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1 Introduction

In today’s rapid-pacedmarkets, inventory stock is no longer as simple as it used to be. Where retailers
used to base their stocking levels on their routine sales numbers, they now employ highly advanced
models and algorithms to forecast their future sales and adjust inventory accordingly in a bid to
stay ahead of the competition. Knowing when sales will spike and equally important, when sales
will tumble, is therefore expensive information (Aras et al., 2017). In this light, sales forecasting has
become an essential element in the operational planning of retailers and wholesalers alike and has
thus generated much interest in both the commercial sector and amongst academic researchers over
the past decades (Liu et al., 2013).

Particularly for larger, multinational producers, accurately forecasting sales across all their products,
markets and customer populations poses a great challenge but thereby also presents the opportunity
to find great gains. Such companies, who provide a wide range of products, often find the task of
accurately forecasting the sales of their entire catalogue daunting. Aggregating all products into one
pool and forecasting at this level is far from ideal. Most products are not substitutes but differ in
crucial ways and pooling averages out the variability. On the other hand, isolating each product
and forecasting it separately discards the mountains of information on sales drivers which affect all
products alike. Furthermore, this approach fails for products with intermittent sales, as these might
not provide enough information to conductmeaningful analysis. Attempts to estimate the parameters
of all the product time-series in one all-encompassing model often suffer from the well-known ’curse
of dimensionality’ in addition to leading to complex, undecipherable output for those without a
background in statistics. This touches upon an alternative attribute which company managers find
desirable in their models, namely interpretability. If forecasting performance were the only interest
then retailers would oftentimes resort to ’black box’ machine learning algorithms which provide
accuracy levels most statistical models can’t compete with. However in operational management it
is not only relevant to know how much sales will change but also why. In attempts to optimize all
aspects of their business strategy, from inventory planning to marketing campaigns, retailers find
themselves asking questions as; what are the key drivers facilitating the upcoming shift in demand?
How uncertain are these forecasts? What effect will a price increase have? (Wacker & Lummus, 2002;
Fisher & Raman, 2010)

Aside from forecasting performance and inferential capabilities other practical matters such as scala-
bility and adaptability are of interest. Amodel which is unable to scale to a retailers entire product set
or incapable of learning from new information as it comes in is of limited practical relevance. To sum,
there is need for a scalable, contemporary model framework able of providing relevant managerial
insights whilst still being capable of accurately forecasting the sales of all product demand types,
from intermittent to frequent.

Tomeet this need, this thesis employs a frameworkwhich combines two recently proposed innovative
model classes, the multi-scale Dynamic Count Mixture Model (DCMM) proposed by (Berry & West,
2019) and a Bayesian Predictive Synthesis (BPS) model (McAlinn & West, 2019). The former has
been designed to forecast the sales of products with intermittent count-valued demand via a two-
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step approach, in which first a Bernoulli Dynamic Generalized Linear Model (DGLM) forecasts the
probability of a sale occurring after which a Poisson DGLM forecasts the magnitude of the sale.
Whilst the latter proposes a framework capable of incorporating external forecasts, of the dependent
variable, in a statistically sound manner into a Dynamic Linear Model (DLM) while "accounting for
time-varying biases, miscalibration and inter-dependencies among models". Both employ a multi-
scale approach wherein a higher-level, external model generates forecasts which a lower-level model
relies on as a predictor. Whilst BPS was devised to harmoniously combine several forecasts of the
same dependent variable, DCMM utilizes the external model to forecast latent factors which affect
the dependent variable. It is this second approach which will be exploited in this case study, where
higher-level DLMs will generate forecasts of relevant common factors which in turn are introduced
as regressors in lower-level models. The structure of these lower-level models will depend on the
nature of the data, products with frequent, high-valued sales will often be more suited to a DLM and
thus the BPS framework will be employed to incorporate the latent factors into the DLM. Products
with irregular, lower-valued sales may be more suited to a lower-level DGLMwhereas products with
intermittent sales will need a DCMM to account for the zero-valued observations. In this manner the
model design can be tailored to the nature and needs of each product-specific time series.

