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Abstract
The portfolio rebalancing decision is typically made based on a simple measure that neglects
estimation uncertainty. To account for uncertainty and to provide a statistical rationale be-
hind this decision, a bootstrap portfolio rebalancing strategy is proposed. This strategy
applies the bootstrap to test whether an increase in utility is significant using a test statistic
derived from the mean-variance framework. The performance of the bootstrap rebalancing
strategy is evaluated in an empirical study with industry portfolio data from 2000 until 2019
in comparison to buy-and-hold, periodic, and threshold rebalancing strategies. Portfolios
are rebalanced using global minimum variance weights and an optimisation method that
accounts for transaction costs. The empirical study demonstrates there is a sub-linear rela-
tion between the average rebalancing time and the amount of incurred transaction costs. In
addition, it shows that bootstrap rebalancing strategies can achieve higher Sharpe ratios and
utility levels than other rebalancing strategies. Bootstrap rebalancing strategies are most
effective when estimation uncertainty is high or global minimum variance weights are used.
The optimisation method that accounts for transaction costs is already conservative with re-
balancing, such that applying a bootstrap rebalancing strategy to further reduce transaction
costs may be ineffective. However, this optimisation method often constructs significantly
better portfolios than those obtained by using global minimum variance weights. The boot-
strap rebalancing strategy has a hyperparameter that influences the amount of trading,
which is optimally chosen to decrease with risk tolerance, transaction costs, and estimation
uncertainty. The bootstrap rebalancing strategy is easily implementable in practice and can
generate economic value for portfolio managers who apply mean-variance optimisation.

The content of this thesis is the sole responsibility of the author and does not reflect the view of the supervisor,
second assessor, Erasmus School of Economics or Erasmus University.
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1 Introduction

A recent development in the field of portfolio optimisation is to take transaction costs into ac-
count in the optimisation, which can significantly reduce transaction costs and improve portfolio
performance (Maurer, Pezzo, & Taylor, 2019). However, uncertainty in the optimisation inputs
is often neglected. This paper proposes a novel rebalancing strategy that takes this uncertainty
into account by testing for a gain in portfolio performance using the bootstrap. The portfolio is
only rebalanced if the expected gain in performance is significant, which helps to further reduce
transaction costs without sacrificing risk or return.

Applying an adequate portfolio rebalancing strategy is indispensable for any investor, because
previously optimised portfolios can become sub-optimal for three reasons: (i) assets realise
different returns, (ii) properties of assets change, or (iii) preferences of the investor alter (Dichtl,
Drobetz, & Wambach, 2014). An investor would like to rebalance the portfolio as soon as
such a change occurs. However, continuous trading is practically impeded by transaction costs.
These costs are most relevant for portfolios that realise a high turnover, including mean-variance
portfolios that may incur trading costs up to 30% per day (Garlappi, Uppal, & Wang, 2007).

To reduce the amount of transaction costs, these costs should be accounted for in the portfolio
optimisation. Magill and Constantinides (1976) and Constantinides (1979) show that propor-
tional transaction costs give rise to a no-trade region around the optimal asset allocation; if the
current portfolio allocation is close to the optimum then rebalancing leads to a loss from trans-
action costs that exceeds the benefit of having a better allocation. Moreover, they show that
the portfolio should be rebalanced to an allocation at the boundary of the no-trade region. The
optimisation problem with proportional transaction costs and multiple risky assets is typically
formulated as a non-linear programming problem, which can be solved to obtain an efficient
portfolio allocation. However, the portfolio optimisation method is often combined with a naive
rebalancing strategy that disregards estimation uncertainty.

This paper aims to fill this gap in the literature by proposing a rebalancing strategy that
only rebalances the portfolio if there is a significant gain in the expected performance. The test
uses a statistic that is derived from the mean-variance utility framework. The bootstrap is used
to perform the test, because the distribution of the gain is generally unknown. The bootstrap
rebalancing strategy proposed in this paper bears some resemblance to the rebalancing rule of
Michaud and Michaud (2008), who make use of the bootstrap in the absence of transaction costs.
Yet, the proposed strategy is more widely applicable as it works with mean-variance optimised
portfolios rather than portfolios constructed using a bootstrap approach. The strategy is imple-
mented both with global minimum variance (GMV) weights and by applying the optimisation
procedure of Dybvig and Pezzo (2019) that accounts for proportional transaction costs.

The performance of the bootstrap rebalancing strategy is compared to several commonly
applied strategies in an empirical study with industry portfolio data from 2000 until 2019. The
study shows that bootstrap rebalancing strategies often simultaneously achieve better Sharpe
ratios and higher utility levels than other rebalancing strategies, although performance differ-
ences are seldom large. Bootstrap rebalancing strategies enhance the portfolio performance of
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GMV portfolios most, because transaction costs are neglected when applying GMV weights. The
optimisation method that accounts for transaction costs is already conservative with portfolio
rebalancing, such that bootstrap rebalancing strategies only become effective when estimation
uncertainty is high. The performance of the bootstrap rebalancing strategies depends on a hy-
perparameter that impacts the amount of trading activity. This parameter is optimally set to
decrease with risk tolerance, transaction costs, and estimation uncertainty. The performance
of the bootstrap strategies is robust to the imposition of short sale constrains, changes in the
bootstrap methodology, and the application of variable transaction costs.

This research further finds that the optimisation procedure of Dybvig and Pezzo (2019)
greatly reduces transaction costs compared GMV optimisation, which often results in signifi-
cantly higher post-transaction cost returns and Sharpe ratios. In addition, this paper observes a
sub-linear relation between the amount of incurred transaction costs and the average rebalancing
time. More concretely, the gains from rebalancing later decrease with the passing of time.

The relevance of this paper is twofold. From a scientific point of view, the rebalancing
rule of Michaud and Michaud (2008) is extended to accommodate transaction costs. Moreover,
the usefulness of a bootstrap procedure in portfolio rebalancing is empirically verified for the
first time. Besides, new insights into the effectiveness of the optimisation method of Dybvig
and Pezzo (2019) are provided by applying it to equity data. From a practical perspective,
the proposed bootstrap rebalancing strategy is easily be implementable by portfolio managers
who apply mean-variance optimisation. The empirical study demonstrates that the bootstrap
strategy can generate genuine economic value.

The remainder of this paper is structured as follows. Section 2 describes the literature in
which this research is embedded. The derivation and implementation of the bootstrap rebalanc-
ing strategy are outlined in Section 3. Section 4 first discusses the set-up of the empirical study
with industry portfolio data and then provides its main results. The robustness of the findings
is verified in Section 5. Section 6 applies the rebalancing strategy to a data set with stocks and
relaxes the assumption of constant transaction costs. Finally, Section 7 concludes the paper.

2 Literature Review

This research is at the intersection of several strands of literature relating to transaction costs,
portfolio optimisation, estimation uncertainty, and bootstrapping. The most relevant insights
from portfolio optimisation with transaction costs and uncertainty are discussed in Sections 2.1
and 2.2, respectively. Literature related to the bootstrap is discussed in Section 2.3.

2.1 Portfolio Optimisation with Transaction Costs

Transaction costs consist of direct and indirect costs. Direct costs include brokerage commissions,
the bid-ask spread, taxes, and costs related to submitting and optimising the trade. On the other
hand, indirect costs are market impact costs that stem from large purchases (sales) adversely
driving up (down) the asset price. Tóth et al. (2011) and Frazzini, Israel, and Moskowitz (2012)
show that these costs grow approximately at a square root rate with the transaction size.
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Historical estimates of transaction costs differ greatly due to the limited availability of data
(Arnott & Wagner, 1990). For US stocks, Lesmond, Ogden, and Trzcinka (1999) estimate
transaction costs to range from 1% to 10% for a round trip transaction (i.e., buy and sell),
whereas Balduzzi and Lynch (1999) and Hasbrouck (2009) estimate them to be around 1%.
These costs vary with a number of factors. Loeb (1983) finds that trading costs decrease with
the market capitalisation and trading volume. Both Domowitz, Glen, and Madhavan (2001) and
Frazzini et al. (2012) demonstrate that trading costs increase with volatility but decrease with
the trading volume. Moreover, Hasbrouck (2009) observes that assets with higher gross returns
generally incur more trading costs, such that asset net asset returns are more similar.

The presence of transaction costs and their magnitude make it relevant to take them into
consideration, particularly for active investors. To this end, Magill and Constantinides (1976) are
the first to coin the notion of a no-trade region in a continuous time framework with proportional
transaction costs and a single risky asset. They show that it is only optimal to trade towards
the boundary of the no-trade region. Davis and Norman (1990) further show that solving this
problem involves a non-linear free boundary problem and propose an algorithm to solve it.
Alternatively, Czichowsky and Schachermayer (2016) suggest solving the dual problem. The
literature in continuous time usually works with a single risky asset due to the complexity of the
problem, although some exceptions exist (e.g., Akian, Menaldi, and Sulem, 1995; Leland, 1999;
Liu, 2004; Muthuraman and Kumar, 2006).

Despite the growing literature on modelling transaction costs in continuous time for multi-
ple assets, this paper focuses on the discrete time setting where more analytical solutions are
available. Constantinides (1979) finds similarly to Magill and Constantinides (1976) that pro-
portional transaction costs in a multi-period model give rise to a no-trade region in discrete
time. Lynch and Tan (2010) analyse the properties of the no-trade region for two risky assets.
With unpredictable returns, there is a single no-trade region with the shape determined by the
asset correlations. With predictable returns, the shape of the no-trade region is state-dependent,
which results in more trading activity since there is more information to trade on.

Recent research relating to portfolio optimisation with transaction costs differs in the as-
sumptions made regarding the type of costs and the predictability of returns. For example,
Gârleanu and Pedersen (2013) assume there are quadratic transaction costs in a multi-period
model with predictable returns. They find that rebalancing should occur towards a combina-
tion of the current and future portfolio that would be optimal in the absence of transaction
costs. In this way, the investor saves costs now by only partially trading towards the current
optimum, whereas costs are saved in the future by already trading towards the future optimum.
Mei, DeMiguel, and Nogales (2016) derive a closed-form solution for multi-period investing with
several unpredictable assets. They assume that trading costs are proportional for small trades
but grow at a square root rate for large trades. In an application with commodity futures, they
demonstrate that ignoring transaction costs is expensive and investing myopically is especially
harmful for long-term investors. Mei and Nogales (2018) extend their work to include predictable
returns, but they cannot find an analytical solution to the investment problem.

The most pertinent work for this research is that of Dybvig and Pezzo (2019), who find
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an analytical solution for a single-period model with fixed and proportional transaction costs.
They show that it is optimal to trade to the interior of the no-trade region when costs are
fixed, whereas it is only optimal to trade to the boundary when costs are proportional. In
addition, they illustrate how the no-trade region is affected by changes in asset correlations,
risk aversion, and transaction costs. Maurer et al. (2019) show that the method of Dybvig and
Pezzo (2019) optimises currency portfolios better than a method that neglects trading costs.
Their optimisation procedure is implemented in this paper for its tractability, which aids in
verifying the usefulness of the bootstrap rebalancing strategy. Although the method induces
myopic investing, it is still theoretically optimal in some cases. More specifically, Merton (1971)
shows behaving myopically is optimal in the presence of constant investment opportunities. In
addition, Hakansson (1971) finds that the same holds when investors have a log utility function.

2.2 Portfolio Optimisation under Uncertainty

The bootstrap rebalancing strategy proposed in this paper only rebalances the portfolio if the
resulting gain in performance is significant, which may not be the case due to considerable
estimation uncertainty. Jobson and Korkie (1980) demonstrate that accurate estimation of
the mean-variance efficient frontier can be problematic due to errors in the sample mean and
variance. Moreover, Michaud (1989) finds that mean-variance optimisation suffers from “error
maximisation”, because assets with the largest favourable estimation errors obtain the largest
portfolio weights. Chopra and Ziemba (1993) further show that wrongful estimation of the
expected return has the largest adverse impact on portfolio performance when applying mean-
variance optimisation. Therefore, this paper restricts its attention to variance minimisation.

To enhance portfolio performance, several alternatives to the sample estimator have been
proposed. For example, (stochastic) volatility models can be used to better capture the dynamics
of the covariance matrix (e.g., Hansen and Lunde, 2005). In addition, Ledoit and Wolf (2003,
2004, 2012) propose a variety of shrinkage estimators for the covariance matrix. Furthermore,
Fan, Fan, and Lv (2008) show that imposing a factor structure on the covariance matrix can
improve the estimation. As an illustration, they show that the three-factor model of Fama and
French (1993) can be used to better estimate the covariance matrix of stock returns. On the
other hand, Fan, Liao, and Mincheva (2013) employ statistical factors obtained using principal
component analysis (PCA) to estimate the covariance matrix. Both shrinkage and factor-based
methods are employed in this research to improve covariance matrix estimation.

Estimation uncertainty also impacts the portfolio rebalancing decision. The distribution of
portfolio weights is relevant to make a statistically sound rebalancing decision. GMV portfolio
weights are of particular interest given that this research focuses on variance minimisation.
Okhrin and Schmid (2006) derive the multivariate distribution of GMV portfolio weights under
the assumption of normally distributed returns. This distribution is used by Golosnoy and
Schmid (2007) to detect a significant change in the optimal portfolio weights. More generally,
Bodnar and Schmid (2007) derive the distribution of the GMV portfolio’s variance under the
assumption of elliptically distributed returns. Subsequently, Bodnar and Schmid (2008) use this
to construct a test for portfolio efficiency. Unfortunately, these results do not easily extent to a
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setting with transaction costs, because these costs affect the distribution of portfolio weights.

2.3 Bootstrap

To nevertheless make statistical inference on portfolio weights, a bootstrap approach is used.
The bootstrap is introduced by Efron (1979) who repeatedly draws independent observations
to generate new samples. Each newly generated sample is then used to estimate a statistic of
interest. A large collection of these statistics forms a sampling distribution, which can be used to
make inference about a population parameter of interest. This procedure can be performed by
drawing observations directly from the data set, which is known as a non-parametric bootstrap.
Alternatively, a parametric bootstrap is applied in which a distribution is fitted to the data and
resampling occurs from the fitted model.

Applying the bootstrap of Efron (1979) can result in poor statistical inference when working
with dependent data, because drawing independent observations removes the dependence struc-
ture (Singh, 1981). This issue is particularly relevant for asset returns that typically portray
time-dependent volatility. To maintain the dependence structure, Carlstein (1986) suggests re-
sampling non-overlapping blocks of data instead of individual observations. On the other hand,
Kunsch (1989) and Liu and Singh (1992) advocate that bootstrapping overlapping blocks of
data improves statistical inference. Their method is referred to as the moving block bootstrap.
Politis and Romano (1992) note that observations at the start and the end of the sample are
less likely to be drawn with the moving block bootstrap. Therefore, they propose the circular
bootstrap that gives each observation the same probability to be drawn. Furthermore, Politis
and Romano (1994) propose the stationary bootstrap that draws the block size from a geometric
distribution in order to generate stationary time series.

The performance of the above-mentioned bootstrap methods is compared theoretically by
Lahiri (1999). He finds that the overlapping block bootstrap is preferred to the non-overlapping
block bootstrap, because it asymptotically has the same bias but a lower variance. This en-
tails that the overlapping block bootstrap is more efficient for large samples. Nordman (2009)
further shows that the stationary bootstrap and the non-overlapping block bootstrap have the
same asymptotic variance. From an empirical perspective, Lahiri (1999) finds that overlapping
block bootstrap methods perform best in estimating autoregressive and moving average mod-
els. Radovanov and Marcikić (2014) demonstrate that the stationary and overlapping block
bootstrap are both well-suited to estimate volatility. Given that the circular and stationary
bootstrap are equally applicable methods with different properties they are both implemented
in this research.

A crucial element of the block bootstrap is the block size, because an improper choice of
block size leads to erroneous estimates (Cogneau & Zakamouline, 2013). A larger block size often
decreases bias at the cost of an increase in variance (Lahiri, 2003). Politis and White (2004)
develop an algorithm to automatically select the block length for the circular and stationary
bootstrap based on the work of Lahiri (1999). Patton, Politis, and White (2009) correct their
algorithm after Nordman (2009) shed new light on the theoretical properties of the methods.

The bootstrap has several applications in portfolio optimisation, including the construction
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of robust portfolio weights. Michaud and Michaud (2008) pioneer this field by resampling asset
returns to obtain bootstrap estimates of the mean return and covariance matrix. Subsequently,
these estimates are used to bootstrap the efficient frontier. Finally, they obtain robust portfolio
weights by taking the average of portfolio weights with similar mean-variance properties from
the bootstrapped efficient frontiers. A similar method is applied by Shen and Wang (2017) who
further restrict the number of assets held in the portfolio. They show their bootstrap method
compares favourably to a variety of other commonly applied portfolio optimisation methods in
an empirical study with equity and exchange traded funds data.

Besides for the construction of weights, bootstrapping is used to quantify portfolio uncer-
tainty. Liang, Myer, and Webb (1996) use the independent bootstrap to obtain a confidence in-
terval around the optimal portfolio weights for five asset classes. They find that the large amount
of uncertainty in the mean-variance estimates practically renders them useless. Michaud and
Michaud (2008) also use bootstrapped portfolio weights to obtain a confidence region around
the optimal asset allocation. Srivatsa, Smith, and Lekander (2010) use a block bootstrap to
obtain an acceptable region for an asset allocation problem with three assets.

The bootstrap is applied in this paper to perform a test that is used to make the portfolio
rebalancing decision. To the best of my knowledge, Michaud and Michaud (2008) are the first
and only to use such a test. They use the squared tracking error between the current portfolio
and the target portfolio as a test statistic. The distribution of the test statistic is obtained by
bootstrapping a series of optimal portfolios weight and computing the squared tracking error
between the bootstrapped portfolio and the target portfolio. Then, the portfolio is rebalanced
only if the test statistic exceeds a predetermined quantile of the distribution of bootstrapped
test statistics.

The bootstrap rebalancing strategy applied in this paper is based on the method of Michaud
and Michaud (2008), although there are some distinctions. The test statistic used in this re-
search differs as it is derived from the mean-variance framework of Dybvig and Pezzo (2019)
with transaction costs. In addition, the strategy is applied to mean-variance optimised portfo-
lios rather than portfolios constructed by bootstrapping the efficient frontier. As a result, the
proposed strategy is more widely applicable for portfolio managers. This paper is the first to
empirically verify the usefulness of a bootstrap test in the context of portfolio rebalancing.

3 Bootstrap Rebalancing Strategy

This section introduces the bootstrap rebalancing strategy. The statistic that is used to test for a
gain performance is derived from a mean-variance utility framework in Section 3.1. Subsequently,
the implementation of the bootstrap rebalancing strategy is discussed in detail in Section 3.2.

3.1 Derivation Test Statistic

This paper builds on the portfolio optimisation method of Dybvig and Pezzo (2019) that takes
transaction costs into account. It is assumed that the investor has linear mean-variance prefer-
ences and maximises the utility derived from terminal wealth in a single-period setting. In this
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case, the investor solves the utility maximisation problem

max
∆+,∆−

θ′µ− λ

2
θ′Σθ − c(∆+,∆−)

s.t. θ = θ0 + ∆+ −∆−

∆+ ≥ 0

∆− ≥ 0,

(3.1)

where ∆+ and ∆− are vectors denoting purchases and sales of assets, θ and θ0 are vectors
denoting the new and initial wealth allocation, µ is a vector of expected asset returns in excess
of the risk-free rate, Σ is a positive definite covariance matrix, λ is a positive risk aversion
parameter, and c(∆+,∆−) is a transaction cost function. The cost function can be seen as
a factor that negatively contributes to the return in the standard mean-variance optimisation
problem. Dybvig and Pezzo (2019) use a cost function that allows for fixed and proportional
costs that can be asset-specific and differ depending on whether an asset is purchased or sold.

In this research, the optimisation is restricted to variance minimisation with transaction
costs, because the expected return is difficult to forecast for equity data and including it can
result in poor portfolio performance (Chopra & Ziemba, 1993). Furthermore, a constraint is
added to programming problem (3.1) to ensure that the investor remains fully invested at all
times. Consequently, the optimisation problem becomes

max
∆+,∆−

− λ

2
θ′Σθ − c(∆+,∆−)

s.t. θ = θ0 + ∆+ −∆−

∆+ ≥ 0

∆− ≥ 0

∆′+ι = ∆′−ι,

(3.2)

where ι is a vector of ones. The cost function in programming problem (3.2) is limited to include
proportional transaction costs that can possibly vary for purchases and sales on an asset basis.
Hence, the cost function can be expressed as

c(∆+,∆−) = ∆′+C+ + ∆′−C−, (3.3)

where C+ and C− are non-negative vectors representing the transaction costs incurred when pur-
chasing or selling assets, respectively. This cost function is employed in order to obtain a convex
programming problem, which is considerably easier to solve than the non-convex optimisation
problem obtained with fixed costs (Lobo, Fazel, & Boyd, 2007).

To derive the statistic to test for a significant improvement in portfolio performance, one
should first note that maintaining the current portfolio allocation θ0 in programming problem
(3.2) yields an objective value of −λ

2 θ
′
0Σθ0, because θ = θ0 implies ∆+ = ∆− = 0 and the cost

function c(·) drops out of the equation. The gain from rebalancing is given by the difference
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between the objectives values realised when having the optimised allocation θ∗ and the current
portfolio allocation θ0, which amounts to

D = −λ
2

(θ∗′Σθ∗ − θ′0Σθ0)− c(∆+,∆−). (3.4)

This is a natural test statistic to test for an improvement in portfolio performance. This statistic
can be augmented by (θ∗ − θ0)′µ in case the expected returns are estimated. In the absence of
transaction costs, the gain in portfolio performance is given by

− λ

2
(θ∗′Σθ∗ − θ′0Σθ0), (3.5)

which may be used as a test statistic if trading is assumed to be frictionless. After some scaling,
test statistic (3.5) shows some similarity to the squared tracking error

TE2 = (θ∗ − θ0)′Σ(θ∗ − θ0), (3.6)

which is the test statistic of Michaud and Michaud (2008). The squared tracking error gives
the variance of the difference between the optimal and the current portfolio allocation. This is
generally unequal to test statistic (3.5), which gives the difference of the variance between the
optimal and the current portfolio allocation. Test statistic (3.5) is a more complete measure
than test statistic (3.6), because it computes the variance of the entire allocation rather than
the change in the allocation.

3.2 Implementation

The test statistic derived in the previous section is used to test whether a gain in portfolio
performance is statistically significant. The null and alternative hypothesis using test statistic
D defined by equation (3.4) are formulated as follows:

H0: rebalancing from the current portfolio allocation to the optimal allocation provides no
gain in variance after deducting transaction costs (D = 0).

Ha: rebalancing from the current portfolio allocation to the optimal allocation provides a
gain in variance after deducting transaction costs (D > 0).

Inspired by the rebalancing rule of Michaud and Michaud (2008), the outcome of this test is
determines whether the portfolio is rebalanced. The bootstrap rebalancing strategy that applies
this test proceeds as described below.

Bootstrap Rebalancing Strategy

1. Estimate the covariance matrix Σ∗ of the asset returns.

2. Estimate the optimal portfolio allocation θ∗ by solving programming problem (3.2) for ∆∗+

and ∆∗− using Σ̂∗ and current portfolio allocation θ0.
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3. Compute test statistic (3.4) denoted by D∗ with θ∗, current portfolio allocation θ0,
∆+ = ∆∗+, ∆− = ∆∗−, and Σ = Σ̂∗.

4. For b = 1, ..., B:

(a) Block bootstrap the asset returns.

(b) Estimate the covariance matrix Σ(b) using the bootstrapped asset returns.

(c) Estimate the optimal portfolio allocation θ(b) by solving programming problem (3.2)
for ∆

(b)
+ and ∆

(b)
− using Σ̂(b) and current portfolio allocation θ0.

