated-based method. The pricing

expressions for the JY model are given in the paper of Mercurio and Moreni (2006). However,

since we replace the nominal short rate by an LMM, these pricing expression are not longer

valid. Although a lot of effort and time was spent, it follows that it is hard to make the specific
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adaptations to these pricing expressions to derive them ourselves for our own model. Therefore,

we choose to use a simulation-based method to obtain model prices.

The simulation-based method uses several inflation paths that are in the end used to deter-

mine the model price. First of all, we plug in all initial parameter values in equations (12a) until

(12d) and construct 1000 different inflation paths. Using the payoff structures of all four inflation

products explained in section 2, we determine the payoff at each year in each path. One should

see this as a multi-dimensional binomial tree. We then discount all these payoffs back in order

to obtain the price of the particular product we want to price. The model price of the product

is then the average price of all 1000 paths.

After determining our model price, we compare this to the market price and use some optimise

target and optimise algorithm to reach this target. For the optimise function we opt for the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. The BFGS method belongs to quasi-

Newton methods, a class of hill-climbing optimization techniques that seek a stationary point of

a function. In addition, we implement boundaries to the parameters we want to optimise. We

will specify these later on. As an optimise target, we use that we want to minimise the sum

squared difference of the model- and market prices. We use three different sets of our inflation

products. Specifically, we take the sum squared differences between the model and market prices

for the 0% floor only, then of the ZCIIS, YYIIS and the 0% floor simultaneously and lastly of

the 0% floor and 2% floor together. In all three situations, our goal is thus to minimise this

difference by adjusting some of our model parameters.

Recall that the LMM is already calibrated to nominal market data. Furthermore, as ex-

plained, the LMM is not the focus of this thesis and we therefore take these parameters as given.

Therefore, the only parameters of interest are the real interest rate volatility, the inflation volatil-

ity and the mean reversion speed of the real interest rate. We choose to only optimise our model

by adapting the two volatility parameters. The other parameter are kept the same as their initial

value. For these volatility parameters we make an important assumption. Namely, the first 30

years are captured by six different values. In other words, for the first 5 years we assume we

have some volatility, then for the next 5 years a particular volatility and so on until the years

26 until 30. Since we have both the inflation volatility and the real interest rate volatility, we

thus have 12 model parameters that we want to optimise with the boundary that all need to be

positive. The results are shown in section 5.3.
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3.3 Valuation of the inflation-linked liabilities

In this section we discuss step by step how the inflation-linked liabilities of the insurance com-

pany are priced. In section 3.2.2 we explained how we calibrate our model to three different sets

of products, namely firstly the 0% floor only, secondly the ZCIIS, YYIIS and 0% floor simul-

taneously and thirdly on the 0% floor and 2% floor together. In this section, we focus on the

calibration on the 0% floor only. The final parameter set belonging to that particular minimi-

sation problem is used to construct our final set of inflation paths. To price our inflation-linked

liabilities, we need to perform several calculations. First, we need to adapt these projected in-

dices to incorporate the floor. This is explained in section 3.3.1. The remaining steps of the

valuation are discussed in section 3.3.2.

3.3.1 Incorporating the floor in the inflation-linked liabilities

Since inflation is used for indexation, the process of adjusting a particular value based on the

changes in the inflation rate, it is incorporated in the liabilities of many insurance companies.

Inflation, however, varies over time and can even fall below 0%. To protect policy holders against

this, the liabilities are not negatively indexed. Hence, the policy holder has the guarantee of the

maximum of the actual inflation rate i and 0%. Although the 0% floor has the focus in this thesis,

other floor values can be considered. To make it more general, we state that the guarantee of

the policy holder is the maximum of the actual inflation rate and the floor value (f): max(i,f).

We recognise this as the payoff of a floor with a strike price at f% as defined in section 2.3 and

also price it like this.

When using a floor, there are several possibilities concerning the behaviour of the outgoing

cash flows. We first explain the general construction considered in this thesis, after which we

will explain this in more detail by looking at the 0% floor. In general, when considering a

particular floor value, the policy holder has the guarantee of receiving at least that floor value as

indexation. Hence, at every year t, the index incorporating the floor at year t is the maximum

of the original index (IO) at year t and the index incorporating the floor (IF ) at year t − 1

multiplied by 1 plus the the floor value (f) in percentages. Mathematically, this can be denoted

as IFt =max(IOt, IFt−1 ∗ (1 + f/100)), where IO0 = IF0 = 100.

To give the intuition behind this construction, we consider the 0% floor as an example. In

case of deflation, the liabilities will not be decreased. A subsequent indexation will be given

when the future inflation, if any, has exceeded the deflation. Hence, we keep the index constant

if a deflation occurs and we only increase the index after the index later in time has surpassed

the index value belonging to the year before the deflation occurred. In order to illustrate this
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construction, a graphical representation of one possible inflation path is shown. In figure 1a, we

focus on the 0% floor. In this figure, the initial index is shown as the black line, whereas the red

line refers to the adapted index incorporating the 0% floor as described above. A good example

can be found in the year 32 where inflation is below 0%. Instead of decreasing the index, we

keep the index constant and we increase the index in year 34 since it has surpassed the index

value of year 31. Figure 1b shows the indices incorporating the floors at -2%, -1%, 0%, 1% and

2%.

(a) Index behaviour 0% floor (b) Index behaviour multiple floors

Figure 1: Index behaviour incorporating embedded floor

Note: This graph shows the effect on the index behaviour of incorporating a particular floor. To
obtain the index incorporating the floor at a specific year, we take the maximum of the initial index
at that specific year and the index incorporating the floor at the previous year multiplied by 1 plus
the floor value in percentages. To clearly illustrate the effect of a 0% floor, the focus of our thesis,
figure 1a only shows the effect of that floor. Figure 1b shows four different floor values to give a more
complete understanding. The black line is our initial index. The yellow line, green line, red line, blue
line, and pink line reflect how the index behaves incorporating a floor at -2%, -1%, 0%, 1% and 2%,
respectively.

3.3.2 Pricing the floor embedded in the inflation-linked liabilities

After adapting our final paths of the inflation index in order to incorporate the floor, we are able

to price the floor embedded in these liabilities. First, we index the cash flows using both the

original index IO and the adapted index IF for all 1000 paths. We refer to the cash flows indexed

by the original indexed as CFIO and to the cash flows indexed by the adapted indexed as CFIF .

