
Multi-Objective Ship Weather Routing:
An Evolutionary Approach

Master Thesis Econometrics & Management Science

Operations Research & Quantitative Logistics

Author

J.J. Seuren

Student number

482672

Supervisor

Prof. dr. ir. R. Dekker

Co-reader

Dr. P.C. Bouman

Erasmus University of Rotterdam

Erasmus School of Economics

November 16, 2020

The content of this document is the sole responsibility of the author and does not

reflect the view of either Erasmus School of Economics or Erasmus University.

Abstract

Over the past years, the tramp shipping industry is experiencing an increased awareness of

sustainable shipping. Stricter regulations are imposed on ship fuel consumption, leading to

higher operational costs. Costs further increase due to adverse environmental conditions,

which represent the major causes of delays. Tactical planning of ship routes considering

these effects is necessary to maintain a competitive advantage in the tramp shipping indus-

try.

The problem of Multi-objective Ship Weather Routing (MOSWR) is to seek a set of op-

timum routes for ocean-going vessels that allow a variable engine speed and consider dif-

ferent aspects along the route trajectory, such as (1) dynamic environmental conditions,

(2) high-cost areas, and (3) shipping canals. The term optimum means minimum in both

fuel cost and travel time. Since these are opposing objectives, a set of Pareto-optimal solu-

tions is required to assist the decision-maker in making an informed selection of a route

with an optimal balance between travel time and fuel costs.

Ship route optimization has been the subject of research formore than six decades. Many

of these studies follow a single-objective approach, find inaccurate solutions, or have high

computational complexity, making them unsuitable for practical applications. For this rea-

son, we present an evolutionary approach for solving the MOSWR problem, capable of

handling all its different aspects.

Considering these aspects, our approach effectively reduces both travel time and fuel

costs and finds Pareto-optimal routes that

• are initialized on aGeodesic Discrete Global Gridwith variable density near obstacles,

• are realistic, smooth, and not restricted to an arbitrary grid,

• take advantage of (avoid) favorable (adverse) ocean currents,

• avoid adverse weather conditions,

• consider Emission Control Areas and shallow waters,

• enable a variable engine speed profile, and

• either pass or avoid major shipping canals, like the Panama or Suez Canal.

Furthermore, we test three well-knownmulti-objective evolutionary algorithms on their

performance on the MOSWR problem: M-PAES, NSGA-II, and SPEA2. SPEA2 proves to be

computationally fast but does not find diversified Pareto fronts. NSGA-II has the shortest

computation time for several problem instances and performs equally well to M-PAES in

terms of Pareto performance.

We present several computation speed improvements, including an improved spatial

indexing technique to test for route intersections. Our algorithm is faster than existingmulti-

objective approaches, requiring 3min – 5min computation time on a standard PC for large

instances. All the abovemake the presented approach the best choice for a practical solution

method to the Multi-Objective Ship Weather Routing problem.

Contents

1 Introduction 7

1.1 Problem field . 7

1.2 Relevance . 8

1.3 Research objectives . 9

1.4 Thesis outline . 11

2 Literature review 12

2.1 A timeline of solving the ship routing problem 12

2.1.1 Modified isochrone . 14

2.1.2 Dynamic programming . 15

2.1.3 Graph search . 16

2.1.4 Multi-objective evolutionary algorithms 17

2.2 The ship routing problem including ocean current 19

2.3 Ship routing methods comparison . 20

3 The Multi-Objective Ship Weather Routing problem 24

3.1 Problem description . 24

3.1.1 Ship route . 24

3.1.2 Path selection criteria . 25

3.1.3 Navigable area limitations . 26

3.2 Mathematical formulation . 28

3.3 Geodesic distance . 31

3.3.1 Geodesic . 31

3.3.2 Rhumb line . 32

3.4 Actual ship speed . 32

3.4.1 Involuntary speed reduction due to wind and waves 33

3.4.2 Speed over ground affected by ocean currents 34

3.4.3 Average speed at a route leg . 36

3.5 Pareto optimality . 37

4 Solution method 39

4.1 Multi-objective evolutionary algorithm . 39

4.1.1 NSGA-II . 41

4.1.2 SPEA2 . 42

4.1.3 M-PAES . 44

4.2 Multi-objective performance metrics . 46

4.2.1 Hypervolume metrics . 46

3

Contents

4.2.2 C metric . 48

4.3 Initialization . 49

4.3.1 Geodesic Discrete Global Grid . 49

4.3.2 Initial paths . 55

4.4 Operators . 57

4.4.1 Recombination . 58

4.4.2 Mutation . 59

4.5 Line segment intersection . 66

4.5.1 Line intersection . 67

4.5.2 R-tree spatial indexing . 69

4.5.3 Polygon subdivision . 70

4.5.4 Computational performance . 72

4.6 Fitness evaluation . 75

4.6.1 Feasibility . 75

4.6.2 Travel time and fuel cost . 75

4.6.3 Speed improvements . 76

4.7 Termination criterion . 77

5 Computational results 79

5.1 Algorithm parameters . 80

5.2 Data description . 80

5.2.1 Ship characteristics . 80

5.2.2 Environmental conditions . 83

5.2.3 Navigation area . 84

5.2.4 Interpolation of gridded data . 85

5.3 Ocean current routing . 86

5.3.1 Time-varying ocean currents . 86

5.3.2 Exact approach comparison . 93

5.4 Weather routing . 98

5.4.1 Keelung to San Francisco . 99

5.4.2 English Channel to New York . 102

5.4.3 Plymouth to Havana . 103

5.4.4 Variable and constant engine speed 104

5.5 High-cost areas . 105

5.5.1 Emission Control Areas . 105

5.5.2 Shallow waters . 108

5.6 Multi-objective evolutionary algorithm performance 109

5.6.1 Overshoot of number of evaluations 110

5.6.2 Pareto performance . 112

5.6.3 Computational performance . 114

6 Conclusions and recommendations for further work 116

6.1 Conclusions . 116

4

J.J. Seuren

6.1.1 Discussion on the computational performance 119

6.2 Recommendations for further work . 121

Appendices 129

A Vincenty’s inverse method 129

B Ship speed reduction coefficients 131

C Step-by-step solving for speed over ground 132

D Special case of fundamental theorem of calculus 133

E Subdividing large polygons for faster computation 134

F Route visualization web-application 135

G Route planner based on historic routes 137

5

List of abbreviations

2DDP Two-dimensional dynamic programming

3DDP Three-dimensional dynamic programming

BFT Beaufort number

DGG Discrete Global Grid

EA Evolutionary algorithm

ECA Emission Control Area

GDGG Geodesic Discrete Global Grid

GFS Global Forecast System

GRIB General Regularly-distributed Information in Binary form

GSHHG Global Self-consistent, Hierarchical, High-resolution Geography

HFO Heavy Fuel Oil

IMO International Maritime Organization

KC Kuroshio Current

MBR Minimum bounding rectangle

M-PAES Memetic Pareto Archived Evolution Strategy

MOEA Multi-objective evolutionary algorithm

MOSWR Multi-Objective Ship Weather Routing

NSGA-II Non-dominated Sorting Genetic Algorithm II

SPEA2 Strength Pareto Evolutionary Algorithm 2

STR Sort-Tile-Recursive

ULSFO Ultra-Low Sulfur Fuel Oil

VLSFO Very-Low Sulfur Fuel Oil

WBC Western boundary current

6

1 Introduction

Seaborne cargo transportation is responsible for moving over 80 percent of global trade

(UNCTAD, 2019), and it is the only cost-effective option for transporting large volumes

between the continents. As of 2018, world trade volumes have expanded on average 4.1%

annually since 2000 (WTO, 2019), and an annual growth rate of 3.4% is projected for the

period 2019 – 2024 (UNCTAD, 2019). Over the last decades, demands in the maritime ship-

ping industry are increasing while experiencing an increased awareness of the effect of fuel

usage on operational costs and environmental emissions. Given the enormous and grow-

ing volume of goods transported by sea each year in combination with global trends in sus-

tainable shipping, accurate ship route optimization becomes more compelling in today’s

shipping industry.

1.1 Problem field

Generally, commercial cargo shipping differentiates into liner shipping and tramp shipping.

Typically, in the liner mode, container vessels travel according to published schedules and

transport cargo on the associated routes, comparable to a bus line. In tramp shipping, a

ship trades on the spot market and does not have a fixed schedule or published port of calls

so that for each voyage a route planning is made to order. Remaining with the analogy,

this transportation mode compares to a taxi service. In 2018, dry bulk shipments, together

with tanker trade shipments (oil, gas, and chemicals), accounted for over 80 percent of

total maritime trade (UNCTAD). As these cargo types are mainly transported by tramp

shipping, the significance of tramp trade in the world trade is apparent. Due to its size,

cost-effectiveness and ease of entry and exit, the trampmarket is highly competitive (CRSL,

2015). For this reason, savings through targeted planning of ship routes may provide a

leading competitive advantage.

Targeted planning of a tramp ship requires accurate estimations of the duration of port-

to-port transits. The accuracy of these estimations of travel time depends mainly on the

accuracy of models for weather forecasts and ship performance. The inaccuracy of arrival

time estimations requires scheduling idle time at the destination port to avoid delay penal-

ties. Specifically, adverseweather conditions represent one of the significant causes of delay

in the shipping industry (Notteboom, 2006).

Environmental conditions affecting the ship navigation are wind, waves, and ocean cur-

rent. Wind and waves generate additional resistance to a ship, resulting in a loss of ship

speed, whereas ocean currents affect both the speed and course of a ship. With an accu-

rate forecast of environmental conditions, a ship routing can be performed in which the

estimated travel time is more reliable and is minimized. Accurate estimations of travel time

7

1.2. Relevance

result in fewer costs for both waiting and delay at the destination, as well as a reduction in

voyage cost.

Voyage costs involve fuel costs, canal passing fees, and other costs, such as port-related

costs, repair, maintenance, manning, and extra insurances for piracy risks. Despite the steep

decrease in fuel prices due to the oil crisis inMarch 2020, fuel costs typically constitutemore

than half of the voyage cost. Excluding port charges fixed for a voyage, canal fees are the

second-highest contribution to the voyage costs. The total fuel cost depends on the fuel

price, fuel consumption rate, and time sailing. The total canal fees depend on the canal,

and the ship’s dimensions, loading, and type.

Not only the economic impact but also the environmental impact of fuel consumption in

maritime trade is tremendous. Shipping activities contribute to 14% of global nitrogen ox-

ides emissions and 5% of sulfur oxide (SOx) emissions. With the increasing social interest

in slowing down climate change, authorities worldwide have begun to enforce strict regu-

lations regarding air and sea pollution emanating from fuel consumption by ocean-going

vessels. Regulations from the International Maritime Organization (IMO) that came into

force from January 2020 require these vessels to globally reduce SOx emissions. Many ship-

ping companies prefer to achieve this reduction by switching to Very-Low Sulfur Fuel Oil

(VLSFO). At the time of writing, the price of VLSFO is, on average, 28.7% higher compared

to standardHeavy Fuel Oil (HFO)1. Consequently, the share of fuel costs in the total voyage

cost increased significantly as of 2020.

Even more stringent regulations on SOx emissions are established within Emission Con-

trol Areas (ECAs) defined by the IMO (MARPOL, 2005). In this research, we assume a

ship to apply fuel-switching so that the fuel costs within ECAs are significantly higher than

fuel costs outside ECAs. In response to the recently developed spread in fuel prices and an

increase in awareness of sustainable development, shipping companies try to find ways to

reduce fuel consumption in global regions and specifically within ECAs.

Companies that can afford longer travel times often choose to slow-steam. This concept

of reducing the ship’s speed by a few knots saves fuel while also reducing SOx emissions.

However, for many shipping companies, the reduction in fuel costs that comes with slow-

steaming does not outweigh the lost profit due to increased travel time. An optimal balance

between short travel time and low fuel cost can be obtained by effectively speeding up and

slowing down in specific regions, to avoid, for example, additional costs within ECAs or

speed reductions due to storms.

1.2 Relevance

Finding routes that are not only cost-efficient but also ensure the on-time arrival of the ship

is a complex task that is difficult to do by hand. Especially when considering environmental

1Three-month average fuel prices in the period of May 1 to July 31, 2020, are retrieved from https://
shipandbunker.com, accessed on August 13, 2020.

8

https://shipandbunker.com
https://shipandbunker.com

J.J. Seuren

conditions, variable engine speed, and greenhouse gas emission regulations. For this rea-

son, an automatic ship routing that minimizes travel time and fuel cost considering earlier

mentioned elements is of high value for a tramp shipping company.

Several optimization methods have been developed to optimize ship routes in an ocean-

crossing voyage. The first was the “isochronemethod”, proposed by James (1957) and later

modified by Klompstra et al. (1992) and Hagiwara and Spaans (1987) to be more suitable

for computerization. Isochrone methods are based on manual navigation techniques and,

therefore, have long been used in commercial ship navigation software. However, due to

their single-objective approach and constant engine speed requirement, it is not possible to

minimize travel time and fuel cost simultaneously.

A few years later, the calculus of variations was applied to the ship weather routing

problem (Bleick & Faulkner, 1965; Haltiner et al., 1962). Its popularity lay within its ex-

act, continuous approach to finding an optimal ship route. With the use of second-order

derivatives, the method introduces unacceptable errors in the solution values if there are

inaccuracies in weather forecast data. For this and other practical issues, the method’s pop-

ularity decreased in the following years.

Dynamic programming proved to be suitable method for ship routing, as it handles

constraints easily and can take three control variables: ship’s position (longitude, latitude)

and engine speed. Due to its grid dependency, a high grid resolution is required to obtain

accurate solution. This increases the computational complexity, requiring simplifications of

the route evaluation as proposed in (Shao et al., 2012; Tanaka & Kobayashi, 2019; Zaccone

et al., 2018). A similar and more common approach to ship navigation uses graph search

methods (Montes, 2005; Padhy, 2008; Sen & Padhy, 2015). Thesemethods are generally fast

but less versatile, as they optimize a single-objective and do not return smooth routes.

Moremodern is amulti-objective evolutionary approach. Hinnenthal andClauss (2010),

Marie and Courteille (2009), and Szapczyska (2015) use a multi-objective evolutionary al-

gorithm to find a set of routes that are Pareto-optimal for different (opposing) criteria. As

this approach finds such a set in a single run and it is proved to be flexible in practical

applications, multi-objective evolutionary algorithm are the obvious choice for the Multi-

Objective Ship Weather Routing problem, presented in this study. Overall, methods pro-

posed earlier have limitations in computational time or do not consider all aspects of the

problem presented in this thesis.

1.3 Research objectives

With this study, we aim to answer the research question as stated below.

Canwe develop a solution approach for theMulti-Objective ShipWeather Route problem

which considers different routing aspects and has better performance than existing ship

routing methods?

9

1.3. Research objectives

Performance is measured in terms of computation time and indicators designed for multi-

objective optimization methods. Moreover, the presented solution method is evaluated

based on its flexibility in real-world applications, in terms of handling different sailing re-

gions, environmental conditions, and ship types. To provide a substantiated answer to our

research question, we state the following subquestions.

SQ1. What is the effect of ocean currents on the set of solutions to theMOSWRproblem?

SQ2. What is the effect of weather on the set of solutions to the MOSWR problem?

SQ3. What is the effect of Emission Control Areas on the set of solutions to theMOSWR

problem?

SQ4. What is the effect of a variable engine speed profile in combination with ocean cur-

rent, weather effects, or Emission Control Areas on the set of solutions to the MOSWR

problem?

SQ5. What is the performance of a selection of multi-objective evolutionary algorithms

on solving the MOSWR problem considering different environmental conditions?

The first four subquestions include four different aspects of the MOSWR problem and SQ5

covers the performance assessment of the solution method presented in this thesis. This

work comprises two major parts: (1) the formulation of the Multi-Objective Ship Weather

Routing (MOSWR) problem, and (2) an evolutionary approach to solve the MOSWR prob-

lem.

The MOSWR problem is to seek a set of optimum ship routes under specified depar-

ture and destination, with variable engine speed during the voyage and considering time-

varying environmental conditions and high-cost areas along the ship trajectory. The term

optimum means a minimum of fuel costs and travel time. Since these are opposing objec-

tives, a set of Pareto optimum solutions is required to support the end-user in an informed

selection of a route that has an optimal balance of travel time and fuel cost. A Pareto op-

timum solution implies a feasible solution with minimum objective values, such that an

improvement of one objective is only possible by impairing another. Besides variable en-

gine speed and forecasted environments, the MOSWR problem considers high-cost areas

and major shipping canals, e.g., the Panama Canal and the Suez Canal. With the inclu-

sion of canals, multiple route options may exist that include or avoid these canals, enabling

decision-making on the trade-off between routeswith longer travel time and fast routes that

include canal fees.

As a framework to our solution approach for the MOSWR problem, we use a multi-

objective evolutionary algorithm (MOEA) with specialized mutation and crossover op-

erations for the MOSWR problem. We test and compare the performance of three well-

known MOEAs: (1) the Non-dominated Sorting Algorithm II (NSGA-II), an elitist ap-

proach presented by Deb et al. (2002), (2) the improved Strength Pareto Evolutionary Algo-

rithm (SPEA2), another elitist approach by Zitzler et al. (2001), and (3) theMemetic Pareto

10

J.J. Seuren

Archived Evolution Strategy (M-PAES) (Knowles & Corne, 2000), which has a stronger fo-

cus on local search.

This work presents a ship routing algorithm that has practical applications in the early

voyage planning phase and onboard during a voyage. Our solution approach contains the

following novel components:

• A multi-objective routing algorithm for minimum travel time and fuel cost with cus-

tomizable support for different constraints and optimization criteria

• Time-varying environmental conditions, i.e., weather and ocean currents, affecting

the ship course and speed.

• High-cost areas, such as ECAs and shallow waters, which either induce additional

cost or incur optimization penalties.

• Variable engine speed during the voyage, allowing for, e.g., slow-steaming.

• Multiple route options, including routes that either pass or avoid major shipping

canals.

• A route is smooth and realistic as it is defined in continuous space and does not have

preset values for the coordinates of the waypoints along the path.

• Reduced computation time by using a modified spatial indexing technique for deter-

mining route feasibility and cost factors.

1.4 Thesis outline

The remainder of this thesis is outlined as follows. First, Chapter 2 reviews the existing ship

weather routing methods and related work. Then, Chapter 3 provides a description of dif-

ferent elements of the MOSWR problem and formulates the problem such that it is generic

for different types of environmental conditions, high-cost areas, and objectives. In Chapter

4, we present our evolutionary approach to solving the MOSWR problem. It includes a de-

scription of three selected MOEAs and the metrics used to evaluate the performance of the

MOEAs. Also, it presents the initialization procedure, specialized genetic operators, and a

fast intersection method to evaluate the cost and feasibility of a route leg. Next, Chapter 5

provides computational results of case studies on the effect of routing in weather, ocean cur-

rents, and high-cost areas such as Emission Control Areas and shallowwaters. The chapter

concludes with a study of three selectedMOEAs tested on solving different instances of the

MOSWR problem. Finally, Chapter 6 summarizes our findings and provides recommenda-

tions for further research.

11

2 Literature review

This chapter provides a review of relevant literature on different subjects related to the re-

search topic. First, Section 2.1 gives a timeline of the methods presented in the literature on

solving a ship routing problem. Subsections 2.1.1 to 2.1.4 provide a more detailed review

of four general solution methods used for ship weather routing problems: (1) modified

isochrone, (2) dynamic programming, (3) graph search, and (4) multi-objective evolution-

ary algorithms, respectively. Secondly, Section 2.2 reviews the few articles that study a ship

routing problem that include the effect of ocean currents. Finally, Section 2.3 gives a compar-

ison of the reviewed methods and enhances the clarity of the positioning of the presented

work.

2.1 A timeline of solving the ship routing problem

Minimal time andminimal (fuel) cost navigation have been the subject of extensive research

work for more than six decades. Figure 2.1 provides an illustration of the development of

research on different ship routing methods.

19
50

19
55

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

20
15

20
20

20

40

60

80

Isochrone

Calculus of variations

Dynamic programming

Evolutionary algorithms

Graph search

Figure 2.1. Research development for five general ship routing methods.
Notable academic articles are accumulated over the years 1957-2020.

The pioneering work of James (1957) lay the foundation for ship routing research with

the “isochronemethod”. Thismethodology originates from amanualmethod used by navi-

gators, based on spatial isochrones a ship can reachwithin a given time. Hagiwara (1989) re-

vised the isochrone method and named it the “modified isochrone method”. Later, Klomp-

stra et al. (1992) proposed the “isopone method”, a variant on the modified isochrone

method for the minimization of fuel consumption. Both the isochrone and isopone method

12

J.J. Seuren

were found to be less suitable for computerization than the modified isochrone method.

Section 2.1.1 elaborates upon the latter method and discusses it applications.

A few years after the introduction of the isochrone method, the calculus of variations

was introduced for solving the ship routing problem. First, Haltiner et al. (1962) solved

the deterministic minimum time routing problem assuming stationary wave fields with

the calculus of variations. Then, Bleick and Faulkner (1965) solved the same problem as

Haltiner et al., allowing for time-dependent wave fields. However, the approach of Bijlsma

(1975) set a solid basis for the calculus of variations in ship weather routing. He solved the

minimal time routing problem using deterministic weather forecasts and Pontryagin’s max-

imum principle. Alternative methods became more popular than the calculus of variations

in the past twenty years. This is presumably due to three reasons:

1. since inaccuracies are expected in the environmental data, second-order derivatives

lead to unacceptable errors in the solution values (Hagiwara & Spaans, 1987, p. 16),

2. it is often difficult to converge on a route to the destination (Marie & Courteille, 2009,

p. 133), and

3. considering a variable ship speed profile is complex and requires significant compu-

tational effort (Shao et al., 2012).

Because of these disadvantages, we do not further look into ship routing literature on the

calculus of variations.

Fifteen years after the work of James (1957) on the isochrone method, other forms of dy-

namic programming became popular methodologies for solving the ship routing problem.

The first was by Zoppoli (1972), who formulated a constrained dynamic programming,

which was also the first approach to the solution of stochastic minimum time routing. Dy-

namic programming became increasingly popular from 1990, starting with basic utilization

of dynamic programming for a grid of points (Lo & McCord, 1998; De Wit, 1990), and

more recently, with the utilization of three-dimensional dynamic programming, proposed

by Shao et al. (2012) and Zaccone et al. (2018). Section 2.1.2 discusses the usage of dynamic

programming in ship routing problems and focuses on the three-dimensional variant.

In recent years, some researchers attempted to solve the ship routing problem using

grid-based techniques such as Dijkstra’s method and A*. Padhy (2008) dealt with the de-

terministic minimal time routing based on the WAM wave model using Dijkstra. More

recently, Chu et al. (2015) used Dijkstra’s algorithm to assess the impact and sensitivity of

environmental uncertainties assimilated from ensemble weather forecasts to ship routing

optimizations with respect to fuel cost minimization. Similar to Dijkstra’s algorithm is A*,

of which the application to ship routing was first introduced by Jung and Rhyu (1999) to

determining the economical shipping route and later compared to modified isochrone by

Roh (2013).

Hinnenthal andClauss (2010) propose a differentmethodology from the ones addressed

13

2.1. A timeline of solving the ship routing problem

so far. Using amulti-objective evolutionary algorithm, they solved a two-objective optimiza-

tion problem by minimizing travel time and fuel consumption. Evolutionary approaches,

such as the genetic algorithm, seem very convenient for solvingmulti-objective ship routing

problems. Also Szapczyska (2007) and Marie and Courteille (2009) propose an evolution-

ary multi-objective optimization approach to search discrete or continuous search space

and find a Pareto-optimal set of routes. Section 2.1.4 provides a more detailed review of

their work.

2.1.1 Modified isochrone

Hagiwara and Spaans improved the isochronemethod to bemore suitable for computeriza-

tion (Hagiwara, 1989; Hagiwara & Spaans, 1987), giving it more practical implementations

for ship weather routing systems. He named it the “modified isochrone method”, which

deterministically solves a discrete optimization problem containing a single-objective func-

tion and constraints regarding time and the ship’s position, course, speed, andmotion. This

method allows a ship to vary its course at any intermediate waypoint around the reference

route, e.g., the shortest (great circle) route. The range and resolution of course variation

at each waypoint determine the number of potential subroutes. It is a recursive algorithm,

and the subroutes generated by the method increases exponentially with the number of

time stages. Sub-lanes are introduced as constraints on the algorithm to reduce the poten-

tial subroutes. Therefore, the accuracy and also the speed of this method lies in the chosen

width of the sub-lane.

For each waypoint generated by the modified isochrone method, it assumes that a ship

operates at a constant engine speed during the voyage. Therefore, the sailing distance of a

time stage depends on the environmental conditions that the ship will encounter at these

waypoints. The waypoints that lead to too much delayed or total fuel cost at the destination

are not considered in subsequent stages.

This method finds the least-time route and is able to find a quasi-minimum fuel route.

The latter route is obtained by keeping the engine speed constant during the simulation

and then applying the modified isochrone method to determine the minimum travel time.

By varying the engine speed in subsequent simulations, this method finds the least fuel-

consuming route for a constant engine power providing on-time arrival. It then treats the

minimum time route as the quasi-minimum fuel route. Thus, the method does not min-

imize fuel consumption itself. Moreover, due to a constant engine speed over the entire

voyage, this method may find a suboptimal minimum fuel route when environmental con-

ditions are considered.

Based on the modified isochrone method, Klompstra et al. (1992) introduced the “iso-

pone method”. The isopone considers the distance that a ship can reach using equal fuel

consumption. The method handles single-objective functions such as minimum travel time

or minimum fuel consumption. An advantage compared to modified isochrone is that iso-

pone enables a variable engine speed during the voyage. The commercial weather rout-

14

J.J. Seuren

ing software SPOS (Ship Performance Optimization System) initially adopted the isopone

method. However, the isopone method was replaced with the modified isochrone method

in the final product (Shao et al., 2012), despite the isopone method theoretically offering

better results. The main reason for this switch was that the isopone method seemed to be

more difficult to understand for navigators than the modified isochrone method.

For this reason, many other commercial weather routing companies employ modified

isochrone as well (Chen, 2013). Unfortunately, due to the method’s lack of speed man-

agement, these commercial software do not have the ability to change speed to avoid, for

example, roughweather areas. The next section reviews dynamic programming, which has

the capability of handling multiple control variables, e.g., ship location and speed.

2.1.2 Dynamic programming

Dynamic programming is a powerful method for solving various optimization problems

and is widely used in many areas. It separates a large, complicated problem into many

subproblems and solves the subproblems first. Then, using Bellman’s optimality principle

(Bellman, 1952), the subproblems are combined to reach an overall solution, and finally,

the optimal sequence of decisions can be identified. Many of these subproblems are often

similar. The dynamic programming approach tries to solve each subproblem only once, re-

ducing the number of computations. This is especially usefulwhen the number of repeating

subproblems is exponentially large.

In dynamic programming for ship routing, the grid system is often constructed based

on the great circle path. Along this path, a route is divided into many stages. For each

stage, a one-dimensional grid perpendicular to the great circle subroute is generated for

path selection. The ship’s control vector is chosen at each stage, and subproblems are calcu-

lated stage by stage. Information from the previous stage is used to determine the control

variables of the next stage. The parameters used to describe a stage must be variables that

monotonically increase as the ship’s voyage or route optimization progresses. In ship rout-

ing problems, time, fuel consumption, and voyage progress increase monotonically during

a voyage. All these three variables can thus be used to define a stage.

Dynamic programming in ship routing can be categorized into two types: (1) two-di-

mensional programming (2DDP) and (2) three-dimensional programming (3DDP). We

focus on 3DDP in the following, since in 2DDP the engine speed is kept constant and only

the path is optimized.

3DDP allows for engine speed reduction during the voyage; therefore, it also considers

the time variable for route planning in addition to the ship’s position. Thus, the 3DDP can

provide a better result than 2DDP but obviously uses more computing time. Every stage

comprises many states, while a state is defined by a grid waypoint and a discretized time.

Because the ship’s path, i.e., course angles and waypoints, is predefined on the grid system,

the only variable that requires optimization is ship speed.

15

2.1. A timeline of solving the ship routing problem

Shao et al. (2012) and Zaccone et al. (2018) both present a 3DDP based ship route opti-

mization method. They both limit their objective function to minimizing fuel consumption

while respecting arrival time, safety, and comfort restrictions.

1. The 3DDP presented by Shao et al. is a forward dynamic programming method that

uses the voyage progress as a stage variable through voluntary or involuntary speed

control. They compare their 3DDP to a 2DDPvariant and a selection ofmulti-objective

evolutionary algorithms (MOEAs), including NSGA-II. They find considerable fuel

savings compared to 2DDP, but no significant fuel savings between 3DDP and NSGA-

II. Although, other MOEAs perform slightly worse.

Shao et al. report computation time of less than 30 s for 3DDP compared to five min-

utes used by theMOEAs. However, we note that the performance ofMOEAs is heavily

dependent on the solution’s fitness evaluation and parameter settings. The accuracy

of the results found by their 3DDP algorithm is highly dependent on the grid fineness,

which directly couples to the required computation time.

2. Zaccone et al. present a 3DDP also taking into account ship motions and comfort due

to weather effects. The optimization is performed in a discretized space-time domain

by parameterizing the voyage as a multi-stage decision process. Their dynamic pro-

gramming approach’s computation time is significantly affected by the chosen dis-

cretization parameters and constraint settings. The more the problem is constrained,

the fewer nodes are processed, resulting in a faster computation. They report a com-

putation time required for finding a Pareto set containing 134 routes of 10min 50 s.

2.1.3 Graph search

The Dijkstra algorithm, together with the A* algorithm, is among the popularly algorithms

for finding the shortest path between two given nodes in a graph with strictly positive

weights. It provides a deterministic method for solving a discrete optimization problem

consisting of one objective, e.g., minimum travel time or fuel cost, and only implicitly de-

fined constraints. In most ship routing literature, a graph is assigned positive weights rep-

resenting a single or sum of objectives in these edges according to weather conditions and a

predefined engine speed. A graph search algorithm is then able to find the minimum time

route (or minimum fuel route) by minimizing the sum of weights.

Graph search algorithms are generally very fast for solving the ship weather routing

problem considering a single objective and a constant engine speed. Modifying the al-

gorithm for handling time-varying environmental conditions and varying ship speeds re-

quires multiple grid dimensions. This complicates the construction of a graph and signifi-

cantly increases the number of nodes and, therefore, the computation time. To our knowl-

edge, two graph search methods are proposed in ship routing literature that are capable of

handling voluntary speed reduction and other ship weather routing aspects.

1. Montes (2005) introduces a network ship routing model that tries to find the least-

16

J.J. Seuren

time path using a modified version of Dijkstra’s shortest path algorithm and a basic

ship response function. A binary heap function is used to reduced the size of the

multi-dimensional graph, which reduces the computational complexity from O(n2)
to O(m log(n)), where n is the number of nodes and m is the number of arcs. Com-

putation times in the order of milliseconds are reported for problem instance with a

very low graph resolution. Due to restriction to a coarse grid resolution and a single-

objective approach, this method is only useful for quick estimates for ship voyage

durations.

2. Also Padhy (2008) develops a method based on a modification of the Dijkstra algo-

rithm for finding a least-time route. Next to voluntary speed reduction, this method

considers the effect of involuntary speed reduction due to added resistance caused

by wind, waves, and ocean current. Hence, it is assumed that ocean currents do not

affect the ship’s course.

Sen and Padhy (2015) state that the main disadvantage of this algorithm is that the re-

sulting path is not smooth. This may result in a zigzag path and, consequently, requir-

ing a refinement of the grid. A high-resolution grid, together with a short time inter-

val in environmental forecasts, increases the computational significantly. To maintain

an acceptable level of accuracy, Padhy chooses a high grid resolution and assumes a

static environment. No computation times are reported.

Graph-based approaches rather consider single-objective optimization problems, e.g.,

minimum travel time. To optimize multiple objectives, criteria can be represented as a

weighted-sum in a single-objective cost function. Although, aggregation of multiple cri-

teria may result in losing detailed information on various possible routes, including the

best routes for each criterion. More suitable for handling multiple criteria are evolutionary

algorithms. Applications of these algorithms will be discussed in the next section.

2.1.4 Multi-objective evolutionary algorithms

Evolutionary algorithms (EAs) are metaheuristic optimization algorithms that develop a

population of solutions. One of themost well-known evolutionary algorithms is the genetic

algorithm, inspired by natural evolution. It initializes with a first generation of solutions

(route legs), each with its own fitness, e.g., travel time and fuel cost. Next generations are

iteratively generated by creating offspring, i.e., recombining elements (waypoints) of the

solutions of the previous generation. When creating a new solution, certain mutations may

occur, affecting one or more solution elements.

In the classical literature for multi-objective optimization problems, there did not exist

any optimization methods that could findmultiple optimal solutions in a single simulation.

EAs are logical candidates to solve these problems, as they work with a population of so-

lutions enabling approximation of the Pareto optimal set in a single run. This set contains

solutions with a balanced impact of the criteria, as well as the best solutions according to

these criteria. Thus, the concept of EAs was extended by introducing multi-objective evolu-

17

2.1. A timeline of solving the ship routing problem

tionary algorithms (MOEAs). The aim of these algorithms is twofold. In the first place, the

algorithm’s approximation of the Pareto front (i.e., the Pareto set projected in the objective

space) should be as close to the actual Pareto front as possible. Secondly, the obtained so-

lutions should be evenly spread over the Pareto front and capture the front’s extreme ends.

MOEAs have attracted a lot of research effort during the last twenty years, and they are still

one of the hottest research areas in the field of evolutionary computation. This led to better,

faster, and more accessible MOEAs. An extensive overview of frequently used MOEAs is

given by Konak et al. (2006).

Notable ship weather routing applications of multi-objective evolutionary optimization

methods are those proposed in (Hinnenthal & Clauss, 2010; Marie & Courteille, 2009; Sza-

pczyska, 2015). Furthermore, Veneti et al. (2018) test two popular MOEA, SPEA2 and

NSGA-II, on the ship weather routing problem. And, Li et al. (2017) test NSGA-II on a

simplified multi-objective ship weather routing problem.

1. Marie and Courteille (2009) use MOGA, an MOEA proposed in (Fonseca & Flem-

ing, 1998), to minimize a ship route’s fuel consumption and travel time. This study’s

novelty is a spatial and temporal generation of route variants based on a generic and

automatic meshing. Since this technique has a physics-based definition and requires

a low number of free variables, the solution method seems reliable in practice and

has a limited computation time of about 2 h. Marie and Courteille state that the major

disadvantage of the MOGA is mainly related to the number of evaluations necessary

to obtain satisfactory solutions. That is, the search extends in all the directions of the

solution space, producing a rich database.

