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Abstract

The interest in using Robotic Autonomous Systems (RAS) capabilities has increased rapidly
in the previous years, often with the idea of supporting new concepts of operations. One
such concept is dispersed operations, for which the logistics pose significant challenges, mak-
ing classical tactical resupply hardly a viable approach. Instead, a new RAS-based approach
seems promising. As current research seems limited to autonomous Last-Mile Delivery (LMD)
or static optimization models, an integrated approach named Dispersed Autonomous Resup-
ply (DARE) is proposed.

The difficulty of creating a solution method for DARE is that it has to deal with a chaotic
combat environment including risks of being destroyed, highly dynamic plans, and partial,
unreliable information. To deal with these challenges, the Multi-Robot Systems (MRSs)
based Distributed Constraint Optimization Problem (DCOP) paradigm is used. This allows
for generating solutions locally on the involved RAS, while also enabling cooperation and
coordination, such that scalability and robustness against unreliable communication can be
achieved.

In this thesis, a distributed solution method is proposed. A two-stage heuristic is developed
for solving the problem on each vehicle locally, which is combined with the DCOP-based algo-
rithms MGM and MGM-2 for cooperation. By allowing cooperation, vehicles can synchronize
their decisions and perform online supply transfers and recharging.

It is shown that a RAS-based setup for DARE is significantly more robust against the risk of
destruction and quickly changing plans, showing more flexibility and survivability. In general,
a RAS network not only appears to more consistently deliver supplies before they are needed,
but it is also able to maintain the supply throughput better over a longer time.
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“The essence of flexibility is in the mind of the commander; the substance of
flexibility is in logistics.”
— Rear Admiral Henry Eccles, U.S. Navy





Chapter 1

Introduction

1-1 Motivation

Due to a changing balance of global power and increased tensions at the border of the EU,
the focus of NATO members has shifted from bringing peace to keeping peace. Inevitably, this
renewed focus on the theme of high-intensity combat against a peer opponent in a large-scale
conflict, of which a recent example is the ongoing confrontation between Ukraine and Russia.
This conflict proves to be a critical evaluation of NATO concepts of operations, and especially
that of the light brigade (13e Lichte Brigade, 2018).

The new concept of operation prescribes nonlinear and dispersed combat, potentially sup-
ported by Robotic Autonomous Systems (RAS). Effectively this means that spatially dis-
tributed Combat Elements (CEs) conduct offensive operations in multiple directions at the
tactical-operational level (Edwards, 2005). The essence of dispersed operations is that through
enhanced Situational Awareness (SA) and computer-aided decision making the initiative can
be placed at lower levels in the command hierarchy, enabling small CEs that operate inde-
pendently while striving for simultaneity and unity of effort (Edwards, 2005), such that the
state converges to the commander’s intended end state (Alberts, 2007).

Dispersed operations, however, pose significant logistical challenges. As there is no classical,
closed and connected front, there is no clear definition of a friendly or hostile area. Instead,
distances between CEs increase, and uncovered areas increase in size and number which
contributes to decreased and uncertain SA. Consequently, the risk of losing lives or supplies
is increased as the supply chain possibly traverses hostile territory.

Naturally, it seems tempting to develop a RAS application to solve these challenges, but
implementation is still lacking. One of the reasons is throughout literature the development
of optimization models for tactical logistics seems to be treated as a separate technology
compared to robotic platforms for Last-Mile Delivery (LMD), in which they are regarded as
simple load carriers. Instead, it appears more promising to apply an integrated approach, in
which a dedicated RAS-based concept of operation for tactical logistics is optimized.
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Stock 
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Figure 1-1: A schematic view depicting the flow of supply, based on Kablau (2002). Through
different levels of combat, the supplies are moved towards the CEs. On the tactical level, an LCE
is assigned to either place dumps, drop by air, or service through a supply-street.

1-2 Tactical logistics

Following the doctrinal definition of logistics by the US Marine Corps, “Logistics encompasses
all actions required to move and maintain forces. This includes the acquisition and positioning
of resources as well as the delivery of those resources. (MCDP-4)” (US Marine Corps, 2018).
Logistics is split into three levels of war: strategic, operational, and tactical. As military
tactics encompass the deployment and planning of forces on the actual battlefield, tactical
logistics is concerned with employing Logistics Combat Elements (LCEs) designated to sustain
the CEs. This concept is closely related to Combat Service Support (CSS), which describes
the actual activity of providing services and supplies.

The Royal Dutch Army distinguishes five classes of supply, following the NATO standard.
The LCE is tasked with supplying water and food (class I), munitions (class V), fuel (class
III), and sometimes equipment (class II) or construction materials and spare parts (class IV).
The classical flow of supplies is depicted schematically in Figure 1-1. This flow is based on
the ‘physical distribution’ concept, as applied by the Royal Dutch Army (Kablau, 2002).
The supplies flow from a strategic groupage point and Point of Embarkation (POE), entering
the operational level at the Point of Debarkation (POD), after which it is shipped to one or
more stock centers - the Main Operating Bases (MOBs). Possibly, also some forward resupply
centers - also known as Forward Operating Bases (FOBs) - are set up, which are much smaller
and more mobile. For the classical approach of tactical logistics, multiple methods exist to
deliver the supplies to the CEs. The first is a supply-street (or so-called CSS area), in which
CEs can pass through a mobile street of LCE vehicles, resupplying a certain supply class
at each vehicle. As these supply streets are often designated as primary targets by enemy
forces, they are located some distance behind the front and need to be sufficiently protected
to ensure their security. Alternatively, the supplies can be left at a (hidden) dump, such that
it can be picked up by CEs at a later point in time. Lastly, supplies can be brought closer
towards the CEs by airdrop, although they will not be dropped onto fighting CEs themselves,
such that units still need to retrieve the supplies.

The question remains if this classical approach for tactical logistics would suffice in a modern
combat environment. Following the evaluation of NATO concepts of operation in the con-
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1-3 Dispersed Autonomous Resupply 3

frontation between Ukraine and Russia, the analysis of Karber (2015) states that an extremely
efficient Reconnaissance Fire System (RFS) can be observed, by combining multiple, heteroge-
neous and layered Intelligence, Surveillance & Reconnaissance (ISR) capabilities with massive,
concentrated and destructive firepower. Consequentially, the Royal Dutch Army identified
that there is at least a range of 90 kilometers of unsafe terrain in which units can spend no
longer than 2 to 3 hours without remaining unnoticed, such that units need to be constantly
on the move (Koninklijke Landmacht, 2017). This conclusion effectively excludes the classi-
cal methods for tactical logistics as a viable approach. According to the Royal Dutch Army,
the classical approach could instead be adapted to support dispersed operations in this new
environment. It is suggested that this can be achieved by incorporating the LCEs within the
maneuver elements (CEs) such that operational tempo can be increased (Koninklijke Land-
macht, 2017). However, this would increase risk, drawing up increasing numbers of units to
provide security. Though it is suggested that the increased use of sophisticated sensors for
e.g. fire detection combined with smart algorithms that can automatically suggest maneuvers
should negate some of these risks, it is admitted that a lot of extra armor and armament is
still required. This would require enormous and unrealistic investments, as currently logisti-
cal systems are falling short in terrain accessibility, protection, armament, and Command &
Control (C2) capabilities. As some early findings indicate, like the suggestion of Unmanned
Areal Vehicle (UAV) predeployment to waiting areas (Koninklijke Landmacht, 2017), the
possibility emerges for a completely novel tactical supply model based on RAS.

1-3 Dispersed Autonomous Resupply

Though its perceived benefits are clear, the question remains: How should the concept for
tactical logistics be improved for dispersed combat operations by employing an integrated
RAS-based approach? First, the performance indicators will be laid out which are used to
demonstrate if a novel approach performs better than the classical approach. Furthermore,
these indicators serve as a quantitative measure for the development of a solution method. Sec-
ondly, the novel concept of operations will be formulated, which will be identified as Dispersed
Autonomous Resupply (DARE). The involved RAS then compose a DARE network.

1-3-1 Performance indicators

Based on existing logistical doctrines, five important principles for tactical logistics can be
deduced (US Marine Corps, 2016). The first three principles describe the effectiveness of the
logistical process, which needs to be balanced with the fourth principle, efficiency. Surviv-
ability is needed to maintain both effectiveness and efficiency. Ineffectiveness could result in
disastrous consequences for any operation. Therefore the goal is maximizing effectiveness in
the most efficient manner. An effort is made to quantify the principles for tactical logistics,
resulting in the corresponding performance indicators.

1. Responsiveness: The right support at the right place at the right time. This means
that the CEs should not be hampered in their decision making by logistics.
→ Indicator : Providing the required supplies before an action is planned to be executed
by any CE, effectively minimizing delay on deliveries.
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2. Sustainability: The ability to maintain support during the whole operation for all
CEs involved. This includes an effective throughput of supplies even during peak con-
sumption.
→ Indicator: The supply level of each CE should be kept continuously at a sufficient
level to maintain its operations.

3. Flexibility: The ability to adapt to changing circumstances and unforeseen events.
This can be achieved by anticipation, redundancy, reserves and effective C2.
→ Indicator: Robustness against sudden change of plans, measured by the degree to
which responsiveness and sustainability can be maintained after plan alterations.

4. Survivability: The ability to maintain the required responsiveness and sustainment
even when vehicles are destroyed.
→ Indicator: Robustness against destruction, meaning that under varying threats the
effectiveness should still remain adequate.

5. Efficiency: The ability to provide sufficient support at the least costs, both from an
economical and ethical perspective, which means that unnecessary risk should not be
taken and that an excess in resources is undesirable due the financial burden and general
scarceness of supplies.
→ Indicator: As the fuel consumption is assumed negligible compared to the cost of
losses, efficiency is measured in the total loss of vehicles and supplies during resupply.

1-3-2 Concept of operation

Before a RAS-based concept of operation can be laid out, some basic assumptions must be
made about the vehicles involved such that the principles can be satisfied:

• All involved vehicles have the ability to navigate through and traverse difficult terrain
types, where different vehicles have different terrain accessibility.

• The vehicles have the ability to hide, or at least choose a path maximizing cover.

• The low-level controllers are included on the vehicle.

• The ability for inter-system cooperation physically (transfer of supplies) and cognitively
(joint optimization). This is achieved by active communication links (albeit not neces-
sarily trustworthy), local computation power and robotic arms for transferring supplies.

Environment A DARE network would be deployed when tactical logistics needs to be pro-
vided for the dispersed operations of multiple platoon-sized CEs. Furthermore, it is known
that a peer-opponent can deploy an effective RFS (see Section 1-2). At any time, the systems
can therefore be hit by a strike, for which the probability is increased if systems remain in a
fixed position longer. Furthermore, the systems needs to resupply over long distances, as the
closest FOB is located at least 90km from opposing forces. Lastly, specific terrain types are
not accessible by all systems.
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Figure 1-2: A figurative operation sketch for DARE. Dotted lines represent the closest neighbor-
ing UGV or CEs. The dashed lines represent the routes of dispatched UAVs transporting supplies
from UGVs to CEs or other UGVs. It becomes clear the UGVs choose their position to optimally
sustain the combat operations while minimizing their own risk to be eliminated.

Network The DARE network consists of multiple heterogeneous systems, including both
small and large Unmanned Ground Vehicles (UGVs) and UAVs. The systems are supplied
from the nearest FOB, and supply the CEs. All vehicles have the capacity to store supplies,
such that they can act as a capacitated, mobile depot.

Objective The objective of the DARE network is to make decisions such that the resupply
effectiveness can be maximized at the least costs (see Section 1-3-1). This effectiveness is
maximized by enlarging the expected value for each of the effectiveness indicators, while
supply losses are minimized. This can be achieved by increasing redundancy and decreasing
the risk taken by each vehicle.

