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Abstract

In the coming years, online food retailing is expected to significantly impact the market, which raises

new challenges for inventory control of perishable products. In online retailing, consumers do not observe

expiration dates. Therefore, to maintain a high level of customer satisfaction, online retailers might only

send products that are consumable for at least a week. As a result, food that is consumable for six more

days is discarded. With sustainability issues high on the political agenda, more research is needed on

the wastefulness of these online throw-out policies. This thesis compares the food waste in an offline

and online food retailing environment. Based on a broad set of experiments, insights are gained on the

wastefulness of online sales. It will be shown that online retailers can reduce food waste by adjusting

their product range, lowering the fill rate, and optimizing policies suited for online retailing.

1The content of this thesis is the sole responsibility of the author and does not reflect the view of the supervisor, second

assessor, Erasmus School of Economics or Erasmus University.
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1 Introduction

The Food and Agriculture Organization (FAO) of the United Nations states that one-third of all food pro-

duced globally is wasted2. This puts an unnecessary burden on the environment, e.g., the FAO attributes 8%

of human greenhouse gas emission to food waste3. In response, as part of the 2030 sustainable development

agenda, a target is set to halve the per capita food waste. Altogether, the food supply chain faces major

challenges in improving sustainability and reducing food waste.

A considerable amount of food waste can be assigned to the decisions and actions of retailers. Roberti

and Scheer (2005) argue that roughly 10% of perishable goods are thrown away before consumers purchase

them. Therefore, efficient inventory management of food retailers is crucial to reduce global food waste. At

the same time, we observe the advent of online food retailers that might manage inventory differently. Online

food retailing is expected to significantly impact the market, with online sales expected to increase in the

coming years4.

There are major differences between traditional offline and modern online food retailers. In offline retail-

ing, expiration dates are printed on the packaging of perishable food, or a consumer can inspect the product

itself and determine whether it can still be consumed before perishing. Therefore, a consumer might decide

to buy food that expires the next day, when intending to eat it the same day. In response, offline retailers

usually discount food close to the expiration date and only discard expired food. On the other hand, in

online retailing, consumers do not observe expiration dates, nor can they inspect the products. Therefore, to

maintain a high level of customer satisfaction, online retailers might only send products that are consumable

for at least a week. As a result, food that is still valid for six more days is discarded.

We provide theoretical results for the food waste as a function of the product shelf life and prove that

the expected food waste under the optimal order policy is monotonically decreasing in the shelf life. Online

retailers inherently decrease the shelf life if they throw out food before the expiration date. Therefore, online

sales are more wasteful if online and offline retailers follow the same inventory depletion rule.

In practice, however, the inventory depletion of online and offline retailers differs. Consumers often buy

the freshest products in an offline setting as this gives the highest level of utility. By keeping only older

products on the shelf and discounting products close to the expiration date, offline retailers try to maintain

First-In-First-Out (FIFO) inventory depletion. In practice, however, this is not always feasible due to high

reviewing and labor cost (Broekmeulen and van Donselaar, 2009). Consequently, offline retailers often follow

Last-In-First-Out (LIFO) inventory depletion (or a combination of FIFO and LIFO). On the other hand,

online retailers can usually send the oldest products in stock, making it possible to maintain FIFO inventory

depletion. FIFO inventory depletion is a considerable advantage that could offset the wastefulness of an

2http://www.fao.org/food-loss-and-food-waste/en/
3http://www.fao.org/fileadmin/templates/nr/sustainability pathways/docs/FWF and climate change.pdf
4https://www.statista.com/statistics/257532/us-food-and-beverage-e-commerce-revenue/
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online throw-out policy.

Moreover, due to offline and online food retailers’ different characteristics, they might diverge in their

inventory control, for instance, by managing a different order-up-to level, or by effectively implementing a

different policy. All in all, there is no common understanding of the impact on food waste by the move from

offline to online retail.

In this thesis, we examine whether modern online retailing increases food waste with respect to traditional

offline retailing. A simplified inventory control system is investigated to achieve this, focusing on practical

applications for real-world food retailers. Modeling inventory control for a food retailer falls in the domain

of inventory control of perishable goods with a fixed lifetime because expiration dates are fixed and known

beforehand. Here, we exclude perishables without a printed expiration date (mainly fruit and vegetables).

In a retailing environment, orders are generally placed within a specific time interval. This gives the

central warehouse time to process and group the orders to effectuate an efficient replenishment strategy.

Therefore, we consider a periodic review, as it is sufficient to review inventory levels just before ordering.

The review period is equal to one day because fresh products are usually ordered daily (van Donselaar et al.,

2006). Furthermore, we incorporate a positive deterministic lead time and assume daily demand is a discrete

stochastic variable, demand that cannot be satisfied is lost. Customers might come back later to check

whether the product is available. However, a product being out of stock generally results in lost sales.

Food retailers usually try to minimize their costs, while at the same time maintaining a high level of

product availability. Traditional cost components for perishable inventory control include fixed ordering cost,

unit holding cost, unit outdate cost, and unit cost for lost sales. However, for food retailers, it is difficult

to estimate the penalty cost of lost sales. Particularly for perishables, as a stock-out of fresh food not only

impacts the short-term sales of other products but could even lead to changes in mid/long-term retailer

preferences (Minner and Transchel, 2010). Therefore, a service level constraint is considered instead.

Furthermore, following Haijema and Minner (2016), the fixed ordering cost is excluded as perishables are

usually ordered daily, and ordering costs are shared over a large number of goods. Moreover, due to the

relatively short lifetime of perishable goods, the outdate cost outweighs the holding cost. This assumption

is verified by Broekmeulen and van Donselaar (2009). As a result, as in van Donselaar and Broekmeulen

(2012), the objective is to minimize the food waste under a service level constraint. The food waste is defined

as the total outdated quantity divided by the total demand. As a service level, the product fill rate is used.

The fill rate is defined as the fraction of the total demand that is satisfied.

Optimizing a perishable inventory control system is known for being difficult. Traditional stock-level de-

pendent policies do not consider the inventory’s age distribution when ordering, resulting in policies that are

generally suboptimal for inventory control of perishables. Therefore, stock-age dependent policies are intro-

duced, in which optimal order quantities are derived using dynamic programming. However, the state-space

of the multi-dimensional dynamic programs increases in the shelf life because products need to be grouped by
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their remaining useful lifetime. Therefore, optimizing order quantities in these stock-age dependent policies

suffers from the curse of dimensionality, resulting in derivations that are computationally impractical for

real-world retailers.

Over the past decades, various research has been conducted to deal with this complexity. Either by mod-

ifying traditional stock-level dependent policies to better suit inventory control for perishables or obtaining

computationally feasible stock-age dependent policies that take into account (partial) information on the

inventory’s age distribution.

This thesis focuses more on gaining insights into the wastefulness of online sales instead of analyzing

new order policies or approximation techniques. To assess online sales’ wastefulness, the food waste in an

offline and online environment is estimated and compared by simulation, considering two order policies.

van Donselaar et al. (2006) find that, in practice, the underlying policy of the automated ordering systems

is usually based on some variant of the base-stock policy (BSP) in which an order is placed to bring the

inventory position back to an order-up-to level. We implement the BSP as it is a relatively simple but

effective policy with practical implications for most food retailers. Furthermore, we examine the impact of

a more sophisticated policy by considering the EWA policy suggested by Broekmeulen and van Donselaar

(2009). They argue that outdating affects the ability to satisfy demand. Therefore, when ordering, the

inventory position should first be adjusted by the estimated outdated quantity during lead time and review

period. The EWA policy uses only small calculations, making it possible to incorporate the policy in (daily)

ordering decisions.

Our simulation addresses two major differences between offline and online retailing, namely, differences in

inventory depletion and throw-out policy. For offline retailers, based on Haijema et al. (2007) and Haijema

and Minner (2016), the total demand is split into FIFO and LIFO demand. By varying the fraction of the total

demand that is FIFO demand, we investigate different offline management styles. If retailers display mainly

older inventory on the shelf and discount products close to the expiration date (i.e., active management),

the total demand is mainly FIFO demand. Contrarily, if no measures are taken to prevent customers from

buying the freshest products (i.e., passive management), the total demand is mainly LIFO demand.

On the other hand, online retailers can easily maintain efficient inventory control as expiration dates are

not observable to consumers. Therefore, in an online setting, the total demand is FIFO demand. Offline and

online retailers also differ in their throw-out policy. Offline retailers only discard food that has expired, while

online retailers might throw out food that is still valid for some days, to maintain a high level of customer

satisfaction.

For various offline inventory depletion rules and product shelf lives, we derive the lowest online throw-out

policy that significantly increases food waste, giving online retailers insights into their sales’ wastefulness.

Online sales’ wastefulness is visible for all perishables with a short shelf life. Relatively small throw-out

policies of 1-3 days increase the food waste for daily fresh (shelf life ≤ 7). However, perishables with a
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relatively long shelf life can be sold online quite well, especially under offline FIFO demand.

Furthermore, we analyze the shelf life range that is more wasteful when sold online. One main insight here

is the impact of the offline management style on online sales’ wastefulness. Active offline management makes

the online sale of all perishables more wasteful. Contrarily, if offline retailers are passive, online retailers can

maintain a high customer satisfaction level and reduce food waste. Therefore, a correct assumption on offline

retailers’ inventory management is crucial to assess online sales’ wastefulness correctly.

Our research makes three suggestions to reduce online retailers’ wastefulness. Firstly, we find that per-

ishables in high demand and under low demand variation are ideally sold online. Contrarily, the online sale

of perishables in low demand and under high demand variation is quite wasteful. By correctly adjusting the

online product range, the sustainability of online retailing improves significantly. Secondly, by lowering the

fill rate from 98% to 90%, a considerably wider range of perishables can be sold online without increasing

the food waste, making fill rate adjustments an effective method to reduce the food waste of online sales.

Thirdly, more work should be devoted to optimizing policies suited for online retailing. Hence, policies that

perform well under FIFO inventory depletion and the sale of perishables with a relatively long shelf life, as

online sales of daily fresh are generally not feasible.
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2 Literature

Modeling inventory control of a food retailer falls in the domain of inventory control of perishable goods

(Goyal and Giri, 2001). Numerous research is done on this topic. For extensive literature reviews we

refer to Nahmias (1982) covering the years 1964-1982, Goyal and Giri (2001) covering the years 1990-2000,

Bakker et al. (2012) covering the years 2001-2011 and Janssen et al. (2016) covering the years 2012-2015.

In this thesis, we investigate a model where perishables have a fixed lifetime. Contrarily, various papers

incorporate a stochastic lifetime distribution (e.g., Exponential or Erlang). The main contributions on this

topic are by Liu and Shi (1999) and Lian et al. (2009), who investigate a model with exponential lifetime and

Markovian renewal demand. By incorporating the Markov renewal theory, optimal policies can be derived

fairly straightforward. For an extensive review of inventory control with stochastic lifetime distributions, we

refer to Rafaat (1991).