(d) Compute test statistic (3.4) denoted by D(b) with θ∗, θ0 = θ(b), ∆+ = (θ∗ − θ(b))+,
∆− = (θ∗ − θ(b))−, and Σ = Σ̂∗.1

5. Rebalance the portfolio to θ∗ if D∗ is positive and larger than percentile 1 − α of the
empirical density function of D(b), else maintain portfolio allocation θ0.

In this procedure, the distribution of the test statistic under H0 is simulated by comparing
the asset allocation optimised using the original data to a large number of allocations optimised
using bootstrapped data. The significance level for rejecting H0 is given by one minus the
quantile of the largest bootstrapped test statistic D(b) that is below D∗. Within the framework
of Dybvig and Pezzo (2019), this equals the probability that the portfolio is outside of the no-
trade region. Increasing hyperparameter α increases the rebalancing frequency. Michaud and
Michaud (2008) state that the optimal α varies considerably per investor. For example, an α of
90% might be appropriate for an active investor, whereas 10% suffices for a passive investor.

Besides the difference in the test statistic, this strategy also differs from the rebalancing rule
of Michaud and Michaud (2008) in terms of the optimisation. They optimise the portfolio in step
2 and 4(c) by bootstrapping the efficient frontier rather than by solving programming problem
(3.2). This non-linear programming problem can be modelled as a quadratic program that is
solved efficiently using the quadprog function in MATLAB as suggested by Maurer et al. (2019)
(see Appendix A for details). Similarly to Michaud and Michaud (2008), the covariance matrix
that is an input for the optimisation problem can be estimated using a variety of methods,
preferably chosen based on the structure of the data set.

For the percentile bootstrap in step 4 of the algorithm, both the circular block bootstrap
of Politis and Romano (1992) and the stationary bootstrap of Politis and Romano (1994) are
applicable. Using either method, the block size is selected based on the algorithm provided by
Politis and White (2004) with the correction of Patton et al. (2009). Naturally, the sample
size of the bootstrap is set equal to the sample size of the returns. The number of bootstrap
iterations B is set to 1,000, which is sufficient for statistical inference at the 95% to 99% level
(Davison & Hinkley, 1997).
1Here (·)+ and (·)− denote vectors with zero for all non-positive and non-negative elements, respectively.
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4 Empirical Study

This section describes the set-up of the empirical study and presents its main results. Section
4.1 discusses the applied industry portfolio data set. The methods that are used to estimate
the covariance matrix are outlined in Section 4.2. Section 4.3 discusses the competing asset
allocation strategies that are evaluated based on the performance measures listed in Section
4.4. The performance of the strategies is examined in Section 4.5. Finally, Section 4.6 closely
investigates the functioning of the bootstrap rebalancing strategies.

4.1 Data

The data set contains 49 industry portfolios retrieved from Kenneth French’s data library for the
period from 2000 until 2019, which includes 5031 daily observations.2 These industry portfolios
are value-weighted and composed of stocks from the New York Stock Exchange (NYSE), Amer-
ican Stock Exchange (AMEX), and the National Association of Securities Dealers Automated
Quotations (NASDAQ) based on the standard industrial classification code. The portfolios are
non-tradeable, but similar portfolios could be obtained in practice using exchange traded funds.
A full list of the industries with summary statistics can be found in Table C.1 in Appendix C.

Table 4.1 summarises the performance of the industry portfolios. The average return amounts
to 0.04% per day with a modest standard deviation of 0.01%. The Shipbuilding and Railroad
Equipment industry is a notable positive outlier that yields a return of 0.07% on a daily basis.
The average volatility amounts to 1.59% per day with substantial differences across industries.
The least volatile industries have an average daily volatility close to 1% and mainly sell fast-
moving consumer goods. The most volatile industries realise a volatility of over 2% per day and
include Steel Works, Precious Metals and Coal industries. The differences in the return and
volatility across industries cause Sharpe ratios to vary widely. The best performing industries
with respect to this measure are Defence and Tobacco Products industries with Sharpe ratios
of 0.77, whereas the Printing and Publishing industry performs worst with a Sharpe ratio of
just 0.13. The industry portfolios are highly correlated with each other as shown by the average
cross-industry correlation of 0.55. The average correlation with the market amounts to 0.74,
which indicates a large amount of covariance occurs through a market factor.

Table 4.1: Descriptive statistics of daily industry portfolio data from 2000-2019.
All statistics are daily in %, except for the annualised Sharpe ratio.

Mean Standard deviation Minimum Maximum

Mean return 0.043 0.013 0.015 0.073
Volatility 1.587 0.390 0.975 3.104
Sharpe ratio 0.413 0.151 0.128 0.769
Correlation across industries 0.549 0.151 0.096 0.868
Correlation with the market 0.737 0.137 0.195 0.925

2See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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4.2 Covariance Estimation

The covariance matrix is an important input to portfolio optimisation problem (3.2). It is
estimated using a rolling window of 250 trading days, which is in line with the methodology
applied by Ledoit and Wolf (2017) to daily equity data. The covariance matrix is estimated using
the sample estimator and two more robust estimation methods, because the sample estimator
is prone to estimation error (Jobson & Korkie, 1980).

The first robust estimator is the shrinkage estimator of Ledoit and Wolf (2003). This es-
timator shrinks the sample covariance matrix to the covariance matrix implied by the capital
asset pricing model. More specifically, the covariance matrix is estimated as

Σ̂LW =
κ

T
F + (1− κ

T
)S, (4.1)

where κ is a shrinkage constant, T is the sample size, F is the shrinkage target, and S is the
sample estimator. The shrinkage constant κ is a term that increases with the error of the
estimated sample covariance matrix, decreases with the misspecification of the shrinkage target,
and decreases with covariance between the shrinkage target and the sample estimator.3 The
elements of shrinkage target F are estimated by performing the one-factor model regression

rt − r̄ = βrem,t + εt, (4.2)

where rt is the return vector at time t, r̄ is the mean return vector, and rem,t is the market
return in excess of the risk-free rate from Kenneth French’s data library. After performing the
regression, the structured estimator is computed as

F = s2
rem
β̂β̂′ + diag(Σ̂ε), (4.3)

where s2
rem

is the sample variance of the excess market return, β̂ is the estimated coefficient
vector from regression (4.2), and diag(Σ̂ε) is the diagonal of the regression residuals’ estimated
sample covariance matrix.

The second robust covariance estimator is the Principal Orthogonal complEment Threshold-
ing (POET) method of Fan et al. (2013). This method uses statistical factors rather than an
economic factor to estimate the covariance matrix. Assuming there are n assets, applying PCA
yields n estimated eigenvalues λ̂1 ≥ λ̂2 ≥ ... ≥ λ̂n with corresponding estimated eigenvectors
ê1, ê2, ..., ên. Then, the estimated covariance matrix can be decomposed as

Σ̂ =
k∑
i=1

λ̂iêiê
′
i +

n∑
i=k+1

λ̂iêiê
′
i =

k∑
i=1

λ̂iêiê
′
i + R̂k, (4.4)

where k is a number of diverging eigenvalues and R̂k is the estimated principal orthogonal com-
plement. To induce sparsity in the orthogonal complement, Fan et al. (2013) suggest thresholding
elements r̂ij of R̂k for i, j = 1, ...n. The elements of the thresholded orthogonal complement R̂τk
3See equation (4) in Ledoit and Wolf (2003) for details.
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are given by

r̂τij =

r̂ij if i = j

sij(r̂ij)I(|r̂ij | ≥ τij) if i 6= j,
(4.5)

where sij(·) is a generalised shrinkage function and τij ≥ 0 is a thresholding parameter. Following
their recommendation for stock data, the soft thresholding function sij(r̂ij) = sign(r̂ij) · (|r̂ij | −
τij)

+ is applied in combination with the adaptive thresholding parameter of Cai and Liu (2011).
This thresholding parameter has the advantage that it differs per entry; the threshold becomes
higher if there is more uncertainty in the covariance estimate. In addition, the threshold decreases
with the sample size.4 Using the thresholded principal orthogonal complement, the covariance
matrix is estimated as

Σ̂POET =

k̂∑
i=1

λ̂iêiê
′
i + R̂τ

k̂
, (4.6)

where k̂ is an estimate of the number of diverging factors. As suggested by Fan et al. (2013),
this number is selected based on the information criterion of Bai and Ng (2002) by solving

min
0≤k≤M

log

(
1

nT
||Y − F̂ kβ̂k||2

)
+ k

(
n+ T

nT
log

(
nT

n+ T

))
, (4.7)

where n is the number of assets, T is the sample size, Y is a matrix of asset returns, F̂ k =

Y [ê1, ê2, ..., êk] is a matrix of estimated factor realisations, β̂k is a vector of coefficients obtained
by regressing Y on F̂ k, and || · ||p denotes the Lp norm. A maximum of M = 20 factors is
imposed to effectively shrink the non-diagonal elements of the covariance matrix. The optimal
number of factors is estimated once using the entire data sample and then kept fixed over time
for consistency and computational purposes.

4.3 Asset Allocation Strategies

The competing asset allocation strategies differ in two dimensions; the rebalancing strategy and
optimisation method. The first rebalancing strategy is the buy-and-hold strategy, which only
optimises the portfolio allocation at the beginning of the sample and then holds the allocation.
Perold and Sharpe (1995) show this strategy performs well in case there is momentum. The
buy-and-hold strategy serves as a benchmark to evaluate the benefit of rebalancing at all.

In addition, two naive rebalancing strategies are considered. The first is the periodic rebal-
ancing strategy, which rebalances at a fixed frequency. This strategy is implemented with daily
(1 trading day), weekly (5 trading days), monthly (20 trading days), quarterly (60 trading days),
and annual (250 trading days) rebalancing. The second is the threshold rebalancing strategy,
which only rebalances the portfolio if the current wealth allocation deviates from the optimal
allocation by some threshold. Mathematically, this strategy rebalances the portfolio if

||θ0 − θ∗||2
||θ0||2

> τ, (4.8)

4See equation (3.2) in Fan et al. (2013) for details. In this equation, parameter C is set to one following their
recommendation for stock data.
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where θ0 is the current portfolio allocation, θ∗ is the optimal portfolio allocation, and τ is a
pre-set threshold. This strategy is implemented with τ at the 5%, 10%, 20%, and 40% level.

Lastly, the bootstrap portfolio strategy proposed in Section 3 is considered. The strategy
is implemented with α at the 1%, 25%, 50%, 75% and 99% level. By applying the bootstrap
rebalancing strategy, it can be inferred to what extent taking estimation uncertainty into account
enhances portfolio performance.

Portfolios are optimised using two methods that differ in their consideration of transaction
costs. The first method ignores transaction costs and applies global minimum variance weights
that are obtained by solving

min
w

w′Σw

s.t. w′ι = 1,
(4.9)

which has the unique solution5

w∗ =
Σ−1ι

ι′Σ−1ι
. (4.10)

When portfolio weights are GMV optimised, then transaction costs are also neglected in the
bootstrap rebalancing strategy. More specifically, programming problem (4.9) is solved rather
than (3.2) in step 2 and 4(c) of the algorithm presented in Section 3.2. In addition, the test for
portfolio efficiency only considers the gain in variance while neglecting transaction costs, such
that statistic (3.5) replaces (3.4) in step 3 and 4(d) of the bootstrap rebalancing strategy. This
optimisation method serves as a benchmark to beat for the method that takes transaction costs
into account.

The second optimisation method takes transaction costs into account by solving convex
portfolio optimisation problem (3.2). To solve this problem, assumptions about the investor’s
risk aversion and the size of transaction costs are required. The risk aversion parameter λ
determines the importance of minimising variance relative to realising high returns. Dybvig and
Pezzo (2019) show that the amount of trading activity increases with the investor’s risk aversion.
Bodnar, Okhrin, Vitlinskyy, and Zabolotskyy (2018) indicate that λ regularly ranges from 1 to
10. A risk aversion parameter of three is chosen to represent an investor with moderate risk
aversion. Another key component is the magnitude of the transaction costs since the amount of
trading decreases with these costs (Dybvig & Pezzo, 2019). Provided that the industry portfolios
are non-tradeable, there is no data on actual transaction costs. Yet, all industry portfolios consist
of a large number of US stocks, such that the trading cost can be approximated by the cost of
stock transactions. The transaction costs are set to 50 basis points (bps) for a single transaction
(i.e., buy or sell) based on the estimates of Balduzzi and Lynch (1999) and Hasbrouck (2009),
and the value used by Ledoit and Wolf (2017). This implies that the vectors in cost function
(3.3) can be expressed as C+ = C− = 0.0005 · ι.
5Note that wealth allocation θ can be obtained using portfolio weights w as θ = w · θ′0ι.
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4.4 Performance Measures

The performance of the asset allocation strategies is assessed using various measures. The
post-transaction cost return measures the return on investment after deducting trading costs.
Despite that the optimisation methods focus on variance reduction, the realised return remains
important to any investor. The volatility is used to quantify risk. The annualised Sharpe ratio
measures the realised return relative to the risk exposure and is given by

√
250

µ− rf
σ

, (4.11)

where µ denotes the daily average post-transaction cost return, σ denotes the volatility, and rf
is the average risk-free rate.6 The 3-month constant maturity treasury rate is used as a proxy for
the risk-free rate provided that US equity data is used. Treasury rate data is retrieved from the
Archival Federal Reserve Economic Data of the Federal Reserve Bank of St. Louis.7 Moreover,
the utility level that a mean-variance investor obtains is given by

µ− λ

2
σ2, (4.12)

where µ and σ2 denote the net portfolio return and variance. The population parameters µ
and σ2 that are used to compute the Sharpe ratio and the utility level are estimated using the
sample mean and variance estimator, respectively.

To quantify the effect rebalancing strategies have on trading, the transaction costs and the
average rebalancing time (ART) are calculated. The transaction costs are expressed in basis
points of the amount invested, such that the accumulation of wealth does not influence this
measure. The ART is computed as the amount of times the portfolio is rebalanced divided by
the number of trading days.8 The ART indicates how transaction costs are incurred, as this
both depends on the rebalancing frequency and the magnitude of trades.

To make statistical inference on the difference in performance of two asset allocation strate-
gies, the robust hypothesis testing procedure of Ledoit and Wolf (2008) is used. They apply a
studentised bootstrap to test for a significant difference in Sharpe ratios. With this method,
the studentised test statistic is computed in each bootstrap iteration and the distribution of
this statistic is subsequently used to construct a confidence interval. The studentised bootstrap
is often more efficient than a standard bootstrap, especially when applying a non-parametric
bootstrap (Davison & Hinkley, 1997). Ledoit and Wolf (2011) show a similar approach can be
used to test for a significant difference in the variance of two portfolio strategies. This approach
can also be adjusted to test for a difference in the realised post-transaction cost return and the
utility level (see Appendix B for details). The bootstrap procedure is performed using 10,000
iterations of the circular bootstrap of Politis and Romano (1992) with the same block size as
selected for the bootstrap rebalancing strategy.
6The Sharpe ratio is computed under the assumption that returns are independent and identically distributed.
7See https://alfred.stlouisfed.org.
8The portfolio is said to be rebalanced if the absolute change in portfolio weights exceeds 10−5.
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4.5 Performance of Asset Allocation Strategies

This section evaluates the performance of the asset allocation strategies. Bootstrap rebalancing
strategies use the stationary bootstrap of with a block size of 20 trading days. This corresponds
to bootstrapping blocks of monthly data, which is a robust choice based on the output of
the automatic block length selection algorithm of Politis and White (2004) (see Table D.1 in
Appendix D for details). However, Section 5.3 verifies that these choices are inessential for
obtaining the results. For the POET covariance estimation method, five principal components
are selected using the information criterion of Bai and Ng (2002).

Table 4.2 shows how the asset allocation strategies perform. First, differences across re-
balancing strategies are examined. Clearly, there are large differences in the daily returns.
These differences predominantly arise due to deviations in the incurred transaction costs. As
expected, transaction costs decrease with the average rebalancing time. For this reason, boot-
strap rebalancing strategies with a lower α achieve higher returns. Interestingly, the decline of
transaction costs with the ART is non-linear; costs decrease more rapidly as the ART goes to
zero. This phenomenon is best illustrated using the strategies optimised excluding transaction
costs in Panel A. The daily rebalancing strategy incurs transaction costs of 12.2 bps per day,
which is substantially more than the weekly rebalancing strategy with 6.1 bps per day. However,
the transactions costs only decrease to 3.3 and 2.0 bps when further reducing the rebalancing
frequency to monthly and quarterly, respectively. A similar pattern is also observed for other
strategies that are optimised excluding transaction costs.

Table 4.2 evidently shows that volatility is positively correlated with transaction costs and
negatively correlated with the ART. As a consequence, asset allocation strategies that rebalance
daily achieve the lowest volatility for both optimisation methods in all panels. Nevertheless,
bootstrap rebalancing strategies seem to be more efficient in reducing variance than periodic
rebalancing strategies. For example, the volatility of Boot 99% strategies optimised excluding
transaction costs is lower than that of monthly rebalancing strategies despite a similar ART.

The highest Sharpe ratios for strategies optimised excluding transaction costs are obtained
by the annual rebalancing strategy and the Boot 1% strategy due to their high ART. Only these
strategies outperform the buy-and-hold strategy in terms of the Sharpe ratio in Panels A and B.
As shown in Table 4.3, strategies that rebalance frequently perform significantly worse than the
buy-and-hold strategy. On the other hand, the differences in the Sharpe ratio are much smaller
for strategies optimised including transaction costs, because they all incur low transaction costs
(a maximum of 0.4 bps per day in Panel C). Table 4.3 shows that these strategies all have higher
Sharpe ratios than the buy-and-hold strategy, although only the Boot 1% performs significantly
better at the 10% level in Panels A and B.

In terms of utility, Table 4.3 shows that all rebalancing strategies significantly outperform
the buy-and-hold strategy. Table 4.2 shows that the Boot 99% strategy performs best in Panel A
for portfolios optimised excluding transaction costs. This strategy also performs well in Panels B
and C, but the weekly rebalancing strategy performs marginally better. For portfolios optimised
including transaction costs, Table 4.2 shows that the daily rebalancing strategy achieves the
highest utility level in all panels. The reason for this is that portfolios optimised including
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Table 4.2: Performance of asset allocation strategies applied on daily industry portfolio data
from 2000-2019.
This table shows the performance of buy-and-hold (B&H), periodic, threshold (Thld), and bootstrap
(Boot) rebalancing strategies. A stationary bootstrap is applied with an average block size of 20 trading
days. Portfolios are rebalanced to global minimum variance weights on the left-hand side and by solving
a quadratic programming problem with transaction costs on the right-hand side. The optimisation is
performed using the covariance matrix estimated with a rolling window of 250 trading days and assuming
transaction costs of 50 basis points. The performance is measured by the daily post-transaction cost
return in % (µ), daily volatility in % (σ), annualised post-transaction cost Sharpe ratio (SR), utility of a
mean-variance investor with risk aversion parameter 3 relative to B&H (Utility), daily transaction costs
in basis points (TC), and average rebalancing time in days (ART). The best performing strategy within
each column per panel is indicated in bold.

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

Panel A: Sample estimator

B&H 0.038 1.102 0.509 1.000 0.000 ∞ 0.038 1.102 0.509 1.000 0.000 ∞
Daily -0.082 0.716 -1.873 2.092 12.244 1.000 0.039 0.742 0.777 2.266 0.331 1.271
Weekly -0.020 0.725 -0.503 2.204 6.135 5.000 0.040 0.747 0.787 2.237 0.300 5.494
Monthly 0.007 0.742 0.091 2.177 3.276 20.000 0.041 0.755 0.810 2.192 0.269 20.603
Quarterly 0.018 0.774 0.312 2.022 1.956 60.506 0.041 0.780 0.776 2.044 0.234 60.506
Annually 0.033 0.816 0.578 1.844 0.966 251.579 0.044 0.806 0.806 1.914 0.160 251.579
Thld 5% -0.063 0.721 -1.454 2.111 10.387 1.708 0.040 0.747 0.789 2.235 0.293 14.984
Thld 10% -0.036 0.725 -0.844 2.163 7.557 3.565 0.041 0.747 0.817 2.243 0.270 31.656
Thld 20% -0.008 0.731 -0.242 2.198 4.702 9.835 0.044 0.766 0.854 2.134 0.255 70.294
Thld 40% 0.012 0.747 0.185 2.157 2.633 33.194 0.039 0.815 0.704 1.864 0.173 217.273
Boot 1% 0.033 0.790 0.598 1.975 1.124 177.037 0.043 0.759 0.842 2.171 0.309 2.178
Boot 25% 0.023 0.756 0.426 2.134 1.623 91.923 0.039 0.742 0.777 2.266 0.331 1.691
Boot 50% 0.020 0.751 0.370 2.160 1.935 64.595 0.039 0.742 0.777 2.266 0.331 1.691
Boot 75% 0.016 0.749 0.272 2.160 2.204 48.776 0.039 0.742 0.777 2.266 0.331 1.691
Boot 99% 0.005 0.732 0.052 2.229 3.217 21.339 0.039 0.742 0.777 2.266 0.331 1.691

Panel B: Shrinkage estimator

B&H 0.039 1.084 0.524 1.000 0.000 ∞ 0.039 1.084 0.524 1.000 0.000 ∞
Daily -0.047 0.689 -1.154 2.270 8.771 1.000 0.039 0.732 0.783 2.252 0.290 1.306
Weekly -0.003 0.695 -0.138 2.365 4.423 5.000 0.040 0.738 0.789 2.216 0.262 5.565
Monthly 0.016 0.711 0.292 2.322 2.397 20.000 0.041 0.746 0.807 2.172 0.236 20.603
Quarterly 0.024 0.744 0.455 2.140 1.465 60.506 0.040 0.770 0.768 2.029 0.202 60.506
Annually 0.035 0.780 0.652 1.961 0.749 251.579 0.043 0.794 0.808 1.911 0.138 251.579
Thld 5% -0.030 0.693 -0.760 2.295 7.069 1.979 0.039 0.736 0.771 2.226 0.251 15.672
Thld 10% -0.010 0.694 -0.283 2.355 4.978 4.426 0.040 0.743 0.784 2.187 0.232 33.194
Thld 20% 0.008 0.707 0.122 2.327 3.079 12.679 0.042 0.750 0.826 2.149 0.210 77.097
Thld 40% 0.021 0.717 0.401 2.300 1.729 43.063 0.040 0.802 0.731 1.863 0.161 217.273
Boot 1% 0.035 0.738 0.681 2.204 0.941 154.194 0.044 0.748 0.862 2.166 0.269 2.299
Boot 25% 0.026 0.728 0.502 2.241 1.298 81.017 0.039 0.732 0.783 2.251 0.290 1.790
Boot 50% 0.021 0.720 0.404 2.280 1.513 57.590 0.039 0.732 0.783 2.252 0.289 1.789
Boot 75% 0.022 0.708 0.421 2.358 1.717 44.259 0.039 0.732 0.783 2.252 0.289 1.789
Boot 99% 0.014 0.704 0.245 2.363 2.491 19.352 0.039 0.732 0.783 2.252 0.289 1.789

Panel C: POET estimator

B&H 0.039 0.971 0.593 1.000 0.000 ∞ 0.039 0.971 0.593 1.000 0.000 ∞
Daily -0.039 0.729 -0.911 1.647 7.490 1.000 0.036 0.756 0.693 1.678 0.372 1.342
Weekly -0.001 0.733 -0.085 1.705 3.817 5.000 0.037 0.760 0.704 1.658 0.325 5.677
Monthly 0.017 0.747 0.295 1.680 2.074 20.000 0.038 0.765 0.720 1.638 0.272 20.603
Quarterly 0.024 0.775 0.433 1.569 1.260 60.506 0.037 0.789 0.688 1.534 0.230 61.282
Annually 0.036 0.792 0.663 1.522 0.628 251.579 0.044 0.804 0.804 1.487 0.173 251.579
Thld 5% -0.023 0.732 -0.550 1.666 5.798 2.286 0.036 0.758 0.689 1.664 0.319 13.855
Thld 10% -0.005 0.735 -0.170 1.688 4.075 5.444 0.038 0.760 0.726 1.661 0.302 28.118
Thld 20% 0.008 0.740 0.119 1.692 2.617 15.127 0.039 0.768 0.740 1.629 0.245 69.275
Thld 40% 0.021 0.758 0.369 1.636 1.567 47.327 0.040 0.793 0.746 1.523 0.191 191.200
Boot 1% 0.032 0.785 0.583 1.543 0.857 140.588 0.040 0.777 0.747 1.588 0.296 3.359
Boot 25% 0.023 0.764 0.414 1.615 1.192 71.343 0.036 0.756 0.686 1.673 0.364 1.859
Boot 50% 0.020 0.749 0.362 1.674 1.452 48.283 0.036 0.756 0.693 1.678 0.371 1.766
Boot 75% 0.016 0.744 0.280 1.690 1.853 32.081 0.036 0.756 0.693 1.678 0.371 1.766
Boot 99% 0.007 0.739 0.095 1.696 2.633 14.184 0.036 0.756 0.693 1.678 0.371 1.766
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transaction costs are already conservative with rebalancing, such that further reducing this in
any way is not beneficial.

