
Erasmus University Rotterdam
Erasmus School of Economics

Master Thesis

A column generation approach to solving the multi-activity shift

scheduling problem: a case study for Schiphol airport security

Olaf Legtenberg
533392

5th of November 2020

MSc Econometrics & Management Science
Track Operations Research & Quantitative Logistics

Supervisor : Supervisors:

Dr. R. Spliet Dr. B. van Goudoever

Co-reader: J. Onderdijk MSc

Dr. W. van den Heuvel

The content of this thesis is the sole responsibility of the author and does not reflect the view of

the supervisor, second assessor, Erasmus School of Economics or Erasmus University.

Abstract

In this thesis, an approach to solve the multi-activity shift scheduling problem (MASSP)

with multiple shift types and no fixed starting points is presented. In the problem, security

officers for customs need to be scheduled over the locations where officers are necessary. The

schedule has to take in to account rules and regulations regarding the shift, the breaks as

well as other restrictions. Currently, the problem is solved using a binary programming (BP)

model. In this thesis, a column generation approach is designed for the problem. The column

generation (CG) has both a heuristic and exact variant for the pricing problem. The exact

pricing problem is modelled as a resource-constrained shortest path problem and is solved using

a pulse algorithm. The heuristic method is based on a large neighbourhood search. In this

thesis, two experiments are performed to determine what the performance of the methods is.

The measurements for this are the average discount rate (VDC), the average weighted VDC,

the standard deviation of the VDC and their solve time. The VDC is given by dividing the

total number of hours planned by the number of hours demanded. The measurements show

that the column generation methods have improved results for both the VDC and the solving

time in comparison to the benchmark method. The results show that the CG Heuristic is the

best working method. In the second experiment, the effect of increasing the number of filters

in the MASSP is determined for the methods. Moreover, the effect of time on the quality of

solutions of the methods is determined. We find that the CG heuristics VDC is less heavily

impacted by increasing the number of filters and is also less dependent on the computation time.

Keywords: Multi-activity shift scheduling problem, column generation, resource-constrained

shortest path problem, shift scheduling, case study, pruning strategies, binary programming

1

Contents

1 Introduction 4

2 Problem description 6

2.1 Binary programming formulation . 9

3 Literature 11

4 Methodology 14

4.1 Column generation . 15

4.2 Initialisation . 16

4.3 Reduced costs . 19

4.4 Exact pricing algorithm . 20

4.5 Heuristic pricing algorithm . 24

4.6 Integer solution . 27

5 Data description 28

5.1 Fixed parameter values . 30

5.2 Specific parameter values . 30

5.3 Stopping criteria . 32

6 Experiments 32

6.1 Comparison against benchmark method: experimental setup 32

6.2 Results: comparison against the benchmark method 34

6.2.1 Three filters . 34

6.2.2 Four filters . 36

6.3 Scalability experiment: experimental setup . 38

6.4 Results: scalability experiment . 39

6.4.1 Results: larger instances with fixed time-restriction 39

6.4.2 Results: larger instances with variable time-restrictions 42

7 Conclusions 44

8 Future research 47

8.1 Legislation . 47

8.2 Data . 47

8.3 Heuristic . 48

9 Bibliography 49

10 Appendix 52

2

10.1 Results: comparison against the benchmark method 52

10.2 Results: larger instances with fixed time-restriction 57

10.3 Results: larger instances with variable time-restrictions 61

3

1 Introduction

Airport security is of growing importance since the terrorist attacks of 9/11. Quality of screening

drastically increased since that time. This paper concerns security scheduling at Schiphol Airport

in the Netherlands. Schiphol Airport is the twelfth largest airport in the world and the third-

largest airport in Europe. The airport is located near Amsterdam, the Netherlands. The number

of passengers of Schiphol has been drastically increasing over the last few years (CBS (2017)).

In 2019, about 71 million passengers travelled through Schiphol Airport, which boils down to on

average 194,000 passengers a day (CBS (2020)). Passengers departing to or arriving from non-

Schengen countries need to be thoroughly searched to prevent safety hazards. These searches are

carried out at security checkpoints scattered around the airport. These security checkpoints are

called filters. The filters are divided into lanes. The filters are divided into three security zones and

the handling of security of these zones is outsourced to private firms. Schiphol Airport pays these

firms based on the number of lanes Schiphol Airport demands to be open to handle the passengers.

For these firms, personnel costs are a considerable amount of their total operating cost. Therefore,

inefficient scheduling of personnel has a great impact on the profitability of these firms. In this

thesis, I propose an efficient approach to fulfil the demands of Schiphol Airport while minimising

the amount of personnel necessary.

As particular filters have different types of flight, such as different destinations or a large number

of transferring passengers, Schiphol Airport has irregular demand patterns for security agents. In

addition, every security filter has an independent and dissimilar demand pattern. Consequently,

in an efficient solution, security agents can relocate to a different filter to prevent unproductive

working time.

Efficient scheduling of workers has been of growing relevance as the 24-hour economy has become

more established. Moreover, due to the increase in computational power, opportunities to find effi-

cient solutions have been increasing. These reasons give rise to the number of companies focusing

on solutions for the efficient scheduling of employees. One of the companies developing solutions is

Syntro, based in Amstelveen, the Netherlands. Syntro is a consultancy firm specialised in sustain-

able and efficient personnel scheduling, as well as work issues related to irregular working hours.

Syntro has provided me with the opportunity to research efficient scheduling of security officers at

Schiphol Airport for one of the private security firms that are responsible for the security of several

passenger filters.

Personnel in this sector is often scheduled as a team. A team consists of four security officers and

one team leader. Scheduling in teams has a few advantages. First of all, when officers stand at a

filter, practically no social communication is possible between colleagues. As they are scheduled

together for the whole day, they have the opportunity to interact during breaks. Secondly, during

a shift, workers rotate between different jobs within a lane. In case there would be individual

schedules, it would be unclear whose job would be taken over after someone’s shift has ended. In

4

case the team is scheduled together, this would be clear. Thirdly, once the activities of a team

end at a lane, there is a short period in which the new team needs to get installed. If this would

happen every time someone’s shift ends, there would be a more regular shutdown, which would

also result in inefficiency. Finally, if one would consider individual scheduling, the gender of the

security officers has to be taken into account. This would increase the number of constraints and

hence the difficulty of the problem. In case team scheduling is considered, this is not of such

large importance. To summarise, scheduling in teams results in less freedom to create rosters in

comparison to individual scheduling. Therefore, the results are slightly less efficient. However,

the social and practical advantages of team scheduling outweigh the inefficiency caused by team

scheduling. Therefore, this thesis considers team scheduling.

Solutions for scheduling personnel already exist. The solution Syntro currently provides works as

follows. First, all possible shifts are generated. A shift is a series of activities with a set start and

end time. The set of possible shifts is then pruned in both a logical and a random way. In logical

pruning, unlikely shift scenarios are pruned, while in random pruning the number of possible shifts

is reduced. The remaining set of shifts is then formulated as a Mixed Integer Linear Programming

model (MIP) and is solved using a commercial solver. The reasons a new approach has to be

established are three-fold. First of all, the current approach is relatively unscalable. In case more

filters are included, the number of possible shifts grows exponentially. Therefore, relatively more

shifts should be pruned to obtain a feasible solution. Hence, attaining a solution (or having a

small optimality gap) might be impossible if more filters are included. Secondly, the problem is

currently formulated using a MIP. As the number of remaining shifts after pruning is substantial,

so is the MIP. The commercial solver is not able to fully solve the problem to optimality within the

time limit of ten minutes. Lastly, there are multiple job types which can be separated. For every

individual type of job and every individual day, the commercial solver has been given a maximum

time of ten minutes to solve the problem. Solving the problem for only one type thus takes up

to 70 minutes for a week. This is considered too much. Therefore, the new approach needs to be

faster in finding a solution. In this thesis, only one type of job is considered. The reason for this

is, although the problems for other job types are relatively similar, some regulations are slightly

different. Therefore, this thesis considers only one type of job.

The objective of this thesis is to create an efficient method for scheduling security teams to fulfil the

demand, thereby minimising the number of hours necessary to create a feasible schedule. During

their shift, officers can transfer between filters to increase the efficiency of the schedule. The

performance of the method will be evaluated by using data that is available to the author. The

data contains the demand for security officers at different filters. There are two information points.

These points are interconnected. In the first information point, about four weeks before the schedule

is used, the expected demand is provided. Shifts are created based on the demand information.

A few days before the planning is in actual use, more accurate demand becomes available. The

schedule can then be adjusted to this demand. Nonetheless, to remain fair to their employees as

5

well as keeping the health of workers in mind and to prevent additional payment, the collective

labour agreement imposes restrictions on the company regarding the restructuring of shifts and

more particularly, their start and end times. This is done in such a way that a sufficient number

of shifts needs to come back with similar starting times and shifts lengths in the second process.

To increase understanding of the process, a simplification of the process is included in Figure 1.

The process of adjusting shifts to the new more accurate demand is called coupling. The coupling

procedure makes sure that there is a sufficient percentage of shifts that return for the second

demand point. Note that schedule in the figure refers to a set of shifts.

Figure 1: Process of creating a schedule

To be more precise, the main question that we want to answer in this research is the following:

What is the effect of using a column generation approach, compared to the current solution, not

only in terms of solution value but also in terms of computational efficiency as well as scalability?

The thesis is outlined as follows. In Section 2, the problem is described in a more detailed manner,

while in Section 3 existing literature regarding multi-activity shift scheduling is discussed. In

Section 4 I will elaborate on the methods applied in this thesis. In Section 5, the data used in this

thesis is described. Subsequently, the experiments and their results are discussed in Section 6. In

Section 7 conclusions are drawn from the experiments. Lastly, in Section 8, opportunities for future

research are discussed.

2 Problem description

Schiphol Airport is a large airport that consists of multiple terminals. Every terminal has security

filters. These filters are locations at which passengers can be searched and pass through security

to go to their gate. The filters consist of lanes. A security team works at a lane. In this thesis, we

are interested in the filter scheduling process. The lane assignment problem is a different problem

and is hence not discussed in this thesis. The filter scheduling problem outlined in this thesis is

described in the literature as the multi-activity shift scheduling problem (MASSP). In this thesis,

we are interested in scheduling security teams in such a way that the demand for security teams

6

is satisfied while minimising the number of hours required. Moreover, shifts have to satisfy the

rules and regulations as set in the collective labour agreement and the labour laws. To schedule

the security teams efficiently, teams can be repositioned to a different filter during their shifts.

A shift i is defined as a sequence of activities, walking time and break time which has a start time

si and an end time fi and has a prespecified length. Moreover, let a working day be defined as a

day with a shift with a starting and ending time defined.

Mathematically, let S, A, T and W be the set of shifts, the set of activities, the set of time

intervals and the set of shift lengths, respectively. Let z ∈ Z = {0, 1} represent the two information

moments, where information moment z = 0 is four weeks before and information moment z = 1 is

the information moment in the week before the schedule is used. The information moment informs

us about which set of demands is used in addition to which set of restrictions. Set of shifts S
consists of subsets, dependent on the information point z ∈ Z and the shift type w ∈ W. To be

precise, S = S0∪S1. Sz, z ∈ Z, consists of w subsets, in such a way that Sz = Sz1 ∪Sz2 ∪ ...∪Szw and

that for every i, j and z where i, j ∈ W, W = {1, 2, ..., w} and z = {0, 1}, it holds that Szi ∩Szj = ∅.
S includes all shifts, independent of a shift’s length, where Sz1 , Sz2 , ..., Szw represent the subsets of

shifts where every subset has a distinct shift length and an information point associated with the

subset. Let A = {1, 2, ..., j} be such that there exist j different activities. An activity is working

at a filter. Off-duty time o, break time b, the briefing briefing and walking time q are excluded in

the set of activities. Off-duty time o is not part of the shift, while b, q and briefing are part of

the shift. Let T represent intervals during a day. As example, suppose that there are 48 intervals

during a day (intervals with length half an hour). In this example, we have that T = {1, 2, ..., 48}.
The set T grows when the interval length gets smaller. Generally, let T = {1, 2, ...,m} be such that

there are m intervals of equal length.

Let me define some other terminology used in this thesis. Walking time is specified as the time in

minutes it takes to walk from a start point to the break room and from there to the destination.

The amount of walking time depends on the start point and the destination. Walking time is not

included in the break time and hence comes supplementary to the break time.

In this thesis, the following assumptions are made regarding our schedules.

• Every time a team starts at a filter, there is a minimum number of minutes that the team

needs to stay there. This is referred to as minimum standing time Tmin. This also implies

that this minimum standing time needs to be met at the end of the shift. Hence, if there is a

minimum standing time of thirty minutes, the last break should end at least thirty minutes

before the end of the shift. Walking time is excluded in the minimum standing time and

hence there should be sufficient extra space for walking time.

• In addition to a minimum standing time, there is also a maximum standing time Tmax for

which the same conditions hold.

7

• For some filters, demand for security teams at a specific time can be zero. During that time,

no teams have to be present at that filter. Moreover, more teams than the required number

of teams can be scheduled. This results in the residual teams being idle. The problem of idle

teams is handled during a further planning stage that is not discussed in this thesis.

• There is a briefing at the beginning of every shift. This briefing takes about 15 minutes

(including walking time to the filter). This briefing time is part of both the standing time

and the shift time.

• There is a subset T wI of intervals T in which a shift of type w ∈ W can start.

• Teams can be repositioned to a different filter. A team can only be repositioned after the

team had a break.

• Let w1 ∈ W be a shift length with type w1. Shift length w1 is subdivided in two categories,

such that w1 = w1a ∪ w1b. A shift of type w1 has fixed starting times. Shift type w1a has

start time s1a. Similarly, shift of type w1b has start time s1b.

• Let w2 ∈ W be shifts with type w2. Shifts of type w2a can be subdivided in two categories,

such that w2 = w2a ∪ w2b. Shifts of type w2 have an interval of possible starting times. For

types w2a and w2b these intervals are respectively I2a and I2b.

• Other shift lengths w ∈ W\{w1, w2} have a fixed shift length but do not have requirements

regarding start and end times.

• Shifts with length type w ∈ W have a minimum and maximum requirement of the number of

teams that can work that type of shift at time t ∈ T .

• Demand is known upfront. It differs for every day as it depends on the number of flights.

• Depending on the type of shift length w ∈ W, there are requirements for a long break. If

shifts of type w have shift length below threshold β1, there is no requirement for a long break.

If shift length is between β1 and β2, there is a long break requirement of b1 minutes without

interruption. If the shift length is above β2, the requirement for a long break is b2 minutes.

Out of these b2 minutes, b1 minutes should be without interruption. In case a long break is

included in a shift, b1 minutes of the break are unpaid.

• The long break should be sufficiently far from the start and end time of the shift. What is

deemed sufficient depends on the length of the shift. If shift length of shift type w is smaller

than α minutes, the break needs to be at least ξ1 minutes away from start and end time. If

shift length of shift type w is larger than α minutes, the break needs to be at least ξ2 minutes

away from the start and end time of the shift.

• There is a maximum number of short breaks in a shift, which depends on the shift length

w ∈ W. Let SBw be the parameter that represents the maximum number of short breaks for

shift length type w ∈ W.

8

• Between the two information points, a minimum amount of γ% of similar shifts from the

solution of information point z = 0 needs to return for information point z = 1. Shifts are

similar if the start interval of the shift from z = 1 is at most a δ-interval difference away from

the shift from information moment where z = 0 and the shifts have equal length.

At this point, both the definition and mathematical notation of the shift have been introduced, as

well as the requirements for a shift. As an illustration, I will provide a short example of how a shift

might look. Let i ∈ Szw be a shift. Let aj ∈ A be an operation. The length of a shift is dependent

on the shift type. For the reason that we are considering an example, let shift i have length 22.

Hence, a shift can be represented by a sequence of aj , j ∈ A, b, q and briefing. Off-duty time o is

not included in the shift. Furthermore, let Tmin = 3 and Tmax = 5. In the example below the shift

is printed using bold letters.

[o, o, o,briefing,a1,a1,a1,q,b,q,a2,a2,a2,a2,q,b,q,a1,a1,a1, o, o] (1)

2.1 Binary programming formulation

In this section, the binary programming (BP) formulation of the problem is established. The section

is structured as follows. First of all, the variables of the model are defined. Subsequently, the BP

formulation is discussed.