2. Hinnenthal and Clauss (2010) seek to find a route that minimizes travel time and

fuel consumption, and maximizes robustness regarding weather forecast uncertain-

ties. Similar toMarie andCourteille, they useMOGAas a framework for their solution

approach. The stochastic behavior of weather is accounted for with the utilization of

probabilistic ensembleweather forecasts. For each route, the ship behavior inwaves is

simulated using transfer functions. These computationally expensive functions lead

to a large calculation time of a single route. As a result, the whole optimization takes

nearly 10 h.

3. Szapczyska (2015) presents the Multi-objective Evolutionary Weather Routing Al-

gorithm (MEWRA), a ship routing algorithm utilizing a robust evolutionary algo-

rithm: Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler & Thiele, 1999). The

MEWRA simultaneously minimizes travel time, fuel consumption, and the ship’s

safety risk in rough weather regions. Multiple constraints are considered, such as

shallow water, piracy risk areas, and a discrete set of attainable ship speeds.

Szapczyska reports a computation time of 6min if all criteria and constraints are con-

sidered. The computation time is significantly less compared to methods proposed in

(Hinnenthal & Clauss, 2010; Marie & Courteille, 2009). The main reason is likely due

to a more simplified method for estimating the involuntary speed reduction. Also,

18

J.J. Seuren

MEWRA returns much less Pareto-optimal solutions, i.e., approximately two times

fewer route evaluations are performed.

4. Veneti et al. (2018) compare an improved version of SPEA, SPEA2 (Zitzler et al.,

2001), to NSGA-II (Deb et al., 2002) according to their performance on solving the

ship weather routing problem. A route path is defined in discrete space, i.e., a grid

structure is used, and route objectives to be minimized are the ship’s safety risk and

total fuel cost. The travel time is set as a limitation to the voyage. During the voyage,

weather forecasts are used to determine the ship’s speed reduction and safety risk,

but the engine speed is kept constant. Veneti et al. report a slightly lower computa-

tion time for NSGA-II, but SPEA2 achieves marginally better solutions.

5. Lastly, Li et al. (2017) use NSGA-II to find ocean voyages that minimize both risk and

travel time. Risk is affected by weather, and fuel consumption is added as a constraint

to the problem. Using a predefined set of longitudinal coordinates and setting upper

and lower bounds for the sailing region, Li et al. keep the total computation ‘within

minutes’. Additionally, the calculations of ship speed loss and distance between two

waypoints are simplified, making thismethodwell-suited for quick estimates of ocean

voyages but less suitable for realistic ship routes.

The required computational time of MOEAmainly depends on the number of free vari-

ables and objectives, as well as the number of route evaluation points. Both Hinnenthal

and Clauss, and Marie and Courteille implement spatial and temporal modeling methods

to reduce the number of free variables. However, Hinnenthal and Clauss state that “a ge-

netic algorithm based method will never reach the computational speed of a deterministic

or graph theory based method” (Hinnenthal & Clauss, 2010, p. 119).

2.2 The ship routing problem including ocean current

Chang et al. (2015) provide a global map of strong ocean currents focusing on western

boundary currents (WBCs). Theoretically, WBCs with average speeds of 2 kn – 3 kn can

reduce travel time by 2%– 8% for ships sailing at 12 kn – 16 kn (Chang et al., 2013; Lo &

McCord, 1998). The majority of proposed optimization methods in ship weather routing

literature neglects the effect of ocean currents on a ship route. In this section, we review

two articles that focus on strong ocean currents. The first considers the Gulf Stream region

near the east coast of North-America, and the second addresses the Kuroshio Current in

the East Chinese Sea.

1. A ship weather routing problem using ocean current data from the Gulf Stream is

examined in (Lo & McCord, 1998). To address the uncertainty caused by a delay

in delivering the ocean current information, Lo and McCord formulated a minimum

fuel problem as an adaptive, probabilistic dynamic programming using longitudinal

progression as a discrete stage variable. This problem includes stochastic ocean cur-

rents and uses the ship’s heading (i.e., the compass direction) and engine speed as

19

2.3. Ship routing methods comparison

decision variables. However, with the introduction of a stochastic variable and two

control parameters, the size of the search space is significant. To limit the computation

time, Lo and McCord developed a so-called adaptive heading-along heuristic, which

optimizes for heading only, such that the expected travel time is minimized. Using

fine-resolution current estimates of the Gulf Stream, Lo and McCord found a relative

average fuel savings of 7.5%when riding favorable currents and 4.5%when avoiding

unfavorable currents for ships with a nominal velocity of 16 kn.

2. Tanaka and Kobayashi (2019) formulated an optimal fuel routing problem with de-

terministic ocean currents as a mixed-integer nonlinear optimization problem. They

present a 3DDP that solves two sequential subproblems in each iteration. The former

is the problem of finding all feasible paths from origin to destination on a graph, with

feasibility constraints on the arrival time. The engine speed along these paths are then

optimized in the second problem. This algorithm finds the optimal path on a graph.

However, if the navigation region or the graph’s resolution is large, the number of

solution evaluations increases significantly. The algorithm is terminated if the best

solution is found or if it exceeds a maximum computation time.

Tanaka and Kobayashi performed numerical experiments on the East Chinese Sea.

Section 5.3.2 compares their numerical results to our findings regarding the same

problem instance. For various graph resolutions and arrival time constraints, they

generated thirty instances to compute routes between Tokyo, Japan, and Keelung, Tai-

wan, in two directions. Under loose travel time constraints, the algorithm finds the

optimal solution within an hour. For more restrictive arrival times, the algorithm is

terminated prematurely after an hour. In most cases, strong, feasible solutions were

returned in early iterations, implying that the algorithm likely finds near-optimal so-

lutions in an early stage.

2.3 Ship routing methods comparison

Table 2.1 gives an overview of the general methods used in ship routing literature. Re-

garding the demands for multi-objective ship weather routing, it is expected that objective

functions become multimodal when optimization results are governed by environmental

constraints. Therefore, the solution method should be able to overcome local optima. In

the ship routing literature, MOEAs and 3DDPmethods are stochastic and exact approaches,

respectively, that serve for the purpose of finding these local optima. Using MOEAs, opti-

mization criteria can be easily extended or disregarded making it a flexible approach. The

stochastic nature of the evolutionary algorithms serves well for simultaneously searching

multiple Pareto optimum solution over the entire solution space. For this reason and other

favorable characteristics mentioned in Section 2.1.4, we choose to use an MOEA as a frame-

work to the solution approach.

Table 2.2 gives an overview of the discussed literature. Several aspects of ship weather

routing are researched thoroughly in the past six decades. However, their usage by ship op-

20

J.J. Seuren

erators and in particular on board navigating officers is still not very clear from a practical

application point of view. A possible reason for the limited information on the actual algo-

rithm that is used by ship navigators could be the commercial nature of such algorithms:

many of the algorithms currently used are proprietary and not available in the open litera-

ture. A detailed comparison of the various methods is difficult because there is no basis for

such comparisons. Each work formulates the ship routing problem individually, consider-

ing different aspects. And some articles use data sources that are not publicly available.

To our knowledge, there does not exist a ship weather routing algorithm in the literature

that simultaneously minimizes travel time and fuel consumption considering the following

aspects:

• Time-varying environmental conditions, including weather and ocean currents.

• A variable engine speed profile.

• High-cost areas (e.g., ECAs and shallow waters).

• Finding realistic smooth routes.

A ship routing algorithm that considers these aspects is compelling in today’s shipping

industry. Especially due to their significant impact on a ship’s travel time, fuel consumption,

and ultimately, the environment. For applications in the early voyage planning phase and

on-board, the routing algorithm requires a short computation time.

21

2.3.
S
h
ip

ro
u
tin

g
m
eth

o
d
s
co
m
p
ariso

n

Table 2.1. General ship routing methods comparison.

Method Space
Variable

engine speed
Advantages Disadvantages

Isochrone grid no Easily understood
Easy constraint handling

Complicated implementation

Calculus of variations continuous no Mathematically elegant Complicated implementation
Convergence problems
Expected second-order derivate error

Dynamic programming grid yes Easily understood
Easy constraint handling

Accuracy largely grid-dependent
Computationally expensive

Graph search grid yes Computationally fast
Easy constraint handling

Complicated implementation
No smooth routes

Evolutionary algorithms continuous yes Easymulti-objective handling
Flexible approach

Computationally expensive
Not an exact approach
Requires parameter tuning

22

J.J.S
eu

ren

Table 2.2. Ship routing methods comparison.
Objectives T, F, S, and R denote travel time, fuel consumption, ship safety, and weather forecast robustness, respectively. Computation time of a method is
listed if it is reported and the article’s publication date is in the recent past.

Author Solution approach Weather
Ocean
current

Variable
engine speed

Continuous
space

Objectives
Computation

time

Isochrone methods
(James, 1957) isochrone yes no no no T n/a
(Hagiwara, 1989) modified isochrone yes yes no no T or F n/a
(Klompstra et al., 1992) isopone yes yes no no T, F n/a

Calculus of variations (CoV)
(Haltiner et al., 1962) CoV yes no no yes T n/a
(Bleick & Faulkner, 1965) CoV yes no no yes T n/a
(Bijlsma, 1975) CoV yes no yes yes T or F n/a

Dynamic programming (DP)
(Lo & McCord, 1998) 2DDP no yes yes no F n/a
(Shao et al., 2012) 3DDP yes no yes no F < 30 s
(Zaccone et al., 2018) 3DDP yes no yes no F 10min 50 s
(Tanaka & Kobayashi, 2019) 3DDP no yes yes no F 5min – 1 h

Graph search
(Montes, 2005) modified Dijkstra yes no yes no T 60ms – 80ms
(Padhy, 2008) modified Dijkstra yes not tested yes no T not reported

Evolutionary algorithm
(Szapczyska, 2007) SPEA yes no yes yes T, F, S 6min
(Hinnenthal & Clauss, 2010) MOGA yes no yes yes T, F, R 10 h
(Marie & Courteille, 2009) MOGA yes no yes yes T, F 2 h
(Veneti et al., 2018) NSGA-II, SPEA2 yes no no no F, S 20 s – 60 s
(Li et al., 2017) NSGA-II yes no yes no F, S ‘within minutes’

Presented method NSGA-II, SPEA2, M-PAES yes yes yes yes T, F 3min – 5min

23

3 TheMulti-Objective ShipWeather Routing problem

The previous chapter reviewed general methods used in ship routing literature. Many ship

routing problems have been researched in the past. For the majority of these problems, one

aims to optimize a single objective function, for instance, travel time. In recent years, multi-

objective optimization applied to the ship weather routing problem became increasingly

popular. An evolutionary approach to such problems is found to have several practical ad-

vantages over othermethods. Therefore, we use amulti-objective evolutionary algorithm as

a framework for our solution approach to solving theMulti-Objective ShipWeather Routing

(MOSWR) problem

In this chapter, we give a formal definition of the MOSWR problem. First, we describe

the problem and outline different components of the ship weather routing structure in Sec-

tion 3.1. Secondly, we formulate the ship routing problem as a continuous optimization

problem in Section 3.2. Elaborating on this mathematical formulation, Section 3.3 provides

calculation methods used to obtain the distance over a route leg, and Section 3.4 provides

the actual speed derivation in different environmental conditions. Finally, Section 3.5 de-

scribes the mathematical concept of Pareto dominance, that we use for the evaluation of

solutions containing multiple criteria.

3.1 Problem description

The structure of the Multi-Objective Ship Weather Routing problem is shown in Figure 3.1.

In principle, the MOSWR problem can be broken down into several comprehensible com-

ponents. The core part of the problem is a set of route decision variables, affected by two

preceding components: path selection criteria and navigable area limitations, shown in orange

and blue, respectively. Considering the input of these components, the route decision vari-

ables define a ship route in green. Following this structure, we first describe the elements of

a ship route in Section 3.1.1. Then, Sections 3.1.2 and 3.1.3 describe the different elements

comprising the path selection criteria and navigable area limitations, respectively.

3.1.1 Ship route

A ship route (green) is characterized by a series of waypoints, starting at the departure

and ending at the destination. A waypoint is defined by a pair of longitude and latitude

coordinates in degrees. At each waypoint, except at the destination waypoint, a ship route

contains information on the ship heading and engine power required to reach the next way-

point. The heading is the compass direction in which a ship’s bow is pointed.

24

J.J. Seuren

Fuel cost

Travel time

Environment

Ship performance

Canals

High-cost areas

Impassable areas

Path selection
criteria

Route decision
variables

Ship route

Navigable area
limitations

Waypoints

Headings

Engine powers

Distance

Travel time

Fuel cost

Figure 3.1. Overall structure of the Multi-objective Ship Weather Routing problem.
Route decision variables are affected by path selection criteria (orange) and navigable area
limitations (blue). The first elements comprise the optimization objective (yellow) and ship
performance assessment (red). The second element, navigable area limitations, defines the
constraints and costs for the navigable area. A solution to the problem is a ship route (green),
containing several characteristics.

3.1.2 Path selection criteria

Path selection criteria (orange) of the MOSWR problem comprise two main components:

(1) objectives and (2) ship performance assessment. The former include minimization of

fuel cost andminimization of travel time (yellow). The latter, ship performance assessment,

is affected by environmental conditions and the ship performance model (red).

Objectives

In commercial shipping, ship navigation is based on a single criterion or a combination of

multiple criteria. Generally, these criteria are minimum travel time, fuel consumption, and

safety risk of crew and cargo. In this thesis, we consider the problem of simultaneously

minimizing travel time and total fuel cost. For completeness, we note that the MOSWR

problem also applies in the case of a combination of other objectives.

Minimum fuel cost and minimum travel time are opposing objectives, as total fuel cost

has a negative relation with the ship’s travel time, i.e., minimizing fuel consumption re-

sults in an increase in the sailing duration. Consequently, simultaneously optimizing these

two objectives requires multi-objective optimization. It is unlikely that there exists a single

optimal solution to a multi-objective problem; it is rather a set of equal solutions. In the

MOSWR problem, one aims to find such a set of Pareto optimum routes from any given

departure to any given destination. A Pareto optimum route implies a feasible ship route

with minimum objective values, such that an improvement of one objective is only possible

by impairing another. Section 3.5 describes the mathematical concept of Pareto optimality.

25

3.1. Problem description

Environmental conditions

Besides these objectives, other elements affecting route decisions are weather forecasts for

the future sailing area and ship performance, shown in yellow in Figure 3.1. Environmental

conditions affecting decisions for a minimum fuel and time route are wind, waves, and

ocean currents. James (1957) states that a combination of wind and waves has the most

significant effect on ship speed reduction on ocean-going vessels. However, waves (and

wind) mainly affect the ship’s speed, while ocean currents affect both the ship’s speed and

its course over ground. Hence, the MOSWR problem considering only wind and waves, is

a special case of the same problem that includes exclusively time-varying ocean currents.

Both cases are considered in a selection of case studies presented in Chapter 5.

Ship performance

Environmental conditions affect the ship performance. A ship performance model predicts

ship behavior due to these effects and translates this behavior to ship motions. Conse-

quently, the model approximates the ship’s fuel consumption and speed at varying envi-

ronmental conditions at sea. For the ship routing problem to be generic for different types

of ships and environmental conditions, careful attention is to be paid to modeling ship per-

formance.

The accuracy of the optimization results depends heavily on the accuracy of the ship

performance model under different environmental conditions and ship controls. However,

in this research, we simplify the ship performance model with empirical results to focus on

the operations research aspect of the MOSWR problem.

We assume that the actual ship speed over a leg is the sum of the reduced ship speed and

ocean current velocity. The reduced ship speed is dependent on the nominal ship speed in

calm water given the engine speed and the speed loss due to added resistance caused by

wind and waves.

The speed reduction due to wind and waves is dependent on the ship characteristics

such as hydrodynamic models and engine specifications. In this study, this involuntary

speed reduction is approximated using a semi-empirical model presented by Kwon (2008).

A reasonable accuracy of added resistance due to wave and wind is required for all ship

headings and a range of speeds under any wave and wind conditions. This is meaningful

for obtaining accurate fuel optimization results. This approximate method’s effectiveness

should be verified in the future, which is out of the scope of this research.

3.1.3 Navigable area limitations

Navigable area limitations (blue) imposed on a ship route are categorized into three com-

ponents: (1) impassable areas, (2) high-cost areas, and (3) major shipping canals.

26

J.J. Seuren

Impassable areas

A ship can navigate freely within the navigable area, a predefined continuous space con-

taining high-cost areas and excluding impassable areas. Impassable areas are handled

as constraints, constituted by land obstacles, sea ice, and no-go zones. In this thesis, we

include shorelines and potentially the (ant)arctic circles as impassable areas. Shorelines

are obtained from high-resolution shoreline data, the Global Self-consistent, Hierarchical,

High-resolution Geography (GSHHG) Database (Wessel & Smith, 1996), which is publicly

accessible. The Antarctic and Arctic circles construct potentially impassable areas to the

south and north of these circles, respectively. The decision to restrict these areas, e.g., for

safety or environmental reasons, is left to be made by the end-user.

High-cost areas

Within high-cost areas, an additional operation cost rate is incurred, translating to addi-

tional fuel costs. For example, these are areas with safety risks, such as piracy zones or sea-

sonal heavy weather, and areas with high operational costs such as ECAs. In this study, we

focus on ECAs as high-cost areas, as well as penalizing routes navigating through shallow

waters. For the sake of completeness, we note that other high-cost areas could be introduced

as well.

Stricter controls are establishedwithin ECAs tominimize airborne emissions from ships,

as defined by Annex VI of the MARPOL convention under the IMO (MARPOL, 2005).

These ECAs are the Baltic Sea, the North Sea, and the U.S. coasts. There are mainly two

ways shipping companies can achieve compliancewith the ECA sulfur regulations, i.e., fuel

switching and applying a scrubber. For ships that operate both within and outside ECAs,

fuel switching is a straightforward compliance alternative. Thus, ships are assumed to ap-

ply fuel switching to comply with ECA regulations. Ultra-Low Sulfur Fuel Oil (ULSFO)

with 0.10% m/m (mass by mass) sulfur content is consumed within ECAs and Very-Low

Sulfur Fuel Oil (VLSFO) 0.50% m/m is used elsewhere. ULSFO is more expensive than

VLSFO, inducing a potential change in ship route and operating speed decisions.

Future fuel price differentials are uncertain. Moreover, the COVID-19 and oil crises that

started simultaneously inMarch 2020 caused evenmore uncertainty. For simplicity reasons,

we define a standard scenario for the case study representing the current market situation

described in 5.1.

Fuel costs are highly dependent on the ship’s engine speed settings, as the fuel consump-

tion rate is approximately proportional to the third power of ship speed (Fagerholt et al.,

2010). Due to the difference in fuel costs, shipping companies that operate both within and

outside ECAs face different speed decisions in each area. A possible consequence ofECA

regulations is that these companies choose to sail at lower speeds within ECAs and speed

up outside to compensate for longer travel time. Besides effects on speed decisions, the

regulations may also affect the ship route trajectory. Namely, avoiding ECAs by reposition-

ing sailing legs could lead to lower fuel costs. Thus, we recognize several trade-offs due to

relations between speed, distance, and fuel cost.

27

3.2. Mathematical formulation

Besides Emission Control Areas, we introduce an optional penalty for sailing through

shallowwaters imposing draft limitations on ships. With the introduction of shallowwater

penalties, a ship route preferably avoids these areas but can still pass these areas at a higher

cost. This is practical shallow waters are not clearly defined, but navigation near these

areas is required, e.g., near coasts, ports, and through major canals. A penalty incurred

by traversing shallow waters does not reflect in the final solution value but only affects the

fitness evaluation during optimization.

Canals

Finally, the MOSWR problem includes the optional passage major shipping canals. Two

busy canals are, for instance, the Panama Canal and the Suez Canal. As canal fees mainly

depend on the ship type and its characteristics, the canal fees are set as input value by the

end-user. To support the end-user in conscious decision-making of routes concerning travel

time and costs, a set of solutions to theMOSWRproblemmay contain routes passing a canal

and alternative routes avoiding the canal.

3.2 Mathematical formulation

This section mathematically formulates the MOSWR problem as a partially continuous op-

timization problem. In doing so, first, we define the sailing region in which a route is repre-

sented. The sailing region contains impassable areas and areas in which a penalty or high-

cost is incurred, so-called high-cost areas. Next, we present the structure of a ship route on

which geographical and ship limitations are imposed. The problem in MOSWR is seeking

a set of Pareto optimum routes such that these limitations are satisfied. In this thesis, the

selection of Pareto optimum routes is based on two objective values: a route’s travel time

and total fuel cost. Non-trivial for the calculation of these objective values are a route’s

distance and the actual ship speed, governed by the ship performance in environmental

conditions. Sections 3.3 and 3.4 provide a more detailed description of the calculation of

the route distance and ship performance along the route, respectively. The remainder of

this section gives a formulation of the MOSWR.

The trajectory of a ship route is defined as a piecewise-smooth curve on anEarth ellipsoid

surface, i.e., a smooth curve that changes direction at discrete points, as shown in Figure

3.2. It is defined by a sequence of n + 1 waypoints constituting n route legs. Each leg ri,

i ∈ [n]1, contains starting and ending waypoint locations and nominal ship speed constant

over the leg.

The first constraint imposed on a ship route is that of the sailing region. Let the sailing

region Ω0 be projected on the surface of an Earth ellipsoid, such that

Ω0 ∈ {(λ, φ) | λmin ≤ λ ≤ λmax, φmin ≤ φ ≤ φmax}, (3.1)

where λ and φ are latitude and longitude in degrees, respectively. Within the sailing region,

1[k] := {1, 2, . . . , k}

28

J.J. Seuren

p1

p2

pi = (λi, ϕi)

pi+1

pn

pn+1

S

D

r1

ri = (pi, pi+1, Vi)

rn

Figure 3.2. Schematic representation of a route r.
Departure and destination are denoted by S and D, respectively. A leg ri is defined by its
start pi and end pi+1 waypoints, and the nominal ship speed Vi. The latitude and longitude
of a waypoint pi are denoted by λi and φi, respectively.

we define nc impassable areas Ωi
C , i ∈ [nc] that remain invariant during the sailing period.

A ship can navigate freely within the sailing region but cannot intersect impassable areas.

Thus, we can express the navigable area Ωa as

Ωa = Ω0 \
nc⋃

i=0

Ωi
C . (3.2)

The second constraint of the ship route is to the characteristics of the ship itself. Let us

assume that the nominal ship speed is limited to a discrete interval [Vmin, Vmax], where Vmin

and Vmax are the minimum and maximum nominal ship speed of the interval, respectively.

A solution to the MOSWR problem is defined by the decision vector of route variables

r, expressed in the form

r =
〈
(p1, p2, V1), (p2, p3, V2), . . . , (pn−1, pn, Vn−1), (pn, pn+1, Vn)

〉
, (3.3)

where pj , j ∈ [n + 1], is the location of the j-th waypoint described by the route trajectory

p = p(r), with

p(r) =
(
p1, p2, . . . , pn, pn+1

)
=

〈
(λ1, φ1), (λ2, φ2), . . . , (λn, φn), (λn+1, φn+1)

〉
, (3.4)

and Vi is the nominal ship speed at leg ri, i ∈ [n], in knots.

The latitude and longitude pair of each waypoint p ∈ p are restricted to lie in Ωa. Not

only the waypoints must be within the navigable area, but also the whole route trajectory

p formed by these waypoints must be within the navigable area, such that

p ∈ Ωa. (3.5)

In other words, a ship route is infeasible if there exists an intersection of any route leg r ∈ r

with any impassable areaΩi
C , i ∈ [nc]. Section 4.5 describes themethod used to test whether

there exists such an intersection.

The nominal ship speed Vi at each leg constitutes the speed variable v. The desired

29

3.2. Mathematical formulation

constant ship speed for each leg of the route is represented by the vector

v =
(
V1, V2, . . . , Vn−1, Vn

)
, Vi ∈ [Vmin, Vmax]∀i ∈ [n]. (3.6)

Let L denote the total length of the route. The route length can be calculated as the sum

of the length of each leg ri in r,

L = L(r) =
n∑

i=1

Li, (3.7)

where Li is the length of the i-th leg calculated as the geodesic distance, which will be

discussed in the next section.

The total travel time T in hours from departure to destination can be summed by the

time Ti in hours taken for each leg and is represented by

T =
n∑

i=1

Ti, Ti =
Li

Va,i
, (3.8)

where Va,i is the average, actual ship speed at leg ri, obtained from the geodesic between

the start and end waypoint of ri and the nominal ship speed Vi. The derivation of Va,i will

be discussed in Section 3.4.

Let us assume that the fuel cost rate at leg ri can be described by the equation

FCi = ciffr(Vi), i ∈ [n], (3.9)

where fr(Vi) denotes the fuel consumption rate in metric tons per hour for a nominal ship

speed Vi, and cif is the cost of fuel at ri, defined as

cif =

Cf,ECA, if ri ∩

⋃ne

j=0Ω
j
ECA ̸= ∅,

Cf,0 otherwise,
(3.10)

where Cf,0 is the cost of standard fuel, Cf,ECA is the cost for ECA fuel, and ΩECA is set of

polygons in which ECA fuel is required.

Then, a route’s total fuel cost FC can be computed as the sum of the fuel cost of each leg

expressed as

FC =
n∑

i=1

FCiTi, (3.11)

where Ti is the time Ti in hours taken for the i-th leg, defined in Equation 3.8.

Each solution is assigned two fitness values, T and FC. The dominance of a solution is

then obtained according to Pareto dominance, which will be discussed in Section 3.5.

30

J.J. Seuren

3.3 Geodesic distance

Different methods exist in approximating the shortest distance between a pair of latitude

and longitude points on a curved surface. To calculate the distance of a route leg repre-

sented on the Earth’s surface is therefore non-trivial for the MOSWR problem. The shortest

path between two points on a curved surface is represented by a geodesic. Section 3.3.1

describes two frequently used methods for calculating the geodesic distance between two

points on the Earth’s surface. Lastly, Section 3.3.2 describes a practical method to approxi-

mate short geodesics with a straight line.

3.3.1 Geodesic

The first method to approximate an Earth geodesic is the haversine formula, which treats

the Earth as a sphere. The geodesics on a sphere are great circles whose centers coincide

with the center of the sphere. Through any two points on a sphere’s surface, with latitude

and longitude pairs (λ1, φ1) and (λ2, φ2), the geodesic distance l is the great circle distance,

computed as

l = Rθ, (3.12)

where R is the mean Earth radius and θ is the central angle between the two waypoints

in radians. The central angle is computed with the haversine formula first developed by

Inman (1849)

θ = arcsin

√

sin2
(|φ2 − φ1|

2

)
+ cosφ1 cosφ2 sin

2
(|λ2 − λ1|

2

)
, (3.13)

where (λ1, φ1) and (λ2, φ2) are the latitude and longitude pairs of two points on the Earth’s

surface.

Due to the effect of the Earth’s rotation, the shape of the Earth is better approximated

by an oblate spheroid, a slightly flattened sphere. Thus, the haversine formula introduces a

distance approximation error as it assumes a spherical Earth. This error is within 0.5% for

latitude and 0.2% for longitude (Admiralty manual of navigation, 1987, p. 10).

To address this, Vincenty (1975) developed a method for finding a geodesic on Earth

that is accurate up to 0.5mm. Given the coordinates of the two points (λ1, φ1) and (λ2, φ2),

Vincenty’s inverse method finds the ellipsoidal distance d, as described in Algorithm 2 in

Appendix A. Vincenty’s inverse method requires the major and minor axis lengths of the

Earth’s reference ellipsoid. In this study, we use theWGS 87 ellipsoid defined by the NIMA

(2000). This reference ellipsoid model of the Earth is the standard for cartography, geodesy,

and satellite navigation, including the Global Positioning System (GPS).

Since Vincenty’s inverse method is an iterative procedure that aims to minimize the out-

put value, this method is slower in general. On a Core i7 PC, the computation time for

calculating distance with Vincenty’s inverse method is 5 – 10µs, which is approximately

two times the 2 – 5µs it takes for distance computation with the haversine formula.

31

3.4. Actual ship speed

In the final optimization model, we use Vincenty’s inverse method for the calculation by

default, since multiple experiments showed that the computational overhead of Vincenty’s

inverse method did not govern the algorithm’s total computation time. Nonetheless, we

include the haversine method as an optional distance calculation method so that the end-

user can choose either method.

3.3.2 Rhumb line

A geodesic other than a meridian or the equator is a curved line whose true direction

changes continually. Therefore, navigators usually do not attempt to follow it exactly in

practice. Instead, they select several waypoints along the geodesic, construct rhumb lines

between the waypoints on a Mercator projection, and then steer along these rhumb lines

(Bowditch, 1802).

The Mercator projection is a cylindrical map projection assuming the Earth as a sphere.

It is the standard for ship navigation because of its unique property of representing any

course of constant bearing, i.e., the angle about the north line, as a straight line, known

as a rhumb line. Hence, a rhumb line’s distance is the Euclidean length of the line on a

Mercator projection. In this study, we use the rhumb line to approximate a short geodesic

with a straight line.

For the derivation of the coordinates on a Mercator projection, first, we use the inverse

Gudermannian function (Zwillinger, 1995), which gives the height ψ on a Mercator projec-

tion of a given latitude φ

ψ = ln(tan(
π

4
+
φ

2
)), (3.14)

then we obtain the Mercator projection easting and northing coordinates

E = Rλ, (3.15)

N = Rψ, (3.16)

respectively, from longitude λ, latitude projected onMercator ψ and the mean Earth radius

R.

3.4 Actual ship speed

It is necessary to find the average of the actual ship speed at the corresponding leg to com-

pute the travel time between twowaypoints. The actual ship speed is assumed to be affected

by ocean currents and wind. This section describes the calculation of the actual ship speed

by first determining the ship speed loss due to wind and waves and, subsequently, deter-

mining the speed change due to ocean current.

32

J.J. Seuren

3.4.1 Involuntary speed reduction due to wind and waves

The nominal ship speed is often reduced as a consequence of the added resistance due to

wind and waves. This so-called involuntary speed reduction is dependent on multiple fac-

tors such as different types of environmental conditions, ship hydrodynamics, and other

ship characteristics. Kwon (2008) presented a semi-empirical method for predicting the

involuntary speed reduction in irregular waves and wind under the assumption that the

ship engine can provide a constant power output under different weather conditions. As

the method only requires information on the main ship characteristics and wind vectors at

the ship’s location, it makes for amore genericmethod that is straightforward to implement.

Consequently, Kwon’s method has been implemented in several ship routing studies to pro-

vide an approximate of the ship speed loss and fuel consumption increase due to weather

effects. The remainder of this section describes the by Kwon.

First, we define the following notation:

∆V ship speed difference in ms−1.

V nominal ship speed in ms−1.

Cβ speed direction reduction coefficient. Depending on the true wind direction

TWD in degrees and the Beaufort number BN , representing the wind speed.

CU speed reduction coefficient. Varyingwith the ship’s block coefficientCb, loading

conditions, and the Froude number Fn. The block coefficient of a ship is the

ratio of the underwater volume of the ship to the volume of a rectangular block

having the same length, breadth, and depth.

CForm hull form coefficient. A function of ship type, the Beaufort number BN and the

ship displacement ∇ in m3.

Va actual ship speed in the selected weather conditions m s−1.

Fn Froude number. A dimensionless number associated with the nominal ship

speed V in calm water conditions, the ship length between perpendiculars Lpp

(m), and the gravitational acceleration g (m s−2).

Then, the percentage loss of speed Vloss can be expressed by the following (Kwon, 2008)

Vloss =
∆V

V
100% = CβCUCForm, (3.17)

where

∆V = V − Va, (3.18)

Va = Fn

√
Lppg. (3.19)

Tables B.1, B.2, and B.3 in Appendix B list the empirical formulae to obtain the speed

33

3.4. Actual ship speed

direction reduction coefficient Cβ , the speed reduction coefficient CU , and the hull form

coefficient CForm, respectively.

3.4.2 Speed over ground affected by ocean currents

Besides an involuntary speed reduction due to wind and waves, the actual ship speed may

be affected by ocean currents in both its magnitude and direction. Suppose a ship travels

using a constant engine power along the rhumb line between two points q1 and q2 with

coordinates (λ1, φ1) and (λ2, φ2), respectively. The magnitude of the nominal ship speed V

follows directly from the engine power.

In order to obtain the magnitude of the speed over ground Va, we need to find the direc-

tion of the nominal ship speed such that the course over ground is equal to the ‘compass

bearing’ β from q1 to q2. The bearing is the clockwise angle between the line segment con-

necting points q1 and q2 and the north line. The direction of V is equal to the ship’s ‘heading’

γ, which is the ship’s orientation about the north line. Figure 3.3 shows a schematic of the

scenario described above.

β

γ
q1

q2

va

v′a

E

N

S

V

Va

SE

SN

V′

a

Figure 3.3. An illustration of the derivation of the speed over ground Va.
Given are start q1 and end q2 points, nominal ship speed V , and eastward SE and northward
SN components of the current velocity at point q1. The line through q1 and q2 intersects the
circle with radius V , centered at the ocean current velocity vector S, at points va and v′a, where
va is the intersection point nearest to q2. Then, the actual ship speed Va is represented by the
length of vectorVa, from q1 to va. All vector lengths are measured in knots.

For the derivation of the speed over ground due to ocean current, we present the fol-

lowing approach. First, we calculate the bearing between points q1 and q2. Secondly, we

express the eastward and northward velocity components of the speed over ground as a

function of the ship’s heading and the ocean current velocity at the ship’s location. Then,

we express the magnitude of the speed over ground as a function of nominal ship speed,

bearing, and ocean current velocity.

A rhumb line is a straight line on theMercator projectionwith an angle on the projection

equal to the bearing β (see Section 3.3.2). Hence, the compass bearing between points

34

J.J. Seuren

q1 = (λ2, φ2) and q2 = (λ2, φ2) can be expressed as

β = arctan2(∆λ,∆ψ), (3.20)

measured in degrees, where ∆λ is the smallest difference in longitudes, |λ2 − λ1| ≤ 180°)

and ∆ψ = ψ2 − ψ1 is the projected latitude difference. The projected latitude difference

is obtained with Equation 3.14. The function arctan2(y, x) returns arctan(y/x)with adjust-

ments for the signs of x and y so that the angle returned is the angle of the Cartesian point

(x, y) in polar coordinates.

Let us assume that the vector of the speed over ground Va at a given point in time is

the sum of the nominal ship velocity vector V and the velocity of the location and time-

dependent ocean current S. Also, we assume that the ship’s heading γ is equal to the direc-

tion of the nominal ship speed. Then, the eastward and northward velocity components of

Va are given by

Va sinβ = V sin γ + SE , (3.21)

Va cosβ = V cos γ + SN , (3.22)

respectively, where γ is the heading, V is the nominal ship speed, and β is the bearing.