The performance of covariance estimation methods can be assessed by looking at the differ-
ences across panels in Table 4.2. Provided that all asset allocation strategies minimise variance,
the accuracy of the estimation methods is best evaluated using the volatility. The shrinkage
estimator evidently performs best with respect to this measure, since the achieved volatility in
Panel B is lower than in Panel A and much lower than in Panel C. However, accuracy is not the
only relevant property, because stability also helps to reduce the amount of rebalancing. In this
respect, both the shrinkage and POET estimator perform well, because they are structured esti-
mators. Overall, the shrinkage estimator is the preferred estimator, because the highest Sharpe
ratio and utility level are both found in Panel B; the Boot 1% strategy optimised including
transaction costs yields the highest Sharpe ratio of 0.86 and the weekly rebalancing strategy
optimised excluding transaction costs realises the highest utility level.

The relative performance of the optimisation methods is evaluated by comparing the left-
and right-hand side of Table 4.2. The large differences in the portfolio performance across the
optimisation methods can largely be explained by the differences in the amount of rebalancing.
For the same rebalancing strategy, the strategy optimised including transaction costs incurs much
lower trading costs than the strategy optimised excluding transaction costs. Table 4.4 further
shows how the choice of optimisation method affects the post-transaction cost returns, Sharpe
ratio, and utility level. Portfolios optimised including transaction costs achieve a significantly
higher return and Sharpe ratio at the 5% level for all strategies except for the annual and
Boot 1% rebalancing strategy. This clearly illustrates that the method of Dybvig and Pezzo
(2019) greatly improves upon GMV optimisation.9 Strategies optimised including transaction
costs usually achieve higher utility levels in Panel A but lower utility levels in Panels B and C.
Table 4.2 shows that the reason behind this is that portfolios optimised excluding transaction
costs are less volatile due to more frequent rebalancing. Finally, it should be noted that the
bootstrap strategies behave very differently across optimisation methods; they are effective for
strategies optimised excluding transaction costs but ineffective for strategies optimised including
transaction costs. More specifically, bootstrap rebalancing strategies with a high α perform the
same as the daily rebalancing strategy on the right-hand side of Table 4.2. This striking finding
is further investigated in Section 4.6.

4.6 Functioning of Bootstrap Rebalancing Strategies

The previous section has shown that using a bootstrap test to make the portfolio rebalancing
decision can enhance performance. However, the effectiveness of this approach rests on the
selected hyperparameter and the portfolio optimisation method. To investigate the influence of
both variables, Figure 4.1 plots the volatility, transaction costs, and utility level as a function
of hyperparameter α for portfolios optimised excluding and including transaction costs.
9Experimenting with the optimisation method of Dybvig and Pezzo (2019) shows that even better portfolio
performance can be realised shrinking c(·) in (3.2) towards zero, thereby increasing the amount of rebalancing.
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Table 4.4: Differences in the mean return, Sharpe ratio and utility level between asset allo-
cation strategies optimised including and excluding transaction costs applied on daily industry
portfolio data from 2000-2019.
This table shows the difference in the mean return in % (∆µ), annualised Sharpe ratio (∆SR) and utility
level multiplied by 100 (∆U) of the periodic, threshold (Thld), and bootstrap (Boot) rebalancing strate-
gies optimised including transaction costs compared to those optimised excluding transaction costs. A
stationary bootstrap is applied with an average block size of 20 trading days. The difference in perfor-
mance is between portfolios rebalanced by solving a quadratic programming problem with transaction
costs compared to global minimum variance weights. The optimisation is performed using the covariance
matrix estimated with a rolling window of 250 trading days (with the sample, shrinkage, and POET
estimator) and assuming transaction costs of 50 basis points. The test for a difference in Sharpe ratio
is performed using the test of Ledoit and Wolf (2008) and the test for a differences in mean return and
utility are performed using an adaptation of that test. Significance for the test that ∆(·) = 0 is indicated
at the 10%, 5% and 1% level by *, **, and ***, respectively.

Panel A: Sample Panel B: Shrinkage Panel C: POET

∆µ ∆SR ∆U ∆µ ∆SR ∆U ∆µ ∆SR ∆U

Daily 0.121*** 2.651*** 6.563*** 0.087*** 1.937*** -0.629 0.075*** 1.605*** 1.532
Weekly 0.053*** 1.131*** 1.437 0.038*** 0.816*** -4.423** 0.033*** 0.683*** -3.072*
Monthly 0.034*** 0.719*** 0.561 0.025*** 0.515*** -5.101** 0.021*** 0.425*** -2.126
Quarterly 0.023*** 0.464*** 0.964 0.016*** 0.313*** -4.396** 0.013** 0.256** -1.995
Annually 0.011* 0.228* 3.517 0.008 0.156 -2.320 0.008 0.140 -2.106
Thld 5% 0.104*** 2.242*** 4.672** 0.069*** 1.531*** -2.334 0.059*** 1.239*** -0.076
Thld 10% 0.077*** 1.661*** 2.935 0.049*** 1.067*** -5.635*** 0.043*** 0.896*** -1.317
Thld 20% 0.053*** 1.096*** -2.412 0.034*** 0.704*** -6.100*** 0.030*** 0.621*** -3.116*
Thld 40% 0.027*** 0.518*** -12.971*** 0.019*** 0.330** -17.553*** 0.020*** 0.377*** -6.242***
Boot 1% 0.011* 0.243** 8.147*** 0.009* 0.182* -1.396 0.008 0.163* 2.539
Boot 25% 0.016*** 0.351*** 4.859*** 0.013*** 0.281*** 0.358 0.013*** 0.272*** 2.948*
Boot 50% 0.019*** 0.408*** 3.845** 0.018*** 0.379*** -0.962 0.016*** 0.332*** 0.191
Boot 75% 0.024*** 0.506*** 3.878** 0.017*** 0.362*** -3.455** 0.020*** 0.414*** -0.571
Boot 99% 0.034*** 0.726*** 1.301 0.025*** 0.538*** -3.609** 0.029*** 0.598*** -0.898

First examining strategies optimised excluding transaction costs, Figures 4.1a-c clearly demon-
strate that volatility decreases with α. This decrease is the sharpest when α is close to zero,
because it is difficult to reject the null hypothesis of no difference in portfolio performance at
a very low significance level. This rejection is further complicated by the fat right tail in the
distribution of the bootstrapped test statistics shown in Figures 4.2a-c. Figures 4.1a-c also
display a fairly flat relation between the transaction costs and α. The reason for this is that
rebalancing now helps to reduce transaction costs in the future, because the current optimal
allocation is closer to the future optimal allocation than the allocation that is held now. As
a result, rebalancing early is beneficial. Lastly, the utility function indicates that the highest
utility level is obtained when α is close to 100%. This may be somewhat surprising given that
transaction costs increase rapidly as α approaches 100%. However, a small gain in volatility is
more important than a sizeable reduction in transaction costs for an investor with a risk aversion
parameter of three. Yet, if the cost of trading is higher or if the investor is less risk-averse then
a lower α is better, as shown in Tables D.2-5 in Appendix D.

Turning to portfolios optimised including transaction costs, Figures 4.1d-f show that perfor-
mance is constant when α is high. The portfolio is always rebalanced if α is above 30% and the
test statistic is positive. The explanation behind this is that most bootstrapped test statistics
are at or below zero as shown in Figures 4.2d-f. The distribution of bootstrapped test statistics
further shows a peak at zero, because there is zero utility gain if both the bootstrapped portfolio
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Panel A: Sample estimator

(a) Excluding transaction costs (d) Including transaction costs

Panel B: Shrinkage estimator

(b) Excluding transaction costs (e) Including transaction costs

Panel C: POET estimator

(c) Excluding transaction costs (f) Including transaction costs

Figure 4.1: Performance of bootstrap rebalancing strategies as a function of hyperparameter
α applied on daily industry portfolio data from 2000-2019.
This figure shows the performance of bootstrap rebalancing strategies as a function of hyperparameter α
ranging from 1% to 99% with a step size of 5%. A stationary bootstrap is applied with an average block
size of 20 trading days. Portfolios are rebalanced to global minimum variance weights on the left-hand
side and by solving a quadratic programming problem with transaction costs on the right-hand side. The
optimisation is performed using the covariance matrix estimated with a rolling window of 250 trading
days and assuming transaction costs of 50 basis points. The performance is measured by the volatility in
%, transaction costs in basis points, and utility of a mean variance investor with risk aversion parameter
3 relative to the buy-and-hold strategy.
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Panel A: Sample estimator

(a) Excluding transaction costs (d) Including transaction costs

Panel B: Shrinkage estimator

(b) Excluding transaction costs (e) Including transaction costs

Panel C: POET estimator

(c) Excluding transaction costs (f) Including transaction costs

Figure 4.2: Distribution of bootstrapped test statistics from the bootstrap rebalancing strate-
gies applied on daily industry portfolio data from 2000-2019.
This figure shows the density of the bootstrapped test statistics from the first 100 trading days (100,000
observations) of bootstrap rebalancing strategies with α at 50%. A stationary bootstrap is applied with
an average block size of 20 trading days. Portfolios are rebalanced to global minimum variance weights
on the left-hand side and by solving a quadratic programming problem with transaction costs on the
right-hand side. The optimisation is performed using the covariance matrix estimated with a rolling
window of 250 trading days and assuming transaction costs of 50 basis points. Note there is a difference
in scaling of the figures’ axes on the left- and the right-hand side.
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allocation θ(b) and the optimal portfolio allocation θ∗ are equal to current allocation θ0. These
peaks are most notable for the structured estimators in Figures 4.2e-f, because there is often no
gain from rebalancing after deducing transaction costs when the estimated covariance matrix
changes little over time. The large amount of negative bootstrapped statistics indicates that if
the portfolio is optimised using a bootstrapped input, then rebalancing causes a loss in utility.
This loss results from a small variance gain that is more than offset by a loss from incurred
transaction costs. As a result, an opportunity to rebalance nearly always provides a statistically
significant gain in performance, such that the portfolio is rebalanced. Always rebalancing is
also the optimal strategy as demonstrated in Section 4.5. The rebalancing decision may only be
rejected for low levels of α, because there are a few positive bootstrapped test statistics.

Comparing the left- and right-hand side in Figure 4.1, there is a different pattern that arises
due to the difference between test statistics (3.4) and (3.5) applied for strategies optimised
including and excluding transaction costs, respectively. Test statistic (3.5) solely composes
of the gain in variance realised by rebalancing from the current portfolio allocation θ0 to the
optimal portfolio allocation θ∗. Given the estimated covariance matrix Σ∗, the (bootstrapped)
test statistic is always non-negative as shown in Figures 4.2a-c. On the other hand, Figures
4.2d-f show that the inclusion of transaction costs in test statistic (3.4) leads to a shift in the
distribution of the bootstrapped test statistics to the left (due to a loss in utility from paying
transaction costs) and more centring around zero (as transaction costs reduce the amount of
rebalancing). The large dissimilarity in the distribution leads to diverging significance tests and
hence different outcomes regarding the portfolio rebalancing decision.

To summarise, bootstrap rebalancing strategies often outperform other rebalancing strate-
gies when the portfolio is optimised excluding transaction costs and the right hyperparameter
is selected. On the other hand, bootstrap rebalancing strategies are ineffective when they are
optimised including transaction costs, because they perform exactly the same as the daily re-
balancing strategy when α is high. The reason for this is that the daily rebalancing strategy
is already conservative in its rebalancing, such that there is no further gain from incorporating
estimation uncertainty. Nevertheless, the bootstrap rebalancing strategy is useful as it provides
a statistical rationale behind applying this rebalancing strategy.

5 Robustness Analysis

This section verifies the robustness of the results presented in Section 4. The performance of the
asset allocation strategies is benchmarked against the 1/N portfolio in Section 5.1. The effect
of imposing short sale constraints is demonstrated in Section 5.2. The impact of adjustments
in the bootstrap methodology are evaluated in Section 5.3. The consequences of changes in the
estimation window and data frequency are evaluated in Sections 5.4 and 5.5, respectively.

5.1 1/N Portfolio Strategy

The 1/N portfolio strategy is competitive with many asset allocation strategies in an out-of-
sample setting, as it does not suffer from any estimation error (Garlappi et al., 2007). In
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addition, the 1/N strategy realises a low turnover, because the target allocation is fixed to an
equal weighting scheme over time. Therefore, comparing the variance optimised strategies from
Section 4 to the 1/N strategy provides a good indication of their effectiveness.

The performance of 1/N strategies is shown in Table 5.1. Clearly, the performance is barely
influenced by the choice of rebalancing strategy or optimisation method. 1/N strategies incur
up to 12 bps less transaction costs per day than the variance optimised portfolios from Section
4. As a result, 1/N strategies achieve higher Sharpe ratios than most strategies that are variance
optimised excluding transaction costs. On the other hand, 1/N strategies perform worse than
strategies that are variance optimised including transaction costs. This once again highlights the
benefit of taking these costs into account in the portfolio optimisation. Finally, 1/N portfolio
strategies realise much lower utility levels than all variance optimised strategies, because their
volatility is approximately 0.5% higher per day. This shows that it is better to estimate the
covariance matrix to construct portfolio weights rather than to give all assets the same weight.

Table 5.1: Performance of 1/N portfolio strategies applied on daily industry portfolio data
from 2000-2019.
This table shows the performance of buy-and-hold (B&H), periodic, and threshold (Thld) rebalancing
strategies.10 Portfolios are rebalanced to equal weights on the left-hand side and by solving a quadratic
programming problem with transaction costs on the right-hand side. The optimisation is performed
using the identity matrix as the estimated covariance matrix and assuming transaction costs of 50 basis
points. The performance is measured by the daily post-transaction cost return in % (µ), daily volatility
in % (σ), annualised post-transaction cost Sharpe ratio (SR), utility of a mean-variance investor with
risk aversion parameter 3 relative to B&H (Utility), daily transaction costs in basis points (TC), and
average rebalancing time in days (ART). The best performing strategy within each column is indicated
in bold.

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

B&H 0.041 1.200 0.508 1.000 0.000 ∞ 0.041 1.200 0.508 1.000 0.000 ∞
Daily 0.040 1.201 0.485 0.997 0.343 1.000 0.041 1.199 0.508 1.001 0.000 199.167
Weekly 0.041 1.200 0.508 1.000 0.157 5.000 0.041 1.200 0.508 1.000 0.000 478.000
Monthly 0.042 1.197 0.513 1.004 0.077 20.000 0.041 1.200 0.508 1.000 0.000 1593.333
Quarterly 0.042 1.193 0.520 1.013 0.046 60.506 0.041 1.200 0.508 1.000 0.000 4780.000
Annually 0.042 1.181 0.530 1.033 0.022 251.579 0.041 1.200 0.508 1.000 0.000 4780.000
Thld 5% 0.042 1.199 0.520 1.002 0.077 25.561 0.041 1.200 0.508 1.000 0.000 ∞
Thld 10% 0.043 1.198 0.531 1.003 0.041 91.923 0.041 1.200 0.508 1.000 0.000 ∞
Thld 20% 0.044 1.194 0.540 1.011 0.020 367.692 0.041 1.200 0.508 1.000 0.000 ∞
Thld 40% 0.044 1.153 0.570 1.085 0.010 1593.333 0.041 1.200 0.508 1.000 0.000 ∞

5.2 Short Sale Constraints

Portfolios may include short positions in some assets in Section 4. In practice, investors may
be impeded from short selling, because assets are difficult to short or there are regulatory
constraints at the institutional level (Jones & Lamont, 2002). Jagannathan and Ma (2003) find
that imposing portfolio constraints can improve the performance, because it reduces the amount
of risk. They further show that the imposition of short sale constraints can be regarded as a form
of shrinkage of the covariance matrix. Moreover, they show that this type of shrinkage improves
portfolio performance when the sample covariance estimator is applied, whereas it is ineffective
10Bootstrap rebalancing strategies are inapplicable, because the covariance matrix is fixed to the identity matrix.
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with a shrinkage or factor-based covariance estimator. To investigate how short sale constraints
affect the performance of the asset allocation strategies, the empirical study is performed again
with constraint ∆− ≤ θ0 added to optimisation problem (3.2) and constraint w ≥ 0 added to
optimisation problem (4.9).

Table 5.2 shows the performance of long-only asset allocation strategies. Compared to Sec-
tion 4, all strategies achieve much lower transaction costs but higher volatility. The imposition
of short sale constraints further leads to higher Sharpe ratios for most rebalancing strategies,
both when optimised excluding and including transaction costs. In contrast to the findings of
Jagannathan and Ma (2003), the imposition of short sale constraints also improves the perfor-
mance of strategies for which the covariance matrix is estimated using shrinkage and POET
estimators (Panels B and C). This suggests that “double shrinkage” of the covariance matrix is
advantageous. Nevertheless, the largest gains in Sharpe ratios are realised by strategies opti-
mised using the sample covariance estimator; the threshold 40% strategy optimised including
transaction achieves the highest Sharpe ratio. The Boot 1% strategy remains performing well
for strategies optimised excluding transaction costs. Imposing short sale constraints only im-
proves the utility of the strategies in Panel C. Bootstrap rebalancing strategies do not achieve
the highest utility levels, although the Boot 99% strategy is always competitive with the best
strategy. The unconstrained portfolio strategies that apply the shrinkage estimator of Ledoit
and Wolf (2003) from Section 4 remain the best performing overall in terms of utility.

5.3 Bootstrap Methodology

This section investigates the robustness of results regarding the bootstrap block size and method.
Table 5.3 shows the performance of bootstrap rebalancing strategies applied with the stationary
bootstrap and block sizes of 1 and 10 trading days. Table D.1 in Appendix D indicates that
these smaller block sizes may be preferred for some industry portfolios. Applying a smaller
block size leads to more variation in the bootstrap samples, such that bootstrap rebalancing
strategies have a lower ART when α is low but a higher ART when α is high. The largest
performance differences are realised by Boot 1% and Boot 99% strategies, because they depend
most on observations in the tail of the bootstrapped test statistics’ distribution. Compared to
the findings in Section 4, Boot 1% strategies achieve lower Sharpe ratios but higher utility levels,
whereas the opposite is observed for Boot 99% strategies. Yet, these differences are not large.

Table 5.4 shows how bootstrap rebalancing strategies perform when a circular rather than a
stationary bootstrap is applied. In comparison to the results shown in Section 4, the performance
of the Boot 1% strategy has slightly deteriorated, whereas the performance of the Boot 99%
strategy has improved marginally. The performance differences of bootstrap rebalancing strate-
gies with α ranging from 25% to 75% is small, which shows that the choice of bootstrap method
is not of major influence. Overall, it can be concluded that changes in the bootstrap method-
ology have little impact on the results. However, it is expected that the bootstrap method is
more important when applying dynamic rather than static covariance estimators, because they
heavily rely on the dependence structure in the data.
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Table 5.2: Performance of asset allocation strategies with short sale constraints applied on
daily industry portfolio data from 2000-2019.
This table shows the performance of buy-and-hold (B&H), periodic, threshold (Thld), and bootstrap
(Boot) rebalancing strategies. A stationary bootstrap is applied with an average block size of 20 trading
days. Portfolios are rebalanced to global minimum variance weights on the left-hand side and by solving
a quadratic programming problem with transaction costs on the right-hand side. The optimisation is
performed using the covariance matrix estimated with a rolling window of 250 trading days and assuming
transaction costs of 50 basis points. The performance is measured by the daily post-transaction cost
return in % (µ), daily volatility in % (σ), annualised post-transaction cost Sharpe ratio (SR), utility of a
mean-variance investor with risk aversion parameter 3 relative to B&H (Utility), daily transaction costs
in basis points (TC), and average rebalancing time in days (ART). The best performing strategy within
each column per panel is indicated in bold.