Let xw,zi be our decision variable, in such a way that xw,zi = 1 if shift i of length type w is chosen

during information moment (period) z and 0 otherwise. Period 0 is concerned with the demand

from four weeks before, while period 1 belongs to last weeks demand. Let cw be the cost (number

of hours worked) for shift length w ∈ W. Let entry (i, j, t) of the three-dimensional matrix A

represent whether shift i covers activity j during time interval t. Moreover, let entry (i, j, t, w) of

the four-dimensional matrix B represent whether shift i covers activity j during interval t for shift

type w. Moreover, let dtj be the demand for activity t during time interval t. By the same token,

let minw and maxw represent the minimum and maximum amount of shifts of a certain length

type w that can be chosen, in such a way that maxw ≥ minw (if minw = maxw, an exact number

of shifts of length w has to be chosen). For period 1, additional constraints and parameters exist.

Let Pwip represent whether shift i of set S1
w can be coupled to shift p of set S0

w, where both shifts

have shift type w. Furthermore, let parameter γ be the minimum percentage of similar shifts for

z = 1 that have to return from z = 0.

9

The Binary programming formulation is then as follows.

min
∑
w∈W

∑
i∈Sz

w

Cwx
w,z
i + Cνν (2)

S.t.
∑
w∈W

∑
i∈Sz

w

Atijx
w,z
i ≥ (1− ν)dtj , ∀j ∈ A, ∀t ∈ T (3)

∑
t∈T

∑
j∈A

∑
i∈Sz

w

Bt,w
ij x

w,z
i ≥ minw, ∀w ∈ W (4)

∑
t∈T

∑
j∈A

∑
i∈Sz

w

Bt,w
ij x

w,z
i ≤ maxw, ∀w ∈ W (5)

xw,zi ∈ {0, 1}, ∀i ∈ Szw, ∀w ∈ W (6)

For z = 1, additional constraints prevail:∑
i∈S1

w

Pwipx
w,z
i ≤ 1, ∀p ∈ S0w (7)

∑
w∈W

∑
p∈S0

w

∑
i∈S1

w

Pwipx
w,z
i ≥ γ|P |, (8)

The problem is either solved for period 0 (z = 0) or period 1 (z = 1). When z = 0, the BP problem

consists of objective (2) and constraints (3)-(6), while for z = 1 the problem consists of objective

(2) and constraints (3)-(8). Objective (2) minimises the number of hours necessary to fulfil the

demand. In addition to the cost component Cw, a dummy component Cνν is included such that a

feasible solution is always found. cost Cν is an upper bound on the costs such that it is costly to use

dummy variable ν. The upper bound equals 1.5 times the number of hours demanded. Constraint

(3) enforces that demand at filter j during time interval t is met. Constraints (4) and (5) ensure

that a minimum and a maximum number of shifts of a specific length type w are chosen. For z = 1,

additional constrains prevail. Constraint (7) couples shifts for z = 1 to shifts from the optimal

solution for this instance for z = 0. Parameter Pwip has value 1 if the start interval of shift i of S1
w is

within δ intervals of the start interval of shift p for p ∈ S0w and the parameter has value 0 otherwise.

For every column of Pwip , only one entry in the column can be unequal to zero. Hence, a shift in

period 1 can only be coupled to one shift of period 0. In case the column generation model wants to

include the shift another time for a different coupling point, the shift has to be added again to the

the problem with this different coupling point. Constraint (7) forces that for every shift p of the

optimal solution from set S0w, at most one shift from i ∈ S1w can be conjugated. Lastly, constraint

8 enforces that γ per cent of similar shifts come back in future the solution for z = 1, where |P | is

the number of shifts in the optimal solution from S1.

10

3 Literature

The literature review is outlined as follows. First, the single-activity shift scheduling problem

(SASSP) and crew scheduling problem (CSP) are discussed. The multi-activity shift scheduling

problem (MASSP) considered in this thesis is an extension of the SASSP. Therefore, the foundation

of both problems is very similar and hence the SASSP is a good starting point for our literature

review. Subsequently, literature regarding the MASSP is investigated. Lastly, literature regard-

ing the multi-activity tour scheduling problem, an extension of the multi-activity shift scheduling

problem, is reviewed.

Shift scheduling problems have been around since the work of Edie (1954) and the set covering

solution approach to his work by Dantzig (1954). As shift/crew scheduling problems are NP-hard,

researchers need to resort to other methods to solve large real-life instances such as the problem

considered in this thesis. For an overview of both the SASSP and the CSP, the author would refer

the reader to Ernst et al. (2004) (general overview), Heil et al. (2020) (railway crew scheduling) and

Kasirzadeh et al. (2017) (airline crew scheduling) who provide a complete overview of the existing

literature. Methods for dealing with the SASSP include for instance column generation (Brun-

ner and Edenharter (2011)) and metaheuristics (Maenhout and Vanhoucke (2007); Aickelin and

Dowsland (2004)), but other methods exist. Approaches for the CSP include column generation

(Desrochers and Soumis (1989); Borndörfer et al. (2006); Abbink et al. (2011)) and metaheuris-

tics (Lourenço et al. (2001); Hanafi and Kozan (2014)). Research regarding security scheduling

at airports is limited. Examples include Soukour et al. (2012) and Soukour et al. (2013). The

authors apply a construction/destruction and memetic algorithm, respectively, to a staff assign-

ment problem. This is different from this research because the authors researched a different step

in the scheduling process. Their focus is on the assignment of shifts, while this research concerns

the creation of shifts. Moreover, Soukour et al. (2012) and Soukour et al. (2013) do not consider

crossovers between different activities.

The more complicated multi-activity shift scheduling problem (MASSP) is an extension of the

SASSP. The SASSP is an NP-hard problem, and consequently, so is the MASSP. In the MASSP,

one is determining where and at which time a set of employees should carry out a job. Research

regarding the MASSP is relatively scarce. Existing research focuses mainly on three approaches:

regular and context-free languages, column generation and heuristics.

Regular languages are more common in literature discussing the multi-activity shift scheduling

problem. Salvagnin and Walsh (2012) use regular languages for a hybrid MIP/CP approach. The

regular languages are thereby used to partially describe the set of feasible shifts. The authors

show that their method is comparable to current state-of-the-art methods for a small number of

activities. The method becomes less competitive as the number of activities increases. Moreover,

the authors state that the method significantly outperforms explicit MIP-based formulations.

Quimper and Rousseau (2010) use regular and context-free languages to model the scheduling rules.

11

This results in specialised graph structures. These structures can be efficiently searched using large

neighbourhood search. This method often results in near-optimal solutions for the SASSP and

also tends to perform well for the MASSP, solving instances with up to ten activities. Côté et al.

(2013) use a branch-and-price algorithm to solve the personalised version of the MASSP, in which

the subproblems are, similar to the method in Quimper and Rousseau (2010), formulated using

context-free grammars. The authors mention that a grammar-based column generation approach

is generic and therefore can handle a variety of shift problems. They show that their approach

for personalised problem instances is comparable with a specialised heuristic method and even

superior to this heuristic in some cases. Côté et al. (2013) also remark that a large set of rules

can be modelled by using context-free grammars. However, they also observe that context-free

grammars are hard to use when for instance the start and end times of shifts are not fixed upfront.

Therefore, as our starting and end times are not fixed, the use of context-free grammars might not

be optimal for the research considered in this thesis.

Dahmen et al. (2018) propose an implicit formulation using forward and backward constraints to

solve the MASSP. They conclude that their approach was able to solve large instances within a

reasonable time. This is because the number of constraints does not exponentially grow with the

number of activities in their model. Their approach to handling their pre-break and post-break

profiles results in an exhaustive enumeration of these profiles. On the one hand, this is a limitation,

but on the other hand, it results in freedom regarding the modelling of complex rules.

Restrepo et al. (2012) use a column generation-based approach, with as an auxiliary problem a

shortest path problem with resource constraints (SPPRC). They test their approach on data from

a parking lot operator in Bogotá, Colombia. They were able to efficiently achieve a near-optimal

solution to problems with up to sixteen work activities over a one-week planning horizon. They

show a considerable reduction in costs and required man-hours if the operator allows staff to transfer

between different lots within shifts. This is of interest to our problem as well, as this implies that

we could reduce our costs by allowing people to transfer from one filter to another. The method

presented in Restrepo et al. (2012) has advantages, as specialised algorithms exist to solve the

SPPRC. An example of such a specialised algorithm is proposed in Lozano and Medaglia (2013).

Relatively large problems can hereby be solved exactly within a reasonable time. In Lozano and

Medaglia (2013), a column generation method embedded with integer programming is compared

to a column generation approach with a pulse algorithm, and this shows a substantial decrease in

solution time. The research considered in this thesis is different from the research by Restrepo et al.

(2012) as there are different scheduling rules. Moreover, there are different shift lengths possible in

our research compared to the standard 8 hours in their research. Moreover, overtime is allowed in

Restrepo et al. (2012).

Related research is performed by Al-Yakoob and Sherali (2008). They consider an employee schedul-

ing problem faced by the Kuwait National Petroleum Company in managing their gas stations. To

solve this problem, they use a column generation heuristic (CGH) that was able to solve the problem

12

up to 90 gas stations and 336 employees. As a heuristic, they implemented a sequential variable-

fixing heuristic. The authors show that, compared to the two-stage procedure (TSA) presented in

Al-Yakoob and Sherali (2007), they were able to solve considerably bigger problems (the procedure

in Al-Yakoob and Sherali (2007) solves problems up to 29 stations and 84 employees). Moreover,

the CGH showed between 6 and 33 per cent better solutions than the TSA. The research in Al-

Yakoob and Sherali (2008) is different compared to Restrepo et al. (2012) as there are only three

scheduling options in the former, while in the latter any time could be a starting time. This is also

a difference compared to this research.

Pan et al. (2016) apply an ILP formulation to find a solution to a problem where only workload con-

straints are considered and then extend the solution using a Tabu search approach by also including

constraints regarding the maximum and minimum duration of activities. Other legal regulations are

not taken into account. They compare their approach to a binary linear programming formulation.

They find feasible solutions within a reasonable time with their approach. To the same problem,

CPLEX does not always find a solution, especially when the size of the problem increases. The

authors remark that there is a big impact of applying intensification and diversification in their

algorithm (increasing the percentage of solved instances from 50% to respectively 67 % and 83%).

The existing literature shows us that, depending on the method, large instances of the multi-activity

shift scheduling problem can be dealt with. Two methods are more frequently used. The first one

is an approach using context-free grammars, while the other one is a column generation approach.

Both approaches have their advantages and disadvantages. The context-free grammars provide a lot

of flexibility regarding the incorporation of decision rules, but some rules are tough to implement

by using context-free grammars. An example is scheduling over a longer period when starting

and ending times of shifts are not prearranged (Côté et al. 2013). For the column generation

approach, the network structure of the pricing problem can facilitate a smooth implementation of

more difficult constraints. However, one of the disadvantages of using a network structure is that

the size of the problem grows exponentially when smaller time intervals are utilised. To illustrate

this, consider a five-minute interval compared to a thirty-minute interval. To model a full day

of work, a total of 288 nodes needs to be combined in case of the five-minute interval while for

the thirty-minute interval only 48 nodes need to be combined. This has a considerable effect on

computation time. In addition to exact approaches, heuristics are also used in the pricing problem.

The column generation approach seems, according to the aforementioned literature, to be able to

handle more activities than the context-free grammar approach, but one should make the remark

that not all mentioned research considers the same time limit and computational power for their

research.

An extension of the MASSP is the multi-activity tour scheduling problem (MATSP). The MATSP

is the MASSP combined with days-off scheduling. As shift scheduling is part of the MATSP,

similar computational complexities arise as in the MASSP. Moreover, some research also partially

determine the computational efficiency of their method by using problem instances of the MASSP.

13

An example of such a study is Gérard et al. (2016). Their research is also interesting as they

have time-varying demand - similar to this research. Compared to this research there are two

main differences. First of all, their research also incorporates days-off scheduling. Secondly, their

objective is to minimise the amount of over and under coverage, while in this research under

coverage is not allowed. They show that methods based on Dantzig-Wolfe decomposition provide

good results.

Restrepo et al. (2018) propose a Benders decomposition method, in which the variables correspond-

ing to tour patterns are used in the master problem and are linked with variables related to daily

shifts. They solve the Benders master problem using column generation. The subproblems are

solved using context-free grammars. The authors test their approach on real-world instances for

both the MATSP and the MASSP. For the MATSP high-quality solutions are found up to ten

instances, while for the MASSP, the Benders decomposition approach solves instances up to 30

work activities and 137 employees within 1 % optimality.

Qu and Curtois (2020) provide a set of benchmark problems for the MATSP, with varying planning

lengths, as well as a varying number of activities and staff available. A variable neighbourhood

search approach is implemented to solve the problems. Small instances with up to seven days and

a few activities and staff are solved within five minutes, while for some larger problems even a

feasible solution could not be found in ten minutes.

The research in this thesis is distinctive from the existing literature for the following reasons. In this

research, there are no strict starting times. Therefore, the pattern of shifts is irregular. Moreover,

there are several different shift lengths, with each their own requirements. Existing literature often

considers regular shifts patterns (e.g. a day, evening and night shift) and no diversion in shift

lengths. In this thesis, both are taken into account. Hence, to the best of the author’s knowledge,

this research is original and relevant as addition to the existing literature.

4 Methodology

In this section, a further elaboration of the methods applied in this thesis is given. The binary

programming formulation is already provided in Section 2. This section describes the column

generation approach and further methods used in this thesis. The section is structured as follows.

First, the column generation algorithm is introduced in Section 4.1. Secondly, the initialisation

algorithm is discussed in Section 4.2. Thirdly, the reduced costs are discussed in Section 4.3.

Fourthly, the exact (Section 4.4) and heuristic (Section 4.5) algorithms are discussed. Lastly, the

method to translate the column generation solution to an integer solution is discussed in Section

4.6.

14

4.1 Column generation

The BP formulation (2)-(8) is solved using a column generation approach. In this section, a generic

overview of the column generation method is provided. The method needs the following input: the

demand dtj , W, minw and maxw, initialShifts, MaxTimeLimit and maxWithoutImprovement.

These inputs represent the demand, the set of shift types, the minimum and maximum amount of

shifts of each type, the set of initial shifts, the maximum time limit and the maximum iterations

without improvement. The algorithm can be found in Algorithm 1.

Algorithm 1 Column generation

procedure Column generation(dtj (∀j ∈ A,∀t ∈ T), W, minw (∀w ∈ W), maxw (∀w ∈ W),

initialShifts, maxTimeLimit, maxWithoutImprovement)

Step 1: Initialize Restricted Master Problem (RMP) with a small set of feasible shifts (see

Section 4.2) such that the RMP provides a feasible solution.

while time < maxTimeLimit and noImprovement < maxWithoutImprovement do

for w ∈ W do

Step 2: Solve the RMP(dtj ,minw,maxw). . ∀j ∈ A, ∀t ∈ T , ∀w ∈ W
Step 3: Solve the pricing problem exactly (see Section 4.4) or heuristically (see Section

4.5) for shift length w. If any shifts with negative reduced costs are found, proceed to

step 4. Else go to step 5.

Step 4: Add the shifts that follow from step 3 to the RMP. Set noImprovement to

0. Return to step 2 for next w ∈ W.

Step 5: If stopping criteria reached: break out of for-loop. Else: proceed to step 6.

Step 6: noImprovement = noImprovement + 1. Continue to next w ∈ W.

Step 7: The solution to the LP relaxation is found.

Return: solution to the LP-relaxation x?

The column generation algorithm (CG) initialises with a small, feasible set of shifts. In the Master

Problem (MP), these variables are binary. At the same time, these variables are relaxed in the

Restricted Master Problem (RMP). Hence, the RMP is the relaxation of the BP formulation as

described in Section 2.1 and is solved in step 2. By duality theory, the RMP provides us with the

dual values of the constraints. The dual values are then utilised to construct the objective in the

pricing problem (see Section 4.3). The pricing problem is solved using this objective with either an

exact or heuristic pricing problem. If any shifts with negative reduced costs are found, these are

added to the RMP. Subsequently, the RMP is solved. If no shifts are found, the noImprovement

parameter is increased by one. This process is repeated until either the time limit is reached or no

shifts with negative reduced costs are found for at least maxWithoutImprovement iterations. At

that point, the solution to the LP relaxation, x?, is found. To get to a final result for the problem

at hand, the solution of the column generation algorithm has to be made integer. The process for

15

this can be found in Section 4.6.

4.2 Initialisation

For the initialisation of the column generation algorithm, a feasible set of shifts has to be created.