Process It is required that plans or (computed-aided) predictions for maneuvers, supply
consumption and (unexpected) combat are provided digitally to the DARE network as soon
as received by logistical officers. Effectively, large amounts of supplies are then moved based
on these high-level directives. Then, the network can make continuous decisions to optimally
support the predicted and planned operations with maximum effectiveness. The network can
achieve this by continuous repositioning and reallocation of supplies. In Figure 1-2 a figurative
operation sketch of the process is provided. The dispersed CEs either disrupt or ambush the
hostile forces while they move over their main axis of advance. The UGVs reposition and
reallocate supplies such that the actions of the CEs are anticipated. The UAVs accompanying
the UGVs are used as a quick dispatcher to either deliver supplies to CEs, or reallocate them
to UGVs.
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6 Introduction

1-4 Problem statement

The difficulty with generating solutions for a DARE network is that the operating environ-
ment is plagued by high uncertainty, many communication constraints and lacking infor-
mation, making the development of a solution method a complex challenge. Furthermore,
a concept that relies on both flexibility and redundancy requires scalability, which poses
problems for the tractability of a solution method. This thesis is focused on exploring the
possibility of modeling DARE based on existing modeling frameworks used in Operations
Research and developing specific distributed algorithms needed to obtain a quality solution.
The corresponding challenges for the modeling and solution approach can be summarized as:

• A model that describes the DARE concept, such that effectiveness can be maximized
efficiently.

• Dealing with a stochastic environment in which unexpected events may occur that
influence demand for specific types of supply at unexpected times and locations.

• A highly dynamic environment, in which decisions might need to be made based on
new information within minutes. The solution approach should inhabit the flexibility
to quickly respond to this new information.

• Locally only partial information through unreliable communication links is available.

• Heterogeneous systems varying in capacity, speed, battery capacity, protection, signa-
ture and terrain accessibility.

These points indicate that a model should be developed with a corresponding solution al-
gorithm that is both fast, scales well, provides good solutions, and deals with information
uncertainty efficiently. The central research question can therefore be described as:

Can an efficient solution for DARE be developed such that dispersed combat operations can
be effectively supported while remaining scalable in computation time and sufficiently robust
against unreliable communication?

1-5 Overview

In Chapter 2 the literature aimed at improving military tactical logistics will be discussed.
Furthermore, related modeling methods and the corresponding solution methods are dis-
cussed. In Chapter 3 a problem description is given by formalizing a rigorous mathematical
model describing DARE. In Chapter 4 the methodology is laid out. First, the solution struc-
ture is described including coordination, cooperation and the local problem. Then, the chosen
local and distributed optimization algorithms will be discussed. In Chapter 5 a scenario is
provided for data generation, after which in Chapter 6 the solution methods are analyzed
based on subsequent simulations. In Chapter 7 overarching conclusions will be drawn, along
with a critical discussion of the proposed methods.
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Chapter 2

Literature Review

2-1 Military oriented improvements

Ivanova, Gallasch, and Jordans (2016) provide an elaborate report on the use of autonomous
systems for Combat Service Support (CSS). Their main contribution is listing important
innovations, for which a technology prioritization is formulated in cooperation with the Aus-
tralian Department of Defence (DoD). From this, two distinct categories emerge:

• Smart analytics: the ability to include prediction and optimization in different decision
tools to increase sustainment at lower costs.

• Autonomous platforms: The ability to perform Last-Mile Delivery (LMD) through
complex terrain with Unmanned Areal Vehicles (UAVs) or Unmanned Ground Vehi-
cles (UGVs) or employ long-range convoys by unmanned platooning, to reduce both
costs and risk for personnel.

Notable is that they treat analytical tools as a separate technology from robotic platforms,
apart from proposing strategic predeployment of UGVs (though no source is included). As this
view is found to be surprisingly common throughout literature, it will be discussed following
this prioritization. First, optimization models improving the logistical process are discussed.
Second, examples of improved (partially) autonomous platforms are provided.

2-1-1 Optimization models

A basic approach is taking existing models for scheduling or inventory optimization but in-
clude extra military constraints. Sebbah, Ghanmi, and Boukhtouta (2011) consider a Vehicle
Routing Problem (VRP)-like model including heterogeneous supplies and heterogeneous ve-
hicles, with additional military constraints. Sebbah, Ghanmi, and Boukhtouta (2013) extend
this further by also optimizing for the optimal fleet mix and size. Alternatively, Ren, Zheng,
and Tan (2013) optimize inventory based on the multi-item newsboy problem, by including
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8 Literature Review

both stochastic demand, and stochastic supply due to enemy attacks. Furthermore, Gallasch
et al. (2008) propose to model a military logistics network using a Coloured Petri Net (CPN),
such that delivery is triggered through the network after passing certain inventory thresholds.
These military approaches can be combined to optimize both inventory and scheduling jointly.
Baker and Shi (2002) consider a network topology with a continuous flow of supplies. As-
suming quadratic cost relationships for protecting supplies in depots or during transport,
an optimal control policy can be derived, aiming to minimize cost while satisfying demand.
A discrete approach is suggested by Marufuzzaman, Nur, Bednar, and Cowan (2020), who
consider an extended Multi-Commodity Network Design Problem (MCNDP). They include
demand satisfaction subject to a certain priority and include dynamic risks for utilizing cer-
tain routes. Though both approaches include some kind of cost for protection, no mobility of
Combat Elements (CEs) or depots is allowed.
Mobility of supplies is considered by Barahona et al. (2007), who focus on the distribution
of spare-parts in Network-Centric Operations (NCOs). As input, a forecast on breakages
is used in combination with information on the current inventory levels at CEs and their
planned movements. A two-stage solution approach first sets the desired inventory levels
and schedules the redistribution afterward. Though mobility plays a key role, it is not an
active decision. Instead, Toyoglu, Karasan, and Kara (2011) propose a mobile Ammunition
Distribution System (ADS), comparable to the Location Routing Problem (LRP). The basis
is a combination of fixed transfer points and mobile transfer points, with the objective to
deliver ammunition as close to units as possible, within a specific time window. Based on risks
different objectives like lower driving time versus lower costs could be achieved. Gue (2003)
proposes the most extensive model, named the dynamic distribution problem, which appears
comparable to the Inventory Routing Problem (IRP). The objective is to minimize shore-
based inventory when performing Marine Corps operations supported from the sea. A ship is
considered a resupply center, from which onshore depots can be supplied. CE movements are
preplanned and known in advance, as are the possible locations for mainland depots. From
the depots, different vehicles can be scheduled to supply CEs. Furthermore, depots can move
to better support operations. Lastly, these depots can have varying inventory, which is to be
minimized while still satisfying demand over the complete time horizon. For both approaches,
however, transfers remain hierarchical and the risk of occupying certain locations is not taken
into account directly.

2-1-2 Autonomous systems

The second category consists of literature and projects dedicated to improving LMD or au-
tomated convoys. LMD describes the last link in the tactical supply chain from either a
dump, drop or supply street to the CEs, as is displayed in Figure 1-1. As noted, LMD does
not consist of a mile, but can even span up to 90 kilometers (Koninklijke Landmacht, 2017).
Though being a hot topic in military innovation, it remains limited to separate development of
hardware systems and optimization models. For example, the UK Ministry of Defence (2017)
propose scenario vignettes in which a UGV supplies spare parts and fuel over a distance of
30km to a broken Infantry Fighting Vehicle (IFV), and UAVs supplying an infantry platoon
with emergency ammunition over a distance of 2km in heavy weather. Clearly, only the use of
autonomous systems as quick, easy, and cheap dispatcher is discussed, without the flexibility
for optimization.
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Other initiatives show the same perspective. Ackerman (2014) writes about the promising
results of autonomous driving during trials with unmanned truck convoys. Furthermore,
he writes about initiatives with disposable UAVs (Ackerman, 2017) and precision supply
drops (Ackerman, 2019). Other promising results are achieved by Qinetiq as part of the UK
competition with a Milrem Themis capable of driving off-road autonomously (Walker, 2018).
Furthermore, Keirin (2016) considered the effects of unmanned systems and the consequential
adaptations to modern logistical software. Though seen through a perspective of operations
research, it does not provide an alternative modeling framework for autonomous logistics,
but merely considers the effects of certain hardware systems. Thornton and Gallasch (2018)
analyzed the use of swarms for LMD, in which they analyze the benefits and vulnerabilities
of using swarms as opposed to single vehicles. However, though multiple vehicles are consid-
ered, delivery is still performed as a one-off mission, instead of multiple vehicles cooperating
autonomously for a longer duration of time.

2-2 Related modeling methods

Apart from military-oriented improvements, there is also a wide range of models that are
related based on similar objectives and constraints. The purpose of this section is to provide
a broader view of the complexity and possibilities of those models. A model is considered
related if it either describes some form of storage at mobile depots, pickup, delivery and
transfer of supplies, the balancing of multiple types of cost, or those who consider relocation
or demand in a dynamic, stochastic time-extended environment.
An example of relocation for varying demand within a time horizon is provided by the
Dynamic Facility Location Problem (DFLP) (Farahani, Abedian, & Sharahi, 2009), which
is closely related to the Maximum Coverage Facility Location Problem (MCFLP) (Church
& ReVelle, 1974). This model can be combined with a VRP, resulting in the LRP (Klibi,
Lasalle, Martel, & Ichoua, 2010). In general, there is a maximum amount of vehicles, which
are shared over all possible depots (Prodhon & Prins, 2014). This problem is adopted to
a military context for ammunition distribution by Toyoglu et al. (2011). In the context of
LMD, Chauhan, Unnikrishnan, and Figliozzi (2019) attempted to combine the problem with
drones.
Though relocation is discussed, transfers are not allowed. Models in which transfers occur
frequently are those that combine delivery with vehicles and UAVs. An example is the Flying
Sidekick Traveling Salesman Problem (FSTSP), in which vehicles can be interpreted as mo-
bile depots (Murray & Chu, 2015) (Dell’Amico, Montemanni, & Novellani, 2019). Possibly,
the launch locations are fixed (Ferrandez, Harbison, Weber, Sturges, & Rich, 2016). A com-
parable problem is provided by the Vehicle Routing Problem with Drones (VRPD) (Wang,
Poikonen, & Golden, 2017) or the Traveling Salesman Problem with Drone (TSPD) (Agatz,
Bouman, & Schmidt, 2018). Many of these solution approaches consider the limited energy
capacity of drones (Dorling, Heinrichs, Messier, & Magierowski, 2016) (Shavarani, Nejad,
Rismanchian, & Izbirak, 2018) (Rabta, Wankmüller, & Reiner, 2018) (Jeong, Song, & Lee,
2019). Carrying a sidekick is generalized further in the Vehicle Routing Problem with Trailers
and Transshipment (VRPTT), focusing on synchronization constraints (Drexl, 2013).
Pickup and delivery for either paired or unpaired goods are combined in the Vehicle Routing
Problem with Pickup and Delivery (VRPPD) (Parragh, Doerner, & Hartl, 2008). Supplies

Master of Science Thesis M.A. Korthals Altes



10 Literature Review

are classified as unpaired, which means that after pickup it can be used to satisfy any demand.
The Parallel Drone Scheduling Traveling Salesman problem (PDSTSP) combines this with
UAVs (Ham, 2018). By also allowing transfers the more flexible Pickup-and-Delivery Problem
with Transfers (PDPT) is created. This larger degree of freedom should result in greater ef-
ficiency (Masson, Lehuédé, & Péton, 2013), especially in high demand situations (Berbeglia,
Cordeau, & Laporte, 2010). Bouros, Sacharidis, Dalamagas, and Sellis (2011) extend this
by considering the dynamic variant in which requests arrive at arbitrary times. However,
transfers are assumed to happen by leaving the goods at a transfer point. To allow transfers
between vehicles, the Pickup-and-Delivery Problem with Online Transfers (PDPOT) is intro-
duced. To synchronize these transfers, dynamic time windows are needed (Drexl, 2012). For
offline transfers, synchronization requires precedence (a delivery at a transfer point precedes
the pickup). In the case of online transfers, the synchronization is exact, and pickup and
delivery occur simultaneously. Though this cooperative approach can result in benefits, pos-
sible bottlenecks can occur when trying to enforce synchronization (Otto, Agatz, Campbell,
Golden, & Pesch, 2018). Additionally, the transfer point is not even discrete, as with for
example mid-air refueling of aircraft (Coltin & Veloso, 2014).

Prior models only maximize some form of demand metric. In contrast, demand and inventory
levels are considered jointly in the IRP (Bertazzi, Savelsbergh, & Speranza, 2008). Especially
interesting is the multi-depot case with stochastic demand (Roldán, Basagoiti, & Coelho,
2017). This problem is classified for tactical logistics as the Dynamic Distribution Problem by
Gue (2003). Instead of inventory, the MCNDP jointly optimizes the selection of arcs to operate
and the corresponding commodity flow (Fragkos, Cordeau, & Jans, 2017). Marufuzzaman et
al. (2020) use this to describe risk over certain arcs.