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

Panel A: Sample estimator

B&H 0.040 1.098 0.531 1.000 0.000 ∞ 0.040 1.098 0.531 1.000 0.000 ∞
Daily 0.021 0.806 0.366 1.857 1.968 1.000 0.045 0.825 0.811 1.814 0.147 1.668
Weekly 0.030 0.805 0.539 1.879 1.045 5.000 0.045 0.826 0.805 1.809 0.140 6.566
Monthly 0.035 0.815 0.619 1.840 0.595 20.000 0.045 0.829 0.807 1.796 0.130 22.762
Quarterly 0.039 0.821 0.691 1.817 0.386 60.506 0.046 0.830 0.823 1.790 0.117 61.282
Annually 0.044 0.828 0.784 1.798 0.210 251.579 0.049 0.844 0.859 1.735 0.080 251.579
Thld 5% 0.027 0.806 0.470 1.866 1.418 2.987 0.045 0.826 0.811 1.807 0.137 16.370
Thld 10% 0.030 0.807 0.541 1.869 1.021 6.742 0.046 0.829 0.823 1.797 0.131 31.447
Thld 20% 0.034 0.809 0.606 1.865 0.658 18.819 0.046 0.831 0.826 1.786 0.115 68.286
Thld 40% 0.036 0.820 0.647 1.818 0.421 56.905 0.049 0.838 0.871 1.760 0.097 170.714
Boot 1% 0.040 0.825 0.720 1.802 0.238 170.714 0.048 0.826 0.859 1.812 0.121 5.968
Boot 25% 0.037 0.823 0.666 1.808 0.367 77.097 0.045 0.827 0.811 1.805 0.147 2.878
Boot 50% 0.037 0.818 0.660 1.827 0.423 54.318 0.045 0.825 0.811 1.814 0.147 2.698
Boot 75% 0.036 0.812 0.641 1.856 0.476 37.937 0.045 0.825 0.811 1.814 0.147 2.696
Boot 99% 0.033 0.808 0.596 1.872 0.755 12.781 0.045 0.825 0.811 1.814 0.147 2.696

Panel B: Shrinkage estimator

B&H 0.040 1.090 0.539 1.000 0.000 ∞ 0.040 1.090 0.539 1.000 0.000 ∞
Daily 0.023 0.804 0.402 1.842 1.801 1.000 0.045 0.824 0.813 1.793 0.136 1.687
Weekly 0.031 0.803 0.559 1.863 0.960 5.000 0.045 0.824 0.808 1.789 0.129 6.928
Monthly 0.035 0.812 0.629 1.827 0.551 20.000 0.045 0.827 0.811 1.777 0.122 22.762
Quarterly 0.039 0.819 0.696 1.802 0.364 60.506 0.046 0.829 0.821 1.770 0.110 61.282
Annually 0.044 0.825 0.785 1.786 0.201 251.579 0.048 0.842 0.856 1.717 0.076 251.579
Thld 5% 0.029 0.804 0.505 1.850 1.260 3.236 0.045 0.824 0.817 1.790 0.126 17.256
Thld 10% 0.032 0.805 0.570 1.857 0.895 7.516 0.046 0.827 0.823 1.777 0.121 32.966
Thld 20% 0.034 0.807 0.618 1.847 0.581 20.965 0.047 0.828 0.841 1.774 0.104 75.873
Thld 40% 0.038 0.818 0.681 1.805 0.372 62.895 0.048 0.842 0.842 1.716 0.083 199.167
Boot 1% 0.042 0.824 0.744 1.786 0.231 170.714 0.048 0.822 0.865 1.803 0.106 6.136
Boot 25% 0.037 0.820 0.651 1.793 0.340 77.097 0.045 0.826 0.811 1.781 0.135 2.924
Boot 50% 0.035 0.818 0.628 1.802 0.385 56.235 0.045 0.824 0.813 1.793 0.136 2.761
Boot 75% 0.035 0.811 0.633 1.833 0.447 38.240 0.045 0.824 0.813 1.793 0.136 2.758
Boot 99% 0.034 0.806 0.615 1.855 0.686 13.025 0.045 0.824 0.813 1.793 0.136 2.758

Panel C: POET estimator

B&H 0.040 1.109 0.531 1.000 0.000 ∞ 0.040 1.109 0.531 1.000 0.000 ∞
Daily 0.023 0.803 0.391 1.910 1.852 1.000 0.045 0.822 0.815 1.866 0.160 1.738
Weekly 0.031 0.802 0.557 1.933 0.972 5.000 0.045 0.823 0.814 1.859 0.150 6.968
Monthly 0.036 0.810 0.640 1.901 0.561 20.000 0.046 0.826 0.823 1.845 0.139 22.441
Quarterly 0.038 0.817 0.684 1.873 0.373 60.506 0.046 0.830 0.828 1.829 0.122 62.078
Annually 0.043 0.824 0.777 1.853 0.202 251.579 0.048 0.841 0.853 1.781 0.080 251.579
Thld 5% 0.028 0.803 0.494 1.920 1.310 3.128 0.045 0.824 0.816 1.856 0.148 15.672
Thld 10% 0.032 0.803 0.574 1.930 0.927 7.354 0.046 0.826 0.827 1.846 0.141 30.063
Thld 20% 0.035 0.806 0.634 1.922 0.614 19.671 0.047 0.828 0.853 1.841 0.119 67.324
Thld 40% 0.038 0.818 0.682 1.871 0.390 58.293 0.049 0.839 0.862 1.793 0.105 159.333
Boot 1% 0.042 0.818 0.748 1.878 0.220 183.846 0.047 0.824 0.846 1.857 0.123 7.673
Boot 25% 0.038 0.823 0.668 1.847 0.335 81.017 0.045 0.824 0.817 1.855 0.154 3.333
Boot 50% 0.036 0.816 0.647 1.875 0.389 54.943 0.045 0.822 0.815 1.866 0.160 2.704
Boot 75% 0.037 0.810 0.659 1.907 0.482 34.388 0.045 0.822 0.815 1.866 0.160 2.705
Boot 99% 0.033 0.804 0.599 1.927 0.733 11.832 0.045 0.822 0.815 1.866 0.160 2.705
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Table 5.3: Performance of bootstrap rebalancing strategies with a block size 1 and 10 trading
days applied on daily industry portfolio data from 2000-2019.
This table shows the performance of bootstrap (Boot) rebalancing strategies. A stationary bootstrap
is applied with an average block size of 1 and 10 trading day(s). Portfolios are rebalanced to global
minimum variance weights on the left-hand side and by solving a quadratic programming problem with
transaction costs on the right-hand side. The optimisation is performed using the covariance estimated on
a rolling-window of 250 trading days and assuming transaction costs of 50 basis points. The performance
is measured by the daily post-transaction cost return in % (µ), daily volatility in % (σ), annualised
post-transaction cost Sharpe ratio (SR), utility of a mean-variance investor with risk aversion parameter
3 relative to B&H (Utility), daily transaction costs in basis points (TC), and average rebalancing time
in days (ART). The best performing strategy within each column per panel is indicated in bold if it
outperforms buy-and-hold, periodic, and threshold rebalancing strategies.

Table 5.3a: Block size of one trading day

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

Panel A: Sample estimator

Boot 1% 0.029 0.775 0.540 2.045 1.359 129.189 0.039 0.744 0.775 2.251 0.331 1.768
Boot 25% 0.023 0.757 0.422 2.132 1.627 90.189 0.039 0.742 0.777 2.266 0.331 1.691
Boot 50% 0.023 0.754 0.431 2.147 1.827 73.538 0.039 0.742 0.777 2.266 0.331 1.691
Boot 75% 0.023 0.746 0.421 2.193 1.960 61.282 0.039 0.742 0.777 2.266 0.331 1.691
Boot 99% 0.014 0.738 0.235 2.217 2.384 40.508 0.039 0.742 0.777 2.266 0.331 1.691

Panel B: Shrinkage estimator

Boot 1% 0.030 0.740 0.587 2.178 1.143 108.636 0.039 0.733 0.783 2.250 0.286 1.853
Boot 25% 0.029 0.724 0.562 2.273 1.308 75.873 0.039 0.732 0.783 2.252 0.289 1.789
Boot 50% 0.024 0.721 0.460 2.278 1.491 61.282 0.039 0.732 0.783 2.252 0.289 1.789
Boot 75% 0.025 0.719 0.483 2.294 1.570 54.943 0.039 0.732 0.783 2.252 0.289 1.789
Boot 99% 0.020 0.704 0.389 2.382 1.849 35.940 0.039 0.732 0.783 2.252 0.289 1.789

Panel C: POET estimator

Boot 1% 0.030 0.755 0.570 1.669 0.876 132.778 0.037 0.760 0.713 1.659 0.299 2.552
Boot 25% 0.022 0.757 0.398 1.645 1.203 70.294 0.036 0.756 0.693 1.677 0.369 1.817
Boot 50% 0.017 0.750 0.303 1.666 1.438 50.316 0.036 0.756 0.693 1.678 0.371 1.766
Boot 75% 0.017 0.746 0.291 1.681 1.700 37.638 0.036 0.756 0.693 1.678 0.371 1.766
Boot 99% 0.011 0.743 0.174 1.685 2.267 20.783 0.036 0.756 0.693 1.678 0.371 1.766

Table 5.3b: Block size of ten trading days

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

Panel A: Sample estimator

Boot 1% 0.029 0.790 0.522 1.964 1.215 159.333 0.040 0.757 0.782 2.177 0.303 2.083
Boot 25% 0.026 0.747 0.495 2.197 1.527 97.551 0.039 0.742 0.777 2.266 0.331 1.691
Boot 50% 0.018 0.748 0.321 2.171 1.778 72.424 0.039 0.742 0.777 2.266 0.331 1.691
Boot 75% 0.018 0.748 0.323 2.169 2.055 56.235 0.039 0.742 0.777 2.266 0.331 1.691
Boot 99% 0.009 0.730 0.131 2.253 2.787 29.325 0.039 0.742 0.777 2.266 0.331 1.691

Panel B: Shrinkage estimator

Boot 1% 0.030 0.763 0.569 2.046 1.045 132.778 0.040 0.748 0.778 2.152 0.262 2.174
Boot 25% 0.029 0.725 0.577 2.270 1.275 83.860 0.039 0.732 0.783 2.252 0.289 1.789
Boot 50% 0.024 0.716 0.468 2.310 1.472 60.506 0.039 0.732 0.783 2.252 0.289 1.789
Boot 75% 0.023 0.711 0.440 2.343 1.618 49.792 0.039 0.732 0.783 2.252 0.289 1.789
Boot 99% 0.018 0.704 0.333 2.370 2.185 26.409 0.039 0.732 0.783 2.252 0.289 1.789

Panel C: POET estimator

Boot 1% 0.029 0.782 0.520 1.551 0.833 144.849 0.038 0.783 0.705 1.559 0.296 2.874
Boot 25% 0.021 0.764 0.385 1.611 1.170 73.538 0.036 0.756 0.692 1.678 0.369 1.835
Boot 50% 0.018 0.753 0.316 1.653 1.413 51.398 0.036 0.756 0.693 1.678 0.371 1.766
Boot 75% 0.016 0.750 0.278 1.662 1.801 34.638 0.036 0.756 0.693 1.678 0.371 1.766
Boot 99% 0.012 0.739 0.192 1.705 2.402 17.574 0.036 0.756 0.693 1.678 0.371 1.766
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Table 5.4: Performance of bootstrap rebalancing strategies with the circular bootstrap applied
on daily industry portfolio data from 2000-2019.
This table shows the performance of bootstrap (Boot) rebalancing strategies. A circular bootstrap is
applied with a block size of 20 trading days. Portfolios are rebalanced to global minimum variance
weights on the left-hand side and by solving a quadratic programming problem with transaction costs on
the right-hand side. The optimisation is performed using the covariance estimated on a rolling-window
of 250 trading days and assuming transaction costs of 50 basis points. The performance is measured by
the daily post-transaction cost return in % (µ), daily volatility in % (σ), annualised post-transaction cost
Sharpe ratio (SR), utility of a mean-variance investor with risk aversion parameter 3 relative to B&H
(Utility), daily transaction costs in basis points (TC), daily transaction costs in % (TC), and average
rebalancing time in days (ART). The best performing strategy within each column per panel is indicated
in bold if it outperforms buy-and-hold, periodic, and threshold rebalancing strategies.

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

Panel A: Sample estimator

Boot 1% 0.032 0.796 0.571 1.937 1.154 177.037 0.044 0.759 0.850 2.171 0.312 2.201
Boot 25% 0.026 0.762 0.489 2.108 1.558 97.551 0.039 0.742 0.777 2.266 0.331 1.691
Boot 50% 0.018 0.747 0.328 2.180 1.844 70.294 0.039 0.742 0.777 2.266 0.331 1.691
Boot 75% 0.018 0.747 0.328 2.176 2.060 54.318 0.039 0.742 0.777 2.266 0.331 1.691
Boot 99% 0.009 0.738 0.143 2.208 2.964 25.699 0.039 0.742 0.777 2.266 0.331 1.691

Panel B: Shrinkage estimator

Boot 1% 0.035 0.741 0.687 2.184 0.961 149.375 0.043 0.748 0.855 2.162 0.273 2.309
Boot 25% 0.030 0.724 0.583 2.278 1.262 83.860 0.039 0.732 0.783 2.252 0.289 1.789
Boot 50% 0.024 0.717 0.462 2.304 1.489 60.506 0.039 0.732 0.783 2.252 0.289 1.789
Boot 75% 0.024 0.710 0.465 2.349 1.669 47.327 0.039 0.732 0.783 2.252 0.289 1.789
Boot 99% 0.016 0.704 0.302 2.369 2.272 23.900 0.039 0.732 0.783 2.252 0.289 1.789

Panel C: POET estimator

Boot 1% 0.031 0.789 0.573 1.526 0.831 144.849 0.039 0.780 0.736 1.575 0.300 3.397
Boot 25% 0.024 0.761 0.445 1.632 1.162 73.538 0.036 0.755 0.693 1.681 0.368 1.848
Boot 50% 0.019 0.754 0.335 1.653 1.443 49.792 0.036 0.756 0.693 1.678 0.371 1.766
Boot 75% 0.016 0.748 0.282 1.673 1.788 34.388 0.036 0.756 0.693 1.678 0.371 1.766
Boot 99% 0.009 0.738 0.124 1.705 2.504 16.314 0.036 0.756 0.693 1.678 0.371 1.766

5.4 Estimation Window

To assess how including more short- or long-term information impacts portfolio performance,
the empirical analysis is repeated with estimation windows of 100 and 500 trading days. The
block size is decreased from 20 to 10 observations in order to obtain sufficient variation in the
bootstrap samples when an estimation window of 100 trading days is used.

Table 5.5 shows the performance of the asset allocation strategies with the covariance matrix
estimated using a rolling window of 100 trading days. A reduction in the estimation window
from 250 to 100 trading days leads to three to four times higher transaction costs, because the
estimated covariance matrix changes more over time. Together with an increase in volatility,
this is detrimental for portfolio performance. The smaller estimation window also leads to more
estimation uncertainty. This makes bootstrap rebalancing strategies more effective when applied
with portfolios optimised including transaction costs; for two out of three covariance estimators
the Boot 25% strategy achieves the highest utility level. Bootstrap rebalancing strategies of
portfolios optimised excluding transaction costs also perform relatively well with a low α.

The performance of strategies optimised with an estimation window of 500 trading days is
displayed in Table 5.6. Trading costs are approximately halved when using a two-year estimation
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Table 5.5: Performance of asset allocation strategies with an estimation window of 100 days
applied on daily industry portfolio data from 2000-2019.
This table shows the performance of buy-and-hold (B&H), periodic, threshold (Thld), and bootstrap
(Boot) rebalancing strategies. A stationary bootstrap is applied with an average block size of 20 trading
days. Portfolios are rebalanced to global minimum variance weights on the left-hand side and by solving
a quadratic programming problem with transaction costs on the right-hand side. The optimisation is
performed using the covariance matrix estimated with a rolling window of 100 trading days and assuming
transaction costs of 50 basis points. The performance is measured by the daily post-transaction cost
return in % (µ), daily volatility in % (σ), annualised post-transaction cost Sharpe ratio (SR), utility of a
mean-variance investor with risk aversion parameter 3 relative to B&H (Utility), daily transaction costs
in basis points (TC), and average rebalancing time in days (ART). The best performing strategy within
each column per panel is indicated in bold.

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

Panel A: Sample estimator

B&H 0.041 1.135 0.530 1.000 0.000 ∞ 0.041 1.135 0.530 1.000 0.000 ∞
Daily -0.421 0.902 -7.429 1.152 44.813 1.000 0.029 0.769 0.544 2.208 0.867 1.223
Weekly -0.190 0.980 -3.109 1.161 21.896 5.000 0.032 0.773 0.594 2.192 0.813 5.335
Monthly -0.079 0.990 -1.309 1.222 10.675 20.041 0.036 0.785 0.658 2.131 0.723 20.205
Quarterly -0.025 0.990 -0.448 1.265 5.396 60.122 0.041 0.808 0.752 2.017 0.604 60.122
Annually 0.031 0.970 0.465 1.371 1.480 259.474 0.038 0.846 0.657 1.829 0.174 259.474
Thld 5% -0.413 0.906 -7.263 1.152 44.015 1.101 0.031 0.773 0.565 2.187 0.807 7.888
Thld 10% -0.379 0.923 -6.538 1.142 40.571 1.408 0.032 0.777 0.586 2.167 0.774 15.311
Thld 20% -0.292 0.959 -4.859 1.133 31.738 2.496 0.034 0.795 0.620 2.072 0.669 35.725
Thld 40% -0.168 0.992 -2.721 1.152 19.282 6.895 0.037 0.840 0.638 1.852 0.478 100.612
Boot 1% 0.041 1.135 0.530 1.000 0.000 ∞ 0.032 0.790 0.584 2.094 0.716 2.034
Boot 25% -0.015 0.986 -0.288 1.285 4.808 71.449 0.029 0.769 0.545 2.208 0.866 1.487
Boot 50% -0.041 1.005 -0.687 1.217 7.465 37.923 0.029 0.769 0.544 2.208 0.867 1.478
Boot 75% -0.082 0.992 -1.360 1.214 10.497 21.068 0.029 0.769 0.544 2.208 0.867 1.478
Boot 99% -0.318 0.947 -5.361 1.139 34.516 1.954 0.029 0.769 0.544 2.208 0.867 1.478

Panel B: Shrinkage estimator

B&H 0.038 1.100 0.510 1.000 0.000 ∞ 0.038 1.100 0.510 1.000 0.000 ∞
Daily -0.137 0.713 -3.106 1.977 16.921 1.000 0.033 0.724 0.653 2.362 0.650 1.269
Weekly -0.052 0.731 -1.191 2.085 8.533 5.000 0.035 0.731 0.689 2.318 0.588 5.546
Monthly -0.010 0.748 -0.285 2.094 4.390 20.041 0.037 0.748 0.714 2.215 0.493 20.372
Quarterly 0.008 0.779 0.108 1.971 2.554 60.122 0.042 0.770 0.810 2.097 0.428 60.864
Annually 0.032 0.816 0.561 1.837 0.798 259.474 0.038 0.808 0.688 1.891 0.124 259.474
Thld 5% -0.128 0.716 -2.889 1.983 15.978 1.272 0.033 0.728 0.663 2.338 0.594 8.726
Thld 10% -0.103 0.724 -2.307 2.002 13.478 2.036 0.035 0.733 0.686 2.308 0.564 16.942
Thld 20% -0.062 0.733 -1.401 2.046 9.373 4.629 0.038 0.741 0.737 2.259 0.510 37.348
Thld 40% -0.021 0.735 -0.507 2.142 5.447 14.331 0.036 0.792 0.663 1.964 0.323 126.410
Boot 1% 0.016 0.780 0.254 1.980 2.181 79.516 0.034 0.752 0.646 2.182 0.516 2.225
Boot 25% 0.006 0.754 0.060 2.100 3.300 37.348 0.033 0.724 0.653 2.362 0.650 1.579
Boot 50% -0.010 0.746 -0.273 2.104 4.163 24.049 0.033 0.724 0.653 2.362 0.650 1.578
Boot 75% -0.018 0.742 -0.455 2.108 5.094 15.852 0.033 0.724 0.653 2.362 0.650 1.578
Boot 99% -0.100 0.722 -2.253 2.015 13.152 2.003 0.033 0.724 0.653 2.362 0.650 1.578

Panel C: POET estimator

B&H 0.039 1.064 0.530 1.000 0.000 ∞ 0.039 1.064 0.530 1.000 0.000 ∞
Daily -0.114 0.744 -2.485 1.759 14.550 1.000 0.029 0.750 0.557 2.039 0.846 1.290
Weekly -0.039 0.759 -0.868 1.841 7.155 5.000 0.031 0.756 0.589 2.013 0.700 5.496
Monthly -0.003 0.772 -0.122 1.851 3.594 20.041 0.035 0.774 0.657 1.922 0.602 20.714
Quarterly 0.016 0.809 0.250 1.722 2.086 60.122 0.041 0.798 0.756 1.819 0.481 60.122
Annually 0.034 0.800 0.616 1.795 0.637 259.474 0.039 0.809 0.707 1.762 0.165 259.474
Thld 5% -0.105 0.747 -2.296 1.762 13.691 1.271 0.031 0.753 0.581 2.027 0.796 6.671
Thld 10% -0.081 0.751 -1.777 1.791 11.231 2.219 0.030 0.758 0.560 1.995 0.658 14.457
Thld 20% -0.046 0.761 -1.013 1.815 7.800 5.217 0.035 0.766 0.669 1.964 0.668 29.000
Thld 40% -0.009 0.773 -0.254 1.836 4.265 17.059 0.042 0.789 0.789 1.865 0.511 83.559
Boot 1% 0.020 0.770 0.344 1.910 1.827 70.429 0.036 0.783 0.667 1.880 0.589 3.002
Boot 25% 0.007 0.763 0.088 1.917 2.894 31.806 0.030 0.747 0.569 2.060 0.774 1.702
Boot 50% -0.006 0.771 -0.185 1.850 3.800 19.720 0.030 0.749 0.566 2.044 0.839 1.569
Boot 75% -0.017 0.759 -0.424 1.885 4.861 12.545 0.029 0.750 0.558 2.039 0.847 1.540
Boot 99% -0.081 0.754 -1.754 1.780 11.117 2.082 0.029 0.750 0.557 2.039 0.846 1.540
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Table 5.6: Performance of asset allocation strategies with an estimation window of 500 days
applied on daily industry portfolio data from 2000-2019.
This table shows the performance of buy-and-hold (B&H), periodic, threshold (Thld), and bootstrap
(Boot) rebalancing strategies. A stationary bootstrap is applied with an average block size of 20 trading
days. Portfolios are rebalanced to global minimum variance weights on the left-hand side and by solving
a quadratic programming problem with transaction costs on the right-hand side. The optimisation is
performed using the covariance matrix estimated with a rolling window of 500 trading days and assuming
transaction costs of 50 basis points. The performance is measured by the daily post-transaction cost
return in % (µ), daily volatility in % (σ), annualised post-transaction cost Sharpe ratio (SR), utility of a
mean-variance investor with risk aversion parameter 3 relative to B&H (Utility), daily transaction costs
in basis points (TC), and average rebalancing time in days (ART). The best performing strategy within
each column per panel is indicated in bold.