Second, we discount both sets of cash-flows for all paths by using the nominal rate projection

and take the sum of all discounted cash-flows to obtain the present value (PV ) per path. Finally,

we calculate the final present value by taking the average of all paths. The floor value (FV ) is

the result of the present value of cash flows indexed with the adapted index subtracted by the

present value of the cash flows indexed with the original index: FV = PVCFIF − PVCFIO.

4 Data
This section provides an overview of all the data used in this thesis, in which we require data

for calibrating the model and for pricing the inflation-linked liabilities. For the latter, we only
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need cash flows. For the calibration of the model, we need several data sets. For the initial

estimation of the volatility parameters and the mean reversion speed parameters, we need a time

series of the particular variable. For θn and θr we then already know σn and an and σr and ar

and only need to specify the forward rates for which we need the forward curves. Lastly, for the

correlations we then only require the historical data of the principal components as extra data.

For optimising the data we only need market prices. We refer to section 3.2 where we explained

all of this in detail. A clear overview of all the data necessary to calibrate the model is given in

table 1 below.

parameter determining initial value optimising value

σn time series nominal interest rate none

σi time series inflation rate market prices

σr time series real interest rate market prices

an time series nominal interest rate none

ar time series real interest rate none

θn nominal forward curve none

θr real forward curve none

correlations historical data principal components none

Table 1: Data table

Note: This table shows all the data necessary to calibrate the model.

The upcoming section elaborate on the data, where section 4.1 first states some model assumption

relating to the data used in this thesis. Section 4.2 discusses the inflation data. The data needed

for the nominal and real interest rate is reviewed in section 4.3. Section 4.4 analyses the data

used to construct the nominal and real forward curve. The data of the principal components is

considered in section 4.5. The market prices are stated in section 4.6. Finally, the cash flows of

the inflation-linked liabilities are provided in section 4.7.

4.1 Data assumptions

Before going into the specific data used in this thesis, we need to specify three model assumptions

relating to the data, namely the start date of our simulation, the projection horizon and the time

steps of the model. In section 3, we kept it general so that one can carry out the same research

with any data set. In this thesis, we use 31/01/2020 as our start date. The motivation for this is

twofold. Normally, one would use the end of a quarter, but due to the corona virus we find those

possible start dates unrealistic. Next to this, the end of the year is also a date that does reflect

the most realistic scenario. As a projection horizon, we decide to use 50 years. In the model,
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we want to forecast a sufficient number of years to price long term liabilities. Furthermore, we

want our model to make the distinction between the short term (less than 30 years) and the

long term (more than 30 years). If the model can forecast 50 years, it is also able to forecast for

example 80 years. Last, we use time steps of a year. Or, in analytical form, ∆t = 1. One of the

motivations for this choice is that seasonality is something that is very much present in inflation.

When taking time steps of a month, this would have a significant effect. For example, the price

of inflation products would be affected by the seasonality and this is not realistic. When taking

time steps of a year, this seasonality effect is no longer an issue. We will also illustrate this in

section 4. Another motivation is that the LMM uses years, making it easier to combine the two

models.

4.2 Inflation rate

The inflation data is obtained from the official website of the European Central Bank (ECB),

where we use the overall HICP index for the euro area. This is an inflation index (I) in which a

weighted average is taken among the most common 19 European countries. The data set consists

of monthly observations of the inflation index from 01/31/1996 to 05/31/2020 with 2015 as a base

year (index 03/31/2015 is equal to 100). So, in total, the data set consists of 293 observations.

In order to retrieve the inflation rate in percentages at time t relative to t-1 (i(t, t− 1)) we use

the following formula:

i(t, t− 1) =
I(t)− I(t− 1)

I(t− 1)
∗ 100 (13)

In our model, we opt for ∆t = 1 and hence use yearly steps. Therefore, we take the yearly inflation

rate. Because of this operation, we lose the first 12 observations. After we have calculated the

yearly inflation rates, we take the yearly differences and lose 12 more observations. Hence, in the

end, we are left with 269 observations of the yearly differences of the realised inflation rate. To

illustrate the motivation to use ∆t = 1, the monthly inflation is shown in figure 2a and the yearly

inflation is shown in figure 2b. In these two figures it can be seen that the monthly inflation is a

lot less stable than the yearly inflation rate. The first differences of the yearly inflation rate are

depicted in figure 2c.
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(a) Monthly inflation rate (b) Yearly inflation rate

(c) Yearly differences of the yearly inflation rate

Figure 2: Inflation data

Note: This figure shows the inflation data we considered in this thesis. Figure 1a shows the monthly
inflation rate, figure 1b the yearly inflation rate and 1c the yearly differences of the yearly inflation
rate. These figures are all based on the data found at the ECB website.

4.3 Nominal and real interest rate

We retrieved the data of the nominal and real interest rate from the website of the Organisation

for Economic Co-operation and Development (OECD). The nominal interest rate we take is

the short term interest rate. Similar to the previous data set, we use the observations from

01/31/1996 to 05/31/2020. To obtain the real interest rate, we use the Fisher equation stating

that (1 +n) = (1 + i) ∗ (1 + r). If we expand this, we have 1 +n = 1 + i+ r+ ir. Since the term

ir is generally very small (percentage of a percentage), we can state the approximation n = i+r,

or r = n− i. Hence, we subtract the realised inflation from the nominal interest rate to obtain

the real interest rate. Subsequently, we take the yearly differences. The nominal interest rate is

shown in figure 3a and the yearly differences of the nominal interest rate in figure 3b. The real

interest rate is depicted in figure 4a, whereas the yearly differences of the real interest rate in

figure 4b.
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(a) Yearly nominal interest rate (b) Yearly differences of yearly nominal interest

rate

Figure 3: Nominal interest rate data

Note: This figure shows the nominal interest rate data we considered in this thesis. Figure 1a shows
the yearly nominal interest rate, whereas figure 1b shows the yearly differences of that data. These
figures are all based on the data found at the OECD website.

(a) Yearly real interest rate (b) Yearly differences of yearly real interest rate

Figure 4: Real interest rate data

Note: This figure shows the real interest rate data we considered in this thesis. Figure 1a shows the
yearly real interest rate, whereas figure 1b shows the yearly differences of that data. These figures
are constructed using the Fisher equation and the nominal interest rate data and the inflation date.