All of the discussed modeling approaches described in some way a part of the Dispersed Au-
tonomous Resupply (DARE) problem. Summarizing, DARE could be classified as a combined
instance of MCNDP for taking into account risk over different arcs, with the PDPOT allow-
ing for instantaneous transfers between systems, the VRPTT or FSTSP for the combination
UAVs and UGVs, and a dynamic LRP for deciding at which locations supplies are held.

2-3 Solution approaches

Evidently, the problem at hand is of extreme complexity, meaning that generating solutions
will be a difficult matter. Furthermore, the generation of solutions itself is subject to a
challenging military environment, complicating matters even further. The question remains
what general solution approaches for such a complex problem are viable for this environment.
Therefore the different centralized and distributed approaches are discussed in relation to the
requirements listed in Section 1-4.

2-3-1 Centralized

In all of the mentioned papers in Section 2-1 and 2-2, the proposed formulations are solved
centrally. Though many different approaches are discussed, solutions are found using either
exact algorithms, meta-heuristics, heuristics, or a combination. Apart from computational
tractability, the major issue with all of the above approaches is that it is not applicable to the
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military environment. As described in Section 1-4, locally only partial information through
unreliable links is available. Furthermore, there is a need for quick decision-making in a
highly dynamic environment. This eliminates the centralized approach, as this requires all
information to be trustworthy. In an unreliable network, such a task is cumbersome if not
impossible. Given this was successful, the computation time is often still too long, and even
if it were on time, it cannot be trusted that the solution would reach the actual system that
needs to perform a task.

2-3-2 Distributed cooperation

Opposite to centralized is the distributed approach. Two types of distribution are distin-
guished. Firstly, distribution can exploit parallelism (like the ones arising from decompo-
sition), to enhance performance and scalability. In practice, this is often decentralization,
in which multiple non-cooperating computation sources are active in parallel and a central
source performs synchronization. The second class arises from Multi-Agent Systems (MASs),
or more specifically Multi-Robot Systems (MRSs). Here, the distribution is natural as infor-
mation is present locally and no central agent is available to compute the global optimum.
For truly MAS-based distributed solution approaches, some form of cooperation is necessary
to improve the solution quality. Cooperation can be categorized into three types:

• Passive: Each agent optimizes its problem individually, but agents communicate their
local context, such that agents show collective behavior by reacting to each other.

• Implicit: Each agent optimizes its problem individually, based on planned decisions of
other agents, as this is communicated with the local context.

• Explicit: Each agent cooperatively optimizes the problem to obtain a globally optimal
solution, by passing messages depending on the algorithm choice.

An important framework for implementing explicit cooperation is a Distributed Constraint
Optimization Problem (DCOP), which describes a problem in which agents must globally
optimize a set of variables, while subjected to distinct sets of constraints. In this case, agents
are responsible for their own variables which represent local (physical) behavior.

For all types of cooperation, however, communication is necessary to maintain performance.
Therefore the available solution methods do not fulfill the requirements from Section 1-4
completely, as there is no guaranteed robustness against communication failures.

2-3-3 Distributed coordination

To overcome the dependency on communication arising from the solely cooperative approach,
a coordinative approach could return better results for MRSs. For instance, Skubch (2013)
analyzes nearly identical requirements as in Section 1-4 and proposes coordinated teamwork.
The idea is that when agents commit themselves in an efficient manner of working to a spe-
cific goal, robustness is increased when communication is failing. Another influential work
even originates from a military problem, and resulted in the concept of joint intentions and
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shared plans (Tambe, 1997). An important hypothesis by Tambe (1997) is that completely
preplanned coordination would not be flexible enough, leading to drastic failures (much re-
sembling the centralized approach under dynamic circumstances). Therefore some dynamic
form of coordination needs to be applied to be able to flexibly adjust to new information under
realistic communication constraints. This type of coordination can take place by implement-
ing a kind of organizational structure in the MRS. A review of these different structures
is provided by Abbas, Shaheen, and Amin (2015). They note that “the organizational level
describes the “what” and not the “how”. In other words, the organizational level imposes a
structure into the pattern of agents’ activities”. Effectively, coordination imposes limits on
the solutions generated by the agents.

Based on this concept of coordination, a general framework is proposed based on contemporary
military intent-based Command & Control (C2) (Korthals Altes, 2021). Intent-based C2
is based on the idea that at any level in a command hierarchy a commander should have
the freedom to exploit local advantages without explicit approval from superiors, given the
superiors’ intent is completely clear. The assumption is that local initiatives will then also
contribute to the global objectives, even if communication is failing or delayed, as it can be
assessed locally if the decisions are in line with the global objectives. Concluding, cooperation
remains vital for performance, but in the case of cooperation being not possible due to failing
communication, robustness is guaranteed through effective coordination.
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Chapter 3

Modelling DARE

In this chapter, a description is given of the model used to represent the Dispersed Au-
tonomous Resupply (DARE) network.

The environment is represented by a directed graph G(N,A) with nodes N and arcs A. The
nodes describe physical locations, and the arcs describe all paths between these locations.
Furthermore, the model is extended over a horizon of T time periods.

Within this environment, a set C of Combat Elements (CEs) conduct their operations. Their
planned positions are provided for all c ∈ C, i ∈ N, t ∈ T , such that ycit = 1 if the CE is
present, and ycit = 0 otherwise. Over time, these CEs consume different types of supplies,
which are grouped in classes defined by the set K. Their estimated supply consumption in
kilograms of each class is given by Ckct, and the corresponding inventory level by Ikct ∀k ∈ K.
Furthermore, also a set F of Forward Operating Bases (FOBs) is provided, for which the fixed
positions are described in an equal manner by yfi ∀f ∈ F . These FOBs act as depots, at
which vehicles can be recharged and supplied indefinitely. After each time period passes, new
plans for the CEs can be provided to the model, which do not necessarily have to correspond
to the previously provided plans.

To bridge the distance from the FOBs to the CEs, different Robotic Autonomous Systems
(RAS) are available to pick up and deliver supplies. A set Dg of Unmanned Ground Vehicles
(UGVs), and a set Da of Unmanned Areal Vehicles (UAVs) compose the set of vehicles
D = Dg ∪ Da, each carrying an inventory Ikdt ∀k ∈ K. A vehicle can decide to either be
present at a location i ∈ N at time t ∈ T , meaning ydit = 1, or decide to relocate from
one location to another, defined by the decision xdijt = 1 ∀{i, j} ∈ N . This relocation
takes tdij time, after which it can be present again at the arrival node, or decide to relocate
immediately. This is clarified in Figure 3-1. The UGV decides to relocate at the start of
period 1 and relocate in period 2 immediately. When arriving in period 3, it remains present
such that it can interact with the CE that is present in period 3 too. However, in period 4 it
may not interact with the UAV, as it has decided to relocate again.
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Figure 3-1: A depiction of a UGV traveling over a span of 5 time periods. It may interact with
the CE in period 3, but not with the UAV in period 4, as it has decided to relocate instead of
remaining present.

To be able to travel, each vehicle d ∈ D carries an energy level Edt, limited by the energy
capacity rd. During movement, vehicles consume energy when traversing an arc given by
Cdij ∀i, j ∈ N , such that the energy level is updated in each period:

Ed,t+1 = Edt +Rdt +
∑

d′∈D
Rdd′t −

∑
i,j∈N

Cdijxdijt ∀d ∈ D, t ∈ T (3-1)

This equation states that the energy level for vehicle d ∈ D is decreased by the decision to
relocate to a new location, and increased by deciding to recharge an amount of energy Rdd′t

from vehicle d′ ∈ D or Rdt at any FOB. Conversely, this means that Rdd′t = −Rd′dt.

Using the energy to move around, the vehicles can make multiple decisions. First, each vehicle
d ∈ D can decide to pick up an amount of supply Pkdt at time t ∈ T for each class k ∈ K
at any FOB f ∈ F , as long as they are both present at that location at that time, meaning
ydit = yfi = 1. The inventory for each class can be increased up to the vehicle’s class capacity
bkd. Secondly, each vehicle can decide to deliver an amount of supply for each class k ∈ K
at time t ∈ T to a CE c ∈ C, denoted by Dkdct. Again, both must be present at the same
place, meaning ydit = ycit = 1. Furthermore, delivery is limited by the available vehicle’s
inventory Ikdt and the capacity for each class of the CE bkc. It is not required for a vehicle to
satisfy all demand of a CE, such that the vehicle might hold reserves for other units or future
consumption. Thirdly, vehicles d, d′ ∈ D can decide to transfer an amount of supply of each
class between them at a certain time, denoted by Tkdd′t, but only if both vehicles are present
at the same location, such that ydit = yd′it = 1. Transferring implies that Tkdd′t = −Tkd′dt, as
is the case with recharging. Combined, the evolution of the inventory of a vehicle is given as:

Ikd,t+1 = Ikdt −
∑
c∈C

Dkdct + Pkdt +
∑

d′∈D
Tkdd′t ∀k ∈ K, d ∈ D, t ∈ T (3-2)

And the inventory of a CE as:

Ikc,t+1 = Ikct − Ckct +
∑
d∈D

Dkdct ∀k ∈ K, c ∈ C, t ∈ T (3-3)

All of the relocation, pickup, delivery, transfer, and coupling decisions are made to optimally
supply the CEs. To model this, a threshold is defined for each supply class k ∈ K at each
time instance t ∈ T for each CE c ∈ C as the minimum supplies necessary to operate, denoted
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Figure 3-2: The actual strike probability increases due to a linear survival decay when remain-
ing static for multiple consecutive periods. This results in a rapid decrease of the cumulative
probability for survival.

by τkct. If this threshold is violated, a shortage is present, meaning Ikct < τkct. This shortage
is penalized according to provided weights wkct, such that certain supply classes for certain
CEs at specific times can be prioritized. Then, the objective is defined as minimizing the
maximum shortage penalty, in order to lower the worst-case outcome over all CEs:

min max
∀k∈K,c∈C,t∈T

(wkct · (τkct − Ikct)+) (3-4)

Furthermore, there is always a risk for enemy strikes during both relocation and static pres-
ence. If a strike occurs, the vehicle is destroyed and cannot perform deliveries anymore.

The default risk for an enemy strike at node i ∈ N at time t ∈ T when vehicle d ∈ D remains
static is denoted as P0

dit. This risk could be based on for instance known enemy weapons,
estimated locations, and the profile of the vehicles. The estimation is performed upfront, and
provided to the model. If the vehicle remains present in the same location for n consecutive
time periods, the static probability for a strike will gradually increase following the survival
decay function φ(ndit). As described in Section 1-1, a unit can remain static no longer than
3 hours without being noticed. Hence, regardless of the function used, the risk for a strike
is maximized after 3 hours, and chances for survival are approximately zero. Put otherwise,
with tp as period length, after n̄ = 3h

tp
periods the risk is 100%. Then, using an affine survival

decay starting after the first period:

φ(ndit) = max(1− 1
n̄

(ndit − 1), 0) ∀d ∈ D, i ∈ N, t ∈ T (3-5)

Then the probability for a strike depending on the periods a vehicle remains static equals:

Pdit = 1− (1− P0
dit) · φ(ndit) ∀d ∈ D, i ∈ N, t ∈ T (3-6)

In Figure 3-2 this is displayed for a single system at a specific position. Given the vehicle
has arrived in period 0 and each period constitutes 15 minutes, the survival chance has
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decayed completely after 12 consecutive periods. As is visible, the actual strike probability
is not monotonically increasing as survival chances decay. This is due to the varying default
probability for that specific position over time. For example in period 2, the default probability
is that much lower than in period 1, that even though chances for survival decay, the actual
strike probability is still lower. After the full 3 hours, however, a strike is imminent.

Furthermore, when a vehicle relocates to a new location it is exposed, such that the probability
for a strike at vehicle d ∈ D while starting to move from node i ∈ N to j ∈ N at time t ∈ T
is described by Pdijt. Combined, this means that a future probability for survival for each
vehicle at time t is estimated based on the planned relocations:

Ps
dt =

t∏
0

(
1−

∑
i∈N

Pdit · ydit

)(
1−

∑
i 6=j∈N

Pdijt · xdijt

)
∀d ∈ D (3-7)

Effectively, this means that future inventory levels depend on the probability of survival
of the vehicles delivering supplies, such that the objective of a maximum shortage penalty
is influenced negatively. Therefore avoiding risks increases the expected amount of supplies
delivered, and sufficient redundancy would need to be included to compensate for each other’s
limited chances of survival.
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Chapter 4

Methodology

4-1 Solution structure

In this section, the overall structure of the solution process is explained, highlighting the
dependence between coordination, cooperation, and the local problem of each vehicle.