SE = SE(t, φ, λ) and SN = SN (t, φ, λ) denote the eastward and northward ocean current

velocity components, respectively, as functions of the time t, latitude φ, and longitude λ.

Now we rewrite Equation 3.22 with respect to γ

γ = arccos
Va cosβ − SN

V
, (3.23)

so that from substitution in Equation 3.21, it follows that

Va sinβ = V sin
(
arccos

Va cosβ − SN
V

)
+ SE . (3.24)

We solve this last expression for Va, outlined in Appendix C, resulting in two roots

V ′′
a = SE sinβ + SN cosβ ±

√
V 2 − (SE cosβ − SN sinβ)2, (3.25)

such that the square root has a real solution. This is true if (SE cosβ − SN sinβ)2 ≤ V 2, i.e.,

if the distance from the ocean current vector S to the line through q1 and q2 is smaller than

the nominal ship speed.

We take the root with maximum value as the speed over ground, which is expressed by

the function of time, position, and nominal ship speed

Va = SE sinβ + SN cosβ +
√
V 2 − (SE cosβ − SN sinβ)2, s.t. Va > 0, (3.26)

35

3.4. Actual ship speed

with

SE = SE(t, φ, λ),

SN = SN (t, φ, λ).

To ensure the ship reaches the next waypoint, we require Va > 0. In general, this is the

case, as the nominal ship speed is typically larger than the ocean current velocity. Figure

3.3 shows that the vectorVa can also be interpreted as the sum of the ocean current vector

S and nominal ship speed vectorV.

Following from above, the speed over ground at time t, between points q1 and q2, de-

noted as Va(t), is completely determined by the values of (λ1, φ1) and (λ2, φ2), the time t1

at q1, and by the value of V .

3.4.3 Average speed at a route leg

At this point, we are able to calculate the speed reduction due to wind and waves and the

speed over ground due to ocean currents. If both environmental conditions are considered

in the optimization, the actual ship speed at the ship’s location is obtained with two steps.

First, the reduced speed due to wind and waves is calculated using Equation 3.17. Then,

the speed over ground caused by ocean currents is calculated with Equation 3.26 using the

reduced speed calculated in the first step as the nominal ship speed V .

Let us assume that the geodesic between points q1 and q2 is described by (λ(t), φ(t)) on

the time interval [t1, t2]. Then, the average actual ship speed can be expressed as

Va,i =
1

t2 − t1

∫ t2

t1
Va (t, φ(t), λ(t)) dt, (3.27)

where Va (t, λ(t), φ(t)) is the actual ship speed in knots at location (λ(t), φ(t)) at time t, cal-

culated using Equation 3.26.

Since time t2 is unknown at this stage, it is not possible to solving the integral in Equation

3.27. To avoid calculation of this equation, we present a recursive procedure that uses the

fundamental theorem of calculus and the actual ship speed Va(t) at time t.

Following from Theorem 1 in Appendix D, we can approximate a geodesic by the sum

of infinitely small straight line segments. Suppose we split the geodesic g connecting end-

points q1 and q2 intom smaller segments, with each an equal geodesic length. Then, every

rhumb line connecting the endpoints of each segment has equal length D.

Since the length of each segment becomes infinitely small, we assume that the actual

ship speed at a segment is constant. The actual ship speed at a segment is represented by

the actual ship speed at the start of the segment.

Then, given a geodesic g connecting endpoints q1 and q2 and subdivided intom segments

of equal geodesic length, the average of the actual speed over g can be recursively obtained

36

J.J. Seuren

using

Va ≈ lim
m→M

1

m

m∑

j=1

Va(tj , λj , φj), (3.28)

where

Va(tj , λj , φj) is the actual ship speed in knots at the start the j-th segment, calculated

using Equation 3.26,

tj is the time at the start of segment j in hours,

λj , φj are the latitude and longitude coordinates, respectively, of the start of the

j-th segment in degrees,

M is a very large integer.

Since route legs are defined as geodesic curves connecting two waypoints, the actual

ship speed over a route leg can be calculated using Equation 3.28. The time at the start of a

route leg ri, for ri ∈ r, is given by

ti =

t1, for i = 1,
∑i−1

k=1 Lk/V k
a , otherwise,

(3.29)

where V k
a is the average of the actual ship speed at the k-th route leg, and Lk is the length

of the k-th route leg.

Now we can calculate the average of the ship’s actual speed at leg ri, ri ∈ r, given the

nominal ship speed, the leg waypoints, the environmental conditions at the ship’s location,

and the start time at ri. Hence, we can recursively obtain the average of the ship’s actual

speed of each leg, given the voyage departure time t1.

3.5 Pareto optimality

Inmulti-objective problems, typically, there does not exist a single feasible solution thatmin-

imizes all objective functions simultaneously. Therefore, we treat multiple objectives with

Pareto-evaluation. By evaluating a set of solutions according to multiple objectives, such

as travel time and fuel cost, a Pareto front can be constructed consisting of Pareto-optimal

solutions. Pareto-optimal solutions cannot be improved in any of the objectives without

impairing one of the other objectives. In this section, we describe the concept of Pareto op-

timality. Here we note that it is a purely mathematical concept in which we assume that

ordering of solutions is possible in terms of each single objective taken separately. Readers

interested in more detailed descriptions should refer to (Ngatchou et al., 2005).

Let us denote z = f(r) as the vector of objective values of solution r. Also, let us write

route rj as j for readability. An underlying definition of Pareto optimality is the notion of

37

3.5. Pareto optimality

Pareto dominance. For any two individuals i, j ∈ R,

i ≺ j(i dominates j)⇔ zi < zj , (3.30)

i ≼ j(i weakly dominates j)⇔ zi ≤ zj . (3.31)

A solution r∗ ∈ R is called Pareto-optimal if there is no r ∈ R such that z < z∗. If r∗ is

Pareto-optimal, z∗ is called efficient. The set of all Pareto-optimal solutions r∗ ∈ R is R∗,

the so-called Pareto set. And, the set of all efficient points z∗ ∈ Z is Z∗, the Pareto front.

A Pareto front and Pareto dominance relationships of three neighboring individuals are

illustrated in Figure 3.4.

i

j

k

f2

f1

Figure 3.4. A sample Pareto front for a two-objective minimization problem.
Solution k is dominated by both solutions i and j; hence, its value is not on the Pareto front.
The objective values of i and j lie on the Pareto front, since both solutions weakly dominate
each other.

Since theMOSWRproblem is a constrained problem, the classic Pareto dominance needs

to be extended to constraint dominance (Deb, 2000). This constrained dominance also con-

siders the feasibility of the individual. That is, an infeasible individual, violating at least one

constraint, is said to be dominated by every other individual that is feasible. The following

two-step procedure determines the constraint dominance relation between two individuals.

An individual i constraint dominates another individual j if and only if

1. i is feasible and j is not, or

2. both i and j are feasible and i dominates j as in the classic Pareto dominance approach.

38

4 Solution method

In the previous chapter, we formulated theMOSWRproblemas a continuousmulti-objective

optimization problem. Principally, it is the problemof seeking a set of Pareto-optimal routes

while considering environmental conditions along the trajectory. The route decision vari-

ables are a series of waypoints in continuous space and a constant engine speed between

two consecutive waypoints.

In this chapter, we present an evolutionary approach to solving the MOSWR problem.

This approach uses anMOEAas a framework. We select threewell-knownMOEAs from the

literature, and describe the performancemetrics for the comparison of the selectedMOEAs.

An MOEA initializes with a set of initial routes. For fast convergence to a set of opti-

mal routes, we present an initialization procedure that finds a set of feasible initial paths

on a graph optimized for each objective taken separately, as well as paths including and

excluding major shipping canals and paths avoiding shallow waters. Next, we introduce

recombination and mutation operators specialized for ship weather routing. We present a

hybridized mutation method that combines uniform mutation and Gaussian variation.

To test whether a route leg intersects with an obstacle or passes a high-cost area, we

propose amethod for testingwhether a line segment intersects a polygon. First, we describe

an existing method for two-dimensional line segment intersections. Secondly, we reduce

the number of calculations by this method with an indexing method specialized for spatial

access methods.

4.1 Multi-objective evolutionary algorithm

In multi-objective optimization, a single solution optimizing all objectives generally does

not exist. Instead, we seek a set of Pareto optimal solutions. The multi-objective evolution-

ary algorithms characteristics desirable for performing this task, most notably the handling

of multiple candidate solutions. It finds a Pareto set in a single run and is especially useful

for expensive multi-objective optimization problems because the solutions in a generation

can be evaluated in parallel. In this study, we test three MOEAs on solving the MOSWR

problem. Before describing these three algorithms, the remainder of this section discusses

the algorithms’ general characteristics.

The algorithms considered in this thesis use binary tournament selection to select parent

routes. This selection procedure randomly samples (with or without replacement) two

routes from the current generation. One of these routes is chosen as a parent based on one

or multiple fitness values assigned to these routes by the algorithm. A so-called mating

pool is filled with the selected parents.

39

4.1. Multi-objective evolutionary algorithm

When the mating pool is filled, pairs of parents are used to create offspring, i.e., new

routes. Multiple methods exist to do so. The k-point crossover operator, frequently used in

EAs, splits the parents at k random points and recombines the obtained slices to form two

children. Single-point crossover is special cases with k = 1, which we use in this study.

After creating a child route, a mutationmay occur, enabling diversification and escaping

from local minima. We use four different mutation operators, each selected with a certain

probability. Section 4.4.2 describes these mutation operators and introduces the concept of

dynamically selecting well-performing operators.

Some MOEAs use an elite preservation mechanism in their procedures. Besides the

regular population, this procedure stores certain solutions in a global archive. It updates the

archive in each generation by adding newwell-performing solutions and possibly removing

theworst. In general, the archive is larger than the regular population. Differentworks have

shown that elitism is crucial for the convergence of MOEAs (Bosman & Thierens, 2003;

Rudolph, 1994; Zitzler et al., 2000). The inclusion of elitism in an MOEA eliminates the

chance of any undesired loss of information during the mutation stage and significantly

improves performance. Therefore, it contributes to finding a set of multiple routes that is

as close as possible to the true Pareto optimal front.

We selected three MOEAs from the literature based on two criteria:

1. low computational complexity, i.e., few solution evaluations required per generation,

and

2. the ability to find a set ofmultiple routes as close as possible to the true Pareto optimal

front.

Table 4.1 lists the selected algorithms and provides a rough comparison of MOEA charac-

teristics. Sections 4.1.1, 4.1.2, and 4.1.3 describe these algorithms in more detail.

Table 4.1. Multi-objective evolutionary algorithms considered in this study.

M-PAES NSGA-II SPEA2

Fitness assignment local search: PAES non-dominated sorting dominator strength
Diversity mechanism cell-based density crowding distance k-th nearest neighbor
Selection binary tournament binary tournament binary tournament
Replacement generational elitist generational
Archiving global and local none local

All of these algorithms implement an elite preservation mechanism in varying ways

and are known for their low computation complexity. Both NSGA-II and SPEA2 are proven

methods in the ship routing literature (see Section 2.1.4) and are two of the most frequently

encountered MOEAs in the multi-objective optimization literature. The central theme in

these two algorithms is the fitness assignment according to some kind of non-dominated

sorting, and the diversity preservation among solutions in the Pareto set. NSGA-II incor-

porates a fast non-dominated sorting algorithm and uses Pareto optimality levels as the

primary criterion to select solutions. And SPEA2 derives the strength of each solution from

40

J.J. Seuren

the number of other solutions it dominates. In addition, NSGA-II uses the crowding dis-

tance to maintain a diverse set of solutions, whereas SPEA2 applies the k-nearest neighbor

approach.

M-PAES is an MOEA hybridization using a local search procedure: a so-called memetic

algorithm. Compared to general MOEAs, memetic algorithms are able to offer not only bet-

ter convergence speed, but also a better approximation of the Pareto front (Lara et al., 2010).

Being selective in the local search phase, this algorithm is computationally efficient while

maintaining diversity. Memetic algorithms are not yet earlier implemented as part of a solu-

tion approach to the ship weather routing problem. Therefore, along with M-PAES having

favorable characteristics, testing M-PAES on solving the MOSWR problem may provide

promising results. The remainder of this section describes the procedures of the selected

MOEAs in more detail.

4.1.1 NSGA-II

Non-dominated Sorting Genetic Algorithm (NSGA) was first introduced by Srinivas and

Deb (1994). Later, NSGA-II was introduced by Deb and Goel (2001), improving the com-

putational complexity and including a diversity preservation strategy based on sharing in

NSGA and on crowding in NSGA-II. Furthermore, it uses an elitist principle by emphasiz-

ing non-dominated solutions. The selection of individuals is based on their nondomination

rank and crowding distance, i.e., the density of the objective space around the solution.

At each generation t, the offspring population Qt of size N is first created by using the

parent population Pt and the genetic operators we describe in Section 4.4. The two popula-

tions are then combined to form a new population Rt of size 2N . After that, the algorithm

classifies the populationRt intomultiple non-dominated fronts using a fast non-dominated

sorting procedure. The new population Pt+1 is then filled by routes of the different non-

dominated fronts, one at a time. The first non-dominated front Zt,1 ⊆ Rt is filled with the

first class, i.e., the routes not dominated by any other strategy in Pt. The filling continues

with routes of the second non-dominated front Zt,2 ⊆ Rt, such that it contains the routes

not dominated by any other route in the remainder of the population (i.e., Pt \Ft,1), and so

on.

Since the overall population size of Rt is 2N , not all fronts can be filled in the new pop-

ulation of size N . All fronts that could not be accommodated are deleted. When the last

allowed front, say Zl, is considered, there may exist more routes in the front than the slots

remaining in the new population. This scenario is illustrated in Figure 4.1. Instead of arbi-

trarily discarding some members from the last front, the algorithm chooses the routes that

will make the diversity of the selected routes the highest.

In doing this, the algorithm performs a crowded-sorting of the routes of Zl and chooses

the routes with the highest crowding distance values. The crowding distance di of route

ri (also denoted as i) is a measure of the objective space around i which is not occupied

by any other route in the considered front Zl. Here, the quantity of di is calculated by

41

4.1. Multi-objective evolutionary algorithm

estimating the cuboid’s perimeter formed by using the nearest neighbors in the objective

space as the vertices, see Figure 4.2b. To ensure the selection of the front’s extrememembers,

their crowding distance is set to infinity.

Pt+1

F1

F2

F3

Pt

Qt

Rt

Non-dominated
sorting

Crowd distance
sorting

Rejected

Figure 4.1. Schematic of the NSGA-II procedure.
The combination of the current population Pt and its offspring Qt is non-dominated sorted
into fronts Z1, Z2, etc. Then, the solutions of the last front which cannot be accommodated
fully are sorted based on their crowding distance. The solutions with the largest crowding
distance are chosen for the new population Pt+1.

f2

f1

(a) Four fronts

j

i

k

Cuboid

f2

f1

(b) Crowding distance calculation of route i

Figure 4.2. The concept of fronts and crowding distance used in NSGA-II.
Each dot represents a route in the objective space.

4.1.2 SPEA2

SPEA2 (Zitzler et al., 2001) is an improved version of the Strength Pareto Evolutionary

Algorithm (SPEA) introduced by Zitzler and Thiele (1999). Besides the regular population

Pt of size N , it keeps an external archive P t of size N , at generation t. Each individual i in

P t and Pt is assigned a fitness value Z(i). The calculation of Z(i) involves multiple steps.

First, each solution i ∈ Pt ∪ P t is assigned a strength value, representing the number of

solutions it dominates, given by

S(i) = |{j ∈ Pt ∪ P t : i ≻ j}|, (4.1)

where |·| denotes the cardinality of a set, and ≻ corresponds to the Pareto dominance rela-

tion.

42

J.J. Seuren

Then, based on the strength values, the raw fitness R(i) of a route i is calculated as

R(i) =
∑

j∈Pt∪P t : j≻i

S(j). (4.2)

That is, the raw fitness is determined by the strength of its dominators in both the archive

and population. Let us consider the example in Figure 4.3. Route j dominates seven routes,

as shown in Figure 4.3a. Its strength is, therefore, equal to 7. Route i is dominated by j and

by j only. Thus, its raw fitness R(i) = 7.

j

i

f2

f1

(a) Strength, S(j) = 7

j

i

f2

f1

(b) Raw fitness, R(i) = S(j) = 7

Figure 4.3. The concept of strength and raw fitness used in SPEA2.
Each dot represents a route in the objective space.

Like the crowding distance of NSGA-II, SPEA2 uses a density measure to ensure diver-

sity in the selected individuals for the next population. To calculate the density D(i) of a

route i, the Euclidean distance to each other route in the objective space is calculated. The

list of distances relative to route i is then sorted in ascending order. The density D(i) takes

the inverse of the k-th distance of the list, denoted by σki . A typical setting for k is the

square route of the sample size, i.e., k = ⌊
√
N +N⌋. Afterward, the densityD(i) of route i

is defined by

D(i) =
1

σki + 2
. (4.3)

To ensure 0 < D(i) < 1, 2 is added in the denominator. Finally, the fitness value F (i) of

route i is calculated as the sum of its raw fitness and strength

F (i) = R(i) +D(i). (4.4)

After assigning fitness values to each individual in Pt and P t, all non-dominated routes

are copied to P t+1, i.e., those who have a fitness lower than one, so that

P t+1 = {i ∈ Pt ∪ P t : F (i) < 1}. (4.5)

If |P t+1| = N , the construction of the archive is completed. In case the archive is too small

(|P t+1| < N), the archive is filled with the best individuals from the previous archive and

population. Else, if the archive is too large (|P t+1| > N), individuals are iteratively removed

43

4.1. Multi-objective evolutionary algorithm

from P t+1 by a truncation procedure until |P t+1| = N . In each iteration, the individual i

with the smallest distance to another individual is, denoted by i ≤d j for i, j ∈ P t+1, where

i ≤d j ⇐⇒ ∀0 < k < |P t+1| : σki = σkj ∨
∃0 < k < |P t+1| : [(∀0 < l < k : σli = σlj) ∧ σki < σkj],

(4.6)

where σki denotes the distance of individual i to its k-th nearest neighbor P t+1.

The next step represents the mating selection phase, where the algorithm performs bi-

nary tournaments on the new archive P t+1 to fill the mating pool with N routes. Finally, it

applies recombination and mutation operators to the mating pool to create the new popu-

lation Pt+1.

4.1.3 M-PAES

As a thirdMOEA,we selectMulti-ParetoArchivedEvolution Strategy (M-PAES), amemetic

algorithm presented by Knowles and Corne (2000). Memetic algorithms are a special case

of hybrid MOEAs that incorporate local search methods to reduce the likelihood of pre-

mature convergence. The local search method in M-PAES is based on the Pareto Archived

Evolution Strategy (PAES) algorithm (Knowles & Corne, 1999). PAES is a local search algo-

rithm unique in its use of a form of Pareto ranking for selection. It performs well on a range

of multi-objective problems, and it is suitable for the hybridization of MOEAs. Therefore,

M-PAES uses a population of solutions and recombines the local optima found by applying

PAES independently on the population members.

Similar to SPEA2, M-PAES uses archives to store solutions that serve a dual purpose.

Firstly, it memorizes the solutions found during the algorithm execution, and, secondly, it

uses the solutions in the archives to compare new candidate solutions by using Pareto domi-

nance. M-PAES requires two archives to perform these two tasks, as each local search phase

needs to be partially independent of the global search. Thus, we maintain a global archive

G of a finite set of non-dominated solutions, and a local archive H , used as a comparison

set in the local search phase.

The algorithm initializeswith a populationP0 ofN routes andupdates the global archive

G with the non-dominated individuals in P0. At generation t, the local search procedure,

shown in Figure 4.4, is applied to each individual independently in population Pt. It starts

with an empty local archiveH andfills itwith the candidate solution i and its non-dominated

solutions in G, so that

H = i ∪ {j ∈ G : i ≼ j}. (4.7)

The procedure continues by mutating the candidate solution i to obtain the neighborhood

solution i′, and estimating its quality by comparison to the local archiveH . The new neigh-

borhood solution is rejected if it is dominated by the current solution and accepted if it

dominates the current solution. If the two solutions are mutually non-dominated, the Test

procedure compares the two solutions with a local archive of potentially Pareto optimal so-

44

J.J. Seuren

lutions and accepts the one that resides in the least crowded region of the objective space.

This acceptance rule is an additional dispersion mechanism. We use the crowding-distance

measure from the NSGA-II algorithm to measure the density of the objective space around

a solution.

Each time i′ is dominated by the current solution i, the variable fails, initially zero, is

incremented. If the neighborhood solution is accepted as the new solution, fails is reset to

zero. Thus, fails counts the number of rejected solutions between improvingmoves. If this

number exceeds the maximum number of fails locfails or if the number of moves exceeds

the maximum number of moves locfails, the local search terminates.

Set local archive
H = i ∪ {j ∈ G: i ≼ j}

Terminate?

Mutate i to produce i′

i ≺ i′ ?

i′ ≺ i ?

∃j ∈ G: j ≺ i′ ?

Apply Test(i, i′, H)

Archive i′ in
G as necessary

Start with next
solution i ∈ P

fails ← fails + 1

i ← i′ and
H = H ∪ i′

moves← moves+ 1

Replace i

back into P

no

no

no

no

yes

yes

yes

yes

Figure 4.4. Diagram of the M-PAES local search procedure.

After improving each member of the Pt, M-PAES continues with the recombination

phase. It initializes with an empty new population (i.e., Pt+1 = ∅), which is iteratively

filled to sizeN by the following procedure. For recombination, the procedure randomly se-

lects two parents from the union of the post-local search population and the global archive.

The resultant child is accepted if it is non-dominated by the entire global archive, and it

resides in a less crowded region than at least one of its parents. If it dominates any member

of G, it is accepted as well. However, a child dominated by any member of G, or residing

in more crowded regions than both parents, is rejected. In this case, two new parents are

selected again, and recombination is applied once more. The procedure is repeated until

either a child is accepted or a maximum number of recombinations rectrials is exceeded.

45

4.2. Multi-objective performance metrics

In the latter case, a solution is selected by performing a binary tournament on the global

archive and added to the next population Pt+1.

4.2 Multi-objective performance metrics

The previous section describes threeMOEAs, which we test according to their performance

on solving the MOSWR problem using specialized Pareto performance metrics. Zitzler et

al. (2003) give an extensive analysis and review of various performance measures (indica-

tors), such as the ones described below. Two types of metrics are used in multi-objective

optimization literature: unary and binary metrics.

Unary metrics receive as parameter only one set of objective solutions Z that approxi-

mates the Pareto front Z∗ to be evaluated. Each unary metric I is a function I : Z → R

mapping an objective set to a real value after considering a combination of (1) cardinality,

(2) accuracy, and (3) diversity metrics.

The cardinality of Z refers to the number of solutions that exist in Z. The accuracy of

Z refers to the convergence of Z to the theoretical Pareto front. Lastly, the diversity of an

objective set gives an indication of the distribution and the range of values covered byZ. As

unary measures for accuracy are designed to compare an objective set to the Pareto front, it

requires information on this front. Becausewe do not have this information for theMOSWR

problem, unary metrics are less suitable to assess the performance of the selected MOEAs.

Binary metrics do not require any information on the Pareto front. These metrics con-

sider mainly the relationship between two objective sets, Z and Z ′, in terms of dominance

to give an idea of which one is better. Riquelme et al. (2015) present a review and analysis

of numerous Pareto metrics in publications of Evolutionary Multi-Criterion Optimization

conferences and discuss the most cited ones.

We select one binary metric, the C metric, from the literature for measuring the cardinal-

ity and dominance relations of a pair of Pareto approximation set. Additionally, we select

the hypervolume or S metric, which is a unary metric, and apply some modifications so

that it is suitable for comparing multiple Pareto approximation sets. Figure 4.5 illustrates

the metrics for sample solution sets.

4.2.1 Hypervolume metrics

The hypervolume indicator, or S metric, is the most popular unary performance metric in

recent literature (Riquelme et al., 2015). It provides a quantitative measure of convergence

to the true Pareto front and diversity in a combined sense. This hypervolume indicator can

be defined as the hypervolume of the m-dimensional objective space that is dominated by

the set Z and is bounded by a reference point r ∈ Rm, such that for all z ∈ Z, z ≺ r. The

hypervolume indicator of a Pareto approximation set Z with form = 2 is given by

HV (Z, r) =
⋃

z∈Z

[z1, r1]× [z2, r2], (4.8)

46

J.J. Seuren

r

f2

f1

(a) Hypervolumes of Z (hatched) and Z′

(gray), bounded by their mutual reference
point r.

f2

f1

(b) C metric. Two of four solutions in Z′ are
(weakly) dominated by a solution fromZ; thus,
C(Z,Z′) = 2/4.

Figure 4.5. Illustration of performance measures for a two-objective minimization problem.
White squares and black dots represent the solutions from approximation sets Z and Z ′ in
objective space, respectively.

where [z1, r1]× [z2, r2] is the rectangle consisting of all points that are dominated by z, but

not dominated by the reference point.

If the Pareto front Z∗ is known, the hypervolume ratio is defined by

HV R(Z,Z∗, r) =
HV (Z, r)

HV (Z∗, r)
, (4.9)

where the mutual reference point r can be found by constructing a vector of worst objective

function values in Z∗.

This ratio maps the pair of m-dimensional fronts to the interval (0, 1], as the Pareto ap-

proximation front’s hypervolume is always positive and less or equal to the hypervolume

of the true Pareto front. A hypervolume ratio HV R(Z,Z∗, r) = 1 indicates that the Pareto

approximation set dominates an equal area in the objective space, which means that the

fronts are identical.

We modify the hypervolume ratio for our use case by calculating the ratio of the hyper-

volume of a Pareto approximation setHV (Z) to hypervolume of its unionwith the reference

setHV (Z∪Z ′). For two Pareto approximation sets, we define the binary hypervolume ratio

HV R2(Z,R) by

HV R2(Z,Z
′, r) =

HV (Z, r)

HV (Z ∪ Z ′, r)
, (4.10)

where the reference point r can be found by constructing a vector ofworst objective function

values in Z ∪ Z ′. Figure 4.5a shows two overlapping hypervolumes of a pair of Pareto

approximation sets. The cross indicates the reference point r.

By representing Z ′ as the union of n reference sets, i.e., Z ′ =
⋃n

i=1 Z
′
i, we can define a

more generic n-ary hypervolume ratio by

HV Rn(Z,
n⋃

i=1

Z ′
i, r) =

HV (Z, r)

HV (Z ∪⋃n
i=1 Z

′
i, r)

. (4.11)

47

4.2. Multi-objective performance metrics

Again, r denotes the mutual reference point of the union of all Pareto fronts. We find r by

constructing a vector of worst objective function values in Z ∪ Z ′, where Z ′ =
⋃n

i=1 Z
′
i.

Them-ary hypervolume ratio gives the ratio of the area dominated by Z with respect to

the total area dominated by Z ∪ Z ′. Hence, HV Rn(Z,
⋃n

i=1 Z
′
i, r) = 1 indicates that the Z

covers the entire area that is dominated by the union of all considered Pareto approximation

sets Z ∪⋃n
i=1 Z

′
i. In other words, Z is equal to or has better performance than the union of

all reference sets
⋃n

i=1 Z
′
i. Contrarily, if the same ratio converges to 0, it indicates that the

hypervolume of Z is negligible compared to the reference sets.

For the performance measurement of the three selected MOEAs in this study, we use

the ternary hypervolume ratio HV R3 to get a global indication of the best Pareto approx-

imation set. We use the binary hypervolume ratio HV R2 to make a mutual comparison

of an approximation set to either of the two resulting approximation sets. As a result, we

compute three ternary hypervolume ratios and six binary hypervolume ratios to measure

the performance of three Pareto approximation sets.

The computational complexity of calculated a hypervolume is O(nm+1), where n is the

number of points in a Pareto (approximation) set andm denotes the number of objectives.

Hence, in the case of m = 3, the computation time increase with the number of points to

the third power. To keep this large computation time at a minimum, we reuse the calcu-

lated hypervolumes where possible. For example, for three Pareto approximation A,B,C,

both binary hypervolume ratiosHV R3(A, (A∪B), r) andHV R3(B, (A∪B), r) require the

hypervolumeHV (A ∪B, r).

The hypervolume ratio is non-cardinal. That is, it does not compare a pair of Pareto

approximation sets according to their cardinality. Therefore, the following section describes

a cardinal measure we select to assess the performance of the tested algorithms based on

cardinality and dominance relations.

4.2.2 C metric

The C metric, or Two Sets Coverage ratios, is a binary performance metric proposed by

Zitzler and Thiele (1998). Let Z,Z ′ ⊆ X be two Pareto approximation sets, with X repre-

senting the objective space. C is a cardinality measure and maps the ordered pair (Z,Z ′)

to the interval [0, 1] by capturing the proportion of points in a Pareto front approximation

Z ′ that are dominated by at least one point in the Pareto set approximation Z. Zitzler and

Thiele define the C metric as

C(Z,Z ′) =
|{z′ ∈ Z ′: (∃z ∈ Z: z ≼ z′)}|

|Z| . (4.12)

The value C(Z,Z ′) = 1 means that all the elements of Z ′ are (weakly) dominated by the

elements of Z. The opposite, C(Z,Z ′) = 0, indicates that none of the solutions in Z ′ is

weakly dominated by any element in Z. Both orderings always need to be considered, as

C(Z,Z ′) is not necessarily equal to 1C(Z ′, Z).

48

J.J. Seuren

Knowles and Corne (2002) note that the non-symmetric nature of C complicates the

analysis of the dominance relations between a pair of sets. The C metric provides only

comparable results if C(Z,Z ′) = 1 and C(Z ′, Z) < 1. For other values, C may not give an

ordered comparison of the Pareto approximation set. That is, for three Pareto approxima-

tion A,B,C ⊆ X , C might consider B better than A, C better than B, but A better than C.

Therefore, we can only draw relevant conclusions if the C metrics provide decisive results.

However, for two evenly-distributed sets of the same cardinality, the metric gives compara-

ble results and an intuitive notion of quality.

The pros of the C metric are its low computational time compared to the hypervolume

ratio, and it is scale and reference point independent. Furthermore, no knowledge of the

true Pareto front Z∗ is required to assess the dominance relations of a pair of Pareto approx-

imation sets.

4.3 Initialization

Section 4.1 described three MOEAs that we test on the Multi-Objective Ship Weather Rout-

ing problem using the performance metrics described in the previous section. An MOEA

initializes with a set of initial routes. If this set contains feasible routes and approximates

the Pareto set, the MOEA will converge quickly. Hence, we present an initialization proce-

dure that finds such a set given a departure and destination. Optimizing for each objective

taken separately, it finds initial paths on a Geodesic Discrete Global Grid (GDGG) with

finer resolutions at coastlines using the A* algorithm (Hart et al., 1968). Additionally, it cal-

culates alternative routes avoiding water channels if passing any in an obtained initial path.

The following section gives a basic definition of a GDGG and describes the construction of

the one we use in this study.

4.3.1 Geodesic Discrete Global Grid

A directed shortest path algorithm tries to find initial paths on a network of nodes and

arcs within the navigable area in the initialization procedure. We use a GDGG to construct

this graph, which is a class of Discrete Global Grids (DGGs). A DGG is a space partitioning

consisting of a set of regions that reference the Earth’s surface (Sahr et al., 2003). Each region

is represented by a single point, typically its centroid. A region-point combination is called a

“cell”. Commonly usedDGGs are square-cell ones based on the geodetic coordinate system;

for example, WGS84 (NIMA, 2000) a standard DGG system for use in cartography. Such

systems have numerous practical advantages but also limitations. Either square DGGs do

not have equal-area cell regions or become increasingly distorted in area and shape spacing

as one moves north and south from the equator. Also, square grids do not have uniform

adjacency; that is, each square grid cell has four neighbors with which it shares an edge

and four neighbors with which it shares only a vertex. Many researchers have proposed

alternatives, one of which is the Geodesic DGG, constructed by discretizing a sphere based

on multi-resolution partitions of polyhedra. A complete survey of systems using a GDGG

is conducted by Sahr et al. (2003).

49

4.3. Initialization

In this study, we model the Earth with a GDGG by projecting each face of a polyhedron

onto the surface of the Earth’s sphere. The edges of the polyhedron become great circle seg-

ments that form the mesh that partitions the sphere. Polyhedra with smaller faces reduce

the distortion introduced when transforming to its corresponding spherical surface (White

et al., 1998). Therefore, the sphere approximation is based on a recursive subdivision of the

faces of a regular solid that results in a variable resolution of the underlying area. Large ho-

mogeneous regions, e.g., oceans, yield low-resolution partitions, whereas busy areas, such

as coastlines, cause finer resolutions to be created.

We choose the hexagon as a basis for the GDGG. Among the three regular polygons

that tile the plane (i.e., triangles, squares, and hexagons), hexagons are the most compact.

They represent a spherical surface with the smallest average error, and, unlike square and

triangle grids, hexagon tiles do have uniform adjacency (Sahr et al., 2003). Moreover, Yap

(2002) shows that the branching factor of both a hexagon and square grid is 3 for a directed

shortest path algorithm and that one doesn’t need to search as deep on a hexagon graph.

To illustrate this, the shortest path for both the hexagon and square grid is shown in Figure

4.6.

Figure 4.6. Optimal paths on different grids

Given the same distance, a square grid searches with depthDwhile a hexagon grid will

search with depth 0.81D (Yap, 2002). It follows that a directed shortest path algorithm

searches throughO(3D) tiles on a square grid and searchesO(30.81D) ≈ O(2.42D) tiles on a

hexagon grid. Hence, a hex grid is exponentially faster than a tile grid for a directed shortest

path algorithm, such as A*.

To find the shortest path on a hexagon mesh, we define only the hexagon centroids and

the arcs connecting the neighboring hexagons. This yields a triangle grid, which is the dual

of a hexagon grid, shown in Figure 4.7.

The spherical versions of the five Platonic solids represent the only ways in which a

sphere can be partitioned into cells, as each solid consist of congruent (identical in shape

and size) regular (all angles equal and all sides equal) polygon faces, with the same num-

ber of polygons meeting at each vertex. These are the (1) tetrahedron with four triangles

as faces, (2) the hexahedron (or cube) with six squares, (3) the octahedron with eight tri-

angles, (4) the dodecahedron with twelve pentagons, and (5) the icosahedron with twenty

50

J.J. Seuren

Figure 4.7. Hexagon grid and its dual, triangle grid.

triangles.