Inventory control with a fixed lifetime can be divided into models with deterministic and stochastic

demand. In a deterministic setting, under fairly general assumptions, optimal order quantities can be derived

without food waste (Nahmias, 1982). However, deterministic demand is usually not a valid assumption

with real-world applications. On the other hand, optimizing order policies in a stochastic setting is more

complex. Particularly under periodic review and in case products have a lifetime longer than two periods

(Nahmias, 1982). Optimal order quantities are derived by multi-dimensional dynamic programs in which

the state-space increases in the shelf life because products need to be tracked by their remaining useful

lifetime. Therefore, optimizing order quantities in these stock-age dependent policies suffers from the curse

of dimensionality, resulting in derivations that are computationally impractical for real-world retailers. For

more details concerning the complex structure of an optimal policy, we refer to Nahmias (1982), Haijema

et al. (2007), and Karaesmen et al. (2011).

The academic literature on stochastic inventory control of perishable goods with a fixed lifetime can

be subdivided into models in which inventory is reviewed continuously or periodically. Early research on

continuous review models is conducted by Weiss (1980), who investigates the (s, S) policy under zero lead

time and Poisson demand, incorporating all cost components traditionally inherent to perishable inventory

control (i.e., fixed ordering, unit holding, unit outdate, unit shortage, with lost sales or backordering).

Several related papers have appeared over the years. We refer to Karaesmen et al. (2011) for an extensive

review of this topic. This review separates the literature based on ordering cost (yes/no) and lead time

(zero/deterministic). Karaesmen et al. (2011) emphasize that zero lead time in a continuous review model

simplifies the problem, as an order should only be placed when the inventory is depleted.

The foundation for periodic schemes is laid by Nahmias and Pierskalla (1973), who consider a model

under zero lead time, stochastic demand, and a lifetime of two periods. Their research is extended to a

general lifetime of m periods by Nahmias (1975b) and Fries (1975). Both papers investigate order-up-to
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policies under zero lead time, continuous demand, and FIFO inventory depletion. The difference is that

Nahmias (1975b) assumes unsatisfied demand is backlogged, and Fries (1975) incorporates unmet demand as

lost sales. However, computations for their proposed stock-age dependent policies exhibit high-dimensional

state spaces and are, consequently, computationally intractable. Over the past decades, various research has

been conducted to deal with this complexity. In general, research can be divided into papers that (i) simplify

the lifetime assumption, (ii) propose stock-level dependent policies modified to better suit inventory control

for perishables, and (iii) develop heuristics to obtain computationally feasible stock-age dependent policies

that take into account (partial) information on the age distribution of the inventory.

2.1 Simplifying lifetime assumption

Cohen (1976) analyzes the class of policies with a single critical number and provides results for a product

shelf life of two and three periods. Williams and Patuwo (1999) and Williams and Patuwo (2004) investigate

a single perishable product with a lifetime of two periods. Their model operates under deterministic lead

time and the lost sales assumption. Optimal order quantities are computed for various demand distributions

and lead times up to four periods.

2.2 Stock-level dependent policies

Stock-level dependent policies can be ’modified’ to better suit inventory control for perishables. Early work

on these modified policies is by Nahmias (1975a), who decreases the dynamic order-up-to level by the current

total stock on hand (independent of the age distribution), assuming zero lead time and full backordering.

In recent years various papers propose models with a positive deterministic lead time, which enlarges the

real-world applications. Haijema et al. (2007) investigate inventory management for blood platelets with

practical applications for blood banks, assuming a deterministic lead time and weekday varying demand.

Dynamic programming on a down-scaled version of the problem (platelets are distributed as units of 4 pools)

shows the optimal policy’s complex structure.

Furthermore, they develop an order-up-to policy that uses different critical values for the total and young

inventory by considering two demand streams (’young’ platelets vs. ’any’ platelets). Using simulation, they

find that their solutions are within 1% of the optimal solution. Haijema (2013) extends the research into

inventory management for blood platelets and proposes a periodic stock-level dependent (s, S, q,Q) policy.

A standard (s, S) policy in which the order quantity is bounded by a minimum q and maximum Q. By

simulation, near-optimal parameter values are approximated, which vary over the weekdays. In general, they

find an improved performance of 4-25% over the standard (s, S) policy and conclude that bounding order

quantities may enhance the inventory control of perishables.

Haijema and Minner (2016) further explore the possibilities within the class of (s, S, q,Q) policies by

6



investigating the impact of dropping one or multiple parameters. Furthermore, they introduce new ordering

policies that reduce the risk of outdating by preventing many products close to the expiration date at the

same time. Their model operates under a deterministic lead time, continuous demand, and the lost sales

assumption. Moreover, they split demand into FIFO demand and LIFO demand. Following Nandakumar

and Morton (1993) and Cooper (2001), they propose lower and upper bounds on the optimal parameter

values based on the solution of the newsvendor problem. The optimal parameter values are approximated

by simulation-based optimization. Based on a broad set of experiments, they find statistical evidence for

the improved performance over the base-stock policy. Notably, the policies that reduce the risk of outdating

perform well. Furthermore, Haijema and Minner (2016) derive a stock-age dependent policy using dynamic

programming. They find that this policy still outperforms their ’best’ modified stock-level dependent pol-

icy. Therefore, computationally feasible stock-age dependent heuristics could further enhance the inventory

control of perishables.

2.3 Stock-age dependent policies

Various papers propose computationally feasible stock-age dependent heuristics. Nahmias (1977) approxi-

mates the state space of the dynamic programs under zero lead time, continuous demand, and full backo-

rdering. Only two states are considered, new inventory and all inventory older than one period. Chiu (1995)

analyzes an order-up-to policy under a deterministic lead time, FIFO inventory depletion, and full backo-

rdering. He develops an approximation for the expected outdating by analyzing patterns in the perishability

process. Minner and Transchel (2010) propose a dynamic replenishment model under a deterministic lead

time, weekday varying Gamma demand, and the lost sales assumption. They investigate both FIFO and

LIFO inventory depletion and multiple service level constraints. The order quantity in their dynamic model

is conditional on the expected remaining inventory after lead time. Using simulation, they find statistical

evidence for their policy’s improved performance over the base-stock and constant order policy.

Broekmeulen and van Donselaar (2009) implement a periodic review (S, nQ) policy in which the replen-

ishment quantity is limited to an integer multiple of the fixed case pack size Q. Their model operates under

a deterministic lead time, Gamma demand, lost sales, and FIFO/LIFO inventory depletion. The order quan-

tity in their model is first adjusted by the estimated outdated quantity. This quantity is derived via very

simple recursive equations using the inventory’s age distribution and assuming actual demand is equal to the

expected demand. They find that incorporating the full age distribution of the inventory leads to significant

cost reductions. Furthermore, the policy can easily be incorporated in (daily) ordering decisions as only small

calculations are used.

van Donselaar and Broekmeulen (2012) investigate a similar (S, nQ) policy, under a deterministic lead

time, continuous demand, and FIFO inventory depletion. Using a combination of dynamic programming and

regression, they derive fast and well-performing approximations on the expected outdated quantity.
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2.4 Food retailing environment

Our research differs from most researches as we compare retailing environments instead of a policy compar-

ison. We address the main differences between offline and online retailing and compare their food waste.

Therefore, this thesis provides insights into online sales’ wastefulness rather than analyzing new order poli-

cies or approximation techniques. Assessing the wastefulness of online sales has hardly been analyzed in the

literature. However, with the advent of online retail and the current worldwide sustainability issues in the

food supply chain, more research on this topic is needed.

To compare traditional offline with modern online retailing, we concentrate on practical applications for

real-world food retailers. For food retailers, it is difficult to estimate the penalty cost of lost sales. Particularly

for perishables, as a stock-out of fresh food not only impacts the short-term sales of other products but could

even lead to changes in mid/long-term retailer preferences (Minner and Transchel, 2010). Therefore, in

practice, a service level constraint is usually considered. Little research is done into perishable inventory

control under a service level constraint. Main contributions on this topic are by Minner and Transchel (2010)

and van Donselaar and Broekmeulen (2012). Both papers incorporate a deterministic lead time, stochastic

demand, the lost sales assumption, and full FIFO or LIFO inventory depletion. Our research differs from

theirs as we analyze various combinations of FIFO and LIFO inventory depletion.

Research into inventory control of perishables for food retailers is conducted by van Donselaar et al.

(2006). They find statistically significant differences in characteristics between perishables (shelf life ≤ 30)

and non-perishables and argue that these groups demand a different kind of inventory control. However, in

practice, the automated ordering systems’ underlying policy is usually based on some variant of the base-

stock policy (van Donselaar et al., 2006). In the base-stock policy, an order is placed to bring the inventory

position back to an order-up-to level without considering the inventories’ age distribution. Therefore, no

distinction is made between perishables and non-perishables.

With the availability of new technologies like RFID, efficiently storing products’ data (like age) becomes

more feasible (Broekmeulen and van Donselaar, 2009). Therefore, implementing more sophisticated policies

becomes interesting, for instance, the EWA policy proposed by Broekmeulen and van Donselaar (2009). They

argue that outdating affects the ability to satisfy demand. Therefore, when ordering, the inventory position

should first be adjusted by the estimated outdated quantity during lead time and review period. The EWA

policy uses only small calculations, making it possible to incorporate the policy in (daily) ordering decisions.

We contribute to the existing literature in two primary ways. Firstly, we provide theoretical results for

the food waste as a function of the shelf life. Secondly, to assess online sales’ wastefulness, the food waste

in an offline and online setting is compared by simulation under an extensive set of experiments. Here, we

implement the standard base-stock policy and examine the impact of the more sophisticated EWA policy of

Broekmeulen and van Donselaar (2009).
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3 Problem description

3.1 Assumptions

We consider an infinite horizon, single-product, single-stage, periodic review model. Inventory is reviewed

daily. Orders are also placed, and demand also occurs on Saturday and Sunday. There is a fixed order of

events, as shown in Figure 1. After a positive deterministic lead time of L days, new products arrive at the

start of the day with a fixed shelf life of m days. Without loss of generality, we assume that there is no aging

during lead time (i.e., fresh products arrive in stock). Upon arrival, all new products are placed on the shelf,

assuming ample shelf storage capacity. After stock refreshments, inventory is reviewed and a new order is

placed.

During the day, inventory drops due to demand. If the inventory is insufficient to satisfy the demand, the

excess demand is lost. Let Dt denote the demand during day t, which is an integer-valued random variable

with mean µ and standard deviation σ. For offline retailing, based on Haijema et al. (2007) and Haijema and

Minner (2016), the total demand is split into two demand distributions. Following the notation of Haijema

and Minner (2016), we use f to denote the fraction of the total demand that is FIFO demand. Hence, daily

FIFO demand has mean f ·µ and standard deviation
√
f ·σ and daily LIFO demand has mean (1−f) ·µ and

standard deviation
√

1− f · σ. In the online setting, however, the total demand is FIFO demand (f = 1).