4.4 Nominal and real forward curve

To construct the nominal forward curve and real forward curve, we use the zero rates of the

nominal interest rate and the inflation rate. We obtained that data from Bloomberg. Using

the term structures of the nominal interest rate and the inflation rate, we construct the term

structure of the real zero interest rate. We then use that as a basis to retrieve the term structure

of the real forward rate by making use of the following relation:

fr(t) =
(1 + r(t))t

(1 + r(t− 1))t−1
− 1 (14)

Note that the real forward rate for year 1 is equal to the real zero rate for year 1. The constructed

nominal forward curve and the constructed real forward curve are shown in figures 5a and 5b

depicted below:
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(a) Nominal forward curve (b) Real forward curve

Figure 5: Forward curves

Note: This figure shows the forward curves used in this thesis to estimate the parameters θn and θr.
The nominal forward curves are constructed using equation (14), where the nominal zero rates are
obtained from Bloomberg. For the real forward curve we use the same approach, but the zero rates
follow from the nominal zero rate and inflation zero rate. The inflation zero rates are also retrieved
from Bloomberg.

4.5 The principal components

To analyse the correlation, as stated at the end of section 3.1.3, we need historical information

of the three principal components resulting from the LMM-DD. These are monthly observations

and are from 31/01/2000 until 31/05/2020. Recall that we do not go into detail on how these

are obtained since it is not the focus of our thesis. The data are shown in figure 6 below.
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(a) Historical data PC1 (b) Historical data PC2

(c) Historical data PC3

Figure 6: Data principal components

Note: This figure shows the data used of the principal components (PC) to obtain the correlation
matrix in our model. Figure 6a, 6b and 6c show the historical values of the first PC, second PC and
third PC, respectively. For all these sub-figures, the data is from 31/01/2000 until 31/05/2020 and
is obtained from the principal component analysis performed on the LMM. Recall that we do not go
into detail on how these are obtained since it is not the focus of our thesis.

4.6 Market prices

The inflation products we use in our thesis are ZCIIS, YYIIS, 0% floors and 2% floors. The

payoffs of these products are discussed in section 2. To obtain the market prices of ZCIIS, we

use equation (2) and the inflation term structure. For the prices of the YYIIS, we use equation

(4). The ratio of the inflation indices can be derived from the ZCIIS. Hence, to derive market

prices for ZCIIS and YYIIS, we only need the data consisting of the inflation term structure.

The market prices of the 0% and 2% floors have been extracted from Bloomberg. All market

prices are shown in table 7 below, where the black line shows the ZCIIS prices, the red line the

YYIIS prices, the blue line the 0% floor prices and the green line the 2% prices. The exact prices

can be found in table 8 in Appendix A.

23



Figure 7: Market prices

Note: This graph shows the market prices of the ZCIIS (black), YYIIS (red), 0% floor (blue) and 2%
floor (green). The market prices of the ZCIIS and YYIIS are constructed using the term structure of
the inflation rate and equation (2) and (4), respectively. The market prices of the 0% and 2% floors
have been extracted from Bloomberg.

4.7 Cash flows liabilities

To valuate the embedded floor in the inflation-linked liabilities, we need the cashflows of the

inflation-linked liabilities. As mentioned, we use a dummy portfolio approximating the inflation-

linked liabilities. This dummy portfolio consists of six different contracts, where each contract

has cash flows for 50 years. These cash flows are shown in figure 8 below, where the exact

numbers for the first 30 years are provided in table 12 in Appendix A. Note that the behaviour

of the cash flows differs among the several contracts. This is done on purpose to investigate

whether or not this affects the floor value and if so by how much.

Figure 8: The cash flows of the inflation-linked liabilities

Note: This graph shows the cash flows of the dummy portfolio approximating the inflation-linked
liabilities, where we use six different contracts. Contract 1 to 6 are shown as the black line, red line,
blue line, green line, yellow and orange line, respectively.

24



5 Results
This section states the results obtained in this thesis. Section 5.1 shows the results of the under-

lying parameters. The projections of the nominal and real interest rate and the consequential

inflation rate using these parameter values are considered in section 5.2. Section 5.3 analyses our

calibration results. Finally, section 5.4 discusses the results of the valuation of the inflation-linked

liabilities.

5.1 Results underlying parameters

This section states the parameter values used for the projections of the nominal interest rate,

the real interest rate and the inflation rate. In our model, we have three volatility parameters

and two mean-reversion parameters we need to estimate. Furthermore, we have the correlation

matrix that shows the correlation between the six Brownian motions. In the table below, we first

show the values of the volatility and mean-reversion parameters. The volatility parameters are

based on time series data and the mean reversion speed parameters follow from the regression

coefficient, where the regression is also based on the time series data. We refer to section 3.2.1

for the detailed explanation on how these parameters are estimated.

parameter value

σn 0.0103

σr 0.0093

σi 0.0108

an 0.82

ar 0.88

Table 2: Initial values volatility and mean reversion speed parameters

Note: This table shows the initial values for the volatility and mean reversion speed parameters before
optimising the model. The volatility parameters are based on time series data and the mean reversion
speed parameters follow from a regression coefficient, where the regression also uses the time series
data. We refer to section 3.2.1 for the detailed explanation on how these parameters are estimated.

It thus follows that all three volatility parameters are equal to approximately 1%. This means

that the diffusion around the drift in our model is not that high. The values of the mean reversion

speed parameters for the nominal interest rate and real interest rate are equal to 0.82 and 0.88,

respectively. Since a mean reversion speed parameter is always between 0 and 1, these values

are quite high. This means that our interest rates quickly return back to the initial model curve.

Given the values of the volatility parameters and mean reversion speed parameters, we can thus

conclude that we have a rather steady evolution of the interest rates. For the inflation rate the
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same holds since it is driven by these two interest rates. Note that this statement refers to the

situation before we replace the nominal rate projection by the LMM approximation. After this

replacement, the projection will be based on the LMM which possesses lognormal dynamics,

which automatically implies a less steady evolution.

The correlation matrix is constructed using the time series data and the historical values of

the principal component analysis. Again, we refer to section 3.2.1 for the detailed explanation.