The procedure described in this section consists of three components. In the first component, a

small set of starting shifts is created. In the second component, this set of starting shifts is used

in combination with data for a week to create a larger set of shifts. In this way, the set of shifts

includes day-specific patterns. In the last component, during the start of the column generation

procedure, the restricted master problem is solved and the shifts that are chosen in the optimal

solution to the RMP are taken from the large set of shifts. Moreover, some of the shifts that are not

included in the optimal solution are included in the RMP, to increase the number of possibilities

for the column generation.

Let us consider the components in their natural order of application. For the first component, let

us start by defining sets and parameters. Define the set T wI as the set of starting intervals in the

initialisation procedure. This set is a subset of all intervals T and is dependent on the shift length

w, as the possible starting intervals depend on the shift length type w. Moreover, let Mw
SD be the

maximum number of shift divisions created for a certain shift type w ∈ W. Let SDw be the set

of shift divisions of shift type w ∈ W. A shift division is a set of activity lengths such that the

sum of the activity lengths plus the required breaks equals the required shift length. Moreover, let

lengthsActivities represent the time of an activity, such that the length is between the minimum

and maximum standing time. In case the problem is solved for period 1, the initial set of shift

consists of the outcomes for the same instances for z = 0.

16

Algorithm 2 Initialisation Algorithm: component 1

1: procedure Initialisation Algorithm: Component 1(T wI , W, MSD, lengthsActivities)

2: Initialisation: startingShifts[], SDw[] (∀w ∈ W)

3: for w ∈ W do

4: for i in MSD do

5: if w needs break then

6: StartTimeb = ti,b . Determine start time break

7: EndTimeb = ti,b + lengthLongBreak . Determine end time break

8: LABB = random(lengthsActivities) . LABB = lengths activities before break

9: LAAB = random(lengthsActivities) . LAAB = lengths activities after break

10: SDw[i] = createShiftDivision(LABB, LAAB, startT imeb, endT imeb)

11: for every w ∈ W do

12: for every ti in T wI do

13: shift = []

14: StartTime = ti

15: EndTime = ti + length(w)

16: for i in NOSPST do . NOSPST = number of shifts per start time

17: shiftDivision = random(SDw)

18: for activityLength in shiftDivision do

19: activityChosen = random(A)

20: for activity in activityLength do

21: shift.append(activityChosen)

22: if breakNeeded then

23: for break in breakLength do

24: shift.append(break)

25: shift, feasible = adjustWalkingTime(shift)

26: if feasible then

27: startingShifts.append(shift)

28: Return: startingShifts

At this point, let us discuss the algorithm described in Algorithm 2. First of all, in lines 3-10, a set

of shift divisions is created. A shift division includes the activities, short and long breaks and the

walking time. The short breaks can be determined from the LABB en LAAB, as between the ac-

tivities a break needs to be held. The long breaks are situated between the LABB and LAAB. This

part of the process starts by determining during which interval the long break starts. From there,

the length of the activities before and after the break are determined. At this point, no information

is known about the activities within the shifts. Moreover, the maximum walking time is included

17

for both the short and long breaks to make sure any combination of activities is feasible. In the

second part of the the algorithm, lines 11-27, the created shift division are paired to a starting

and ending time. Moreover, the activities within the shift are decided upon. The walking time is

adjusted for the activities while preventing any violations of the rules and regulations such as infea-

sible walking time. Making sure that a feasible starting solution is created when shift lengths are

not infinite, is already a NP-hard problem. Therefore, a dummy variable ν is included in constraint

(3) of the BP formulation. This variable makes sure that a feasible solution always exists for the

second component (although it is a relative expensive variable to use during the second component).

At this point, the first component is executed and the second component can be initialised using

the results of the first component. In the second component, a large set of feasible shifts is created

by using the column generation algorithm and data for a week. This component uses the column

generation with an exact pricing problem. By applying this method, one can account for day-

specific patterns within the data. The pseudo-code for the second component of the initialisation

algorithm can be found in Algorithm 3.

Algorithm 3 Initialisation Algorithm: Component 2

1: procedure Initialisation Algorithm: component 2(startingShifts, trainingWeek, max-

TimeLimit, maxWithoutImprovement)

2: for trainingDay in trainingWeek do

3: totalShifts = startingShifts

4: shifts = ColumnGeneration(trainingDay, W, minw, maxw, startingShifts, maxTime-

Limit, maxWithoutImprovement)

5: totalShifts.append(shifts)

6: Return: totalShifts

In Algorithm 3 a large set of initial shifts is created. This initialisation set can now be used for the

daily column generations. The process for this is described as follows.

18

Algorithm 4 Initialisation Algorithm: component 3

1: procedure Initialisation Algorithm: Component 3(totalShifts)

2: Initialisation: shiftsNew[]

3: dualValues, solutionValues = RMP(totalShifts)

4: for shift in totalShifts do

5: if solutionValues(shift) > 0 then

6: shiftsNew.append(shift)

7: else:

8: randomChoice = random(0, 1, φ) . 0 with probability 1− φ, 1 with probability φ

9: if randomChoice = 1 then

10: shiftsNew.append(shift)

11: Return: shiftsNew

In Algorithm 4, step 1 of Algorithm 1 is described. In line 3 of the algorithm the RMP is solved.

Subsequently, in the lines (4)-(10) the starting set of shifts is determined. There are two parts

of this. First of all, part of the shifts are part of the optimal solution of the RMP (these shifts

have solution values in the range (0, 1]). Additionally, the set of shifts is expanded by randomly

including additional shifts. A shift is randomly included with probability φ and not included with

probability 1− φ.

The first and second components of the initialisation algorithm only have to be created once for

a certain number of filters. The third component, as described in Algorithm 4, is employed every

time the column generation method from this thesis is used (step 1 of Algorithm 1).

4.3 Reduced costs

In this section, the reduced costs of the pricing problem are constructed. Moreover, the cost of

visiting a node is clarified. First of all, every time the solution to the RMP has been found, a new

column to be included in the problem formulation has to be created or we have to show that no

columns with negative reduced costs exist. This new column represents a shift that copes with all

the requirements to be a valid shift. This shift is created using an exact pricing algorithm (see Sec-

tion 4.4) or a heuristic pricing algorithm (see Section 4.5). These algorithms are based on finding

shifts with negative reduced costs. The reduced costs of shift follows from the constraints of the

restricted master problem. More precisely, let λtj , πw, κw, µp, ψ be the negative dual variables that

correspond with constraints (3), (4), (5), (7), (8), respectively. The reduced cost is dependent on

z. As mentioned, for z = 0, constraints (7) and (8) are not included in the formulation. Therefore,

the reduced costs for a shift when z = 0 equal

RC(xw,0i) = Cw +
∑
j∈A

∑
t∈T

Atijλ
t
j + πw − κw (9)

19

For z = 1, the reduced costs are given by

RC(xw,1i) = Cw +
∑
j∈A

∑
t∈T

Atijλ
t
j + πw − κw −

∑
p∈S0

w

µpwP
w
ip + ψ (10)

In the pricing problem, the reduced costs are minimised.

4.4 Exact pricing algorithm

The exact approach to solve the subproblems uses a shortest path problem with resource constraints

(SPPRC). The SPPRC is an NP-hard problem. Nonetheless, fast, specialised algorithms to solve

the SPPRC exist. In this section, the methodology behind solving the SPPRC is reviewed. This

section is structured as follows. First, the problem is translated into a network structure. Subse-

quently, the resources of the SPPRC are discussed. Finally, an extensive elaboration of the exact

pulse algorithm is included in this section. The objective of the algorithm discussed in this section

is finding the most valuable shifts out of the set of shifts S. The value of a shift is based on the

reduced costs that such a shift yields. A shift is most valuable if it has the most negative reduced

costs. Every node on the optimal path P ?, that together represents a shift, yields some cost. This

cost follows from the dual variables of the master problem. The path P starts at node s and ends

at node t and has a prespecified length L, which is the length of the shift. Before clarifying the

cost structure more, let us first consider the network.

Network structure

The SPPRC is modelled using a network structure. Let us define this formally. Let G = (V, E) be

a directed acyclic graph with V as the set of nodes and E the set of arcs. The graph G is directed

since G is a graph in a time-space network. Hence, no cycles exist. The nodes represent working

at an activity during a specific time interval. An arc from node i to node j represents a feasible

opportunity to traverse from node i to node j. If no arc exists, no direct feasible path exists between

node i and node j. To increase understanding, one can take a look at Figure 2. In the figure, the

nodes represent working at filter j during time interval t (t can be found in the top bar). One might

notice that before t equals MINST (minimum standing time) no arcs exist between activities. A

worker is not allowed to switch activities if he/she has not been working that activity for at least

the minimum standing time. Every time a break has been held, the time variable resets and a

similar pattern occurs for time < MINST . Blue lines indicate break and walking time variables.

As the walking time depends on the start and end point, the total amount of time for walking

and having a break differs per combination of activities. To keep Figure 2 of reasonable size, only

breaks ending at filter 1 are included. Moreover, only short breaks are included in the network

formulation of Figure 2. Long breaks work similarly as short breaks but take longer. These breaks

are not included in Figure 2. For all other filters, the same blue lines could be drawn which result

in similar patterns for the short breaks. Moreover, in practice, there is a whole subset of starting

20

points TwI and all these start points have a similar network.

Figure 2: Example of a network

Every arc from node i to node j in the network has a cost cij associated with the arc. Recall that

the set of nodes is given by V. This cost cij follows from the reduced cost of the problem. Let node

i be represented by i = (fi, ti) ∈ V, where fi is the filter of node i and ti is the interval of node

i. In addition, there are several extra nodes: start point s, briefing and end point t. These have

no specified interval in which they occur. The cost of traversing an arc from node i to node j for

z = 0 is given in (11). For z = 1, the cost of traversing from node i to node j is given in (12).

Cij =

0 if i = (s,−) and j = (briefing,−)

Cw +Atijλ
t
j + πw − κw if i = (briefing,−) and j = (fj , tj), for j ∈ V

Atijλ
t
j if i = (fi, ti) and j = (fj , tj), for i, j ∈ V

0 if j = (t,−)

(11)

Cij =

0 if i = (s,−) and j = (briefing,−)

Cw +Atijλ
t
j + πw − κw −

∑
p∈S0

w
µpwP

w
ip + ψ if i = (briefing,−) and j = (fj , tj), for j ∈ V

Atijλ
t
j if i = (fi, ti) and j = (fj , tj), for i, j ∈ V

0 if j = (t,−)

(12)

21

Resources

The SPPRC has restrictions regarding resources. Mathematically, let R = (R1, R2, ..., Rr) be a set

of r resources. The shortest path in a network is feasible if and only if all resources are satisfied.

In the model discussed in this thesis, several resources exist. Let R1 be the resource that measures

the standing time. There is both a minimum and a maximum standing time, respectively Tmin

and Tmax. The amount of time a team works at an activity before switching to another activity

should be between Tmin and Tmax. Secondly, resource R2 measures whether the requirement for a

long break that is sufficiently long is satisfied. In case the break time is split up into two parts, the

component with the longest length, b1, is taken as the rest time. Resource R3 measures the time

since the last unpaid moment; this could be either the start of the shift or the long break. Resource

R4 counts the short breaks.

Algorithm

To solve the SPPRC, Lozano and Medaglia (2013) propose a fast algorithm based on sending

pulses through a network. The algorithm provided in their research is also implemented in this

thesis. The pseudocode of the algorithm can be found in Algorithm 5. Although the algorithm is

straightforward, it is further clarified after the introduction of the algorithm. First, let us define

some parameters. Let L be the required shift length and let P be the path. Define P? as the

shortest, resource-feasible path through the network. Moreover, let C be the current cost of the

path and let R be the current vector of resources. Finally, let vk be the current node that is added

to the pulse. The algorithm is initialised by starting the algorithm at start point s.

Algorithm 5 Pulse Algorithm

1: procedure Pulse Algorithm(L, numberActivities)

2: P = {}
3: C = 0

4: GL = createGraph(L, numberActivities)

5: R = (0, 0, 0, 0)

6: vk = s

7: pulseFunction(L, P, C, R, vk)

8: Return: Optimal path P?

The input of the algorithm is the shift length L for which the algorithm should produce a shift.

Depending on the shift length, the graph related to this shift length is created in line 4. The

graph depends on the shift length as the shift length has a large impact on the feasibility of some

combinations as well as the requirements of a shift. Since computational efficiency is of the utmost

interest, letting the graph depend on the shift length results in generating smaller graphs. Smaller

graphs tend to take less time, as there the number of paths to go through is smaller. The algorithm

22

proceeds by calling the pulse function in line 7. The pulse function is described in Algorithm 6.

The optimal path P? follows from the best bound of the pulse function.

At this point, let me shortly illustrate the reasoning behind the pulse algorithm. In the pulse

algorithm, pulses are sent through a network G. The pulse function thereby sends pulses through

the network. As one can imagine, even for small-sized networks, the number of possible paths is

enormous. The pulse algorithm enumerates through all these options. However, not every path is

resource-feasible. Therefore, in this thesis, three aggressive pruning strategies are applied. These

pruning strategies help to efficiently prune large parts of the network at the point where it is already

clear that a path is not feasible or better than the best path we have found until that point. The

pruning strategies are based on feasibility, bounds and dominance. Let me clarify the pruning

strategies here.

The first pruning strategy is based on feasibility. For the resource vector R, if any of the resources

of resource vector R violate a restriction or if a feasible solution is unattainable, the path can

be pruned. As there are multiple resources in this research, feasibility pruning is very powerful.

Secondly, pulses are pruned by bounds. This is most easily interpreted as follows. The pulse

algorithm uses the deepest node first selection strategy. Once we have reached the final node t

for the first time, this results in an upper bound. For any other path that passes through the

algorithm at a later stage, we know that, if the path does not have the potential to reach a lower

solution than the upper bound, the path can be pruned. The deepest node first selection strategy

is particularly interesting for the pulse algorithm, as a quick upper bound on the objective can be

found. This upper bound can be used to quickly prune paths from the network that result in worse

solutions than the upper bound. To be precise, let Cub be the current upper bound objective. If a

solution C(P), where P is a resource-feasible path (which might not be a full path from s to t) is

found and there is no possibility to find a path with lower costs, this path can be pruned. At the

occasion that a tighter upper bound is found, the upper bound can be updated. Since the upper

bounds of paths can be updated, this directly shows the reasoning behind the deepest node first

strategy. The last pruning strategy is based on the dominance of paths. Suppose we have path 1

with resource vector R1 with solution value c1 and path 2 with resource vector R2 with solution

value c2, both being paths to node v. If c1 < c2 and R1 = R2. We then know that path 1 strictly

dominates path 2 and that path 2 can be discarded.

Now, let us define the pulse function as mentioned in Algorithm 5. The pulse function is described

in Algorithm 6.

23

Algorithm 6 Pulse function

1: procedure Pulse function(L, P, cP , R, vk)

2: output: void

3: if feasible = True then

4: if Bounds = True then

5: if noDominance = True then

6: Pp = P ∪ vk
7: for each outgoing arc vi from node vk do

8: cp = cP + cki

9: Rp = R+Rvki
10: pulseFunction(L, Pp, cp, Rp, vi)

At this point, let me shortly illustrate the pulse function. The pulse function is initialised by

feeding the length of the shift L, the current path P, the costs cp and the set of restrictions R and

the current node. First, in lines 3-5 it is determined whether adding this node to the path results

in a resource-feasible path, whether this path can result in a path with a lower reduced cost and

whether the path created is not dominated by any other path. If the checks all return true, the

node can be added to the path. Next, in line 7 all subsequent nodes that are connected by an arc

to this node (and hence might be feasible) are considered. For lines 8 and 9 the cost and resource

vector are updated. Lastly, in line 10 the pulse function is called again and the procedure starts

over. The procedure ends at the point where there are no subsequent nodes for any node. At this

point, the best solution is determined and the bounds are updated. The function repeats itself

until all feasible paths are examined.

To summarize, the pulse algorithm is always able to find the optimal path in this SPPRC if there

exists one since the algorithm enumerates through all options. Options that are not feasible are

pruned and therefore any further additions to these paths can be ignored. Consequently, large

parts of the networks are cut off which improves the speed of the algorithm. For large networks,

the algorithm still has to enumerate through numerous options. Therefore, no guarantee regarding

the speed of the algorithm can be found and the algorithm is very dependent on the quality of the

pruning strategies.

4.5 Heuristic pricing algorithm

In addition to the exact pulse algorithm, a heuristic algorithm is implemented to solve the problem.

Heuristic algorithms tend to provide results more quickly at the cost of optimality. Hence, for the

paths found with the heuristic algorithm, no guarantee exists regarding the quality of the paths.