A finer approximation to the sphere can be obtained by subdividing the faces of the

polyhedra recursively until the desired resolution is reached. We choose the geodesic par-

titioning of the icosahedron (a geodesic icosahedron) for our approximation to the Earth’s

sphere, as it has the most faces among the Platonic solids and each face is a triangle. This

enables us to use its vertices and edges as nodes and arcs for the triangle grid. Figure 4.8

shows the icosahedron, a level 1 subdivision, and its dual with their vertices projected on a

sphere.

Figure 4.8. Geodesic icosahedron - subdivided once and the corresponding dual.

The web blog from Kahler (2009) provides a method for recursively subdividing the

icosahedron, which we describe below. The icosahedron has twelve vertices vi, i ∈ [12],

represented by the corners of three orthogonal golden rectangles, i.e., rectangles whose

edge lengths are in the golden ratio 1 : ϕ, with ϕ = 1+
√
5

2 . Hence, for an icosahedron cen-

tered at the origin with an edge length of 2 we describe its vertices in a Cartesian coordinate

system by circular permutations of (0,±1,±ϕ), giving

v1 := (−1, ϕ, 0), v5 := (0,−1, ϕ), v9 := (ϕ, 0,−1),
v2 := (1, ϕ, 0), v6 := (0, 1, ϕ), v10 := (ϕ, 0, 1),

v3 := (−1,−ϕ, 0), v7 := (0,−1,−ϕ), v11 := (−ϕ, 0,−1),
v4 := (1,−ϕ, 0), v8 := (0, 1,−ϕ), v12 := (−ϕ, 0, 1).

(4.13)

Next, we define the twenty triangle facesTj , j ∈ [20], with the vertices ordered in counter-

51

4.3. Initialization

clockwise direction, as

T1 := (v1,v12,v6), T6 := (v2 ,v6 ,v10), T11 := (v4,v10,v5), T16 := (v5 ,v10,v6),

T2 := (v1,v6 ,v2), T7 := (v6 ,v12,v5), T12 := (v4,v5 ,v3), T17 := (v3 ,v5 ,v12),

T3 := (v1,v2 ,v8), T8 := (v12,v11,v3), T13 := (v4,v3 ,v7), T18 := (v7 ,v3 ,v11),

T4 := (v1,v8 ,v11), T9 := (v11,v8 ,v7), T14 := (v4,v7 ,v9), T19 := (v9 ,v7 ,v8),

T5 := (v1,v11,v12), T10 := (v8 ,v2 ,v9), T15 := (v4,v9 ,v10), T20 := (v10,v9 ,v2).

(4.14)

A triangle can be divided into L2, L ∈ N
+, smaller equilateral triangles by breaking each

edge into L pieces and connecting the break points with lines parallel to the triangle edges.

L is the so-called recursion level of a geodesic polyhedron. We rewrite the vertices of a

triangle to (v′
1,v

′
2,v

′
3), while keeping the counter-clockwise order, e.g., T1 : (v1,v12,v6)→

(v′
1,v

′
2,v

′
3). For L = 1, we find the three breakpoints (w1,w2,w3) by obtaining the mid-

points of the triangle edges

w1 =
v′
1 + v′

2

|v′
1 + v′

2|
,

w2 =
v′
2 + v′

3

|v′
2 + v′

3|
,

w3 =
v′
3 + v′

1

|v′
3 + v′

1|
,

(4.15)

and the four new triangles are given by

T 1
1 = (v′

1,w3,w2),

T 1
2 = (v′

2,w1,w3),

T 1
3 = (v′

3,w2,w1),

T 1
4 = (w1,w2,w3),

(4.16)

where the superscript denotes the recursion level L = 1. Each newly obtained vertex w is

normalized to ensure that it lies on the unit sphere, i.e.,

w′ =
w

|w| . (4.17)

The recursion can be repeated to any desired levelL. Figure 4.9 shows three recursion levels

defined on a single triangle face.

If the edge length of a regular icosahedron is c, the radius of its circumscribed sphere is

r =
c

2

√
ϕ
√
5

=
c

2

√
1 +
√
5

2

√
5

≈ 0.951,056,516 · c.

(4.18)

52

J.J. Seuren

v′2

v′2v′1

T

(a) L = 0

v′3

v′2v′1
w3

w2 w1

T 1
4

T 1
3

T 1
2T 1

1

(b) L = 1 (c) L = 2

Figure 4.9. Three recursion levels L of a single triangle face.

Thus, the edge length of an icosahedron with a radius equal to the Earth’s mean radius (≈
3440.0695 nmi) is approximately 3617.10 nmi. To obtain the length of the edge projected

on the Earth’s sphere, we transform from Cartesian to the geodetic coordinate system. The

conversion to longitude is

λ = arctan2
y

x
, (4.19)

and the conversion to latitude is

ϕ = arctan2(z,
√
x2 + y2), (4.20)

where the function arctan2(y, x) returns the angle in the Euclidean space, in degrees, be-

tween the positive x-axis and the ray to the point (x, y) ̸= (0, 0). This transformation en-

ables great circle distance calculations using the longitude and latitude of the vertices of an

edge and the haversine formula described in Section 3.3.

For a recursion level of L, the length of the icosahedron edges decreases with 2L. The

corresponding great circle distance decrease with approximately the same rate and approx-

imates the chord length as the recursion level increase, as shown in Table 4.2.

Table 4.2. Chord length c and arc length s of subdivided icosahedrons.
Each icosahedron is projected on the Earth’s surface (with mean radius 3440 nmi) and is sub-
divided with L recursions. All lengths are in nautical miles.

L 0 1 2 3 4 5 6 7 8 9 10

c 3617.10 1808.55 904.28 452.14 226.07 113.03 56.52 28.26 14.13 7.06 3.53
s 3808.67 1830.06 906.90 452.46 226.11 113.04 56.52 28.26 14.13 7.06 3.53

We construct a GDGG with a fine resolution at coastlines while maintaining a more

crude resolution at large homogeneous areas, e.g., oceans. A search on such a graph can

find feasible paths near coastlines and passing narrow areas (e.g., water channels and is-

lands), while the graph’s size remains minimal. To construct a GDGG with recursion level

L and variable recursion level Lv, we partition the icosahedron to level L, ensuring its ver-

tices lie on a sphere with a radius equal to the Earth’s mean radius. After projecting the

coastlines defined in the GSHHG database (Wessel & Smith, 1996) on this sphere, we sub-

53

4.3. Initialization

divide the two adjacent triangle faces of each edge that intersects a coastline until a desired

variable recursion level Lv is reached. To ensure only feasible arcs exist, every edge that

intersects any polygon defined by the coastlines is removed.

(a) L = 6, Lv = 0 (b) L = 6, Lv = 3

Figure 4.10. A snippet of a variable density Geodesic Discrete Global Grid.
Recursion level and variable recursion level are denoted by L and Lv , respectively. The red
box highlights the region near the Strait of Gibraltar.

Figure 4.10 shows two graphs representing the region around the Strait of Gibraltar. For

both graphs, we set the recursion level L is to 6, and the variable recursion level Lv for the

first and second graphs to 0 and 3, respectively. As a result, a feasible route from theAtlantic

Ocean to the Mediterranean Sea passing the Strait of Gibraltar exists in Figure 4.10b, while

there does not exist such a route in Figure 4.10a.

Despite setting a high variable recursion level, a water channel (e.g., the Panama Canal)

may still exist that is not represented correctly in the graph due to its complex or narrow

shape. If this is the case, we create an artificial arc connecting the components representing

the water masses that the channel connects, so that it is represented by a single arc. The

newly created vertices of this artificial arc are connected to the k nearest neighboring vertices

in the graph (a sufficient setting for k is 3). A silver lining to this cumbersome process is

that manually defining water channels enable the incorporation of additional passage costs

and the possibility of finding alternative routes in the optimization. We will discuss this in

Section 4.3.2.

We performed several tests to determine the values of the recursion and variable re-

cursion levels, L, and Lv, respectively. These tests showed that L = 4 and Lv = 6 are

well-performing values which provide a high resolution at shorelines, such that no isolated

components exist. With recursion level L = 4, the graph has a coarse resolution at large

open seas. Consequently, this reduces the number ofwaypoints contained in an initial route

so that fewerwaypoints need to be removed from the initial routes to obtain a good solution.

The GDGG based on an icosahedron partitioning that approximates the Earth’s surface,

is presented in three dimensions in Figure 4.11. This graph is constructed using the “inter-

mediate” resolution of the GSHHGdatabase, avoiding the Antarctic circle, a recursion level

of L = 3, and a variable recursion level of Lv = 4.

54

J.J. Seuren

Figure 4.11. Variable density Geodesic Discrete Global Grid.
Recursion and variable recursion levels are L = 3 and Lv = 4, respectively.

4.3.2 Initial paths

The initialization procedure applies the A* algorithm to the GDGG to find two paths be-

tween the origin and the destination. One minimizing distance, and another minimizing

distance with penalties for sailing in high-cost areas. To find a minimal distance route, we

set the weight of the arcs equal to their corresponding great circle distance. For the initial

route avoiding high-cost areas, we construct a second graph for which we increase the arcs’

weight intersecting these areas by a penalty factor p ∈ [1,+∞).

The A* algorithm was designed by Hart et al. (1968) to solve for the shortest path be-

tween an origin and a destination on a network of nodes and arcs. This algorithm performs

a directed search on a graph using a distance heuristic, which calculates the lower bound

distance from any node to the destination. In this case, we use the great circle distance

as such bound, calculated using the haversine formula, described in Section 3.3. For both

paths (minimal distance and minimal cost), the great circle is always a lower bound, as it

represents the shortest distance between two points on a sphere. For a description of the

A* algorithm for solving the shortest path problem, the reader should refer to (Hart et al.,

1968).

In the previous section, we mentioned that we could manually define water channels in

the GDGG. By doing this, the initialization procedure can find alternative routes avoiding

these connections if the shortest path crosses any. In this study, we include the Panama

Canal and the Suez Canal. If the end-user wishes to consider these canals, the initializa-

tion procedure first applies the A* algorithm to the complete GDGG, including the Panama

Canal and Suez Canal. If the algorithmfinds any shortest path crossing n predefined canals,

it tries to find 2n−1 alternative paths, such that all other possible permutations of the set of

crossed canals are considered. Suppose any shortest path crosses both the Panama Canal

55

4.3. Initialization

and the Suez Canal. In this case, the procedure tries to find alternative paths on three differ-

ent graphs, including/excluding a crossed canal, as illustrated in Table 4.3. If an alternative

path equals previously calculated shortest or alternative paths, it is discarded.

Table 4.3. Alternatives for a shortest path crossing the Panama Canal and the Suez Canal.

Panama Canal Suez Canal

Shortest path included included
Alternative path 1 included excluded
Alternative path 2 excluded included
Alternative path 3 excluded excluded

Because an alternative path is entirely different from other found paths, an optimization

is performed for each path individually. Given the computation time of a route simulation,

it is convenient to discard any path that is unlikely to lead to a satisfactory route. The ob-

tained paths give a rough approximation of the geographic path of the final route. This

enables comparison of the shortest path with the alternative paths with respect to their

distance, which allows discarding an alternative if it is significantly longer than the origi-

nal. The end-user may set a threshold for the relative distance increase for discarding an

alternative path.

AnMOEA requires a set of initial solutions of the same size as the population sizeN . The

initialization procedure creates two routes from each found global path: one minimizing

distance and another minimizing cost. A minimal time route is created by translating the

arcs and nodes constituting the minimal distance path to legs and waypoints, respectively.

Furthermore, we set the maximum allowed nominal ship speed at each leg of the min-

imal time initial route. We create a second initial route with minimal cost based on the

minimal cost path and select the most fuel-efficient nominal ship speed V ∗ for each leg.

This is the speed with the least fuel consumption per unit distance, i.e.,

V ∗ = argmin
V

fc(V)

V
, (4.21)

where fc(V) is the hourly fuel consumption given a nominal ship speed V in knots. We

should note that setting different speeds for the initial routes enables a varying speed profile

if the routes are recombined in a later stage. Therefore, the initial routes’ speed is set to a

single constant speed if a constant speed profile is desired in the optimization.

The procedure continues by adding these two routes to an empty set of initial routes.

Subsequently, it generates N − 2 mutants from the minimal time and cost routes to fill the

remaining slots. More specifically,N/2−1mutants are created from each of the two routes.

A mutant is generated by applying a random sequence of mutations to one of the routes

using the mutation operators discussed in Section 4.4.2.

To select the number of mutations, we draw a random integer k such that kmin ≤ k ≤
kmax. Setting high values for both kmin and kmax yield a diverse set of initial routes, while

56

J.J. Seuren

low values allow mutants in the neighborhood of the minimal time and cost routes.

According to prespecified relative weights, the procedure selects a mutation operator

and assigns it to the i-th position of the mutation sequence, with i ∈ [k]. The relative

weights for the insert, move, and speed operators are set to 1 and the delete operator is set

to 3. Meaning that the procedure selects the delete operator with a 50% probability so that

mutants are likely to contain fewer waypoints than the routes found on the graph. Because

the initialization procedure takes the great circle distance between two waypoints, a route

with few waypoints is generally shorter than a routing containing many.

4.4 Operators

In evolutionary algorithms, new individuals are created by recombining parent individu-

als and possibly mutating the resulting offspring. This population variation is performed

through a combination of genetic operators: recombination and mutation. Section 4.4.1

describes the single-point crossover operators used to recombine a pair of “parent” individ-

uals. Section 4.4.2 proceeds with an introduction of mutation operators specialized for the

MOSWR problem. Before presenting the genetic operators, we give a general outline of the

genetic variation process which contains three stages: (1) selection, (2) recombination, and

(3) mutation.

For each MOEA considered in this study, the selection procedure of each is different.

NSGA-II and SPEA2 select a pair of parents for crossoverwith a probability pbcr. In contrast,

the M-PAES algorithm performs a crossover if and only if the resultant child is accepted

according to several criteria. Similarly, NSGA-II and SPEA2 mutate a child solution with

a mutation probability pbmut, while M-PAES performs mutations in the local search phase

only. These characteristic recombination andmutation procedures are described previously

in Sections 4.1.1, 4.1.2, and 4.1.3.

When a pair of parents is selected for recombination, a child solution is generated by

performing a single-point crossover. This type of crossover operator is described in the

following subsection. In Section 4.4.2, we present four specialized mutation moves: inser-

tion, translation, deletion, and speed change. If an individual is selected for mutation, the

mutation operator performs kmoves moves on the individual, where kmoves is a random in-

teger drawn from the interval {1, . . . , nmoves}. The maximummutation moves per selected

individual nmoves is a parameter of the algorithm.

It is worth tuning parameters such as the mutation probability pbmut, crossover proba-

bility pbcr, and the maximum moves nmoves, to find settings that ensure (fast) convergence

to the Pareto front. For example, a very small mutation probability may lead to genetic

drift, whereas setting the probability too high may turn the search into a random search.

Similarly, a recombination rate that is too high may lead to premature convergence of the

genetic algorithm as it decreases the diversity in the population. Section 5.1 describes the

tuning of these and other parameters for the MOEAs.

57

4.4. Operators

4.4.1 Recombination

In evolutionary computation, crossover, or recombination, is a genetic operator used to com-

bine the genetic information of two parents to generate new offspring. It is the main opera-

tion to generate new routes froman existing population stochastically so that the population

is gradually improved over the generations. The traditional single-point crossover intro-

duced by Holland (1992) swaps the parents’ genes, starting at a randomly selected point

from the solution vector. Extended versions are the k-point crossover, with k a positive in-

teger, and uniform crossover. However, these methods are typically used in binary coded

algorithms and less suitable for the MOSWR problem. The latter is because a crossover

performs poorly if the crossover points, i.e., waypoints, lie far from each other.

Therefore, we use the single-point crossover to recombine routes in the MOSWR prob-

lem. Let us recall that a route leg ri is defined by a start waypoint pi, an end waypoint pi+1,

and a constant calm water speed Vi. This single-point crossover cuts parent routes in be-

tween two route legs and swaps the right parts. For a route with n legs, each waypoint pi,

with 2 ≤ i ≤ n, is a potential crossover point. To increase the likelihood of well-performing

offspring, the crossover operator ensures feasibility and minimizes the distance between

two crossover points.

For the recombination of parents rA and rB containing nA and nB waypoints, respec-

tively, the operators starts by selecting any waypoint pAi from rA as crossover point, with

2 ≤ i ≤ nA. Next, the operator calculates the distance of pAi to every other waypoint pBj in

rB , with 2 ≤ j ≤ nB . The operator selects the k waypoints in rB with smallest distance to

consider for crossover with pAi , where κ = min (κmax, nB − 2) and κmax is a parameter of

the algorithm. The operator then attempts to iteratively perform a crossover at crossover

points pAi and one of k selected crossover points from rB , starting with the nearest points.

If a crossover trial is feasible, the crossover is executed, creating two children, rC and

rD, from the parents. First, a crossover exchanges the route legs to the right of pAi and pBj
the two parents. Then, it updates the end waypoints of the preceding route legs rAi−

1 and

rBj− to the start waypoints of route legs rAi and rBj , respectively. This crossover yields two

children routes, written as

rCi− = (pAi− , p
B
j , V

A
i−),

rDj− = (pBj− , p
A
i , V

B
j−).

(4.22)

Figure 4.12 shows a schematic of this single-point crossover.

If no feasible crossover exists, a new route leg from parent rA is considered for crossover.

This process is repeated until a crossover is performed or if there does not exist a route leg

in rA for which a feasible crossover exists.

A crossover is infeasible if at least one of the newly created route legs rAi− and rBj− at the

crossover points is infeasible. A route leg is infeasible if it intersects an impassable area or if

1i− := i− 1 and i+ := i+ 1

58

J.J. Seuren

rA
i− rAi

rB
j−

rBj

pA
i−

pAi

pA
i+

pB
j−

pBj

pB
j+

(a) Before crossover

rC
i−

rDj

rD
j−

rCi

pC
i−

pDj

pD
j+

pD
j−

pCi

pC
i+

(b) After crossover

Figure 4.12. A single-point crossover.
Parent routes rA and rB create children rC and rD.

its start and endwaypoints are the same. The lattermay occur if twoparents havewaypoints

with equal location other than the start and destination. Therefore, a convenient setting

for the maximum number of inspected nearest waypoints is κmax > 1, so that neighboring

waypoints are considered for a crossover if the the closestwaypoint in rB to closestwaypoint

from rB to point pAi has equal location. We choose κmax = 3, so that up to three nearest

waypoints are considered for crossover.

4.4.2 Mutation

Mutation is a genetic operation used to preserve genetic diversity from one generation to

the next. It is used in an attempt to avoid local minima by diversifying a population, which

prevents slowing or even stopping convergence to the global optimum. Amutation operator

changes one or more values in an individual from its initial state and may even change the

individual entirely.

Since a route contains real values (i.e., waypoint locations and nominal ship speeds)

and has a restrictive sequence ofwaypoints, we use real-value-basedmutations. We present

four types ofmutationmoves specialized for theMOSWRproblem: (1) insert, (2) translate,

(3) delete, and (4) speed. The first three moves alter a route’s path by inserting, translating,

or deleting one or more waypoints, while the last operator changes the speed over one or

more route legs.

We test two different mutation methods for the insertion and translation operators: uni-

form and Gaussian mutations. Several mutation methods exist for real value encoded evo-

lutionary algorithms, of which these are suitable for application to the MOSWR problem.

The uniform mutation replaces the value from a chosen element of the individual with a

uniform random value selected between upper and lower bounds. The Gaussian mutation

adds a random value from a Gaussian distribution to the value of an individual’s chosen

element. In contrast to the uniform mutation, values mutated by the Gaussian variant are

more biased to the mean of the replaced value and may take more extreme values at the

tails of the distribution.

59

4.4. Operators

Insert

The insert operator alters a route’s path by inserting one or more waypoints between ran-

domly selected legs. It samples the number of route legs to be selected using the exponential

distribution. That is, the operator samples a variable xexp ∼ exp(1β), where β is the scale

parameter.

We choose β = 10/n, so that the probability of selecting a single route leg for insertion

is high and decreases exponentially with a linear increase in route legs. The probability

density function is then expressed by

f(x;β) =

1
β e

−x/β x ≥ 0,

0 x < 0.
(4.23)

Next, the speed operator rounds xexp towards the nearest integer k. If k is not in the range

1, 2, . . . , n, the operator samples a new xexp from exp(1β). If k lies within the desired range,

the operator selects k legs from route r to be considered for insertion, without resampling.

By selecting route legsweighted according to their lengths, the insertedwaypoints aremore

or less uniformly distributed along the routes.

Suppose the insert operator inserts a single waypoint p′ between the start and end way-

point of a randomly selected leg ri, with 2 ≤ i ≤ n, of a route r containing n legs. It splits

a chosen leg into two legs, such that the first leg starts at pi and ends at p′ and the other

leg starts and ends at p′ and pi+ , respectively. Hence, the resulting mutant r′ contains n+ 1

route legs. Finally, the nominal ship speed at each of the two newly created legs is set to

the original leg’s speed ri. More formally, a leg of mutant route r′ obtained by mutating r

is defined as

r′j =

(pj , pj+ , Vj) ∀j = 1, . . . , i− 1,

(pj , p
′, Vj) for j = i,

(p′, pj , Vj−) for j = i+ 1,

(pj− , pj , Vj−) ∀j = i+ 2, . . . , n+ 1.

(4.24)

Figure 4.13 shows a schematic of an insertion.

ripi pi+

(a) Before insertion

r′j r′
j+

pi

p′j

pi+

(b) After insertion (j = i)

Figure 4.13. An insert mutation of route r, creating mutant r′.

Two values define the location of a waypoint, i.e., the latitude λ and longitude φ. We set

the location of a newly inserted waypoint using either Gaussian or uniform mutation. The

uniform mutation uses a prespecified bounded region from which it selects a uniformly

random point. For simplicity, we assume that waypoint locations are projected onto a two-

dimensional Euclidean space, i.e., we define (x, y) := (φ, λ).

60

J.J. Seuren

We test two different shapes that define this region: (1) the rhombus and (2) the ellipse.

Both shapes have a major andminor axis with lengths of 2a and 2b, respectively. We choose

the endpoints of the major axis such that they intersect the start and end waypoints pi and

pi+ of the selected route leg for insertion. Hence, the length between the points li is equal

to the major axis length 2a The length of the minor axis 2b of both shapes is obtained from

the relation

b = cinsert ∗ a, (4.25)

where cinsert ∈ R
+ is a user-defined scale factor.

Sampling within an rhombus

To sample uniformly distributed points inside a rhombus that lies between two waypoints,

we first define an x-axis-aligned rhombus ρ centered at the origin, with major and minor

axis lengths 2a and 2b, respectively. We sample a uniformly distributed point xρ inside ρ

using

xρ = U1v1 + U2v2 −
[
a

0

]
, (4.26)

where v1 =

[
a

b

]
, the top vertex intersecting the minor axis, v2 =

[
a

−b

]
, the bottom vertex

intersecting the minor axis. In addition, U1 and U2 are two independent uniform random

variables, i.e., U1 ∼ U(0, 1) and U2 ∼ U(0, 1).

Next, we project ρ → ρ′, such that the endpoints of the major axis of ρ′ intersect with

waypoints pi and pi+ . For this, we compute the rotation matrix R, given by

R =

[
cos θi − sin θi

sin θi cos θi

]
, (4.27)

where θi is the angle in radians between the positive x-axis and the line through points pi

and pi+ . The angle θi is given by

θi = arctan2(yi+ − yi, xi+ − xi). (4.28)

Finally, using Equations 4.26 to 4.28 we express a uniformly distributed point xρ′ inside

rhombus ρ′ by the equation

xρ′ = Rxρ +m, (4.29)

wherem = 1
2

[
xi + xi+

yi + yi+

]
, the center of pi and pi+ .

Sampling within an ellipse

For the case of sampling a uniformly distributed point within an ellipse, we propose a sim-

ilar approach. First, we generate a uniformly random point xϵ in an ellipse ϵ centered at

the origin and aligned with the x-axis. Its major and minor axes have lengths 2a and 2b,

61

4.4. Operators

respectively. Then, xϵ is expressed by

xϵ =
√
U1

[
cosU2

sinU2

]
⊙

[
cos a

sin b

]
, (4.30)

where ⊙ denotes an element-wise product and U1 and U2 are i.i.d. variables from U(0, 1).
Finally, we transform ϵ → ϵ′ using Equations 4.28 to 4.30, so that we get random point xϵ′

inside the ellipse ϵ′, such that

xϵ′ = Rxϵ +m, (4.31)

wherem is the center of pi and pi+ .

Figure 4.14 shows both shapes for cinsert = 0.5, and a sample of 1000 uniformly generated

points. It also shows that points sampled in a rhombus are more biased towards the center

of a route leg than the points drawn inside an ellipse with equal width.

0

20

40

60

80

Figure 4.14. Distribution of 1000 uniformly sampled points within two shapes.
The rhombus (left) and an ellipse (right) are defined by two blue waypoints, depicting the
major axis, and the width ratio wr = 0.5, such that minor axis’ length is half the major axis’s
length.

The Gaussian mutation generates a new waypoint from a bivariate Gaussian distribu-

tionN (µ,Σ). It then transforms the sampled point, such that the point is drawnwithin the

ellipse ϵ′ with 95% confidence. To do this, we first choose a µ = [0, 0] and Σ = σ2I. Conse-

quently, the confidence interval (CI) is represented by a circle centered at the origin. The

problem is to find σ2, such that the 95% CI is represented by the unit circle. Then, we trans-

form the distribution such that the 95% CI is projected on the ellipse ϵ′, located between the

waypoints pi and pi+ .

In general, the equation of an x-axis aligned ellipse with a major axis of length 2a and a

62

J.J. Seuren

minor axis of length 2b, centered at the origin, is defined by

(
x

a

)2

+

(
y

b

)2

= 1. (4.32)

We choose the length of the axes as the standard deviation, i.e., a = b = σ, so that the

equation of the confidence ellipse becomes

(
x

σ

)2

+

(
y

σ

)2

= s, (4.33)

where s defines the scale of the ellipse. Solving Equation 4.33 for σ2, such that it lies on the

unit circle gives
1

sσ2
(x2 + y2) = (x2 + y2), (4.34)

yielding a variance σ2 of s−1.

As the Gaussianmutation samples a point according to the bivariate Gaussian with zero

covariance, both x and y are normally distributed too. Therefore, the left-hand side of Equa-

tion 4.33 represents the sum of squares of independent normally distributed points. The

sum of squared Gaussian points is distributed according to a chi-square distribution with

two degrees of freedom χ2
2. Using the probability table of χ2

2, we find

P (s < 5.991) = 1− 0.05 = 0.95. (4.35)

Thus, we choose s = 5.991 to obtain a 95% CI represented by a unit circle. This yields a

variance σ2 of 1
5.991 ≈ 0.1669.

Next, we transform the sampled point xν such that the 95% CI is projected on ellipse ϵ′.

Using Equations 4.27 and 4.28, we express the transformed random point by

xν′ = R
(
xν ⊙

[
a

b

])
+m. (4.36)

Figure 4.15 illustrates 1000 points uniformly distributed according toN (0, 0.1669I) and

its 95% CI. It also shows the same points after transformation, such that 95% CI is an ellipse

with major axis endpoints at waypoints pi and pi+ and minor axis length 2b = 0.5 ∗ 2a = a

(i.e., the minor axis scale factor cinsert is 0.5).

To ensure that a new waypoint p′ is located on the Earth’s surface, i.e.,

p′ = {(λ′, φ′):−90 ≤ λ′ ≤ 90,−180 ≤ φ′ ≤ 180},

we define the location of p′ by the following

p′ =

[
λ′

φ′

]
=

[
min (max(y,−90), 90)

x− (⌊x/180⌋ mod 360)

]
, (4.37)

63

4.4. Operators

(a) N (0, 0.1669I) (b) Transformed

Figure 4.15. 1000 random sampled points and the 95% confidence interval (CI).
The set of points is transformed (right), such that the CI represents an ellipse with major axis
endpoints intersecting the waypoints in blue, and minor axis scale factor cinsert = 0.5.

where x and y are coordinates in two-dimensional Euclidean space defined by the random

variable x =

[
x

y

]
, which we obtain from one of the three sampling methods described

above.

Translation

The translation operator changes a route’s path bymoving kwaypoints, where k is a random

variable xexp rounded to the nearest integer, with xexp ∼ exp(1β). A route consists of n + 1

waypoints; therefore, atmostn−1waypoints can be translated, as the origin anddestination

are fixed. Thus, we choose the value for the scale parameter β = 10
(n−2) .

Routes with sharp angles are difficult to realize in practices, as the turning radius of a

ship is limited. To obtain a smooth ship trajectory, the translation operator selects k way-

points weighted according to their angle, with 1 ≤ k ≤ n − 1. The angle of a waypoint

is the difference in ship course in adjacent route legs. The optimization algorithm already

calculates and memorizes the course between consecutive waypoints; thus, the calculation

of waypoint angles has a negligible effect on the computational performance.

Suppose, the translation operator chooses to translate a single waypoint pi in route r,

with 2 ≤ i ≤ n. Moving waypoint pi → p′j requires updating its corresponding route legs

ri− and ri. A route leg of mutant r′ obtained by applying the translation operator to r is

defined as

r′j =

(pj , pj+ , Vj) ∀j = 1, . . . , i− 2,

(pj , p
′
j , Vj) for j = i− 1,

(p′j , pj+ , Vj) for j = i,

(pj , pj+ , Vj) ∀j = i+ 1, . . . , n.

(4.38)

Figure 4.16 shows a schematic of a translation pi → p′i.

The translation operator uses a uniform or Gaussian mutation to pick the location of

p′i. For the uniform mutation, this location is sampled uniformly within a circle c with

64

J.J. Seuren

ri− ripi− pi pi+

(a) Before movement

r′
j− r′j

pi−

p′j

pi+

(b) After movement (j = i)

Figure 4.16. A translation operator of route r, creating mutant r′.

radius rmove centered at the location of pi. The Gaussian variant picks a location according

to a bivariate normal distribution, which has a 95% CI projected on the circle c. Updating

the location of pi follows a similar approach as the insert operator’s approach. Like the

insert operator, the translation operator ensures that a new waypoint lies within the region

defined by the Earth’s surface using Equation 4.37.

Delete

Next, we propose a delete operator that removes one or more waypoints from a route. The

operator randomly selects kwaypoints to be deleted from a route, without resampling, with

1 ≤ k ≤ n − 1. Similar to the translation operator, k is obtained by rounding the random

variable xexp sampled from exp(3, 10/(n− 1)).

Suppose the delete operator chooses to delete a single waypoint pi from a route r, with

2 ≤ i ≤ n. After removing pi, its adjacent route legs ri− and ri merge into one new route

leg r′j− . In more formal writing, we define the route legs of mutant r′ obtained by mutating

r as

r′j =

(pj , pj+1, Vj) ∀j = 1, . . . , i− 1,

(pj , pj+2, Vj) for j = i,

(pj+1, pj+2, Vj+1) ∀j = i+ 1, . . . , n− 1.

(4.39)

A schematic of this deletion operator is given by Figure 4.17.

ri− ri
pi−

pi

pi+

(a) Before deletion

r′
j−pi− pi+

(b) After deletion (j = i)

Figure 4.17. A delete mutation of route r, creating mutant r′.

Speed

The speed operator is the only operator capable of changing the boat speed. It selects one

or more route legs from r to change the corresponding boat speeds. That is, it selects the

set of route legs R = ri: i = U2, . . . , U2 + U1 − 1, where U1 ∼ U{1, n} and U2 ∼ U{1, n− k}.
In other words, U2 consecutive route legs are selected for mutation starting from the U1-th

route leg, such that both variables are independently distributed discrete uniform variables.

Next, a boat speed V ′ is randomly selected from the set of discrete boat speeds V. We

ensure that the speed operator changes the boat speed of a leg ri in R, by testing whether

the average boat speed over all legs in R, is equal to V. If this holds, the operator repeats

65

4.5. Line segment intersection

the steps described above to select a new boat speed V ′. Otherwise, a mutant is created by

updating the boat speed of each leg ri in R to V ′.

Gaussian versus uniform mutation

This section earlier presented the concept of Gaussian and uniformmutation and applied it

to the move operators ‘Insert’ and ‘Translate’. We used a parameter tuning method which

performed multiple test to assess the effect on the algorithm’s convergence for each muta-

tion method.

The uniformmutation showed to be the better method for finding successful waypoints

insertions and waypoint translations. This has likely two causes:

1. Compared to the uniform mutation, the Gaussian variant has a smaller bias from the

mean, i.e., the center of the route leg for the ‘Insert’ move and in the case of ‘Translate’,

the location of thewaypoint selected for translation. As a result, the Gaussianmethod

more frequently inserts a near the center of a route leg and translates a waypoint near

its original location.

2. We can increase the bias can be increased by increasing the variance or enlarging both

the ‘width ratio’ (for ‘Insert’) and the ‘radius’ (for ‘Translate’). However, a side-effect

is that the number of outliers increase, resulting in too aggressive mutations which

are may be infeasible or result in a worse solution value.

The uniformmutation method does not have these drawbacks and is more comprehensible

than the other method. For these reasons, we choose to use the uniform mutation method

in the remainder of this study.

4.5 Line segment intersection

Section 3.2 defines the sailing region as a closed set of longitude and latitude pairs. Within

the sailing region, we defined impassable and high-cost areas. To test whether a route leg

intersects with areas, e.g., impassable or high-cost areas, we introduce a fast method for

finding intersection points of a line segment with a polygon.

First, Section 4.5.1 adopts a method for a line segment intersection test, presented by

Antonio (1992), and rewrites it to the generalized case of an intersection test of a line seg-

ment and polygon in two-dimensional space. We apply the intersection test of straight line

segments to the problem of determining whether an intersection exists of a route leg and

polygon in the sailing region. The proposed ship routing algorithm performs this test thou-

sands of times to evaluate ship routes. Section 4.5.2 describes a spatial indexing method

to reduced the number of calculations. We propose a modification to this method in Sec-

tion 4.5.3, to improves its computational performance. Finally, Section 4.5.4 concludes with

computational results from a test case of line segment intersections.

66

J.J. Seuren

4.5.1 Line intersection

The problem is to determine whether an intersection exists for a given line segment and

polygon in two-dimensional space. Suppose we have a straight line segment l12 defined by

two endpoints p1 and p2 and a polygon ω defined by |ω| edges. If there exists an intersection

of line segment l with any edge in polygon ω, then l12 intersects ω. Therefore, we have to

determine for each edge in polygon ω, whether it intersects with line segment l12. The

following describes a fast line segment intersection test presented by Antonio (1992).