The estimation of latent factors common to all product time-series, such as seasonality, is performed at
an aggregated level in order to circumvent the noise which often clouds the individual product-level
time series. Passing these latent factors to the individual time series allows the model to utilize the
power of all the data whilst still producing product specific forecasts. By decoupling the individual
time series the number of parameters that need to be estimated is kept at manageable levels ensuring
scalability. Furthermore the underlying components of the model such as trend, seasonality and
regression effects are conceptually easy to grasp and can provide valuable managerial insights. The
models are of a dynamic Bayesian state-space form, meaning the data is modeled on their natural
scale on the product level whilst also allowing the parameters to vary over time, whilst the sequential
learning and updating of the underlying DGLM/DLM ensures the model remains up-to-date. Lastly,
Bayesian estimation of the parameters provides insight into the uncertainty associated with each
parameter estimate and thereby each forecast, allowing modellers to account for this uncertainty in
their decision-making process.

To test themerits of the proposedmodel framework a case studywasdesigned inwhich the forecasting
performance for products with varying demand levels and frequencies could be evaluated in a
contemporary context. The subject data set contains the wholesale orders placed in the US state
Iowa for all liquor products, from vodkas with daily sales running in the thousands to speciality
liquors sold once every few days. Given that all the products were of an identical nature, namely
alcoholic beverages, the assumption that certain common factors affected each of themwas reasonable
and therefore the added benefit of the aggregated latent factor estimation could be tested. The
contemporary context in this setting refers to the COVID-19 pandemic, which had an immense
impact on almost all industries, as such a study on the liquor industry over the past year would
feel incomplete without accounting for the effect of the pandemic. Together these lines of research
materialize in the following research questions:

2



1. Does themulti-scale dynamic countmixturemodel outperform a traditional Generalized Linear
Model (GLM) in terms of forecasting performance at the product level for individual stores?

2. Have there been significant shifts in liquor consumption in Iowa since the outbreak of the
COVID-19 pandemic?

3. Has the composition of liquor demand changed? Following the enforced closure of local bars
& restaurants, did liquor demand shift towards more expensive, high-end brands than before?

Before the conclusions drawn for the aforementioned research questions are presented, this paper
ensues with a thorough description of the modelling process, with the traditional literature review,
data description and methodology sections outlined. Specifically, Section 2 provides a review of the
relevant literature on Bayesian forecasting in dynamic models, with a particular focus on the forecast-
ing of sales of (intermittent) low-valued count series and multi-scale modelling approaches. Section
3 continues with a detailed description of the data set used in this research, including elaborating on
the various aggregations possible and the importance of determining the right ones. Thesemodelling
choices are consequently detailed in Section 4. The methodology and underlying theory pertaining
to Dynamic (Generalized) Linear Models, Bayesian estimation and the employed forecast metrics are
presented in Section 5 followed by the results of the case study into Iowa liquor wholesales in Section
6. Thereafter Section 7 discusses possible limitations of this study and opportunities for further
research, final conclusions are given in Section 8.

2 Literature Review

To properly present the relevant literature on intermittent sales forecasting, it would be instructive to
first lay out the landscape of existing forecasting techniques to place where dynamic count mixture
models fit in and how they compare to other models which have been designed for similar purposes.
Since the early 1970’s three broad categories of sales forecastingmodels have beendefined: qualitative,
time series projection and causal models, (Chambers et al., 1971). The former of which relies on
qualitative data, e.g. expert opinions, to generate forecasts, the most famous example arguably
being the Delphi Method (Helmer, 1994), where a panel of experts is surveyed and their opinions
pooled. This approach is often chosen when data is scarce and generally under-performs compared
to the other two categories in terms of forecasting power (Mahmoud, 1984). The second approach
has seen an explosion in forecasting accuracy in recent years, particularly from Machine-Learning
algorithms such as XGBoost (T. Chen & Guestrin, 2016) and variants of Neural Networks. A prime
example being (Zhu & Laptev, 2017) who propose a Bayesian deep model based on Long Short Term
Memory (Hochreiter & Schmidhuber, 1997) for large-scale time series. Whilst time series projection
and causal models are heavily linked, both relying on historical data, with the latter often embedding
the results of the former in its process, the crucial distinction between the two lies in their purpose
of use. Whereas projection models and algorithms are designed with one key aim, namely the
highest possible forecasting accuracy, causal models also intend to map the relations at play between
the variable of interest and it’s drivers. It is this category to which dynamic count mixture models
belong.
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2.1 State-Space Time-Series Forecasting