Using that approach, the correlation matrix is analysed to be as follows:

n i r PC1 PC2 PC3

n 1 0.2409 0.3069 0.0683 -0.1875 0.1291

i 0.2409 1 -0.8498 0.1786 -0.0669 0.1171

r 0.3069 -0.8498 1 -0.1379 -0.0362 -0.0447

PC1 0.0683 0.1786 -0.1379 1 0 0

PC2 -0.1875 -0.0669 -0.0362 0 1 0

PC3 0.1291 0.1171 -0.0447 0 0 1

Table 3: Correlation matrix

Note: This table shows the six by six correlation matrix for the Brownian motions in our model
belonging to the nominal rate (n), the inflation rate(i), the real rate(r), the first principal component
(PC1), second principal component (PC2) and third principal component (PC3), respectively. It is
constructed using the time series data and the historical values of the principal component analysis.
We refer to section 3.2.1 for the detailed explanation. Using that approach, the correlation matrix is
analysed to be as follows:

From the obtained correlation matrix, we notice that the first differences of the yearly real

interest rate is positively correlated with the first differences of the nominal interest rate and

negatively correlated with the first differences of the inflation rate. This makes intuitive sense

since, in theory, the real rate is equal to the nominal rate minus the inflation rate. Furthermore,

it follows that the nominal interest rate is positively correlated with inflation. This also makes

intuitive sense since that if interest rates are lowered, people tend to spend more money instead

of saving which results in an increase in the prices. One would expect to the see the same relation

between the principal components capturing the nominal interest rate and the real interest rate

and inflation rate. This is, however, not true. It could be the case that the relation is disturbed

because of the many operations applied when performing a principal component analysis. The

principal components have a correlation of zero by construction. Lastly, the variables of course

have a correlation of 1 with themselves. We conclude that the Brownian motions of the principal

components have a small effect on the other Brownian motions. The opposite is true for the

Brownian motion of the real interest rate and the inflation rate since their correlation is close to

-1.
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5.2 Results interest rate and inflation rate

This section analyses the interest rate projections from the initial JY model, the replaced nominal

rate projection from the LMM and the adapted real interest rate following from this replacement.

5.2.1 Nominal and real interest rate

In section 3.1.3, we explained how our nominal short rate evolution is retrieved from the nominal

forward curve constructed by the LMM. The LMM projects a forward curve for all 50 projections

years and for each curve we take the shortest maturity. To clarify, we use an example in which

we analyse the realised evolution of the first path, which is shown in figure 9d. To roughly show

that it is constructed in the way we described, we take the forward curves of projection year 1,

year 25 and year 50 for the first path. These are shown in figures 9a to 9c. As one can see,

the short rate evolution begins with the value of around -0.005, has a value at year 25 of -0.028

and ends with a value of approximately -0.01. These correspond to the zero rate of the shortest

maturity of the zero curves of projection years 1, 25 and 50, respectively.

(a) Forward curve for projection year 1 (b) Forward curve for projection year 25

(c) Forward curve for projection year 50 (d) Nominal short rate evolution

Figure 9: Approximation of nominal short rate evolution

Note: These graphs show how we use the LMM to approximate the nominal short rate evolution.
Figures 9a, 9b and 9c show the forward curves for the projection years 1,25 and 50, respectively.
The resulting nominal short rate approximation from all forward curves is shown in figure 9d. It is
constructed by extracting the shortest maturity belonging to the forward curve for each projection
year. This is explained in more detail in section 3.1.3

As mentioned before in section 3.1, the nominal rate and real rate are first projected using the JY
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model. The nominal rate, however, is replaced by the LMM and we therefore adapt the projected

real rate in order to maintain a solid relationship between the real and nominal interest rate.

To show how this changes our model, the distribution of the nominal and real rate for both the

initial JY model and our own model can be found in figures 10 and 11.

(a) Distribution of the nominal rate projected by

the JY model

(b) Distribution of the real rate projected by the

JY model

Figure 10: Distribution interest rates JY model

Note: This figure shows the distribution of the interest rates projected by the JY model. More
specifically, figure 10a displays the nominal rate distribution and figure 10b presents the real rate
distribution.

(a) Distribution of the nominal rate projected by

the LMM model

(b) Distribution of the real rate projected by the

JY model

Figure 11: Distribution interest rates after LMM replacement

Note: This figure shows the distribution of the interest rates after the LMM replacement. More
specifically, figure 11a displays the distribution of the projected nominal rate by the LMM and figure
10b presents the distribution of the adapted real rate.

Recall that we stated that the projection of the interest rates would be a rather steady evolution

because of our volatility and mean reversion speed parameter values. This statement is supported

by the distributions shown in figure 10. After the LMM replacement, the interest rate projection

is indeed more fluctuating as mentioned before. This was exactly the reason why we adapted

the real rate. The relation between the nominal rate projected by the LMM and the projected

real rate of the JY model would not be the correct one and would lead to an inflation projection

consisting of extreme numbers.
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5.2.2 Inflation rate

Our final nominal and real rate projections, meaning the projected nominal rate of the LMM and

the adapted real rate, are used to make projections of the inflation rate. We refer to formula 12d

for the exact specification. To give an idea of our forecast inflation rate, the resulting distribution

can be found in figure 12.

Figure 12: Distribution inflation rate

Note: This graph shows the distribution of the inflation rate using the nominal rate projection of the
LMM and the adapted real rate projection.

The result we want to highlight is that the resulting inflation rate projection is a steady evolution

without many extreme values. This is achieved because we adjusting our real rate projection

after the nominal rate projection replacement. This is exactly what we wanted to achieve since

we want our model to resemble the JY model.

5.3 Calibration results

This section analyses the performance of our model calibration. As mentioned in section 3.2,

we try to minimise the squared sum difference between model and market prices for our four

inflation products by adapting 12 volatility parameters. Six parameters for the real rate and six

parameters for the inflation rate, where each value reflects a time-span of 5 years. Since our goal

is to price inflation-linked liabilities with a floor at 0%, we first try to minimise the difference

between these model prices and market prices. We call this fit 1. The results are shown in figure

13 below. The exact numbers can be found in table 10 in Appendix A.

For the interested reader, the results obtained when using our initial parameters are shown

in table 9 in Appendix A. This serves to demonstrate the performance of our model when using

only the time series estimation discussed in section 3.2.1. Further, by comparing our optimised

results to these initial results, one can see how important it is to base the short term volatility

on market prices rather than on historical data.
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Figure 13: Fit 1 results 0% floor

Note: This graph shows the model and market prices of the 0% floor.