Let r denote the number of days before the expiration date that food is thrown out. Hence, the shelf life

is first adjusted by the throw-out date

I = m− r, (1)

where I is the adjusted shelf life. After demand has occurred, the remaining inventory of age I−1 is discarded

at the end of the day. In the offline setting, only expired food is thrown out (r = 0). However, in the online

setting, we implement different throw-out policies by considering 0 ≤ r ≤ m− 1.

Figure 1: Flowchart daily order of events.
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3.2 MDP formulation

Following Powell (2014), we present our stochastic optimization model by the five fundamental elements of

any sequential decision problem. We refer to time t as the state on day t, after stock refreshments, but before

inventory depletion due to demand.

The sequence of events is as follows. At time t, state St is observed and an action at is taken (bold

notations represent vectors). During day t, exogenous information Wt is observed. At the end of day t,

costs, rewards, and other measures of interest are evaluated.

State Information

State information St =
(

(Xt, X̂t),OOt

)
consists of inventory levels Xt, X̂t and outstanding orders OOt at

time t.

Inventory levels are classified by their age, i.e., Xt = (Xj
t | j = 0, 1, . . . , I−1) where j indicates the age of

an item and I is the adjusted shelf life. Furthermore, the ’fictive’ inventory levels X̂t = (X̂j
t | j = 0, 1, . . . , I−2)

are stored. Inventory levels X̂t disregard the oldest inventory and are, therefore, equivalent to the inventory

levels of a system under I − 1. All inventory levels are non-negative as we assume excess demand is lost (i.e.,

backordering is not allowed).

Outstanding orders are classified by their ordering moment, i.e., OOt = (qt,i | i = 1, . . . , L − 1) where

t− i is the time at which order quantity qt,i is placed, and thus delivered at the start of day t− i+ L. Note

that there are no outstanding orders for L = 1.

Actions

The action at is the order quantity at time t.

Exogenous information

The observed exogenous information Wt = (DFIFO
t , DLIFO

t ) is the FIFO and LIFO demand during day t,

which is independent of the states and actions. Hence, the states, actions, and exogenous information evolve

as follows

(S1, a1,W1, . . . ,St, at,Wt, . . . ,ST , aT ,WT ). (2)

The total demand Dt = DFIFO
t +DLIFO

t is the aggregate of the FIFO and LIFO demand. Note that under

full FIFO demand Wt = (Dt, 0) and under full LIFO demand Wt = (0, Dt).

10



The transition function

The transition function can be written as St+1 = SM (St, at,Wt) where SM (·) is the transition function that

describes the evolution from state St to St+1 after taking action at and facing exogenous information Wt. We

split the transition function into T (·), U(·), and V (·) where Xt+1 = T (Xt, at,Wt), X̂t+1 = U(X̂t, at,Wt),

and OOt+1 = V (OOt, at).

The inventory withdrawal Bjt of age j during day t can recursively be derived as the minimum of the

remaining corresponding inventory and the sum of the FIFO demand that could not be satisfied from older

aged inventory (i.e., age j+1, . . . , I−1) and the LIFO demand that could not be satisfied from younger aged

inventory (i.e., age 0, . . . , j − 1)

Bjt = min

{
Xj
t ,
(

(DFIFO
t −

I−1∑
i=j+1

Xi
t)

+ + (DLIFO
t −

j−1∑
i=0

Xi
t)

+
)}

, j = 0, . . . , I − 1, (3)

in which (x)+ = max{x, 0}. The transition function T (·) is defined as

(
T (Xt, at,Wt)

)
j

= Xj
t+1 =

qt+1,L j = 0,

Xj−1
t −Bj−1

t j = 1, . . . , I − 1,

(4)

where (·)j is the jth element of the vector inside the brackets. Note that if L = 1, we have X0
t+1 = qt+1,1 = at

and there are no outstanding orders OOt. Furthermore, if L > 1, the transition function T (·) does not

depend on at.

Similarly, the ’fictive’ inventory withdrawal B̂jt of age j during day t can recursively be derived as

B̂jt = min

{
X̂j
t ,
(

(DFIFO
t −

I−2∑
i=j+1

X̂i
t)

+ + (DLIFO
t −

j−1∑
i=0

X̂i
t)

+
)}

, j = 0, . . . , I − 2. (5)

The transition function U(·) is defined as

(
U(X̂t, at,Wt)

)
j

= X̂j
t+1 =

qt+1,L j = 0,

X̂j−1
t − B̂j−1

t j = 1, . . . , I − 2.

(6)

Moreover, transition function V (·) is defined as

(
V (OOt, at)

)
i

= qt+1,i =

at i = 1,

qt,i−1 i = 2, . . . , L− 1.

(7)

The objective function

As in van Donselaar and Broekmeulen (2012), the objective is to minimize the food waste under a service

level constraint. The food waste is defined as the total outdated quantity divided by the total demand. As a
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service level, the product fill rate β is used. It is defined as the fraction of the total demand that is satisfied.

Note that the total demand is exogenous information independent of our states and actions. Hence, our

measures of interest are the outdated quantity and the satisfied demand.

The outdated quantity Ot at the end of day t is the remainder of the batch of age I − 1 after inventory

withdrawal

Ot = XI−1
t −BI−1

t . (8)

Note that the outdated quantity depends exclusively on the adjusted shelf life I. For example, a system

under m = 5 and r = 0 is equivalent to a system under m = 10 and r = 5 as I = 5 in both cases.

The satisfied demand Ds
t during day t is the minimum of the inventory on-hand and the total demand

Ds
t = min{OHt, Dt}, (9)

in which OHt =
I−1∑
j=0

Xj
t . Note that inventory levels Xt (and not X̂t) are used to compute the performance

measures, i.e., the outdated quantity and satisfied demand.

3.3 Policies

We consider two policies. The base-stock policy is implemented as a relatively simple but effective policy with

practical implications for most food retailers. Furthermore, we examine the impact of a more sophisticated

policy by considering the EWA policy of Broekmeulen and van Donselaar (2009). This stock-age dependent

policy uses only small calculations, making it possible to incorporate the policy in (daily) ordering decisions.

3.3.1 Base-stock policy

In the BSP, an order is placed to bring the inventory position back to order-up-to level S

at = S − IPt, (10)

in which IPt =
I−1∑
j=0

Xj
t +

L−1∑
i=1

qt,i.

3.3.2 EWA policy

Broekmeulen and van Donselaar (2009) argue that outdating impacts the ability to satisfy demand. Therefore,

when ordering, the inventory position should first be adjusted by the estimated outdated quantity during

lead time and review period

at = S − IPt +

t+L−1∑
i=t

Ôi, (11)
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where Ôt is the expected outdated quantity at the end of day t. To compute the expected outdated quantity

at the end of day t to t+ L− 1, the following five-step procedure is applied, starting at time i = t:

1. Determine the expected inventory withdrawal during day i, using Eq. (3) and by assuming DFIFO
i and DLIFO

i

are equal to their expected value.

2. Determine the outdated quantity at the end of day i, using Eq. (8) and by assuming the inventory withdrawal

during day i is equal to the estimate as derived in Step 1.

3. If i < t + L− 1, go to Step 4, otherwise stop.

4. Determine the inventory levels at time i + 1, using Eq. (4) and by assuming the inventory withdrawal during

day i is equal to the estimate as derived in Step 1.

5. Do i = i + 1 and go to Step 1.
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4 Theoretical results

This section provides theoretical results for the food waste as a function of the shelf life. Section 4.1 gives

some general theorems and proves that the food waste and fill rate are monotonic in the shelf life under a fixed

sequence of actions. Section 4.2 transitions from a sequence of actions to a policy and derives expressions for

the expected food waste and the expected fill rate.

Furthermore, we design two policy classes. The order quantity in a shelf-independent (state-dependent)

policy is independent (dependent) of the shelf life (state-space). In Section 4.3, we prove that the expected

food waste under the optimal policy in an arbitrary set of shelf-independent policies is monotonically decreas-

ing in the shelf life. For the analysis of state-dependent policies, we construct the so-called ’mimic’ policy

that mimics the same policy’s sequence of actions under shelf life I − 1. In Section 4.4, we prove that the

expected food waste under the optimal policy in an arbitrary set of policies is monotonically decreasing in

the shelf life if the mimic policies are included. The set of all policies also includes all the mimic policies, and

therefore, we conclude that the expected food waste under the optimal policy is monotonically decreasing in

the shelf life.

Moreover, to support simulation search ranges, in Section 4.5 we analyze the food waste as a function of

the policies’ parameters.

4.1 General theorems

Theorem 4.1. An additional unit of inventory Xj
t at time t increases the total outdated quantity, the total

satisfied demand, or some inventory level Xk
T by one for all t = 1, . . . , T , T ∈ N, T ≥ t, j = 1, . . . , I − 1,

k = 1, . . . , I − 1, and I ∈ N.

Proof. Let us assume we have one additional inventory unit Xj
t at time t, for arbitrary t ∈ N, j = 1, . . . , I−1,

and I ∈ N, keeping all other things equal. Other aged inventories and exogenous information are independent

of the additional unit of inventory. Let X̃i, ÕHi, D̃
s
i , B̃

j
i and Õi denote the inventory levels, on-hand inven-

tory, satisfied demand, inventory withdrawal, and outdated quantity at time i = t, t+ 1, . . . , T , respectively,

when inventory level Xj
t is incremented by one at time t. We examine the effect of the additional unit and

distinguish three cases:

1. The additional unit of inventory is outdated at the end of day t + I − 1− j.

The inventory levels are modified as follows

X̃i−t+j
i = Xi−t+j

i + 1, for i = t, . . . t + I − 1− j. (12)

Therefore, at time t + I − 1− j, we have X̃I−1
t+I−1−j = XI−1

t+I−1−j + 1. Hence, by Eq. (8), the outdated quantity

at the end of day t + I − 1− j increases by one
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Õt+I−1−j = X̃I−1
t+I−1−j − B̃I−1

t+I−1−j = XI−1
t+I−1−j + 1−BI−1

t+I−1−j = Ot+I−1−j + 1. (13)

There is no further effect on day t + I − j as X̃t = Xt for t ≥ t + I − j.

2. The additional unit of inventory is sold during day v ∈ {t, t + I − 1− j} and OHv < Dv.

The satisfied demand Ds
v = min{OHv, Dv} = OHv. Furthermore, by Eq. (12), X̃v−t+j

v = Xv−t+j
v + 1, and

therefore, ÕHv = OHv + 1. Hence, by Eq. (9), the satisfied demand during day v increases by one

D̃s
v = min{ÕHv, Dv} = min{OHv + 1, Dv} = OHv + 1 = Ds

v + 1, (14)

in which min{OHv + 1, Dv} = OHv + 1 as OHv < Dv and demand and inventory levels are integer-valued.