Moreover, the heuristic in this section is not dependent on other pruning strategies than feasibility.

The heuristic algorithm in this section uses the initial solution from component 3 of Section 4.2

as the basis. For the algorithm described here, let the set of initialShifts be called I. A shift i in

24

I consists of a starting time, end time, the activity times within a shift and at which activity the

employee should be at what time. Moreover, the shift length L is known. Shift i can be sliced

into small shift sections that represent working at an activity and a short or long break afterwards,

except for the first and last slices of the shift. The first and last slices are different since the first

slice has a briefing at the beginning and the last has no break at the end. For the heuristic method,

a similar cost function can be utilised as in the exact method, but there are two differences. First,

in the exact method, the costs are counted while the shift is created, while in the heuristic method,

this only happens after the shift is created. Second, the shift does not have a specific start time

upfront and therefore the costs are determined afterwards. Let us first consider the algorithm, after

which we can determine the costs.

The algorithm can be found in Algorithm 7.

25

Algorithm 7 Heuristic algorithm

1: procedure Heuristic algorithm(I, L, T wI , maxNumberIterations, maxTime, maxShifts)

2: initialisation: bestObjective = ∞, components, numIterations = 0, optimalShifts[], profiles

3: while len(newShifts) < maxShifts and time < maxTime do

4: profile = selectProfile(profiles)

5: startComponent = components(profile)

6: shift = startComponent

7: lengthRemaining = L - length(startComponent)

8: for action in profile[1:] do

9: couplingPossibilities = selectPossibleComponents(action, lengthRemaining)

10: if len(couplingPossibilities > 0 then

11: component = random(couplingPossibilities)

12: lengthRemaining = lengthRemaining - length(component)

13: shift = shift + component

14: shift, feasible = adjustWalkingTime(shift)

15: if feasible is false then

16: infeasible = 1

17: break

18: else

19: infeasible = 1

20: break

21: if infeasible = 1 then

22: Continue

23: for starting time s in Ts do

24: reducedCost = cost(newShift)

25: if reducedCost < 0 then

26: newShifts.append(newShift, startTime)

27: return: newShifts with negative reduced costs of shift length L

Algorithm 7 is quite straightforward. The process is initialised by determining the components from

the shifts. A component is defined by the type of the component, the working time and the total

length of the component. The type of component is determined by whether a briefing is included,

whether a break is included and which kind of break. In total, five types of components exist. Every

possible length of shift L has certain requirements regarding characteristics. For example, there is

a maximum number of short breaks. The profile of the created shift is determined up front, in line

(4). The profile informs about the types of components present in the shift. The first component of

the shift is determined. From there, the following procedure is followed. First of all, from the set of

components the subset of all feasible components is determined based on the remaining length and

26

the positioning of the action in the profile. From this subset, a component is randomly selected. The

activities in a component are then appended to the existing shift and, if necessary, the walking time

is adjusted to have the right length. In case the newly created shift is not possible - for example,

if both components already work as much as the maximum standing time and there is a surplus of

walking time, which can therefore not be included in either one of the components, the shift is infea-

sible. If this is the case, the process is restarted. Once a feasible shift is found, the cost of starting

this shift at a specific time is determined. At this point the costs can be determined, as the starting

point, the activities and their start and end times are known. The nodes through which the path

goes, have a certain cost and these costs can be determined. The cost for a single node is as follows.

Cij =

0 if i = (s,−) and j = (briefing,−)

Cw +Atijλ
t
j + πw − κw if i = (briefing,−) and j = (fj , tj), for j ∈ V

Atijλ
t
j if i = (fi, ti) and j = (fj , tj), for i, j ∈ V

0 if j = (t,−)

(13)

Cij =

0 if i = (s,−) and j = (briefing,−)

Cw +Atijλ
t
j + πw − κw −

∑
p∈S0

w
µpwP

w
ip + ψ if i = (briefing,−) and j = (fj , tj), for j ∈ V

Atijλ
t
j if i = (fi, ti) and j = (fj , tj), for i, j ∈ V

0 if j = (t,−)

(14)

In case the total costs of a shift are negative, the shift is included in the RMP. The heuristic

provides a set of shifts that can are added simultaneously.

4.6 Integer solution

To translate the LP relaxation solution from the column generation algorithm to an integer solution,

a standard BP formulation is solved using a commercial solver. The formulation is equivalent to

27

the formulation in Section 2.1. Recall that the BP formulation of the problem is as follows.

min
∑
w∈W

∑
i∈Sz

w

Cwx
w,z
i + Cνν (15)

S.t.
∑
w∈W

∑
i∈Sz

w

Atijx
w,z
i ≥ (1− ν)dtj , ∀j ∈ A, ∀t ∈ T (16)

∑
t∈T

∑
j∈A

∑
i∈Sz

w

Bt,w
ij x

w,z
i ≥ minw, ∀w ∈ W (17)

∑
t∈T

∑
j∈A

∑
i∈Sz

w

Bt,w
ij x

w,z
i ≤ maxw, ∀w ∈ W (18)

xw,zi ∈ {0, 1}, ∀i ∈ Szw, ∀w ∈ W (19)

For z = 1, additional constraints prevail:∑
i∈S1

w

Pwipx
w,z
i ≤ 1, ∀p ∈ S0w (20)

∑
w∈W

∑
p∈S0

w

∑
i∈S1

w

Pwipx
w,z
i ≥ γ|P |, (21)

As the formulation is already introduced earlier in this thesis, the full clarification of the constraints

is not repeated in this section.

There are several reasons why the above formulation is implemented. Faster methods to solve a BP

model exist in the literature, such as relax and fix algorithms, but this thesis has two simultaneous

objectives: speed and solution value. Faster algorithms often provide worse solutions in comparison

to the BP formulation. To be beneficial over the benchmark method, the solution needs to be better

(or at least as good) while remaining within the benchmark time restriction. In this case, methods

such as relax-and-fix lose their competitive edge and hence the BP formulation is implemented.

Moreover, a relax-and-fix method might end up in a local optimum. Although this local optimum

can be close to the global optimum, no guarantees exist. As the margins of improvement for the

model in comparison to the benchmark method are small, this could result in not improving on the

benchmark method. Therefore, the BP formulation above is implemented.

5 Data description

Data used in this thesis follows from practice. The data describes the number of teams required

at a certain filter during an interval. The information regarding the number of teams during a

period is specified in thirty-minute intervals. For scheduling reasons, the data is translated to five-

minute intervals. This implies there are a total of 288 intervals for any given day. A small example

showing the structure of the data can be found in Table 1. The example shows the demand for a

few intervals for a four-filter instance.

28

Table 1: Example demand data for four-filter instance

Time Filters
Interval Real start time interval 1 2 3 4

...
...

...
...

...
...

207 17:15 3 3 5 8
208 17:20 3 3 5 8
209 17:30 3 3 5 8
210 17:35 5 3 7 8
211 17:40 5 3 7 8

...
...

...
...

...
...

On the left-hand side of the table, one can find the interval number and the start time of the inter-

val. The intervals 207 to 211 are shown, which start between 17:15 and 17:40. On the right-hand

side, for every filter i, i = {1, 2, 3, 4}, one can find the number of teams demanded during these

intervals. For instance, for interval 207 with start time 17:15, 3 teams are demanded at filter 1,

3 teams are demanded at filter 2, 5 teams are demanded at filter 3 and 8 filters are demanded at

filter 4. Every filter has its own demand pattern. To illustrate the differences, consider Figure 3.

Figure 3 is based on the demand for security teams for a Friday and Saturday.

Figure 3: Example of difference in demand per day and per filter

In the above visualisation of demand, one can observe that demand fluctuates substantially by time.

Moreover, different filters have different demand patterns and the height of the peak demands differ

to a large extent. Likewise, demand varies considerably by day. Although this is just one example,

similar differences can be observed using other data.

29

5.1 Fixed parameter values

Some parameter values in this thesis are fixed, as they follow from either the collective labour

agreement or the labour laws specific for the Netherlands. In this section, the values for these

parameters are specified.

First, let us consider the regulations regarding the long break requirement. By the collective labour

agreement, in case the shift is shorter than β1 = 330 minutes (5.5 hours), there is no long break

requirement. In case the shift is longer than β1 = 330 minutes and shorter than β2 = 480 minutes

(8 hours) there is a uninterrupted break requirement of b1 = 30 minutes. In case a shift is longer

than β2 = 480 minutes, there is a break requirement of b2 = 45 minutes, out of which b1 = 30

minutes should be uninterrupted.

There is also strict regulation regarding the placement of the long break in a shift. Depending on

the shift length, the break needs to be ξ minutes away from the start and end time of the shift. In

case the shift is shorter than α = 8 hours, ξ1 = 120 minutes. In case a shift is larger than α = 8

hours, the break needs to be at least ξ2 = 180 minutes away from the start and end of the shift.

The minimum standing time is equal to Tmin = 60 minutes. The maximum standing time Tmax =

120 minutes. Moreover, the walking time between filters is pre-measured. Recall that the walking

time is the time from the start filter to the destination filter with a stop in the break room. One

can find the walking times in Table 2 below.

Table 2: Walking time (minutes)

Start filter

Destination filter
1 2 3 4

1 5 10 15 5

2 10 5 10 5

3 15 10 5 10

4 5 5 10 5

In case an instance with three filters is considered, filter number four can be excluded from the

above table.

5.2 Specific parameter values

In this section, parameters that are specific to the situation in this thesis are established. First,

consider the shift lengths. In total, four shift lengths exist. including subcategories, this adds up

to 6 shift types for w ∈ W. Shifts of type 1a have a total length of 3.75 hours, with a fixed starting

time at s1a = 6:00. Similarly, shifts of type 1b have a total length of 3.75 hours as well, but with

a fixed starting time at s1b = 16:15. Furthermore, shifts of type 2a have a length of 9.5 hours and

a starting time in the interval [1:15, 4:30]. Shifts of type 2b also have a length of 9.5 hours and a

30

starting time in the interval [11:00, 14:15]. Lastly, shift types 3 and 4 have lengths of 6.75 and 8.5

hours, respectively. These shift types have no requirements regarding the starting times of their

shifts, except that the shifts have to end the same day as they started. This rule has one exception,

namely the night shift that couples the two days together. This is a shift of 8.5 and the working

hours are counted on the day that the shift began. Shift types 1a and 1b need to have exactly 3

shifts each, while shift types 2a and 2b have a minimum of 2 shifts and a maximum of 3 shifts each.

Lastly, there are no requirements regarding the number of shifts of type 3 and 4.

Contrary to shifts with shift length shorter than β2 = 480 minutes, shifts with length longer than

β2 = 480 minutes get paid for 15 out of the 45 minutes of their long break. On the basis of the

shift length and the break requirement, one can now determine the paid hours for shifts of type

Cw, w ∈ W. Shift of type 1a and 1b have cost C1 = 3.75. Shifts of type 2a and 2b have cost

C2 = 9.0. Lastly, shifts of type 3 and 4 have costs C3 = 6.25 and C4 = 8.0, respectively.

Lastly, there is a requirement regarding the maximum number of short breaks. This requirement ex-

ists due to social considerations and is represented by the parameter SBw, w ∈ W. The parameters

have value 1, 1, 3, 3, 1, 2 for shifts of type 1a, 1b, 2a, 2b, 3 and 4, respectively.

An overview of the requirements can be found in Table 3.

Shift type 1a 1b 2a 2b 3 4

Length (h) 3.75 3.75 9.5 9.5 6.75 8.5

Objective length (h) 3.75 3.75 9.0 9.0 6.25 8.0

Long break requirement (m) 0 0 45 (15 paid) 45 (15 paid) 30 30

SBw (#) 1 1 3 3 1 2

ξ (m) 0 0 180 180 120 180

Minimum (#) 3 3 2 2 0 0

Maximum (#) 3 3 3 3 ∞ ∞

Table 3: Shift requirement data

Regarding the initialisation process, the following settings are used. First of all, for instances

with three and four filters, the initialisation algorithm is applied to one week of data. For larger

instances, as they are independent of which day it is, five days of data are used. The time restriction

for generating shifts for each instance in the initialisation process is set at 300 seconds. Furthermore,

for component 3 the parameter ψ that is the probability of a shift not being present in the optimal

solution but being included in the start shift, equals 0,10.

Lastly, regarding the similar shifts for period 1, δ is set at a thirty-minute difference in starting

interval.

31

5.3 Stopping criteria

Two methods are considered in this thesis: a column generation with exact pricing problem and a

column generation heuristic. These column generation algorithms follow the procedure described

in Algorithm 1. The column generation with exact pricing algorithm uses the following stopping

criteria: maxTimeLimit has a value of 250 seconds and maxWithoutImprovement has value 8. For

the column generation heuristic, the maxTimeLimit also equals 250 while maxWithoutImprovement

equals 18. An iteration is considered an improvement if there is a difference between the new

objective value and the old objective value of at least 1e−6.

6 Experiments

To assess the quality of the models proposed in this thesis, several experiments are conducted. The

first experiment concerns a comparison between the currently used practical model (benchmark

model) and the column generation model, with either an exact or a heuristic algorithm as method to

the pricing problem. The first experiment is discussed in Section 6.1. The results of this experiment

are discussed in Section 6.2. The second experiment assesses the scalability of the column generation

model and is discussed in Section 6.3. The outcomes of the scalability experiment are reviewed in

Section 6.4.

All experiments in this section were performed on a DELL Inspiron 5490 with 12 GB of RAM,

running an Intel CoreTM i7-10510U CPU clocked at 1.80 GHz, with Microsoft Windows 10 Home.

The experiments are carried out using Python 3.7.9 64-bit using the Spyder environment, version

4.1.5. Moreover, the commercial solver Gurobi Optimizer, version 9.0.3, is used.

6.1 Comparison against benchmark method: experimental setup

The first experiment is a direct comparison between the model currently used in practice and the

column generation models designed in this thesis. The models are compared for both information

moments, thus for the demand of four weeks before (z = 0) and for the demand of one week before

(z = 1).

The benchmark model solves a Binary Programming (BP) model with a large number of shifts. The

shifts are modelled as variables and the model is solved using commercial solver Gurobi. As this

approach produces a model with over 200,000 variables, the BP model does not solve to optimality.

For this reason, a time restriction is included, which is set at 600 seconds. Additionally, the time

restriction is also included for practical reasons. The quality of the solution is measured by using

the discount rate (VDC). The VDC is a measure determined by dividing the total paid hours

planned (TH) by the number of hours demanded (TD). In mathematical terms, this is equivalent

to

V DC =
TH

TD
(22)

32

The interpretation of the VDC is as follows: suppose the VDC equals 1.17. This implies that in

comparison to the number of hours demanded by the airport, the solution needs 1.17 times the

number of hours demanded when all restrictions are satisfied. As there are rules and regulations

the solution has to conform to, we know that the VDC has a minimum value of 1. In addition, the

standard deviation of the VDC is measured. In addition, for the comparison against the benchmark

method, an additional measure is used: the weighted VDC. By using the weighted VDC we want to

determine a weighted average over the hours. The weights are determined by taking the proportion

of hours over that week and divide it by the total number of hours for the full planning horizon.

The weighted average informs us at which times which model performs better. Furthermore, as

final performance measure, we have the standard deviation of the VDC. The standard deviation of

the VDC informs us about the variability of the solutions of the instances.

For the comparison, a set of instances is available. Regarding the experiment in this section, 35

instances (5 weeks) are available for both three and four filters. For both sizes, 7 of the 35 instances

(1 week of data) are used to create an initial solution. The comparison between methods is made

based on the remaining 28 instances. The instances weeks that are used for comparison are shown

in Table 4.

Table 4: Data weeks used

Filters Which weeks Initialisation

3 3, 11, 17, 29 (all 2019) 13 (2019)

4 51 (2019), 1, 5, 9 (all 2020) 45 (2019)

The experiment in this section consists of two sub-experiments. First of all, a direct comparison

can be made between the benchmark method and the column generation method for period 0

(when z = 0). In the second sub-experiment, the practical situation is considered. The practical

situation works as follows. First, the method is solved for z = 0. From there, the final solution

that follows from z = 0 is used as a starting point, in combination with the demand data for

period 1, for period 1 (z = 1). The importance here is that the solutions from period 0 are used.

Because the start solution transfers from the results of period 0 and translation of results between

methods are difficult, the instances considered for period 1 are different. In addition, for period

1, different implementations of constraints (7) and (8) are used. The distinction is as follows. For

the benchmark method, 60% of the shifts constructed in period 0 need to reappear in that exact

manner in the solution for period 1. For the CG methods of this thesis, 60% of start times of the

solution of period 0 has to return similarly (start time within δ intervals) in the solution of period 1.