Let us consider an edge in polygon ω as a straight line segment, denoted by l34, which

is defined by the vertices p3 and p4. Figure 4.18 shows line segments l12 and l34, and their

intersection point p∗.

p1

p2
p3

p4

p∗

Figure 4.18. Two intersecting line segments l12 and l34.
Line segments l12 and l34 defined by endpoints p1, p2 and p3, p4, respectively, intersect at
point p∗.

For convenience, we represent each point as a vector, i.e., p1 = (x1, y1), etc. Point p

anywhere on the line segment l12 can be represented parametrically by a linear combination

of p1 and p2

p = αp1 + (1− α)p2, (4.40)

p = p1 + α(p2 − p1), (4.41)

where α is in the interval [0, 1].

With the linear equations for l12 and l34 we locate the intersection point p∗ by solving

the following linear system of equations for α and β.

p∗ = p1 + α(p2 − p1), (4.42)

p∗ = p3 + β(p4 − p3). (4.43)

Subtracting the equations yields

0 = (p1 − p3) + α(p2 − p1) + β(p3 − p4). (4.44)

For readability, we write the intermediate values as

A = p2 − p1,

B = p3 − p4,

C = p1 − p3.

67

4.5. Line segment intersection

Then, the solutions for Equation 4.44 are expressed by the equations

a =
ByCx−BxCy
AyBx−AxBy , (4.45)

b =
AxCy −AyCx
AyBx−AxBy , (4.46)

where a, b ∈ R. If the resulting values of a and b are both in the interval [0, 1], the line

segments l12 and l34 intersect.

Noting that the denominators of Equations 4.45 and 4.46 are the same; evaluating both

expressions requires at most nine additions and six multiplications. Since a and b only need

to be tested for the interval [0, 1], the actual values of a and b are not required. Therefore,

we avoid the division operators in the above equations by applying a division-avoiding test,

given in Algorithm 1 (Antonio, 1992).

Algorithm 1 Division-avoidance test

if denominator > 0 then
if numerator < 0 or numerator > denominator then

segments do not intersect
else if numerator > 0 or numerator < denominator then

segments do not intersect

At this point, we showhow the above line intersection test can be applied to theMOSWR

problem to determine whether route legs intersect certain areas within the sailing region.

A route r contains n route legs, each route leg’s geodesic is defined by the great circle track

connecting the endpoints of the route leg ri, i ∈ [n]. Each area in the sailing region is

represented by a polygon defined by a series of vertices connected by straight edges. The

problem is to test whether there exists an intersection of at least one route leg ri ∈ r with a

polygon ω. For this, we need to test whether the geodesic of ri intersects any edge of ω.

Suppose we have a polygon ωwith |ω| straight edges and a route leg rwith endpoints p1

and p2. Then, let us split the geodesic of r intonseg smaller segments, such that each segment

has equal geodesic length g. Also, each segment sj,j+1, j ∈ [nseg], connects endpoints qj−1

and qj , with p1 = q1 and p2 = qnseg+1. By choosing an infinitely small value for g, yielding

an infinitely large integer for nseg, we can approximate line segment sj,j+1 with a straight

line segment lj,j+1 connecting the same endpoints by Theorem 1.

Now thatwe have a set of straight line segments associatedwith the geodesic of route leg

r, we can apply the previously describedmethod to the problemof finding an intersection of

leg rwith polygon ω. Hence, for each straight line segment lj,j+1, j ∈ [nseg], we test whether

it intersects at least one edge inω. If such an intersection exists, route leg r intersects polygon

ω.

In the worst case scenario, the number of line segment intersection calculations required

68

J.J. Seuren

to test whether route r intersects with a polygon ω ∈ Ω is

n∏

i

nisegnω, (4.47)

where nω is the number of edges in polygon ω and niseg denotes the number of line segments

used to approximate the geodesic of route leg ri, i ∈ [n].

Despite that the line segment intersection test of Antonio is fast, the test becomes com-

putationally expensive for the MOSWR problem. Generally, a huge amount of calculations

is required for a single route r, considering many line segments in r tested for a large set of

polygons. With the introduction of R-tree spatial indexing, we present an improvement of

the computational efficiency of intersection tests applied to the MOSWR problem.

4.5.2 R-tree spatial indexing

R-tree indexing techniques are common for spatial data management and is initially pro-

posed by Guttman (1984). An R-tree is a hierarchical data structure designed to execute

intersection queries efficiently. It stores a collection of rectangles that can change over time

through insertions and deletions. First, we provide an overview of the R-tree data structure.

Secondly, we introduce the packing algorithm used in this study to construct an R-tree. Fi-

nally, we improve the computational performance querying a geometric region in an R-tree

by subdividing the input polygons.

Figure 4.19. A sample R-tree with three levels.
Input geometric objects are represented by their minimum bounding rectangle in solid black.
The leaf nodes enclosing four nearby rectangles are shown in green. The nodes in the next
higher level and the root node are drawn orange and blue, respectively.

Figure 4.19 illustrates a sample R-tree with three levels and a node capacity of four rect-

angles. Arbitrary geometric objects, such as polygons, are stored in the tree by representing

each object by its minimum bounding rectangle (MBR), i.e., the smallest upright rectangle

enclosing an object. The R-tree then groups nearby objects and represents them with their

MBR in the next higher level, i.e., the leaf level. It aggregates rectangles at yet higher levels

and represents them by their MBRs, iteratively, until each MBR is nested into one node at

69

4.5. Line segment intersection

the root level.

When performing a search, the R-tree takes a query region Q. All rectangles that in-

tersect Qmust be retrieved and examined. This retrieval is accomplished using a recursive

procedure that starts at the root level andmay follow several paths down the tree. A node is

processed by inspecting each MBR that intersects withQ. If the node is not at the leaf level,

the subtrees corresponding to the retrieved MBRs are searched recursively. Otherwise, the

node is a leaf node, and the geometric objects of the MBRs intersecting Q are returned.

A so-called packing algorithm constructs an R-tree from geometric objects. The basic

idea is that it “tiles” the data space so that r rectangles are ordered in ⌈r/m⌉ groups of m
rectangles, where each group is to be placed in the same leaf level node. The algorithm

then loads the ⌈r/m⌉ groups into MBRs and recursively packs these bounding boxes into

next-level nodes, until the root node is created.

The packing algorithm we use in this study is the Sort-Tile-Recursive (STR) algorithm

from Leutenegger et al. (1997) with a node capacity of m = 10. Considering a data space

ordered along two dimensions, the STR uses
√
r/m slices to split the data space into verti-

cal slices. Each slice contains enough rectangles to pack approximately
√
r/m nodes. The

algorithm packs each slice into nodes containing a maximum of m rectangles. As a result,

the two-dimensional data space contains ⌈r/m⌉ nodes representing the MBR of the objects

it encloses. The same algorithm packs the resulting nodes into subtrees until r ≤ m, i.e.,

the resulting rectangles fit into a single node.

4.5.3 Polygon subdivision

If the number of geometric objects is large, R-trees usually provide performance advantages

over intersection testing for all objects. For example, in this study, the data representing the

land obstacles include 32,832 polygons, some of which are large polygons. Performing an

intersection test for each edge of each polygon is a computationally expensive task. With

R-trees, the number of these tests can be greatly reduced.

However, R-trees may provide little performance improvement if the queried region,

e.g., the MBR of a line segment, is significantly smaller than the MBR of a complex polygon

stored in the tree. In general, the leaf node storing a complex polygon consisting of many

edges has large coverage and contains considerable “dead space”, i.e., empty area. The

coverage is the entire area that covers all related rectangles. Minimal coverage reduces the

amount of dead space covered by the nodes of the R-tree. Correspondingly, searching a leaf

node containing one or more complex polygons is less likely to return an intersected poly-

gon than searching a leaf node containing one or more simple polygons, i.e., polygons with

few edges. Hence, subdividing a complex polygon into smaller simple polygons improves

search efficiency.

To illustrate this, we generate 1000 randompoints uniformly distributedwithin theMBR

of a large complex polygon, as shown in Figure 4.20. We want to test which of these points

70

J.J. Seuren

are contained by the actual polygon. All points in Figure 4.20a lie within the MBR of the

polygon. So every point has to be tested against the actual polygon, even if we use an R-

tree. 64.6% of the covered area of the MBR is dead space; thus, approximately 646 points

lie outside the polygon.

To reduce the number of expensive tests, we divided the polygon into smaller polygons

using Algorithm 3, in Appendix E. This algorithm recursively divides a polygon into two

polygons until the MBR of each polygon has a desired size Amax, measured in squared

degrees of longitude and latitude.

Subdividing the same polygon, using Amax = 5, we obtain 328 smaller polygons and

their MBRs, as shown in Figure 4.20b. 11.2% of the combined areas for all MBRs is dead

space. As a result, considering the same set of randomly generated points, only 4.1% lies

within an MBR of a subdivided polygon but is not contained by the polygon. Hence, the

number of expensive calculations is reduced by 52% by dividing this polygon into 328

smaller polygons.

(a) A large, complex polygon and its MBR (b)MBRs after subdivision

Figure 4.20. Illustration of the potential of subdividing a large, complex polygon.
1000 points are uniformly random sampled within a complex polygon’s minimum bound-
ing rectangle (MBR). Points that intersect the polygon are marked blue. Every other point is
marked red if it intersects any MBR, and marked gray, otherwise. Using an R-tree, an expen-
sive intersection test is required for red and blue points only.

A subdivided (child) polygon usually consists of fewer edges than its parent. As a result,

the average number of edge intersections per inspected polygon reduces with the subdivi-

sion of large complex polygons. Hence, this subdivision may further improve computa-

tional performance.

To illustrate this, supposewe subdivide a parent polygon ω into a set of smaller polygons

Ωc, and we have a query regionQ representing the MBR of a query object. Let us make the

following two assumptions:

1. A child polygonωc ∈ Ωc contains fewer edges than its parent polygonω, i.e., |ωc| < |ω|.

2. The query region Q intersects polygon ωc ∈ Ωc exclusively.

Following the first assumption, an intersection test of a line segment with ωc requires fewer

intersection calculations than for the same test with ω. In general, this assumption holds

71

4.5. Line segment intersection

for large complex polygons.

The second assumption implies that testing whetherQ intersects ω boils down to testing

whether Q and ωc intersect. This assumption is reasonable if the size of Q is significantly

smaller than the MBR size of each polygon in Ωc. Such a query region may be the MBR of a

line segment representing a segment of a route leg, which we choose very small. Following

the assumptions mentioned above, the required computations decrease with rate |ωc|/|ω|
(i.e., the ratio between the number of edges in ωc and ω).

4.5.4 Computational performance

To demonstrate the query performance of R-trees, we perform many line intersection tests

on a large set of polygons. We use the ‘intermediate’ resolution data from the GSHHG

database (Wessel& Smith, 1996)which include 32,832 polygons, containing a total of 340,369

edges. Uniformly distributed and orientated in the same space region, we generate 1000

random line segments, as shown in Figure 4.23a.

We test the performance of three approaches to determine whether there exists an inter-

section of a line segment with any polygon in a set of polygons.

1. The “naive approach” inspects every polygon and its edges until it finds such an in-

tersection, using the method described in Section 4.5.1.

2. The second approach, “R-tree”, stores each polygon in an R-tree, taking a query for a

line segment. It returns the polygons whose MBR intersects the query region. Next,

for each edge constituting the polygons corresponding to these MBRs, it performs the

same intersection test used in the naive approach.

3. The “R-tree+” approach is similar to R-tree but differentiates itself by subdividing

large polygons into smaller polygons with a specified maximum size Amax before

packing the tree.

The threshold Amax introduces a trade-off in computation time caused by line segment in-

tersection tests and R-tree queries. For a high value for Amax, the number of polygons is

relatively small, but large complex polygons exist. This results in many line segment inter-

sections and a smaller R-tree, whereas a small value yields a large number of polygons with

a small average size. Which, in turn, results in a large R-tree and a small amount of line seg-

ment intersection tests. We tested a range of threshold values on this set of polygons and

found that a setting of Amax = 32 provides good computational performance, as shown in

Figure 4.21. With this threshold value, each polygon has anMBR size of at most 32 squared

degrees, measured in longitude and latitude coordinates.

Figure 4.22 shows the distribution of the number of edges and the size per polygon,

before and after subdividing large polygons. The majority is smaller than the threshold

value; hence, these polygons are not subdivided. Sixteen large polygons are split into 2635

smaller polygons, causing an 8.0% increase in the total number of polygons. As shown

72

J.J. Seuren

0 5 10 15 20
0

2

4

6

√
Amax [deg2]

T
im

e
[s
]

Figure 4.21. The computation time of 1000 R-tree queries for
√
Amax ∈ {0.5, 0.75, ..., 20}.

Each query corresponds to a random sampled line segments performed on a set of polygons.
The set of polygons are preprocessed such that each polygon is split until its largest dimension
is smaller than Amax.

in the figure, these large polygons contain the largest number of edges, and most child

polygons have a size just below the threshold value.

101 102 103 104

100

101

102

103

104

Edges [#]

P
o
ly
g
o
n
s
[#
]

10−4 10−2 100 102 104 106

Polygon size [deg2]

before

after

Figure 4.22. Distribution of polygon properties, before and after subdivision.
For a maximum polygon size of Amax = 25 in squared longitude and latitude degrees.

Figure 4.23b shows results on each approach’s computational performance, measured

in terms of the number of inspected polygons, the number of edges per inspected polygon,

and computation time. A polygon is inspected if the queried line segment is tested for in-

tersection with the polygon. Thus, in the case of an R-tree approach, a polygon is inspected

if and only if the queried line segment intersects the polygon’s MBR.

The naive approach performs roughly 26,000 (35,000) times more polygon inspections

than the R-tree (R-tree+) approach. This significant difference is because this approach in-

spects every polygon for each line segment, whereas an R-tree query only inspects polygons

whoseMBR intersects the query region. As a result, the R-tree approach’s computation time

is approximately 12 times shorter, and 590 times for R-tree+.

Although the decrease in computation time of theR-tree approach compared to the naive

approach is significant, it is not proportional with respect to the decrease in the number of

tests. This is explained by the significantly higher average number of edges per inspected

polygon in the R-tree approach. That is, the R-tree approach performs, on average, 1163

73

4.5. Line segment intersection

times more expensive line intersection tests per inspected polygon compared to the naive

approach.

On average, an inspected polygon contains many edges because a queried line segment

is likely to intersect the MBR of a large complex polygon, as these MBRs cover a large area.

The R-tree+ decreases a large complex polygon’s number of edges by subdivision. This

leads to a 49 times shorter computation time compared to the standard R-tree approach.

(a) Illustration of tested line segment intersections on a large sample of polygons.
1000 line segments are uniformly distributed and orientated in a space containing a large set of polygons.
Red segments intersect a polygon and gray ones do not.

101

102

103

104

105

106

107

108
2.56 · 107

895 678

11

12,797

51E
d
g
es
,i
n
sp

ec
ti
o
n
s
[#
]

Naive approach R-tree R-tree+
100

101

102

103615.7

49.3

1

T
im

e
[s
]

Edges

Inspections

Time

(b) Computational results for three approaches.
The average number of edges per inspected polygon (blue), the number of polygon inspections (orange),
and the computation time (green) per approach. NB: the green bar of R-tree+ is not visible due to its
small size.

Figure 4.23. Performance assessment of three approaches for testing line segment - polygon
intersections.

Time complexity

AnR-tree has the samedepth in every branch, and objects are stored only in the leaf nodes. If

we perform a search on anR-tree storingn objects and having a node capacity ofm, it always

traverses O(log n/logm) nodes and allm entries in each traversed node. Thus, the average

case time complexity of a query on an R-tree is O(m log n/logm). We can validate this by

comparing the naive approach to the R-tree+ approach by applying the former approach

74

J.J. Seuren

on the same set of subdivided polygons created in the latter one.

The computational results, provided in Table 4.4, show that the difference in time com-

plexity is proportional to the difference in computation time. More specifically,

O (m log n/logm)

O (n)
=̂1.3e−03 ∼ 1.6e−03 =

TR-tree+

TNaive approach
, (4.48)

where TNaive approach and TR-tree+ are the computation times of the naive approach and the

R-tree+ approach, respectively, as listed in the table below.

Table 4.4. Computational results and time complexity of the naive and R-tree+ approach.
The number of leaf nodes equals the number of input polygons, i.e., n = 35451.

Time [s] Tests [#] Node capacitym Time complexity

Naive approach 615.7 2.6e+07 - O (n)

R-tree+ 1.0 6.2e+02 10 O
(
m logn

logm

)

4.6 Fitness evaluation

This sectiondescribes different elements of the fitness evaluation of a solution to theMOSWR

problem. Section 3.2 formulates a route as a sequence of route legs between the start and

end waypoints, with each route leg comprising a start and end waypoint and a constant

engine speed over the leg. The fitness values of a route are represented by a vector contain-

ing the total travel time in days and the total fuel cost in user-specified cost units. The total

travel time (fuel cost) is calculated as the sum of the travel time (fuel cost) of all route legs.

Before calculating these fitness values, a route is tested for feasibility.

4.6.1 Feasibility

To determine the feasibility and cost parameters of a route leg, Section 4.5 proposed a mod-

ified spatial indexing method that tests for route leg intersections with impassable or high-

cost areas. This method takes a straight line segment and returns the intersected areas, if

any. For a straight line segment with small length lfb, it is a good approximation of the

curved line segment. We choose lfb = 15 nautical miles for the case studies presented in 5.

If the segment intersects an impassable area, its fitness values are set very large, and the ac-

tual computation of travel time and fuel cost is not performed. We choose very large fitness

values such that feasible solutions always strictly dominate infeasible ones.

4.6.2 Travel time and fuel cost

The presented approach approximates the curved route leg with a sequence of straight line

segments, defined by k equal distant evaluation points between the leg’s start and end way-

point. Similarly as described in Section 4.6.1, the length of each segment is defined by the

parameter leval. We choose leval = 8 nautical miles for the case studies presented in 5.

75

4.6. Fitness evaluation

The actual ship speed is calculated using Equation 3.28, given the constant engine speed,

the time at the route leg start, and the environmental conditions at the k evaluation points

at the time of the ship’s passage. The derivation of these variables is described in Section

3.4.

Using the intersectionmethod described in Section 4.5, we determine whether a straight

line segment connecting two route evaluation points intersects a high-cost area. For ex-

ample, if a route segment intersects an ECA, an additional cost factor is incurred on the

segment’s fuel cost. Likewise, an intersection with a shallow water area yields an optimiza-

tion penalty for both fitness values. We note here that these penalties do not affect the final

objective values of a route and including penalties is optional.

The calculation of additional costs due to high-cost areas is performed using Equations

3.9 and 3.10. Penalties are computed in a similar manner: for each segment connecting

two route evaluation points that intersect penalty area (e.g., shallow water area), its fitness

values aremultipliedwith a penalty factor fp, with fp ∈ R
+. For the case studies, we choose

fp = 2, such that the fitness values of route segment crossing shallow water have two times

higher travel time and fuel cost compared to a similar segment not intersecting such area.

4.6.3 Speed improvements

Multiple values are evaluated or retrieved for each segment connecting two evaluation

points, such as

• the segment length,

• intersection with an impassable area (feasibility),

• intersections with high-cost areas (cost evaluation),

• the eastward SE and northward SN ocean current speed components at the segment

start at time t, and

• the wind speed BN and direction TWD at the segment start at time t,

where t is the time at the route evaluation point. Many of these values need to be recal-

culated at a later stage as routes and child routes are to be re-evaluated many times in an

MOEA. Therefore, the presented solution approach calculates or retrieves each value once

and usesmemoization (i.e., storing intermediate results) to reduce the number of expensive

computations.

To obtain an additional reduction in the computation time, we can distribute the function

that evaluates a population of solutions over multiple computer processors. By evaluating

solutions in parallel, the computation time can be significantly reduced, depending on the

number of used processors. Since each process acts independently from other processes,

memoization needs to be performed in an overarching process for the multiprocessing to

be effective. In other words, process A needs to communicate its intermediate results with

76

J.J. Seuren

process B to reduce the computation time using multiprocessing effectively. In the present

Python model, this is not yet implemented but recommended for future development.

4.7 Termination criterion

AnMOEA is ametaheuristic without a clear termination criterion. We discuss twomain ap-

proaches: (1) a priori terminationmethods and (2) a posteriori methods. Inmost cases, the

algorithm terminates after a number of generations or a maximum amount of computation

time. These a priori methods do not use any information on the convergence to the Pareto

front at the time of termination. The required number of generations may be problem in-

stance dependent and the determination of this number is computationally expensive for

complex multi-objective optimization problems.

A posteriori methods in single-objective are typically based on the improvement of the

best individuals in subsequent generations. However, the examination of convergence to

the Pareto front is often impossible in multi-objective problems if no gradient information

is available. Therefore, the design of termination criteria has become an essential aspect in

evolutionary multi-objective optimization.

A common approach is tomeasure the progression of the current population by combin-

ing performance indicators and statistic tools, e.g., Martí et al. (2016) use a mutual domina-

tion rate as a performance indicator with a simplified Kalman filter to estimate the state of

the evolutionary process. In this study, we use a termination criterion based on the gener-

ational distance indicator, as suggested by Collette and Siarry (2004). To detect situations

where no further progress will be made, we combine the generational distance indicator

with its variance over several generations.

The generational distance indicator GD (Van Veldhuizen, 1999) is designed as a unary

Pareto performance metric to measure the average distance from the approximated front Z

to the Pareto front Z∗. The indicator is given by

GD(Z) =
1

|Z|
∑

z∈Z

min
z
∗∈Z∗

D

∥z− z∗∥2 , (4.49)

where |Z| is the number of objective vectors in the approximated frontZ andZ∗
D is a discrete

representation of the Pareto front Z∗.

Collette and Siarry (2004) suggested that the generational distance can be used as a

progress measure for a termination criterion in multi-objective optimization. A slight vari-

ation of the generational distance GD(Zt, Zt+) between two successive generations could

mean a convergence towards the Pareto front:

• If GD(Zt, Zt+)≫ 0, then the population from generation t+ is considerably different

than its predecessor.

• The case GD(Zt, Zt+) = 0 implies that there is no improvement from generations t to

77

4.7. Termination criterion

t+. That is, for each of the two generations, its non-dominated routes lie on the same

frontier as the non-dominated routes from the other generation.

Each MOEA considered in this study already evaluates the required objective values

for the GD for their own purpose. Thus, it is reasonable to use this indicator as a mea-

sure for performance improvement between two algorithms. The variance of the last nstop

generational distances is computed. If the variance drops below a certain threshold σ2stop,

the algorithm is terminated. Section 5.1 lists the values for nstop and σ2stop used in the case

study.

78

5 Computational results

The previous chapter described a method for solving the MOSWR problem. The method

uses an MOEA as a framework to find a set of Pareto optimum routes. We selected three

different MOEAs, which we test on its performance regarding the quality of the approxi-

mated Pareto front and the algorithms’ computational complexity for this problem. We do

this with specific performance metrics designed for multi-objective optimization methods.

Each selected MOEA initializes with a set of initial routes, found on a hierarchical graph.

It then seeks to find Pareto optimum routes with recombination and mutation techniques

specialized for the MOSWR problem. The feasibility of a route trajectory is ensured using

a fast line intersection method using R-tree spatial indexing.

This chapter reports the computational results of various case studies. The parameter

settings used for the case studies are listed in Section 5.1. Furthermore, the section describes

the tuning of the parameters using a sequential parameter tuning method. Next, Section

5.2 gives an overview of the data required for the route evaluation. This includes historical

satellite altimetry-derived ocean current data, weather forecasts from the Global Forecast

System (GFS), and shorelines provided by the GSHHG database.

Our solution approach is tested on different scenarios containing a variety of environ-

mental conditions and conceptual case studies involving high-cost areas. To test the effect

of environmental conditions on the routing, we perform two case studies that either con-

sider ocean currents or weather. For the case study involving ocean current routing, we

constructed three experiments that consider either static or time-varying ocean currents.

Section 5.3 reports our findings and compares the results of the third problem instancewith

results obtained from an exact approach presented in the literature. For the case studies in-

volving weather routing, we constructed three problem instances that represent a variety

of weather conditions. Numerical results are presented in Section 5.4. Next, Section 5.5

provides several conceptual cases to demonstrate routing capabilities regarding high-cost

areas, such as avoiding shallow waters and routing through ECAs. Finally, Section 5.6 re-

ports our findings on the performance assessment of three selectedMOEAs. Three problem

instances are considered with different types of environmental conditions.

We implemented the MOEAs in a Python-based model using Distributed Evolutionary

Algorithms in Python (DEAP) (Fortin et al., 2012), a Python framework for evolutionary

algorithms. All simulations were executed using the NSGA-II algorithm unless stated oth-

erwise. The numerical experiments are executed on a standard computerwith an Intel Core

i7-8650U 2.11GHz processor and 16GB of RAM. Every instance has been run five times, and

we report the average and standard deviations of these runs if applicable.

79

5.1. Algorithm parameters

5.1 Algorithm parameters

The selectedMOEAs include several parameters affecting the quality of the solutions found.

For SPEA2 and M-PAES, we used identical population and archive sizes, i.e., N = N , as

suggested by the developers of the algorithms. Consequently, the same number of solutions

are returned by both SPEA2 and M-PAES. In M-PAES, three more parameters must be set.

These are the number of crossover trials crtrials, the maximum number of local moves lopt,

and the maximum number of consecutive failing local moves lfails. Values that give good

general performance were found to be lopt = 5, lfails = 3, and crtrials = 5. The parameter

settings for the MOEAs used in the case studies are listed in Table 5.1.

The parameter values for which an interval is given are obtained by sequential optimiza-

tion with the random forest minimizer presented by Hutter et al. (2011). The interval rep-

resents the optimization space for the parameter values. A tree-based regression model is

used to model the expensive to evaluate algorithm. The model is improved by sequentially

evaluating the function at the next best point in the optimization space. Thereby finding

the minimum of the function with as few evaluations as possible.

The total number of evaluations, ncalls, are performed by first evaluating npoints initial

points from the optimization space are evaluated, followed by ncalls − npoints evaluations

guided by the surrogate model. The first npoints points are uniformly selected from the

optimization space Sq of each parameter q considered for optimization. For the number

of evaluations and initial points, we choose ncalls = 200 and npoints = 10. The parameters

are tuned for the NSGA-II algorithm using a training set of 5 instances covering different

departure times, locations, and environmental effects. Since the M-PAES and SPEA2 are

only used in the comparative study of theMOEAs, their populations’ sizes are set manually,

which we describe in Section 5.6.

5.2 Data description

This section gives a description of the data used as input to the presented routing algorithm.

First, Section 5.2.1 lists the ship characteristics provided by an industrial partner. Then, Sec-

tion 5.2.2 presents the environmental data, i.e., global wind forecasts and altimetry-derived

ocean current information. The navigation area is defined using the shorelines described in

Section 5.2.3. Finally, Section 5.2.4 explains the interpolation of the gridded environmental

data to obtain a datum at any given location in the navigation area.

5.2.1 Ship characteristics

Ship characteristics for the calculation of ship speed loss due to weather and route parame-

ters are listed in Table 5.2. The fuel price is set to 300USD/t to represent the current market

situation.1. The ECA multiplier feca represents the multiplication factor of the fuel price

1Three-month average fuel prices in the period of May 1 to July 31, 2020, are retrieved from https://
shipandbunker.com, accessed on August 13, 2020.

80

https://shipandbunker.com
https://shipandbunker.com

J.J. Seuren

Table 5.1. Parameters for the MOEAs
U and G denote uniform and Gaussian, respectively, and F and E denote Feasibility and Eval-
uation, respectively.

Parameter Symbol Value Unit Optimization space Section

MOEA
Population size N 336 - {25k, . . . , 200k: k = 4} 4.1

M-PAES
Max. local fails lfails 3 - 4.1.3
Max. local moves lopt 5 - 4.1.3
Max. crossover trials crtrials 5 - 4.1.3

NSGA-II and SPEA2
Mutation probability pbmut 0.28 - (0.2, 0.7) 4.4
Crossover probability pbcr 0.81 - (0.5, 1.0) 4.4

Genetic operators
Insert width ratio - U

wr
4.22 -

(0.1, 10)
4.4.2

- G 6.35 -
Move radius - U

ri
1.35 -

(0.1, 10)
4.4.2

- G 2.38 -
Max. moves nmoves 5 - {2, . . . , 20} 4.4.2

Geodesic Discrete Global Grid
Recursion level L 4 - 4.3.1
Variable recursion level Lv 6 - 4.3.1

Termination
Min. variance σ2

stop 1.64e−5 - (1e−7, 1e−4) 4.7
Sample size nstop 33 - {10, . . . , 50} 4.7

Fitness evaluation
Seg. length - Feasibility lfb 15 nm (1e−7, 1e−4) 4.6.1
Seg. length - Evaluation leval 10 nm {10, . . . , 50} 4.6.2

81

5.2. Data description

consumed in ECA zones with respect to the standard fuel price. For the case study testing

the cost-effect of ECA zones on ship routes, we adopt the ratio between the two fuel prices

as in (Fagerholt et al., 2015). That is, fuel is assumed to be 55.93% more expensive than

standard fuel.

Table 5.3 lists the relations between engine power, nominal ship speed, and fuel con-

sumption for the vessel considered in the case studies. These relations are obtained from

an industry partner. The most fuel-efficient engine power in terms of fuel consumption per

distance unit is the one corresponding to the lowest engine speed, i.e., the lowest nominal

ship speed. Alternatively, one could choose to assume the fuel consumption rate as a func-

tion of the nominal ship speed. According to surveys of Psaraftis and Kontovas (2013), a

frequently used nonlinear function for the fuel consumption rate is

FC(v) = A+Bv3, (5.1)

where A,B ≥ 0 are parameters and v is the nominal ship speed. Other ship characteristics,

i.e., draft, length, displacement, and block coefficient, are used to calculate speed reduction

due to wind.

Table 5.2. Characteristics of the ship considered in the case study and route parameters.

Parameter type Symbol Value Unit

Ship
Length Lpp 152.9 m
Water displacement ∇ 27,150 m3

Block coefficient Cb 0.80 -
Route
Fuel price cf 300.00 USD/t
ECA multiplier feca 1.5593 -

Table 5.3. Fuel table of the ship considered in the case study.
Engine settings directly relate to fuel consumption rates and nominal ship speed.

Engines Power [%] Fuel [t d−1] Speed [kn]

2 100 39.00 15.20
2 95 36.80 15.00
2 90 34.40 14.80
2 85 32.00 14.50
2 80 30.30 14.30
2 75 28.90 14.10
1 100 20.10 10.80
1 95 18.90 10.60
1 90 17.60 10.30
1 85 16.40 9.90
1 80 15.50 9.50
1 75 14.30 8.80

82

J.J. Seuren

5.2.2 Environmental conditions

Table 5.4 gives a data summary of the environmental conditions data, including wind and

ocean currents. During algorithm’s execution, it loads the data into memory to achieve

faster data access. If a data array is too large to fit into memory, the data array is split into

many smaller arrays using Dask arrays (Dask Development Team, 2016). This enables com-

putations on arrays with sizes exceeding the memory size using all computer processors.

The remainder of this subsection gives a more detailed description of the wind and ocean

current data separately.

Table 5.4. Environmental data summary

Wind Ocean current

Source (NCEP, 2020) (GlobCurrent project, 2015)
Values northward, eastward velocity components
Unit m s−1

Time period 2007 to 2020 1993 to 2016
Grid size 0.5° × 0.5° 0.25° × 0.25°
Time step 6 h 3 h
Data format GRIB2 netCDF

Wind

The Global Forecast System (GFS) is a weather forecast model from the NCEP (2020). The

NCEP is a part of the National Oceanic and Atmospheric Administration (NOAA) branch

of the Department of Commerce. It covers the entire globe for the period of January 2007 to

May 2020 at the time of writing. Multiple atmospheric and land-soil variables are available

through this dataset, ofwhich thewinddirection and speed are of interest in this study. GFS

also provides forecast datasets that are run four times daily at 00z, 06z, 12z, and 18z out to

192 hours with a 0.5° horizontal resolution and a 3-hour temporal resolution. Horizontal

resolution drops to 1 degree for forecasts between one and two weeks.

For each latitude, longitude, and timestamp, we are provided the eastward velocity u

and northward velocity v in meters per second. Using these values, we obtain the wind

speed BN on the scale of Beaufort and the true wind direction TWD, i.e., the direction

fromwhich the wind blowsmeasured as the clockwise angle from the north line in degrees.

The distribution format used by GFS is GRIB2, a standardized data format commonly

used inmeteorology to store historical and forecast weather data. GRIB files are a collection

of self-contained records of two-dimensional data. The individual records stand alone as

meaningful data with no references to other records or an overall schema. This enables us

to append GRIB records to create concatenated datasets of the desired time period.

Ocean currents

Many local sea currents exist and are affected by local and remote factors, including highly

variable winds, surface and internal waves, tides, mixed layer depth, and buoyancy fluxes.

83

5.2. Data description

Considering these local currents in the ship routing model is a complicated task that we

choose to leave out of scope. Instead, we use satellite altimetry-derived currents data pro-

duced by GlobCurrent project (2015). McCord et al. (1999) show that strategic routing

using altimetry-derived currents is feasible and can be beneficial for a commercial shipping

company.

Ocean currents are approximated with the sum of geostrophic currents and Ekman cur-

rents at the surface. The former is due to the horizontal pressure gradient force, balanced

by the Coriolis force, while the latter result from the balance between friction induced by

wind stress and Coriolis forces. A more detailed description of these ocean currents and

their computation is provided in (GlobCurrent project, 2015).

Each data point contains an eastward and northward ocean current velocity component

in meters per second. These values are converted to knots (i.e., nmi h−1) for the optimiza-

tion. A different dataset than the one decribed in Table 5.4 is available for theMediterranean

Sea. It has a spatial resolution of 1/8 degree and a temporal resolution of three hours.

5.2.3 Navigation area

Section 3.2 formulates the sailing region as a spherical surface projected on the Earth ellip-

soid. A location in the sailing region is defined by its latitude and longitude coordinates.

To define the navigable area, the area in the sailing region excluding impassable areas, we

use the GSHHG database produced by the NOAA (Wessel & Smith, 1996). GSHHG is a hi-

erarchical database that provides shorelines, lakes, political borders, and rivers. In the case

of the MOSWR problem, we are interested in the shorelines. The geography data come in

five resolutions:

1. Full resolution: Original (full) data resolution.

2. High resolution: Approximately 80% reduction in size and quality.

3. Intermediate resolution: Another 80% reduction.

4. Low resolution: Another 80% reduction.

5. Crude resolution: Another 80% reduction.

Figure 5.1 illustrates these five resolution levels for the coast of the Netherlands as a sam-

ple region. Unless stated otherwise, we use the intermediate resolution in this study. The

intermediate solution data include 32,832 polygons. The distributions of polygon sizes and

edges are described in Section 4.5.4.