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

Panel A: Sample estimator

B&H 0.035 1.011 0.504 1.000 0.000 ∞ 0.035 1.011 0.504 1.000 0.000 ∞
Daily -0.025 0.698 -0.628 1.986 6.164 1.000 0.039 0.767 0.745 1.778 0.139 1.450
Weekly 0.006 0.703 0.066 2.038 3.100 5.000 0.039 0.770 0.741 1.762 0.128 5.906
Monthly 0.020 0.719 0.378 1.986 1.667 20.044 0.040 0.779 0.758 1.721 0.125 22.098
Quarterly 0.028 0.758 0.525 1.796 1.044 60.400 0.041 0.793 0.774 1.664 0.111 60.400
Annually 0.034 0.792 0.631 1.655 0.576 251.667 0.042 0.808 0.777 1.602 0.085 251.667
Thld 5% -0.005 0.700 -0.171 2.024 4.108 3.105 0.039 0.772 0.735 1.752 0.121 28.312
Thld 10% 0.009 0.702 0.141 2.056 2.711 7.947 0.039 0.777 0.738 1.731 0.113 59.605
Thld 20% 0.019 0.714 0.358 2.010 1.618 24.486 0.038 0.794 0.714 1.654 0.099 141.562
Thld 40% 0.023 0.753 0.438 1.815 0.970 78.103 0.040 0.809 0.738 1.592 0.076 411.818
Boot 1% 0.032 0.771 0.611 1.746 0.635 205.909 0.040 0.764 0.777 1.795 0.132 2.660
Boot 25% 0.030 0.738 0.590 1.906 0.775 125.833 0.039 0.767 0.745 1.778 0.139 2.347
Boot 50% 0.028 0.733 0.557 1.931 0.893 96.383 0.039 0.767 0.745 1.778 0.139 2.347
Boot 75% 0.025 0.722 0.493 1.982 0.978 74.262 0.039 0.767 0.745 1.778 0.139 2.347
Boot 99% 0.021 0.715 0.414 2.013 1.283 40.811 0.039 0.767 0.745 1.778 0.139 2.347

Panel B: Shrinkage estimator

B&H 0.036 1.018 0.516 1.000 0.000 ∞ 0.036 1.018 0.516 1.000 0.000 ∞
Daily -0.016 0.691 -0.432 2.074 5.275 1.000 0.039 0.762 0.750 1.822 0.133 1.456
Weekly 0.010 0.696 0.167 2.119 2.660 5.000 0.039 0.766 0.748 1.806 0.123 6.032
Monthly 0.022 0.711 0.438 2.062 1.441 20.044 0.040 0.775 0.767 1.764 0.121 21.990
Quarterly 0.029 0.749 0.562 1.868 0.910 60.400 0.042 0.787 0.788 1.711 0.108 61.216
Annually 0.035 0.781 0.658 1.723 0.512 251.667 0.043 0.804 0.787 1.637 0.083 251.667
Thld 5% 0.002 0.694 -0.009 2.110 3.393 3.416 0.039 0.767 0.751 1.798 0.118 27.622
Thld 10% 0.014 0.694 0.251 2.141 2.239 8.813 0.039 0.771 0.735 1.778 0.107 58.077
Thld 20% 0.021 0.706 0.414 2.087 1.347 27.622 0.039 0.779 0.731 1.740 0.093 141.562
Thld 40% 0.029 0.729 0.565 1.976 0.802 88.824 0.040 0.796 0.749 1.666 0.070 411.818
Boot 1% 0.031 0.753 0.598 1.854 0.560 205.909 0.040 0.764 0.779 1.818 0.127 2.755
Boot 25% 0.030 0.730 0.590 1.971 0.711 116.154 0.039 0.762 0.750 1.822 0.133 2.404
Boot 50% 0.027 0.724 0.537 2.001 0.821 85.472 0.039 0.762 0.750 1.822 0.133 2.404
Boot 75% 0.028 0.713 0.565 2.067 0.874 70.781 0.039 0.762 0.750 1.822 0.133 2.404
Boot 99% 0.024 0.706 0.475 2.095 1.151 39.052 0.039 0.762 0.750 1.822 0.133 2.404

Panel C: POET estimator

B&H 0.035 0.944 0.546 1.000 0.000 ∞ 0.035 0.944 0.546 1.000 0.000 ∞
Daily -0.014 0.737 -0.363 1.570 4.645 1.000 0.035 0.785 0.657 1.463 0.168 1.420
Weekly 0.008 0.744 0.123 1.582 2.349 5.000 0.036 0.787 0.664 1.457 0.155 5.929
Monthly 0.019 0.760 0.349 1.536 1.308 20.044 0.037 0.798 0.678 1.419 0.146 22.098
Quarterly 0.027 0.793 0.489 1.423 0.849 60.400 0.039 0.808 0.709 1.383 0.131 62.917
Annually 0.033 0.809 0.594 1.371 0.499 251.667 0.039 0.822 0.690 1.337 0.095 251.667
Thld 5% 0.003 0.739 0.000 1.595 2.864 4.114 0.036 0.787 0.665 1.458 0.150 24.754
Thld 10% 0.011 0.745 0.185 1.584 1.924 10.811 0.035 0.795 0.640 1.428 0.134 55.244
Thld 20% 0.019 0.757 0.339 1.548 1.252 30.816 0.036 0.809 0.648 1.377 0.113 133.235
Thld 40% 0.026 0.758 0.488 1.559 0.753 96.383 0.036 0.817 0.636 1.349 0.064 453.000
Boot 1% 0.029 0.787 0.527 1.447 0.513 226.500 0.036 0.793 0.661 1.436 0.150 3.707
Boot 25% 0.024 0.766 0.437 1.521 0.735 100.667 0.035 0.785 0.657 1.463 0.168 2.276
Boot 50% 0.022 0.763 0.401 1.529 0.879 69.692 0.035 0.785 0.657 1.463 0.168 2.276
Boot 75% 0.021 0.760 0.380 1.541 0.969 52.674 0.035 0.785 0.657 1.463 0.168 2.276
Boot 99% 0.016 0.749 0.283 1.579 1.309 26.337 0.035 0.785 0.657 1.463 0.168 2.276
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window rather than a one-year window that is used in Section 4. On the other hand, the
volatility is often higher due to infrequent rebalancing and possibly the incorporation of less
relevant older observations in the covariance estimation. As a result, the Sharpe ratios and
utility levels of the strategies have not improved relative to Section 4. However, the performance
is generally better than with the estimation window of 100 days due to both lower transaction
costs and volatility. The large estimation window leads to low estimation uncertainty, which
causes bootstrap rebalancing strategies to perform weakly compared to other strategies. The
performance of strategies in Panels B and C has declined relative to Panel A for the same reason.

5.5 Data Frequency

The results in the empirical study are obtained using data at a daily frequency, which may not
be available for all financial instruments. To evaluate the performance of the asset allocation
strategies with low-frequency data, the analysis is repeated using monthly industry portfolio
data. A covariance estimation window of 12 months is used. The bootstrap block size is set
to one month as suggested by the algorithm of Politis and White (2004) (see Table D.6 in
Appendix D for details). The number of assets exceeds the number of observations, hence the
sample covariance estimator is no longer applicable. For the POET estimator, the number of
principal components selected by the information criterion of Bai and Ng (2002) remains five.

The performance of the rebalancing strategies with monthly data is summarised in Table 5.7.
The ART of the strategies has increased considerably due to the lower data frequency, which
results in lower transaction costs but higher volatility. As found in Section 4, transaction costs
decrease non-linearly with the ART. Bootstrap rebalancing strategies with α from 1% to 75%
perform best in terms of the volatility, Sharpe ratio, and utility level. Bootstrap rebalancing
strategies achieve much higher Sharpe ratios than other rebalancing strategies, because there
is large estimation uncertainty paired with estimating a covariance matrix of 49 assets with 12
observations. Bootstrap rebalancing strategies effectively enhance the performance of portfolios
optimised including transaction costs, such that these strategies perform best overall. The out-
performance of bootstrap rebalancing strategies is particularly large in Panel B, which indicates
that these strategies can provide great economic value to an investor.

5.6 Summary

The robustness analysis has provided several interesting insights. A comparison between the
variance optimised strategies and 1/N strategies shows that portfolio performance is much bet-
ter when the (co)variance of asset returns is taken into account in the portfolio optimisation.
In addition, the imposition of short sale constraints improves the Sharpe ratios of portfolio
strategies for any covariance estimation method, although it usually yields lower utility levels.
Furthermore, the performance of bootstrap rebalancing strategies is robust to changes in both
the bootstrap block size and method. Lastly, bootstrap portfolio rebalancing strategies with a
low α fare much better relative to other strategies when there is more uncertainty due to either
a smaller estimation window or a lower data frequency.
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Table 5.7: Performance of asset allocation strategies applied on monthly industry portfolio
data from 2000-2019.
This table shows the performance of buy-and-hold (B&H), periodic, threshold (Thld), and bootstrap
(Boot) rebalancing strategies. A stationary bootstrap is applied with an average block size of 1 month.
Portfolios are rebalanced to global minimum variance weights on the left-hand side and by solving a
quadratic programming problem with transaction costs on the right-hand side. The optimisation is
performed using the covariance matrix estimated with a rolling window of 12 months and assuming
transaction costs of 50 basis points. The performance is measured by the daily post-transaction cost
return in % (µ), monthly volatility in % (σ), annualised post-transaction cost Sharpe ratio (SR), utility of
a mean-variance investor with risk aversion parameter 3 relative to B&H (Utility), daily transaction costs
in basis points (TC), and average rebalancing time in days (ART). The statistics have been transformed
from monthly to daily measures based on the number of trading days in the daily sample. The best
performing strategy within each column per panel is indicated in bold.

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

Panel A: Shrinkage estimator

B&H 0.037 0.903 0.601 1.000 0.000 ∞ 0.037 0.903 0.601 1.000 0.000 ∞
Monthly 0.014 0.765 0.231 1.372 2.306 20.969 0.024 0.761 0.447 1.404 1.354 20.969
Quarterly 0.023 0.774 0.418 1.354 1.369 63.467 0.027 0.771 0.499 1.372 0.935 63.467
Annually 0.032 0.795 0.587 1.295 0.589 264.446 0.033 0.770 0.621 1.385 0.466 264.446
Thld 5% 0.014 0.765 0.231 1.372 2.306 20.969 0.024 0.761 0.447 1.403 1.352 21.442
Thld 10% 0.014 0.765 0.230 1.371 2.304 21.156 0.024 0.760 0.446 1.407 1.339 23.107
Thld 20% 0.014 0.763 0.229 1.378 2.241 23.448 0.026 0.756 0.473 1.426 1.281 29.565
Thld 40% 0.019 0.747 0.351 1.451 1.853 37.481 0.029 0.758 0.539 1.424 1.091 52.308
Boot 1% 0.035 0.788 0.637 1.321 0.166 952.006 0.036 0.739 0.711 1.515 0.190 595.004
Boot 25% 0.032 0.728 0.641 1.553 0.873 136.001 0.031 0.707 0.620 1.647 0.753 79.334
Boot 50% 0.031 0.723 0.621 1.573 1.051 99.167 0.028 0.751 0.529 1.450 0.975 47.129
Boot 75% 0.023 0.783 0.403 1.323 1.391 62.632 0.027 0.750 0.515 1.453 1.099 36.336
Boot 99% 0.014 0.766 0.236 1.368 2.256 22.559 0.024 0.761 0.446 1.405 1.353 21.062

Panel B: POET estimator

B&H 0.037 0.891 0.613 1.000 0.000 ∞ 0.037 0.891 0.613 1.000 0.000 ∞
Monthly 0.006 0.708 0.076 1.547 3.064 20.969 0.022 0.708 0.427 1.580 1.288 20.969
Quarterly 0.022 0.731 0.424 1.482 1.612 63.467 0.024 0.717 0.465 1.542 0.843 63.467
Annually 0.040 0.766 0.771 1.371 0.578 264.446 0.040 0.752 0.787 1.428 0.414 264.446
Thld 5% 0.006 0.708 0.076 1.547 3.064 20.969 0.022 0.708 0.426 1.578 1.287 21.156
Thld 10% 0.006 0.708 0.076 1.547 3.064 20.969 0.022 0.708 0.427 1.579 1.282 22.453
Thld 20% 0.006 0.708 0.077 1.547 3.061 21.062 0.022 0.703 0.425 1.601 1.208 28.334
Thld 40% 0.008 0.705 0.121 1.562 2.818 25.319 0.023 0.704 0.459 1.603 0.957 52.308
Boot 1% 0.037 0.891 0.613 1.000 0.000 ∞ 0.041 0.737 0.813 1.491 0.014 4760.031
Boot 25% 0.036 0.752 0.694 1.421 0.557 264.446 0.026 0.700 0.514 1.625 0.742 79.334
Boot 50% 0.029 0.743 0.566 1.445 0.985 128.649 0.030 0.704 0.602 1.616 0.911 52.889
Boot 75% 0.029 0.712 0.573 1.576 1.337 82.069 0.024 0.713 0.471 1.559 1.063 33.056
Boot 99% 0.007 0.714 0.090 1.522 2.932 23.107 0.022 0.708 0.427 1.580 1.288 20.969

6 Analysis with S&P 500 Data

This section performs an empirical study using a data set containing S&P 500 stocks to verify
that the results are not data-driven and to evaluate how strategies perform with variable rather
than fixed transaction costs. The S&P 500 data set is described in Section 6.1. Subsequently,
the performance of the asset allocation strategies is analysed with fixed and variable transaction
costs in Sections 6.2 and 6.3, respectively.

6.1 Data

The S&P 500 data set is retrieved from the Center for Research in Security Prices (CRSP) for
the years 2000 until 2019 by selecting companies that are part of the index at the end of the
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sample period. The sample consists of 5031 daily observations. In the data set, there are 605
companies as identified by the permanent company number (PERMCO) of which 372 have daily
return data available throughout the entire sample.11 Then, dropping companies with stocks
that have missing closing bid or ask prices for more than 1% of the observations leaves a sample
of 142 companies. Some of these companies have multiple share classes outstanding. For these
companies, the data relating to the most traded share class is used. A list of the companies and
their descriptive statistics is provided in Table E.1 in Appendix E.

Table 6.1 summarises the performance of the S&P 500 stocks. The average return of 0.06%
per day is rather high due to survivorship bias; the sample only consists of companies that have
either remained large or grown large over the sample of twenty years. Nevertheless, the data
can still be used to assess the relative performance of strategies with similar average rebalancing
times. There is a large disparity in stock returns and volatility, because the sample includes
stocks of large well-established companies (e.g., Coca-Cola Company) as well as some quickly
growing companies (e.g., Monster Beverages Corporation). Stocks are highly correlated with
each other as indicated by the average correlation across stocks of 0.31. In addition, stocks have
a high average correlation with the market of 0.55.

Table 6.1: Descriptive statistics of daily S&P 500 data from 2000-2019.
All statistics are daily, except for the annualised Sharpe ratio. The return and volatility are in %.
Trading volume is denoted in million US dollars. The bid-ask spread is denoted in basis points.

Mean Standard deviation Minimum Maximum
Average return 0.064 0.029 0.001 0.175
Volatility 2.357 0.731 1.178 4.304
Sharpe ratio 0.422 0.168 -0.013 0.907
Correlation across stocks 0.307 0.099 0.030 0.830
Correlation with market 0.549 0.094 0.294 0.779
Average trading volume 333.637 462.343 7.962 4014.409
Average bid-ask spread 15.047 9.468 3.042 57.979

6.2 Performance of Asset Allocation Strategies with Fixed Transaction Costs

Asset allocation strategies are compared using the same set-up as in Section 4. A block size
of 20 trading days is applied for the bootstrap, because the recommended block size for stock
data is similar to that for industry portfolio data (see Table F.1 in Appendix F for details). The
number of factors selected for the POET estimator using the information criterion of Bai and
Ng (2002) amounts to four, which is one less than with the industry portfolio data.

The performance of the rebalancing strategies is displayed in Table 6.2. Noteworthily, the
buy-and-hold strategy achieves an outstanding return and Sharpe ratio. This strategy fixes its
investments at the start of the sample, such that the proportion invested in quickly growing
companies becomes very large over time. Therefore, this strategy benefits most from the fact
that the sample includes companies that are small at the beginning of the sample but grow
11The number of companies with a PERMCO exceeds the 500 listed on the S&P 500 due to mergers and
acquisitions.
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rapidly to become listed on the S&P 500 at the end of the sample. Yet, the large proportion
of wealth invested in growing companies also leads to extremely volatile returns and hence a
low utility level. Portfolios optimised excluding transaction costs incur higher transaction costs
than with the industry portfolio data in Panel A in Section 4, because the estimated sample
covariance matrix changes more over time. These changes occur due to an increase in the number
of assets and more variation in the volatility of individual stocks than portfolios of stocks. As
a result, strategies in Panels B and C yield much higher utility levels than strategies in Panel
A. Bootstrap rebalancing strategies achieve relatively high utility levels independent of whether
transaction costs are taken into account in the optimisation. There is some dispersion in the
best α across the panels for strategies optimised including transaction costs. Yet, the choice of α
is not crucial, because the performance of these bootstrap rebalancing strategies is comparable.

6.3 Performance of Asset Allocation Strategies with Variable Transaction
Costs

Transaction costs have hitherto been fixed at the same rate for all assets, whereas these costs
likely differ per stock and change over time in practice. To better mimic reality, this section
estimates transaction costs using a simple model that includes a fixed trading commission and
a variable spread. Market impact costs are ignored, because the method of Dybvig and Pezzo
(2019) does not allow for costs growing at a non-linear rate. However, these costs are negligible
when less than 1% of the daily volume is traded (Frazzini et al., 2012). Table 6.1 shows that the
average daily trading volume is $334 million, which implies the investor should trade less than
$3 million of a single stock per day to avoid market impact costs. Consequently, the results in
this section are most realistic for smaller investors.

The first component of the transaction costs is a fixed trading commission that amounts to
24 bps based on the estimate of Jones (2002) for stocks listed on the NYSE.12 Half of the bid-ask
spread is added to this commission in order to obtain the total transaction costs. Following the
methodology of Chung and Zhang (2014), the bid-ask spread is estimated as

bid-ask spreadt =
askt − bidt

1
2(bidt + askt)

, (6.1)

where bidt and askt are daily closing bid and ask prices at day t obtained from CRSP. As daily
bid and ask prices fluctuate considerably, a more robust estimate is obtained by taking the
average spread over the last 20 trading days. Observations with a negative spread or a spread
higher than 50% of the quote midpoint are excluded as they likely result from data errors.

Table 6.1 shows that average bid-ask spread estimated using this procedure amounts to 15
bps. The average spread ranges widely from 3 to 58 bps. Stocks with a higher trading volume
generally have a lower bid-ask spread. There is a large difference in the trading volume across
shares, which is mainly attributable to large differences in the companies’ market capitalisation.
The sample includes several companies that are not listed on a major index throughout the
12The sample includes 67 companies that are listed on the NYSE. The remaining 75 are listed on the NASDAQ
where the commission is comparable.
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Table 6.2: Performance of asset allocation strategies with fixed transaction costs applied on
daily S&P 500 stock data from 2000-2019.
This table shows the performance of buy-and-hold (B&H), periodic, threshold (Thld), and bootstrap
(Boot) rebalancing strategies. A stationary bootstrap is applied with an average block size of 20 trading
days. Portfolios are rebalanced to global minimum variance weights on the left-hand side and by solving
a quadratic programming problem with transaction costs on the right-hand side. The optimisation is
performed using the covariance matrix estimated with a rolling window of 250 trading days and assuming
transaction costs of 50 basis points. The performance is measured by the daily post-transaction cost
return in % (µ), daily volatility in % (σ), annualised post-transaction cost Sharpe ratio (SR), utility of a
mean-variance investor with risk aversion parameter 3 relative to B&H (Utility), daily transaction costs
in basis points (TC), and average rebalancing time in days (ART). The best performing strategy within
each column per panel is indicated in bold.

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

Panel A: Sample estimator

B&H 0.099 1.478 1.024 1.000 0.000 ∞ 0.099 1.478 1.024 1.000 0.000 ∞
Daily -0.282 0.954 -4.718 1.929 33.290 1.000 0.037 0.787 0.693 3.562 0.784 1.005
Weekly -0.111 1.007 -1.786 1.948 16.335 5.000 0.038 0.791 0.711 3.533 0.681 5.000
Monthly -0.035 1.002 -0.599 2.061 8.118 20.000 0.041 0.791 0.762 3.537 0.607 20.000
Quarterly -0.003 1.003 -0.092 2.102 4.342 60.506 0.043 0.802 0.784 3.444 0.488 60.506
Annually 0.034 1.041 0.480 2.000 1.619 251.579 0.047 0.857 0.821 3.016 0.342 251.579
Thld 5% -0.270 0.959 -4.493 1.929 32.038 1.177 0.038 0.791 0.705 3.529 0.716 7.636
Thld 10% -0.226 0.971 -3.728 1.936 27.610 1.739 0.036 0.796 0.654 3.478 0.620 17.638
Thld 20% -0.145 0.990 -2.355 1.970 19.167 3.855 0.037 0.801 0.674 3.439 0.515 45.094
Thld 40% -0.062 1.011 -1.013 1.994 10.508 12.679 0.045 0.822 0.809 3.281 0.501 111.163
Boot 1% 0.099 1.478 1.024 1.000 0.000 ∞ 0.039 0.781 0.727 3.628 0.630 1.280
Boot 25% 0.039 1.064 0.539 1.918 0.826 478.000 0.037 0.786 0.693 3.575 0.747 1.056
Boot 50% 0.023 1.044 0.303 1.970 2.034 183.846 0.037 0.787 0.693 3.562 0.784 1.032
Boot 75% 0.023 1.021 0.310 2.061 3.027 103.913 0.037 0.787 0.693 3.562 0.784 1.032
Boot 99% -0.027 1.015 -0.460 2.023 6.487 30.641 0.037 0.787 0.693 3.562 0.784 1.032

Panel B: Shrinkage estimator

B&H 0.095 1.479 0.987 1.000 0.000 ∞ 0.095 1.479 0.987 1.000 0.000 ∞
Daily -0.036 0.696 -0.885 4.174 8.528 1.000 0.041 0.725 0.825 4.267 0.450 1.013
Weekly 0.006 0.710 0.075 4.247 4.353 5.000 0.041 0.729 0.825 4.212 0.395 5.000
Monthly 0.024 0.724 0.454 4.180 2.324 20.000 0.042 0.738 0.840 4.118 0.358 20.000
Quarterly 0.031 0.747 0.589 3.954 1.392 60.506 0.042 0.756 0.826 3.913 0.287 60.506
Annually 0.041 0.799 0.753 3.480 0.674 251.579 0.049 0.804 0.900 3.458 0.227 251.579
Thld 5% -0.023 0.698 -0.593 4.225 7.221 1.723 0.041 0.728 0.835 4.231 0.415 8.968
Thld 10% -0.004 0.702 -0.162 4.288 5.303 3.627 0.041 0.733 0.820 4.165 0.370 20.873
Thld 20% 0.014 0.708 0.249 4.320 3.266 10.529 0.041 0.749 0.803 3.984 0.317 54.318
Thld 40% 0.022 0.737 0.409 4.018 1.844 36.212 0.041 0.782 0.779 3.642 0.243 159.333
Boot 1% 0.035 0.769 0.664 3.743 0.926 140.588 0.043 0.742 0.867 4.078 0.398 1.340
Boot 25% 0.031 0.739 0.612 4.043 1.192 85.357 0.040 0.726 0.816 4.249 0.428 1.131
Boot 50% 0.032 0.726 0.629 4.199 1.364 63.733 0.041 0.725 0.826 4.267 0.450 1.103
Boot 75% 0.025 0.728 0.490 4.142 1.606 46.863 0.041 0.725 0.826 4.267 0.450 1.103
Boot 99% 0.021 0.712 0.408 4.308 2.321 21.532 0.041 0.725 0.826 4.267 0.450 1.103

Panel C: POET estimator

B&H 0.091 1.475 0.942 1.000 0.000 ∞ 0.091 1.475 0.942 1.000 0.000 ∞
Daily -0.017 0.735 -0.431 3.834 5.595 1.000 0.035 0.777 0.653 3.639 0.381 1.100
Weekly 0.009 0.749 0.140 3.812 2.891 5.000 0.035 0.785 0.652 3.565 0.328 5.156
Monthly 0.022 0.760 0.405 3.759 1.559 20.000 0.037 0.786 0.694 3.570 0.274 20.000
Quarterly 0.028 0.785 0.502 3.541 0.948 60.506 0.039 0.805 0.720 3.406 0.229 60.506
Annually 0.035 0.841 0.614 3.092 0.507 251.579 0.044 0.868 0.742 2.921 0.185 251.579
Thld 5% -0.005 0.736 -0.176 3.878 4.371 2.175 0.034 0.784 0.639 3.575 0.332 10.170
Thld 10% 0.007 0.742 0.079 3.869 3.093 5.213 0.035 0.791 0.644 3.507 0.299 23.663
Thld 20% 0.018 0.756 0.319 3.776 1.913 15.621 0.035 0.805 0.629 3.381 0.241 60.506
Thld 40% 0.025 0.805 0.437 3.348 1.087 52.527 0.039 0.857 0.664 2.981 0.207 170.714
Boot 1% 0.032 0.802 0.569 3.402 0.679 132.778 0.036 0.792 0.660 3.508 0.256 4.574
Boot 25% 0.029 0.780 0.528 3.592 0.906 68.286 0.035 0.782 0.654 3.599 0.348 1.462
Boot 50% 0.023 0.768 0.423 3.682 1.127 45.962 0.035 0.778 0.651 3.629 0.363 1.348
Boot 75% 0.022 0.758 0.410 3.780 1.300 33.427 0.035 0.777 0.653 3.640 0.381 1.285
Boot 99% 0.017 0.745 0.298 3.887 1.817 15.419 0.035 0.777 0.653 3.639 0.381 1.283
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Table 6.3: Performance of asset allocation strategies with variable transaction costs applied on
daily S&P 500 stock data from 2000-2019.
This table shows the performance of buy-and-hold (B&H), periodic, threshold (Thld), and bootstrap
(Boot) rebalancing strategies. A stationary bootstrap is applied with an average block size of 20 trading
days. Portfolios are rebalanced to global minimum variance weights on the left-hand side and by solving
a quadratic programming problem with transaction costs on the right-hand side. The optimisation is
performed using the covariance matrix estimated with a rolling window of 250 trading days and assuming
transaction costs consisting of a fixed commission of 24 basis points plus half of the estimated bid-ask
spread. The performance is measured by the daily post-transaction cost return in % (µ), daily volatility
in % (σ), annualised post-transaction cost Sharpe ratio (SR), utility of a mean-variance investor with
risk aversion parameter 3 relative to B&H (Utility), daily transaction costs in basis points (TC), and
average rebalancing time in days (ART). The best performing strategy within each column per panel is
indicated in bold.