4-1-1 Coordination

To increase scalability and robustness against communication failures a distributed hierarchi-
cal intent-based Command & Control (C2) framework (Korthals Altes, 2021) can be imple-
mented, which allows for effective coordination (see Section 2-3-3). This framework functions
by dynamically partitioning the problem space into smaller subsets, which are assigned to
individual agents, such that the problem can be solved locally.

In Figure 4-1 the effect of partitioning on the network topology is displayed. One can see the
difference between the centralized approach, a distributed fully connected one, and a coordi-
nated approach. The example shows the concept of overlapping subsets after coordination,
such that each vehicle has a specific set of neighbors.

For the model described in Section 3, coordination can take place on the following elements:

• Limiting the traversable nodes to the subset Nd ∀d ∈ D.

• Limiting the set of vehicles for cooperation D to Dd ∀d ∈ D

• Limiting the available Forward Operating Bases (FOBs) F to Fd ∀d ∈ D.

• Limiting the Combat Elements (CEs) C to be supplied to Cd ∀d ∈ D.

Depending on the coordination process, coordination could range from completely disjoint
subsets (no cooperation possible), to complete subsets, such that the problem equals the fully
connected case in Figure 4-1. Proving that coordination increases scalability and robustness
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Figure 4-1: The different subset approaches are shown. Left, a central node solves the problem
for all vehicles. In the middle, the the subsets are complete, such that all vehicles cooperate with
each other on all variables. At the right, each vehicle receives a distinct but overlapping subset,
such that each agent can cooperate with a specific set of neighbors.

against communication failures, is out of scope for this thesis. Instead, ensuring that the
solution method allows coordination is assumed sufficient. For simplicity, the subsets are
defined to be complete, such that the topology equals the central case displayed in Figure
4-1, and all vehicles are neighbors with all other vehicles.

4-1-2 Cooperation

After coordination, each vehicle can cooperate with its neighbors. Cooperation can then result
in vehicles synchronizing their actions to perform a physical transfer, or by communicating
their actions, such that their decisions can be aligned to pursue global optimality. Decisions
that require cooperation by synchronization can be described as:

• Transferring Tkdd′t supplies of class k ∈ K from vehicle d′ to d ∈ D at time t ∈ T .

• Refueling amount Rdd′t from vehicle d′ to d ∈ D at time t ∈ T .

The act of receiving the supplies or fuel is denoted as a collection. Vice-versa, the providing
vehicle agrees with a constraint, which is the opposite obligation to satisfy the collection by
another vehicle.

As stated, the vehicles also communicate their local decisions, including delivery Dkdct, pickup
Pkdt, and relocation xdijt. These decisions are coupled implicitly through the inventory ca-
pacity at the CEs bkc, the inventory Ikct, thresholds τkct and weights wkct, such that globally
a higher objective value can be achieved by aligning their decisions.

To enable distributed cooperation, two algorithms are proposed and adjusted for synchroniza-
tion, based on the Distributed Constraint Optimization Problem (DCOP) paradigm. The first
is Maximum Gain Messaging (MGM), proposed by Maheswaran, Pearce, and Tambe (2004).
MGM is an incomplete, synchronous algorithm performing distributed local search. It is also
an any-time algorithm, meaning that over time the solution can only improve. As an exten-
sion for MGM, MGM-2 is proposed (Maheswaran et al., 2004). The essence of this extension
is that agents performing the algorithm can explicitly propose a collection or constraint, as
opposed to MGM. Both algorithms are explained further in Section 4-2-2.
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4-1-3 Local problem

Independent of any prior coordination or cooperation being possible, each vehicle always
solves its local problem. In the case of no cooperation, individual solutions are still generated,
though their subsets might overlap. Global feasibility remains ensured, as even if vehicles try
to supply a CE already supplied by another vehicle, the inventory or fuel levels of either the
CEs or vehicles will never be lower than expected. Hence, vehicles will always be able to
perform remaining deliveries or return to an FOB respectively. When cooperation is possible,
vehicles can claim any excess supplies or fuel of a neighboring vehicle, resulting in a collection
and corresponding constraint.

To solve the local problem, a two-stage heuristic is proposed. During the first stage, a greedy
delivery scheduling algorithm proposes the deliveries, pickups, transfers, and relocations. In
the second stage, a path planning algorithms creates a path that avoids as much risk as
possible between the scheduled decisions. The method is based on the exact forward-labeling
algorithms for the Elementary Shortest Path Problem with Resource Constraints (ESPPRC)
(Feillet, Dejax, Gendreau, & Gueguen, 2004) (Bettinelli, Ceselli, & Righini, 2011) (Pugliese
& Guerriero, 2013). In general, this method functions by dynamically extending profitable
labels, and removing dominated labels which will certainly produce a worse outcome than at
least one other label. In Section 4-2 the delivery scheduling and path planning algorithm are
explained further.

4-2 Local algorithms

4-2-1 Delivery scheduling

Decisions

During the delivery scheduling, each vehicle d ∈ D generates its main decisions. The decisions
that can be made in each period t ∈ T can be summarized as:

• Delivering an amount of Dkdct supplies of each class k ∈ K to CE c ∈ C.

• Resupplying Pkdt at any FOB up to the capacity bkd of each class k ∈ K.

• Collecting Tkdd′t supplies up to bkd of each class k ∈ K from vehicle d′ ∈ D.

• Collecting Rdd′t fuel from vehicle d′ ∈ D, or recharge Rdt up to rd at any FOB.

• Relocate from node i to node j ∈ N at time t ∈ T .

• Satisfying constraints, by transferring −Tkd′dt or recharging −Rd′dt to vehicle d′ ∈ D.

To be able to deal with the constraints, sufficient fuel or supplies must be kept at hand. To
keep track of these amounts, the set of constraints for each vehicle is denoted as Hd. Then,
during planning, the required amounts of supplies or fuel that need to be present at time
t ∈ T for constraint satisfaction are defined as mdkt ∀k ∈ K and me

dt respectively.
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As the objective is to minimize the maximum penalty, a possible delivery to a CE is calculated
using the following formula:

Dkdct = min(max
t...T

(τkct − Tkct)+, Ikdt −mdkt, bkc − Ikct) ∀k ∈ K, d ∈ D, c ∈ C (4-1)

This formula states that first, at most the maximum shortage for the CE over all future
periods is delivered, limited by the available inventory of the vehicle, from which any possible
supply margins mdkt are subtracted. Then, this amount is limited further by the available
inventory space at the CE.

Delivery selection

To prevent vehicles from deciding to do a profitable, but unacceptable risky delivery, the
deliveries are discounted by an approximated risk. Because the precise path planning is not
yet performed, a single-hop approximation is implemented. It is assumed that with one in-
termediate point, a relatively safe path can be constructed. Time limits are not included in
this approximation, such that very long, but safe paths might be accepted as a valid approx-
imation, while not being possible. The benefit of this relaxation is that the approximation
for each pair of nodes can be precomputed as such:

P̂dijt = 1− max
∀s∈N

{(1− Pdist) · (1− Pdsjt)} ∀d ∈ D, t ∈ T (4-2)

Based on this approximation, the discounted delivery performed at time t′ ∈ T is defined as
D̂kdct′ = Dkdct′ · P̂dijt, with i ∈ N being the current position of vehicle d ∈ D at time t ∈ T ,
and j ∈ N the position of CE c ∈ C at time t′ ∈ T . Subsequently, this discounted delivery can
be used to calculate an approximation of the expected CE inventory and the corresponding
maximum weighed penalty, using Equation and (3-3) Equation (3-4) respectively.

For each possible delivery, the vehicle can then calculate the gain based on the approximation
of the expected penalty. The delivery selected is the one maximizing the gain. As it might
occur that the maximum penalty cannot be reduced, while the delivery is still beneficial, a
hierarchical gain is implemented:

1. Reduce the maximum penalty of all CEs combined.

2. Reduce the maximum penalty by the largest amount of any CE.

3. Reduce as much penalty as possible.

The examples below illustrate how this hierarchical selection functions. In example 1, the
maximum penalty of 90 of all CEs can be reduced by delivering to CE 1. In example 2, the
overall maximum penalty cannot be reduced, but delivering to CE 2 would reduce at least
that maximum penalty. In example 3, neither of the maximum penalties can be reduced, but
the total penalty can be reduced by delivering to CE 1.
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Example 1 Example 2 Example 3
Delivery to CE 1 CE 2 CE 1 CE 2 CE 1 CE 2
Max penalty before 90 70 90 70 90 70
Max penalty after 65 15 90 15 90 70
Total penalty before 800 900 800 900 800 900
Total penalty after 400 600 400 600 400 600

Calculating fuel & supply margins

A constraint essentially means that during delivery scheduling of vehicle d ∈ D, the resources
that are collected by vehicles d′ ∈ D must be made available in the agreed period and node.
To plan the required amounts at time t ∈ T , the supply margins mdkt ∀k ∈ K, and the fuel
margins as me

dt have to be calculated. This section explains how the margins are calculated
based on the available set of constraints Hd.

The main influence on the required margins is whether an FOB is reachable before the con-
straint needs to be satisfied. If an FOB is not reachable before the constraint, sufficient fuel
and supplies need to be collected and preserved earlier. To verify this, a short algorithm is
executed over the constraints:

1. By iterating forward, retrieve the path maximizing the fuel level at the next constraint,
either by going directly, via an FOB or a collection. However, if an FOB is forced, the
direct path is forbidden (see step 3).

2. By iterating backward, set the current required inventory and fuel margins, such that
if no FOB is reachable not only the current constraint values are required, but also of
all succeeding constraints that cannot be reached by an FOB prior.

3. By iterating forward, passing via an FOB is forced for any case in which a direct path
is chosen to maximize fuel, but there is not sufficient inventory to fulfill the supply
requirement.

These steps are repeated iteratively until no more new FOBs are forced to be visited. If during
the first step multiple collections can be visited before the next constraint, it is assumed that
they are visited either all or none. To clarify why the above steps are necessary, an example
is provided in Figure 4-2.

Recharging enables FOB: in example 4-2a, the vehicle has a fuel capacity of 6 and it
starts with a fuel level of 4. In this case, the FOB between constraints A and B can only be
passed if the FOB is passed before constraint A too. In other words, maximizing the fuel level
upon arriving at A, enables an FOB later. Though visiting the FOB before might initially be
unnecessary to fulfill constraint A, it can then still be forced such that later constraints can
be satisfied.

Resupplying prohibits FOB: in example 4-2b, the vehicle starts with a fuel level of 5
instead. If in this case the FOB is visited before constraint A, there is not enough fuel
remaining to visit the FOB between constraint A and B, meaning that it needs to collect
sufficient supplies before A for all subsequent constraints.
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Figure 4-2: The blue square depicts the vehicle with the current fuel level, the arcs indicate the
fuel consumption, the red diamonds the constraints, the flags with the fuel vehicle capacity in
green represent FOBs, and the green diamonds the fuel collections.

Algorithm overview

To aid the solution process, the scheduling is split in several cases, which are all covered in
the pseudo-code from Algorithm 1 displayed below.

Algorithm 1: Greedy delivery planning for vehicle d ∈ D
1 while any decision is possible do
2 if any constraints then track minimum required fuel and supply levels
3 if any vehicle inventory class empty then require resupply
4 if no resupply or refueling required then
5 collect all reachable CE positions
6 else
7 collect all reachable CE positions via FOBs or neighbors

8 foreach reachable CE position do
9 collect maximum penalty and total penalty reduction

10 select most profitable reduction as next delivery

11 if no profitable delivery possible then
12 if inventory or fuel level below constraint levels then require resupply or refueling
13 if resupply or refueling required then go to FOB or make collection if possible
14 if no resupply or refueling required or impossible then
15 case possible before constraint do go to rebalancing node
16 case possible before constraint do return to current node
17 otherwise do go to constraint node

18 if fuel threshold not violated then
19 update position, time, fuel and inventory levels
20 else
21 discard delivery and require refueling

22 return delivery plan consisting of deliveries and relocation decisions
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(a) Three positions are directly reachable (b) Two are reachable before a constraint (c) One before a constraint via an FOB

Figure 4-3: Three subcases for direct delivery are displayed. The orange and grey circles indicate
the future positions of two CEs. The blue square indicates the current position of the vehicle.
The red diamond designates a constraint, meaning a transfer agreement with another vehicle,
and the blue flag depicts an FOB.