The different implementation is used as the implementation in this thesis is more flexible and future

plans exist to include this formulation in the benchmark method. Since the column generation and

benchmark method work in a fundamentally different way, the methods cannot be interchangeably

used without translation between the results. For this reason, no crossovers between methods are

considered in this thesis. Because of the above-described different starting points and constraint

33

differences, no direct inferences can be made about the comparison between the methods for z = 1.

Nevertheless, period 1 is part of the practical situation and therefore the results are presented in

this thesis.

For period 1, since the minimal hours demanded might differ between periods, the VDC for period

1 is determined based on the demand for period 1.

6.2 Results: comparison against the benchmark method

This section is structured as follows. First, the outcomes for the three-filter instances are discussed.

Secondly, the results for the four-filter instances are reviewed. Within the discussion of each size,

first the results for period 0 (z = 0) are discussed. Secondly, the results for period 1 (z = 1) are

reviewed.

6.2.1 Three filters

Period 0

The data for period 0 is provided four weeks before the actual process. The summary statistics can

be found in Table 5, the full result in Table 13.

Table 5: Summary statistics for three-filter instances for period 0

Week
Benchmark CG exact pricing CG heuristic

VDC Std. Dev. VDC Std. Dev. Avg. time (s) VDC Std. Dev. Avg. time (s)

3 1.2341 0.0114 1.2211 0.0107 450.39 1.2186 0.0044 465.46

11 1.2338 0.0087 1.2194 0.0091 474.79 1.2196 0.0099 440.39

17 1.1953 0.0041 1.1907 0.0023 550.70 1.1858 0.0018 498.87

29 1.2027 0.0021 1.1912 0.0026 548.25 1.1869 0.0030 504.49

Avg 1.2165 0.0192 1.2056 0.0164 506.03 1.2027 0.0173 477.30

W.Avg 1.2119 1.2018 1.1984

Table 5 informs us about the summary statistics for the three-filter instances for period 0. The

week numbers can be found under the column week. In the table, one can find the average VDC

and the average standard deviation of the VDC for the individual weeks. The results show that

the exact and heuristic column generation methods tend to outperform the benchmark method.

The CG with exact pricing performs on average 1.09% better, while the CG heuristic performs

1.38% better. One can notice that the average variability of the instances is between 1.92% for

the benchmark instances and 1.64% for the exact instances. Hence, the volatility between methods

is very similar. To be complete, the CG with exact pricing problem outperforms the benchmark

method on 24 of the 28 instances (85.71%), while for 2 out of the 28 instances the solutions are equal

(7.14%). For the remaining two instances, the exact CG has a worse solution (7.14%). The average

34

improvement for the CG with exact pricing over the benchmark method is 5.48 hours, while for

the instances in which the benchmark method outperforms the CG with exact pricing, the average

improvement is 2.63 hours. The heuristic method performs better on 27 out of the 28 instances

(96.43%) and has an equal solution value for one instance (3.57%). The average improvement for

the CG heuristic over the benchmark method is 6.19 hours. Secondly, the weighted average VDC

of the methods shows very similar results. Although the benchmark method seems to do relatively

slightly better than the other methods, the difference is very modest and nothing can be concluded

from the difference. Lastly, the average standard deviation informs us about the variability among

several weeks and is very comparable among methods.

In addition to the improved results, the column generation methods tend to be faster. The bench-

mark method has a maximum computational time of 600 seconds. With additional time for writing

the results and initialisation, the total time for one instance comes close to 650 seconds. The exact

and heuristic methods have a maximum computational time of 500 seconds. Including additional

writing time, the maximum time for one instance equals around 550 seconds. More computational

time tends to result in only small additional gains in terms of VDC. Regarding the results, we can

conclude the column generation methods provide better results in a more timely fashion. To be

precise, in comparison with the benchmark method, the exact method is about 144 seconds faster

on average while for the heuristic method this equals about 173 seconds.

Although the percentages of improvement are relatively small, the economic consequences are

substantial. In total, to perform all shifts, 15030 hours are needed to complete the full set of

benchmark shifts. In comparison, the exact method needs only 14903.75 hours and the heuristic

method needs 14863 hours. To be precise, the heuristic method needs 167 hours less to solve the

instances. For every hour of work in the solution, five team members need to be present. Hence,

in total, 835 hours of work need not be paid. Even when considering the minimum hourly wage of

12 euros per hour without taking into account irregularity allowance, this would add up to about

10,020 euros for the four weeks considered in this thesis. Suppose that our four-weeks would be

representative of the year, this would result in yearly savings of at least 130,000 euros! In fact, the

number would be even higher since pensions, clothing, additional training and many more costs

are not included in this number.

Period 1

The data for period 1 is provided a few days before the schedule is operational. The staff already

received some indication regarding their working times and hence in comparison with period 0,

another restriction is included. A minimum of 60% of similar shifts in comparison with the first

period has to be included. Two shifts are similar when the starting times of the two are within δ

intervals of each other. The summary results can be found in Table 6. The full results for three

filters for period 1 can be found in Table 14.

35

Table 6: Summary statistics for three-filter instances for period 1

Week
Benchmark CG exact pricing CG heuristic

VDC Std. Dev. VDC Std. Dev. Avg. time (s) VDC Std. Dev. Avg. time (s)

3 1.2330 0.0094 1.2305 0.0091 540.28 1.2310 0.0113 528.22

11 1.2336 0.0108 1.2289 0.0066 540.14 1.2287 0.0096 531.86

17 1.1938 0.0052 1.1913 0.0042 553.47 1.1952 0.0032 553.14

29 1.1974 0.0048 1.1953 0.0038 553.98 1.1984 0.0038 557.33

Avg 1.2145 0.0205 1.2115 0.0193 546.97 1.2133 0.0184 542.64

W.Avg 1.2095 1.2067 1.2090

Although no hard claims can be made on the basis of the results described in Table 6, the methods

seem to perform very similarly on their respective instances. Relatively to the results in period 0,

The benchmark method improves slightly regarding the average VDC (−0.2%), while the column

generation with exact pricing problem loses 0.59% in efficiency and the CG heuristic loses 1.06%

efficiency. The loss in efficiency might be due to a slightly different implementation of constraints

7 and 8 in comparison to the benchmark model or the increased difficulty of the model due to the

additional constraints. For the weighted average, we see that, relative to the unweighted average,

the benchmark method improves about 0.07% more than the other method. Although the difference

is small, it might be an indication of the column generation methods being relatively more efficient

on instances with lower demand than on instances with higher demand. Moreover, we find that all

the weighted averages result in lower values than the unweighted averages. This indicates that the

methods perform relatively better on instances with more demand than on instances with lower

demand.

Overall, on the basis of the above results and the earlier described problems regarding the instances,

it is hard to draw any conclusions regarding the results of period 1.

6.2.2 Four filters

Period 0

The results for period 0 for instances with four filters are shown in Table 7.

36

Table 7: Summary statistics for four-filter instances for period 0

Week
Benchmark CG exact pricing CG heuristic

VDC Std. Dev. VDC Std. Dev. Avg. time (s) VDC Std. Dev. Avg. time (s)

51 1.2222 0.0103 1.2210 0.0080 548.03 1.2110 0.0103 536.15

1 1.2230 0.0064 1.2242 0.0052 547.82 1.2099 0.0046 541.20

5 1.2314 0.0102 1.2365 0.0079 546.14 1.2290 0.0149 546.83

9 1.2329 0.0098 1.2326 0.0078 547.53 1.2226 0.0076 533.60

Avg 1.2274 0.0105 1.2286 0.0096 547.38 1.2181 0.0129 539.45

W.Avg 1.2270 1.2280 1.2174

Table 7 shows the average results for four data weeks. The full results for the instances with

four filters for period 0 can be found in Table 15. Table 7 shows that the benchmark and exact

method perform similarly by comparing the VDC. The heuristic method scores 0.93% better than

the benchmark method. The standard deviation between the methods is very similar. Considering

the results of all instances, we find that the exact method scores better on 13 of the 28 instances

(46.43%) with an average improvement of 2.81 hours, while for 3 of the 28 instances (10.71%) the

solution values are equal. For the remaining 12 instances (42.86%), the benchmark method scores

better, with an average improvement of 4.13 hours. The CG heuristic scores better on 22 of the 28

instances (78.57%) and has an average improvement of 5.51 hours. For one instance (3.57%), the

results are equal. For the remaining five instances (17.86%) the benchmark method scores better.

Both the column generation algorithms are close to 100 seconds faster than the benchmark method.

Lastly, when considering the weighted average over the methods, we find that the weighted averages

are very similar to the averages. This is an indication that the instances considered in this thesis

have relatively similar demand. Therefore, it is hard the effects of varying demand on the average

results.

Period 1

The summary results for the instances with four filters for period 1 can be found in Table 8. The

full results can be found in Table 16.

37

Table 8: Summary statistics for four-filter instances for period 1

Week
Benchmark CG exact pricing CG heuristic

VDC Std. Dev. VDC Std. Dev. Avg. time (s) VDC Std. Dev. Avg. time (s)

51 1,2229 0,0107 1,2327 0,0107 552,09 1,2256 0,0136 566,06

1 1,2373 0,0071 1,2468 0,0081 545,37 1,2435 0,0137 561,11

5 1,2195 0,0094 1,2310 0,0134 550,84 1,2313 0,0096 565,96

9 1,2331 0,0122 1,2472 0,0073 549,01 1,2416 0,0099 560,10

Avg 1,2282 0,0122 1,2394 0,0125 549,32 1,2355 0,0137 563,31

W.Avg 1,2286 1,2396 1,2355

As for the results for three-filter instances, the benchmark method tends to perform similarly in

terms of results between period 0 and period 1. The CG with exact pricing loses 1.06% in solution

value and the CG heuristic loses 1.74% in efficiency. Between the three and four-filter instances,

the results tend to show similar effects when solving for period 1. The weighted averages are very

similar to the weighted averages for the methods. This is due to the fact that the demands for the

four weeks are very similar. Therefore, no effects can be determined on the basis of the weighted

averages.

6.3 Scalability experiment: experimental setup

In the second experiment, the following question is considered. How do the methods designed in

this thesis perform in comparison to each other, while keeping the time restriction of 600 seconds in

place and the number of filters in the model increases? This question is relevant as Schiphol Airport

has been growing steadily for years and therefore the number of filters might increase within the

near future. Therefore, two experiments are considered. First of all, to answer the above research

question, a comparison is made between the methods presented in this thesis for instances with filter

sizes five, six, eight and ten with a time restriction of 600 seconds. With this experiment, the goal

is to investigate how the methods compare with each other when larger instances are considered.

Secondly, the impact of computational time on the performance of our methods for larger instances

is assessed in the following experiment. For this experiment, six instances are generated. From

these instances, three instances have five filters and the remaining instances consist of ten filters.

Every instance has randomly generated walking times. For each of the six instances, the model runs

with the time restriction equal to 10, 20, 30, 40, 50 and 60 minutes. The goal of the experiment is

to get a sense of what the effect of the time restriction and the walking time has on the performance

of our model.

Let us first consider the first sub-experiment. In Section 6.1, performance is measured for instances

with three and four filters. In the experiment in this section, more filters are considered. To be

precise, in the scalability experiment, instances with five, six, eight and ten filters are considered.

There is no data available for instances of these sizes. Therefore, one needs to create data sets of

38

these sizes. The approach chosen to create the data is as follows. A substantial amount of data

is available for three and four filters instances. From these instances, one can deduct the demand

for a single filter. All the single filter data are bundled in a large set. From there on, one can

create instances of any size by randomly picking a selection of filters to represent such an instance.

This approach has the advantage that demand patterns are mimicked whilst not being predictable,

as the variety among filter demands is substantial. Moreover, in case of larger instances, walking

time is not established. As the distance between filters remains constant, a set of walking times

between filters is randomly created, with walking times between either 5, 10 or 15 minutes. These

numbers are in line with the numbers for instances of three and four filters as mentioned in Table 2

in Section 5.2. To reduce the impacts of randomised walking times, two sets of instances are created

for every filter size. For every set of instances, the scalability experiment works as follows. First of

all, twenty instances are created using the above-described method. From there, an initialisation

of shifts is created by using the initialisation algorithm. This initialisation process uses five out of

the twenty instances. Finally, the other fifteen instances of the set are then used to determine our

measures. Therefore, in total, one hundred sixty instances are created, with instance sizes equal to

five, six, eight and ten filters.

No information regarding the optimal objective values of instances is available. It might be the

case that larger instances have efficiency advantages - this is suggested by the three-filter instances,

where weeks with more demand (weeks 17, 29) provide better results than weeks with less demand

(weeks 3,11). The same reasoning can be applied to instances with more filters. Hence, one

might argue that for larger instances in a model with unrestricted time, the optimal VDC might

be lower. Consequently, no immediate claims can be made between sets of instances of different

sizes. Nevertheless, this experiment informs us which method performs better within the given

time restrictions and filter size and how large the impact of more filters is on the solution value.

The second sub-experiment is performed to determine the effect of the time restrictions on the

methods. In this sub-experiment, three instances of both five and ten filters are considered. For

these instances, six time restrictions are considered. By this experiment, we want to determine

what the result is of increasing the time for larger instances and the consequent effects on the

solution values.

6.4 Results: scalability experiment

This section is divided into two components. In the first component, Section 6.4.1, the results of

the first sub-experiment are discussed. In the second component, Section 6.4.2, the results of the

second sub-experiment are reviewed.

6.4.1 Results: larger instances with fixed time-restriction

In this section, the outcomes of the scalability experiment are discussed. The objective of the

scalability experiment is determining the effect on the quality of our solution when the number of

39

filters in the model is increased, but the time restriction remains intact. The results in this section

are ordered by means of ascending size.

Within each subsection, the average outcomes are reported for both instance sets. The outcomes

for all individual instances can be found in the appendix.

Five filters

Testing our methods with instances of five filters yield the following summary results. The full

results can be found in Tables 17 and 18.

Table 9: Summary statistics for sets with five filters

Instance set
CG exact pricing CG heuristic

VDC Std. Deviation VDC Std. Deviation

5.1 1.255 0.0256 1.257 0.0326

5.2 1.2418 0.0259 1.2422 0.0323

Average 1.2485 0.0266 1.2497 0.0334

In Table 9 one can find the results for two sets with fifteen sub-instances. The numbers reported

are the averages. Overall, the results for both the CG with exact pricing and the CG heuristic are

very comparable. The VDC shows, on average, slight differences between the instances of about

0.001%. Of the instances of set 5.1, 53.33% has a lower solution value using the CG with exact

pricing, 6.67% has an equal value and for 40% the CG heuristic provides a lower solution. On

average, the CG with exact pricing improves 4.69 hours when over the CG heuristic and if the CG

heuristic provides better results than the CG with exact pricing, the improvement is on average

5.58 hours. For instances in set 5.2, the division is the same. The CG with exact pricing provides

an average improvement of 3.125 hours and the CG heuristic provides an average improvement of

6.5 hours. Therefore, it seems that the results of the CG with exact pricing are more likely to

be better, but if this method performs better, the improvement is relatively small. On the other

hand, if the CG heuristic provides better results than the CG with exact pricing, the expected

improvement is slightly larger.

Six filters

The instances with six filters give the following summary results. The full results can be found in

Tables 19 and 20.

40

Table 10: Summary statistics for sets with six filters

Instance set
CG exact pricing CG heuristic

VDC Std. Deviation VDC Std. Deviation

6.1 1.2484 0.0188 1.2362 0.0191

6.2 1.2859 0.0504 1.2731 0.0498

Average 1.2671 0.0424 1.2546 0.0420

From the table, one can conclude that the randomised walking time has a substantial effect on

the solution as the difference in average VDC between instances is large. The same holds for the

standard deviation. Furthermore, the CG heuristic method seems to perform slightly better than

the CG with exact pricing, as on average the VDC is 1.25% lower. For instance set 6.1, 14 out of

the 15 instances (93.33%) perform better with a CG heuristic than with the CG with exact pricing,

with an average improvement of 11.1 hours. The remaining instance (6.67%) has an improvement

of 2.75 hours. For the instances in set 6.2, the results are similar. For 14 out of the 15 instances

the CG heuristic outperforms the CG with exact pricing, with an average improvement of 8.98

hours. The instance remaining improves 0.75 hours by using the CG with exact pricing over the

CG heuristic.