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

Panel A: Sample estimator

B&H 0.099 1.478 1.024 1.000 0.000 ∞ 0.099 1.478 1.024 1.000 0.000 ∞
Daily -0.140 0.940 -2.410 2.171 19.136 1.000 0.038 0.801 0.688 3.440 0.842 1.000
Weekly -0.041 0.965 -0.725 2.210 9.380 5.000 0.039 0.798 0.725 3.473 0.708 5.000
Monthly -0.001 0.958 -0.056 2.308 4.663 20.000 0.038 0.799 0.703 3.457 0.538 20.000
Quarterly 0.016 0.963 0.215 2.311 2.449 60.506 0.039 0.807 0.707 3.388 0.403 60.506
Annually 0.042 1.017 0.603 2.104 0.897 251.579 0.050 0.847 0.871 3.095 0.287 251.579
Thld 5% -0.133 0.941 -2.290 2.174 18.429 1.177 0.038 0.798 0.690 3.462 0.733 5.438
Thld 10% -0.109 0.945 -1.870 2.194 15.885 1.739 0.037 0.793 0.678 3.508 0.596 12.781
Thld 20% -0.063 0.952 -1.099 2.236 11.042 3.855 0.036 0.802 0.654 3.422 0.482 32.740
Thld 40% -0.017 0.963 -0.328 2.257 6.027 12.679 0.039 0.818 0.709 3.297 0.397 85.357
Boot 1% 0.099 1.478 1.024 1.000 0.000 ∞ 0.039 0.801 0.723 3.443 0.502 1.949
Boot 25% 0.045 1.090 0.618 1.831 0.445 531.111 0.037 0.794 0.680 3.496 0.660 1.210
Boot 50% 0.030 0.988 0.432 2.215 1.042 199.167 0.038 0.797 0.692 3.472 0.758 1.123
Boot 75% 0.033 0.969 0.495 2.310 1.706 106.222 0.038 0.799 0.691 3.453 0.811 1.064
Boot 99% -0.002 0.972 -0.071 2.243 3.758 30.641 0.038 0.801 0.688 3.440 0.843 1.006

Panel B: Shrinkage estimator

B&H 0.095 1.479 0.987 1.000 0.000 ∞ 0.095 1.479 0.987 1.000 0.000 ∞
Daily -0.001 0.695 -0.089 4.399 5.016 1.000 0.041 0.714 0.835 4.406 0.406 1.001
Weekly 0.024 0.706 0.479 4.409 2.552 5.000 0.041 0.719 0.834 4.340 0.350 5.000
Monthly 0.033 0.719 0.668 4.290 1.360 20.000 0.040 0.729 0.815 4.210 0.297 20.000
Quarterly 0.037 0.742 0.718 4.037 0.802 60.506 0.042 0.747 0.827 4.008 0.243 60.506
Annually 0.044 0.794 0.816 3.536 0.379 251.579 0.048 0.788 0.917 3.615 0.176 251.579
Thld 5% 0.006 0.696 0.077 4.431 4.261 1.723 0.040 0.718 0.811 4.348 0.362 6.751
Thld 10% 0.017 0.698 0.328 4.472 3.134 3.627 0.040 0.725 0.801 4.260 0.329 15.127
Thld 20% 0.027 0.702 0.553 4.478 1.927 10.529 0.038 0.736 0.754 4.109 0.280 38.548
Thld 40% 0.030 0.731 0.578 4.132 1.082 36.212 0.042 0.759 0.813 3.879 0.245 101.702
Boot 1% 0.042 0.758 0.809 3.891 0.532 140.588 0.044 0.739 0.873 4.115 0.296 1.731
Boot 25% 0.037 0.737 0.723 4.094 0.682 85.357 0.042 0.715 0.864 4.393 0.360 1.229
Boot 50% 0.037 0.723 0.758 4.270 0.802 62.895 0.040 0.715 0.827 4.393 0.384 1.137
Boot 75% 0.034 0.725 0.672 4.218 0.957 46.863 0.041 0.714 0.835 4.406 0.404 1.054
Boot 99% 0.030 0.704 0.605 4.469 1.390 21.244 0.041 0.714 0.835 4.406 0.406 1.037

Panel C: POET estimator

B&H 0.091 1.475 0.942 1.000 0.000 ∞ 0.091 1.475 0.942 1.000 0.000 ∞
Daily 0.006 0.734 0.073 3.960 3.255 1.000 0.035 0.762 0.659 3.789 0.322 1.026
Weekly 0.022 0.747 0.396 3.889 1.679 5.000 0.035 0.771 0.650 3.697 0.269 5.032
Monthly 0.029 0.759 0.542 3.800 0.907 20.000 0.035 0.775 0.649 3.660 0.218 20.000
Quarterly 0.032 0.783 0.584 3.570 0.545 60.506 0.037 0.792 0.675 3.508 0.173 60.506
Annually 0.038 0.839 0.657 3.116 0.285 251.579 0.043 0.849 0.742 3.057 0.135 251.579
Thld 5% 0.013 0.734 0.218 3.986 2.539 2.175 0.035 0.766 0.661 3.749 0.285 7.636
Thld 10% 0.020 0.739 0.358 3.964 1.793 5.213 0.033 0.774 0.608 3.665 0.243 17.704
Thld 20% 0.026 0.753 0.489 3.848 1.110 15.621 0.035 0.783 0.640 3.580 0.195 48.776
Thld 40% 0.030 0.801 0.529 3.397 0.633 52.527 0.035 0.814 0.629 3.308 0.164 132.778
Boot 1% 0.035 0.798 0.633 3.446 0.399 132.778 0.035 0.791 0.644 3.512 0.188 10.529
Boot 25% 0.032 0.777 0.604 3.636 0.534 68.286 0.035 0.770 0.662 3.711 0.268 1.621
Boot 50% 0.027 0.763 0.498 3.746 0.667 45.962 0.034 0.765 0.648 3.759 0.293 1.298
Boot 75% 0.028 0.755 0.529 3.834 0.761 33.901 0.035 0.763 0.658 3.785 0.318 1.172
Boot 99% 0.026 0.742 0.487 3.968 1.062 15.672 0.035 0.762 0.659 3.789 0.321 1.129
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entire 20-year period, because they have a low market capitalisation at the beginning of the
sample period. On the other hand, it also includes large companies that have been around for
more than a century.

The performance of the asset allocation strategies with variable transaction costs is shown
in Table 6.3. The relative performance of the rebalancing strategies generally aligns with the
results shown for fixed transaction costs in Table 6.2. However, the incurred transaction costs are
slightly lower due to a decrease in the average trading cost from 50 to 40 bps per transaction.
Hence, most strategies achieve higher utility levels. The performance of strategies optimised
including transaction costs is disappointing compared to those optimised excluding transaction
costs when considering that variable transaction costs should make this method more attractive;
this method can pick the most cost-efficient companies to trade. An explanation behind this
is that the incurred transaction costs are already low when these costs are excluded in the
optimisation; transaction costs are below 5 bps per day in Panels B and C. For this reason,
only marginal gains can be realised by further reducing transaction costs. Nevertheless, this
section demonstrates that the bootstrap rebalancing strategy is flexible to work with variable
transaction costs.

7 Conclusion

The bootstrap rebalancing strategy proposed in this research can improve portfolio performance
relative to traditional rebalancing techniques, because it helps to account for uncertainty in the
portfolio rebalancing decision. The economic value derived from this strategy is highest when
it is applied with a portfolio optimisation method that does not account for transaction costs.
Taking transaction costs into account in the optimisation already severely reduces the rebal-
ancing activity, such that there is only a benefit to applying the bootstrap rebalancing strategy
when estimation uncertainty is high. The performance of the bootstrap rebalancing strategy
depends on a hyperparameter that increases the willingness to trade. This hyperparameter op-
timally decreases with the investor’s risk appetite, the size of transaction costs, and estimation
certainty. The performance of the bootstrap rebalancing strategy is robust to the imposition of
short sale constraints and changes in the bootstrap methodology. In addition, the strategy also
performs well when proportional transaction costs change over time and differ per asset.

This paper further shows that the optimisation method of Dybvig and Pezzo (2019) yields
significantly higher post-transaction cost returns and Sharpe ratios than a method that ignores
these costs. Therefore, it can be concluded that this optimisation method is highly effective in
improving portfolio performance. Moreover, the empirical study demonstrates that there exists
a non-linear relation between the average rebalancing time and the amount of transaction costs
incurred for any rebalancing strategy. More specifically, reducing the rebalancing frequency from
often to sometimes leads to a large reduction in transaction costs, whereas reducing this from
seldom to never only yields marginal gains in terms of transaction costs.

This research contributes to the existing literature by extending the bootstrap procedure
of Michaud and Michaud (2008) to handle transaction costs and by empirically verifying that
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this method can enhance portfolio performance. Furthermore, it is shown that the optimisation
method of Dybvig and Pezzo (2019) also works well with equity data. From a practical perspec-
tive, the bootstrap rebalancing strategy can easily be implemented by a portfolio manager who
applies mean-variance optimisation. Implementation of this strategy requires selecting a hyper-
parameter, which can be done by performing a historical simulation or based on the findings of
this paper. In case uncertainty is high, applying this strategy yields considerable economic gains
due to a reduction in transaction costs while maintaining the same level of risk and return.

The methodology used in this paper has some limitations. The gains from incorporating
transaction costs into the optimisation are limited by the single-period horizon assumed by the
method of Dybvig and Pezzo (2019), since this leads to myopic investing. The performance of
this optimisation technique can be improved by shrinking the costs function to zero. However,
the optimal amount of shrinkage and the performance gains that come with this have not been
investigated. Therefore, future research may be dedicated to improving the method of Dybvig
and Pezzo (2019). Alternatively, a similar analysis can be conducted using a multi-period utility
optimisation method, such as that of Mei et al. (2016).

Another limitation is that the transaction cost function has been restricted to include pro-
portional costs. In practice, some costs are fixed rather than proportional and thus decrease
with the amount traded. On the other hand, large investors suffer from market impact costs that
increase with the transaction size. Ideally, these more complex cost structures are also taken into
account. This research further assumed trading costs to be known, which is usually not the case
in practice. An interesting direction for future research would be to estimate transaction costs
using a model and to take the uncertainty in this estimation into account. This can conveniently
be done using the bootstrap methodology applied in this research.

Finally, this paper restricted itself to variance minimisation, although mean-variance opti-
misation may be preferred when asset returns are more predictable. Incorporating expected
returns into the optimisation leads to additional estimation uncertainty, which likely makes
the bootstrap rebalancing strategy even more effective. This hypothesis should be tested in
follow-up research. In addition, it would be of interest to investigate how bootstrap rebalancing
strategies perform in combination with dynamic covariance estimation methods, because then
the bootstrap methodology becomes more important.
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Appendix A: Quadratic Programming Problem

This appendix formulates programming problem (3.2) with n assets and the cost function defined
by equation (3.3) as a constrained quadratic program. Following the method of Maurer et al.
(2019), this problem can be expressed as

min
x

q′x+
1

2
x′Hx

s.t. Ax = b

l ≤ x ≤ u,

(A.1)

where x =

[
∆+

∆−

]
, q = b + λ ¯̄I ′Σθ0 with b =

[
C+

C−

]
and ¯̄I = [I,−I]. Here, I denotes an n × n

identity matrix. In addition, H = λ ¯̄I ′Σ¯̄I, A = [ι,−ι] with ι being an n × 1 vector, and b = 0.
The lower bound l = [0, ..., 0]′ and upper bound u = [∞, ...,∞]′ are both 2n× 1 vectors. In case
short sale constraints are imposed, then the upper bound is given by u = [∞, ...,∞, θ′0]′ with ∞
for the first n elements. The optimal portfolio allocation is given by

θ∗ = θ0 + ¯̄Ix. (A.2)
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Appendix B: Bootstrap Test for Mean Return and Utility Level

This appendix shows how the robust hypothesis test of Ledoit and Wolf (2008) can be used to
test for a significant difference in the mean return and utility level. To apply this method, it is
necessary to (i) express the difference in performance measures as a function of the moments of
the returns and to (ii) derive the gradient of this function.

To derive the necessary expressions, the excess returns of portfolio investment strategies i
and j at time t are denoted by rit and rjt, respectively. It is assumed the time series are strictly
stationary, which means that the bivariate distribution does not change over time. The mean
return vector µ and covariance matrix Σ are given by

µ =

[
µi

µj

]
and Σ =

[
σ2
i σij

σij σ2
j

]
. (B.1)

The differences in mean return and utility level can both be expressed in terms of elements of
the mean vector and covariance matrix as

∆µ = µi − µj and ∆U = µi − µj −
λ

2
(σ2
i − σ2

j ), (B.2)

where λ is a given risk aversion parameter. The method uses the first two uncentred moments,
which are given by µi = E(r1i) and γi = E(r2

1i) for strategy i and are defined analogously for
strategy j. Let [a, b, c, d] = [µi, µj , γi, γj ], then the difference in mean return and utility level
can be expressed as

∆µ = f(a, b, c, d) and ∆U = g(a, b, c, d), (B.3)

with

f(a, b, c, d) = a− b and g(a, b, c, d) = a− b− λ

2

(
(c− a2)− (d− b2)

)
. (B.4)

The gradient of these functions are given by

∇′f(a, b, c, d) = [1, −1, 0, 0]′ and ∇′g(a, b, c, d) = [1 + aλ, −1− bλ, −λ
2
,
λ

2
]′, (B.5)

which can be used to apply the delta method in the computation of the standard error (see
Ledoit and Wolf (2008) for details). All other elements of the robust performance hypothesis
testing procedure remain unaltered.
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Appendix C: Description Industry Portfolio Data

This appendix provides additional descriptive statistics of the industry portfolio data set de-
scribed in Section 4.1.

Table C.1: Descriptive statistics of daily industry portfolio data and the market from 2000-
2019.
All statistics are daily in %, except for the annualised Sharpe ratio. The correlation with the market is
denoted by Mkt.

Industry Mean Volatility Sharpe ratio Minimum Maximum Mkt

Agriculture 0.045 1.639 0.405 -15.270 18.240 0.582
Food Products 0.039 0.975 0.577 -7.250 8.800 0.658
Candy & Soda 0.054 1.381 0.588 -19.220 11.680 0.525
Beer & Liquor 0.040 1.072 0.540 -7.700 10.120 0.526
Tobacco Products 0.073 1.445 0.765 -13.380 14.990 0.400
Recreation 0.038 1.555 0.352 -9.960 9.690 0.688
Entertainment 0.059 1.957 0.453 -13.390 16.580 0.744
Printing and Publishing 0.015 1.490 0.128 -11.240 19.450 0.787
Consumer Goods 0.032 1.071 0.427 -17.980 9.440 0.665
Apparel 0.059 1.540 0.578 -11.520 12.690 0.785
Healthcare 0.045 1.349 0.494 -13.970 8.300 0.638
Medical Equipment 0.049 1.184 0.618 -7.210 11.680 0.760
Pharmaceutical Products 0.036 1.172 0.447 -6.530 11.140 0.743
Chemicals 0.044 1.517 0.427 -11.380 13.070 0.820
Rubber and Plastic Products 0.041 1.357 0.443 -10.140 8.090 0.802
Textiles 0.043 1.850 0.343 -18.310 19.500 0.695
Construction Materials 0.045 1.504 0.437 -10.670 9.620 0.833
Construction 0.057 1.945 0.436 -12.390 15.580 0.790
Steel Works 0.026 2.205 0.161 -15.900 20.260 0.813
Fabricated Products 0.032 1.868 0.241 -15.450 11.440 0.714
Machinery 0.052 1.675 0.460 -12.260 13.890 0.897
Electrical Equipment 0.035 1.598 0.317 -13.120 14.080 0.871
Automobiles and Trucks 0.026 1.771 0.203 -12.890 11.700 0.808
Aircraft 0.054 1.504 0.534 -18.370 13.570 0.787
Shipbuilding and Railroad Equipment 0.072 1.686 0.649 -11.280 10.620 0.657
Defence 0.073 1.448 0.769 -10.290 14.920 0.491
Precious Metals 0.048 2.519 0.283 -14.160 25.560 0.195
Non-Metallic and Industrial Metal Mining 0.056 2.131 0.389 -16.990 19.850 0.717
Coal 0.041 3.104 0.193 -19.340 21.360 0.566
Petroleum and Natural Gas 0.039 1.649 0.347 -15.380 19.270 0.697
Utilities 0.043 1.136 0.561 -8.920 14.430 0.653
Communication 0.019 1.328 0.187 -9.670 14.470 0.854
Personal Services 0.035 1.402 0.355 -9.400 8.950 0.748
Business Services 0.033 1.281 0.375 -8.800 8.230 0.925
Computer Hardware 0.029 1.924 0.212 -11.680 21.650 0.789
Computer Software 0.030 1.601 0.262 -8.950 14.820 0.866
Chips 0.034 1.949 0.251 -10.930 15.880 0.815
Measuring and Control Equipment 0.047 1.621 0.428 -9.310 12.700 0.860
Business Supplies 0.034 1.253 0.392 -9.610 8.630 0.825
Shipping Containers 0.047 1.438 0.488 -9.040 10.920 0.774
Transportation 0.047 1.416 0.485 -14.040 9.330 0.826
Wholesale 0.038 1.185 0.471 -8.500 9.740 0.861
Retail 0.041 1.300 0.457 -8.310 11.750 0.805
Restaurants, Hotels and Motels 0.054 1.211 0.662 -8.260 8.900 0.740
Banking 0.039 1.859 0.307 -16.970 16.940 0.817
Insurance 0.044 1.435 0.450 -11.530 17.840 0.840
Real Estate 0.045 1.853 0.354 -16.190 19.190 0.755
Trading 0.042 1.950 0.313 -16.280 17.960 0.888
Other 0.022 1.450 0.204 -10.220 15.240 0.796
Market 0.032 1.203 0.376 -8.950 11.354 1.000
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Appendix D: Additional Results Empirical Study

This appendix provides additional results relating to the empirical study shown in Section 4.5.
Table D.1 shows the suggested bootstrap block size acquired by minimising the mean squared

error of the variance estimate for each industry portfolio. The suggested block size has a wide
range from 1 to more than 30 trading days. A smaller block size generally leads to more bias
but more efficiency (Lahiri, 2003). Therefore, a block size of one month (20 trading days) is
chosen to obtain an appropriate balance between bias and variance.

Table D.1: Optimal bootstrap block size selected by the algorithm of Politis and White (2004)
for daily industry portfolio data from 2000-2019.
The algorithm selects the block size by minimising the long-run variance estimate based on the mean
squared error. They suggest using a block size of one if the optimal estimated block size is below one.

Bootstrap Mean Standard deviation Minimum Maximum

Stationary 6.062 6.995 0.420 33.728
Circular 6.939 8.007 0.481 38.608

Tables D.2 and D.3 show how the asset allocation strategies perform when the risk aversion
parameter is varied to 1 and 10, respectively. This parameter was fixed at 3 in Section 4.
Importantly, Table D.2 shows that bootstrap rebalancing strategies with a lower α optimised
excluding transaction costs perform relatively better when the investor is more risk seeking; the
Boot 75% strategy achieves the highest utility level in all three panels. For portfolios optimised
including transaction costs the Boot 1% strategy consistently performs best. Furthermore, Table
D.3 shows that increased risk aversion leads to a sharp decline in the rebalancing activity for
portfolios optimised including transaction costs. As a result, transaction costs decrease at the
cost of an increase in volatility. This is in line with the findings of Dybvig and Pezzo (2019).

Tables D.4 and D.5 show the performance of the asset allocation strategies when trading
costs have been changed to 25 and 100 bps per transaction, respectively. Table D.4 shows that
strategies optimised excluding transaction costs perform relatively better when transaction costs
are low, because there is a smaller benefit to taking trading costs into account. In line with the
findings of Dybvig and Pezzo (2019), strategies that take trading costs into account rebalance
more when these costs decrease, which leads to a volatility reduction. Table D.5 shows that
if transaction costs are 100 bps then strategies optimised including transaction costs achieve
much higher Sharpe ratios. On the other hand, strategies optimised excluding transaction costs
achieve higher utility levels in Panels B and C. This may be unexpected, as the importance of
taking trading costs into account would logically increase with its magnitude. Yet, the myopic
investment behaviour induced by the method of Dybvig and Pezzo (2019) causes a large decrease
in rebalancing activity, which leads to inferior portfolio performance. For portfolios optimised
excluding transaction costs, bootstrap rebalancing strategies with a low α perform relatively
well when transaction costs are high. These bootstrap rebalancing strategies outperform other
strategies. The bootstrap rebalancing strategy is most valuable in Panel A, because the sample
covariance estimator suffers most from estimation uncertainty.
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Table D.2: Performance of asset allocation strategies with a risk aversion parameter of 1
applied on daily industry portfolio data from 2000-2019.
This table shows the performance of buy-and-hold (B&H), periodic, threshold (Thld), and bootstrap
(Boot) rebalancing strategies. A stationary bootstrap is applied with an average block size of 20 trading
days. Portfolios are rebalanced to global minimum variance weights on the left-hand side and by solving
a quadratic programming problem with transaction costs on the right-hand side. The optimisation
is performed using the covariance estimated on a rolling-window of 250 trading days and assuming
transaction costs of 50 basis points. The performance is measured by the daily post-transaction cost
return in % (µ), daily volatility in % (σ), annualised post-transaction cost Sharpe ratio (SR), utility of a
mean-variance investor with risk aversion parameter 1 relative to B&H (Utility), daily transaction costs
in basis points (TC), and average rebalancing time in days (ART). The best performing strategy within
each column per panel is indicated in bold.