Case 1: Direct delivery

The simplest case of delivery scheduling is a direct delivery from vehicle d ∈ D to any CE
c ∈ C, before which no resupply or refueling is necessary. In Figure 4-3 the choices for a direct
delivery are depicted. There are three subcases. The first, depicted by Figure 4-3a, is that
of a vehicle being able to reach specific future positions of a CE both in time and with its
current fuel level. In Figure 4-3b, also a constraint must be satisfied after delivery, limiting
the possibilities. Thirdly, in Figure 4-3c the constraint can be reached after delivery, but it
is not always possible to visit an FOB before. If it is possible, the supply margins mkdt are
set to zero, and the fuel margins me

dt to the fuel needed to reach the FOB.

Case 2: Delivery after resupply or refueling

In the second case, either resupply or refueling is required. Resupply is automatically required
when a vehicle d ∈ D has run out of any inventory class at time t, meaning ∃ k ∈ K : Ikdt = 0.
Refueling is required if the previous attempt to schedule a delivery resulted in a proposed node
i ∈ N that was out of reach from the closest FOB at node j ∈ N , meaning Edt − Cdij < 0.
Furthermore, resupply is also required if the current inventory at time t is lower than the
margin, meaning ∃ k ∈ K : Ikdt −mdhk < 0, or if the current fuel level at node i ∈ N is not
sufficient to reach and satisfy the constraint at node j ∈ N , meaning Edt − Cdij −me

dh < 0.

Given that resupply or refueling is required, the two subcases are depicted in Figure 4-4.
First, an FOB could be visited before a delivery, limiting the reachable future positions, as
displayed in Figure 4-4a. In the second case, there are future positions that are not reachable
via an FOB, but are reachable via another vehicle, allowing for a fuel and supply transfer
(Figure 4-4b). In both cases, however, any constraints still need to be met. Therefore, also
the subcases described in Figure 4-3b and 4-3c apply.

It is possible that refueling is required, and that a scheduled delivery after refueling is again
outside of reach of the closest FOB. This would trigger refueling again, resulting in a loop.
To prevent this, those deliveries are allowed if more than 25% of the fuel capacity is left,
which is assumed sufficient to make a near collection. If it is lower, the delivery is discarded.
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(a) Two positions are reachable via an FOB (b) Two are reachable via another vehicle

Figure 4-4: Two subcases are displayed for delivery after refueling or recharging. The circles
depict future CE positions, the blue square the current vehicle’s position, the blue flag an FOB,
and the green diamond designates a vehicle available for transfers.

Case 3: Direct resupply or refueling

The third case emerges when a vehicle is required to recharge or resupply, but no delivery is
possible or profitable. If possible, the closest FOB is selected, or otherwise the closest vehicle
that has any excess resources. However, this is only allowed if after the transfer the supply
margin mdhk and fuel margin me

hk are satisfied, or if the available fuel transfer allows reaching
an FOB that is otherwise not reachable. Again, if constraints are present, the case depicted
in Figure 4-3b still applies. Regardless of refueling being successful or not, it is not checked
whether the remaining fuel level is sufficient to reach the closest FOB. This means that the
refueling flag cannot be triggered again, which could otherwise result in a loop, as the nearest
refueling action, if possible, has already been scheduled.

Case 4: Relocation

Relocation covers the three remaining subcases. First, the vehicle can rebalance to a new
position, possibly better suiting the planning of other vehicles and enabling more cooperation.
During rebalancing, the destination is selected as the node minimizing the summed distance
to all other vehicles and CEs, weighed by the one-hop transit risk for going from the current
node i ∈ N , to the destination node j ∈ N at time t ∈ T :

arg min
∀j 6=i∈N

{
P̂dijt ·

( ∑
∀s∈Sd

djs +
∑
∀s∈Sc

djs

)}
(4-3)

The nodes occupied by neighbors are defined as Sd = {j ∈ N : yd′jt = 1 ∀d′ 6= d ∈ D}, the
CE nodes as Sc = {j ∈ N : ycjt = 1 ∀c ∈ C}, and the distance between two nodes i, j ∈ N as
dij . Possibly, the selected node is further away than allowed. In that case, the node that is
closest to the selected destination node, but is still reachable, is set as the new destination.

Alternatively, if due to constraints the rebalancing node is not possible, the vehicle can decide
return to its current position after a fixed time, allowing the possibility for constructing a
safe path near the current position. In this case, the fixed time is set to 2 hours. Lastly, the
vehicle can go towards the meeting node belonging to the next constraint.
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4-2-2 Path planning

During the second stage, the objective is to create a path minimizing the total risk taken,
while performing the scheduled actions. During path planning, three decisions can be made:

• Wait a full period at a node.

• Relocate to a new node.

• Resupply or refuel if an FOB is located at the node, or if a scheduled collection is
available at the considered node and period. This decision can be taken in parallel with
the first two.

Though this approach is based on an exact method, this specific method loses that property
to speed up the solution process, as labels are initially only extended to the three nodes
closest to the current node, the current node itself, the meeting node, all FOB nodes, and
any scheduled transfer node. By doing this, the search space is severely reduced while not
losing any feasibility guarantees. As soon as a feasible solution has been found, the search
is reinitialized, and all nodes all enabled for expansion. The pseudo-code is provided in
Algorithm 2.

Algorithm 2: Dynamic path planning for vehicle d ∈ D
1 foreach action in the delivery plan do
2 initialize source label with current position, fuel and inventory levels
3 if currently at FOB or scheduled transfer available then resupply and/or refuel

4 while not terminated and labels left do
5 select new label vl to expand
6 foreach node do
7 expand label vl to v′l
8 if label infeasible in time or fuel then discard label
9 if FOB at node or scheduled transfer available then resupply and/or refuel

10 if insufficient fuel or supplies and (all FOBs out of reach or scheduled
transfer already performed or scheduled transfer out of reach) then discard
label

11 if node is meeting node and arrival time in meeting period then
12 check if new best path and if so, update
13 else
14 discard label
15 if highest remaining survival probability lower than best found or no improvement

found within time limit then terminate preemptively
16 recursively build path segment from current best label
17 remove any excess fuel or supplies from the scheduled transfer
18 add path segment to complete path

19 return complete path and intermediate resupply and refueling transfers

Master of Science Thesis M.A. Korthals Altes



26 Methodology

Extending paths

First, a label vl = 〈i,Ps, P̂s, ta, E, Ik, f, n, l′〉 is introduced, tracking the current node i, the
cumulative current Ps and expected P̂s probability of survival, the arrival time ta, the current
energy and inventory level E and Ik respectively, a Boolean f indicating if the scheduled
transfer has already been performed, the number of consecutive periods n it has remained
static at the current node, and the preceding label index l′.

The label vl with the highest expected probability of survival P̂s is selected for extension, such
that effectively a depth-first search is implemented. This expected probability of survival for
vehicle d ∈ D, when planning to the next scheduled action at node j ∈ N in period p, is
approximated using the transit risk once, and the static risk over the remaining periods:

vl〈P̂s〉 = vl〈Ps〉 ·
Ä
1− P̂d,vl〈i〉,j,vld〈ta〉e

ä
·
Ä
1− P0

d,j,d〈ta〉e

äp−d〈ta〉e−tvl〈i〉,j (4-4)

the new label vl is then extended to a selection of, or all nodes j ∈ N . When extending, the
performed updates can be described as:

ta =
®
dvl〈ta〉e+ 1 if vl〈i〉 = j

vl〈ta〉+ tvl〈i〉,j if vl〈i〉 6= j
(4-5)

n =
®
vl〈n〉+ 1 if vl〈i〉 = j

1 if vl〈i〉 6= j
(4-6)

E =


rd if

∑
f∈F yfj ≥ 1

vl〈E〉 − Cvl〈i〉j +
∑

d′∈D Rdd′dtae if
∑

d′∈D ydjdtae ≥ 1
vl〈E〉 − Cvl〈i〉j if vl〈i〉 6= j

vl〈E〉 Otherwise

(4-7)

Ik =


bkd if

∑
f∈F yfj ≥ 1

vl〈Ik〉+
∑

d′∈D Tkdd′dtae if
∑

d′∈D ydjdtae ≥ 1 ∧ f = 0
vl〈Ik〉 Otherwise

(4-8)

f =
®

1 if
∑

d′∈D Tkdd′dtae > 0 ∨
∑

d′∈D Rdd′dtae > 0
vl〈f〉 Otherwise

(4-9)

Ps =
®
vl〈Ps〉 · (1− Pdjdtae) if vl〈i〉 = j

vl〈Ps〉 · (1− Pdvl〈i〉jdtae) if vl〈i〉 6= j
(4-10)

In Equation 4-5, the arrival time is updated. This can either be the result of static waiting
or relocation to a new node. Equation 4-6 updates the number of consecutive periods based
on the same options. In Equation 4-7, the fuel level is increased to the vehicle capacity at
an FOB, decreased with the consumption during relocation, kept constant during waiting,
or increased with any scheduled recharging. A similar case is made for the inventory level
in Equation 4-8. If the collection has been performed, the transfer Boolean is updated in
Equation 4-9. Lastly, the survival probability is updated using Equation 4-10, in which either
the probability for a strike for remaining static or being in transit is used. Also the expected
survival probability P̂s needs to be updated using Equation (4-4).
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Removing labels

First, some general rules can be formulated that prove that labels cannot result in a feasible
or optimal solution. In those cases, they can be removed. The meeting period is defined as p,
the current and meeting node as i and j ∈ N respectively, and the required margins as mdhk

and me
dh for fuel and inventory. The rules are formulated as follows:

• The survival probability is lower than the currently best known, meaning Ps < Ps
best

• The node can never reach the scheduled action on time, as ta + tij > p.

• Relocation cannot be performed because of lacking fuel, as E − Cij < 0.

• The margins cannot be met anymore, as no FOB or scheduled collection can be reached,
meaning Idkt < mdkt ∨ Edt < me

dt.

As the probability for survival monotonically decreasing, it can never increase, meaning it
directly serves as an upper bound on the best solution that can be expected by extending an
existing label, allowing the use of the first rule. This also means that, if the highest survival
probability of all available labels is lower than the best-found probability so far, the search
can be terminated, as the best solution has been found.

Unfortunately, the dominance criteria used for the ESPPRC cannot be applied directly to
this problem. The main difference is that in this case, the triangle inequality does not hold.
For example, in Figure 4-5a a longer, safer path exists. If sufficient time is available, it yields
a better solution. In Figure 4-5b no such path exists, such that more time will only lead to
longer waiting, and thus a worse solution. Therefore dominance of label vl over v′l is only exact
when they occupy equal nodes at the same time, with label vl having equal or larger fuel and
inventory, is present equal or less consecutive periods, and has a higher survival probability.
This kind of dominance is very weak, for which the computing power for comparison can
easily exceed the profit of reducing the search space slightly.

A B
 tAB = 1 

 tAB = 3 

(a) A longer safer path exists

A B

(b) No safer path exists

Figure 4-5: An example showing that a longer time left can result in both a safer or riskier path

To compensate this, the heuristically reduced search space along with the approximation of
the expected survival probability is used. Still, due to the exponential complexity search time
can easily explode. To prevent this, all actions during greedy scheduling are limited to the
number of periods it takes to cover a distance of 80km, limiting the worst-case number of
possible paths independent of the vehicle’s speed.
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4-3 Cooperative algorithms

4-3-1 Maximum Gain Messaging

Calculating excess fuel & supplies

Before any cooperation can take place, the excess supplies that can be collected have to
be calculated. After a vehicle d ∈ D has completed its delivery schedule and precise path
planning, it can calculate the excess supplies for time t ∈ T , resulting in a value gdkt ∀k ∈ K,
and any excess fuel as ge

dt. These values are then communicated during cooperation, such
that any neighboring vehicle can collect these excess resources, resulting in a constraint.