Shallow waters

In general, a ship cannot sail up close to a shoreline due to ship draft restrictions. Therefore,

during optimization, an optional penalty is introduced for segments of a route leg that

intersect shallowwaters. These shallowareas are based on global bathymetry (oceandepth)

data at a 0.5°× 0.5° resolution provided by Becker et al. (2009). Kelso and Patterson (2018)

84

J.J. Seuren

(a) Crude (b) Low (c) Intermediate

(d) High (e) Full

Figure 5.1. Five resolution levels of the GSHHG database (Wessel & Smith, 1996).
The coast of the Netherlands is shown as example region.

provide ESRI shapefiles containing nested polygons that represent the bathymetry contours

at 200m water depth. Typically, the draft of a ship varies from ten to twenty meters; thus,

water depth of 200m is disproportionate to any ship’s draft. However, we have limited

access to data containing bathymetry contours that represent the maximum allowed depth

of the ship in consideration. Nevertheless, we use this data to test the capabilities of the

routing algorithm considering ocean depth.

Emission Control Areas

ECAs are considered as high-cost areas in the case study. The coordinates of ECAs desig-

nated underMARPOLAnnexVI are given by the IMO. Using these coordinates, we defined

ECAs with polygons and stored these in ESRI shapefiles.

5.2.4 Interpolation of gridded data

In the ship route optimization, it is necessary to obtain environmental conditions at any

given time t and ship’s position using the data described above. Numerical interpolations

over space are used to calculate the above-mentioned environmental data in the routing

algorithm. As numerous interpolations have to be carried out in the simulation, we adopt

a simple linear interpolation to minimize computation time.

The linear interpolation is performed by the following formula:

Q = Q31 +
(Q32 −Q31)(λ− λ1)

λ2 − λ1
, (5.2)

85

5.3. Ocean current routing

where

Q31 = Q11 +
(Q21 −Q11)(φ− φ1)

φ2 − φ1
, (5.3)

Q32 = Q12 +
(Q22 −Q12)(φ− φ1)

φ2 − φ1
, (5.4)

Q are the environmental conditions at the ship’s position (λ, φ), andQij are the environmen-

tal data at the grid points (λi, φj), for 1 ≤ i, j ≤ 2, such that λ1 ≤ λ ≤ λ2 and φ1 ≤ φ ≤ φ2.

5.3 Ocean current routing

This section demonstrates the ocean current routing capabilities of the presented algorithm.

It provides numerical results on two experiments: (1) time-varying ocean currents and

(2) an exact approach comparison. Section 5.3.1 presents the first experiment: a case study

in the Gulf Stream region involving time-varying ocean currents. Besides the effect of ocean

currents on the ship routing, the case study assesses the effect of a constant versus a variable

engine speed profile. Secondly, Section 5.3.2 presents the results of the second experiment.

We validate and compare the results with numerical results from Tanaka and Kobayashi

(2019).

Within the regions considered in the latter two experiments, western boundary currents

(WBCs) exist, i.e., the Gulf Stream and the Kuroshio Current. There is a strong commercial

shipping activity in this region (Kiln, 2012). Also, Chang et al. (2015) describe these re-

gions as potential energy-saving areas for tactical ship routing. Thus, finding energy-saving

routes may be of interest to shipping companies.

5.3.1 Time-varying ocean currents

The Gulf Stream is a WBC near the east coast of North America. It originates in the Gulf of

Mexico and follows the eastern coastlines of the United States before crossing the Atlantic

Ocean as the North Atlantic Current. The average velocity of the Gulf Stream is 3.5 kn,

which decreases to approximately 0.8 kn as it widens to the north. For this experiment, we

consider the bounded region near the east coast of the United States, where the upper and

lower west (east) corners are denoted byW1 andW2 (E1 and E2), respectively. The corners

are defined by the coordinates

E1: (38° 0’ N, 50° 0’ W),

E2: (46° 0’ N, 55° 0’ W),

W1: (34° 19’ N, 72° 40’ W), and

W2: (36° 40’ N, 73° 20’ W).

We select the region corners to serve as the route endpoints. Four eastbound (west-

bound) origin-destination pairs are formed by connecting each of the twowestern (eastern)

86

J.J. Seuren

corners to each of the two eastern (western) corners. For each origin-destination pair, we

perform route simulations with ship departure dates 25/11/2014, 00z, and 4/5/2015, 00z.

We represent a voyage by its origin-destination pair and month of departure (e.g., “W1E2 -

May”).

Besides the effect of time-varying ocean current on the route trajectory, we test whether

there is a potential in varying engine speed. For this, we perform simulations with a con-

stant speed profile (C) and simulations for which the engine speed may vary along the

route (V). Two constant speed settings are tested: (1) the maximum engine speed Umax,

and (2) the fuel-efficient engine speed Ueff , i.e., the minimum engine speed. Each route

simulation is compared to a reference route (R) neglecting ocean currents to quantify the

ocean current optimization’s potential. A reference route (R) is simulated excluding the

effect of ocean currents but evaluated including these currents.

As a result, the algorithm performs 32 different route simulations comprising of eight

origin-destination pairs. That is, two simulations that either include or exclude ocean cur-

rents, and three different speed profiles. Since each simulation is run five times, a total of

160 route simulations are performed for this experiment.

The remainder of this section discusses the computational results of the experiment de-

scribed above. First, we discuss the results of the ocean current effects on the routing. Then,

we analyze the potential of enabling a varying ship speed profile in the route optimization.

Ocean current effect

In the considered sailing region, theGulf streamflows in the east-northeast direction. Hence,

the routing algorithm finds, presumably, eastbound routes that follow the Gulf Stream, tak-

ing advantage of the strong current. On the other hand, the ocean current routing for west-

bound routes shouldminimize the adverse effect of opposite ocean currents by determining

whether to avoid or cross the Gulf Stream at a weak point. In other words, ships following

eastbound routes would likely ride the current if positive speed effects are prescribed to be

better than the shortest path, and ship heading west likely travel in regions of low current

activity.

Figure 5.2 shows a selection of eastbound and westbound routes. The corresponding

Pareto fronts and each member’s average speed change due to ocean current are shown by

Figure 5.3. For both scenarios, the routing algorithm performs different routing decisions:

(a) The eastbound routes shown in Figure 5.2a have the same origin but different destina-

tions. The routes in both Pareto approximation sets follow the same path in the early

stage of the voyage to utilize the strong current of the Gulf Stream. Consequently,

the average speed increase due to ocean currents is higher than the reference routes,

shown in Figures 5.3a and 5.3b. This speed increase results in less costly, faster routes,

or a combination of these two.

(b) In contrast to the eastbound routes, the westbound routes shown in Figure 5.2b have

87

5.3. Ocean current routing

different origins but the same destination. The algorithm found routes that avoid

ocean currents but keep sailing distance at aminimum. As a result, current-optimized

routes have less average speed decrease due to ocean currents than the reference

routes, as shown in Figures 5.3c and 5.3d. The Pareto fronts of current-optimized

route simulations are therefore shifted to the lower-left corner with respect to the ref-

erence simulations’ fronts.

Two general paths are found for both westbound voyages. For the first voyage, E1W2,

the first path passes the current field along the north side. Consequently, this path

crosses the Gulf Stream two times at a weak point, resulting in a shorter distance but

a decrease in ship speed. The second path passes the current underneath and is only

taken by routeswith a high speedprofile. Apossible reason is that currents in this area

are only favorable for certain time periods, such that ships with lower engine speed

would encounter adverse currents. For the second voyage, E1W2, routes either cross

the Gulf Stream near the destination, or avoid the current field by possibly increasing

the sailing distance.

For each Pareto approximation set shown in Figure 5.3, we notice a change in the average

speed increase as the travel time increases. Since the average speed change is similar for the

voyages with the same departure date, this is likely caused by a variation of ocean currents

in the considered time period.

Tables 5.5 and 5.6 list the five-run averaged extreme objective values of the Pareto fronts

corresponding to simulations with departure inNovember 2014 andMay 2015, respectively.

Furthermore, the tables provides computational results for constant engine speed simula-

tions. On average over all routes, 1.5% and 2.8% savings are achieved in travel time and fuel

cost, respectively. The least-time routes save on average 2.0% travel time and the least-fuel

routes save on average 4.1%. The largest fuel saving for a variable speed setting are found

in W1E1 - May, i.e., the least-fuel cost route optimized for ocean current is 7.8% (1.8 kUSD)

less than its reference route.

Engine speed effect

The Pareto sets corresponding to route simulations with constant speed profiles contain

a single point. This is due to a linear relation between fuel consumption and travel time,

since the fuel consumption rate is fixed for a constant engine speed. Looking at the Pareto

fronts, we see that the points corresponding to the simulation with constant speed profile

lie at the Pareto approximation sets’ extreme ends for variable speed. More specifically, the

objective value of a simulation with maximum engine speed Umax is approximately equal

to the objective value of the simulation’s minimum time route with variable engine speed.

This is confirmed by the percentage differences shown in Tables 5.5 and 5.6.

The results show that a least-time route with variable engine speed has approximately

equal objective values to the route with maximum engine speed Umax. That is, the savings

in travel time and fuel cost are within 0.0%– 0.1%, averaged over all simulations. This is

88

J.J. Seuren

2 knots

35°N

40°N

45°N

75°W 70°W 65°W 60°W 55°W 50°W

W1

E2

E1

Reference

2 knots

35°N

40°N

45°N

75°W 70°W 65°W 60°W 55°W 50°W

E2

E1

W2

Reference

(a) W1E2 and W1E1 - November

(b) E2W2 and E1W2 - May

8.8

10

11

12

13

14

15.2

N
o
m
in
al

sh
ip

sp
ee
d
[k
n
]

Figure 5.2. Pareto-optimal routes for a selection of voyages in the Gulf Stream region.
The color of a route leg indicates the nominal ship speed at the leg and directly relates to the
engine speed. Black routes represent reference routes neglecting the effect of ocean currents
during optimization. The ocean current velocity and direction at the time of departure is
shown by the vector field. Problem instances are described in the text. NB: Many routes
roughly follow the same path. Consequently, colored legs represent the route leg speeds of
the top-layered routes, i.e., routes with low fuel cost.

89

5.3. Ocean current routing

0

0.5

A
v
er
ag

e
sp

ee
d
ch

an
g
e
[k
n
]

-0.6

-0.4

-0.2

0

3 3.5 4 4.5 5 5.5

25

30

35

F
u
el

co
st
[×

1
0
0
0
U
S
D
]

3 3.5 4 4.5 5

25

30

35

-1

-0.5

0

A
v
er
ag

e
sp

ee
d
ch

an
g
e
[k
n
]

-1

-0.5

0

3 4 5 6

25

30

35

Travel time [d]

F
u
el

co
st
[×

10
00

U
S
D
]

3 3.5 4 4.5 5

20

25

30

Travel time [d]

Variable speed (V) V-Reference Constant speed (C) C-Reference

(a) W1E1 - November (b) W1E2 - November

(c) E1W2 - May (d) E2W2 - May

Figure 5.3. Computational results for a selection of four route simulations.
The average speed change due to ocean current (top) and the objective values (bottom) for
each member of the Pareto set. Results for both current-optimized and reference routes are
shown, as well as two constant (C) and one variable (V) speed settings.

90

J.J. Seuren

Table 5.5. Objective values of extreme routes for the ‘November’ simulations.
Extreme routes are the least-time and least-fuel routes of the Pareto front. Relative difference
(∆) are listed with respect to the reference route neglecting ocean currents and to routes with
constant engine speed. The least-fuel and least-fuel routes are compared to the fuel-efficient
Ueff and maximum engine speed Umax, respectively. Values are obtained by averaging five
runs.

w.r.t reference w.r.t constant speed

Objective T [d] C [kUSD] ∆T1 [%] ∆C1 [%] ∆T1 [%] ∆C1 [%]

E1W1
Fuel 5.3 23.0 −2.1 −2.0 −1.1 0.1
Time 3.1 36.2 −0.8 −0.7 −0.1 −0.1

E1W2
Fuel 5.3 23.8 −1.7 −4.5 −4.7 −0.3
Time 3.2 37.0 −2.1 −1.1 0.4 0.4

E2W1
Fuel 5.2 22.5 2.7 −1.7 −4.0 −2.6
Time 3.0 35.0 −1.1 −0.2 −1.2 −1.2

E2W2
Fuel 4.9 21.4 −0.5 −5.7 −1.1 0.1
Time 2.8 33.2 −2.4 −2.4 0.1 0.1

W1E1
Fuel 4.9 20.9 −2.5 −7.8 0.0 0.0
Time 3.0 34.6 −2.8 −2.8 0.0 0.0

W1E2
Fuel 4.5 19.4 −5.6 −5.6 −0.4 −0.4
Time 2.8 32.2 −2.8 −2.9 −0.1 −0.1

W2E1
Fuel 4.7 20.1 −1.1 −6.3 −0.5 −0.1
Time 2.9 33.4 −3.1 −3.1 −0.1 −0.1

W2E2
Fuel 4.3 18.6 1.0 −0.3 −0.4 −0.1
Time 2.6 30.3 −1.3 1.9 0.0 0.0

Average savings
Fuel −1.2 −4.2 −1.5 −0.4
Time −2.1 −1.4 −0.1 −0.1
Overall −1.7 −2.8 −0.8 −0.3

1 ∆ = value−reference value
reference value

× 100%

91

5.3. Ocean current routing

Table 5.6. Objective values of extreme routes for the ‘May’ simulations.
Extreme routes are the least-time and least-fuel routes of the Pareto front. Relative differences
(∆) are listed with respect to the reference route neglecting ocean currents and to routes with
constant engine speed. The least-fuel and least-fuel routes are compared to the fuel-efficient
Ueff and maximum engine speed Umax, respectively. Values are obtained by averaging five
runs.

w.r.t reference w.r.t constant speed

Objective T [d] C [kUSD] ∆T1 [%] ∆C1 [%] ∆T1 [%] ∆C1 [%]

E1W1
Fuel 5.2 22.5 0.2 −3.5 0.0 0.3
Time 3.1 35.9 −1.6 −1.5 0.1 0.1

E1W2
Fuel 5.2 22.6 −0.9 −5.7 −0.3 0.1
Time 3.1 35.9 −2.4 −2.3 0.2 0.2

E2W1
Fuel 4.9 21.1 1.7 −5.5 0.2 0.2
Time 2.9 33.8 −3.2 −0.8 0.1 0.1

E2W2
Fuel 4.7 20.5 −1.0 −5.2 −0.3 0.1
Time 2.8 32.4 −2.2 −2.1 0.1 0.1

W1E1
Fuel 5.1 22.0 −1.7 −2.7 −2.9 −2.4
Time 3.0 35.3 −1.7 −1.7 −0.3 −0.3

W1E2
Fuel 4.7 20.4 −4.8 −4.7 −2.3 −2.2
Time 2.8 33.0 −2.6 −2.6 −0.1 −0.1

W2E1
Fuel 4.9 21.5 −5.2 −3.6 −16.8 −15.4
Time 3.0 34.8 −2.0 −0.9 0.1 0.1

W2E2
Fuel 4.5 19.5 4.2 −0.4 −0.3 0.0
Time 2.7 31.2 0.0 0.0 0.0 0.0

Average savings
Fuel −0.9 −3.9 −2.8 −2.4
Time −1.9 −1.5 0.0 0.0
Overall −1.4 −2.7 −1.4 −1.2

1 ∆ = value−reference value
reference value

× 100%

92

J.J. Seuren

due to the least time routes selecting the highest attainable speed for each leg, resulting in

a constant (maximum) speed at each leg. Hence, for the least time routes, a varying speed

profile seems to have no potential.

On the other hand, the difference in the least-fuel route with variable engine speed ver-

sus fuel-efficient speed routes is larger. The highest savings are achieved for routes with

longer travel times, e.g., the travel time and fuel cost for E2W1 - November are reduced by

4.0% and 2.6%, respectively. And the average savings in travel time (fuel cost) is 2.15%

(1.4%) for ‘November’. This means that there is a potential benefit in varying the engine

speed for minimization of the fuel consumption considering ocean currents. The fuel con-

sumption increases marginally with the increase in ship speed at a low engine speed; thus,

varying the engine speed increases the flexibility of route decisions. For instance, slightly

increasing the ship speed to ‘catch’ a favorable current may lead to less total fuel consump-

tion.

Overall, our findings show that savings are highest for routes with longer travel times, as

ocean current has a larger contribution to the actual ship speed in this case andmore routing

decisions can be considered. Furthermore, savings with respect to a constant speed settings

are marginal for the least-time routes and slightly better for least-fuel routes. Although, a

varying engine speed increases the routing possibilities significantly and might provide

more significant improvements for other, more balanced routes in the Pareto front. Overall,

our findings show that ship routing considering strong time-varying strong ocean currents

has a strong potential for minimizing both fuel cost and travel time but savings due to a

variable engine speed are only significant for low speeds.

5.3.2 Exact approach comparison

This numerical experiment involves ocean current routingwithin the region of theKuroshio

Current (KC). The KC is a WBC in the East China Sea, which flows from the east of Taiwan

along the south coast of Japan into the North Pacific. The average velocity of the KC in-

creases from about 2 kn along the east coast of Taiwan to 2.7 kn near Japan. As mentioned

earlier in Section 2.2, Tanaka and Kobayashi propose a routing algorithm based on dynamic

programming and test their algorithm on the same region. By simulating an identical prob-

lem instance, we compare the numerical results found by Tanaka and Kobayashi (2019)

with our results provided below.

The sailing region is the rectangular region defined by the pair of origin-destination

locations

K: (26° 0’ N, 123° 0’ W), near Keelung, Taiwan, and

T: (34° 0’ N, 139° 0’ E), near the coast of Tokyo, Japan.

As Tanaka and Kobayashi assumed the ocean currents to be static, no departure date is

specified. Tomatch the characteristics of the ship in the case study of Tanaka andKobayashi,

93

5.3. Ocean current routing

the fuel consumption rate FC in tonnes per day has a cubic relation with the nominal ship

speed, expressed as

FC(V) = 5.466× 10−4V 3. (5.5)

where V is the nominal speed in knots and may take any value from the discrete set

{8, 8.1, 8.2, . . . , 14}.

Similar to the previous experiment, each current-optimized route simulation is compared

to a reference route neglecting ocean currents.

Tanaka and Kobayashi provided the identical ocean current dataset, comprising the cur-

rent directions and velocities at various points in the sailing region for the period 1985 to

1988, accumulated by the JODC (2015). By averaging the ocean current velocities over time

and linearly interpolating missing values in the sailing region, the data is processed in a

similar way as Tanaka and Kobayashi did. Also, we use the ‘low’ resolution data from the

GSHHG database, as in (Tanaka & Kobayashi, 2019). Figure 5.4 shows the resulting ocean

current data projected in the considered region.

2 knots

24°N

26°N

28°N

30°N

32°N

34°N

36°N

120°E 122°E 124°E 126°E 128°E 130°E 132°E 134°E 136°E 138°E 140°E 142°E

Figure 5.4. Bin-averaged ocean current data in the Kuroshio Current region (JODC, 2015).

Results

For both the eastbound andwestbound voyages, Figure 5.5 shows the corresponding Pareto

fronts, and Figure 5.6 visualizes the associated routes. Expectedly, the reference routes fol-

low the great circle route, i.e., the route with the shortest distance. The current-optimized

routes follow the current to take advantage of the favorable current direction. As the di-

rection and velocity of the ocean currents are constant over time, the algorithm finds few

optimal paths so that the variation in engine speed mainly causes the difference in Pareto

optimality. As Equation 5.5 defines a cubic relation between fuel consumption and ship

speed, the travel time and fuel consumption have an exponential relation. The shape of the

94

J.J. Seuren

0.5

0.6

0.7

0.8

A
v
er
ag

e
sp

ee
d
ch

an
g
e
[k
n
]

-0.6

-0.5

-0.4

-0.3

70 80 90 100 110

40

60

80

100

Travel time [h]

F
u
el

co
n
su

m
p
ti
o
n
[t
]

80 100 120

40

60

80

100

Travel time [h]

Current-optimized Reference

(a) Keelung - Tokyo (KT) (b) Tokyo - Keelung (TK)

Figure 5.5. Computational results for routes KT and TK.
The average speed change due to ocean current (top) and the objective values (bottom) for
each member of the Pareto set. Each scenario contains a reference set of routes neglecting the
effect of ocean currents during optimization.

95

5.3. Ocean current routing

26°N

28°N

30°N

32°N

34°N

36°N

120°E 122°E 124°E 126°E 128°E 130°E 132°E 134°E 136°E 138°E 140°E 142°E

K

T

KT
TK
Reference

Figure 5.6. Pareto optimum routes for Keelung - Tokyo (KT) and Tokyo - Keelung (TK).
The black route represents the reference route neglecting the effect of ocean currents during
optimization. The ocean current velocity anddirectionwithin the sailing region is represented
by the vector field.

Pareto fronts confirms this exponential relationship. For both voyages, the Pareto front cor-

responding to the current-optimized route simulations dominates the Pareto front of the

reference simulation entirely.

The route trajectories of Keelung-Tokyo (KT) and Tokyo-Keelung (TK) are clearly dis-

tinct. KT routes take advantage of the KC by following the current, whereas TK routes head

south to avoid the current. Figure 5.5 confirms this by showing the speed increase due to

ocean currents for each route. For all KT (TK) routes, the average speed increase (reduc-

tion) is highest (lowest) for the current-optimized routes compared to the reference routes.

We notice even smaller speed reductions for some routes of TK in the travel time interval of

102 h – 125 h. This jump in speed decrease is presumably due to a decision to take a longer

path, passing an area with calmer water. Consequently, the travel time increases while the

fuel consumption decreases.

Ocean current routing algorithm comparison

The ship routing problem studied by Tanaka and Kobayashi (2019) is to minimize the fuel

consumption of a voyage with arrival time constraints. In this problem, the effect of ocean

currents is taken into account, and the ship speed is constrained within a range of Vmin and

Vmax, such that a route may attain a varying ship speed profile. As Tanaka and Kobayashi

represent the sailing region as a grid, computational results are provided for different res-

olutions. By sequential relaxation of the arrival time constraint, the algorithm finds opti-

mum ship routes on the grid. If the algorithm terminates before certifying the optimality,

the best-known feasible solution is returned. For both the eastbound (KT) and westbound

(TK) voyage, Tanaka andKobayashi performed simulationswith three grid resolutions and

five arrival times.

96

J.J. Seuren

We compare the worst-case and best-case scenario of the case study by Tanaka and

Kobayashi with our algorithm’s computational results. That is, in the worst-case scenario

a low grid resolution of 40× 40 nodes is used, while the best-case scenario has a high grid

resolution of 160×160 nodes. We compare all arrival time constraints withmatching routes

in our algorithm’s returned Pareto set for both cases. Table 5.7 provides a comparison of

the results from both case studies.

Table 5.7. Comparison of results from the presented algorithm and the algorithm presented
in (Tanaka & Kobayashi, 2019).
The relative difference (∆) is calculated with respect the best- and worst-case values from
Tanaka and Kobayashi. ATC denotes the arrival time constraint in hours.

Fuel Consumption [t] ∆1 [%]

Tanaka and Kobayashi Presented algorithm

ATC [h] Best-case Worst-case Mean Std. Best-case Worst-case

Keelung - Tokyo
110 29.7 30.2 31.0 (0.1) 4.5 2.8
105 31.1 32.3 34.4 (0.0) 10.5 6.4
100 35.0 36.3 38.3 (0.4) 9.4 5.5
95 39.6 40.9 43.0 (0.4) 8.5 5.0
90 45.1 46.4 48.4 (0.5) 7.4 4.4

Tokyo - Keelung
130 33.9 35.1 35.1 (0.4) 3.6 0.0
125 33.9 35.3 35.7 (0.1) 5.3 1.1
120 34.5 38.2 38.3 (0.2) 11.1 0.3
115 37.6 41.5 41.5 (0.0) 10.2 −0.1
110 41.2 45.2 45.2 (0.4) 9.7 0.0

1 ∆ = value−reference value
reference value

× 100%

In general, the exact approach by Tanaka and Kobayashi finds routes with less fuel con-

sumption with similar travel time. For the eastbound voyage, KT, our algorithm’s fuel con-

sumption is higher for both the best- and worst-case scenarios for every arrival time con-

straint. Comparing our results to the worst-case scenario from Tanaka and Kobayashi, we

notice a 3.8%– 6.4% higher fuel consumption for the eastbound voyages. This is 10.5% for

the best-case scenario. For the westbound voyage, TK, these differences in objective values

are smaller but still reach 11.1% for the best-case scenario.

Tanaka and Kobayashi compute the relative gap between the obtained lower and upper

bound of a solution’s objective value. They use this relative gap as an indication for the

optimality gap. For routes with a high ATC, Tanaka and Kobayashi find objective values

with the smallest gap. That is, the gap lies typically between 0.0%– 5% for routes with

loose time constraints and increase up to 34.7% for low ATC values, i.e., more restrictive

time constraints. Thismeans that the algorithmof Tanaka andKobayashi finds near-optimal

solutions on the grid for routes with loose arrival time constraints. Since our approach is

not limited to a grid, it finds similar objective values for routes with high values for the ATC

easily. The small difference in objective values can be interpreted using the routes shown

in Figure5.6 and the routes presented in (Tanaka & Kobayashi, 2019).

97

5.4. Weather routing

KT routes follow the KC by deviating north from the great circle route to take advantage

of the strong current at Japan’s south coast. In contrast, TK routes try to avoid the current

as it navigates in the opposed direction by deviating south from the great circle route. Com-

pared to the routes found by Tanaka and Kobayashi, the paths of our TK routes are roughly

similar, but the KT routes take an entirely different path. That is, both routes presented in

(Tanaka & Kobayashi, 2019) follow a path south from the great circle, implying that both

routes avoid ocean currents. This difference in route trajectories explains the difference in

objective values between both voyages. That is, the difference in objective values for the

voyage TK is smaller than for KT, as shown in Table 5.7.

To conclude; our algorithm finds good solutions for routes with less fuel consumption,

but slightly worse solutions for routes with less travel time. However, routes found by

Tanaka and Kobayashi are less smooth, meaning that routes found by our approach repre-

sent a more realistic scenario.

Regarding the computation time, the algorithm presented by Tanaka and Kobayashi is

terminated after roughly one hour of computation time for the majority of the simulations.

In contrast, our algorithm converges in less than three minutes for all runs. Additionally,

the results presented in Table 5.7 can be obtained in a single run for each voyage, whereas

the algorithm presented by Tanaka and Kobayashi needs to perform a simulation for each

arrival time constraint. That is, their algorithm’s required computation time for finding the

20 presented solutions is 45.6min. Therefore, our algorithm is a better alternative for ocean

current routing if one desires low computation time, requires several route alternatives that

are Pareto-optimal, or seeks to find realistic ship routes.

5.4 Weather routing

This section provides numerical experiments on three problem instances to assess theweather

routing capabilities of the proposed algorithm. Within these problem instances, we include

coverage of routes in variousweather conditions at locations around theworld. Theweather

conditions range from a maximum Beaufort number (BFT) of 6 (“strong breeze”) to 12

(“hurricane-force”). The weather routing problem instances are the following:

KT-SF: Keelung, Taiwan, to San Francisco, USA, departing on 28 May 2011, 00z,

EC-NYC: English Channel, to New York, USA, departing on 25 January 2011, 15z, and

PLM-HAV: Plymouth, England, to Havana, Cuba, departing on 24 September 2013, 12z.

Section 5.4.1 presents the results for KT-SF. In this instance, a stormwithmaximumwind

speeds up to 12 BFT moves from the east coast of Taiwan northeast to Japan’s south coast.

The shortest route passes the storm at the north side, which may lead to adverse speed

effects. To avoid the storm, a ship could speed up and minimize the time near the storm or

detour north of Japan to sail in calmwaters. In the remaining part of the voyage, the shortest

98

J.J. Seuren

routemoves through large areas in the Pacific, withwind speeds up to 8 BFT before arriving

at San Francisco.

The results of EC-NYC are presented in Section 5.4.2. In EC-NYC, routes encounter

rough sea conditions at the North Atlantic. Shao et al. (2012) consider a similar problem

instance. They formulated a ship weather routing problem with similar objectives as the

MOSWRproblemand enables a variation in ship speedduring the route optimization. They

also use Kwon’s (2008) method for the calculation of ship speed loss due to wind. Since

different ship characteristics and weather data is used, we only compare the trajectories of

the ship routes visually.

Section 5.4.3 discusses the results of instance PLM-HAV. Equivalently to EC-NYC, this

instance considers a voyage within the North Atlantic. A similar problem instance is con-

sidered by Szapczyska (2015), who also applies anMOEA to simultaneously optimize mul-

tiple objectives. We provide a brief comparison of the trajectories of the routes found in

(Szapczyska, 2015) and the routes returned by our algorithm.

For each instance, a reference route is calculated, ignoring the effects of weather. Fur-

thermore, the effect of a varying speed profile is determined by performing two additional

simulations with either a maximum or minimum constant speed profile. The extreme ob-

jective values of the varying and constant speed simulations are discussed in Section 5.4.4.

Solution routes are visualized in Figure 5.8. Weather-optimized routes are colored ac-

cording to each leg’s nominal ship speed, and the reference routes are colored black. The

map is shaded based on the wind speed at the ship’s location over the entire travel time

period. It roughly visualizes the wind speed at the location of a ship that follows the route

with average travel time. In order to do this, the rectangular sailing region between the start

and end location is subdivided into ⌈T/6⌉ vertical weather slices, where T is the average

travel time of the routes in the obtained Pareto front. Each slice corresponds to a 6-hour time

period of weather data. Since we choose the average travel time to visualize the weather on

the map, a ship following routes with short or long travel times may encounter different

weather effects than the weather shown on the map. The shown routes are returned by a

single route simulation.

5.4.1 Keelung to San Francisco

The voyage in KEE-SF encounters three rough weather areas. One near the south coast of

Japan with winds up to 12 BFT, a smaller area with lighter winds halfway the voyage, and

a third large area with high winds near the destination.

The Pareto set corresponding to a single route simulation with different settings is pre-

sented in Figure 5.7c. Figure 5.8a shows the routes corresponding to the convex hull of the

Pareto front. We choose the convex hull routes so that shown routes are more distinctive,

as the convex hull contains a diverse set of routes, i.e., it typically includes all major routing

decisions made by the algorithm. The routes are projected on a stereographic projection,

99

5.4. Weather routing

-2

-1.5

-1

-0.5

0

A
v
er
ag

e
sp

ee
d
lo
ss

[k
n
]

-1.5

-1

-0.5

0

0.5

1

7 8 9 10

60

65

70

75

80

Travel time [d]

F
u
el

co
st
[×

10
00

U
S
D
]

10 12 14 16 18 20

90

100

110

120

Travel time [d]

-2

-1.5

-1

-0.5

0

Travel time [d]

A
v
er
ag

e
sp

ee
d
lo
ss

[k
n
]

7 8 9 10

60

65

70

75

80

Travel time [d]

F
u
el

co
st
[×

10
00

U
S
D
]

Weather-optimized Reference

(a) English Channel - New York (EC-NYC) (b) Plymouth - Havana (PLH-HAV)

(c) Keelung - San Francisco (KEE-SF)

Figure 5.7. Computational results for three weather problem instances.
The average involuntary speed change due toweather (top) and the objective values (bottom)
for eachmember of the Pareto front. Results for reference routes are shown in orange. Crosses
represent the vertices of the front’s convex hull.

100

J.J. Seuren

0 2 4 6 8 10 12
Wind [BFT]

8.8

10.1

11.4

12.6

13.9

15.2

N
om

inal vessel speed [kn]

0 2 4 6 8 10 12
Wind [BFT]

8.8

10.1

11.4

12.6

13.9

15.2

N
om

inal vessel speed [kn]

0 2 4 6 8 10 12
Wind [BFT]

8.8

10.1

11.4

12.6

13.9

15.2

N
om

inal vessel speed [kn]

(a) Keelung - San Francisco (KEE-SF), stereographic projection

(b) English Channel - New York (EC-NYC)

(c) Plymouth - Havana (PLH-HAV)

0 2 4 6 8 10 12

Wind [BFT]

8.8

10

11

12

13

14

15.2

N
o
m
in
al

sh
ip

sp
ee
d
[k
n
]

Figure 5.8. Visualization of weather-optimized routes.
Shown routes represent the convex hull vertices of each problem instance’s Pareto front.
Weather-optimized routes are colored according to the nominal ship speed at each route leg.
Reference routes, neglectingweather effects, are colored black. Each vertical slice corresponds
to a six-hour time period of the weather forecast. The number of slices between origin (cyan
diamond) and destination (magenta diamond) is the number of 6-hour time periods consti-
tuting the average travel time of the solution routes. Thus, the first and last slice correspond
to the first and last six hours of the average travel time, respectively.

101

5.4. Weather routing

which is conformal. That means that it preserves angles but does not preserve areas. As a

result, the great circle routes are projected as a straight line.

The majority of the routes in the Pareto front corresponding to the weather simulation

follow the great circle route, shown in black. Some routes slightly deviate southwards from

the great circle route to avoid badweather near the east coast of Japan. The algorithm found

two alternative routes that avoid the bad weather near the origin by navigating west from

Japan. As a result, these route options encounter calmer weather areas, and, consequen-

tially, the average speed loss is minimized. This is confirmed by the average speed loss

shown Figure 5.7c.

The Pareto set of weather simulation entirely dominates the reference set. The shape

of the front corresponding to the former set has some irregularities at the lower right end.

Several gaps and corners exist due to a large variety in the Pareto set. Large detours north

of Japan yield longer travel times than most reference routes but considerably reduce the

fuel cost.

5.4.2 English Channel to New York

For the voyage English Channel - New York (EC-NY), a route considering weather effects

should avoid the rough weather area developing in the North Atlantic. The heavy weather

area is large at the departure date but weakens after a few days, enabling closer navigation

to this area. As the bad weather area partly overlaps the great circle route between the

English Channel and New York, it may be favorable to slow down before passing the area

so that the storm has decreased in strength during the passage.

The routes visualized in Figure 5.8b show the routes with variable engine speed from

the convex hull of the Pareto front depicted in the bottom diagram of Figure 5.7a. The

algorithm finds twomajor route trajectories for this problem instance. The first takes a path

at the north side of the great circle route. This option contains mainly routes with a high-

speed profile. The other decision involves navigating the ship south from the great circle

route. The first legs of the routes corresponding to the latter decision have low ship speed

and accelerate to the upper end of the speed profile at a later stage.