From this figure, it is clear that our model is able to approximate the market prices very closely

by adapting the volatility parameters. Do note that this is mainly the case from maturity 6

onwards. Apparently, the model does struggle to match the prices in the very short term. An

explanation could be that those prices do not contribute a lot to the sum squared differences

since prices are low and that therefore the algorithm mainly focuses on the higher maturities.

One could investigate whether the fit would improve if we split the volatility belonging to the

first 5 years into 5 separate values. Overall, the conclusion is that our model is almost perfectly

able to market-consistently price the 0% floor. The parameters that belong to fit 1 can be found

in table 5.

To investigate whether the optimised parameters obtained by only fitting to 0% floors are

able to market-consistently price other inflation products, we perform an out-of-sample test.

Note that is a different out-of-sample test then is usually utilised. Normally, one would use the

first so many maturities to calibrate the model and then test whether these obtained parameters

are able to match the market prices for later maturities. In this thesis, we calibrate our model on

a specific inflation product and use the obtained parameters to price another inflation product.

More specifically, as an out-of-sample test in this thesis, we also calculate the ZCIIS, YYIIS prices

and 2% floor prices using the parameter values obtained after calibrating to 0% floor prices. The

result of this test can be found in figure 14. The exact prices are shown in table 11 in Appendix

A.
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(a) ZCIIS prices (b) YYIIS prices

(c) 2% floor prices

Figure 14: Out-of-sample test results fit 1

Note: This figure shows the results of the out-of-sample test of fit 1. More specifically, it tells us how
well we are able to market-consistently price other inflation products using the parameter results of
fit 1. Figure 14a presents the ZCIIS prices, figure 14b displays the YYIIS prices and figure 14c shows
the 2% floor prices.

From this figure it is clear that the ZCIIS and YYIIS prices are close to the market prices. To

be precise, from table 11, it follows that the prices of the ZCIIS and the YYIIS have a deviation

of maximum 1%. The 2% floor prices, however, deviate more from the market prices, especially

for the higher maturities. This means that our first fit shows promising results concerning the

ZCIIS and YYIIS. Unfortunately, the 2% floor prices do not show perfect results.

To investigate whether we can get any closer for the ZCIIS and YYIIS, we calibrate on the

ZCIIS, YYIIS and 0% floor prices together. The results of this calibration is presented in table

4 below. We choose to show this in a table rather than a figure since the numbers are very close

to each other, which means that a figure would not be able to clearly illustrate the difference.

Recall that fit 1 is on the 0% floor only and fit 2 is on the three products together.
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maturity ZCIIS fit 1 YYIIS fit 1 0% floor fit 1 ZCIIS fit 2 YYIIS fit 2 0% floor fit 2

1 0.84 0.84 0.07 0.84 0.84 0.11

2 1.82 1.81 0.18 1.82 1.81 0.21

3 2.87 2.84 0.30 2.87 2.84 0.31

4 3.97 3.89 0.39 3.97 3.89 0.38

5 5.07 4.95 0.50 5.07 4.95 0.48

6 6.24 6.07 0.74 6.25 6.07 0.71

7 7.52 7.29 0.93 7.53 7.29 0.91

8 8.85 8.56 1.11 8.85 8.56 1.10

9 10.26 9.89 1.29 10.26 9.90 1.28

10 11.74 11.30 1.44 11.75 11.30 1.43

11 13.21 12.68 1.65 13.22 12.68 1.66

12 14.72 14.11 1.87 14.73 14.11 1.90

13 16.28 15.57 2.04 16.30 15.57 2.08

14 17.91 17.09 2.20 17.93 17.09 2.26

15 19.62 18.65 2.37 19.64 18.65 2.44

16 21.30 20.19 2.54 21.32 20.19 2.59

17 22.96 21.69 2.73 22.99 21.69 2.74

18 24.67 23.21 2.93 24.71 23.22 2.89

19 26.51 24.81 3.11 26.55 24.82 3.03

20 28.44 26.47 3.25 28.49 26.48 3.14

21 30.29 28.03 3.42 30.34 28.05 3.33

22 32.14 29.58 3.58 32.20 29.59 3.52

23 34.03 31.14 3.75 34.09 31.15 3.73

24 36.02 32.74 3.90 36.08 32.76 3.90

25 38.18 34.41 4.03 38.25 34.44 4.06

26 40.24 35.99 4.23 40.33 36.02 4.26

27 42.31 37.53 4.42 42.40 37.56 4.44

28 44.34 39.02 4.63 44.43 39.06 4.64

29 46.47 40.56 4.82 46.58 40.59 4.82

30 48.80 42.18 5.00 48.91 42.22 4.99

Table 4: Model prices based on two different fits

Note: This table shows the model prices of the 0% floor, ZCIIS and YYIIS for two different fits. Fit
1 refers to the calibration on 0% floors only, whereas fit 2 is the calibration on the 0% floors, ZCIIS
and YYIIS simultaneously.

From the table, we can conclude that the prices of the ZCIIS and YYIIS come closer to the

market prices, but that the 0% floor prices move a bit away from the market prices, especially

for the first maturities. Again, the reason could be that, since the algorithm tries to minimise the

sum squared difference, it automatically puts more weight on the products/maturities containing

the higher prices. In this situation, the algorithm would focus on the ZCIIS and YYIIS prices.
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Note that we did not include the 2% floor prices, but we can assume that these also do not

change a lot. The parameters that belong to fit 2 are also displayed in table 5.

Finally, to find out if we can improve the 2% floor results, we calibrate on 0% floors and 2%

floors together. The results of this calibration is shown in figure 15 below, where the parameter

values belonging to this fit are also shown in table 5. Comparing these results to fit 1, or more

specifically to figures 13 and 14c, we conclude that the 2% floor prices come closer to the market

prices, but that the 0% floor prices deviate away from the market prices. More specifically, notice

that the 2% floor prices were initially too high compared to the market prices. We are now able

to overcome this issue, but the 0% floor prices are now too low compared to the market prices.

The influence of the volatility on the model prices is apparently not exactly the same for these

two products.

(a) 0% floor prices

(b) 2% floor prices

Figure 15: Results of fit 3

Note: This figure shows the results of fit 3, where fit 3 refers to calibration on 0% floors and 2% floors
simultaneously. Figure 15a present the results of 0% floor, whereas figure 15b the results of the 2%
floor.

Our model thus struggles to market-consistently price the 0% floor and 2% floor at the same.