The amount of excess resources are explained using the simplified example below. For each
period t, a figurative inventory level It, delivery Dt and excess inventory gt are displayed. In
period 4, the inventory is increased up to the capacity of 10 at an FOB. As can be seen, before
visiting the FOB, the vehicle has 5 supplies in excess. During and after resupply, however, it
has none in excess as it has to deliver its complete inventory.

t 1 2 3 4 5
It 10 5 5 10 0
Dt 0 5 0 0 10
gt 5 5 5 0 0

In reality, the excess supplies are also reduced by planned constraints and increased by col-
lections. Furthermore, instead of deliveries the remaining fuel consumption for executing the
planned path is taken for the fuel margin. At the last period, also the fuel consumption to
reach the nearest FOB is deducted, such that no vehicle can claim more fuel than is necessary
for the other vehicle to return to an FOB.

Solution process

MGM executes in synchronized rounds. During each round, all vehicles optimize their new
plan locally, based on the most recent information. After creating a new plan, all vehicles
broadcast the gain achieved with their new plan. If a vehicle has the highest gain of all its
neighbors, it can directly accept the new plan. If not, it discards its new plan for this round.
The steps of the algorithm are depicted in Figure 4-6.

The gain for selecting the best new plan is calculated similarly as when picking the next
delivery during greedy delivery scheduling. The main difference is that the decision can also
be based on the average survival probability. The order then becomes:

1. Largest reduction of the maximum penalty of all CEs combined.

2. Largest reduction of a maximum penalty of any CE.

3. Largest reduction of total penalty.

4. Largest increase in average survival probability over all neighbors.
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Receive latest risks, CE
positions & consumption

Solve local problem Rebuild context with 
received delivery plans

Solve local problem & 
calculate gains

Broadcast & receive gains

Broadcast delivery plan

 If largest 
gain

start period

MGM

Receive delivery plans
YesNo

Broadcast delivery plan

Figure 4-6: A flow chart depicting the different steps of the MGM algorithm. Initially, each
vehicle solves the problem individually. Then rounds of MGM are performed to allow cooperation.

The flow chart in Figure 4-6 shows the solution process. At the start of each period, all
vehicles receive the most recent information. Then, they individually solve their local problem.
This solution is already a feasible, non-cooperative solution. With these plans, all vehicles
participate in rounds of MGM, until no more improvements are found or if the maximum
number of rounds is reached.

The step ‘rebuilding the context with the received delivery plans’ means that the vehicle
includes the deliveries of other vehicles in the future shortages of CEs, and can now see
if other vehicles have any fuel or supplies in excess, meaning it can subsequently plan to
collect those. Each time a delivery plan is accepted including collections, the corresponding
constraints are created at the providing vehicle. To prevent infeasibility, the providing vehicles
can never cancel a constraint using MGM, but the receiver can unilaterally do so.

If a vehicle has created a new delivery plan that resulted in the largest gain of its neighbors,
will broadcast it. In the next round it does not have join, as it has not received any new
information and as such cannot improve over its previous plan. In the round after, it will join
again.

4-3-2 Maximum Gain Messaging 2

Only using MGM would limit the flexibility during scheduling severely. The problem is that
with MGM, vehicles cannot remove any of their constraints. Furthermore, the only available
resources are excess resources, which is not necessarily optimal. Thus, the importance of
adding MGM-2 is that it enables vehicles to alter their synchronized moves. Put otherwise,
providing vehicles can propose to cancel a constraint. Furthermore, it allows vehicles to
generate proposals for yet unavailable fuel or supplies, effectively proposing to another vehicle
to free up those resources.
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During each round of optimization, vehicles are randomly assigned to become an offerer or
a receiver. If the offerer has any constraints, it will propose to remove one. If it has no
constraints it will try to propose a collection. If two updated delivery plans are both feasible
and the overall gain is positive, they are accepted and broadcasted.

Proposing to remove a constraint

First, the offerer randomly selects any of its constraints to remove. The linked vehicle then
automatically becomes the receiver. When removing a constraint, the offerer calculates its
new delivery plan without the constraint first, while it is not allowed to schedule a collection
from the receiving vehicle, as the currently known excess resources of the receiver vehicle are
possibly dependent on the constraint to be removed. After the offerer has revised its plan,
it sends it to the receiver along with the gain. At the receiver side, infeasibilities might still
occur, as the collection could be necessary to satisfy other constraints of the receiver. Hence,
removing its corresponding collection would not be possible. On successful rescheduling of
the receivers’ delivery plan, the plans are both accepted if the total gain is positive.

Proposing to add a constraint

If the offerer does not have a constraint, it will check if it is valuable to propose one. It can
either propose to collect fuel or supplies, but not both. The vehicle will try to collect fuel
only if its current fuel level is below 25% of its capacity, or when it is out of reach of the
nearest FOB. Otherwise, it will try to collect supplies.

In both cases, the offerer selects the receiver based on a normalized distance-availability
metric, such that the most fuel available is favored, as well as the closest distance:

arg min
d′ 6=d∈D, j′:yd′j′t=1

®
maxd′′ 6=d∈D{Ed′′t}

Ed′t
·

minj′′∈N :yd′′jt=1{d′′ij}
dij

´
(4-11)

For supplies the same equation is applied, but instead of the available fuel Edt, the sum of all
classes

∑
k∈K Ikdt is used.

When a receiver is selected, the maximum obtainable fuel is defined as 35% of the receiver’s
fuel level, or the maximum available at the offerer. For inventory, this limit is increased to
50% and any existing supply constraints of the receiver are subtracted. Then, only if the
receiver can reach the position of the offerer and any fuel or supplies can be obtained, the
collection is proposed. The transfer node is set as the current node of the offerer, and the
period as the latest arrival time of either vehicle at this node. Subsequently, the constraint is
added to the receiver, and the collection is added as a first action during the greedy scheduling
of the offerer.

When an attempt is made to solve the local problems with this new proposition, the receiver
plans first, and may not cooperate with the offerer as any information on excess resources is
still obsolete. After completion, the offerer reschedules too and checks if a net gain is present.
If so, both new plans are accepted.
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Chapter 5

Data

To be able to simulate the effectiveness of the proposed solution method for Dispersed Au-
tonomous Resupply (DARE), a hypothetical scenario on familiar territory against a peer
opponent is considered. Using this scenario, realistic data can be generated.

5-1 Scenario

Unexpectedly, the UK attacks Belgium and the Netherlands. The aim is to secure both the
capitals Amsterdam and Brussels, and the main ports in Rotterdam and Antwerpen, such
that it can maintain itself as the designated power in North-West Europe. Following a swift
landing by the Royal Marines near Antwerpen, a firm beachhead has been established, such
that the UK’s 12th Armored Infantry Brigade can move towards Rotterdam. The Dutch
13th Light Brigade is tasked to intercept and halt the 12th Armoured Infantry Brigade before
Rotterdam is reached, such that sufficient time can be created for mechanized reinforcements
to arrive, which is expected to take 72 hours.

As depicted in Figure 5-1a, the 12th Armoured Infantry Brigade is expected to advance
over two axes as quickly as possible to capture Rotterdam. The 12th consists of a light
tracked reconnaissance battalion, a light mechanized battalion with Armoured Personnel Car-
riers (APCs) and Light Armoured Vehicles (LAVs), two heavy tracked mechanized battalions
with Infantry Fighting Vehicles (IFVs), and one armoured battalion with tanks. The light
component is expected to advance as fast as possible over the western flank via Bergen op
Zoom, to take the Hellegatsplein crossing and the Haringvliet bridge of the A29 highway. The
heavy component is expected to advance over the eastern flank via Breda, to take the rail-
way and A16 highway Moerdijk bridges. The own forces consist of two wheeled, mechanized
infantry battalions with APCs, one wheeled, mechanized combat engineer battalion, and one
reconnaissance squadron.
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(a) The Concept of Operations (CONOPS).
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(b) The sampled Area Of Operations (AOO).

Figure 5-1: The hypothetical CONOPS is shown with the corresponding sampled version of the
environment, by creating equally spaced nodes at 5 kilometers distance within the AOO, with
three Forward Operating Bases (FOBs) at approximately 90 kilometers distance.

5-2 Quantifying operations

The described scenario is used to create an approximate representation of distances, move-
ments, risks, and supply consumption. This is no one size fits all, but it serves as an approx-
imation for dispersed operations against a peer opponent.

Environment

First, a sampled environment is generated. As no large rivers, mountains, swamps or dense
forests are present, all vehicles are assumed to be able to travel to any location. The operation
sketch from Figure 5-1a provides a rectangle area of operations of around 40km by 50km.
The area is sampled with equally spaced nodes every 5km, to limit the problem size. Three
FOBs are placed roughly 90km away from Antwerpen, at Eindhoven, ’s Hertogenbosch, and
Rotterdam. The sampled environment is depicted in Figure 5-2b.

Enemy movement

Each enemy is assigned to an axis of advance, as depicted in Figure 5-1a. The paths are
sampled such that in 72 hours the target is reached. The expected paths are not exact, as
uncertainty is introduced by randomly perturbing the assigned paths. Each location {ly, lx}
along the path is perturbed using a normal distribution, to create the new locations l′y =
N (ly, 0.04) and l′x = N (lx, 1.44), such that a standard deviation of 0.2 and 1.2 kilometers is
present in the latitudinal and longitudinal direction respectively.
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Table 5-1: The total supply capacity and fuel consumption of one platoon for all classes per
type.

Type Class I Class II Class III Class IV Class V Total consumption
Infantry 600kg 150kg 2.400kg 200kg 3.200kg 6.550kg 2.8 L/km
Engineers 600kg 320kg 2.500kg 350kg 2.800kg 6.570kg 3.0 L/km
Reconnaissance 260kg 140kg 1.600kg 190kg 1.700kg 3.890kg 1.8 L/km

CE movement

First, the enemy forces are uniformly assigned to the Combat Elements (CEs). Furthermore,
for each CE a center point is generated by uniformly distributing them over the AOO. To
simulate the movement of the CE, nodes are selected to create a path. Assuming a maximum
speed of 40 km/h, the set of possible nodes Nlim is limited to those it can reach within one
period. The nodes j ∈ Nlim are ordered based on the following distance measure:

d̂j = dij + dj,ce + 35 ·
Å
dj,cp

35

ã2
(5-1)

Here, i ∈ N is the current CE node, dj,ce describes the distance to the closest enemy, and dj,cp

to the center point. The latter is weighed and squared to heavily penalize moving beyond a
35km radius from the center point. By doing this, CEs move only within proximity of the
enemy to ‘attack’ if the enemies move into the CEs’ sector. To generate the path, the new
position is randomly selected between the four nodes minimizing the distance measure, and
one random node within the 5% smallest measures. The probability for selecting one of the
four smallest measures is set twice as high as the one node belonging to the 5% smallest.
Furthermore, the 4 previously visited nodes are excluded by blacklisting those positions,
except the current node, such that a CE can remain static.

Capacity

Each CE is equipped for 48 hours of operations, but the required amount of each class of
supplies depends on the specific role. Every CE corresponds with a platoon. Based on each
role for this unit size, an average supply capacity is estimated, displayed in Table 5-1. These
estimates are a rough representation based on classified data of actual supply consumption.

Generating consumption

Supply consumption is modeled to be dependent on the distance to the closest CE. It is as-
sumed that maximum consumption is reached within a 2km proximity, and decreases linearly
up to 30km. Except for fuel, the average consumption is defined to be the capacity divided
over 48 hours, which is consumed at 16km distance to the closest enemy. For fuel, the known
consumption per kilometer is multiplied by the traveled distance since the past period. Not
all classes vary with the same degree on this proximity. The dependency is estimated to be
0% in class 1 (water and food), 35% in class 2 (equipment), 25% in class 3 (fuel), 35% in
class 4 (materials and spare parts) and 90% in class 5 (munitions). For example, equipment
is then consumed at a rate of 65% of the mean value at a range of 30km or larger, and at
135% at 2km or less.
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(a) The AOO with axes of advance (b) Cubic interpolated lethality.

Figure 5-2: A mapping of the risks associated with the advancing enemies.

Thresholds & weights

It is estimated that a CE requires sufficient inventory to reach and maintain its most intense
operation in the coming 6 hours for an additional 6 hours. For example, when its maximum
consumption is planned in 4 hours it needs the planned consumption up until that point
and sufficient inventory to maintain that maximum consumption for 6 hours, even if it has
planned to retreat. As weights, uniformly random variables are taken in the interval [0.2, 1],
as it is difficult to provide any sensible, general estimate of the tactical weights represented.