Eight filters

The summary results for the instances with eight filters are shown in Table 11. The full results can

be found in Tables 21 and 22.

Table 11: Summary statistics for instance sets with eight filters

Instance set
CG exact pricing CG heuristic

VDC Std. Deviation VDC Std. Deviation

8.1 1.3209 0.0311 1.2743 0.0271

8.2 1.3112 0.0235 1.2678 0.0204

Average 1.3160 0.0280 1.2710 0.0242

In comparison to smaller instances, there is a very clear distinction between the VDC of the two

methods. The CG heuristic results in a 4.5% lower VDC than the CG with exact pricing. For

both instance sets 8.1 and 8.2, the CG heuristic performs better on all instances, with average

improvements of 40.7 and 43.42 hours, respectively.

Ten filters

The summary results for the instances with ten filters are shown in Table 12. The full results can

be found in Tables 23 and 24.

41

Table 12: Summary statistics for sets with ten filters

Instance set
CG exact pricing CG heuristic

VDC Std. Deviation VDC Std. Deviation

10.1 1.3692 0.0231 1.2792 0.0136

10.2 1.4054 0.0638 1.2929 0.0273

Average 1.3877 0.0521 1.2862 0.0230

The results in Table 12 show large differences between the exact and heuristic methods. Moreover,

the standard deviation of the heuristic method is smaller and therefore the results of the heuristic

are less volatile. For both instance sets 10.1 and 10.2, the CG heuristic provides better results for

all instances than the exact CG. The average improvements for instances 10.1 and 10.2 are 112.77

and 124.37 hours, respectively.

6.4.2 Results: larger instances with variable time-restrictions

For the experiments in this section, the following time scheme is used. For the column generation

component, 70% of the total time is used. To solve the BP formulation, the remaining 30% is used.

Hence, in case the time restriction is set at ten minutes, seven minutes are used for the column

generation model and the remaining three minutes are used for the BP model.

For illustrative purposes, a three-minute model is included, which only uses the initial set of shifts

and creates an integer solution from this set of initial shifts. As one can notice in Figures 4 and 5,

the immediate drop in VDC informs us that we add the best shifts at the beginning of the column

generation algorithm.

First, the effect of time on the five filter instances is discussed. Afterwards, the results for ten filter

instances are discussed.

Five filters

In this section, the sensitivity of the methods with five filters with regard to the time restriction is

discussed. The results can be found in Figure 4 shown below. The full results on which this figure

is based can be found in Table 25.

42

Figure 4: Effect of varying time for five filter instances

From the graph, one can notice a clear distinction between the instances. The orange line is very

different in comparison to the other instances. This distinction is due to the following reasons.

First of all, the orange instance has only 334.5 hours demanded (in comparison to 650.5 hours for

instance 1 and 1337.5 hours for instance 3) hours demanded. In addition, the walking times of the

instance are rather large. As the demanded hours are relatively low, including only one more shift

has a relatively large impact on the VDC. In a similar manner, the walking time is relatively large

which results in a low average effective working time for shifts in this instance. In turn, this results

in a higher VDC.

It is surprising to see multiple examples of upward ticks in the results. For example, instance

2 with a computation time of fifty minutes has a slightly higher VDC (1.2758) than thirty and

forty minutes (both 1.2706). The difference is due to a combination of limited solver time, a higher

number of shifts in the model in case of a time restriction of fifty minutes and therefore an increased

number of options. Due to the increase in the number of options, the model might take more time

to find a similar or better solution. For the heuristic, the random component in the heuristic also

might have some impact on the final solution which might result in upward ticks of the VDC.

Between the methods, one can notice that the differences are relatively small. Both methods result

in very similar solutions. The heuristic method tends to provide better solutions fast but does

not provide improvements in the longer run (when time is larger than twenty minutes). The VDC

for the CG heuristic decreases on average from 1.217 at the twenty-minute mark to 1.21 at the

sixty-minute mark. The exact method tends to take more time but steadily decreases in VDC,

from 1.248 at the twenty-minute mark to 1.217 at the sixty-minute mark. The effect of the second

instance is quite large - without this instance, the average VDC for the CG with exact pricing

43

Figure 5: Effect of varying time for ten filter instances

decreases from 1.223 at the ten-minute mark to 1.196 at the sixty-minute mark, and for the CG

heuristic from 1.194 at the twenty-minute mark to 1.182 at the sixty-minute mark.

Overall, the heuristic method seems to provide slightly better solutions than the exact method.

The decrease for instances 1 and 3 does seem to slow down gradually as time progresses. This

informs us that while additional gains can be made with regards to the VDC, these improvements

are time-consuming.

Ten filters

The results of the time sensitivity analysis for ten filter instances can be found in Figure 5. The

full results on which this figure is based can be found in Table 26. For the ten filter instances, the

practical ten minutes show a very large decrease in the VDC in comparison with the three-minute

model. The decrease for the heuristic pricing method is larger than the exact pricing method (this

difference is also shown in 12). From there, the CG with exact pricing shows a larger decrease (from

1.378 at the ten-minute mark to 1.294 at the sixty-minute mark) in objective value than the CG

heuristic. The heuristic method shows some decrease over time (from 1.265 at the ten-minute mark

to 1.217 at the sixty-minute mark) but not as drastically as the CG with exact pricing. Similarly

as with the time-sensitivity analysis for five-filter instances, we also notice a small uptick in some

of the VDC values. This is due to the same reasons as in the five-filter instances.

7 Conclusions

In this thesis, we have designed a method to solve the multi-activity shift scheduling problem

(MASSP) with several shift types and no fixed starting points. The main goal of this thesis was

44

to compare the methods designed in this thesis to the benchmark method that is used in practice.

Constraints to be taken into account include restrictions on the shift types, the number of shifts

of a specific type, breaks and standing times. As the algorithm is used repeatedly in practice, it

should be sufficiently fast.

The main contribution of this thesis to the literature is as follows. First of all, literature regarding

the MASSP is limited. In this thesis, the MASSP is combined with both several types of shifts and

a large number of possible starting points, both of which are rare in the literature, especially when

combined. Shift types differ based on their length, the number of breaks as well as the require-

ments regarding breaks. The fact that there are no fixed starting points and there are several shift

types make the problem more challenging, as computation time has a big impact on the practical

contribution of this thesis and both additions enlarge the number of possible shifts. Therefore, the

approach in this thesis expands existing literature by providing solutions for models with increased

flexibility in scheduling to create more efficient solutions to the MASSP.

The problem at hand is solved using two methods. Both methods follow a column generation ap-

proach. The first method uses an exact algorithm to solve the pricing problem. In this algorithm,

pulses are iteratively sent through a network to create paths. Paths are pruned based on three

pruning strategies: feasibility, objective bounds and dominance. These pruning strategies cut off

large parts of the network, leaving the remaining part to be searched. As the best feasible path

is never pruned, this algorithm provides the optimal path. The path is then added to the column

generation formulation in case it has negative reduced costs. The second method applied in this

thesis is a column generation heuristic. In this heuristic, the shifts created in the initialisation

algorithm are divided into slices. These slices are then combined to create feasible shifts. The

shifts with negative reduced costs are added to the column generation formulation.

The performance of the methods is tested by executing two experiments. In the first experiment,

a comparison against the benchmark method for instances of three and four security filters is im-

plemented. The methods are compared based on four measures: the average VDC, the weighted

average VDC, the standard deviation of the VDC and their solving time. These measures inform us

about the performance of the methods, their weighted average performance where they are weighted

with the number of hours, their volatility between instances within a method and their solving time.

We find that this experiment shows that for period 0 both methods constructed in this thesis yield

faster and better results. The best method is the CG heuristic, which improves the VDC with on

average 1.38% for the three-filter instances and 0.93% for the four-filter instances in comparison to

the benchmark method. The column generation with exact method improves 1.09% for three-filter

instances and performs similarly for the four-filter instances as the benchmark method, losing only

0.12%. Secondly, when comparing the weighted VDC, we find that the decrease in weighted VDC

45

is very similar among methods for the same number of filters and the same period, indicating that

our methods perform at least as well on low-demand instances and high-demand instances as the

benchmark method does. Thirdly, the standard deviation between methods for the same period

is very similar. Therefore, there is no additional fluctuation in the results in comparison to the

benchmark method. The CG with exact pricing is on average 144 and 100 seconds faster for the

three- and four-filter instances in comparison to the benchmark method for period 0. Similarly, the

CG heuristic finds results between 173 seconds (three filters) and 100 seconds (four filters) faster

than the benchmark method.

For period 1, we find that the column generation methods described in this thesis perform slightly

worse in comparison to their period 0 counterparts. No comparison between methods can be made

based on the instances constructed in this thesis, as the start point differs per instance type and the

interpretation of the shifts that have to return is slightly different. An explanation for this effect

might be that, as the CG methods in this thesis provide better results for period 0, these methods

might be more fitting towards the data. Subsequently, when solving for period 1, the solutions

might be too much focused on period 0 and the small changes in the demand between period 0

and period 1 might result in solutions that are worse. A second explanation could be that while

including more constraints, the method that creates the integer solution has increased complexity

as more constraints are included in the formulation for period 1. The inclusion of these constraints

results in a higher optimality gap in the process of making the solution integer. Both reasons could

be a possible explanation for the worse results. Neither one of the explanations can be excluded

from the possibilities as they are dependent on the instances and their starting points and creating

a translation between the results at this time is time-consuming.

In the second experiment, the effects of larger instances and more computation time on the solu-

tions of the methods are determined. The benchmark method is not taken into account here, but

one would expect that the method provides worse results for larger solutions as the boundaries

of the number of shifts to be included in the model are already reached. In this experiment, a

comparison is made between the CG with exact pricing and the CG heuristic methods. From the

experiment, one can notice that the CG heuristic achieves improved results over the CG with exact

pricing when instances grow. In addition, the CG heuristic is less dependent on time. For the CG

with exact pricing, the VDC increases from 1.2485 for five filters to 1.3877 for ten filters. For the

CG heuristic, the differences are a lot smaller: from 1.2497 for five filters to 1.2862 for ten filters.

This result is also confirmed by our variable computation time experiment. The CG heuristic tends

to improve the most in the first ten minutes. From there, the CG with exact pricing, especially

for the ten-filter instances, tend to decrease with larger steps than the CG heuristic. Moreover,

the variable-time experiment shows that when the number of filters is increased, the average VDC

tends to decrease for a longer period.

46

Overall, the results of the two experiments show that the CG heuristic tends to outperform the

benchmark and the CG with exact pricing on instances of three and four filters. In addition, the

CG heuristic is less time-dependent and therefore can more easily provide relatively good solutions

to larger instances than the CG with exacting pricing.

8 Future research

The methods in this thesis provide interesting results. For future research, several interesting

improvements can be looked into. First of all, it would be of interest to conclude how the CG

methods perform in comparison to the benchmark method when exactly the same constraints for

period 1 are considered. This requires a translation between the results of the methods since then

the methods can then be compared using the same instances. This would provide interesting results

on how the methods perform on the situation in practice.

8.1 Legislation

A lot of legislation is provided in this thesis. Much of the legislation follows specifically from Dutch

law and the collective labour agreement. The rules and regulations could be very different in other

countries and therefore it would be interesting to see what the effect of a different set of regulations

on the quality of the solutions is.

8.2 Data

The data, although randomly decided upon, has some clear impact on the results. As data is

randomly made available to the author, there was no selection process to get a diverse selection of

weeks over the year. The effect of this is clear. For example, in the three-filter instances, there is a

clear distinction in the number of hours between the four instances: two instances need a relatively

low number of hours, and two numbers need a relatively high number of hours. For the four-filter

instances, the demanded hours are quite similar for all four weeks. The effect of these changes in

data might impact the outcomes of this thesis. Therefore, it would be interesting to perform the

same study in which random data over the year is available.

In addition, the data for four weeks is only available for winter weeks due to the fact that only at

that time, four filters were used. This is due to construction work at the filters. This impacts the

demand severely and therefore might have a big impact on the results. Since this is a temporary

situation, it would be hard to get data over a longer period to make a more fear comparison. If it

would be possible in future research, this might give interesting results.

47

8.3 Heuristic

The heuristic implemented in this thesis is rather simplistic. One of the consequences of such a

heuristic is that reduced cost can be determined only after a full shift is created. It is not known

what the reduced cost of this shift is and whether the shift has negative reduced costs. It might

take a while to find a shift that has negative reduced costs, since the determination of the slices of

the path is randomised. A different approach to implement a heuristic could be as follows. First of

all, the starting time is determined upfront. Simultaneously, one can determine the profile. Then,

for every entry in the profile, one can determine the best option to include, depending on the length

and the earlier components. In this way, the effect of randomly determining all components in a

shift is reduced.

In addition, the parameters of the heuristic can be further optimised. The set of parameters used

in this thesis is equal for both the three- and four-filter instances for period 0 and 1 and for the

larger instances of five, six, eight and ten filters. However, there might be benefits in changing the

parameter set between sizes and/or periods.

48

9 Bibliography

Abbink, E. J., Albino, L., Dollevoet, T., Huisman, D., Roussado, J. and Saldanha, R. L.: 2011,

Solving large scale crew scheduling problems in practice, Public Transport 3(2), 149–164.

Aickelin, U. and Dowsland, K. A.: 2004, An indirect genetic algorithm for a nurse-scheduling

problem, Computers and Operations Research 31(5), 761–778.

Al-Yakoob, S. M. and Sherali, H.: 2007, Mixed-integer programming models for an employee

scheduling problem with multiple shifts and work locations, Annals of Operations Research

155(1), 119–142.

Al-Yakoob, S. M. and Sherali, H.: 2008, A column generation approach for an employee scheduling

problem with multiple shifts and work locations, Journal of the Operational Research Society

59(1), 34–43.

URL: https://doi.org/10.1057/palgrave.jors.2602294

Borndörfer, R., Schelten, U., Schlechte, T. and Weider, S.: 2006, A Column Generation Approach

to Airline Crew Scheduling, Operations Research Proceedings 2005 (June 2014), 343–348.

Brunner, J. O. and Edenharter, G. M.: 2011, Long term staff scheduling of physicians with dif-

ferent experience levels in hospitals using column generation, Health Care Management Science

14(2), 189–202.

CBS: 2017, How many passengers travel through Dutch airports?

URL: https://www.cbs.nl/en-gb/faq/luchtvaart/how-many-passengers-travel-through-dutch-

airports-

CBS: 2020, Aviation; monthly figures of Dutch airports.

URL: https://www.cbs.nl/en-gb/figures/detail/37478eng

Côté, M. C., Gendron, B. and Rousseau, L. M.: 2013, Grammar-based column generation for

personalized multi-activity shift scheduling, INFORMS Journal on Computing 25(3), 461–474.

Dahmen, S., Rekik, M. and Soumis, F.: 2018, An implicit model for multi-activity shift scheduling

problems, Journal of Scheduling 21(3), 285–304.

Dantzig, G. B.: 1954, Letter to the Editor—A Comment on Edie’s “Traffic Delays at Toll Booths”,

Journal of the Operations Research Society of America 2(3), 339–341.

Desrochers, M. and Soumis, F.: 1989, A Column Generation Approach to the Urban Transit Crew

Scheduling Problem, Transportation Science 23(1), 1–13.

Edie, L. C.: 1954, Traffic Delays at Toll Booths, Journal of the Operations Research Society of

America 2(2), 107–138.

49

Ernst, A. T., Jiang, H., Krishnamoorthy, M. and Sier, D.: 2004, Staff scheduling and roster-

ing: A review of applications, methods and models, European Journal of Operational Research

153(1), 3–27.

Gérard, M., Clautiaux, F. and Sadykov, R.: 2016, Column generation based approaches for a tour

scheduling problem with a multi-skill heterogeneous workforce, European Journal of Operational

Research 252(3), 1019–1030.

Hanafi, R. and Kozan, E.: 2014, A hybrid constructive heuristic and simulated annealing for railway

crew scheduling, Computers and Industrial Engineering 70(1), 11–19.

URL: http://dx.doi.org/10.1016/j.cie.2014.01.002

Heil, J., Hoffmann, K. and Buscher, U.: 2020, Railway crew scheduling: Models, methods and

applications, European Journal of Operational Research 283(2), 405–425.

URL: https://doi.org/10.1016/j.ejor.2019.06.016

Kasirzadeh, A., Saddoune, M. and Soumis, F.: 2017, Airline crew scheduling: models, algorithms,

and data sets, EURO Journal on Transportation and Logistics 6(2), 111–137.