There is no further effect on day v + 1 as X̃t = Xt for t ≥ v + 1.

3. The additional unit of inventory is sold during day v ∈ {t, t + I − 1− j} and OHv ≥ Dv.

The satisfied demand Ds
v = min{OHv, Dv} = Dv. Hence, D̃s

v = min{ÕHv, Dv} = min{OHv + 1, Dv} = Dv

(the satisfied demand does not increase). Instead, the inventory withdrawal Bw
v of some inventory of age

0 ≤ w ≤ I − 1 decreases by one, i.e., B̃w
v = Bw

v − 1. Hence, by Eq. (4)

X̃w+1
v+1 = X̃w

v − B̃w
v = Xw

v − (Bw
v − 1) = Xw+1

v+1 + 1. (15)

Using the same reasoning, we can analyze the additional unit of inventory Xw+1
v+1 by distinguishing the same

three cases. This can be repeated for arbitrary T ∈ N, T ≥ t, at which the additional unit Xj
t either increases

the total outdated quantity by one, the total satisfied demand by one, or some inventory level Xk
T of age

k = 0, . . . , I − 1 by one.

Definition 4.1. Let a ∈ NT be a sequence of actions (a1, . . . , aT ) for T ∈ N.

Definition 4.2. Let D ∈ NT be a sample-path (W1, . . . ,WT ) for T ∈ N.

Theorem 4.2. Let O
(
a,D, I

)
and Ds

(
a,D, I

)
denote the total outdated quantity and total satisfied demand,

respectively, under sequence of actions a ∈ NT , sample-path D ∈ NT , horizon T ∈ N, and shelf life I ∈ N.

The total outdated quantity and total satisfied demand are monotonically decreasing and monotonically

increasing in the shelf life I ∈ N under arbitrary sequence of actions a ∈ NT , sample-path D ∈ NT , and

horizon T ∈ N

O
(
a,D, I + 1

)
≤ O

(
a,D, I

)
, (16)

Ds
(
a,D, I + 1

)
≥ Ds

(
a,D, I

)
. (17)

Proof. Consider the quantity (batch) ordered at t−L+ 1− I (i.e., at−L+1−I) for arbitrary t ∈ N, L ∈ N, and

I ∈ N. The remainder of this batch is outdated at the end of day t. We increase the shelf life of the batch
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from I to Ĩ = I + 1, while keeping the sequence of actions and sample-path fixed. Furthermore, without loss

of generality, we assume T ≥ t+ 1 (note that increasing the shelf life does not affect the batch for T < t+ 1,

hence there is no effect). Let X̃t denote the inventory levels at time t under shelf life Ĩ. By incrementing the

shelf life, outdated products at the end of day t (say b ∈ N units) are valid for one more day, i.e., X̃ Ĩ−1
t+1 = Ot.

Hence, at time t+ 1, the total outdated quantity has decreased by b and inventory X̃ Ĩ−1
t+1 has increased by b.

By Theorem 4.1, for arbitrary T ∈ N, T ≥ t+ 1, each of the b additional units of inventory X̃ Ĩ−1
t+1 either

increases (i) the total outdated quantity by one (say in total bo ∈ N units), (ii) the total satisfied demand

by one (say in total bd ∈ N units), (iii) some inventory level Xk
T of age k = 0, . . . , I − 1 by one (say in total

bi ∈ N units). Hence, b = bo + bd + bi, and thus, bo ≤ b. Under a fixed sequence of actions and sample-path,

the total outdated quantity and total satisfied demand, respectively, are modified as follows

O
(
a,D, I + 1

)
= O

(
a,D, I

)
+ bo − b, (18)

Ds
(
a,D, I + 1

)
= Ds

(
a,D, I

)
+ bd. (19)

Therefore, by incrementing the shelf life of an arbitrary batch we have O
(
a,D, I + 1

)
≤ O

(
a,D, I

)
, and

Ds
(
a,D, I + 1

)
≥ Ds

(
a,D, I

)
. We can repeat this analysis until the shelf life of all batches is incremented

by one.

The food waste under sequence of actions a ∈ NT , sample-path D ∈ NT , horizon T ∈ N, and shelf life I ∈ N

is defined as

ω
(
a,D, I

)
=
O
(
a,D, I

)
∑T
t=1DT

. (20)

Corollary 4.2.1. The food waste is monotonically decreasing in the shelf life I ∈ N under arbitrary sequence

of actions a ∈ NT , sample-path D ∈ NT , and horizon T ∈ N

ω
(
a,D, I + 1

)
≤ ω

(
a,D, I

)
. (21)

The fill rate under sequence of actions a ∈ NT , sample-path D ∈ NT , horizon T ∈ N, and shelf life I ∈ N is

defined as

β
(
a,D, I

)
=
Ds
(
a,D, I

)
∑T
t=1DT

. (22)

Corollary 4.2.2. The fill rate is monotonically increasing in the shelf life I ∈ N under arbitrary sequence

of actions a ∈ NT , sample-path D ∈ NT , and horizon T ∈ N

β
(
a,D, I + 1

)
≥ β

(
a,D, I

)
. (23)
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4.2 Policies

Let π be a policy that decides on order quantity at using state St (or an aggregation of the state information).

The inventory withdrawal is affected by the shelf life I, and therefore, state St is affected by I. Hence, policy

π leads to a different sequence of actions for different I. Moreover, the transition from St to St+1 depends

on the exogenous information Wt (i.e., the FIFO and LIFO demand). Thus, the sequence of actions a ∈ NT

under policy π generally depends on both the shelf life I ∈ N and the sample-path D ∈ NT for T ∈ N.

Definition 4.3. Let aπI,D ∈ NT be the sequence of actions under policy π, shelf life I ∈ N, sample-path

D ∈ NT , and horizon T ∈ N.

Let E
[
ω(π, I)

]
and E

[
β(π, I)

]
denote the expected food waste and expected fill rate, respectively, under

policy π and shelf life I ∈ N. The food waste ω
(
aπI,D ,D, I

)
is the waste under (the sequence of actions of)

policy π, shelf life I, and sample-path D. By conditioning on the probability that sample-path D ∈ NT is

realized, the expected food waste under policy π and shelf life I is derived as

E
[
ω(π, I)

]
=
∑

D∈NT

(
ω
(
aπI,D ,D, I

)
· p(D)

)
, (24)

in which p(D) is the probability that sample-path D ∈ NT is realized. Similarly, the expected fill rate under

policy π and shelf life I is derived as

E
[
β(π, I)

]
=
∑

D∈NT

(
β
(
aπI,D ,D, I

)
· p(D)

)
. (25)

Theorem 4.3. Let the food waste under policy π̃ and shelf life i be less than or equal to the food waste under

policy π and shelf life j, for all sample-paths D ∈ NT and horizon T ∈ N

ω
(
aπ̃i,D ,D, i

)
≤ ω

(
aπj,D ,D, j

)
. (26)

The expected food waste under policy π̃ and shelf life i is less than or equal to the expected food waste under

policy π and shelf life j

E
[
ω(π̃, i)

]
≤ E

[
ω(π, j)

]
. (27)

Proof. The exogenous information Wt is independent of our states and actions for all t = 1, . . . , T , T ∈ N.

Hence, the probability p(D) that sample-path D ∈ NT occurs is fixed and not affected by the policy, nor by

the shelf life. Therefore, by Eq. (24) and Eq. (26), respectively

E
[
ω(π̃, i)

]
=
∑

D∈NT

(
ω
(
aπ̃i,D ,D, i

)
· p(D)

)
≤
∑

D∈NT

(
ω
(
aπj,D ,D, j

)
· p(D)

)
= E

[
ω(π, j)

]
. (28)
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Theorem 4.4. Let the fill rate under policy π̃ and shelf life i be larger than or equal to the fill rate under

policy π and shelf life j, for all sample-paths D ∈ NT and horizon T ∈ N

β
(
aπ̃i,D ,D, i

)
≥ β

(
aπj,D ,D, j

)
. (29)

The expected fill rate under policy π̃ and shelf life i is larger than or equal to the expected fill rate under policy

π and shelf life j

E
[
β(π̃, i)

]
≥ E

[
β(π, j)

]
. (30)

Proof. By Eq. (25) and Eq. (29), respectively

E
[
β(π̃, i)

]
=
∑

D∈NT

(
β
(
aπ̃i,D ,D, i

)
· p(D)

)
≥
∑

D∈NT

(
β
(
aπj,D ,D, j

)
· p(D)

)
= E

[
β(π, j)

]
. (31)

4.3 Shelf-independent policies

Definition 4.4. Let Bπ be the class of shelf-independent policies. Order quantity at under policy π ∈ Bπ is

independent of the shelf life I ∈ N for all t = 1, . . . , T , D ∈ NT , and T ∈ N

aπI+1,D = aπI,D . (32)

Example 4.1. A constant order policy (COP) in which at = Q is a shelf-independent policy.

Proof. The order quantity at in the COP is equal to Q independent of the shelf life I ∈ N for all t = 1, . . . , T ,

D ∈ NT , and T ∈ N.

Definition 4.5. Let ΠI be an arbitrary set of policies under shelf life I ∈ N. The optimal policy π∗(I) ∈ ΠI

minimizes the expected food waste among all policies in ΠI that (in expectation) satisfy the fill rate constraint

E
[
ω(π∗(I), I)

]
≤ E

[
ω(π, I)

]
, for all π ∈ ΠI : E

[
β(π, I)

]
≥ β. (33)

Theorem 4.5. Let ΠI be an arbitrary set of shelf-independent policies under shelf life I ∈ N. The expected

food waste under the optimal policy π∗(I) ∈ ΠI is monotonically decreasing in the shelf life I ∈ N

E
[
ω(π∗(I+1), I + 1)

]
≤ E

[
ω(π∗(I), I)

]
, (34)

in which π∗(I+1) ∈ ΠI+1.
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Proof. Consider the optimal policy π∗(I) under arbitrary shelf life I ∈ N, sample-path D ∈ NT , and horizon

T ∈ N. By Corollary 4.2.2 and Definition 4.4, respectively

β
(
aπ

∗(I)
I+1,D ,D, I + 1

)
≥ β

(
aπ

∗(I)
I+1,D ,D, I

)
= β

(
aπ

∗(I)
I,D ,D, I

)
. (35)

Hence, by Theorem 4.4 and Definition 4.5, respectively

E
[
β(π∗(I), I + 1)

]
≥ E

[
β(π∗(I), I)

]
≥ β. (36)

Thus, policy π∗(I) satisfies the fill rate constraint (in expectation) under I + 1. Hence, by Definition 4.5

E
[
ω(π∗(I+1), I + 1)

]
≤ E

[
ω(π∗(I), I + 1)

]
. (37)

Furthermore, by Corollary 4.2.1 and Definition 4.4, respectively

ω
(
aπ

∗(I)
I+1,D ,D, I + 1

)
≤ ω

(
aπ

∗(I)
I+1,D ,D, I

)
= ω

(
aπ

∗(I)
I,D ,D, I

)
. (38)

Hence, by Theorem 4.3

E
[
ω(π∗(I), I + 1)

]
≤ E

[
ω(π∗(I), I)

]
. (39)

Example 4.2. Let ΠCOP
I be the class of constant order policies (COP) under shelf life I ∈ N. The expected

food waste under the optimal constant order policy π∗(I) ∈ ΠCOP
I is monotonically decreasing in the shelf life

I ∈ N

E
[
ω(π∗(I+1), I + 1)

]
≤ E

[
ω(π∗(I), I)

]
, (40)

in which π∗(I+1) ∈ ΠCOP
I+1 .