In the Pareto fronts, we notice a gap in the travel time interval 7.7 d – 8.2 d. As this gap is

apparent in both theweather and reference simulation, it is likely caused by the badweather

area in the neighborhood of the sailing region. The gap in the front corresponding to the

weather route simulation is larger than the reference front gap.

The corner at the Pareto front indicates the point at which a decision is made between

either using two engines or only one. We see a significant reduction in fuel cost for routes

with similar travel time in the reference set for the routes on which two engines are used.

However, the weather routes lie closer to the reference front for longer travel times but still

dominates the reference front entirely.

The average speed loss due to weather effects is largest for the routes with short travel

102

J.J. Seuren

time. The difference in Pareto fronts is highest for the routes with the largest gap in average

speed loss. The weather-optimized routes from this problem instance successfully avoid

bad weather and, consequently, avoid large speed reductions.

The routes obtained by the algorithm presented by Shao et al. (2012) deviate south from

the great circle route but lie closer to the great circle route than the southern routes found

by our algorithm. This is likely due to a difference in ship characteristics and weather data.

The weather data used by Shao et al. depicts a large bad weather region in the southern

area of the great circle route, whereas this bad weather is less pronounced in the weather

data used in this case study.

5.4.3 Plymouth to Havana

The third problem instance considers a voyage betweenPlymouth andHavana (PLM-HAV).

The Pareto set corresponding to a single route simulation, with different settings is pre-

sented in the bottom diagram of Figure 5.7b. Figure 5.8c shows the routes corresponding

to the convex hull of the Pareto front.

Three major routing decisions are made. The first is represented by the blue routes that

have low nominal ship speed, i.e., long travel time. They avoid the bad weather area in the

North Atlantic by navigating North. We note here that the rough weather shown in orange

shifted slightly to the south when the ship approaches this area. A second route option is

to take more southern path and cross a small area with strong winds at an early stage, but

avoid the larger rough weather area described earlier.

A third major route decision is performed when the routes pass the south side of the

heavy weather area. Two alternative routes are considered, of which the first takes the

great circle route to the destination while crossing an area with wind speeds of up to 7 BFT.

The other alternative avoids the roughweather and chooses to change course at a later stage.

The latter route approaches the north coast of the Bahamas, whereas the other routes move

near the coast of Florida.

ThePareto front corresponding to theweather simulationdominates the reference Pareto

front for a large part. This is because the reference route navigates straight through heavy

weather, resulting in a large speed loss. However, the reference set performs better at the

extreme end at the lower right corner of the objective space. Reference routes with low fuel

costs have significantly shorter travel time than weather-optimized routes and even have

an average speed increase of approximately 0.5 kn. This is likely due to the strong winds

dying down and an acceleration due to tailwind. The weather routes deviating northwards

from the great circle route do not take advantage of this change in weather.

The Pareto set returned by the algorithm presented by Szapczyska (2015) contains sim-

ilar routes that move southwards from the great circle route and move back towards the

great circle route after passing the storm. However, Szapczyska did not find Pareto opti-

mum routes that deviate north of the great circle route. This may be due to a different

103

5.4. Weather routing

setting of ship characteristics, as all north routes found by our algorithm have an equal

speed profile.

5.4.4 Variable and constant engine speed

Table 5.8 shows the five-run averaged objective values corresponding to the least-time and

least-fuel route (i.e., the extreme routes) for each problem instance. Additionally, the table

shows the percentage difference with respect to the reference route neglecting ocean cur-

rents and difference with respect to a route with constant engine speed. A constant speed

profile with themaximum (minimum) ship speedwould intuitively yield a route withmin-

imum travel time (fuel cost). Therefore, we select these two constant speed profiles for com-

parison with the minimum travel time and minimum fuel cost routes (the extreme routes)

in the Pareto front obtained by a simulation with variable ship speed.

Table 5.8. Least-time and least-fuel route objective values for weather-optimized routes.
Least-fuel and least-time routes represent the extreme solutions of the Pareto front and are
compared to their reference routes, and corresponding constant speed route. That is, least-
fuel vs. fuel-efficient speed Ueff and least-time vs. the maximum speed Umax.

w.r.t reference w.r.t constant speed

Objective ∆T1 [d] C [kUSD] ∆T1 [%] ∆C1 [%] ∆T1 [%] ∆C1 [%]

EC-NYC
Fuel 9.2 59.7 2.6 −1.8 −51.6 −26.7
Time 6.7 77.8 0.0 0.0 0.2 0.1

PLY-HAV
Fuel 18.2 85.9 4.1 −1.8 −8.7 0.7
Time 10.1 117.5 0.1 0.0 −0.1 −0.3

KEE-SF
Fuel 21.8 120.0 −3.2 −4.3 −49.1 −34.8
Time 14.4 165.1 −0.3 −2.1 0.6 −1.2

1 ∆ = value−reference value
reference value

× 100%

For all three simulations, the travel time of the least-time route found by the simulations

with variable speed is not significantly different from the travel time of themaximumengine

speed Umax simulations. That is, for problem instances EC-NYC, PLH-HAV, and KEE-SF,

the travel time savings of the variable simulation are−0.2%, 0.1%, and−0.6%, respectively.

The speed profiles of both route simulations are the same. Thus, the slight increase in

travel time for two of three problem instances may be caused by the size difference of the

Pareto fronts. That is, the Pareto front corresponding to a constant speed simulation con-

tains only a single member, as fuel cost and travel time are directly related in constant speed

optimization. Consequently, a constant speed simulation boils down to a single-objective

optimization, which is less computationally expensive.

On the other hand, the minimum fuel cost routes corresponding to variable speed simu-

lations are generally better than routeswith a constant speed profile. For the least-fuel route

of PLH-HAV, a variable engine speed profile yields a 0.7% fuel cost increase, but a signifi-

104

J.J. Seuren

cant travel time reduction of 8.7%. However, the fuel savings for EC-NYC and KEE-SF are

much higher, i.e., 26.7% and 34.8%, respectively. These large savings are likely caused by a

large speed decrease due to heavy weather. Due to the wind direction relative to the ship’s

heading, the involuntary speed reduction is significantly higher for the problem instances

EC-NYC and KEE-SF compared to PLH-HAV. Namely, for the Ueff routes in EC-NYC and

KEE-SF the ship speed is reduced by 14.4% and 30.9%, respectively, whereas this is 5.7%

for PLH-HAV. A large involuntary speed reduction causes a significantly longer travel time

and, consequently, an increase in fuel cost.

Overall, the results for the instances presented above show that there is a significant

savings potential when including weather conditions into the optimization of ship routes.

The algorithm typically avoids areas with wind speeds greater than 6 kn – 7 kn. Minimal

time routes sometimes choose to cross heavyweather with full speed or take a small detour.

The greatest reductions in fuel cost are achieved for the routes with low ship speeds. Table

5.8 confirms this, showing fuel savings of up to 4.3%. This has likely two causes:

1. Reference routeswith low ship speeds stay for a longer period in roughweather, yield-

ing a larger negative impact compared to routeswith higher ship speeds. On the other

hand, routes with low ship speeds can take advantage of weather effects that slightly

increase the ship speed for a longer time period. However, ship speed loss has a more

pronounced effect than ship speed increase.

2. A longer travel time createsmore routingpossibilities, such as avoiding roughweather

areas or slowing down to wait for calmer weather.

5.5 High-cost areas

This section presents the algorithm capabilities of routing through high-cost areas, while

excluding any environmental conditions. Two different types of high-cost areas are consid-

ered: (1) ECAs, in which the fuel cost rate is higher compared to regions outside ECAs,

and (2) shallow waters that impose ship draft limitations. These high-cost areas differ in

their characteristics as ECAs affect the final objective values, whereas shallow waters do

not. Each route segment that intersects an area with shallow water is penalized during

optimization, but the final travel time and fuel cost of a route are not affected by sailing

through these areas. The remainder of this section presents the findings of the case studies.

5.5.1 Emission Control Areas

To determine the effect of ECAs on the presented algorithm’s route decisions, we create

a problem instance based on problem instances used by Fagerholt et al. (2015), who re-

searched the economics of ship routing through ECAs. In the problem instance, we define

a voyage with departure at Florø, Norway, and Santander, Spain, as the destination. We

choose an ECA multiplier feca = 1.5933, to represent the fuel price differential used by

Fagerholt et al. In other words, the fuel price is 477.99USD/t within ECAs and 300.00USD/t

105

5.5. High-cost areas

outside. The results are compared to results from a reference scenario, excluding the ECA

price differential, i.e., feca,R = 1. Figure 5.9 shows the Pareto fronts of both scenarios and a

visualization of their routes.

Figure 5.9c shows that the routes excluding ECAs follow the shortest path. Because

the routes follow approximately the same path, only the top layered routes are visible, i.e.,

the routes with a low-speed profile (blue). The main difference between the routes in the

Pareto set of the reference simulation is the engine speed profile. The fastest route attains

the maximum engine speed at each leg, while the most economical route chooses the fuel-

efficient engine speed. The latter speed is, in this case, the minimum engine speed.

The routes considering ECAs follow three different paths, as shown in Figure 5.9d. These

major paths are characterized by the following:

R1: the routes following the shortest path. Expectedly, these routes have the least travel

time.

R2: the routes that partly avoid the ECA by cutting the corner and joining the other eco-

nomical routes when exiting the ECA.

R3: the most economical routes. These routes try to avoid the ECA entirely by heading

up north following the ECA border before going south between the landmasses of the

United Kingdom.

Figure 5.9b shows Pareto fronts of both simulations. The Pareto front of the reference

simulation has one distinct corner, while the front corresponding to the routes considering

ECAs have multiple corners. Each corner represents either a decision in the number of

engines used or a decision to follow a different route trajectory. Both fronts have a corner

at (3.7 d, 45.3 kUSD) due to switching in the number of engines used. For routes with

travel times less than 4.04 days, both Pareto fronts are approximately similar. These routes

represent the routes that follow the shortest paths (R1). The routes with travel times in

the interval [4.05, 4.28] correspond to R2. The next corner is at point (4.28 d, 39.37 kUSD),

representing the decision to follow either R2 or R3.

Figure 5.9a shows the average speed inside the ECA, the so-called ECA speed. Expect-

edly, this ECA speed is highest for both ECA-optimized and reference routes with short

travel times. As the travel time increases, there seem to be roughly three selected ECA

speeds for the ECA-optimized, while the reference routes do not have distinctive values for

ECA speeds. Specifically for routes with low fuel consumption, the ECA speed is generally

lowest for ECA-optimized routes. Thus, to attain the same travel time as the reference route,

an ECA-optimized route slows downwithin ECAs and accelerates outside these areas if fuel

consumption is minimized.

Fagerholt et al. studied this same problem instance. They selected three route options

from Florø to Santander. One taking the shortest path, another taking the most economical

path, and a third with balanced travel time and fuel cost. The trajectories R1 and R3 are

106

J.J. Seuren

4 5 6 7

10

12

14

Travel time [d]

A
v
er
ag

e
sp

ee
d
in

E
C
A

[k
n
]

4 5 6 7

30

40

50

Travel time [d]

F
u
el

co
st
[×

1
0
0
0
U
S
D
]

50°N

60°N

0°

F

S

50°N

60°N

0°

F

S

ECA-optimized Reference

(a) Average speeds inside ECAs (b) Pareto fronts

(c) Routes excluding ECAs (d) Routes including ECAs

8.8

10

11

12

13

14

15.2

N
o
m
in
al

sh
ip

sp
ee
d
[k
n
]

Figure 5.9. Results for ECA-optimized routes.
Results are compared to reference routes excluding additional costs due to ECAs. Departure
and destination are Florø, Norway, (F) and Santander, Spain, (S), respectively. The ECA in
consideration ismarked green. NB:Many routes roughly follow the samepath. Consequently,
colored legs represent the route leg speeds of the top-layered routes, i.e., routes with low fuel
cost.

107

5.5. High-cost areas

Table 5.9. Comparison of lengths of similar routes found by Fagerholt et al. (2015).
Besides the total route length, the length inside and outside the ECA is given.

ECA Non-ECA Total

Route option [nmi] ∆1 [%] [nmi] ∆1 [%] [nm] ∆1 [%]

R1 936 1.0 304 −16.4 1240 −4.1
R2 316 3.0 1076 5.3 1392 4.7
R3 41 20.9 1414 −0.8 1455 0.3

1 ∆ = value−reference value
reference value

× 100%

similar to the fastest and most economical routes from Fagerholt et al., respectively. The

balanced route from the considered article is similar to R2 but differs at the first route as it

passes the Shetland Islands at the south, while R2 passes the islands north.

Table 5.9 lists comparable results from this case study and the study from Fagerholt et

al. For all three route options, the presented algorithm finds routes within 5% difference

in length. The route length inside the ECA is approximately similar for R1 and R2, but

significantly longer for R3. The latter is because Fagerholt et al. manually select the short-

est route to the ECA border, whereas our approach finds an approximation of the shortest

route. Together with a small distance (41 nmi), this explains the large difference of 20%.

Furthermore, the route length of R1 outside the ECA is much shorter (by 16.4%) than the

similar route option found by Fagerholt et al. As our approach finds routes near shorelines,

the route lengths are reduced by ‘cutting corners’ at, for example, the west point of Nor-

mandy. Again, the Non-ECA route length for R1 is shortest; hence, relative differences are

expectedly higher.

From the result of this problem instance, we conclude that the presented approach is

able to find different route alternatives that have similar characteristics to route manually

selected by hand. Most noteworthy is that the approach is able to find route option R2,

which has a balance between longer travel time and additional fuel cost by partly avoiding

the ECA.

5.5.2 Shallow waters

The presented algorithm may take additional high-cost areas in which penalties are in-

curred but do not affect the final objective values. This demonstration provides experimen-

tal results for routes that avoid such areas. We choose areas with less than 200m of water

depth, representing restricted areas due to ship draft limitations. We note here that restrict-

ing routes to a 200m water depth does not provide realistic routes. However, the purpose

of this demonstration is to show the effect of taken into account areas with water depth

limitations. In addition, it aims to demonstrate the capability of the routing algorithm to

find alternative routes if an initial route passes a major canal, e.g., the Panama Canal.

For this instance, we select the port of Veracruz, Mexico, and Concepcion, Chile, as ori-

gin and destination, respectively. Figure 5.10 shows four routes. Each route represents a

108

J.J. Seuren

Initial
RS
RL
S
L

Figure 5.10. Illustration of routing through major shipping canals and avoiding shallow wa-
ters.
S and L denote short and long route options (i.e., pass and avoid Panama Canal). R denotes
a route disregarding shallow areas. Initial paths found on the graph are shown in gray.

combination of two decisions. A first decision is made to avoid shallow waters or ignore

these areas. The latter option is denoted by R. The second decision is to pass the Panama

canal, i.e., take the shortest route (S) or detour to avoid the canal fees, i.e., the long route

(L). Shallow waters with less than 200m of water depth are highlighted yellow in Figure

5.10.

The routes penalized for intersecting shallow water areas presented in the figure avoid

these areas in most cases. However, near the origin, both routes L and S intersect the first

encountered shallowwater area. This is probably due to the additional costs of avoiding this

area, rather than the algorithm not considering a detour around the area. That is because,

apart from the shortest path and the path avoiding ECAs, the initialization procedure finds

routes on the geodesic graph, avoiding shallow areas where possible. As a result, different

routes avoiding and passing shallow areas are adopted at an early stage of the execution.

5.6 Multi-objective evolutionary algorithm performance

This section provides the performance results of the solution approach tested using three

different MOEAs separately. The performance is measured according to the computation

time per route simulation, and the quality of the approximated Pareto front is measured

with performance metrics described in Section 4.2. These Pareto performance metrics are

denoted by

C: the coverage ratio,

109

5.6. Multi-objective evolutionary algorithm performance

HV R2: the binary hypervolume ratio, and

HV R3: the ternary hypervolume ratio.

Three problem instances are tested for which 50 route simulations are performed per tested

MOEA:

Current: Salvador, Brazil to Paramaribo, Surinamewith departure date and time 25Novem-

ber 2014, 0z, considering ocean currents.

Weather: Plymouth, England, toHavana, Cubawith departure date and time 24 September

2013, 12z, considering weather.

ECA: Rotterdam, Netherlands, to Houston, USA, considering ECAs but neglecting any

environmental condition effects.

We use a population size of 100 and run each simulation until 21,000 route evaluations are

performed. Since the population size is small, it is not likely that the true Pareto front will

be found. Nevertheless, it will give a clear indication of the convergence speed and the

distribution of the approximated Pareto front in the early stage of the algorithm execution.

To provide a fair comparison between the threeMOEAs, first, Section 5.6.1 discusses the

minimization of the number of excess evaluations for each simulation. Next, Section 5.6.2

discusses the computational results on the Pareto performance for each problem instance.

Finally, Section 5.6.3 compares the computational times for each MOEA set-up and gives a

general note on the computation time of the presented approach.

5.6.1 Overshoot of number of evaluations

Considering the expected difference in the number of (excess) evaluations between each

tested algorithm, we derive the expected overshoot in the number of evaluations for each

tested MOEA. This is not a standard procedure implemented by studies on MOEAs, but

may be necessary to provide a fair comparison if the overshoots are large. The overshoot E
is defined as the number of evaluations exceeding the threshold of 21,000 solution evalua-

tions.

SPEA2 creates a new population filled with newly created individuals in every genera-

tion. Thus, for an evaluation limit of 21,000 and population size 100, a total of 210 genera-

tions is created. Since the entire population is evaluated once per generation, SPEA2 has

zero overshoot, i.e.,

E[ESPEA2] = 0. (5.6)

ForNSGA-II, the expectation of the number of evaluations is dependent on the crossover

probability pbcr and mutation probability pbmut. The expected number of evaluations per

generation E[evalsNSGA-II] for the parameter settings as described in Section 5.1 can be ex-

110

J.J. Seuren

pressed as

E[evalsNSGA-II] =

(
1− 1

2
(1− pbcr)(1− pbmut)

)
N, (5.7)

=

(
1− 1

2
(1− 0.81)(1− 0.198)

)
100 = 93.16, (5.8)

whereN denotes the population size, pbcr the crossover probability, and pbmut themutation

probability. Then, the expected overshoot for NSGA-II for an evaluation limit of 21,000 is

given by

E[ENSGA-II] = 21, 000 mod 93.16 = 39. (5.9)

For M-PAES, the number of evaluations per generation has a different order of magni-

tude, as itsmutation and recombination procedures differ significantly from the procedures

of the other MOEAs. The number of evaluations per generation is equal to the number of

moves per generation. Moves are performed in the PAES and recombination procedures:

• in the PAES procedure, the worst-case number of moves is expressed by lopt(lfails−1),

where lopt and lfails are parameters described in Section 4.1.3, and

• in the recombination procedure, a maximum of crtrailsN moves is performed to fill

the new population.

As a result, the worst-case number of evaluations per generation WC[evalsM-PAES] for the

parameter settings as described in Section 5.1 is given by

WC[evalsM-PAES] = (lopt(lfails − 1) + crtrials)N, (5.10)

= ((5(3− 1) + 5) 100 = 1500, (5.11)

whereN denotes the population size. Several experiments showed that the number of eval-

uations per generation is approximately the worst-case number divided by two. Hence, by

choosing an evaluation limit of 21,000, the expected overshoot forM-PAES is approximately

zero, i.e.,

E[EM-PAES] ≈ 21, 000 mod
1500

2
= 0. (5.12)

The average number of excess evaluations, i.e., overshoot, is listed in Table 5.10 for each

problem instance and testedMOEA. Still,M-PAEShas a relatively large overshoot of roughly

1.5%. As a result, M-PAES may attain better Pareto fronts, compared to SPEA2 and NSGA-

II, as well as an increase in computation time. For the interpretation of the computational

results, we must take this into consideration.

Table 5.10. Average overshoot for each problem instance and tested MOEA.

Current Weather ECA Average

M-PAES 333.4 295.2 312.7 313.8
NSGA-II 42.3 39.6 44.2 42.0
SPEA2 0.0 0.0 0.0 0.0

111

5.6. Multi-objective evolutionary algorithm performance

5.6.2 Pareto performance

For each problem instance, Figure 5.11 shows box plots of the computational results in terms

of Pareto performance metrics and computation time. For the C metric, results are shown

using violin plots, because C typically returns values near 0 or 1. The binary performance

metrics, C andHV R2, take an approximation and reference Pareto set pair, i.e., (Z,Z ′). All

six possible combinations are presented, as a different order of input sets may yield differ-

ent scores, i.e., I(Z,Z ′) ̸= I(Z ′, Z). In the remainder of this section, we denote an arbitrary

Pareto approximation set obtained by M-PAES, NSGA-II, and SPEA2 by M , N , and S, re-

spectively.

Coverage ratio

The C metric gives an indication of the cardinality and dominance relations for two Pareto

sets. A high score for the C metric indicates that many solutions in Z ′ are (weakly) domi-

nated by at least one solution of Z.

There is a significant difference in the first two instances, Current and Weather, com-

pared to the third instance, ECA. The scores in the first two problem instances tend to take

a value near the extreme values of the interval (0, 1), while ECA instance scores are dis-

tributed over a larger part of the interval. As earlier discussed in Section 4.2, any pair of

C metric scores for a pair (Z,Z ′) in which neither C(Z,Z ′) = 1 nor C(Z ′, Z) = 1, indicates

that the two sets might be incomparable due to cyclic dominance relations. Therefore, the

C might provide unambiguous measures for the performance of the algorithms on the ECA

instance. However, for all cases, the score for S never takes a value near 1, indicating worse

performance than the other two algorithms regarding this metric.

For the first two problem instances, there is a wide spread in the C scores for all pairs,

indicating that there is no algorithm that structurally (weakly) dominates the other. This

is explained by the fact that C metric takes a value near 1 (0) if Z mostly weakly dominates

(is dominated by) Z ′.

Regarding this metric, M-PAES seems to perform better than NSGA-II, as C(M,N) > 0.5

and C(N,M) < 0.5 for all instances. On average, M contains more solutions that weakly

dominate N , and vice versa. For the comparisons regarding SPEA2, C seems to provide

worse performance compared to the other algorithms. Although, it is true that for some

cases, the median of SPEA2’s coverage ratio is large, such that C(S,Z ′) > C(Z ′, S), for

M,N ∈ Z ′, the score for SPEA2 tends to be 0 rather than take a value near 1. Especially on

the ECA instance, SPEA2 performs worse than every other algorithm, as mentioned earlier.

This may be caused by a difference in the cardinality of S, compared to the cardinalities of

bothM and N , such that |S| < |M | and |S| < |N |.

Hypervolume ratios

The ternary (HV R3) and binary (HV R2) hypervolume ratios indicate the proportion of the

hypervolume in the objective space covered by the union of all input sets. The median of

112

J.J. Seuren

0

0.2

0.4

0.6

0.8

1

C

Current Weather ECA

(M
, N
)

(M
, S
)

(N
, M

)

(N
, S
)

(S
, M

)

(S
, N
)

0.7

0.8

0.9

1

H
V
R

2

(M
, N
)

(M
, S
)

(N
, M

)

(N
, S
)

(S
, M

)

(S
, N
)

(M
, N
)

(M
, S
)

(N
, M

)

(N
, S
)

(S
, M

)

(S
, N
)

0.7

0.8

0.9

1

H
V
R

3

M N S

100

200

300

400

500

C
o
m
p
u
ta
ti
o
n
ti
m
e
[s
]

M N S M N S

Figure 5.11. Computational results for three tested MOEAs.
M, N, and S denote M-PAES, NSGA-II, and SPEA2, respectively. For each algorithm, 50 simu-
lations are performed per problem instance (Current, Weather, and ECA). Orange horizontal
lines depict the median, and black horizontal lines mark the first (Q1) and third (Q3) quar-
tiles. For the box plots, the lower whisker is at the lowest value aboveQ1− 1.5(Q3−Q1), and
the upper whisker at the highest value below Q3 + 1.5(Q3−Q1).

113

5.6. Multi-objective evolutionary algorithm performance

HV R3 corresponding to the ocean current simulations is highest for theM-PAES algorithm,

with NSGA-II taking a close second place. However, for theWeather and ECA instance, the

NSGA-II has a slightly better median score for HV R3 than M-PAES. This means that the

ternary hypervolume ratios of both algorithms are of comparable magnitude inmany cases.

For all instances, SPEA2 has by far the lowest median but still has a score of more than 0.85

in most cases.

The binary hypervolume ratios provide similar results and give a more detailed com-

parison between a pair of algorithms. The results for HV R2 confirm the large difference

between SPEA2 and both M-PAES and NSGA-II Furthermore, M-PAES performs better in

theWeather instance compared toNSGA-II but performs slightly worse in the remaining in-

stances. Both ratiosHV2(M,N) andHV2(M,N) have large overlapping interquartile ranges

(IQRs), indicating that neither M-PAES nor NSGA-II structurally covers a larger hypervol-

ume than the other.

Overall, NSGA-II yields the largest hypervolume ratio on average for both the ternary as

well as the binary metric. And, both M-PAES and NSGA-II outperform SPEA2 regarding

hypervolumes. In other words, the Pareto set of NSGA-II dominates the largest area in the

objective space, and M-PAES is a close second.

The results from all three problem instances indicate that SPEA2 has slightly worse per-

formance than the other two algorithms. M-PAES and NSGA-II generated similar results,

and no clear winner can be appointed regarding the performance metrics.

However, it should be noted that the number of evaluations might be different for the

three algorithms, as described earlier in this section. M-PAES performs approximately

21,314 evaluations, while SPEA2 evaluates exactly 21,000 solutions during the simulation.

The difference in the performance of SPEA2 compared to NSGA-II and M-PAES could be

partially explained by the difference in the total number of evaluations. It is, however, a

complicated task to quantify this effect.

Figure 5.12 shows Pareto front comparisons for the ocean current and weather routing

simulations that are, to some extent, representative for the numerous simulations. The

fronts corresponding to SPEA2 have slightly lower cardinality than the fronts of both M-

PAES andNSGA-II. This difference in cardinality contributes to the difference in the C scores.
Furthermore, the Pareto sets of NSGA-II and M-PAES do not clearly dominate one another.

On the weather route simulation, NSGA-II performs slightly better at longer travel times,

while M-PAES finds a wider spread in extreme points.

5.6.3 Computational performance

For all three problem instances, NSGA-II has the shortest computation time, and M-PAES

the highest. The computation times of NSGA-II, SPEA2, and M-PAES, are 146.9 s, 182.9 s,

and 264.8 s, respectively, on average for all three instances. Hence, for this set-up, NSGA-II

is fastest, and SPEA2 (M-PAES) has 24.5% (80%) longer computation time on average.

114

J.J. Seuren

1.4 1.6 1.8 2.0 2.2 2.4
Travel time [d]

55

60

65

70

75

80
Fu

el
 c

os
t [

U
SD

, ×
10
00

]

M-PAES
NSGA-II
SPEA2

(a) Current

2.25 2.50 2.75 3.00 3.25 3.50 3.75
Travel time [d]

80

90

100

110

120

130

Fu
el

 c
os

t [
U

SD
, ×
10
00

]

M-PAES
NSGA-II
SPEA2

(b)Weather

Figure 5.12. Example Pareto fronts for three multi-objective evolutionary algorithms.
Problem instances Current and Weather are described in the text.

Although there is a small difference in the total number of evaluations performedby each

algorithm (see Table 5.10), it is presumably not the cause of the difference in computation

time. That is, the difference in the number of evaluations is at most 1.5%, whereas the

difference in computation times is much higher. Thus, we conclude NSGA-II is the fastest

algorithm, despite a small difference in the number of evaluations.

We summarize our findings from the performance assessment of the threeMOEAswith

the following:

• M-PAES performs best regarding the C metric; NSGA-II takes a close second place.

• For both hypervolume metrics, NSGA-II yields the highest average score. M-PAES

finds slightly lower values, and SPEA2 performs significantly worse.

• NSGA-II yields the shortest computation time of 146.9 s on average. SPEA2 and M-

PAES have, on average, 24.5% and 80% longer computation times, respectively.

NSGA-II has the shortest computation time and performs approximately equally well to

M-PAES concerning the performance metrics. Thus, NSGA-II is best suited for solving the

MOSWR problem, compared to M-PAES and SPEA2.

115

6 Conclusions and recommendations for further work

Following upon our findings presented in the previous chapter, this chapter provides con-

clusions and recommendations for further research. First, Section 6.1 concludes our work

and answers the research questions previously stated inChapter 1. Then, recommendations

for further research are provided in Section 6.2.

6.1 Conclusions

This thesis aims to answer the following research question:

Canwe develop a solution approach for theMulti-Objective ShipWeather Route problem

which considers different routing aspects and has better performance than existing ship

routing methods?

To answer this question, first, a formal definition of the MOSWR problem is given and, sec-

ondly, an evolutionary approach to solving this problem is presented. We mathematically

formulated the MOSWR problem such that it is generic for a variety of objectives and a se-

lection of environmental conditions, such as weather and ocean currents. A generic formu-

lation provides a flexible framework for ship routing to various ship types and environmen-

tal conditions. The objectives considered are a ship route’s travel time, and total fuel cost,

depicting opposing criteria, as improving one deteriorates the other. This suggests an opti-

mization that is able to identify Pareto optimum routes. The presented solution approach

uses an evolutionary framework to identify a set of Pareto optimum routes in a single run.

It handles multiple objectives separately, as aggregating opposing objectives into a single

objective function becomes difficult to comprehend. Besides multi-objective optimization,

the presented approach has the following main features:

Versatile initialization procedure Find a diverse initial population of routes on a variable

density graph. The procedure provides the flexibility of a graph search approach,

while the final solutions are not subjected to a discrete graph. That is, it can obtain a

variety of initial routes bymanually (dis)regarding certainwaterways or special areas

and, subsequently, feeding the initial routes to the continuous evolutionary stage.

Continuous optimization Find a set of smooth routes in continuous space that are not re-

stricted to a set of predefined paths or an arbitrary grid.

Variable engine speed profile Enable a variable engine speed during along the route, al-

lowing for, e.g., slow-steaming within high-cost areas, or avoiding adverse environ-

mental conditions.

116

J.J. Seuren

Ocean current Consider the effect of ocean current on the ship’s speed and direction using

historical ocean current information.

Weather Include the effect of weather on the ship speed using a semi-empirical method

(Kwon, 2008) andweather information based on either historical data orweather fore-

casts.

Emission Control Areas Take into account additional costs in high-cost areas, such as Emis-

sion Control Areas.

Shallow waters Find routes that avoid shallow waters.

Shipping canals Find routes passing or avoiding major shipping canals, e.g., the Panama

and Suez Canal.

Spatial indexing Significantly reduce computation time by applying a fast line intersection

method based on R-tree spatial indexing.

We formulated five sub questions to provide a substantiated answer to the main research

question. In the following, we answer each sub-question separately.

SQ1. What is the effect of ocean currents on the set of solutions to theMOSWRproblem?

The value of considering ocean current effects in ship navigation is widely acknowledged

in ship routing literature. McCord et al. (1999) estimated that the commercial shipping

industry could save about 1% in annual fuel costs by ocean current routing. In regions

with strong western boundary currents (WBCs), the potential fuel savings are even higher.

For the Gulf Stream region, a case study considering time-varying ocean currents shows

that the presented approach finds fuel savings of up to 7.8% and travel time reductions of

up to 3.2% for ships with a nominal speed of 15.2 knots. This includes most tankers, bulk

carriers, and freighters.

In a second case study considering the Kuroshio Current, our approach is tested against

the exact approach presented by Tanaka and Kobayashi (2019). It turns out that our ap-

proach finds good solutions for routes with less fuel consumption but slightly worse solu-

tions for routes with less travel time. This was to be expected as ourmetaheuristic approach

was not guaranteed to outperform an exact approach. However, the presented approach

finds smoother routes and proves to be more versatile for different navigation areas and

constraints. Moreover, the total time required to find a set of Pareto optimal routes is much

shorter, making it more suitable for practical applications.

Other WBCs such as the Brazil, Agulhas, and East Australian currents are similar to the

Gulf Stream andKuroshio in strength and dynamic activity (Chang et al., 2015). According

to accumulated ship tracking data, almost all global ship routes pass one or more of these

WBCs (Kiln, 2012). Therefore, the potential benefit of considering ocean currents in ship

routing is apparent.

117

6.1. Conclusions

SQ2. What is the effect of weather on the set of solutions to the MOSWR problem?

Expectedly, in calm weather, the shortest route is the optimum one. In a rough weather

situation, the routing decision becomes more complex as the shortest route is no longer the

best one. The optimum becomes a trade-off between (1) additional fuel costs due to ship

speed loss and (2) fuel savings by circumnavigation. In general, we find that areas with

wind speeds greater than 6 kn – 7 kn are avoided.

For the rough weather scenarios considered in this study, it turns out that applying op-

timization yields a fuel cost reduction of up to 4.3% or a 3.2% shorter travel time. The

greatest reductions are achieved for the routes with low fuel costs.

SQ3. What is the effect of Emission Control Areas on the set of solutions to theMOSWR

problem?

Stricter controls have been imposed within ECAs to minimize airborne emissions from

ships. To comply with these regulations, many ship operators choose to switch to Ultra-

Low Sulfur Fuel Oil (ULSFO) when sailing inside ECAs. ULSFO is more expensive than

fuel types with higher sulfur content, which can be used outside ECAs. The presented

approach handles ECAs in two ways:

1. It finds routes with longer distances that avoid ECAs, reducing the consumption of

expensive fuel.

2. Another result is that ships sail at lower speeds within and higher speeds outside

ECAs so that less of the more expensive fuel is used and longer travel time is compen-

sated for outside ECAs.

These effects depend on the price spread of the two fuel types and become stronger if the dif-

ference increases. The presented approach finds approximately similar routes as presented

in (Fagerholt et al., 2015), who manually constructed different route options for testing the

effect of ECAs. A comparison with these routes shows that our approach finds plausible

results for ECA-optimized routes.

SQ4. What is the effect of a variable engine speed profile in combination with ocean cur-

rent, weather effects, or Emission Control Areas on the set of solutions to the MOSWR

problem?

In general, varying the engine speed may significantly reduce fuel costs if one does not

seek to find the route with the least time. To minimize travel time, a simulation with the

maximum engine speed setting is sufficient. Setting a constant engine speed imposes an

additional constraint to the MOSWR problem, leading to faster convergence and providing

a similar least-time route returned by the simulation with a variable engine speed profile.

Although a constant engine speed setting only returns a single solution in the Pareto front,

because in this case, the fuel consumption rate is constant.

Regardingmore balanced routes with lower fuel costs and longer travel times, a variable

118

J.J. Seuren

engine speed setting outperforms constant speed. The presented solution approach varies

the engine speed in three scenarios:

1. Inside ECAs, the engine speed is reduced to save fuel and increased outside to com-

pensate for lost travel time.