Lourenço, H. R., Paixão, J. P. and Portugal, R.: 2001, Multiobjective metaheuristics for the bus-

driver scheduling problem, Transportation Science 35(3), 331–343.

Lozano, L. and Medaglia, A. L.: 2013, On an exact method for the constrained shortest path

problem, Computers and Operations Research 40(1), 378–384.

Maenhout, B. and Vanhoucke, M.: 2007, An electromagnetic meta-heuristic for the nurse scheduling

problem, Journal of Heuristics 13(4), 359–385.

Pan, S., Akplogan, M., Touati, N., Lucas, L. and Calvo, R. W.: 2016, Solving a Multi-Activity

Shift Scheduling Problem with a Tabu Search Heuristic, pp. 317–326.

Qu, Y. and Curtois, T.: 2020, Solving the Multi-activity Shift Scheduling Problem using Vari-

able Neighbourhood Search, ICORES 2020 - Proceedings of the 9th International Conference on

Operations Research and Enterprise Systems pp. 227–232.

Quimper, C. G. and Rousseau, L. M.: 2010, A large neighbourhood search approach to the multi-

activity shift scheduling problem, Journal of Heuristics 16(3), 373–392.

URL: https://doi.org/10.1007/s10732-009-9106-6

Restrepo, M. I., Gendron, B. and Rousseau, L. M.: 2018, Combining Benders decomposition

and column generation for multi-activity tour scheduling, Computers and Operations Research

93, 151–165.

URL: https://doi.org/10.1016/j.cor.2018.01.014

Restrepo, M. I., Lozano, L. and Medaglia, A. L.: 2012, Constrained network-based column gener-

50

ation for the multi-activity shift scheduling problem, International Journal of Production Eco-

nomics 140(1), 466–472.

Salvagnin, D. and Walsh, T.: 2012, A hybrid MIP/CP approach for multi-activity shift scheduling,

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics) 7514 LNCS, 633–646.

Soukour, A. A., Devendeville, L., Lucet, C. and Moukrim, A.: 2012, Staff scheduling in airport

security service, IFAC Proceedings Volumes (IFAC-PapersOnline), Vol. 14, IFAC, pp. 1413–1418.

URL: http://dx.doi.org/10.3182/20120523-3-RO-2023.00169

Soukour, A. A., Devendeville, L., Lucet, C. and Moukrim, A.: 2013, A Memetic Algorithm for staff

scheduling problem in airport security service, Expert Systems with Applications 40(18), 7504–

7512.

URL: http://dx.doi.org/10.1016/j.eswa.2013.06.073

51

10 Appendix

In this appendix the full results of the instances can be found. The instances have been numbered,

according to the following method. Consider the following two instance numbers: ’3.11.MA’ and

’5.1.6’. The former is used in case the data comes from a specific day within a specific week. The

interpretation is as follows. The instance consists of 3 filters, comes from week 11 and it represents

demand from a Monday. The latter is used when the data is randomly created and therefore does

not belong to a specific week. In a similar manner, ’5.1.6’ represents an instance with 5 filters, from

instance set 1 and is instance 6 from this set.

10.1 Results: comparison against the benchmark method

In the results in this section one can find demanded hours, the benchmark results and VDC and

the result, VDC and time for the exact CG and the CG Heuristic. FR stands for Final Result.

52

Three filters: period 0

Table 13: Results three-filter instances period 0

Number Demand (h)
Benchmark CG exact pricing CG heuristic

FR (h) VDC FR (h) VDC Time (s) FR (h) VDC Time (s)

3.3.MO 335 412.5 1.2313 404.5 1.2075 533.21 407.25 1.2157 424.82

3.3.TU 282 351 1.2447 344.75 1.2225 298.34 344.75 1.2225 447.19

3.3.WE 303 380.5 1.2558 371.5 1.2261 416.83 369.75 1.2203 461.95

3.3.TH 349 431 1.2350 423.75 1.2142 421.37 424.75 1.217 525.93

3.3.FR 346 423 1.2225 423 1.2225 501.53 421.25 1.2175 421.2

3.3.SA 271 332.25 1.2260 336.75 1.2426 544.69 332.25 1.226 511.82

3.3.SU 381 466 1.2231 462 1.2126 436.78 461.5 1.2113 465.31

3.11.MO 347 427.25 1.2313 419.25 1.2082 408.9 423.75 1.2212 442.02

3.11.TU 303 379.25 1.2517 372.25 1.2285 459.1 370.25 1.2219 442.59

3.11.WE 305.5 378.5 1.2390 375.75 1.23 542.57 376 1.2308 398.1

3.11.TH 346.5 425.75 1.2287 420.25 1.2128 472.36 419.25 1.21 422.92

3.11.FR 356 436.25 1.2254 434.5 1.2205 449.75 431.75 1.2128 482.52

3.11.SA 280.5 346.5 1.2353 344.5 1.2282 550.07 346.25 1.2344 427.28

3.11.SU 373 457 1.2252 450.5 1.2078 440.78 449.75 1.2058 467.29

3.17.MO 567 676.75 1.1935 672.5 1.1861 548.54 673.25 1.1874 455.2

3.17.TU 558.5 669.75 1.1991 665.25 1.1911 547.96 663.25 1.1876 545.91

3.17.WE 549 657.25 1.1971 653.75 1.1908 552.89 649.75 1.1835 460.94

3.17.TH 560 672.25 1.2004 668.75 1.1942 553.49 664.25 1.1862 457.67

3.17.FR 577 686.75 1.1902 686.75 1.1902 554.74 685.25 1.1876 546.32

3.17.SA 556.5 661.75 1.1891 662.5 1.1905 550.75 659.75 1.1855 546.07

3.17.SU 595.5 713.25 1.1977 710 1.1923 546.51 704.5 1.183 479.96

3.29.MO 573.5 689.25 1.2018 682.25 1.1896 548.21 681.25 1.1879 546.64

3.29.TU 542 650.25 1.1997 646.5 1.1928 550.24 641.5 1.1836 520.69

3.29.WE 538.5 647.5 1.2024 641 1.1903 547.99 638.5 1.1857 520.6

3.29.TH 562 676.75 1.2042 672.25 1.1962 547.72 670.5 1.1931 458.73

3.29.FR 567 684 1.2063 675.75 1.1918 549.24 673 1.1869 482.45

3.29.SA 523 628 1.2008 622.5 1.1902 548.23 619 1.1836 456.26

3.29.SU 556.5 669.75 1.2035 660.75 1.1873 546.09 660.75 1.1873 546.09

53

Three filters: period 1

Table 14: Results three-filter instances period 1

Number Demand (h)
Benchmark CG exact pricing CG heuristic

FR (h) VDC FR (h) VDC Time (s) FR (h) VDC Time (s)

3.3.MO 342 423.25 1.237573 418 1.2222 541.18 417 1.2193 546.62

3.3.TU 273.5 342 1.250457 336.75 1.2313 537.64 337.5 1.234 492.92

3.3.WE 293 364.25 1.243174 360.75 1.2312 539.04 365.25 1.2466 540.02

3.3.TH 351.5 428.5 1.219061 433.75 1.234 541.1 428.5 1.2191 542.9

3.3.FR 355.5 440 1.237693 433.75 1.2201 541.65 438.25 1.2328 513.43

3.3.SA 265 324.25 1.223585 328.5 1.2396 539.94 326 1.2302 540.04

3.3.SU 373.5 457 1.223561 457 1.2236 540.45 455.25 1.2189 547.08

3.11.MO 347.5 429.25 1.235252 427.5 1.2302 542.18 429.25 1.2353 544.03

3.11.TU 296 370.5 1.251689 369.5 1.2483 538.85 369.5 1.2483 540.72

3.11.WE 312 385.75 1.236378 384 1.2308 538.58 385 1.234 477.14

3.11.TH 346 423 1.222543 423.75 1.2247 541.8 424 1.2254 545.75

3.11.FR 357.5 439.25 1.228671 437.25 1.2231 540.61 436.5 1.221 544.97

3.11.SA 283.5 350 1.234568 350.75 1.2372 538.66 351.75 1.2407 542.58

3.11.SU 374 457 1.221925 456 1.2193 541.3 453.5 1.2126 502.36

3.17.MO 567.5 675 1.189427 674.25 1.1881 553.47 677.75 1.1943 553.13

3.17.TU 559 671.5 1.201252 666 1.1914 552.27 669 1.1968 553.9

3.17.WE 549.5 660 1.201092 652.75 1.1879 552.17 659 1.1993 553.83

3.17.TH 560.5 669.75 1.194915 669.75 1.1949 556 672.25 1.1994 554.04

3.17.FR 577.5 687.5 1.190476 685.75 1.1874 553.87 687.75 1.1909 540.69

3.17.SA 557 664.5 1.192998 662.5 1.1894 552.49 663.75 1.1917 556.02

3.17.SU 596 707.25 1.186661 715 1.1997 554.02 711.5 1.1938 560.39

3.29.MO 567 681.25 1.201499 679 1.1975 555.94 677 1.194 556.41

3.29.TU 543.5 652 1.199632 647.5 1.1914 552.27 648.5 1.1932 554.91

3.29.WE 539 642 1.191095 642.25 1.1916 554.94 645.75 1.1981 556.33

3.29.TH 555 662.5 1.193694 667 1.2018 555.8 665.5 1.1991 560.37

3.29.FR 566.5 675.25 1.191968 675 1.1915 554.93 679 1.1986 560.11

3.29.SA 516 621.75 1.204942 618.25 1.1982 551.88 619.25 1.2001 555.41

3.29.SU 547.5 656.5 1.199087 654.5 1.1954 552.1 660 1.2055 557.78

54

Four filters: period 0

Table 15: Results four-filter instances period 0

Number Demand (h)
Benchmark CG exact pricing CG heuristic

FR (h) VDC FR (h) VDC Time (s) FR (h) VDC Time (s)

4.51.MO 386 473 1.225389 473 1.2254 547 468.75 1.2144 530.47

4.51.TU 353.5 435.5 1.231966 434.75 1.2298 548.49 432.75 1.2242 516.66

4.51.WE 372.5 462 1.240268 456.75 1.2262 548.18 455.25 1.2221 531.08

4.51.TH 492 599.25 1.217988 595.75 1.2109 547.87 592.25 1.2038 552.62

4.51.FR 527 642 1.218216 636.75 1.2083 548.09 631.5 1.1983 530.18

4.51.SA 464 560.25 1.207435 570 1.2284 547.94 564.75 1.2171 551.81

4.51.SU 515.5 626 1.214355 627.75 1.2177 548.64 617.25 1.1974 540.25

4.1.MO 461 562 1.219089 561.25 1.2175 551.25 556.5 1.2072 546.77

4.1.TU 400.5 495 1.235955 493 1.231 546.77 487.75 1.2179 514.27

4.1.WE 449.5 550.25 1.224138 550.25 1.2241 546.95 544 1.2102 549.24

4.1 TH 457 554.5 1.213348 556.5 1.2177 548.1 554.75 1.2139 549.58

4.1.FR 453 554.75 1.224614 554 1.223 547.23 547.75 1.2092 551.91

4.1.SA 398 486.5 1.222362 487.25 1.2242 547.53 481 1.2085 550.16

4.1.SU 449 548.5 1.221604 553 1.2316 546.92 539.75 1.2021 526.48

4.5.MO 380 461.5 1.214474 467.75 1.2309 545.02 460.75 1.2125 549.15

4.5.TU 313.5 389.5 1.242424 392.25 1.2512 544.91 391.25 1.248 550.58

4.5.WE 330 409.75 1.241667 408.75 1.2386 546.61 409.75 1.2417 550.36

4.5.TH 372.5 460.5 1.236242 458.75 1.2315 546.03 450.75 1.2101 523.68

4.5.FR 384 471.25 1.227214 471.25 1.2272 546.52 473 1.2318 551.49

4.5.SA 296.5 367 1.237774 368.75 1.2437 546.09 368.75 1.2437 551.07

4.5.SU 412 502.5 1.21966 507.75 1.2324 547.77 500.75 1.2154 551.5

4.9.MO 442.5 539.5 1.219209 545.25 1.2322 548.19 537 1.2136 541.84

4.9.TU 377 461.5 1.224138 467 1.2387 547.22 459.75 1.2195 520.43

4.9.WE 372 461.25 1.239919 458.75 1.2332 545.69 457 1.2285 532.43

4.9.TH 405.5 504 1.24291 497.75 1.2275 546.25 494.25 1.2189 487.89

4.9.FR 403.5 495.25 1.227385 498.75 1.2361 548.03 491.5 1.2181 550.79

4.9.SA 347.5 433.5 1.247482 432 1.2432 550.35 430.25 1.2381 552.07

4.9.SU 436 536 1.229358 530.75 1.2173 546.98 532.5 1.2213 549.73

55

Four filters: period 1

Table 16: Results four-filter instances period 1

Number Demand (h)
Benchmark CG exact pricing CG heuristic

FR (h) VDC FR (h) VDC Time (s) FR (h) VDC Time (s)

4.51.MO 383 467,75 1,221279 476 1,2428 546,39 475,75 1,2422 560,05

4.51.TU 349 432,25 1,238539 434 1,2436 545 433 1,2407 558,29

4.51.WE 380 469,25 1,234868 473,75 1,2467 544,09 469,5 1,2355 558,64

4.51.TH 481 584,25 1,214657 586 1,2183 555,21 589,75 1,2261 570,25

4.51.FR 513 626 1,220273 628,5 1,2251 557,21 634,25 1,2364 573,24

4.51.SA 454 548,5 1,20815 555,75 1,2241 553 549 1,2093 565,27

4.51.SU 507 619 1,220907 627,75 1,2382 558 611,25 1,2056 570,64

4.1.MO 457,5 556,75 1,21694 557,75 1,2191 550,05 561,25 1,2268 565,89

4.1.TH 385,5 477,25 1,238003 481,75 1,2497 549,85 481,75 1,2497 564,58

4.1.WE 442,5 542,25 1,225424 550,25 1,2435 554,99 546 1,2339 568,74

4.1.TH 462 559 1,209957 571,5 1,237 555,36 571,75 1,2376 567,7

4.1.FR 458 559,25 1,22107 564,75 1,2331 552,59 562,25 1,2276 569,91

4.1.SA 402 485,5 1,207711 485,5 1,2077 545,7 489,25 1,217 561,75

4.1.SU 448,5 546 1,217391 550,25 1,2269 547,32 550 1,2263 563,13

4.5.MO 353 436,5 1,236544 439 1,2436 546,77 437,5 1,2394 565,53

4.5.TU 291 362 1,243986 362,75 1,2466 542,01 365,5 1,256 561,8

4.5.WE 309,5 385,75 1,246365 387,5 1,252 545,24 385,75 1,2464 554,95

4.5.TH 351 432,75 1,232906 432 1,2308 544,57 431,25 1,2286 561,31

4.5.FR 358,5 442 1,232915 448 1,2497 546,91 440,25 1,228 562,17

4.5.SA 286,5 356,25 1,243455 360,75 1,2592 541,88 363,5 1,2688 557,89

4.5.SU 394 482,75 1,225254 490,75 1,2456 550,21 487,5 1,2373 564,13

4.9.MO 407 498,5 1,224816 501,5 1,2322 552,85 502,5 1,2346 564,17

4.9.TU 341 418,75 1,228006 426,75 1,2515 546,53 421,5 1,2361 559,33

4.9.WE 345,5 431 1,247467 432 1,2504 546,99 434,75 1,2583 554,74

4.9.TH 383,5 473,5 1,234681 480,75 1,2536 549,63 476,5 1,2425 557,69

4.9.FR 382,5 466,75 1,220261 476,5 1,2458 551,32 474 1,2392 562,37

4.9.SA 335 420,25 1,254478 420,25 1,2545 545,11 419,75 1,253 559,81

4.9.SU 413 504,75 1,222155 513 1,2421 550,62 507 1,2276 562,62

56

10.2 Results: larger instances with fixed time-restriction

Table 17: Results five filters instance for set 1

Number Demanded (h)
CG exact pricing CG heuristic

Result (h) VDC Time (s) Result (h) VDC Time (s)