Proof. ΠCOP is a set of shelf-independent policies as a constant order policy is a shelf-independent policy

(by Example 4.1). Hence, the result follows from Theorem 4.5.

4.4 State-dependent policies

Definition 4.6. Let Sπ be the class of state-dependent policies. Policy π ∈ Sπ determines order quantity at

using state information St for all t = 1, . . . , T , T ∈ N.

Example 4.3. A base-stock policy (BSP) in which at = S − IPt is a state-dependent policy.

Proof. In the BSP, the order quantity at is determined using the inventory position IPt for all t = 1, . . . , T ,

T ∈ N which is an aggregate of the state information St.
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State St is affected by the shelf life I, and therefore, the sequence of actions under policy π ∈ Sπ depends

on I ∈ N. Thus, in general, for arbitrary sample-path D ∈ NT

aπI+1,D 6= aπI,D . (41)

Therefore, for state-dependent policies, Eq. (35) and Eq. (38) generally do not hold. Hence, Theorem 4.5

might not hold if we include state-dependent policies in the policy set ΠI .

Consider an arbitrary set of policies ΠI under shelf life I ∈ N. For policy π ∈ ΠI , we construct a ’mimic’

policy π̂ under shelf life I + 1 that mimics the sequence of actions of π. For each policy π ∈ ΠI , we construct

a mimic policy π̂ ∈ Π̂I+1 where Π̂I+1 is the set of mimic policies under I + 1. Policy π̂ incorporates the

same order rule as policy π. However, π ∈ ΠI determines order quantity at based on state information

(Xt,OOt), while π̂ ∈ Π̂I+1 uses state information (X̂t,OOt). The ’fictive’ inventory levels X̂t disregard the

oldest inventory and are, therefore, equivalent to the inventory levels of a system under I−1 (i.e., the system

under policy π). Thus, policy π ∈ ΠI and policy π̂ ∈ Π̂I+1 incorporate the same state information. Hence,

under arbitrary shelf life I ∈ N, sample-path D ∈ NT , and horizon T ∈ N

aπ̂I+1,D = aπI,D . (42)

Theorem 4.6. Let ΠI be an arbitrary set of policies under shelf life I ∈ N. The expected food waste under

the optimal policy π∗(I) ∈ ΠI is monotonically decreasing in the shelf life I ∈ N

E
[
ω(π∗(I+1), I + 1)

]
≤ E

[
ω(π∗(I), I)

]
, (43)

in which π∗(I+1) ∈
(

ΠI+1, Π̂I+1

)
.

Proof. For each policy π ∈ ΠI , there exists a mimic policy π̂ ∈ Π̂I+1 that mimics the sequence of actions of

π. Hence, there exists a policy π ∈ Π̂I+1 that mimics the sequence of actions of the optimal policy π∗(I) ∈ ΠI

under arbitrary shelf life I ∈ N, sample-path D ∈ NT , and horizon T ∈ N

aπI+1,D = aπ
∗(I)
I,D . (44)

By Eq. (44) and Corollary 4.2.2, respectively

β
(
aπI+1,D ,D, I + 1

)
= β

(
aπ

∗(I)
I,D ,D, I + 1

)
≥ β

(
aπ

∗(I)
I,D ,D, I

)
. (45)

Hence, by Theorem 4.4 and Definition 4.5, respectively

E
[
β(π, I + 1)

]
≥ E

[
β(π∗(I), I)

]
≥ β. (46)
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Thus, policy π ∈ Π̂I+1 satisfies the fill rate constraint (in expectation) under I + 1. Hence, by Definition 4.5,

for the optimal policy π∗(I+1) ∈
(

ΠI+1, Π̂I+1

)
we have

E
[
ω(π∗(I+1), I + 1)

]
≤ E

[
ω(π, I + 1)

]
. (47)

Furthermore, by Eq. 44 and Corollary 4.2.1, respectively

ω
(
aπI+1,D ,D, I + 1

)
= ω

(
aπ

∗(I)
I,D ,D, I + 1

)
≤ ω

(
aπ

∗(I)
I,D ,D, I

)
. (48)

Hence, by Theorem 4.3

E
[
ω(π, I + 1)

]
≤ E

[
ω(π∗(I), I)

]
. (49)

Example 4.4. Let ΠA
I be the set of all policies under shelf life I ∈ N. The expected food waste under the

optimal policy π∗(I) ∈ ΠA
I is monotonically decreasing in the shelf life I ∈ N

E
[
ω(π∗(I+1), I + 1)

]
≤ E

[
ω(π∗(I), I)

]
, (50)

in which π∗(I+1) ∈ ΠA
I+1.

Proof. The set of all policies also includes all the mimic policies, i.e., ΠA
I+1 =

(
ΠA
I+1, Π̂

A
I+1

)
. Hence, the

result follows from Theorem 4.6.

4.5 Parameter optimization

To support the search range for the optimal parameter value of the base-stock policy, we analyze the food

waste as a function of the policies’ parameters. Note that this analysis can be extended to support search

ranges for a variety of policies, for instance, for the constant order policy (Example 4.6).

Definition 4.7. Policy class Aπ denotes the class of policies in which the order quantity at is monotonically

increasing in the policies’ parameters Pi ∈ N, i = 1, . . . , n for all t = 1, . . . , T under arbitrary sample-path

D ∈ NT , horizon T ∈ N, and shelf life I ∈ N.

Theorem 4.7. The total outdated quantity is monotonically increasing in order quantity at for all t =

1, . . . , T under arbitrary sample-path D ∈ NT , horizon T ∈ N, and shelf life I ∈ N

O
(

(a1, . . . , (at + 1), . . . , aT ),D, I
)
≥ O

(
a1, . . . , at, . . . , aT ),D, I

)
. (51)
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Proof. We increment order quantity at by one for arbitrary t, while keeping the sample-path and shelf life

fixed. Hence, at time t+L we have an additional inventory unit X0
t+L. Without loss of generality, we assume

T ≥ t+L (note that increasing order quantity at has no effect for T < t+L). By theorem 4.1, for arbitrary

T ∈ N, T ≥ t + L, the additional unit X0
t+L either increases (i) the total outdated quantity by one, (ii) the

total satisfied demand by one, or (iii) some inventory level Xk
T of age k = 0, . . . , I − 1 by one. Hence, by

incrementing at by one for arbitrary t, the total outdated quantity never decreases.

Corollary 4.7.1. The food waste is monotonically increasing in order quantity at for all t = 1, . . . , T under

arbitrary sample-path D ∈ NT , horizon T ∈ N, and shelf life I ∈ N

ω
(

(a1, . . . , (at + 1), . . . , aT ),D, I
)
≥ ω

(
a1, . . . , at, . . . , aT ),D, I

)
. (52)

Corollary 4.7.2. The food waste is monotonically increasing in the policies’ parameters Pi ∈ N, i = 1, . . . , n

for policy π ∈ Aπ under arbitrary sample-path D ∈ NT , horizon T ∈ N, and shelf life I ∈ N.

Example 4.5. The base-stock policy πBSP ∈ Aπ.

Proof. The BSP incorporates one parameter P1 = S with S ∈ N and at = S − IPt. At arbitrary time i we

increase the order-up-level from S to S̃ = S + 1, while keeping the sample-path and shelf life fixed

S̃ =

S, for 1 ≤ t < i,

S + 1, for t ≥ i.
(53)

Let ãt and ĨP t, respectively, denote the order quantity and inventory position at time t under S̃. At time i

we have ĨP i = IPi as S̃ = S for t < i, hence

ãi = S̃ − ĨP i = S + 1− IPi = ai + 1. (54)

Therefore, at time i + L we have an additional inventory unit X0
i+L. Without loss of generality, we assume

T ≥ i + L (note that increasing S at time i has no effect for T < i + L). By Theorem 4.1, for arbitrary

T ∈ N, T ≥ i + L, the additional unit X0
i+L either increases (i) the total outdated quantity by one, (ii) the

total satisfied demand by one, (iii) some inventory level Xk
T of age k = 0, . . . , I − 1 by one. We assume that

option (i) or (ii) occurs during day j which decreases the inventory position by one. Hence, the inventory

positions and order quantities, respectively, are modified as follows

ĨP i =

IPi, for 1 ≤ t ≤ i,

IPi + 1, for i < t ≤ j,
(55)
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ãi =


ai, for 1 ≤ t < i,

ai + 1, for t = i,

ai, for i < t ≤ j.

(56)

If T ≤ j the proof is finished as ãt ≥ at for all t = 1, . . . , T . If T > j, we have ĨP j+1 = IPj+1, and therefore,

ãj+1 = aj+1 + 1. We can repeat the analysis of the additional inventory unit X0
j+1+L for arbitrary T and

conclude that at is monotonically increasing in S for all t = 1, . . . , T .

Example 4.6. The constant order policy πCOP ∈ Aπ.

Proof. The COP incorporates one parameter P1 = Q with Q ∈ N. Furthermore, at = Q, hence, increasing

Q by one increases at by one for all t = 1, . . . , T .
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5 Methodology

We aim to find the optimal value of the policies’ parameter by simulation-based optimization. This section

provides search ranges for the optimal value, describes the optimization procedure, and explains the compu-

tation of our measure for the food waste. Furthermore, to assess online sales’ wastefulness, we define two

performance measures; the minimum throw-out date and the online wasteful shelf life range. We describe

the derivation of these measures and provide some inherent properties.

5.1 Simulation

5.1.1 Search ranges

For the EWA policy, following van Donselaar and Broekmeulen (2012), we simulate each integer value of S,

starting with zero and ending when the fill rate constraint is satisfied. For the BSP, we show that the food

waste is never decreasing in S (by Corollary 4.7.2). Therefore, we apply the same search range as the lowest

value for S that satisfies the fill rate constraint is optimal.