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

Panel A: Sample estimator

B&H 0.038 1.102 0.509 1.000 0.000 ∞ 0.038 1.102 0.509 1.000 0.000 ∞
Daily -0.082 0.716 -1.873 1.678 12.244 1.000 0.042 0.817 0.751 1.948 0.098 2.265
Weekly -0.020 0.725 -0.503 2.009 6.135 5.000 0.042 0.813 0.762 1.969 0.090 8.739
Monthly 0.007 0.742 0.091 2.120 3.276 20.000 0.043 0.815 0.782 1.966 0.084 29.325
Quarterly 0.018 0.774 0.312 2.018 1.956 60.506 0.043 0.831 0.758 1.879 0.067 78.361
Annually 0.033 0.816 0.578 1.893 0.966 251.579 0.044 0.846 0.772 1.813 0.045 298.750
Thld 5% -0.063 0.721 -1.454 1.756 10.387 1.708 0.042 0.820 0.760 1.935 0.086 37.937
Thld 10% -0.036 0.725 -0.844 1.904 7.557 3.565 0.043 0.831 0.769 1.884 0.082 78.361
Thld 20% -0.008 0.731 -0.242 2.061 4.702 9.835 0.044 0.842 0.775 1.831 0.077 164.828
Thld 40% 0.012 0.747 0.185 2.123 2.633 33.194 0.044 0.847 0.776 1.807 0.039 531.111
Boot 1% 0.032 0.785 0.590 2.061 1.071 191.200 0.045 0.814 0.814 1.986 0.096 4.609
Boot 25% 0.023 0.760 0.416 2.139 1.609 91.923 0.042 0.817 0.751 1.947 0.097 4.110
Boot 50% 0.021 0.749 0.384 2.188 1.905 66.389 0.042 0.817 0.751 1.947 0.097 4.110
Boot 75% 0.017 0.743 0.308 2.200 2.139 49.792 0.042 0.817 0.751 1.947 0.097 4.110
Boot 99% 0.003 0.736 0.005 2.125 3.281 20.873 0.042 0.817 0.751 1.947 0.097 4.110

Panel B: Shrinkage estimator

B&H 0.039 1.084 0.524 1.000 0.000 ∞ 0.039 1.084 0.524 1.000 0.000 ∞
Daily -0.047 0.689 -1.154 1.927 8.771 1.000 0.042 0.807 0.769 1.937 0.089 2.445
Weekly -0.003 0.695 -0.138 2.238 4.423 5.000 0.042 0.805 0.777 1.950 0.083 9.175
Monthly 0.016 0.711 0.292 2.317 2.397 20.000 0.043 0.809 0.788 1.933 0.077 30.446
Quarterly 0.024 0.744 0.455 2.174 1.465 60.506 0.043 0.822 0.778 1.862 0.062 77.097
Annually 0.035 0.780 0.652 2.035 0.749 251.579 0.044 0.840 0.774 1.774 0.042 298.750
Thld 5% -0.030 0.693 -0.760 2.027 7.069 1.979 0.042 0.811 0.772 1.916 0.081 37.937
Thld 10% -0.010 0.694 -0.283 2.192 4.978 4.426 0.044 0.816 0.796 1.897 0.077 74.688
Thld 20% 0.008 0.707 0.122 2.273 3.079 12.679 0.042 0.832 0.753 1.807 0.066 177.037
Thld 40% 0.021 0.717 0.401 2.327 1.729 43.063 0.043 0.851 0.754 1.721 0.032 597.500
Boot 1% 0.032 0.737 0.621 2.285 0.951 154.194 0.044 0.799 0.808 1.989 0.081 5.173
Boot 25% 0.028 0.724 0.552 2.345 1.294 81.017 0.042 0.807 0.769 1.936 0.089 4.434
Boot 50% 0.022 0.720 0.428 2.318 1.513 57.590 0.042 0.807 0.769 1.936 0.089 4.434
Boot 75% 0.022 0.708 0.426 2.396 1.728 43.455 0.042 0.807 0.769 1.936 0.089 4.434
Boot 99% 0.013 0.699 0.219 2.366 2.498 19.274 0.042 0.807 0.769 1.936 0.089 4.434

Panel C: POET estimator

B&H 0.039 0.971 0.593 1.000 0.000 ∞ 0.039 0.971 0.593 1.000 0.000 ∞
Daily -0.039 0.729 -0.911 1.420 7.490 1.000 0.039 0.822 0.694 1.447 0.104 2.563
Weekly -0.001 0.733 -0.085 1.603 3.817 5.000 0.040 0.823 0.705 1.445 0.098 9.560
Monthly 0.017 0.747 0.295 1.652 2.074 20.000 0.040 0.820 0.715 1.460 0.082 32.081
Quarterly 0.024 0.775 0.433 1.566 1.260 60.506 0.040 0.841 0.701 1.379 0.064 91.923
Annually 0.036 0.792 0.663 1.559 0.628 251.579 0.039 0.865 0.670 1.293 0.045 318.667
Thld 5% -0.023 0.732 -0.550 1.489 5.798 2.286 0.038 0.825 0.681 1.432 0.087 38.548
Thld 10% -0.005 0.735 -0.170 1.572 4.075 5.444 0.040 0.828 0.709 1.430 0.083 73.538
Thld 20% 0.008 0.740 0.119 1.629 2.617 15.127 0.038 0.842 0.657 1.365 0.055 207.826
Thld 40% 0.021 0.758 0.369 1.622 1.567 47.327 0.037 0.865 0.628 1.283 0.046 531.111
Boot 1% 0.033 0.791 0.594 1.543 0.861 140.588 0.040 0.813 0.720 1.487 0.096 5.323
Boot 25% 0.025 0.758 0.470 1.653 1.202 70.294 0.039 0.822 0.693 1.446 0.104 4.509
Boot 50% 0.020 0.748 0.372 1.668 1.424 50.316 0.039 0.822 0.693 1.446 0.104 4.509
Boot 75% 0.017 0.743 0.305 1.673 1.821 32.297 0.039 0.822 0.693 1.446 0.104 4.509
Boot 99% 0.008 0.738 0.120 1.641 2.639 14.226 0.039 0.822 0.693 1.446 0.104 4.509
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Table D.3: Performance of asset allocation strategies with a risk aversion parameter of 10
applied on daily industry portfolio data from 2000-2019.
This table shows the performance of buy-and-hold (B&H), periodic, threshold (Thld), and bootstrap
(Boot) rebalancing strategies. A stationary bootstrap is applied with an average block size of 20 trading
days. Portfolios are rebalanced to global minimum variance weights on the left-hand side and by solving
a quadratic programming problem with transaction costs on the right-hand side. The optimisation
is performed using the covariance estimated on a rolling-window of 250 trading days and assuming
transaction costs of 50 basis points. The performance is measured by the daily post-transaction cost
return in % (µ), daily volatility in % (σ), annualised post-transaction cost Sharpe ratio (SR), utility of
a mean-variance investor with risk aversion parameter 10 relative to B&H (Utility), daily transaction
costs in basis points (TC), and average rebalancing time in days (ART). The best performing strategy
within each column per panel is indicated in bold.

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

Panel A: Sample estimator

B&H 0.038 1.102 0.509 1.000 0.000 ∞ 0.038 1.102 0.509 1.000 0.000 ∞
Daily -0.082 0.716 -1.873 2.276 12.244 1.000 0.029 0.711 0.580 2.416 0.892 1.025
Weekly -0.020 0.725 -0.503 2.277 6.135 5.000 0.032 0.713 0.636 2.400 0.807 5.021
Monthly 0.007 0.742 0.091 2.196 3.276 20.000 0.035 0.722 0.698 2.343 0.713 20.000
Quarterly 0.018 0.774 0.312 2.023 1.956 60.506 0.035 0.751 0.674 2.168 0.561 60.506
Annually 0.033 0.816 0.578 1.829 0.966 251.579 0.040 0.794 0.735 1.937 0.399 251.579
Thld 5% -0.063 0.721 -1.454 2.262 10.387 1.708 0.030 0.713 0.606 2.401 0.805 7.735
Thld 10% -0.036 0.725 -0.844 2.264 7.557 3.565 0.032 0.715 0.643 2.386 0.745 16.950
Thld 20% -0.008 0.731 -0.242 2.247 4.702 9.835 0.032 0.728 0.639 2.304 0.632 39.833
Thld 40% 0.012 0.747 0.185 2.168 2.633 33.194 0.034 0.751 0.659 2.166 0.512 106.222
Boot 1% 0.039 0.793 0.717 1.940 1.051 191.200 0.034 0.746 0.657 2.192 0.649 2.459
Boot 25% 0.025 0.758 0.471 2.115 1.624 91.923 0.031 0.714 0.616 2.391 0.823 1.306
Boot 50% 0.021 0.751 0.387 2.156 1.907 65.479 0.029 0.711 0.579 2.412 0.876 1.150
Boot 75% 0.016 0.743 0.287 2.196 2.188 48.776 0.029 0.711 0.580 2.416 0.892 1.096
Boot 99% 0.004 0.738 0.025 2.216 3.260 21.057 0.029 0.711 0.580 2.416 0.892 1.096

Panel B: Shrinkage estimator

B&H 0.039 1.084 0.524 1.000 0.000 ∞ 0.039 1.084 0.524 1.000 0.000 ∞
Daily -0.047 0.689 -1.154 2.412 8.771 1.000 0.031 0.694 0.648 2.452 0.765 1.034
Weekly -0.003 0.695 -0.138 2.410 4.423 5.000 0.033 0.698 0.688 2.426 0.681 5.016
Monthly 0.016 0.711 0.292 2.323 2.397 20.000 0.035 0.709 0.723 2.352 0.588 20.000
Quarterly 0.024 0.744 0.455 2.129 1.465 60.506 0.035 0.739 0.693 2.162 0.476 60.506
Annually 0.035 0.780 0.652 1.938 0.749 251.579 0.041 0.775 0.775 1.968 0.344 251.579
Thld 5% -0.030 0.693 -0.760 2.399 7.069 1.979 0.033 0.697 0.674 2.432 0.689 8.102
Thld 10% -0.010 0.694 -0.283 2.415 4.978 4.426 0.033 0.701 0.688 2.408 0.619 17.836
Thld 20% 0.008 0.707 0.122 2.345 3.079 12.679 0.033 0.718 0.668 2.292 0.528 43.455
Thld 40% 0.021 0.717 0.401 2.291 1.729 43.063 0.033 0.735 0.647 2.185 0.385 122.564
Boot 1% 0.033 0.734 0.653 2.190 0.971 149.375 0.036 0.727 0.732 2.237 0.548 2.566
Boot 25% 0.026 0.733 0.501 2.192 1.301 81.017 0.033 0.696 0.683 2.441 0.683 1.365
Boot 50% 0.023 0.720 0.443 2.270 1.514 57.590 0.031 0.695 0.648 2.446 0.745 1.207
Boot 75% 0.023 0.712 0.455 2.320 1.725 43.853 0.031 0.694 0.648 2.452 0.764 1.130
Boot 99% 0.014 0.701 0.243 2.385 2.493 19.352 0.031 0.694 0.648 2.452 0.765 1.119

Panel C: POET estimator

B&H 0.039 0.971 0.593 1.000 0.000 ∞ 0.039 0.971 0.593 1.000 0.000 ∞
Daily -0.039 0.729 -0.911 1.737 7.490 1.000 0.027 0.734 0.514 1.754 0.934 1.054
Weekly -0.001 0.733 -0.085 1.741 3.817 5.000 0.029 0.739 0.551 1.730 0.777 5.021
Monthly 0.017 0.747 0.295 1.690 2.074 20.000 0.030 0.745 0.586 1.706 0.615 20.000
Quarterly 0.024 0.775 0.433 1.571 1.260 60.506 0.030 0.768 0.561 1.605 0.483 60.506
Annually 0.036 0.792 0.663 1.510 0.628 251.579 0.040 0.788 0.745 1.526 0.362 251.579
Thld 5% -0.023 0.732 -0.550 1.732 5.798 2.286 0.027 0.737 0.524 1.741 0.807 7.480
Thld 10% -0.005 0.735 -0.170 1.729 4.075 5.444 0.028 0.739 0.540 1.729 0.709 16.040
Thld 20% 0.008 0.740 0.119 1.713 2.617 15.127 0.029 0.744 0.557 1.710 0.589 39.180
Thld 40% 0.021 0.758 0.369 1.640 1.567 47.327 0.035 0.758 0.676 1.648 0.461 111.163
Boot 1% 0.030 0.797 0.538 1.487 0.839 144.849 0.035 0.775 0.663 1.579 0.476 10.552
Boot 25% 0.024 0.760 0.433 1.632 1.198 70.294 0.028 0.738 0.536 1.735 0.717 1.794
Boot 50% 0.020 0.748 0.363 1.685 1.482 47.327 0.027 0.736 0.526 1.747 0.835 1.399
Boot 75% 0.017 0.742 0.298 1.709 1.837 31.867 0.027 0.735 0.518 1.750 0.900 1.278
Boot 99% 0.009 0.738 0.132 1.725 2.646 14.311 0.027 0.734 0.514 1.754 0.934 1.138
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Table D.4: Performance of asset allocation strategies with transaction costs of 25 bps applied
on daily industry portfolio data from 2000-2019.
This table shows the performance of buy-and-hold (B&H), periodic, threshold (Thld), and bootstrap
(Boot) rebalancing strategies. A stationary bootstrap is applied with an average block size of 20 trading
days. Portfolios are rebalanced to global minimum variance weights on the left-hand side and by solving
a quadratic programming problem with transaction costs on the right-hand side. The optimisation
is performed using the covariance estimated on a rolling-window of 250 trading days and assuming
transaction costs of 25 basis points. The performance is measured by the daily post-transaction cost
return in % (µ), daily volatility in % (σ), annualised post-transaction cost Sharpe ratio (SR), utility of a
mean-variance investor with risk aversion parameter 3 relative to B&H (Utility), daily transaction costs
in basis points (TC), and average rebalancing time in days (ART). The best performing strategy within
each column per panel is indicated in bold.

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

Panel A: Sample estimator

B&H 0.038 1.102 0.509 1.000 0.000 ∞ 0.038 1.102 0.509 1.000 0.000 ∞
Daily -0.021 0.711 -0.527 2.290 6.122 1.000 0.035 0.721 0.711 2.394 0.287 1.079
Weekly 0.010 0.715 0.168 2.359 3.068 5.000 0.036 0.725 0.732 2.369 0.261 5.085
Monthly 0.023 0.730 0.447 2.296 1.638 20.000 0.038 0.735 0.751 2.308 0.225 20.000
Quarterly 0.028 0.763 0.520 2.111 0.978 60.506 0.038 0.762 0.740 2.140 0.193 60.506
Annually 0.037 0.804 0.681 1.911 0.483 251.579 0.044 0.795 0.811 1.972 0.147 251.579
Thld 5% -0.012 0.713 -0.319 2.305 5.193 1.708 0.035 0.726 0.710 2.362 0.252 10.814
Thld 10% 0.002 0.714 -0.020 2.338 3.779 3.565 0.036 0.728 0.715 2.346 0.225 23.547
Thld 20% 0.015 0.719 0.270 2.343 2.351 9.835 0.038 0.743 0.753 2.255 0.210 53.708
Thld 40% 0.025 0.735 0.471 2.268 1.317 33.194 0.040 0.761 0.777 2.151 0.172 140.588
Boot 1% 0.038 0.779 0.707 2.042 0.554 183.846 0.039 0.748 0.758 2.229 0.239 2.144
Boot 25% 0.031 0.744 0.595 2.227 0.807 91.923 0.035 0.721 0.709 2.392 0.284 1.334
Boot 50% 0.030 0.738 0.577 2.262 0.953 65.479 0.035 0.721 0.711 2.394 0.287 1.323
Boot 75% 0.028 0.729 0.556 2.317 1.074 49.792 0.035 0.721 0.711 2.394 0.287 1.323
Boot 99% 0.021 0.724 0.394 2.327 1.639 20.873 0.035 0.721 0.711 2.394 0.287 1.323

Panel B: Shrinkage estimator

B&H 0.039 1.084 0.524 1.000 0.000 ∞ 0.039 1.084 0.524 1.000 0.000 ∞
Daily -0.004 0.685 -0.148 2.436 4.385 1.000 0.036 0.707 0.751 2.412 0.253 1.090
Weekly 0.019 0.689 0.368 2.483 2.212 5.000 0.037 0.712 0.769 2.382 0.230 5.140
Monthly 0.028 0.704 0.564 2.406 1.199 20.000 0.038 0.723 0.777 2.313 0.198 20.084
Quarterly 0.032 0.736 0.616 2.203 0.732 60.506 0.039 0.748 0.773 2.153 0.170 60.506
Annually 0.039 0.773 0.735 2.010 0.374 251.579 0.043 0.780 0.814 1.984 0.127 251.579
Thld 5% 0.005 0.687 0.047 2.450 3.535 1.979 0.036 0.711 0.738 2.383 0.219 11.039
Thld 10% 0.015 0.687 0.287 2.489 2.489 4.426 0.037 0.714 0.760 2.368 0.200 23.900
Thld 20% 0.024 0.697 0.473 2.445 1.540 12.679 0.038 0.729 0.769 2.272 0.181 54.943
Thld 40% 0.030 0.708 0.599 2.382 0.864 43.063 0.039 0.746 0.777 2.167 0.140 149.375
Boot 1% 0.038 0.728 0.767 2.274 0.484 149.375 0.039 0.737 0.779 2.223 0.205 2.261
Boot 25% 0.033 0.719 0.655 2.318 0.656 79.667 0.036 0.708 0.748 2.406 0.247 1.418
Boot 50% 0.031 0.713 0.625 2.355 0.754 58.293 0.036 0.707 0.751 2.412 0.253 1.361
Boot 75% 0.031 0.700 0.638 2.445 0.855 44.259 0.036 0.707 0.751 2.412 0.253 1.361
Boot 99% 0.027 0.695 0.541 2.471 1.252 19.274 0.036 0.707 0.751 2.412 0.253 1.361

Panel C: POET estimator

B&H 0.039 0.971 0.593 1.000 0.000 ∞ 0.039 0.971 0.593 1.000 0.000 ∞
Daily -0.002 0.724 -0.099 1.747 3.745 1.000 0.034 0.741 0.663 1.744 0.321 1.089
Weekly 0.018 0.729 0.329 1.766 1.908 5.000 0.034 0.745 0.669 1.726 0.273 5.096
Monthly 0.027 0.742 0.517 1.721 1.037 20.000 0.035 0.749 0.690 1.707 0.222 20.000
Quarterly 0.030 0.771 0.564 1.600 0.630 60.506 0.034 0.771 0.646 1.604 0.178 60.506
Annually 0.039 0.787 0.731 1.549 0.314 251.579 0.043 0.791 0.809 1.536 0.144 251.579
Thld 5% 0.006 0.726 0.077 1.756 2.899 2.286 0.034 0.743 0.656 1.733 0.280 9.264
Thld 10% 0.015 0.728 0.271 1.767 2.038 5.444 0.035 0.746 0.673 1.720 0.256 19.197
Thld 20% 0.021 0.734 0.402 1.752 1.309 15.127 0.035 0.746 0.690 1.722 0.211 47.327
Thld 40% 0.028 0.751 0.538 1.684 0.783 47.327 0.038 0.764 0.732 1.643 0.167 132.778
Boot 1% 0.033 0.781 0.605 1.559 0.416 144.849 0.035 0.773 0.663 1.598 0.199 4.238
Boot 25% 0.030 0.753 0.578 1.679 0.604 70.294 0.033 0.746 0.647 1.717 0.281 1.647
Boot 50% 0.028 0.744 0.530 1.715 0.716 49.278 0.034 0.741 0.660 1.742 0.314 1.446
Boot 75% 0.026 0.733 0.504 1.763 0.907 32.517 0.034 0.741 0.663 1.744 0.321 1.335
Boot 99% 0.022 0.730 0.415 1.772 1.301 14.573 0.034 0.741 0.663 1.744 0.321 1.334
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Table D.5: Performance of asset allocation strategies with transaction costs of 100 bps applied
on daily industry portfolio data from 2000-2019.
This table shows the performance of buy-and-hold (B&H), periodic, threshold (Thld), and bootstrap
(Boot) rebalancing strategies. A stationary bootstrap is applied with an average block size of 20 trading
days. Portfolios are rebalanced to global minimum variance weights on the left-hand side and by solving
a quadratic programming problem with transaction costs on the right-hand side. The optimisation
is performed using the covariance estimated on a rolling-window of 250 trading days and assuming
transaction costs of 100 basis points. The performance is measured by the daily post-transaction cost
return in % (µ), daily volatility in % (σ), annualised post-transaction cost Sharpe ratio (SR), utility of a
mean-variance investor with risk aversion parameter 3 relative to B&H (Utility), daily transaction costs
in basis points (TC), and average rebalancing time in days (ART). The best performing strategy within
each column per panel is indicated in bold.

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

Panel A: Sample estimator

B&H 0.038 1.102 0.509 1.000 0.000 ∞ 0.038 1.102 0.509 1.000 0.000 ∞
Daily -0.204 0.736 -4.456 1.754 24.489 1.000 0.039 0.785 0.735 2.014 0.325 1.907
Weekly -0.082 0.764 -1.747 1.861 12.271 5.000 0.040 0.785 0.752 2.015 0.300 7.029
Monthly -0.026 0.787 -0.572 1.866 6.552 20.000 0.042 0.787 0.779 2.006 0.274 22.762
Quarterly -0.001 0.821 -0.082 1.762 3.913 60.506 0.042 0.804 0.779 1.921 0.234 66.389
Annually 0.023 0.861 0.370 1.636 1.933 251.579 0.044 0.825 0.788 1.822 0.156 265.556
Thld 5% -0.167 0.751 -3.585 1.760 20.773 1.708 0.041 0.788 0.761 2.002 0.297 23.547
Thld 10% -0.111 0.763 -2.367 1.809 15.115 3.565 0.041 0.795 0.751 1.964 0.265 51.957
Thld 20% -0.055 0.776 -1.186 1.858 9.405 9.835 0.043 0.800 0.788 1.944 0.238 113.809
Thld 40% -0.015 0.795 -0.350 1.853 5.266 33.194 0.046 0.828 0.826 1.814 0.209 298.750
Boot 1% 0.015 0.847 0.225 1.681 2.249 183.846 0.043 0.790 0.799 1.995 0.321 2.940
Boot 25% 0.007 0.807 0.089 1.839 3.268 91.923 0.039 0.785 0.735 2.013 0.325 2.691
Boot 50% 0.003 0.790 0.013 1.912 3.761 66.389 0.039 0.785 0.735 2.013 0.325 2.691
Boot 75% -0.004 0.794 -0.134 1.879 4.296 49.792 0.039 0.785 0.735 2.013 0.325 2.691
Boot 99% -0.028 0.790 -0.620 1.847 6.582 20.873 0.039 0.785 0.735 2.013 0.325 2.691

Panel B: Shrinkage estimator

B&H 0.039 1.084 0.524 1.000 0.000 ∞ 0.039 1.084 0.524 1.000 0.000 ∞
Daily -0.135 0.701 -3.114 1.977 17.542 1.000 0.040 0.777 0.750 1.992 0.292 1.977
Weekly -0.047 0.718 -1.108 2.098 8.846 5.000 0.041 0.777 0.767 1.991 0.271 7.365
Monthly -0.008 0.737 -0.233 2.094 4.795 20.000 0.042 0.780 0.794 1.981 0.249 24.264
Quarterly 0.010 0.772 0.138 1.950 2.929 60.506 0.043 0.797 0.792 1.892 0.214 66.389
Annually 0.028 0.809 0.483 1.804 1.497 251.579 0.044 0.818 0.803 1.798 0.146 281.176
Thld 5% -0.101 0.712 -2.309 1.999 14.138 1.979 0.040 0.781 0.759 1.970 0.268 24.896
Thld 10% -0.059 0.718 -1.370 2.071 9.956 4.426 0.042 0.784 0.783 1.955 0.249 50.851
Thld 20% -0.023 0.738 -0.543 2.053 6.159 12.679 0.044 0.792 0.815 1.918 0.224 116.585
Thld 40% 0.004 0.746 0.019 2.073 3.457 43.063 0.044 0.857 0.754 1.627 0.175 341.429
Boot 1% 0.024 0.765 0.437 2.017 1.945 149.375 0.041 0.776 0.787 2.000 0.282 3.180
Boot 25% 0.014 0.765 0.231 1.992 2.642 79.667 0.040 0.777 0.750 1.992 0.291 2.825
Boot 50% 0.008 0.749 0.115 2.070 3.026 57.590 0.040 0.777 0.750 1.992 0.291 2.825
Boot 75% 0.004 0.737 0.015 2.125 3.471 43.455 0.040 0.777 0.750 1.992 0.291 2.825
Boot 99% -0.013 0.733 -0.337 2.106 4.984 19.352 0.040 0.777 0.750 1.992 0.291 2.825

Panel C: POET estimator

B&H 0.039 0.971 0.593 1.000 0.000 ∞ 0.039 0.971 0.593 1.000 0.000 ∞
Daily -0.114 0.743 -2.489 1.462 14.980 1.000 0.036 0.796 0.654 1.506 0.357 2.086
Weekly -0.039 0.750 -0.887 1.559 7.634 5.000 0.037 0.797 0.685 1.503 0.343 7.563
Monthly -0.004 0.765 -0.141 1.563 4.147 20.000 0.039 0.797 0.714 1.507 0.307 24.264
Quarterly 0.011 0.794 0.172 1.474 2.519 60.506 0.038 0.824 0.669 1.403 0.249 68.286
Annually 0.030 0.812 0.525 1.434 1.256 251.579 0.042 0.831 0.751 1.386 0.185 251.579
Thld 5% -0.081 0.751 -1.756 1.485 11.596 2.286 0.037 0.798 0.684 1.500 0.334 22.762
Thld 10% -0.046 0.758 -1.014 1.516 8.150 5.444 0.037 0.807 0.667 1.464 0.302 45.094
Thld 20% -0.018 0.764 -0.426 1.541 5.234 15.127 0.037 0.820 0.666 1.416 0.251 111.163
Thld 40% 0.005 0.784 0.041 1.501 3.133 47.327 0.041 0.829 0.725 1.391 0.196 298.750
Boot 1% 0.021 0.819 0.347 1.396 1.733 140.588 0.040 0.801 0.731 1.493 0.368 3.806
Boot 25% 0.011 0.783 0.166 1.515 2.432 70.294 0.036 0.796 0.655 1.506 0.357 2.925
Boot 50% 0.006 0.772 0.073 1.551 2.862 49.792 0.036 0.796 0.655 1.506 0.357 2.925
Boot 75% -0.001 0.763 -0.089 1.572 3.648 32.081 0.036 0.796 0.655 1.506 0.357 2.925
Boot 99% -0.019 0.765 -0.441 1.535 5.295 14.184 0.036 0.796 0.655 1.506 0.357 2.925
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Table D.6 shows the optimal block size for industry portfolios with monthly data. The
average recommended block size is between one and two months. For most industry portfolios
a block size of one month is preferred. Therefore, a block size of one month is used to perform
the bootstrap. This choice is also in line with the 20 trading days selected for daily industry
portfolio data based on Table D.1.