2. In the case of time-varying ocean currents, slightly increasing the ship speed to catch

a favorable current may result in better objectives.

3. Most significant is the effect of enabling variable engine speed for weather optimiza-

tion: for routes with low fuel costs, the savings in both objectives can be very large.

SQ5. What is the performance of a selection of multi-objective evolutionary algorithms

on solving the MOSWR problem considering different environmental conditions?

Concerning the demands of the MOSWR problem, it is expected that the objective func-

tions show humps and hollows when environmental constraints govern optimization re-

sults. Therefore, the solution method should be able to overcome local optima. With the

help of MOEAs, optimization criteria can easily be extended or disregarded, making it

a flexible approach. The stochastic nature of the evolutionary algorithms serves well for

the simultaneous search of several Pareto optimal solutions over the entire solution space.

These favorable characteristics make an MOEAwell suited as a framework for our solution

approach.

From the literature, we selected threeMOEAs to be tested according to their performance

in solving the MOSWR problem: (1) M-PAES (Knowles & Corne, 2000), (2) NSGA-II (Deb

et al., 2002), and (3) SPEA2 (Zitzler et al., 2001). The performance ismeasuredwithmetrics

designed for multi-objective optimization problems and according to the computation time.

On three different routing problem instances, M-PAES and NSGA-II were able to main-

tain a better spread of solutions compared to SPEA2 and converge better in the obtained

Pareto front. The leading cause is likely due to a better diversity preserving mechanism

used in both M-PAES and NSGA-II, as the C metrics provided structurally lower scores for

the Pareto fronts obtained by SPEA2 More importantly, NSGA-II shows to have the short-

est computation time among the three MOEAs studied here. While M-PAES finds a Pareto

front as good as the one obtained by NSGA-II, its computation time is roughly 50% longer.

With the properties of an effective diversification mechanism, a fast nondominated sort-

ing procedure, and the least required parameter settings among the MOEAs tested, NSGA-

II is best suited to be used in our evolutionary approach to solving the MOSWR problem.

6.1.1 Discussion on the computational performance

A frequent requirement for the development of an optimization algorithm is the reduction

of computational effort. For evolutionary algorithms, the computational effort within one

generation depends on the population size, the number of free variables, and the number

of objectives. The free variables of a route represent the route evaluation points for deter-

119

6.1. Conclusions

mining environmental effects and area intersections. The route evaluation points must be

tight enough to recognize the pattern of environmental conditions.

During an optimization, tens of thousands of routes are investigated. And each route

containing hundreds or thousands of route evaluationpoints, depending on the route length

and whether environmental conditions are considered. Thus, a fast method to evaluate a

route’s fitness is necessary. For this purpose, the route evaluation is based on the following:

• A fast semi-empirical method to obtain ship speed reduction due to weather (Kwon,

2008).

• A simple to use a polynomial equation to determine the actual ship speed given the

ocean current velocity and nominal ship speed.

• Fast access of large environmental data arrays avoiding excess memory using paral-

lelized computing (Dask Development Team, 2016).

• Memoization of expensive calculations to avoid numerous recomputations.

• An improved R-tree spatial indexing technique to test for route segment intersections

with impassable or high-cost areas. Compared to conventional line intersection meth-

ods, this method provides an additional speed improvement by subdividing large

complex geometries.

In the present setup, the whole optimization converges typically within 3min – 5min, de-

pending on the route length. The most time-consuming element is the route intersection

test followed closely by the determination of dominance relationships used for route selec-

tion and updating the Pareto front. There is a strong potential to accelerate the computation

time, which we discuss in Section 6.2.

Nevertheless, the reported computation time makes our approach suitable for on-board

application and tactical voyage planning in an early stage because it returns multiple route

alternatives in a single run. Since the number of returned solutions is large in general, an

external method is required to select a single optimal solution according to the decision

maker’s preferences.

In general, we conclude that the presented approach proves to be a valuable tool for ship

routing in the presence of ocean currents, weather, Emission Control Areas, and certain con-

straints on the navigation area. It provides a set of Pareto optimal routes and offers fully

customizable support for multiple optimization criteria, ship characteristics, and both static

and dynamic constraints. Compared to other multi-objective approaches to ship weather

routing, our approach finds routes with similar objective values that show to be more real-

istic and are generally found within shorter computation time.

All of the above make the presented approach the best choice for a practical solution

method to the Multi-Objective Ship Weather Routing problem. Since it considers several

aspects of ship navigation and finds a set of Pareto optimal routes within a reasonable time,

120

J.J. Seuren

this routing algorithm is a useful tool for tramp trade shipping companies interested in

optimizing ocean voyages according to their preferences.

6.2 Recommendations for further work

1. A more sophisticated ship performance model is required to calculate the ship re-

sponses to different sea conditions. The ship performance can be investigated in three

ways: (1) numerical simulation, (2) towing tank experiments, and (3) data analysis

obtained from ship trials.

2. The current approach assumes perfect information on environmental conditions. To

account for inaccuracies in weather forecasts, one could choose to use ensemble fore-

casts instead. With ensemble weather forecasts, the robustness of a ship route can be

minimized as proposed by Hinnenthal and Clauss (2010).

3. Future research should validate whether the altimetry-derived, historical ocean cur-

rents are a good representation of actual, future ocean currents.

4. To navigate near shallowwaters, the ocean bathymetry data should be processed such

that it defines the maximum allowable water depth for a specific ship.

5. Safety limitations on rolling, slamming, the amount of green water (deck wetness),

and other hazards in adverse weather conditions should be considered in future stud-

ies. Furthermore, the risk of piracy attacks inside piracy zones can be easily included

in the current approach as an additional optimization criterion or constraint.

6. Our evolutionary approach allows for parallelization of route evaluation, which may

significantly reduce the overall computation time. For this to work, memoization (i.e.,

caching of intermediate results) must be performed in an overarching process, such

that parallel processes do not perform repetitive computations.

7. As an alternative approach to the GDGG used in the initialization procedure, a vis-

ibility graph could return initial routes containing fewer waypoints. As a result, no

excess waypoints need to be removed in the early stage of the algorithm to obtain

better routes.

A visibility graph is a graph of intervisible locations, typically for a set of geometries

(i.e., impassable areas) in the Euclidean plane. In this case, the visibility graph’s arcs

should be modified to represent great circle paths on the Earth’s surface.

8. Two additional move operators for the route mutation should be tested: (1) merge

waypoints and (2) split waypoints. The first operator selects two consecutive way-

points for deletion and inserts a waypoint inside an arbitrary area defined by the two

selectedwaypoints. The split operator is the counter variant, which selects awaypoint

for deletion and inserts two waypoints inside an arbitrary area around the selected

waypoint. These operators might improve the algorithm’s local search and possibly

121

6.2. Recommendations for further work

the convergence to the true Pareto front.

122

References

Admiralty manual of navigation (Vol. 1). (1987). The Stationery Office.

Antonio, F. (1992). Faster line intersection. In D. Kirk (Ed.), Graphics gems III (IBM version)

(pp. 199–202). Kaufmann, Morgan.

Becker, J. J., Sandwell, D. T., Smith,W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor,

J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Trimmer,

R., Von Rosenberg, J., Wallace, G., & Weatherall, P. (2009). Global bathymetry and

elevation data at 30 arc seconds resolution: SRTM30_PLUS. Marine Geodesy, 32(4),

355–371.

Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the National

Academy of Sciences, 38(8), 716–719.

Bijlsma, S. J. (1975). On minimal-time ship routing (Doctoral dissertation). Delft University

of Technology. Delft, The Netherlands.

Bleick, W. E., & Faulkner, F. D. (1965). Minimal-time ship routing. Journal of Applied Meteo-

rology, 4(2), 217–221.

Bosman, P. A., & Thierens, D. (2003). The balance between proximity and diversity in mul-

tiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation,

7(2), 174–188.

Bowditch, N. (1802). The American practical navigator. National Image; Mapping Agency.

Chang, Y.-C., Tseng, R.-S., Chen, G.-Y., Chu, P. C., & Shen, Y.-T. (2013). Ship Routing Utiliz-

ing Strong Ocean Currents. Journal of Navigation, 66(6), 825–835.

Chang, Y.-C., Tseng, R.-S., Chu, P. C., & Shao, H.-J. (2015). Global energy-saving map of

strong ocean currents. Journal of Navigation, 69(1), 75–92.

Chen, H. (2013).Voyage optimization versus weather routing (tech. rep.). JeppesenMarine Inc.

a Boeing Company.

Chu, P. C., Miller, S. E., & Hansen, J. A. (2015). Fuel-saving ship route using the navys

ensemble meteorological and oceanic forecasts. The Journal of Defense Modeling and

Simulation, 12(1), 41–56.

Collette, Y., & Siarry, P. (2004). Multiobjective optimization. Springer.

DaskDevelopment Team. (2016).Dask: Library for dynamic task scheduling. RetrievedOctober

13, 2020, from https://dask.org/

Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer

Methods in Applied Mechanics and Engineering, 186(2-4), 311–338.

Deb, K., A, P., Agarwal, S., & T,M. (2002). A fast and elitist multiobjective genetic algorithm:

NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

Deb, K., & Goel, T. (2001). A hybrid multi-objective evolutionary approach to engineering

shape design. In E. Zitzler, L. Thiele, K. Deb, C. A. Coello Coello, & D. Corne (Eds.),

Evolutionary multi-criterion optimization (pp. 385–399). Springer.

123

https://dask.org/

References

Fagerholt, K., Gausel, N. T., Rakke, J. G., & Psaraftis, H. N. (2015). Maritime routing and

speed optimizationwith emission control areas.TransportationResearch Part C: Emerg-

ing Technologies, 52, 57–73.

Fagerholt, K., Laporte, G., & Norstad, I. (2010). Reducing fuel emissions by optimizing

speed on shipping routes. Journal of the Operational Research Society, 61(3), 523–529.

Clarkson Research Services Limited. (2015). The tramp shipping market (tech. rep.). London,

United Kingdom.

Japan Oceanographic Data Center. (2015). J-DOSS: JODC data on-line service system. Re-

trieved October 13, 2020, from http://www.jodc.go.jp/service.htm

National Centers for Environmental Prediction. (2020). Global forecast system. Retrieved Oc-

tober 13, 2020, from https://www.ncdc.noaa.gov/data-access/model-data/model-

datasets/global-forcast-system-gfs

National Imagery and Mapping Agency. (2000). World geodetic system 1984 (3rd ed., tech.

rep. TR8350.2). Department of Defense. Bethesda, MD.

United Nations Conference on Trade and Development. (2019). Review of maritime transport

2019 (tech. rep.). United Nations. Geneva, Switzerland.

World Trade Organization. (2019). World trade statistical review 2019 (tech. rep.). Geneva,

Switzerland.

Fonseca, C. M., & Fleming, P. J. (1998). Multiobjective optimization andmultiple constraint

handling with evolutionary algorithms. IEEE Transactions on Systems, Man, and Cy-

bernetics, 28(1), 26–37.

Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A., Parizeau, M., & Gagné, C. (2012). DEAP:

Evolutionary algorithms made easy. Journal of Machine Learning Research, 13, 2171–

2175.

GlobCurrent project. (2015).The combined geostrophy+Ekman currents. RetrievedOctober 13,

2020, from http://products.cersat.fr/details/?id=CLS-L4-CUReul_hs-ALT_SUM-

v01.0

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. SIGMOD

Record, 14(2), 47–57.

Hagiwara, H. (1989). Weather routing of (sail-assisted) motor vessels (Doctoral dissertation).

Delft University of Technology. Delft, The Netherlands.

Hagiwara,H., & Spaans, J. A. (1987). Practicalweather routing of sail-assistedmotor vessels.

Journal of Navigation, 40(1), 96–119.

Haltiner, G., Hamilton, H., & ’Arnason, G. (1962). Minimal-time ship routing. Journal of

Applied Meteorology, 1(1), 1–7.

Hart, P. E.,Nilsson,N. J., &Raphael, B. (1968).A formal basis for the heuristic determination

of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2),

100–107.

Hinnenthal, J., & Clauss, G. (2010). Robust Pareto-optimum routing of ships utilising de-

terministic and ensemble weather forecasts. Ships and Offshore Structures, 5(2), 105–

114.

Holland, J. H. (1992). Adaptation in natural and artificial systems. The MIT Press.

124

http://www.jodc.go.jp/service.htm
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
http://products.cersat.fr/details/?id=CLS-L4-CUReul_hs-ALT_SUM-v01.0
http://products.cersat.fr/details/?id=CLS-L4-CUReul_hs-ALT_SUM-v01.0

J.J. Seuren

Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2011). Sequential model-based optimization

for general algorithm configuration. International Conference on Learning and Intelli-

gent Optimization, 507–523.

Inman, J. (1849).Navigation and nautical astronomy, for the use of British seamen (4th ed.). Fran-

cis & John Rivington.

James, R. W. (1957). Application of wave forecasts to marine navigation (Doctoral dissertation).

Washington, DC, U.S. Naval Oceanographic Office.

Jung, J.-S., & Rhyu, K. S. (1999). A study on the optimal navigation route decision using A*

algorithm. Journal of the Korea Society of Computer and Information (in Korean), 4(1),

38–46.

Kahler, A. (2009). Creating an icosphere mesh in code. Retrieved October 13, 2020, from http:

//blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html

Kelso, N. V., & Patterson, T. (2018). Global bathymetry [v4.1.0]. Natural Earth. Retrieved Oc-

tober 13, 2020, from https://www.naturalearthdata.com/downloads/10m-physical-

vectors/10m-bathymetry/

Kiln. (2012). Ship map. UCL Energy Institute. https://www.shipmap.org/

Klompstra, M. B., Olsder, G. J., & van Brunschot, P. K. (1992). The isopone method in opti-

mal control. Dynamics and Control, 2(3), 281–301.

Knowles, J. D., & Corne, D. W. (1999). The Pareto archived evolution strategy: A new base-

line algorithm for Paretomultiobjective optimisation.Proceedings of the 1999 Congress

on Congress on Evolutionary Computation, 1, 98–105.

Knowles, J. D., & Corne, D. W. (2000). M-PAES: A memetic algorithm for multiobjective

optimization. Proceedings of the 2000 Congress on Evolutionary Computation, CEC 2000,

1, 325–332.

Knowles, J. D., & Corne, D. W. (2002). On metrics for comparing nondominated sets. Pro-

ceedings of the 2002Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600),

1, 711–716.

Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization using genetic

algorithms: A tutorial. Reliability Engineering & System Safety, 91(9), 992–1007.

Kwon, Y. J. (2008). Speed loss due to added resistance inwind andwaves.TheNaval Architect

- RINA, 14–16.

Lara, A., Sanchez, G., Coello Coello, C. A., & Schutze, O. (2010). HCS: A new local search

strategy for memetic multiobjective evolutionary algorithms. IEEE Transactions on

Evolutionary Computation, 14(1), 112–132.

Leutenegger, S. T., Lopez, M. A., & Edgington, J. (1997). STR: A simple and efficient algo-

rithm for R-tree packing.Proceedings 13th International Conference onData Engineering,

497–506.

Li, X., Wang, H., & Wu, Q. (2017). Multi-objective optimization in ship weather routing.

2017 Constructive Nonsmooth Analysis and Related Topics.

Lo, H. K., &McCord,M. R. (1998). Adaptive ship routing through stochastic ocean currents:

General formulations and empirical results. Transportation Research Part A: Policy and

Practice, 32(7), 547–561.

125

http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html
http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html
https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-bathymetry/
https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-bathymetry/
https://www.shipmap.org/

References

Marie, S., & Courteille, E. (2009). Multi-objective optimization of motor vessel route. The

International Journal on Marine Navigation and Safety of Sea Transportation, 3(2), 411–

418.

International Convention for the Prevention of Pollution from Ships (Vol. Annex VI). (2005).

Martí, L., García, J., Berlanga, A., & Molina, J. M. (2016). A stopping criterion for multi-

objective optimization evolutionary algorithms. Information Sciences, 367–368, 700–

718.

McCord,M. R., Lee, Y.-K., & Lo, H. K. (1999). Ship routing through altimetry-derived ocean

currents. Transportation Science, 33(1), 49–67.

Montes, A. A. (2005).Network shortest path application for optimum track ship routing (Doctoral

dissertation). Naval Postgraduate School. Montery, CA.

Ngatchou, P., Zarei, A., & El-Sharkawi, A. (2005). Pareto multi objective optimization. Pro-

ceedings of the 13th International Conference on, Intelligent Systems Application to Power

Systems, 84–91.

Notteboom, T. E. (2006). The time factor in liner shipping services. Maritime Economics &

Logistics, 8(1), 19–39.

Padhy, C. P. (2008). Application of wave model for weather routing of ships in the North

Indian Ocean. Natural Hazards, 44(3), 373–385.

Psaraftis, H. N., & Kontovas, C. A. (2013). Speedmodels for energy-efficient maritime trans-

portation: A taxonomy and survey. Transportation Research Part C: Emerging Technolo-

gies, 26, 331–351.

Riquelme, N., Von Lücken, C., & Baran, B. (2015). Performance metrics in multi-objective

optimization. 2015 Latin American Computing Conference (CLEI), 1–11.

Roh, M.-I. (2013). Determination of an economical shipping route considering the effects

of sea state for lower fuel consumption. International Journal of Naval Architecture and

Ocean Engineering, 5(2), 246–262.

Rudolph, G. (1994). Convergence analysis of canonical genetic algorithms. IEEE Transac-

tions on Neural Networks, 5(1), 96–101.

Sahr, K., White, D., & Kimerling, A. J. (2003). Geodesic discrete global grid systems. Cartog-

raphy and Geographic Information Science, 30(2), 121–134.

Sen, D., & Padhy, C. P. (2015). An approach for development of a ship routing algorithm for

application in the North Indian Ocean region. Applied Ocean Research, 50, 173–191.

Shao, W., Zhou, P., & Thong, S. K. (2012). Development of a novel forward dynamic pro-

grammingmethod forweather routing. Journal ofMarine Science and Technology (Japan),

17(2), 239–251.

Srinivas, N., & Deb, K. (1994). Multiobjective optimization using nondominated sorting in

genetic algorithms. Evolutionary Computation, 2(3), 221–248.

Szapczyska, J. (2007). Multiobjective approach to weather routing. TransNav, the Interna-

tional Journal on Marine Navigation and Safety of Sea Transportation, 1(3), 273–278.

Szapczyska, J. (2015). Multi-objective weather routing with customised criteria and con-

straints. Journal of Navigation, 68(2), 338–354.

126

J.J. Seuren

Tanaka, M., & Kobayashi, K. (2019). A route generation algorithm for an optimal fuel rout-

ing problem between two single ports. International Transactions in Operational Re-

search, 26(2), 529–550.

van Veldhuizen, D. A. (1999). Multiobjective evolutionary algorithms: Classifications, analyses,

and new innovations (Doctoral dissertation). Air Force Institute of Technology. Day-

ton, OH.

deWit, C. (1990). Proposal for low cost ocean weather routeing. Journal of Navigation, 43(3),

428–439.

Veneti, A., Konstantopoulos, C., & Pantziou, G. (2018). Evolutionary computation for the

ship routing problem. In C. Konstantopoulos & G. Pantziou (Eds.), Modeling, com-

puting and data handlingmethodologies formaritime transportation (pp. 95–115). Springer.

Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with applica-

tion of nested equations. Survey Review, 23(176), 88–93.

Wessel, P., & Smith, W. H. F. (1996). Global self-consistent, hierarchical, high-resolution

shoreline database. Journal of Geophysical Research: Solid Earth, 101(B4), 8741–8743.

White, D., Kimerling, A. J., Sahr, K., & Song, L. (1998). Comparing area and shape distor-

tion on polyhedral-based recursive partitions of the sphere. International Journal of

Geographical Information Science, 12(8), 805–827.

Yap, P. (2002). Grid-based path-finding. In R. Cohen & B. Spencer (Eds.), Advances in artifi-

cial intelligence (pp. 44–55). Springer.

Zaccone, R., Ottaviani, E., Figari, M., & Altosole, M. (2018). Ship voyage optimization for

safe and energy-efficient navigation: A dynamic programming approach.Ocean En-

gineering, 153, 215–224.

Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algo-

rithms: Empirical results. Evolutionary computation, 8(2), 173–195.

Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evo-

lutionary algorithm. TIK-report, 103.

Zitzler, E., & Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms

— a comparative case study. In A. E. Eiben, T. Bäck,M. Schoenauer, &H.-P. Schwefel

(Eds.), Parallel problem solving from nature (pp. 292–301). Springer.

Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: A comparative case

study and the strength Pareto approach. IEEE Transactions on Evolutionary Computa-

tion, 3(4), 257–271.

Zitzler, E., Thiele, L., Laumanns,M., Fonseca, C.M., &da Fonseca, V.G. (2003). Performance

assessment of multiobjective optimizers: An analysis and review. IEEE Transactions

on Evolutionary Computation, 7(2), 117–132.

Zoppoli, R. (1972). Minimum-time routing as an n-stage decision process. Journal of Applied

Meteorology, 11(3), 429–435.

Zwillinger, D. (Ed.). (1995). CRC standard mathematical tables and formulae. CRC Press.

127

Appendices

128

A Vincenty’s inverse method

Vincenty’s inverse method is an iterative method used in geodesy to calculate the distance

between two points on the surface of a spheroid, developed by Vincenty (1975). It is based

on the assumption that the figure of the Earth is an oblate spheroid; hence, is more accurate

than methods that assume a spherical Earth.

Given the coordinates of the two points (ϕ1, λ1) and (ϕ2, λ2), the inverse problem finds

the length of the geodesic s and azimuth between the given points. Algorithm 2 describes

the part of Vincenty’s inverse method that calculates the length of the geodesic s.

We define the following notation:

a major semi-axis of the ellipsoid (3443.918,467 nmi in WGS-84 (National

Imagery and Mapping Agency, 2000)).

f = a−b
a flattening of the ellipsoid (1/298.257,223,563 in WGS-84 (National Im-

agery and Mapping Agency, 2000)).

b minor semi-axis of the ellipsoid.

ϕ1, ϕ2 latitude of the points, positive north of the equator.

λ1, λ2 longitude of the points, positive east.

L = λ2 − λ1 difference in longitude.

s length of the geodesic.

α azimuth of the geodesic at the equator.

λ difference in longitude on an auxiliary sphere.

σ angular distance on the sphere between the two points.

σ1 angular distance on the sphere from the equator to the first point.

σm angular distance on the sphere from the equator to the midpoint of the

line.

129

Algorithm 2 Vincenty’s inverse problem

1: Ui = (1− f) tanϕi, for i = 1, 2

2: λ = L ◃ first approximation

3: while the change in λ is not negligible do

4: sin2 σ = (cosU2 sinλ)
2 + (cosU1 sinU2 − sinU1 cosU2 cosλ)

2

5: cosσ = sinU1 sinU2 + cosU1 cosU2 cosλ

6: tanσ = sinσ/cosσ

7: sinα = cosU1 cosU2 sinλ/sinσ

8: cos 2σm = cosσ − 2 sinU1 sinU2/cos
2 α

9: C = f
16 cos

2 α[4 + f(4− 3 cos2 α)]

10: L = λ− (1− C)f sinα{σ + C sinσ[cos 2σm + C cosσ(−1 + 2 cos2 2σm)]}
11: u2 = cos2 α(a2−b2)

b2

12: A = 1 + u2

256 [64 + u2(−12 + 5u2)]

13: B = u2

512 [128 + u2(−64 + 37u2)]

14: ∆σ = B sinσ[cos 2σm + 1
4B cosσ(−1 + 2 cos2 2σm)]

15: s = bA(σ −∆σ)

130

B Ship speed reduction coefficients

Table B.1. Speed direction reduction coefficient Cβ .
TWA is the true wind angle in degrees with respect to the ship’s bow (Kwon, 2008).

Weather direction TWA Cβ

Head sea (irregular waves) and wind 0° to 30° 1
Bow sea (irregular waves) and wind 30° to 60° 0.85− 0.015(BN − 4)2

Beam sea (irregular waves) and wind 60° to 150° 0.45− 0.030(BN − 6)2

Following sea (irregular waves) and wind 150° to 180° 0.20− 0.015(BN − 8)2

Table B.2. Speed reduction coefficient CU (Kwon, 2008).

Block coefficient Cb Ship loading conditions CU

0.55 normal 1.7− 1.4Fn− 7.4F 2
n

0.60 normal 2.2− 2.5Fn− 9.7F 2
n

0.65 normal 2.6− 3.7Fn−11.6F 2
n

0.70 normal 3.1− 5.3Fn−12.4F 2
n

0.75 loaded or normal 2.4−10.6Fn− 9.5F 2
n

0.80 loaded or normal 2.6−13.1Fn−15.1F 2
n

0.85 loaded or normal 3.1−18.7Fn+28.0F 2
n

0.75 ballast 2.6−12.5Fn−13.5F 2
n

0.80 ballast 3.0−16.3Fn−21.6F 2
n

0.85 ballast 3.4−20.9Fn+31.8F 2
n

Table B.3. Hull form coefficient CForm (Kwon, 2008).

Type of ship CForm

All ships (except container ships) in loaded conditions 0.5BN +BN6.5/(2.7∇ 2
3)

All ships (except container ships) in ballast conditions 0.7BN +BN6.5/(2.7∇ 2
3)

Container ships in normal loading conditions 0.5BN +BN6.5/(22.0∇ 2
3)

131

C Step-by-step solving for speed over ground

Using sin(arccosx) =
√
1− x2, we can rewrite Equation 3.24 as

Va sinβ = V

√

1−
(Va cosβ − SN

V

)2
+ SE . (C.1)

Through subtracting SE and squaring the result, we can express the above equation as the

quadratic equation

(cos2 β + sin2 β)V 2
a − 2(SE sinβ + SN cosβ)Va + S2

E + S2
N − V 2 = 0. (C.2)

Using cos2 x+ sin2 x = 1, we find the equation

V 2
a − 2(SE sinβ + SN cosβ)Va + S2

E + S2
N − V 2 = 0. (C.3)

Solving the above equation for Va gives two solutions

V ′′
a =

2(SE sinβ + SN cosβ)±
√(
− 2(SE sinβ + SN cosβ)

)2
− 4(S2

E + S2
N − V 2)

2
, (C.4)

which we can rewrite to

V ′′
a =SE sinβ + SN cosβ

±
√
V 2 −

(
S2
E(1− sin2 β)− 2SESN sinβ cosβ + S2

N (1− cos2 β)
)
,

(C.5)

again, using cos2 x+ sin2 x = 1, we find

V ′′
a = SE sinβ + SN cosβ ±

√
V 2 − (SE cosβ − SN sinβ)2. (C.6)

Finally, by taking the maximum of V ′′
a we find the value for the actual ship speed

Va = SE sinβ + SN cosβ +
√
V 2 − (SE cosβ − SN sinβ)2, (C.7)

such that there exists a real solution for the square root
√
V 2 − (SE cosβ − SN sinβ)2.

132

D Special case of fundamental theorem of calculus

Theorem 1. Let

F (t) =

x(t)

y(t)
, t ∈ [a, b] ∈ R, (D.1)

be a smooth curvewith continuous first derivative. We splitF into several small parts fi, i = 1, 2,

Let the arc length of fi be li and the length of the straight line connecting the two endpoints of Fi

be di. Then, li = di + o(di), where limdi→0 0(di) = 0. In other words, di converges to si when it

becomes infinitely small.

Proof. Let the part of the curve with length li start from origin, then we have

li =

∫ h

0

√
{x′(t)}2 + {y′(t)}2dt, (D.2)

and

di =
√
{x(h)}2 + {y(h)}2, (D.3)

and we need to show that limh→0 li/di = 1. Assuming that one of the derivatives x′(0), y′(0)

is non-zero, via the fundamental theorem of calculus we can see that

li
h
→

√
{x′(0)}2 + {y′(0)}2, (D.4)

and by definition of derivative di/h also tends to the same value. �

133

E Subdividing large polygons for faster computation

A method for subdividing large polygons into smaller polygons to a desired size is pro-

posed described in Algorithm 3. First, the polygon is split into two parts across it’s shortest

dimensions. Ether left to right, or top to bottom. For each part, if it is larger than a certain

threshold, it is split again in a similar manner. This is process repeated until all parts have

the desired size.

Algorithm 3 Split polygons recursively

1: function Split polygons(ω, ϵ, recmax, i = 0)

2: box = Minimum bounding rectangle of ω

3: if boxarea ≤ ϵ or i = recmax then ◃ box has desired size, or max recursions reached

4: return result = [ω]

5: else if boxheight ≥ boxwidth then ◃ Split box left to right

6: a = top half of box

7: b = bottom half of box

8: else ◃ Split box top to bottom

9: a = left half of box

10: b = right half of box

11: result = []

12: for d ∈ [a, b] do ◃ Split ω at edges of a and b

13: c = Intersection(ω, d)

14: for e ∈ c do ◃ Split obtained polygons recursively

15: result = result ∪ Split polygons(e, ϵ, recmax, i+ 1)

16: return result

134

F Route visualization web-application

For the purpose of visualizing the least-time and least-fuel route given a set of input ar-

guments, we developed a web-application in collaboration with ORTEC, which provides

services in optimization software and analytics solutions. The web-application comprises

three components:

1. The core-component is the routing algorithm presented in this research. For this

setup, it takes the following input arguments:

• Which optimization criteria to include, i.e., minimal cost and/or minimal time.

• Start and destination coordinates in longitude and latitude degrees.

• Vessel name.

• Fuel price per metric tonne outside ECAs and the multiplication factor for fuel

price inside ECAs.

• Whether to include or exclude ocean currents and weather in the optimization.

Given these input arguments, the algorithm returns the least-time and least-cost so-

lutions defined by a series of waypoints and nominal ship speeds. Additionally, in-

cluded in the output are the distance and optimization criterion of a route.

2. A web user interface (UI) developed in Angular, a platform for building mobile and

desktop web applications. Figure F.1 shows screenshots of the UI. The left pane en-

ables selecting input arguments for the route optimization. The map shows the re-

turned routes colored according to the nominal ship speed at each route leg. In gen-

eral, the least-time route is colored red, i.e., attain the highest speed, and least-fuel

route is colored blue as it selects the lowest ship speed for each route leg. ECAs are

shown in green.

3. An application programming interface (API) that defines interactions between the

routing algorithm and the UI.

135

(a) Sample routes passing and avoiding the Suez Canal, including weather.

(b) Sample routes crossing the Atlantic Ocean.

Figure F.1. Screenshots of the route visualization user interface.

136

G Route planner based on historic routes

This section describes the route planner earlier proposed by ORTEC and shows its draw-

backs compared to the presented approach. Based on historic voyages, a set of nodes and

arcs are defined throughout the world. The construction of the graph is outlined as follows:

1. Historical voyages are split into smaller arcs, resulting in multiple sets of similar arcs

representing a route segment.

2. From a set of arcs with equal endpoints, the arc with median length is selected. As ar

results, for every route segment, an arc is selected that gives a good representation of

the sailing duration of the route segment and that is less sensitive to outliers.

3. The set of nodes contains

(a) a set of historically visited ports,

(b) other ports are connected to the network by adding the nearest waypoint to these

ports as nodes to the network, and

(c) a manually defined set of route congestion points referred to as corridors. These

corridors are formulated as a geographical line between two points, cA and cB ,

such that the ship route crosses the straight line between cA and cB if the corridor

is selected in the route.

4. For all the historic voyages, a start port, an end port, and several subsequent corridors

(if any) it surpassed, is derived.

5. Based on this, a set of arcs is derived, which is checked to be fully connected.

In addition, for each arc is checked whether it surpasses an ECA in which only Ultra-

Low Sulfur Fuel Oil (ULSFO) is allowed and whether it is only used during a specific

season. Seasonality is taken into account in the route planning by restricting the routes

that are not historically sailed due to seasonal constraints in a specific time period.

This means that in some cases, the route in the summer period may be different from

the winter season.

6. At this point, we have a complete network of nodes and arcs. It can be used to find

routes between any two ports in the world using Dijkstras shortest path algorithm.

Figure G.1 shows the network of nodes and arcs constructed using the procedure de-

scribed above. Five sample shortest routes are highlighted in red. This approach provides

a fast estimate of the route’s length and fuel cost, given a start and destination. For voy-

ages that have been sailed frequently, this approach provides realistic results. However, for

137

Figure G.1. Network graph based on historic voyages projected on the world map.
Five sample shortest routes are highlighted in red.

voyages that have been sailed less frequently or not at all, this approach does not provide

satisfactory results. For instance, near the west coast of South America, the routing op-

tions are poor. Moreover, this approach does not consider environmental conditions such

as weather and ocean currents, nor does it allow a variable engine speed setting.

138

	Introduction
	Problem field
	Relevance
	Research objectives
	Thesis outline

	Literature review
	A timeline of solving the ship routing problem
	Modified isochrone
	Dynamic programming
	Graph search
	Multi-objective evolutionary algorithms

	The ship routing problem including ocean current
	Ship routing methods comparison

	The Multi-Objective Ship Weather Routing problem
	Problem description
	Ship route
	Path selection criteria
	Navigable area limitations

	Mathematical formulation
	Geodesic distance
	Geodesic
	Rhumb line

	Actual ship speed
	Involuntary speed reduction due to wind and waves
	Speed over ground affected by ocean currents
	Average speed at a route leg

	Pareto optimality

	Solution method
	Multi-objective evolutionary algorithm
	NSGA-II
	SPEA2
	M-PAES

	Multi-objective performance metrics
	Hypervolume metrics
	C metric

	Initialization
	Geodesic Discrete Global Grid
	Initial paths

	Operators
	Recombination
	Mutation

	Line segment intersection
	Line intersection
	R-tree spatial indexing
	Polygon subdivision
	Computational performance

	Fitness evaluation
	Feasibility
	Travel time and fuel cost
	Speed improvements

	Termination criterion

	Computational results
	Algorithm parameters
	Data description
	Ship characteristics
	Environmental conditions
	Navigation area
	Interpolation of gridded data

	Ocean current routing
	Time-varying ocean currents
	Exact approach comparison

	Weather routing
	Keelung to San Francisco
	English Channel to New York
	Plymouth to Havana
	Variable and constant engine speed

	High-cost areas
	Emission Control Areas
	Shallow waters

	Multi-objective evolutionary algorithm performance
	Overshoot of number of evaluations
	Pareto performance
	Computational performance

	Conclusions and recommendations for further work
	Conclusions
	Discussion on the computational performance

	Recommendations for further work

	Appendices
	Vincenty's inverse method
	Ship speed reduction coefficients
	Step-by-step solving for speed over ground
	Special case of fundamental theorem of calculus
	Subdividing large polygons for faster computation
	Route visualization web-application
	Route planner based on historic routes