5.1.2 Optimization procedure

To ensure that the model is stationarity, a warm-up phase of 100 days is initialized, starting with zero

inventories and the mean demand for the outstanding orders. The initialized outstanding orders ensure that

the fill rate can be satisfied. The warm-up phase is followed by one or more consecutive ’batches’ during

which the performance is measured. A batch consists of 10 runs, and a run has a length of 1000 days. For

each run, we compute a measure for the fill rate. Hence, each batch adds ten measures for the fill rate. We

initialize a single batch and increment the number of batches by one until the length of the 95% confidence

interval for the mean of the fill rate < 0.004. This approach is suggested by Minner and Transchel (2010)

and van Donselaar and Broekmeulen (2012). If the mean of the confidence interval for the fill rate exceeds

the required level of β, the optimal value for S is found. Otherwise, we increment S by one and rerun the

simulation using the same seed and starting with a warm-up phase. The optimal value for S is simulated

at a higher level of accuracy as obtained by 1000 runs (each with a length of 1000 days). For each run,

we compute a measure for the food waste. Hence, an estimate for the food waste is the average of 1000

simulated measures for the food waste. To acquire a larger sample for the paired sample t-test, ten estimates

for the food waste are computed. An additional estimate is obtained by simulating the optimal value for

S for another 1000 subsequent runs (using the same seed) and taking the average of 1000 new simulated

measures for the food waste.

The choice for the relatively small number of runs per batch allows for fast optimization of S—moreover,

1000 runs yields more accurate estimates for the expected food waste at an acceptable speed.
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5.2 Performance measures

5.2.1 Minimum throw-out date

Experiment e ∈ E is defined by the parameters in Table 1. We define setting E(m, f) ⊆ E as the subset of

experiments for a fixed shelf life m and fraction offline FIFO demand f .

Table 1: List of the parameters considered.

Parameter Description

L Lead time

µ Mean demand

cvr =
√

σ2

µ Coefficient of variation

β Required fill rate

m Shelf life

f Fraction offline FIFO demand

For each setting E(m, f), we derive the minimum online throw-out date r(m, f) that leads to a statistically

significant increase in food waste. Hence, under setting E(m, f), an online retailer incorporating a throw-out

policy r ≥ r(m, f) is statistically more wasteful than an offline retailer.

Figure 2 illustrates the derivation of r(m, f), results in the figure are based on the base-stock policy.

Let ω(m, f) be the average food waste in setting E(m, f). The blue horizontal line presents ω(15, 0.5), i.e.,

the average food waste in E(15, 0.5). The black curved line presents the food waste as a function of the

corresponding online throw-out policies, i.e., ω(15 − r, 1). Note that we incorporate full FIFO inventory

depletion (f = 1) for online sales. The expected food waste is monotonically decreasing in the adjusted shelf

life I = m − r (by Theorem 4.6). Therefore, the wastefulness of online sales increases in r. The red dot in

the graph displays the lowest online throw-out date that leads to a statistically significant increase in food

Figure 2: Illustration of the derivation of r(m, f).
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waste, i.e., r(15, 0.5) = 5. Hence, under setting E(15, 0.5), an online retailer that incorporates a throw-out

policy r ≥ 5 is significantly more wasteful than an offline retailer.

To test statistical significance, the paired sample t-test is performed (using the same seed for the offline

and online setting). As a significance level, α = 0.05 is implemented. The full description of the paired

sample t-test can be found in Appendix A. For a given setting E(m, f), the following five-step procedure is

applied to compute r(m, f):

1. Determine ω(m, f).

2. Set r = 0.

3. Determine ω(m− r, 1).

4. If ω(m− r, 1) > ω(m, f), determine the p-value of the paired sample t-test for equal means
(
H0 : ω(m− r, 1) =

ω(m, f)
)

and go to Step 5.

Else if r = m− 1, stop, r(m, f) does not exist.

Else, do r = r + 1 and go to Step 3.

5. If the p-value ≤ 0.05, set r(m, f) = r and stop.

Else if r = r(m + 1, f), replicate the experiments in the paired sample t-test until the p-value ≤ 0.05, set

r(m, f) = r and stop.

Else if r = m− 1, stop, r(m, f) does not exist.

Else, do r = r + 1 and go to Step 3.

Note that by definition 0 ≤ r ≤ m − 1. Hence, if r = m − 1 does not lead to a statistically significant

increase in food waste, we conclude that r(m, f) does not exist. Also note that the expected food waste is

monotonically decreasing in m (by Theorem 4.6), i.e., ω(m + 1, f) ≤ ω(m, f). Therefore, r(m + 1, f) exists

if r(m, f) exists for all m ∈ N. For instance, the throw-out policy r(m + 1, f) = r(m, f) + 1 is always a

(feasible) wasteful policy.

Furthermore, in case r = r(m + 1, f), we extend the sample in the paired sample t-test until throw-

out policy r is statistically more wasteful (see Step 5). The sample is extended by additional estimates for

the food waste as described in the simulation optimization procedure. This step is added to ensure that

r(m+ 1, f) ≥ r(m, f) for all m ∈ N.

5.2.2 Online wasteful shelf life range

If the fraction offline FIFO demand f and online throw-out policy r are known, we can examine the online

wasteful shelf life range. That is, the range in terms of m that is (statistically significant) more wasteful

when sold online.

Let Φ(f, r) denote the online wasteful shelf life range under f and r, which is derived as follows

Φ(f, r) =
{
m ∈ N

∣∣∣ r ≥ r(m, f)
}
. (57)
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This equation can be interpreted as follows. r(m, f) is the minimum online throw-out date that leads to a

statistically significant increase in food waste. Therefore, under f , the online sale of a perishable with a shelf

life m is more wasteful if an online throw-out policy r ≥ r(m, f) is implemented.

The derivation of r(m, f) ensures that r(m + 1, f) ≥ r(m, f) for all m ∈ N. Thus, if m + 1 ∈ Φ(f, r)(
i.e., r ≥ r(m + 1, f)

)
and r(m, f) exists, then r ≥ r(m, f) and m ∈ Φ(f, r). Therefore, the online wasteful

shelf life range is an interval, i.e., Φ(f, r) =
[
l, u
]

in which l and u, respectively, are the smallest and largest

(integer) value of the shelf life that is more wasteful when sold online.

Furthermore, the wastefulness of online sales is monotonically increasing in r (by Theorem 4.6), and

therefore, the online wasteful shelf life range is a nested interval

Φ(f, r) ⊆ Φ(f, r + 1). (58)
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6 Results

This section presents the main findings. Firstly, we describe the experiment design and define several scenarios

to perform our analysis. Secondly, we analyze the wastefulness of online sales under the base-stock policy

and the EWA policy.

6.1 Setup

6.1.1 Experiment design

To compare food waste in an offline and online setting, we simulate a wide range of perishable inventory

systems. By combining all parameter values in Table 2, in total 30,000 experiments can be designed (or

150 settings for E(m, f) each containing 200 experiments). Parameter values are based on Haijema and

Minner (2016); however, adjusted for this research. We exclude the cost components as a fill rate constraint

is considered instead. A fill rate between 90% and 98% is usually acceptable for perishables (Broekmeulen

and van Donselaar, 2009). Therefore, we add β = 0.9, 0.92, 0.95, 0.98 to the experiment design. Furthermore,

van Donselaar et al. (2006) characterize perishables as products with a shelf life smaller than or equal to 30

days. Hence, we consider 1 ≤ m ≤ 30.

Table 2: List of the simulation experiments considered.

Parameter Values

L 1, 2

µ 1, 2, 4, 6, 10

cvr =
√

σ2

µ 0.5, 0.7, 1, 1.5, 2

β 0.90, 0.92, 0.95, 0.98

m 1, . . . , 30

f 0, 0.2, 0.5, 0.8, 1

For each experiment, we fit two discrete demand distributions (one for FIFO demand and one for LIFO

demand). For this, the fitting procedure of Adan et al. (1995) is used in which a discrete distribution is fitted

on the first two moments. Based on the variable y = σ2

µ2 − 1
µ , one out of four discrete distributions is selected.

The selected discrete distribution has the same mean and standard deviation as the continuous distribution

in the experiment design. For instance, if y = 0, the discrete distribution is a Poisson distribution with rate

parameter λ = µ. The distributions included in the fitting procedure are the Poisson, binomial, negative

binomial, and geometric distribution.

Following the notation of Haijema and Minner (2016), FIFO demand is fitted on mean µ(FIFO) = f · µ,

and standard deviation σ(FIFO) = cvr
√
f · µ. LIFO demand is fitted on mean µ(LIFO) = (1 − f) · µ and
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standard deviation σ(LIFO) = cvr
√

(1− f) · µ. Adan et al. (1995) show that there does not exist a discrete

demand distribution if y < −1. For 2,400 experiments, the combination of f , µ, and cvr results in y < −1.

Therefore, we remove these experiments.

6.1.2 Scenarios

We define several scenarios, which are listed in Table 3. Each scenario incorporates a (sub)set of the considered

simulation experiments (see Table 2). Scenario A incorporates the full experiment design, i.e., the aggregate

of all products. We introduce Scenario B (high demand, low variance-perishables) and Scenario C (low

demand, high variance-perishables) to analyze the wastefulness of different product categories.

Scenario B and C are the extremes cases in which demand and variance are noticeably high/low. In

addition, Scenario D is used to examine the individual impact of the mean and variance of the demand on

online sales’ wastefulness. In this scenario, we incorporate one-to-one FIFO/LIFO demand for offline sales

(f = 0.5) as a setting between the worst-case and best-case scenarios. For f = 0.5, µ = 1, and cvr 0.5/0.7

there does not exist a discrete demand distribution (i.e., the combination of f , µ, and cvr results in y = −1).

Hence, to make a fair comparison, µ = 1 is removed in Scenario D.

Moreover, we examine the impact of a less restrictive fill rate on online sales’ food waste by analyzing

Scenario E − H. For the offline setting, we maintain a constant fill rate constraint of 98%. For the online

setting, however, we vary the fill rate between 98-90%.

Table 3: List of the considered scenarios.
The table displays the scenarios considered. For each parameter in the experiment design, the (sub)set of the considered

parameter values is listed.

Scenario L µ cvr β (offline) β (online) m f

A all all all all all all all

B all 10 0.5 all all all all

C all 1 2 all all all all

D all 2,4,6,10 all all all all 0.5

E all all all 0.98 0.98 all all

F all all all 0.98 0.95 all all

G all all all 0.98 0.92 all all

H all all all 0.98 0.90 all all
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6.2 Base-stock policy

6.2.1 Minimum throw-out date

Figure 3 shows the results for the BSP under Scenario A. Setting E(m, f) is defined by a product shelf life

m, and a fraction offline FIFO demand f . For each setting, the minimum online throw-out date r(m, f) that

leads to a (statistically significant) increase in food waste is plotted. By assuming f , online retailers gain

insights into the wastefulness of their throw-out policies for all perishables with a shelf life of 2 ≤ m ≤ 30.

For instance, r(20, 0.5) = 7. Hence, under one-to-one offline FIFO/LIFO demand, online retailers can discard

a product with a shelf life of 20 days up to 6 days before it expires without being more wasteful than an

offline retailer.