Generating risks

In this scenario, the west axis consists of lighter, and the east one of heavier enemies. The
advance takes 72 hours, though each enemy starts with a varying delay of at most four
hours. In Table 5-2 the different types and their properties are displayed. Each type has
an inner range, outer range, and lethality. The lethality describes the probability that a
vehicle is destroyed over a period of 1 hour, at the exact position of the enemy. At the edge
of the inner range, the lethality is reduced to 20% of its original value, and at the outer
range it is completely diminished. Then, a grid is sampled spaced at one kilometer, by cubic
interpolation of the lethality at the center, inner and outer ranges. Furthermore, a linear
risk decreasing from 20% at the enemy side of the front, to 0% at the own side of the front,
describes the long-range artillery and air power. The overall risk is set as the maximum of
all risks at that location. Using this, a mapping can be created as displayed in Figure 5-2a.

Table 5-2: The parameters for each type of enemy

Type Inner range Outer range Lethality Axis Amount
Reconnaissance 10km 20km 25% west 1
Light mechanized 8km 15km 50% west 1
Heavy mechanized 5km 10km 70% east 2
Armored 6km 12km 90% east 1
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Table 5-3: Transit risk example for three sectors that need to be crossed.

sector A B C Actual transit risk
Risk / hour 10% 20% 5% 1− 0.9 · 0.8 · 0.95 = 31.6%
Risk / 30 min 5% 10% 2.5% 1− 0.95 · 0.9 · 0.975 = 16.6%
Risk / 20 min 3.3% 6.7% 1.7% 1− 0.967 · 0.933 · 0.975 = 11.3%

Defining transit risks

To retrieve the static risks described in Chapter 3, the interpolated risk can simply be selected
at the node’s location. The transit risks, however, are more complicated. As the risks describe
the chance of being destroyed each hour, it is dependent on the travel time of each vehicle. If
sectors are crossed in less time, the risk is lower for each crossed sector, which has a cumulative
effect. To prevent calculating an intractable amount of transit risks for each separate vehicle,
the transit risks are normalized to single period transits. This is illustrated in Table 5-3. A
normalization factor n = dij

3 is defined, with dij being the distance between node i and j ∈ N ,
and 3km the fixed sector size in which a strike can occur. The transit risks for varying speeds
can then quickly be approximated using the normalized transit risks. For example, a travel
time of 1.5 hours would mean 1− (1− 0.113)1.5 = 16.4% ≈ 16.6%, and for a travel time of 3
hours 1− (1− 0.113)3 = 30.2% ≈ 31.6%.

Available vehicles

Supply can be performed by different Robotic Autonomous Systems (RAS), or in the classical
approach by manned convoys. In Table 5-4 the properties of three types of vehicles and the
classical convoy are listed. For each type, the speed, fuel and supply capacity, range, and
profile are defined. The vehicle’s profile describes a constant decreasing both the static and
transit risks linearly. The larger the profile, the bigger the chance of being destroyed. As
described in Chapter 3, the inventory capacity is measured per supply class. It is assumed
that each vehicle carries a capacity equal to the mean capacity of all CEs per class.

Table 5-4: Properties of the available vehicles, consisting of two typical types of RAS, a truck
that can be both manned or autonomous, and the classical convoy.

Vehicle Type Speed Fuel cap Profile Range Supply cap

UGV 25km/h 30L 0.25 300km 1.200kg

Cargo UAV 100km/h 8L 0.5 100km 250kg

Truck 50km/h 200L 1 500km 4.000kg

Convoy 50km/h 600L 1 500km 12.000kg
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Chapter 6

Results

The main question from the problem statement (see Section 1-4) is formulated as:

Can an efficient solution for DARE be developed such that dispersed combat operations can
be effectively supported while remaining scalable in computation time and sufficiently robust
against unreliable communication?

As is highlighted in Section 2-3-3, it is possible to achieve both scalability and robustness
against communication failures by adopting a specialized coordinative framework for parti-
tioning the problem space into smaller (overlapping) subsets. To be able to implement such
a framework, the solution method needs to allow coordination by adopting the Multi-Robot
System (MRS) paradigm for Distributed Constraint Optimization Problem (DCOP), such
that the solution process is distributed over all vehicles, as is explained in Section 4-1-1.

Proving that such a coordinative framework contributes to robustness and scalability, is out
of scope for this thesis (see the related thesis by Korthals Altes (2021)). However, it still re-
mains to be shown that the distributed solution approach for the model describing Dispersed
Autonomous Resupply (DARE) is actually an efficient solution method that returns qual-
itative solutions, meaning that dispersed operations are effectively supported. To measure
the effectiveness, the indicators from Section 1-3-1 are used as performance criteria. The
quantitative measure for each indicator is displayed below:

Indicator Qualitative measure
Responsiveness Maximum penalty over time
Sustainability Total penalty accumulated
Flexibility Invariance against sudden changes in Combat Element (CE) plans
Survivability Invariance against increasing risks of destruction
Efficiency Total vehicles and supplies lost
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The main questions that need to be answered, can then be formulated as:

• Does a RAS network consisting of Unmanned Ground Vehicles (UGVs) and Unmanned
Areal Vehicles (UAVs) perform the DARE concept better than a classical convoy?

• Do the proposed local and cooperative algorithms contribute significantly to flexibility
and survivability?

• To which degree does distributed cooperation influence the result, and how is this di-
vided between MGM and MGM-2?

• What is the effect of more rounds of cooperation, and how many rounds could reasonably
be achieved given the computation time?

• To which degree are the results dependent on this specific scenario instance?

To analyse the effectiveness of executing the DARE concept using a Robotic Autonomous
Systems (RAS) network, the experiments are simulated using both a RAS network and a
classical convoy. As is highlighted in Table 5-4, a convoy is modelled as one vehicle but
corresponds with the parameters of three trucks combined. The standard parameter setup
for the experiments is the following:

Parameter Value
Number of runs 8
Simulation time 24 hours
Period length 15 minutes
Time horizon 6 hours
Optimization rounds 3
Plan update frequency fp = 1/2h
CEs 1x reconnaissance, 1x engineer, and 2x infantry
Inventory Ikc,0 = 25% · bkc ∀c ∈ C, k ∈ K
RAS network 4 UGVs, 2 UAVs & 1 truck

The plan update frequency dictates after how many periods a new plans with risks, CE
positions, consumption, thresholds and weights is provided to the vehicles. This means that
new data is generated following the steps described in Chapter 5. Furthermore, as initially
the CEs are uniformly distributed over the Area Of Operations (AOO), and the distance from
any Forward Operating Base (FOB) to the AOO is roughly equal, the vehicles are initialized
at a random FOB in all simulations.

All experiments are performed on an HP Elitedesk with a 3.8GHz AMD A12-9800E processor.

M.A. Korthals Altes Master of Science Thesis



6-1 Effectiveness of using RAS 39

6-1 Effectiveness of using RAS

Responsiveness & sustainability

In the first experiment, the scores for each of the performance criteria are collected for the
standard parameter setup. As the fleet size and mix influence the performance, it is decided
to also simulate three separate trucks. The capacity of these trucks is equal to the convoy
and, just like the RAS network, it can perform cooperation and separate deliveries.

In Table 6-1 the results are displayed for the RAS network, a single convoy, and three sepa-
rate trucks. As can be clearly seen, the RAS approach significantly outperforms the convoy
approach on all performance criteria. Not only is a smaller portion of the fleet lost with fewer
supplies, but also the responsiveness and sustainability are better achieved by using RAS.
Of course, this effect is dependent on when the convoy is destroyed. Possibly, the convoy
outperforms the RAS setup when still alive.

Table 6-1: Average results of 8 simulation runs for the standard parameters.

Penalties Losses
Setup Capacity Max Total Vehicles Supplies
No supply - 1.301 305.926 - -
1 convoy 12.000kg 824 63.843 50% 3.436kg
3 trucks 12.000kg 630 26.235 46% 3.148kg
7 RAS 9.300kg 579 22.768 21% 1.334kg

In Figure 6-1 a boxplot shows the spreading of the results of all simulations. Here, it is visible
that RAS performs consistently better than the convoy approach. However, it does not
seem to perform significantly better than the case with three separate trucks. This indicates
that it is not the capacity, but the flexibility and redundancy that dictate performance. In
general, the RAS network removes 55% of the maximum penalty and 93% of the total penalty
compared to the case without any resupply, which is a substantial increase in responsiveness
and especially sustainability.
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Figure 6-1: The relative performance for each setup. As can be seen, RAS performs more
consistent and significantly better over all performance criteria compared to convoys.
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Survivability

To test for survivability, some degree of invariance against increasing risks of destruction
should be visible. Therefore, in the second experiment, the risks are varied. To be specific,
the lethality of each enemy, as described in Section 5-2, is reduced by a linear factor:

Parameter Value
x · lethality x = 0.01 0.5 1.0

The latter case, with x = 1.0, corresponds with the results already obtained in the previous
experiment. The results are displayed in Table 6-2. On average, RAS keeps performing
better. However, the difference in survivability decreases rapidly, and RAS even shows bigger
losses with very low risks. This makes sense, as a larger amount of vehicles results in a larger
probability of at least one vehicle being destroyed.

Table 6-2: Average results of 8 simulation runs using varying risks.

Penalties Losses
Case Setup Max Total Vehicles Supplies

x = 0.01 1 convoy 566 18.236 0% 0kg
7 RAS 581 13.694 2% 24kg

x = 0.5 1 convoy 1.096 33.136 22% 1.433kg
7 RAS 572 20.199 17% 598kg

x = 1.0 1 convoy 824 63.843 50% 3.436kg
7 RAS 579 22.768 21% 1.334kg

What is interesting from these results, is that responsiveness and sustainability seem unaf-
fected for the RAS setup by increasing risk, though supply and system losses have increased.
This indicates good survivability. The effect is depicted in Figure 6-2. What is also apparent,
is that with low risk the setups perform comparable, supporting the idea that the main benefit
of using a RAS network is enhanced survivability.
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Figure 6-2: A comparison of the responsiveness and sustainability against varying risks.

M.A. Korthals Altes Master of Science Thesis



6-1 Effectiveness of using RAS 41

Flexibility

Along with survivability, the performance in flexibility is measured by invariance against
sudden changes in the provided information. Therefore, also an experiment is performed with
a smaller update frequency. Lastly, both a low update frequency and a low risk are combined.

Parameter Value
fp 1/24h 1/6h 1/2h

As fp = 1/2h is the standard parameter, this result corresponds with the first experiment.
The results are displayed in Table 6-3. It is visible that both setups profit from a lower
update frequency, which can be expected. The best performance can be observed when both
the update frequency and the risk are reduced. When there is lower flexibility required,
performance is comparable, but when the frequency goes up, the differences diverge quickly.
This could be explained by the simple numbers with which RAS is deployed. If plans are
changed, it is more likely that vehicles find themselves in the right spot at the right time.

Table 6-3: Average results of 8 simulation runs using varying plan update frequencies.

Penalties Losses
Case Setup Max Total Vehicles Supplies

fp = 1
24 , x = 0.01 1 convoy 560 8.925 0% 0kg

7 RAS 583 7.567 0% 0kg

fp = 1
24

1 convoy 576 9.932 30% 2.640kg
7 RAS 552 8.768 16% 659kg

fp = 1
6

1 convoy 636 15.524 44% 2.773kg
7 RAS 607 20.251 16% 1.394kg

fp = 1
2

1 convoy 824 63.843 50% 3.436kg
7 RAS 579 22.768 21% 1.334kg

In Figure 6-3 the relative performance is displayed. Again, the RAS setup shows almost
constant performance indicating good flexibility, which is a clear difference from the convoy.
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Figure 6-3: A comparison of the invariance against varying update frequencies.
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6-2 Effect of distributed cooperation

Types of cooperation

In the next experiment, the effect of distributed cooperation is analysed. The RAS network is
tested without any cooperation, with only Maximum Gain Messaging (MGM) and with both
MGM and MGM-2, along with the convoy setup for comparison. In Figure 6-4 the results
are displayed in a boxplot. In total, the effect of cooperation on the maximum and total
penalty seems only marginal. However, it is interesting to see that survivability is actually the
lowest with cooperation. From the previous experiments in Section 6-1 it became clear that
survivability negatively influences the performance criteria, meaning that with cooperation
the performance was marginally better despite having lower survivability. This means that
the positive effect might be larger than can be observed directly. A possible explanation for
the lower survivability is that without cooperation vehicles only select deliveries discounted
by their expected survivability. During cooperation, this discount is not used. Hence, if ‘safe’
deliveries are already performed, riskier deliveries might be performed instead. However,
including the risk discounts could potentially also have an adverse effect, as more vehicles
need to schedule a risky delivery to prevent a penalty from occurring, such that more vehicles
are drawn towards risks.
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Figure 6-4: Relative performance for the cooperation setups.