Initially, we calibrated on 0% floors only and used the obtained parameter set to price the

2% floors as well. The result was that the model prices of the 0% floor prices very closely
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approximated the market prices, but that the model prices of the 2% floor prices deviated away

from the market prices for higher maturities. The same result was obtained when calibrating on

ZCIIS, YYIIS and 0% floors together. In these situations, however, we did not include the 2%

floor prices in the calibration procedure, but only as an out-of-sample test. When calibrating on

0% floors and 2% floors, we find that the model prices of the 2% floor prices come closer to the

market prices, but that the 0% floors are now further away from the market prices. The model

is thus not able to find a volatility structure that works for both these products. This could be

the case since the 2% floors are less liquid than 0% floors or that the volatility structure in our

model is not advanced enough to capture the behaviour of both these products at the same time.

years initial σr initial σi σr fit 1 σi fit 1 σr fit 2 σi fit 2 σr fit 3 σi fit 3

1-5 0.0093 0.0108 0.0000 0.0020 0.0000 0.0000 0.0000 0.0000

6-10 0.0093 0.0108 0.0000 0.0099 0.0000 0.0101 0.0000 0.0124

11-15 0.0093 0.0108 0.0000 0.0122 0.0000 0.0130 0.0032 0.0000

16-20 0.0093 0.0108 0.0007 0.0123 0.0000 0.0108 0.0000 0.0165

21-25 0.0093 0.0108 0.0019 0.0123 0.0000 0.0148 0.0037 0.0000

26-30 0.0093 0.0108 0.0034 0.0124 0.0000 0.0141 0.0037 0.0143

Table 5: Parameter values for the three different fits

Note: This table shows the volatility of the real rate and inflation rate in the initial situation and for
our two different fits. For fit 1, these parameter values are obtained by using the BFGS algorithm
and minimising the sum-squared difference of the model- and market prices of the 0% floor. For fit 2,
we minimise the sum-squared difference of the model- and market prices of the 0% floor, ZCIIS and
YYIIS together.

From table 5 we notice that the algorithm mainly adjusts the parameter value of the real rate

volatility and the inflation volatility for the first five years. Especially the adjustment to the real

rate volatility is striking. For the first fit, the volatility of the real rate is set to 0 for the first

15 years and for fit 2 it is even set to 0 for all 30 years. We can conclude two different things.

Either our model is just able to price inflation products by only considering a volatility in the

inflation rate or this was just the easiest way to reach an optimum. For both fits, the volatility

structure of the inflation rate does feel intuitive in the sense that it mainly increases over time

and does not make any weird jumps. The opposite can be stated of the volatility structure of fit

3. This supports the statement of before that the model struggles to match the 0% floor prices

and 2% floor prices together.
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5.4 The inflation-linked liabilities

This section reviews the valuation results of the inflation-linked liabilities. For this valuation,

we choose to use the parameter values of fit 1, i.e. the set of parameters when minimising the

sum squared differences between the model prices and market prices of 0% floors only. We do

so since in that situation we focused on the 0% floor only and we have this exact same product

embedded in the liabilities. Using the parameters belonging to fit 1, we can calculate the final

projection of our inflation index for all paths. This index is adapted in the way discussed in

section 3.3.1 to incorporate the 0% floor. These two indices are then used to price the floor value

as explained in section 3.3 for all six contracts. The results are shown in table 6 below:

contract floor value average PV floor value in % PV

1 123481.62 43897995.92 0.28%

2 864475.59 302008243.31 0.29%

3 150384.33 54280336.27 0.28%

4 201317.05 68179312.61 0.30%

5 225061.05 71234515.25 0.32%

6 140457.00 47279989.99 0.30%

Table 6: Floor value for all 9 contracts

Note: This table shows the floor value, the present value of the liabilities and the floor value in
percentages of the present value and the 6 different contracts.

Recall from figure 8 that the behaviour of cash flows differs among the contracts. Even though

this is the case, the floor value for all contracts is around 0.3% of the present value without the

embedded floor.

In theory, pricing a floor 1 or 2 percent higher/lower is the same as pricing a 0% floor when

the inflation rate would be 1 or 2 percent lower/higher. Therefore, to show the sensitivity of our

analysis, we also show the results of the liabilities when incorporating a floor at -2%,-1%,1% and

2% In table 7, the floor value as a percentage of the present value is shown for these five floors.
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contract -2% floor -1% floor 0% floor 1% floor 2% floor

1 0.01% 0.06% 0.28% 1.63% 10.07%

2 0.01% 0.06% 0.29% 1.67% 10.22%

3 0.01% 0.06% 0.28% 1.60% 9.69%

4 0.02% 0.07% 0.30% 1.66% 10.88%

5 0.02% 0.08% 0.32% 1.72% 12.29%

6 0.02% 0.07% 0.30% 1.67% 11.04%

Table 7: floor value in percentage of present value

Note: This table shows the floor value in percentage of the present value for the floors at -2%, -1%,
0%, 1% and 2%.

From the table, we see that the difference between the -1% and 0% floor is a lot smaller than the

difference between the 0% floor and the 1% floor. This is even more so for the difference between

the -2% floor and the 0% floor and the difference between the 0% floor and the 2% floor. This

makes intuitive sense since floor only has a value when falling below 0%. Therefore, the result

is less sensitive to an underestimation of the inflation rate than an overestimation of inflation

rate.

6 Conclusion
This thesis has performed a market-consistent valuation of inflation-linked liabilities with an

embedded floor at 0% inflation. Because of this 0% floor, a stochastic valuation was necessary.

To perform this stochastic valuation, a new inflation model was created in this thesis. We used

the JY model of Jarrow and Yildirim (2003), where we replaced the nominal part by a LIBOR

market model with displaced diffusion (LMM-DD). Furthermore, since the LMM possesses log-

normal dynamics, whereas the JY model is characterised by normal dynamics, we adapted the

initial projected real rate of the JY model. To be more precise, we assumed that the difference

between the nominal and real interest rate projection of the JY model stayed the same. Therefore,

the new real rate was the projected nominal rate of the LMM minus this difference.

In order to market-consistently price the inflation-linked liabilities, we calibrated our model

to market data. The particular LMM used in our thesis is already calibrated to nominal swap

data. So, only the real rate and inflation component of our model needed to be calibrated.

We decided to calibrate on several inflation products, namely ZCIIS, YYIIS, 0% inflation floors

and 2% inflation floors. Since the JY model is adapted, the existing pricing expressions in

previous literature were no longer valid and were intuitively hard to derive after this adaptation.