Note that 0 ≤ r ≤ m − 1, and therefore, r = 0 is the only feasible throw-out policy under m = 1.

Furthermore, under m = 1, there is no difference between FIFO and LIFO inventory depletion as all inventory

is of the same age, i.e., the food waste is equal for all values of f . Hence, offline retailing and online retailing

(under r = 0) is equally wasteful for products with a shelf life of one day. Moreover, note that r(m, f) possibly

does not exist. For instance, r(2, 0) (the corresponding red dot is missing in Figure 3). Hence, under full

offline LIFO inventory depletion and a product with m = 2, there is no online throw-out policy significantly

more wasteful.

The impact of throwing out food is visible for small values of m. Relatively small throw-out policies of

1-3 days increase the food waste for daily fresh (m ≤ 7). Furthermore, online retailing seems more wasteful

for larger values of f . Online retailers can easily maintain efficient inventory control as expiration dates are

Figure 3: Results for r(m, f) for the BSP under Scenario A.

The figure presents results for the BSP under Scenario A. For each setting E(m, f), the figure plots the minimum online

throw-out date r(m, f) that leads to a (statistically significant) increase in food waste.
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not observable to customers. Therefore, the total demand is FIFO demand, which can be a considerable

advantage. However, if the fraction offline FIFO demand increases (for instance, by better shelf management

and more discounting close to the expiration date), the advantage of online efficiency decreases. As a result,

online throw-out policies are relatively more wasteful.

Throw-out policies are far less wasteful for large m and small f . Consider, for instance, the minimum

throw-out date r(30, 0) = 19. Hence, under offline LIFO inventory depletion, an online retailer can discard a

product with a shelf life of 30 days up to 18 days before it expires without increasing the food waste.

6.2.2 Online wasteful shelf life range

By assuming an offline fraction FIFO demand f and online throw-out policy r, we examine the shelf life

range Φ
(
f, r
)

that is more wasteful when sold online. The online wasteful shelf life range for the BSP under

Scenario A is displayed in Figure 4. We vary the online throw-out policy r between one and seven as it is

assumed that a throw-out policy of seven days is sufficient to ensure a high level of customer satisfaction. In

the worst-case scenario for online retailers, we find Φ
(
1, 1
)

=
[
2, 30

]
. Hence, under offline FIFO demand, an

online throw-out policy of just one day makes the online sale of all perishables more wasteful. For small f , the

wasteful shelf life range is considerably tighter. In the best-case scenario (i.e., f = 0), we find Φ
(
0, 2
)

=
[
3, 4
]
,

which increases to Φ
(
0, 7
)

=
[
3, 13

]
under a relatively large throw-out policy of seven days.

Therefore, a correct assumption on offline retailers’ inventory management is crucial to assess online sales’

wastefulness correctly. If offline retailers actively try to maintain FIFO inventory depletion (i.e., f is large),

the online wasteful shelf life range is wide. Thus, online sales are more wasteful, even under a relatively

moderate throw-out policy. On the other hand, if offline retailers are passive (i.e., f is small), online retailers

can maintain a high level of customer satisfaction and reduce food waste. However, even in the best-case

scenario, the online sale of perishables with m ≤ 13 is more wasteful if customer satisfaction is highly valued

(i.e., r = 7).

Figure 4: Results for Φ
(
f, r
)

for the BSP under Scenario A.

The figure presents results for the BSP under scenario A. For each offline fraction FIFO demand f , the figure plots the shelf

life range Φ
(
f, r

)
that is more wasteful when sold online under an online throw-out policy r.
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6.2.3 Wastefulness of different product categories

We examine the impact of throw-out policies on different product categories by analyzing Scenario B and

Scenario C; the results are displayed in Figure 6. Under Scenario B, there is a considerable advantage for

online retailers. Inventory control efficiency (i.e., FIFO inventory depletion) is highly valuable for the high-

demand category (i.e., µ = 10, cvr = 0.5) and results in a negligible food waste for 3 ≤ m ≤ 30 (see Figure

5). The food waste under LIFO inventory depletion, on the other hand, is strictly decreasing in the shelf life.

Consequently, perishables in the high-demand category can always be sold online under a throw-out policy

r = m − 3 without increasing the food waste. With other words, the online throw-out date that increases

food waste r(m, f) ≥ m− 2, independent of f (see Panel A of Figure 6). Hence, the results under Scenario

B are similar for all considered f .

Under Scenario C, the advantage of inventory control efficiency is less significant. We find that the

minimum throw-out date under Scenario C is (always) lower than the minimum throw-out date under Scenario

A (i.e., the aggregate of all products). Hence, perishables in the low-demand category (i.e., µ = 1, cvr = 2)

are more wasteful when sold online.

Furthermore, we find considerable differences between the online wasteful shelf life range under Scenario

B and Scenario C. For instance, Φ
(
0, 7
)

=
[
3, 8
]

under Scenario B, and Φ
(
0, 7
)

=
[
3, 17

]
under Scenario

C. Hence, under full offline LIFO demand, the online sale of the low-demand category is considerably more

wasteful than the online sale of the high-demand category. The high-demand category is only wasteful for

daily fresh, while the low-demand category is wasteful for shelf lives up to 17 days. Note also the online

wasteful shelf life range Φ
(
1, 7
)

=
[
2, 9
]

under Scenario B. Even in the worst-case scenario, perishables in

the high-demand category can be sold online extremely well.

Figure 5: Food waste under FIFO/LIFO inventory depletion, µ = 10, and cvr = 0.5 on a logarithmic scale.
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(a) Results for r(m, f) under Scenario B. (b) Results for r(m, f) under Scenario C.

(c) Results for Φ
(
f, r
)

under Scenario B. (d) Results for Φ
(
f, r
)

under Scenario C.

Figure 6: Results for the BSP under Scenario B − C.

The figure presents results for the BSP under Scenario B (panel A and C) and Scenario C (panel B and D). Panel A and B

plot the minimum online throw-out date r(m, f) that leads to a (statistically significant) increase in food waste. Panel C and

D plot the shelf life range Φ
(
f, r

)
that is more wasteful when sold online.

6.2.4 Impact of demand mean and variation

We examine the individual impact of the mean and variation of demand on online sales’ wastefulness; the

results are displayed in Figure 7. In Scenario D, we incorporate one-to-one FIFO/LIFO demand for offline

sales (f = 0.5) as a setting between the best-case and the worst-case scenarios. Panel A and C group the

experiments by the mean demand (Scenario D1). Panel B and D group the experiments by the coefficient of

variation (Scenario D2).
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Under Scenario B, we find a substantial advantage for the online sale of perishables in the high-demand

category (i.e., µ = 10, cvr = 0.5). However, Scenario D1 does not exhibit the same results. For all perishables

with m ≤ 20, we find that the minimum throw-out date is hardly affected by the mean demand. For instance,

under Scenario D1 and µ = 2 we find r(20, 0.5) = 7, and under Scenario D1 and µ = 10 we find r(20, 0.5) = 9.

Consequently, under Scenario D1, the online wasteful shelf life range is hardly affected by µ. Note also the

(a) Results for r(m, f) under Scenario D1. (b) Results for r(m, f) under Scenario D2.

(c) Results for Φ
(
f, r
)

under Scenario D1. (d) Results for Φ
(
f, r
)

under Scenario D2.

Figure 7: Results for the BSP under Scenario D.

The figure presents results for the BSP under Scenario D. Panel A and C group the experiments by the mean demand

(Scenario D1). Panel B and D group the experiments by the coefficient of variation (Scenario D2). Furthermore, Panel A and

B plot the minimum online throw-out date r(m, f) that leads to a (statistically significant) increase in food waste. Panel C

and D plot the shelf life range Φ
(
f, r

)
that is more wasteful when sold online.
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difference in the wasteful shelf life range under Scenario B and Scenario D1. For instance, Φ
(
7, 0.5

)
=
[
2, 9
]

under Scenario B, and Φ
(
7, 0.5

)
=
[
2, 16

]
under Scenario D1 and µ = 10. It seems that high demand alone

does not decrease online sales’ wastefulness, but rather the combination of high demand and low demand

variation. However, perishables with m ≥ 20 in high demand (i.e., µ = 10) can be sold online fairly well.

Compare, for instance, r(30, 0.5) = 12 under Scenario D1 and µ = 2, with r(30, 0.5) = 20 under Scenario D1

and µ = 10.

Similar to our findings under Scenario D1, under Scenario D2 we find minor differences in the minimum

throw-out date for all perishables with m ≤ 14. Therefore, the online wasteful shelf life range is only

moderately affected by the cvr. Low demand variation (i.e., cvr = 0.5/0.7) does seem beneficial for the online

sale of perishables with a relatively long shelf life of m ≥ 15. For instance, under Scenario D2 and cvr = 2

we find r(30, 0.5) = 12, and under Scenario D2 and cvr = 0.5 we find r(30, 0.5) = 23.

We compare the wasteful shelf life range under Scenario B and Scenario D2. Under Scenario B we find

Φ
(
7, 0.5

)
=
[
2, 9
]
, and under Scenario D2 and cvr = 0.5 we find Φ

(
7, 0.5

)
=
[
2, 14

]
. This difference in

wasteful shelf life range again shows the superiority of the high-demand category of Scenario B. Perishables

in high demand and under low demand variation are ideally sold in an online environment.

6.2.5 Lowering the online fill rate

We analyze the effect of lowering the fill rate constraint on online sales’ wastefulness. For the offline setting,

we maintain a constant fill rate of 98%. For the online setting, however, we vary the fill rate between 98-90%

in Scenario E−H (see Table 3). The results for the online wasteful shelf life range are displayed in Figure 8;

see Appendix B for the results for the minimum throw-out date. Under Scenario E, we find similar results as

under Scenario A; this is expected as Scenario E incorporates the same fill rate for online and offline retailing.

However, by lowering the fill rate for online sales, we find substantial improvements in the online wasteful

shelf life range, especially for larger f . For instance, under Scenario E we find Φ
(
1, 1
)

=
[
2, 30

]
, and under

Scenario H we find Φ
(
1, 1
)

=
[
2
]
, which increases to Φ

(
1, 7
)

=
[
2, 18

]
under a relatively large throw-out

policy of seven days. Therefore, by decreasing the fill rate constraint from 98% to 90%, online retailers can

sell a considerably wider range of perishables (in terms of m) without increasing the food waste.

Lowering the fill rate is less effective for smaller f . Compare, for instance, Φ
(
0, 7
)

=
[
3, 12

]
under Scenario

E with Φ
(
0, 7
)

=
[
4, 9
]

under Scenario H. Hence, lowering the fill rate constraint is mainly effective if offline

retailers actively try to maintain FIFO inventory depletion (for instance, by discounting products close to

the expiration date).
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(a) Scenario E. (b) Scenario F .

(c) Scenario G. (d) Scenario H.