5.1.6 448 575.25 1.284 614.72 578.75 1.2919 615.57

5.1.7 500 628.25 1.2565 614.8 635.5 1.271 615.99

5.1.8 429.5 542.5 1.2631 614.85 545.5 1.2701 615.8

5.1.9 805.5 993.25 1.2331 615.36 998.5 1.2396 615.98

5.1.10 650 812 1.2492 614.54 812.75 1.2504 615.74

5.1.11 342 451 1.3187 615.61 458 1.3392 615.96

5.1.12 486.5 616.75 1.2677 615.46 615.75 1.2657 615.87

5.1.13 553 697.75 1.2618 614.73 705.75 1.2762 615.69

5.1.14 1013 1229.25 1.2135 615.71 1208.25 1.1927 616.06

5.1.15 861 1060.75 1.232 615.31 1057.5 1.2282 616.11

5.1.16 813.5 991 1.2182 615.19 990.25 1.2173 616.09

5.1.17 543 685 1.2615 615.3 681 1.2541 615.84

5.1.18 736 920.25 1.2503 615.05 923 1.2541 615.9

5.1.19 768 954 1.2422 615.94 954 1.2422 615.91

5.1.20 463 589.75 1.2738 615.22 586.25 1.2662 615.51

Table 18: Results five filters instance for set 2

Number Demanded (h)
CG exact pricing CG heuristic

Result (h) VDC Time (s) Result (h) VDC Time (s)

5.2.6 892 1083 1.2141 614.62 1083.75 1.215 615.37

5.2.7 521 646 1.2399 614.32 649.5 1.2466 614.65

5.2.8 781 952.5 1.2196 614.35 937.5 1.2004 614.83

5.2.9 501 630.75 1.259 614.45 630.75 1.259 615.16

5.2.10 933.5 1140.5 1.2217 614.29 1130 1.2105 614.87

5.2.11 631.5 770.5 1.2201 614.2 767.25 1.215 615.02

5.2.12 523 658.5 1.2591 614.63 663 1.2677 615.05

5.2.13 449.5 563 1.2525 614.33 566.25 1.2597 614.76

5.2.14 520.5 645 1.2392 614.56 642.75 1.2349 614.94

5.2.15 402.5 507.75 1.2615 614.68 509.5 1.2658 614.6

5.2.16 404 527.75 1.3063 614.13 532.25 1.3175 614.73

5.2.17 623 771.75 1.2388 614.26 770 1.236 614.68

5.2.18 775.5 943.25 1.2163 614.3 944.75 1.2182 614.93

5.2.19 429.5 546.25 1.2718 614.45 551.5 1.2841 614.71

5.2.20 1136.5 1373.25 1.2083 614.78 1367 1.2028 615.06

57

Table 19: Results six filters instance for set 1

Number Demanded (h)
CG exact pricing CG heuristic

Result (h) VDC Time (s) Result (h) VDC Time (s)

6.1.6 799.5 998.75 1.2492 616.83 989.25 1.2373 617.37

6.1.7 989.5 1205 1.2178 616.21 1200 1.2127 617.67

6.1.8 835.5 1056.5 1.2645 616.49 1038.75 1.2433 617.27

6.1.9 775 961 1.24 616.92 953.75 1.2306 617.6

6.1.10 839 1041 1.2408 616.76 1034 1.2324 617.16

6.1.11 481 617.5 1.2838 617.56 614 1.2765 617.96

6.1.12 531 670.75 1.2632 616.22 673.5 1.2684 617.38

6.1.13 1081 1329.25 1.2296 616.25 1302.25 1.2047 617.26

6.1.14 729 927.25 1.2719 615.9 910.5 1.249 617.32

6.1.15 746 929 1.2453 616.42 924.5 1.2393 618.39

6.1.16 750.5 937 1.2485 616.43 934.25 1.2448 617.75

6.1.17 766.5 962.5 1.2557 616.24 954.25 1.2449 617.69

6.1.18 825.5 1009.5 1.2229 616.32 1007.75 1.2208 617.51

6.1.19 774 981.25 1.2678 615.65 945.75 1.2219 617.15

6.1.20 1056.5 1294 1.2248 616.18 1285 1.2163 617.68

Table 20: Results six filters instance for set 2

Number Demanded (h)
CG exact pricing CG heuristic

Result (h) VDC Time (s) Result (h) VDC Time (s)

6.2.6 660 849 1.2864 616.26 840.75 1.2739 617.22

6.2.7 654.5 838.25 1.2807 616.43 830.5 1.2689 617.39

6.2.8 312 450.25 1.4431 615.74 446.75 1.4319 616.89

6.2.9 859.5 1083.25 1.2603 616.43 1069.25 1.244 617.49

6.2.10 826.5 1016.75 1.2302 617.14 1006 1.2172 616.78

6.2.11 727.5 911.75 1.2533 616.24 902 1.2399 617.08

6.2.12 621.5 789.25 1.2699 616.66 785 1.2631 616.98

6.2.13 610 779 1.277 616.85 770 1.2623 617

6.2.14 698 883 1.265 617.23 876.75 1.2561 617.08

6.2.15 521.5 674 1.2924 616.86 667.75 1.2804 616.93

6.2.16 463.5 612.25 1.3209 618.06 606.75 1.3091 616.78

6.2.17 514 668.25 1.3001 616.85 655.75 1.2758 617.18

6.2.18 466 618.5 1.3273 616.69 607.75 1.3042 616.85

6.2.19 705 886.75 1.2578 615.86 887.5 1.2589 617.05

6.2.20 1228 1503.75 1.2246 616.51 1486.5 1.2105 617.32

58

Table 21: Results eight filters instance for set 1

Number Demanded (h)
CG exact pricing CG heuristic

Result (h) VDC Time (s) Result (h) VDC Time (s)

8.1.6 978.5 1279.5 1.3076 622.8 1229 1.256 623.68

8.1.7 885 1165 1.3164 623.16 1132.75 1.2799 623.39

8.1.8 843.5 1092 1.2946 622.99 1060.25 1.257 624.11

8.1.9 566 765.25 1.352 622.82 742 1.311 623.96

8.1.10 1573 1999.25 1.271 623.49 1930.25 1.2271 625.02

8.1.11 1086 1413.25 1.3013 623.2 1364.25 1.2562 623.96

8.1.12 996 1317.75 1.323 622.86 1251.75 1.2568 623.83

8.1.13 1047.5 1348.25 1.2871 623.21 1307 1.2477 624.2

8.1.14 831 1091.5 1.3135 622.88 1047.25 1.2602 623.8

8.1.15 766.5 993.5 1.2962 623.43 985.5 1.2857 623.87

8.1.16 537 731.75 1.3627 622.7 712.75 1.3273 623.82

8.1.17 658 895.25 1.3606 622.99 850.75 1.2929 623.53

8.1.18 702.5 969.25 1.3797 622.57 907 1.2911 623.4

8.1.19 590.5 795.75 1.3476 622.83 773.5 1.3099 623.74

8.1.20 1064 1382.75 1.2996 623.13 1335.5 1.2552 623.87

Table 22: Results eight filters instance for set 2

Number Demanded (h)
CG exact pricing CG heuristic

Result (h) VDC Time (s) Result (h) VDC Time (s)

8.2.6 678 901.25 1.3293 623.56 875 1.2906 623.24

8.2.7 1145.5 1512 1.3199 624.4 1430.25 1.2486 624.19

8.2.8 947 1250.25 1.3202 623.28 1202.75 1.2701 624.45

8.2.9 1590 2043.5 1.2852 623.65 1981 1.2459 624.97

8.2.10 1023.5 1327.25 1.2968 623.75 1294.5 1.2648 623.36

8.2.11 910 1210 1.3297 623.01 1171.5 1.2874 624.1

8.2.12 1133 1462 1.2904 622.96 1446.75 1.2769 624.54

8.2.13 848.5 1123 1.3235 623.13 1091.75 1.2867 624.39

8.2.14 658 902 1.3708 622.22 861 1.3085 623.31

8.2.15 743 972.25 1.3085 622.8 949.75 1.2783 623.96

8.2.16 1175.5 1502 1.2778 623.16 1464.25 1.2456 624.18

8.2.17 1315.5 1711.5 1.301 623.32 1628 1.2376 624.26

8.2.18 1042 1356.75 1.3021 623.59 1296.75 1.2445 624.06

8.2.19 746 992 1.3298 622.94 953.75 1.2785 624.04

8.2.20 1058 1357.5 1.2831 622.9 1325 1.2524 624.5

59

Table 23: Results ten filters instance for set 1

Number Demanded (h)
CG exact pricing CG heuristic

Result (h) VDC Time (s) Result (h) VDC Time (s)

10.1.6 1667 2271.75 1.3628 632.05 2096 1.2573 634.31

10.1.7 1507 2040.5 1.354 632.86 1908.75 1.2666 634.34

10.1.8 923 1256 1.3608 632.6 1189.5 1.2887 632.96

10.1.9 1225.5 1681.25 1.3719 632.97 1577.25 1.287 634.04

10.1.10 1021.5 1384.25 1.3551 631.21 1298 1.2707 632.89

10.1.11 1503.5 2040.25 1.357 633.4 1921.5 1.278 634.36

10.1.12 933.5 1292.25 1.3843 632.99 1216.25 1.3029 634.48

10.1.13 1131 1511.25 1.3362 632.54 1445.5 1.2781 633.16

10.1.14 979.5 1373.25 1.402 631.81 1267.5 1.294 634.07

10.1.15 1308 1844.25 1.41 632.62 1664.25 1.2724 632.84

10.1.16 1308 1828.25 1.3977 633.35 1650 1.2615 633.56

10.1.17 1341.5 1864 1.3895 633.72 1719 1.2814 633.67

10.1.18 1308.5 1797.75 1.3739 632.99 1650.25 1.2612 634.01

10.1.19 1129.5 1497.5 1.3258 632.86 1461.75 1.2942 633.41

10.1.20 1165 1581.5 1.3575 632.14 1507 1.2936 634.48

Table 24: Results ten filters instance for set 2

Number Demanded (h)
CG exact pricing CG heuristic

Result (h) VDC Time (s) Result (h) VDC Time (s)

10.2.6 1058 1442.5 1.3634 632.49 1357.25 1.2828 633.14

10.2.7 1372.5 1893.25 1.3794 631.82 1740.75 1.2683 632.9

10.2.8 1451 1954.75 1.3472 632.71 1832.75 1.2631 632.35

10.2.9 1093.5 1476.5 1.3503 632.23 1432.75 1.3102 633.15

10.2.10 748.5 1070.5 1.4302 632.5 1020.75 1.3637 633.31

10.2.11 848 1243 1.4658 631.24 1114.5 1.3143 633.21

10.2.12 1283.5 1713.5 1.335 632.62 1651 1.2863 634.21

10.2.13 990 1468.25 1.4831 631.12 1289 1.302 633.14

10.2.14 1254 1979.25 1.5783 631.84 1582.5 1.262 633.22

10.2.15 989 1389 1.4044 632.27 1275.25 1.2894 633.31

10.2.16 969 1314.5 1.3566 631.82 1256 1.2962 633.66

10.2.17 906.5 1233.25 1.3605 632.51 1184.25 1.3064 634

10.2.18 844 1184.75 1.4037 631.79 1112.5 1.3181 633.02

10.2.19 1369.5 1983 1.448 631.58 1713.5 1.2512 632.1

10.2.20 850 1169.5 1.3759 631.73 1087.25 1.2791 633.11

60

10.3 Results: larger instances with variable time-restrictions

Note that the computational time in this experiment is fixed at 10, 20, 30, 40, 50 and 60 minutes.

Additionally, the results of three-minute experiments where only the initial set of shifts is included

are shown. The remainder is writing and initialisation time. The numbering in this section is

as follows. First the number of filters is mentioned, then the instance, then the length of the

computational time. Hence, 5.2.10 is instance two with five filters and a computational time of ten

minutes.

Table 25: Results time sensitivity five filters

Number Demanded (h)
CG exact pricing CG heuristic

Result (h) VDC Time (s) Result (h) VDC Time (s)

5.1.31 650,5 843 1,2959 199,24 843 1,2959 199,24

5.1.10 650,5 807 1,2406 625,93 786,5 1,2091 619,73

5.1.20 650,5 800,75 1,231 1221,95 776,5 1,1937 1217,41

5.1.30 650,5 791,75 1,2171 1818,58 776,5 1,1937 1819,05

5.1.40 650,5 786,5 1,2091 2422,69 773 1,1883 2421,99

5.1.50 650,5 784,75 1,2064 3016,54 773 1,1883 3026,13

5.1.60 650,5 778,5 1,1968 3623,78 771 1,1852 3621,64

5.2.31 334,5 457 1,3662 197,34 457 1,3662 197,34

5.2.10 334,5 430,25 1,2862 620,24 434,75 1,2997 454,94

5.2.20 334,5 433 1,2945 1225,22 423 1,2646 1219,48

5.2.30 334,5 425 1,2706 1817,1 419,5 1,2541 1816,57

5.2.40 334,5 425 1,2706 2416,16 417,75 1,2489 2419,16

5.2.50 334,5 426,75 1,2758 3019,4 424 1,2676 3019,04

5.2.60 334,5 421,25 1,2593 3537,36 424 1,2676 3617,06

5.3.31 1337,5 1686 1,2606 196,48 1686 1,2606 196,48

5.3.10 1337,5 1626,25 1,2159 618,5 1630,5 1,2191 616,38

5.3.20 1337,5 1625,5 1,2153 1217,39 1597,75 1,1946 1220,54

5.3.30 1337,5 1617,25 1,2092 1817,65 1599,25 1,1957 1818,14

5.3.40 1337,5 1608,25 1,2024 2420,32 1592,25 1,1905 2419,72

5.3.50 1337,5 1600,25 1,1964 3018,13 1582,5 1,1832 3025,22

5.3.60 1337,5 1598,75 1,1953 3617,11 1575,25 1,1778 3616,75

1 Instance does not use the column generation method, only the initial set of shifts is used

in to find integer solutions

61

Table 26: Results time sensitivity ten filters

Number Demanded (h)
CG exact pricing CG heuristic

Result (h) VDC Time (s) Result (h) VDC Time (s)

10.1.31 994,5 1383 1,3906 213,89 1383 1,3906 213,89

10.1.10 994,5 1324,25 1,3316 742,51 1263,25 1,2702 636,55

10.1.20 994,5 1317 1,3243 1265,43 1243,25 1,2501 1241,67

10.1.30 994,5 1303,75 1,311 1846,4 1238,5 1,2453 1837,75

10.1.40 994,5 1287,5 1,2946 2479,02 1235 1,2418 2438,09

10.1.50 994,5 1278,75 1,2858 3111,11 1231,25 1,2381 3080,63

10.1.60 994,5 1282,25 1,2893 3670,06 1218,75 1,2255 3638,84

10.2.31 1127,5 1699,5 1,5073 213,12 1699,5 1,5073 213,12

10.2.10 1127,5 1589,25 1,4095 689,13 1420,75 1,2601 638,62

10.2.20 1127,5 1549,75 1,3745 1313,08 1394,5 1,2368 1237,33

10.2.30 1127,5 1524,5 1,3521 1841,05 1398,25 1,2401 1836,91

10.2.40 1127,5 1489,75 1,3213 2495,12 1389,5 1,2324 2437,21

10.2.50 1127,5 1473,75 1,3071 3114,88 1372,25 1,2171 2290,16

10.2.60 1127,5 1469,25 1,3031 3676,1 1364,25 1,21 3641,31

10.3.31 1312 1944,75 1,4823 214,84 1944,75 1,4823 214,84

10.3.10 1312 1827,25 1,3927 657,59 1660,75 1,2658 637,37

10.3.20 1312 1751 1,3346 1301,25 1631,25 1,2433 1238,55

10.3.30 1312 1743,5 1,3289 1851,29 1627,5 1,2405 1839,74

10.3.40 1312 1738 1,3247 2557,71 1620,5 1,2351 2437,52

10.3.50 1312 1713,25 1,3058 3043,92 1611,5 1,2283 3036,24

10.3.60 1312 1693,75 1,291 3655,77 1596 1,2165 3645,26

1 Instance does not use the column generation method, only the initial set of shifts is used

in to find integer solutions

62

	Introduction
	Problem description
	Binary programming formulation

	Literature
	Methodology
	Column generation
	Initialisation
	Reduced costs
	Exact pricing algorithm
	Heuristic pricing algorithm
	Integer solution

	Data description
	Fixed parameter values
	Specific parameter values
	Stopping criteria

	Experiments
	Comparison against benchmark method: experimental setup
	Results: comparison against the benchmark method
	Three filters
	Four filters

	Scalability experiment: experimental setup
	Results: scalability experiment
	Results: larger instances with fixed time-restriction
	Results: larger instances with variable time-restrictions

	Conclusions
	Future research
	Legislation
	Data
	Heuristic

	Bibliography
	Appendix
	Results: comparison against the benchmark method
	Results: larger instances with fixed time-restriction
	Results: larger instances with variable time-restrictions