Therefore, the calibration used a simulation-based approach. The optimise algorithm used in

the calibration procedure is the BFGS algorithm with the target to minimise the sum squared
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differences of the model- and market prices. The parameters that could be changed by finding

an optimum were the volatility of the real interest rate and the inflation rate, where we assumed

that the volatility was split into blocks of 5 years.

This thesis finds that, by calibrating to 0% floors only, the model is able to almost perfectly

match the market prices of 0 % floors. As an out-of-sample test, we use those parameters to value

the ZCIIS, YYIIS and 2% floor. The outcome is that, compared to the market prices, the ZCIIS

and YYIIS model prices have a maximum deviation of 1%. The 2% floor prices have a larger

deviation from the market prices. To investigate if we could improve this result, we calibrated

to ZCIIS, YYIIS and 0 % floor prices simultaneously. It followed that the 0% floor prices remain

almost the same, whereas the ZCIIS and YYIIS prices did get closer to the market value, but

only by a little. This fit was thus not significantly better than the first fit. As a last fit, we

calibrated on the 0% floor and 2% floor. The result is that the 2% floor prices better reflect the

prices observed in the market, but that the 0% floor prices deviated away from the market prices

compared to the first and second fit. Our model thus struggled to market-consistently price the

0% and 2% floors simultaneously.

Since our focus was on estimating inflation-linked liabilities, with an embedded floor at 0%,

we used the parameter set belonging to fit 1 to price the dummy portfolio. The result is that the

value of the floor is around 0.3% of the present value without the floor. The sensitivity analysis

showed that the valuation is sensitive to a negative change in inflation. More specifically, if the

actual inflation turns out to be 1%/2% lower than projected, the floor value is equal to around

1.65% /11% of the present value. The overall conclusion is that the model is able to market-

consistently price 0% floors, ZCIIS and YYIIS using a specific set of parameters, but that it does

struggle to match the market prices of 0% and 2% floors simultaneously. Using the parameter

set of the first 1, the value of the floor in our specific inflation-linked liabilities is 0.3% of the

present value without the floor, but the result is quite sensitive to a change in inflation.

Although our model has shown very promising results, there are two main suggestions for

further research. A limitation of the current model, for instance, is that it is built upon the

assumption that the difference of the nominal and real interest rate projected by the JY model is

kept constant when replacing the JY projection by the LMM projection. We did this to preserve

a correct relation between the nominal and real interest rate, but it would be interesting to

examine a more sophisticated solution when making this adaptation. Alternatively, one could

investigate the possibility of combining the LMM with another inflation model rather than the

JY model.

37



References
Baxter, M. and Rennie, A. (1996). Financial Calculus: An introduction to derivative pricing.

Belgrade, N., Benhamou, E., and Koehler, E. (2004). A market model for inflation. SSRN

Electronic Journal.

Brigo, D. and Mercurio, F. (2006). Interest Rate Models — Theory and Practice: With Smile,

Inflation and Credit.

Dam, H., Macrina, A., Skovmand, D., and Sloth, D. (2018). Rational models for inflation-linked

derivatives. SSRN Electronic Journal.

Hinnerich, M. (2008). Inflation-indexed swaps and swaptions. Journal of Banking Finance,

32:2293–2306.

Jarrow, R. and Yildirim, Y. (2003). Pricing treasury inflation protected securities and related

derivatives using an hjm model. Journal of Financial and Quantitative Analysis, 38(2):337–

358.

Mercurio, F. (2005). Pricing inflation-indexed derivatives. Quantitative Finance, 5(3):289–302.

Mercurio, F. and Moreni, N. (2006). Pricing inflation-indexed options with stochastic volatility.

SSRN Electronic Journal.

Mercurio, F. and Moreni, N. (2009). A multi-factor sabr model for forward inflation rates. SSRN

Electronic Journal, pages 1–19.

Moysiadis, G., Anagnostou, I., and Kandhai, D. (2019). Calibrating the mean-reversion param-

eter in the hull-white model using neural networks: Methods and protocols. pages 23–36.

van Haastrecht, A. and Pelsser, A. (2011). Generic pricing of fx, inflation and stock options

under stochastic interest rates and stochastic volatility. Quantitative Finance, 11(4):665–691.

38



Appendices
A Tables

Maturity ZCIIS YYIIS 0% floor 2% floor

1 0.84 0.84 0.03 0.99

2 1.82 1.81 0.11 2.12

3 2.86 2.82 0.22 3.24

4 3.94 3.88 0.37 4.40

5 5.04 4.93 0.56 5.59

6 6.21 6.05 0.74 6.72

7 7.48 7.26 0.93 7.83

8 8.81 8.51 1.10 8.82

9 10.21 9.84 1.29 9.80

10 11.69 11.23 1.49 10.76

11 13.15 12.61 1.65 11.64

12 14.66 14.03 1.83 12.52

13 16.24 15.49 2.01 13.34

14 17.87 16.99 2.20 14.17

15 19.56 18.54 2.40 15.01

16 21.23 20.05 2.56 15.73

17 22.97 21.59 2.73 16.46

18 24.76 23.17 2.91 17.20

19 26.61 24.77 3.10 17.95

20 28.54 26.40 3.29 18.71

21 30.39 27.94 3.43 19.40

22 32.30 29.50 3.58 20.10

23 34.27 31.08 3.73 20.80

24 36.31 32.68 3.89 21.52

25 38.43 34.30 4.06 22.24

26 40.46 35.83 4.24 22.96

27 42.55 37.37 4.42 23.69

28 44.71 38.92 4.61 24.43

29 46.92 40.49 4.81 25.17

30 49.23 42.07 5.02 25.93

Table 8: all market prices

Note: This table shows market prices of the ZCIIS, YYIIS, 0% floor and 2% floor. The market prices
of the ZCIIS and YYIIS are constructed using the term structure of the inflation rate and equation 2
and 4, respectively. The market prices of the 0% and 2% floors have been extracted from Bloomberg.