Table D.6: Optimal bootstrap block size selected by the algorithm of Politis and White (2004)
for monthly industry portfolio data from 2000-2019 .
The algorithm selects the block size by minimising the long-run variance estimate based on the mean
squared error. They suggest using a block size of one if the optimal estimated block size is below one.

Bootstrap Mean Standard deviation Minimum Maximum

Stationary 1.435 1.208 0.269 7.016
Circular 1.643 1.383 0.308 8.031
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Appendix E: Description S&P 500 Data

This appendix provides additional descriptive statistics of the S&P 500 data set described in
Section 6.1.

Table E.1: Descriptive statistics of daily S&P 500 stock data and the market from 2000-2019.
Mean return (Mean), volatility (Vol.), minimum return (Min.), maximum return (Max.) are daily in
%. The Sharpe ratio (SR) is annualised. Volume is the average trading volume in million US dollars.
The bid-ask spread (BidAsk) is the average spread in basis points. The correlation with the market is
denoted by Mkt.

Stock Mean Vol. SR Min. Max. Volume BidAsk Mkt

Apple Inc 0.124 2.542 0.751 -51.869 13.905 4014.409 4.173 0.540
American Express Co 0.048 2.198 0.324 -17.595 20.649 338.482 17.135 0.736
American International Group Inc 0.009 3.647 0.024 -60.791 66.000 472.302 16.411 0.479
Applied Materials Inc 0.055 2.713 0.302 -14.018 25.633 458.672 5.593 0.631
Advanced Micro Devices Inc 0.103 4.013 0.394 -32.402 52.290 368.532 42.474 0.495
Amgen Inc 0.051 1.997 0.383 -13.412 15.102 543.374 3.373 0.517
Berkley W R Corp 0.083 1.622 0.779 -13.451 16.240 25.081 13.667 0.516
Cincinnati Financial Corp 0.054 1.690 0.479 -20.068 18.252 30.913 6.362 0.693
Regions Financial Corp New 0.056 3.073 0.271 -41.071 48.410 116.991 15.178 0.567
Fedex Corp 0.046 1.888 0.360 -14.483 11.832 221.277 19.240 0.635
Fifth Third Bancorp 0.051 3.208 0.237 -43.626 60.366 146.758 6.980 0.550
Huntington Bancshares Inc 0.059 3.290 0.267 -30.586 50.074 74.218 13.966 0.516
Westamerica Bancorporation 0.045 1.838 0.363 -14.071 15.235 7.962 11.550 0.661
Intel Corp 0.043 2.316 0.273 -22.033 20.123 1328.938 3.994 0.662
K L A Tencor Corp 0.075 2.853 0.398 -16.987 25.092 218.861 4.217 0.610
Limited Inc 0.047 2.433 0.284 -18.690 21.906 104.727 32.379 0.556
Medtronic Plc 0.041 1.562 0.384 -13.235 11.184 300.648 26.248 0.522
Bank Of America Corp 0.058 2.870 0.302 -28.969 35.269 1401.296 18.412 0.649
Northern Trust Corp 0.044 2.147 0.303 -18.811 30.913 89.332 5.419 0.719
Paccar Inc 0.081 2.169 0.565 -12.310 18.843 104.318 5.652 0.728
Zions Bancorporation N A 0.042 2.802 0.220 -24.544 27.557 70.926 6.764 0.574
Home Depot Inc 0.049 1.912 0.382 -28.736 14.067 513.315 18.018 0.636
Cintas Corp 0.063 1.874 0.504 -15.753 21.339 52.856 5.492 0.643
Paychex Inc 0.051 1.821 0.414 -13.182 14.286 104.690 4.771 0.608
Hunt J B Transport Services Inc 0.099 2.253 0.672 -24.615 16.604 53.821 12.515 0.551
Lam Resh Corp 0.091 3.121 0.447 -17.384 20.000 164.010 7.486 0.611
Expeditors International Wa Inc 0.065 2.118 0.463 -12.149 18.277 63.277 7.222 0.603
Autodesk Inc 0.096 2.615 0.563 -20.949 16.895 120.798 7.093 0.593
Ross Stores Inc 0.104 2.106 0.759 -11.896 23.383 101.564 7.627 0.487
Henry Jack & Assoc Inc 0.072 1.994 0.547 -26.792 14.570 21.339 10.750 0.594
Costco Wholesale Corp New 0.059 1.753 0.502 -21.539 15.007 276.378 4.014 0.550
Monster Beverage Corp New 0.175 2.993 0.907 -25.839 30.482 89.167 53.934 0.294
Oracle Corp 0.045 2.439 0.272 -21.053 21.327 749.009 4.697 0.625
Microsoft Corp 0.046 1.897 0.362 -15.598 19.565 1963.216 3.042 0.677
T Rowe Price Group Inc 0.073 2.290 0.481 -17.939 18.167 89.314 6.099 0.779
Adobe Systems Inc 0.097 2.729 0.542 -29.758 23.972 267.332 4.231 0.615
Fiserv Inc 0.076 1.919 0.601 -19.460 16.515 93.327 4.920 0.634
Cerner Corp 0.101 2.572 0.602 -45.061 28.000 73.396 8.624 0.450
Dentsply Sirona Inc 0.055 1.616 0.504 -18.652 17.649 46.201 7.592 0.534
Fastenal Company 0.081 2.128 0.576 -14.574 17.150 75.395 6.820 0.609
Silicon Valley Bancshares 0.087 2.837 0.466 -33.256 26.771 41.761 8.911 0.622
Peoples United Financial Inc 0.057 1.655 0.518 -15.632 17.881 40.797 12.756 0.595
Symantec Corp 0.069 2.690 0.386 -36.552 27.778 191.653 6.684 0.497
Electronic Arts Inc 0.068 2.693 0.384 -17.851 21.034 212.663 4.992 0.509
Cisco Systems Inc 0.032 2.424 0.188 -16.211 24.388 1187.332 4.306 0.660
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Table E.1 (cont.) Descriptive statistics of daily S&P 500 stock data and the market from
2000-2019.

Stock Mean Vol. SR Min. Max. Volume BidAsk Mkt

Hologic Inc 0.111 2.823 0.605 -20.192 24.590 57.340 30.436 0.417
Xilinx Inc 0.061 2.807 0.327 -21.090 18.437 213.191 4.493 0.603
I D E X X Laboratories Inc 0.104 2.039 0.780 -17.074 17.233 35.906 11.198 0.482
Zebra Technologies Corp 0.073 2.357 0.470 -23.846 22.845 27.728 9.836 0.515
Old Dominion Freight Line Inc 0.133 2.663 0.770 -15.397 23.781 25.065 57.979 0.444
Qualcomm Inc 0.042 2.663 0.233 -16.848 23.207 794.700 3.256 0.566
Perrigo Co Plc 0.065 2.229 0.437 -29.278 18.390 72.760 13.126 0.402
Synopsys Inc 0.051 2.130 0.359 -31.156 15.953 49.876 6.529 0.543
Starbucks Corp 0.092 2.104 0.669 -18.423 18.380 305.026 5.102 0.577
Intuit Inc 0.077 2.527 0.461 -29.438 29.561 153.849 4.611 0.519
Microchip Technology Inc 0.077 2.651 0.443 -15.631 23.782 107.320 5.810 0.597
O Reilly Automotive Inc New 0.096 2.119 0.694 -18.892 20.202 91.834 11.297 0.464
Flir Systems Inc 0.108 2.845 0.581 -41.606 33.019 30.975 24.601 0.388
Activision Inc New 0.115 2.693 0.655 -27.119 23.270 157.814 12.350 0.464
Tractor Supply Co New 0.120 2.374 0.781 -17.241 22.183 53.730 23.253 0.441
Copart Inc 0.088 2.162 0.618 -27.450 19.481 26.981 12.910 0.443
Dollar Tree Stores Inc 0.074 2.440 0.458 -43.814 17.745 110.842 6.503 0.396
Echostar Communications Corp New 0.040 2.761 0.211 -19.126 24.642 98.827 6.293 0.542
Schein Henry Inc 0.081 1.829 0.675 -13.746 19.111 46.962 9.170 0.487
Network Appliance Inc 0.077 3.670 0.319 -20.909 40.929 202.875 5.615 0.554
Citrix Systems Inc 0.065 3.062 0.318 -45.979 24.561 132.175 6.507 0.528
Alexion Pharmaceuticals Inc 0.111 3.424 0.498 -31.217 45.124 105.775 13.849 0.431
Ansys Inc 0.118 2.363 0.769 -15.544 17.357 29.086 21.423 0.507
E Trade Group Inc 0.043 3.905 0.160 -58.673 50.000 83.431 40.116 0.592
Amazon Com Inc 0.117 3.295 0.545 -24.766 34.471 1684.095 5.519 0.492
R F Micro Devices Inc 0.087 4.263 0.312 -38.044 43.149 85.935 15.197 0.533
Ch Robinson Worldwide Inc 0.067 1.971 0.514 -15.643 21.572 75.737 6.876 0.529
Verisign Inc 0.060 3.344 0.269 -45.779 30.410 145.219 5.552 0.549
Cognizant Technology Sols Corp 0.105 2.780 0.580 -23.965 20.235 151.198 12.395 0.550
Crown Castle Intl Corp New 0.077 2.935 0.397 -38.830 31.220 108.853 32.656 0.448
Ebay Inc 0.074 2.818 0.397 -20.576 30.383 472.692 4.131 0.559
Nvidia Corp 0.156 3.823 0.631 -35.234 42.415 595.150 6.813 0.527
Priceline Group Inc 0.118 3.945 0.461 -42.330 35.876 395.974 16.234 0.418
F 5 Networks Inc 0.089 3.777 0.358 -24.834 39.706 100.474 11.350 0.457
S B A Communications Corp New 0.125 3.861 0.498 -48.750 45.536 66.862 24.775 0.385
Juniper Networks Inc 0.047 3.520 0.197 -21.053 31.071 288.533 5.502 0.538
Akamai Technologies Inc 0.064 4.304 0.222 -26.278 45.599 111.758 15.600 0.485
Abbott Laboratories 0.054 1.473 0.544 -16.138 12.466 302.687 20.090 0.461
Skyworks Solutions Inc 0.110 4.041 0.420 -22.239 35.749 104.432 11.590 0.505
American Electric Power Co Inc 0.051 1.529 0.498 -22.785 19.842 115.849 21.444 0.440
Baker Hughes Inc New 0.048 2.491 0.285 -22.080 26.982 199.993 23.867 0.526
Bank Of New York Mellon Corp 0.040 2.334 0.250 -27.158 24.807 193.669 18.782 0.700
Baxter International Inc 0.052 1.602 0.486 -26.284 9.144 181.927 14.376 0.427
Verizon Communications Inc 0.032 1.533 0.295 -11.846 14.632 545.334 16.119 0.536
Boeing Co 0.067 1.881 0.540 -17.625 15.463 510.024 16.895 0.607
Bristol Myers Squibb Co 0.032 1.771 0.255 -22.414 14.644 354.175 18.083 0.450
Cigna Corp New 0.069 2.287 0.455 -38.066 23.540 159.724 12.628 0.487
Campbell Soup Co 0.026 1.441 0.256 -12.366 14.286 66.861 21.099 0.352
Caterpillar Inc 0.067 2.001 0.506 -14.518 14.723 425.619 20.905 0.685
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Table E.1 (cont.) Descriptive statistics of daily S&P 500 stock data and the market from
2000-2019.

Stock Mean Vol. SR Min. Max. Volume BidAsk Mkt

JPMorgan Chase & Co 0.060 2.425 0.373 -20.727 25.097 1011.750 19.721 0.735
ChevronTexaco Corp 0.047 1.584 0.437 -12.489 20.854 640.554 12.347 0.635
Coca Cola Co 0.032 1.286 0.352 -10.061 13.880 467.346 14.562 0.450
Colgate Palmolive Co 0.032 1.362 0.342 -15.462 20.319 185.647 14.476 0.434
Citigroup Inc 0.021 3.037 0.095 -39.024 57.825 1162.873 17.570 0.660
D X C Technology Co 0.034 2.405 0.202 -39.556 42.076 79.080 18.515 0.521
Target Corp 0.053 2.035 0.387 -12.500 20.426 322.898 22.815 0.556
Disney Walt Co 0.054 1.863 0.434 -18.363 15.972 475.402 25.464 0.669
Exxon Mobil Corp 0.033 1.509 0.314 -13.953 17.191 1183.566 13.311 0.639
Ford Motor Co Del 0.023 2.609 0.122 -25.000 29.518 407.785 30.121 0.532
General Dynamics Corp 0.058 1.561 0.555 -12.377 11.728 156.536 13.256 0.555
General Electric Co 0.001 1.978 -0.013 -12.789 19.703 1039.892 13.422 0.683
Halliburton Company 0.047 2.690 0.257 -42.446 24.352 384.086 21.622 0.535
L3Harris Technologies Inc 0.082 2.026 0.614 -17.037 17.407 57.021 32.912 0.555
Hewlett Packard Co 0.033 2.341 0.202 -20.027 17.288 418.451 24.567 0.592
International Business Machs Cor 0.025 1.621 0.218 -15.542 13.044 740.056 11.502 0.641
International Flavors & Frag Inc 0.046 1.602 0.425 -15.964 16.116 38.793 22.307 0.568
International Paper Co 0.034 2.233 0.217 -18.520 21.884 129.557 22.724 0.634
Johnson & Johnson 0.040 1.200 0.487 -15.846 12.229 689.929 11.486 0.499
Lilly Eli & Co 0.039 1.619 0.354 -29.303 17.647 313.505 13.961 0.489
McDonalds Corp 0.052 1.434 0.537 -12.817 9.390 421.225 24.600 0.450
Merck & Co Inc New 0.035 1.688 0.302 -26.781 13.033 538.877 12.212 0.484
Entergy Corp New 0.057 1.476 0.577 -18.098 14.198 97.102 19.910 0.396
Minnesota Mining & Mfg Co 0.046 1.454 0.465 -12.945 11.071 321.664 9.383 0.668
Norfolk Southern Corp 0.074 2.042 0.551 -12.915 15.413 151.682 29.037 0.602
Wells Fargo & Co New 0.058 2.373 0.366 -23.822 32.765 775.722 17.269 0.636
Occidental Petroleum Corp 0.060 2.034 0.446 -18.493 18.108 302.531 28.506 0.596
PepsiCo Inc 0.044 1.218 0.530 -11.931 14.869 373.893 19.046 0.443
Pfizer Inc 0.029 1.544 0.266 -11.146 10.172 809.717 19.198 0.546
P E C O Energy Co 0.046 1.589 0.430 -11.794 17.201 188.836 14.641 0.443
Philip Morris Cos Inc 0.077 1.525 0.767 -13.844 16.375 420.509 20.105 0.355
Procter & Gamble Co 0.036 1.320 0.395 -31.380 10.214 621.785 12.750 0.422
Schlumberger Ltd 0.039 2.218 0.256 -18.404 14.914 511.127 14.763 0.584
Southern Co 0.055 1.178 0.699 -8.473 11.066 157.060 22.751 0.366
S B C Communications Inc 0.028 1.606 0.246 -12.661 16.280 701.929 17.648 0.548
Texas Instruments Inc 0.056 2.472 0.339 -18.224 24.068 392.926 21.346 0.625
Tyco International Plc Ireland 0.042 2.390 0.258 -30.822 45.818 238.530 19.703 0.513
United Technologies Corp 0.052 1.655 0.470 -28.248 13.647 318.582 14.825 0.691
Viacomcbs Inc 0.035 2.474 0.201 -20.757 26.581 221.014 18.418 0.674
Walmart Inc 0.029 1.485 0.276 -10.183 11.073 659.399 15.149 0.498
Weyerhaeuser Co 0.035 1.992 0.252 -17.161 14.039 108.077 17.825 0.652
Williams Cos 0.078 3.577 0.332 -61.047 87.736 171.503 25.096 0.470
Honeywell International Inc 0.051 1.918 0.393 -17.784 28.223 247.749 19.178 0.681
Allstate Corp 0.059 1.920 0.459 -21.179 21.687 146.845 26.101 0.619
Incyte Pharmaceuticals Inc 0.110 4.220 0.402 -41.022 49.427 56.920 18.378 0.471
Hartford Financial Svcs Grp Inc 0.072 3.532 0.311 -51.561 102.358 131.964 15.336 0.521
Rockwell International Corp New 0.080 2.146 0.568 -20.131 16.492 82.533 24.630 0.673
Goldman Sachs Group Inc 0.048 2.305 0.311 -18.960 26.468 814.538 15.636 0.725
Market 0.032 1.203 0.376 -8.950 11.354 1.000
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Appendix F: Additional Results S&P 500 Data

This appendix provides additional results relating to the analysis with S&P 500 data presented
in Sections 6.2 and 6.3.

Table F.1 displays the suggested block size for the selected S&P 500 stocks based on the
algorithm of Politis and White (2004). The results are comparable to those found in Table
D.1 in Appendix D, although there is more dispersion in the suggested block size as the data
set contains more assets. A block size of 20 trading days is chosen to be consistent with the
empirical study that uses industry portfolio data.

Table F.1: Optimal bootstrap block size selected by the algorithm of Politis and White (2004)
for daily S&P 500 stock data from 2000-2019 .
The algorithm selects the block size by minimising the long-run variance estimate based on the mean
squared error. They suggest using a block size of one if the optimal estimated block size is below one.

Bootstrap Mean Standard deviation Minimum Maximum

Stationary 6.600 7.798 0.183 47.980
Circular 7.555 8.926 0.210 54.924

Tables F.2 and F.3 display the performance of 1/N strategies applied to S&P 500 data with
fixed and variable transaction costs, respectively. Compared to the findings in Sections 6.2 and
6.3, there is a sizeable reduction in transaction costs in both cases. Yet, the volatility of the 1/N
portfolios is much higher, which leads to inferior Sharpe ratios and utility levels. Hence, it can
be concluded that 1/N strategies are greatly outperformed by variance optimised strategies.

Table F.2: Performance of 1/N portfolio strategies with fixed transaction costs applied on daily
S&P 500 stock data from 2000-2019.
This table shows the performance of buy-and-hold (B&H), periodic, and threshold (Thld) rebalancing
strategies. Portfolios are rebalanced to equal weights on the left-hand side and by solving a quadratic
programming problem with transaction costs on the right-hand side. The optimisation is performed
using the identity matrix as the estimated covariance matrix and assuming transaction costs of 50 basis
points. The performance is measured by the daily post-transaction cost return in % (µ), daily volatility
in % (σ), annualised post-transaction cost Sharpe ratio (SR), utility of a mean-variance investor with
risk aversion parameter 3 relative to B&H (Utility), daily transaction costs in basis points (TC), and
average rebalancing time in days (ART). The best performing strategy within each column is indicated
in bold.

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

B&H 0.074 1.334 0.843 1.000 0.000 ∞ 0.074 1.334 0.843 1.000 0.000 ∞
Daily 0.058 1.295 0.671 1.057 0.576 1.000 0.072 1.282 0.853 1.085 0.012 2.407
Weekly 0.060 1.293 0.702 1.061 0.266 5.000 0.072 1.284 0.853 1.081 0.012 10.670
Monthly 0.060 1.288 0.703 1.070 0.136 20.000 0.072 1.286 0.854 1.078 0.012 35.940
Quarterly 0.061 1.281 0.714 1.082 0.079 60.506 0.072 1.287 0.856 1.077 0.011 99.583
Annually 0.062 1.258 0.741 1.123 0.040 251.579 0.073 1.298 0.850 1.058 0.011 341.429
Thld 5% 0.061 1.293 0.712 1.060 0.228 8.490 0.072 1.284 0.852 1.082 0.011 93.725
Thld 10% 0.062 1.290 0.724 1.067 0.122 30.446 0.072 1.282 0.854 1.084 0.011 191.200
Thld 20% 0.062 1.282 0.726 1.081 0.060 122.564 0.072 1.284 0.856 1.082 0.011 434.545
Thld 40% 0.063 1.260 0.757 1.120 0.031 434.545 0.073 1.281 0.862 1.087 0.010 1195.000
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Table F.3: Performance of 1/N portfolio strategies with variable transaction costs applied on
daily S&P 500 stock data from 2000-2019.
This table shows the performance of buy-and-hold (B&H), periodic, and threshold (Thld) rebalancing
strategies. Portfolios are rebalanced to equal weights on the left-hand side and by solving a quadratic
programming problem with transaction costs on the right-hand side. The optimisation is performed
using the identity matrix as the estimated covariance matrix and assuming transaction costs consisting
of a fixed commission of 24 basis points plus half of the estimated bid-ask spread. The performance
is measured by the daily post-transaction cost return in % (µ), daily volatility in % (σ), annualised
post-transaction cost Sharpe ratio (SR), utility of a mean-variance investor with risk aversion parameter
3 relative to B&H (Utility), daily transaction costs in basis points (TC), and average rebalancing time
in days (ART). The best performing strategy within each column is indicated in bold.

Excluding transaction costs Including transaction costs

µ σ SR Utility TC ART µ σ SR Utility TC ART

B&H 0.074 1.334 0.843 1.000 0.000 ∞ 0.074 1.334 0.843 1.000 0.000 ∞
Daily 0.060 1.295 0.694 1.057 0.394 1.000 0.068 1.259 0.823 1.123 0.007 1.629
Weekly 0.061 1.293 0.713 1.061 0.179 5.000 0.069 1.261 0.824 1.121 0.007 7.399
Monthly 0.061 1.288 0.709 1.070 0.090 20.000 0.069 1.261 0.826 1.120 0.007 27.471
Quarterly 0.061 1.281 0.717 1.082 0.051 60.506 0.069 1.262 0.829 1.118 0.007 78.361
Annually 0.062 1.258 0.743 1.123 0.025 251.579 0.069 1.271 0.829 1.104 0.006 298.750
Thld 5% 0.062 1.293 0.719 1.061 0.172 8.490 0.069 1.261 0.826 1.121 0.007 73.538
Thld 10% 0.062 1.290 0.728 1.067 0.092 30.446 0.069 1.260 0.830 1.122 0.006 159.333
Thld 20% 0.062 1.282 0.728 1.081 0.044 122.564 0.069 1.260 0.827 1.123 0.006 398.333
Thld 40% 0.063 1.260 0.758 1.120 0.022 434.546 0.070 1.264 0.837 1.116 0.006 956.000
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