In Table 6-4 the average results are displayed for all cooperation setups. Overall, the combi-
nation of MGM and MGM-2 seems to perform best, though not to a large extent.

Table 6-4: Average results of 10 simulation runs for different cooperation setups.

Penalties Losses Transfers
Case Run time Max Total Vehicles Supplies Fuel Supplies
No resupply - 1310 308.156 - - - -
Convoy 254s 789 73.027 50% 3.326kg - -
No MGM or MGM-2 936s 607 36.215 16% 1.369kg - -
MGM 4340s 585 22.760 26% 1.609kg 66kg 1719kg
MGM & MGM-2 6173s 568 18.979 21% 1.192kg 54kg 980kg
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Apart from performance, also the total amount of transferred resources is displayed. It is
interesting to see that the volume of transfers has gone done down by using MGM-2. This
suggests that MGM-2 mainly successfully removes constraints, instead of proposing them.
However, in Figure 6-5, it becomes clear that this is not the case. A possible explanation
might be that vehicles with a large fuel capacity accept many constraint proposals to refuel
UAVs, such that there remain fewer possibilities for larger supply transfers.
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Figure 6-5: Number of successes per MGM-2 type for each simulation run.

Duration of cooperation

Furthermore, simulations are performed with varying numbers of cooperation rounds. Within
each round, both MGM and MGM-2 are performed sequentially. Each cooperation type is
therefore performed the same number of rounds.

Parameter Value
Rounds 1 3 6

In Table 6-5 the results are displayed, including the run times. Surprisingly, the performance
of 6 rounds is significantly worse than with 3 rounds. In the setup with 6 rounds, however, the
volume of supply and fuel transfers is significantly higher. A logical explanation would be that
the more rounds are added, the more probable that vehicles will execute dangerous transfers.
This is possible, as the probability for survival is not included when selected transfers.

Table 6-5: Average results of 8 simulation runs using a different number of rounds for cooperation.

Run Time Penalties Losses Transfers
Case Total Per period Max Total Vehicles Supplies Fuel Supplies
No resupply - - 1317 311.136 - - - -
Convoy 236s 2.5s 932 93.211 57% 3.832kg - -
1 round 876s 9.1s 741 51.626 20% 2.498kg - -
3 rounds 6308s 66.7s 578 21.138 16% 750kg 81kg 2.375kg
6 rounds 13199s 137.5s 725 36.808 22% 1.322kg 119kg 4.809kg
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On average, performing 3 rounds of both MGM and MGM-2 combined takes roughly a minute.
This means that, with the given period length of 15 minutes, in the real-time case up to 45
rounds could be executed with this algorithm. Though this is promising, the results do not
indicate a positive effect of performing those extra rounds.

In Figure 6-6 also a boxplot is included to display the spread of the results. Though on average
the case with 6 rounds performs only marginally better than a single round, the losses seem
more consistent.
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Figure 6-6: Relative performance for setups with a different number of rounds.

6-3 Dependency on simulation instance

The question remains whether the observed performance increase of RAS over convoys is not
too dependent on the chosen scenario instance. This cannot be excluded completely and is
possibly even to be expected. In the end, this model is specifically designed for a concept of
operation, and not for all military missions thinkable. Still, to verify the results, the scenario
data is relaxed to compare performance. To achieve this, the random perturbations of the
enemy paths are enlarged. As described in Chapter 5, the actual position of the enemy {l′y, l′x}
is randomized by perturbing the path of the axis {ly, lx} with a normal distribution, using
{σy, σx} = {1.2, 0.2}. The perturbations are enlarged using the following factors:

Parameter Value
x · {σx, σy} x = 1 3 5

Upon these locations, the positions and thus consumption of the own CEs are heavily de-
pendent. The effect of the enlarged perturbations is made visible in Figure 6-7. In these
plots, all generated positions of all plans over a complete simulation horizon are plotted. This
means that, over a time span of 24 hours, with an update frequency of 1/2h, a total of 12
(overlapping) plans are plotted. Obviously, the 5 times larger perturbations do not show a
very specific scenario, as opposed to the original perturbations, where the axes of advance are
still clearly visible.
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Figure 6-7: Different scales of perturbations for the enemy paths, with each dot being an enemy
positions, and each color representing a different update.

The results of running simulations based on these input data are displayed in Table 6-6.
As can be seen, performance for both the convoy and RAS remain comparable between the
standard case and the 3x larger perturbations. The 5x perturbations result in significantly
higher penalties and less survivability. Overall, RAS still outperforms the convoy, suggesting
that the obtained results are not completely dependent on this scenario instance.

Table 6-6: Average results of 8 simulation runs using varying perturbations of enemy paths.

Penalties Losses
Case Setup Max Total Vehicles Supplies

x = 1 1 convoy 824 63.843 50% 3.436kg
7 RAS 579 22.768 21% 1.334kg

x = 3 1 convoy 801 79.379 50% 3088kg
7 RAS 601 27.111 19% 937kg

x = 5 1 convoy 808 81.257 64% 4.382kg
7 RAS 688 43.245 29% 1.547kg
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Chapter 7

Conclusions

The current global balance of power requires the army to maintain itself in high-intensity com-
bat against a peer opponent. To do so, it seeks to apply innovative concepts like dispersed
operations. However, this new concept poses complex challenges for logistics, for which cur-
rently no viable solutions exist. To this end, the new concept Dispersed Autonomous Resup-
ply (DARE) is developed, based on Robotic Autonomous Systems (RAS). For the first time,
an integrated approach is proposed to deal with lacking information, a dynamic environment,
and the risk of enemy attacks. Because of this novelty, a critical analysis is required.

Overall, a RAS based setup for DARE appears to outperform the classical convoy approach.
It has been shown that under low risk or low dynamic circumstances the performance is equal
between the two setups, but that RAS shows much larger flexibility and survivability, with
near-complete invariance against increasing risks and plan dynamics. In reality a convoy
would not be used to perform DARE, as already has been stated in Section 1-2. But be-
cause improving the classical approach is found to be hardly viable, the shown flexibility and
survivability indicate that RAS is an interesting alternative.

The effect of adding cooperation is positive, though it is not found to be consistent and in
many cases only marginal. However, as is shown in Section 6-2, the cooperative approach
showed marginally better performance despite lower average survivability. This suggests that
there are unknown implicit effects of cooperation, which is supported by the finding that
more cooperation resulted in worse performance. An effect could for example be that extra
cooperation leads to vehicles taking more risk to perform transfers, as no risk is included
when scheduling those. On the other hand, the same cooperation might also prevent multiple
vehicles from trying to perform a highly beneficial, but risky delivery. Though this effect is
positive, it can also lead to insufficient redundancy in deliveries, such that when a vehicle is
destroyed, a large penalty might occur as no other vehicle can quickly back it up. Overall,
there seems to be room for improvement in cooperation.

The generality of the results is explored by testing multiple perturbations of enemy paths, as
analysed in Section 6-3. Though the results are fairly consistent, concluding that the results
are not dependent on the scenario is a far stretch. Apart from the enemy paths, there are many
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more factors influencing performance. A very important factor is for instance the vehicles’
risk profile, for which only initial estimates are used. However, the risk of being destroyed can
be hardly assumed constant. This is very dependent on the available armament and sensors of
the enemy units, and can as such heavily influence survivability. To mitigate this, pessimistic
estimates are used, but more research with accurate data and dynamic risk profiles would
be needed to verify the consistency of the results. The same issue occurs with the resulting
penalties and the corresponding fleet mix. In the analysis, only the relative performance is
compared. It is not assessed in an absolute sense if the performed deliveries would be sufficient
to proceed with the planned operations. As a consequence, the required fleet size and mix
might be much different from the used example, of 4 Unmanned Ground Vehicles (UGVs),
2 Unmanned Areal Vehicles (UAVs), and one truck for 4 platoons. It seems reasonable to
expect that a different ratio between for example UGVs and UAVs would generate different
results. Again, to verify the consistency, accurate data would need to be used along with a
qualitative military assessment.
Future work can for example be aimed at including dynamic risk profiles during cooperation,
such that vehicles with a low profile are favored when having to perform risky deliveries.
Furthermore, the concept of synchronized rounds of cooperation could be relaxed. This would
allow algorithms to deal better with realistic communication constraints. Next to cooperation,
also the local algorithms could be improved. An integrated approach to scheduling and path
planning leads to fewer restraints during scheduling, and thus better delivery plans. On top
of that, the use of exact methods might be feasible for subsets of the problem, such as the
rebalancing of the vehicles. Furthermore, one of the major issues remaining is the complexity
of the labeling algorithm for path planning. Possibly, the algorithm itself can be improved by
including relaxed dominance rules, better approximations of the expected survival probability,
or by adding heuristical approaches to limit the set of nodes to a set of expected relevant
nodes. For both the local and cooperative algorithms, no effort is taken yet to escape local
minima. Possibly, some concept of simulated annealing or multi-start could aid performance.
In addition, in both cases the performance might be improved by reusing information from
past optimizations. Currently, each time the information is updated, the whole optimization
is restarted, losing any good but unaffected partial solutions. On top of the algorithmic
suggestions, also the model could be improved. For instance, currently vehicles are required
to wait until the end of the period to perform cooperation, which could be relaxed to increase
flexibility. Also the added possibility for UGVs to carry UAVs might produce better results,
as currently the range of the UAV severely limits their use.
To truly be able to answer the problem statement, coordination would also have to be in-
cluded. This would require to implement a coordinative method, along with the corresponding
analysis of the effect of specific neighborhoods on performance. Furthermore, a wider range
of experiments and scenarios is required. An interesting venue would be to compare the ef-
fect of RAS with convoys in a more classical combat scenario. Also the benefit in different
types of (peacekeeping) missions is interesting. Furthermore, terrain limitations have not
been implemented yet, which is often a severe problem in realistic combat scenarios.
Concluding, this thesis can be considered an exploratory study on the integration of a new
optimization model with RAS, for which the results already show consistent and promising
flexibility and survivability. Though there is an area for improvement, this work can serve
both as a groundwork and supporting argument for further development of a RAS-based
concept for tactical logistics.
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List of Acronyms

ADS Ammunition Distribution System
AOO Area Of Operations
APC Armoured Personnel Carrier
CPN Coloured Petri Net
C2 Command & Control
CE Combat Element
CONOPS Concept of Operations
CSS Combat Service Support
DARE Dispersed Autonomous Resupply
DCOP Distributed Constraint Optimization Problem
DFLP Dynamic Facility Location Problem
DoD Department of Defence
ESPPRC Elementary Shortest Path Problem with Resource Constraints
FOB Forward Operating Base
FSTSP Flying Sidekick Traveling Salesman Problem
IFV Infantry Fighting Vehicle
IRP Inventory Routing Problem
ISR Intelligence, Surveillance & Reconnaissance
LAV Light Armoured Vehicle
LCE Logistics Combat Element
LMD Last-Mile Delivery
LRP Location Routing Problem
MAS Multi-Agent System
MCNDP Multi-Commodity Network Design Problem
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MCFLP Maximum Coverage Facility Location Problem
MGM Maximum Gain Messaging
MOB Main Operating Base
MRS Multi-Robot System
NCO Network-Centric Operation
PDPT Pickup-and-Delivery Problem with Transfers
PDPOT Pickup-and-Delivery Problem with Online Transfers
PDSTSP Parallel Drone Scheduling Traveling Salesman problem
POD Point of Debarkation
POE Point of Embarkation
RAS Robotic Autonomous Systems
RFS Reconnaissance Fire System
SA Situational Awareness
TSPD Traveling Salesman Problem with Drone
UAV Unmanned Areal Vehicle
UGV Unmanned Ground Vehicle
VRP Vehicle Routing Problem
VRPD Vehicle Routing Problem with Drones
VRPPD Vehicle Routing Problem with Pickup and Delivery
VRPTT Vehicle Routing Problem with Trailers and Transshipment
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