Figure 8: Results for Φ
(
f, r
)

for the BSP under Scenario E −H.

The figure presents results for the BSP under Scenario E −H. For each offline fraction FIFO demand f , the figure plots the

shelf life range Φ
(
f, r

)
that is more wasteful when sold online under an online throw-out policy r.

6.3 EWA policy

6.3.1 Performance comparison with the BSP

We compare the food waste under the EWA policy with the food waste under the BSP. Let ωi(m, f) denote

the average food waste in setting E(m, f) under policy i. The food waste reduction by the EWA policy,

compared to the BSP, is measured by

ω∆(m, f) = 100 · ω
BSP(m, f)− ωEWA(m, f)

ωBSP(m, f)
. (59)

The results for the food waste reduction ω∆(m, f) under Scenario A are displayed in Figure 9. We find

that the EWA policy outperforms the BSP under nearly all settings. For m ≥ 10, there is a relatively

small decrease in food waste of 0-10%. However, for small m, the food waste reduction by the EWA policy

is considerably larger. Here, the impact of FIFO/LIFO demand is also clearly visible. The EWA policy

is mainly effective for small f (i.e., LIFO inventory depletion); this is disadvantageous for online retailers
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following FIFO inventory depletion. Offline retailers implementing the EWA policy can reduce their food

waste by up to 50% (under LIFO demand). Contrarily, the maximum food waste reduction in an online

setting (i.e., under FIFO demand) is around 10%.

Figure 9: Food waste reduction by the EWA policy.

The figure displays results under Scenario A. For each setting E(m, f), the figure plots the food waste reduction by the EWA

policy ω∆(m, f), compared to the BSP.

6.3.2 Wastefulness comparison with the BSP

The results for the EWA policy under Scenario A are displayed in Figure 10. In general, we find that the

results for the minimum throw-out date under the EWA policy and the BSP are similar. Hence, the online

wasteful shelf life range is also similar. A notable exception is the wider wasteful range for the EWA policy

under f = 0.2 and f = 0 as the online sale of daily fresh (m ≤ 7) is more wasteful. The EWA policy’s food

waste reduction is largest for the offline sale of daily fresh, especially under full LIFO inventory depletion (see

Figure 9). As a result, under small f , online throw-out policies for daily fresh are relatively more wasteful

under the EWA policy.

The results for the EWA policy under Scenario B and Scenario C are displayed in Appendix C. Our

findings are similar to the results under the BSP. However, for small f and small m, we find that online throw-

out policies are more wasteful under the EWA policy. This is in line with our findings under Scenario A.

The increase in online sales’ wastefulness is most considerable under Scenario C. The low-demand category,

a wasteful product category under the BSP, is even more wasteful when the more sophisticated EWA policy

is implemented.

Appendix D displays the results for the EWA policy under Scenario E − H. The results are similar to

our findings for the BSP. However, for the EWA policy, we find that the online wasteful shelf life range under
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(a) Results for r(m, f).

(b) Results for Φ
(
f, r
)
.

Figure 10: Results for the EWA policy under Scenario A.

The figure presents results for the EWA under Scenario A. Panel A plots the minimum online throw-out date r(m, f) that

leads to a (statistically significant) increase in food waste. Panel B plots the shelf life range Φ
(
f, r

)
that is more wasteful when

sold online.

Scenario F−H is wider for f ≤ 0.8. Lowering the fill rate is a less effective method to reduce the wastefulness

for daily fresh. Notably, lowering the fill rate is also less effective if offline demand is mainly FIFO demand

(i.e., f = 0.8).

To summarize, we find that the online sale of perishables with a relatively long shelf life is equally wasteful

under the BSP and the EWA policy. However, for daily fresh, online throw-out policies under the EWA policy

are relatively more wasteful. This is especially true for small f (i.e., offline LIFO demand) as the EWA policy’s

food waste reduction is largest under these settings.
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7 Conclusions and managerial insights

In the coming years, the food supply chain faces major challenges to improve sustainability and reduce food

waste. A considerable amount of the total food waste can be assigned to the decisions and actions of retailers.

Therefore, efficient inventory management of food retailers is crucial to reduce global food waste.

At the same time, we observe the advent of online food retailers that might manage inventory differently.

In online retailing, consumers do not observe expiration dates. Therefore, to maintain a high level of customer

satisfaction, online retailers might only send products that are consumable for at least a week and discard

food that is still valid for six more days.

We prove that the expected food waste under the optimal order policy is monotonically decreasing in

the product shelf life. Online retailers inherently decrease the shelf life if they throw out food before the

expiration date. Therefore, online sales are more wasteful if online and offline retailers follow the same

inventory depletion rule (e.g., FIFO or LIFO). In practice, however, the inventory depletion of online and

offline retailers differs. In an offline setting, consumers often buy the freshest products, as this gives the

highest level of utility. Consequently, offline retailers often follow LIFO inventory depletion (or a combination

of FIFO and LIFO). On the other hand, online retailers can usually send the oldest products in stock and

thus maintain FIFO inventory depletion. FIFO inventory depletion is a considerable advantage that could

offset the wastefulness of an online throw-out policy.

We examine the impact on food waste by moving from offline to online retail. A simplified inventory control

system is investigated to achieve this, focusing on practical applications for real-world food retailers. The

food waste in an offline and online environment is estimated and compared by simulation under an extensive

set of experiments. By varying the offline inventory depletion rule, we analyze different management styles.

If retailers display mainly older inventory on the shelf and discount products close to the expiration date

(i.e., active management), they follow mainly FIFO inventory depletion. On the other hand, if no measures

are taken to prevent customers from buying the freshest products (i.e., passive management), offline retailers

follow mainly LIFO inventory depletion.

Online sales’ wastefulness is visible for perishables with a short shelf life. Relatively small throw-out

policies of 1-3 days increase the food waste for daily fresh (shelf life ≤ 7). Moreover, the online sale of these

perishables is wasteful under both passive and active offline management. Therefore, to reduce food waste,

online retailers might avoid the sale of daily fresh.

On the other hand, the online sale of perishables with a relatively long shelf is far less wasteful. One

main insight here is the impact of the offline management style on online sales’ wastefulness. Active offline

management decreases the advantage of online inventory efficiency, and thus, makes online throw-out policies

relatively more wasteful. Therefore, if offline retailers actively manage their inventory, the online sale of all

perishables with a shelf life ≤ 30 is wasteful, even under a relatively moderate throw-out policy. Contrarily,
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if offline retailers are passive, online retailers can maintain a high customer satisfaction level and reduce food

waste. Under full offline LIFO inventory depletion, an online retailer can discard a perishable with a shelf life

of 30 days up to 18 days before it expires without increasing the food waste. Therefore, a correct assumption

on offline retailers’ inventory management is crucial to assess online sales’ wastefulness correctly; this is an

area for future research.

Furthermore, our research makes three suggestions for online retailers to reduce their food waste. Firstly,

the online sale of perishables in high demand and under low demand variation is preferred. Online inventory

control efficiency is highly valuable for this product category. Therefore, online retailers can sell perishables

with a relatively short shelf life (even some daily fresh) without increasing food waste. The wastefulness of

these online sales is also hardly affected by the offline management style. Contrarily, we find that perishables

in low demand and under high demand variation are quite wasteful when sold online. Therefore, by correctly

adjusting the online product range, the sustainability of online retailing improves significantly.

Secondly, lowering the online fill rate constraint is an effective method to reduce online sales’ wastefulness.

By lowering the fill rate from 98% to 90%, a considerably wider range of perishables can be sold online without

increasing the food waste. A lower fill rate for online sales might not be an issue. In an online setting, it is

more convenient to provide substitute goods, i.e., goods that a consumer perceives as similar or comparable.

Furthermore, it often takes a couple of days to deliver a customer’s order. Hence, an online retailer might

satisfy some of these orders with product arrivals of the next days.

By considering the EWA policy, we examine a more sophisticated policy that considers the inventory’s

full age distribution. Although the EWA policy outperforms the BSP for online sales, it is mainly effective for

offline sales of daily fresh (shelf life ≤ 7). As a result, online throw-out policies for daily fresh are relatively

more wasteful under the EWA policy. Hence, our final suggestion; more work should be devoted to optimizing

policies suited for online retailing. Online retailers follow FIFO inventory depletion, and it is shown that the

online sale of daily fresh is usually not feasible. Therefore, policies that perform well under FIFO inventory

depletion and the sale of perishables with a relatively long shelf life could enhance inventory control in an

online environment.
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A Paired sample t-test

To test the null hypothesis of equal means for sample j and k, we use the paired sample t-test. Let xij (xik)

denote the value for observation i of sample j (sample k). The difference d between each pair of values is

derived as follows

d =

n∑
i=1

(
xij − xik

)
, (60)

in which n is the sample size. The test statistic is computed as

t =
m
s√
n

, (61)

in which m and s are the mean and standard deviation of the difference d, respectively. We reject the null

hypothesis that the two samples have equal means if |t| > t(1−α2 ,v). Here, t(1−α2 ,v) is the critical value of the

t-distribution with significance level α and degrees of freedom v = n− 1.
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B Results for the BSP under Scenario E −H

(a) Scenario E. (b) Scenario F .

(c) Scenario G. (d) Scenario H.

Figure 11: Results for r(m, f) for the BSP under Scenario E −H
The figure presents results for the BSP under Scenario E −H. For each setting E(m, f), the figure plots the minimum online

throw-out date r(m, f) that leads to a (statistically significant) increase in food waste.
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C Results for the EWA policy under Scenario B − C

(a) Results for r(m, f) under Scenario B. (b) Results for r(m, f) under Scenario C.

(c) Results for Φ(f, r) under Scenario B. (d) Results for Φ(f, r) under Scenario C.

Figure 12: Results for the EWA policy under Scenario B − C.

The figure presents results for the EWA policy under Scenario B (panel A and C) and Scenario C (panel B and D). Panel A

and B plot the minimum online throw-out date r(m, f) that leads to a (statistically significant) increase in food waste. Panel

C and D plot the shelf life range Φ(f, r) that is more wasteful when sold online.
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D Results for the EWA policy under Scenario E −H

(a) Scenario E. (b) Scenario F .

(c) Scenario G. (d) Scenario H.

Figure 13: Results for r(m, f) for the EWA policy under Scenario E −H.

The figure presents results for the EWA policy under Scenario E−. For each setting E(m, f), the figure plots the minimum

online throw-out date r(m, f) that leads to a (statistically significant) increase in food waste.
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(a) Scenario E. (b) Scenario F .

(c) Scenario G. (d) Scenario H.

Figure 14: Results for Φ
(
f, r
)

for the EWA policy under Scenario E −H.

The figure presents results for the EWA policy under Scenario E −H. For each offline fraction FIFO demand f , the figure

plots the shelf life range Φ
(
f, r

)
that is more wasteful when sold online under an online throw-out policy r.
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