39



maturity ZCIIS YYIIS 0% floor 2% floor maturity ZCIIS YYIIS 0% floor 2% floor

1 0.84 0.84 0.10 1.22 16.00 20.83 19.98 5.70 20.20

2 1.80 1.79 0.54 2.69 17.00 22.48 21.47 6.01 21.27

3 2.83 2.80 1.02 4.17 18.00 24.14 22.96 6.31 22.30

4 3.90 3.83 1.50 5.66 19.00 25.94 24.55 6.60 23.29

5 4.99 4.88 1.94 7.10 20.00 27.83 26.20 6.84 24.22

6 6.13 5.99 2.38 8.52 21.00 29.65 27.75 7.09 25.19

7 7.38 7.20 2.77 9.84 22.00 31.48 29.29 7.33 26.14

8 8.69 8.45 3.17 11.17 23.00 33.34 30.84 7.57 27.09

9 10.06 9.77 3.56 12.44 24.00 35.30 32.43 7.79 27.98

10 11.51 11.16 3.88 13.62 25.00 37.45 34.11 7.99 28.80

11 12.95 12.54 4.25 14.84 26.00 39.47 35.66 8.25 29.74

12 14.42 13.95 4.62 16.05 27.00 41.53 37.21 8.49 30.65

13 15.93 15.40 4.89 17.12 28.00 43.50 38.68 8.77 31.61

14 17.52 16.90 5.17 18.16 29.00 45.60 40.22 9.02 32.52

15 19.17 18.45 5.44 19.18 30.00 47.90 41.83 9.25 33.40

Table 9: Initial model prices

Note: This table shows the obtained model prices when using the initial parameters.

maturity optimised market maturity optimised market

1 0.07 0.03 16 2.54 2.56

2 0.18 0.11 17 2.73 2.73

3 0.30 0.22 18 2.93 2.91

4 0.39 0.37 19 3.11 3.10

5 0.50 0.56 20 3.25 3.29

6 0.74 0.74 21 3.42 3.43

7 0.93 0.93 22 3.58 3.58

8 1.11 1.10 23 3.75 3.73

9 1.29 1.29 24 3.90 3.89

10 1.44 1.49 25 4.03 4.06

11 1.65 1.65 26 4.23 4.24

12 1.87 1.83 27 4.42 4.42

13 2.04 2.01 28 4.63 4.61

14 2.20 2.20 29 4.82 4.81

15 2.37 2.40 30 5.00 5.02

Table 10: 0% floor prices fit 1

Note: This table shows the 0% floor prices of model fit 1.
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maturity optimized ZCIIS market ZCIIS optimised YYIIS market YYIIS optimized 2% floor market 2% floor

1 0.84 0.84 0.84 0.84 1.19 0.99

2 1.82 1.82 1.81 1.81 2.34 2.12

3 2.87 2.86 2.84 2.82 3.46 3.24

4 3.97 3.94 3.89 3.88 4.53 4.40

5 5.07 5.04 4.95 4.93 5.62 5.59

6 6.24 6.21 6.07 6.05 6.81 6.72

7 7.52 7.48 7.29 7.26 7.91 7.83

8 8.85 8.81 8.56 8.51 8.99 8.82

9 10.26 10.21 9.89 9.84 10.01 9.80

10 11.74 11.69 11.30 11.23 10.97 10.76

11 13.21 13.15 12.68 12.61 12.00 11.64

12 14.72 14.66 14.11 14.03 13.02 12.52

13 16.28 16.24 15.57 15.49 13.93 13.34

14 17.91 17.87 17.09 16.99 14.82 14.17

15 19.62 19.56 18.65 18.54 15.70 15.01

16 21.30 21.23 20.19 20.05 16.60 15.73

17 22.96 22.97 21.69 21.59 17.52 16.46

18 24.67 24.76 23.21 23.17 18.42 17.20

19 26.51 26.61 24.81 24.77 19.26 17.95

20 28.44 28.54 26.47 26.40 20.04 18.71

21 30.29 30.39 28.03 27.94 20.89 19.40

22 32.14 32.30 29.58 29.50 21.73 20.10

23 34.03 34.27 31.14 31.08 22.56 20.80

24 36.02 36.31 32.74 32.68 23.34 21.52

25 38.18 38.43 34.41 34.30 24.05 22.24

26 40.24 40.46 35.99 35.83 24.91 22.96

27 42.31 42.55 37.53 37.37 25.73 23.69

28 44.34 44.71 39.02 38.92 26.62 24.43

29 46.47 46.92 40.56 40.49 27.45 25.17

30 48.80 49.23 42.18 42.07 28.23 25.93

Table 11: ZCIIS, YYIIS and 2% floor prices

Note: This table shows the out-of-sample test of fit 1.
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maturity contract 1 contract 2 contract 3 contract 4 contract 5 contract 6

1 2307763 12540714 3242109 3108796 4091563 2021697

2 2237276 12604543 3094330 3030934 4119349 1961985

3 2160021 12843602 2938833 2950270 4087378 1878038

4 2112988 12961137 2780614 2846864 4101860 1808571

5 2062612 12855328 2626487 2751797 4056684 1759252

6 1976282 12681374 2471634 2631686 3989097 1728606

7 1895655 12506535 2334319 2529999 3968687 1684263

8 1823987 12274112 2198037 2415613 3916228 1631373

9 1745828 12075118 2059774 2288914 3857198 1597581

10 1666088 11788756 1923127 2228579 3805274 1553554

11 1584482 11418705 1793690 2133286 3742216 1502959

12 1507744 10984195 1672324 2041916 3706821 1452984

13 1437460 10468200 1559233 1935541 3654181 1402841

14 1364844 9896511 1452495 1836545 3572256 1351376

15 1284646 9289743 1349700 1772242 3478346 1286732

16 1211456 8664473 1253585 1672531 3364604 1228003

17 1143184 8034039 1161945 1597638 3278407 1166229

18 1075386 7402221 1076092 1506320 3182890 1105191

19 1007985 6771908 995303 1419871 3091658 1040996

20 941271 6161733 920452 1330911 2972301 977748

21 875411 5580953 851068 1243241 2844163 915819

22 810779 5038821 786561 1155823 2718790 855770

23 747595 4531244 726385 1079295 2592999 797955

24 686334 4065403 669930 999652 2463986 741939

25 627223 3635449 616808 929231 2337070 688192

26 570521 3248767 566620 862075 2208251 636748

27 516515 2907542 519087 796506 2076665 587832

28 465114 2602935 474072 736834 1948048 541460

29 416491 2329749 431447 680106 1824446 497839

30 370491 2083861 391143 627291 1703025 456943

Table 12: cashflows for first 30 years and first 6 contracts
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