Given the long history of academic research aimed at forecasting time series, a wide range of causal
model types have been developed over the years. As the multi-scale approach of (Berry &West, 2019)
aims to forecast multivariate time series via decoupling them into univariate DLMs, the literature
is presented of univariate and multivariate models alike. DCMMs belong to the state-space class,
meaning they are probabilistic graphical models that illustrate the probabilistic dependence between
latent state variables and the observed measurements (Koller & Friedman, 2010), a class that has
been broadly researched since (Kalman, 1960) published his recursive solution to the discrete-data
linear filtering problem. Among this class are a group of more traditional models known as ’ETS’
models, which consist of an error, trend and seasonality component aside from the level component.
Exponential smoothing (Hyndman et al., 2008) is an example often used, where forecasts are produced
by weighing averages of past observations, with weights eroding as observations become older. Most
well known are perhaps the Vector Auto-Regressive Integrated Moving-Average (VARIMA) models
(Box et al., 2008) and variations thereof. The most appropriate variation of these models for the case
study of Iowa liquor wholesales would be the SVARIMAX, which extends the VARIMA by appending
a seasonal component and allowing for the inclusion of exogenous regressors. In a case study similar
to this paper, (Arunraj & Ahrens, 2015) propose a hybrid SARIMA and Quantile-Regression model to
forecast the sales the daily food sales of a retailer and yield promising results.

Whilst these models are versatile and are capable of producing accurate forecasts they often suffer
under the vast amounts of parameters that need to be estimated. To illustrate, a VARmodel consisting
of 10 dependent variables generates a contemporaneous co-variance matrix of error terms consisting
of 100 elements. To address the high-dimensionality issue, several methods have recently been
proposed. (Wang et al., 2021) restrict the parameter space by rearranging the transition matrices of
the model into a tensor and applying tensor decomposition, whereas (Ding et al., 2017) propose a
hybridized kernel smoothing and ℓ1-regularizedmethod to estimate thesematrices. However despite
the recent advancements, these models still become increasingly complex when faced with high-
dimensional data sets, are computationally intensive and require repeated, expensive inference as
new data becomes available. Another popular state-space model is the conditionally Gaussian/linear
state-space model (West & Harrison, 1997; Prado & West, 2010), which this papers employs at the
aggregated sales levels. A development of these models is proposed in (Yelland & Lee, 2003), who
recognize that a single DLM is often insufficient to model the entire lifetime of a time-series and
thus introduce Dynamic Linear Mixture Models. A DCMM is in a broad sense an extension to this
framework wherein two DGLMs are mixed as opposed to DLMs.

2.2 Intermittent Count Time-Series

However, whilst the aforementioned methods are flexible they often fail in the face of time series
which exhibit low counts or frequent zero observations along with high volatility (Croston, 1972). To
overcome this, a number of novel forecasting approaches have been developed; (McCabe & Martin,
2005) build forecasts from the p-step forward predictive mass functions of distributions nested within
the Integer-Valued First-Order Auto-Regressive (INAR(1)) class. An empirical survey of the relevant
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forecasting methods is given in (Yelland, 2009), however many new approaches have since been
proposed. Apopular researchdirection is that pertaining to adaptedPoisson orNegative-Binomial(N-
B) models for count series, (C. Chen et al., 2016) focus on an auto-regressive conditional N-B model
whereby they also account for time-varying over-dispersion, a common issue with Poisson/N-B
models. In an earlier study, (Snyder et al., 2012) compare a Poisson, N-B and hurdle-shifted Poisson
model to achieve the same, ultimately favoring the latter. Hurdle-shifting, where the forecasting is
split in twoparts, one to determinewhether therewill be a sale and the other to estimate themagnitude
of the sale, is an important concept. It debuted in (Croston, 1972), who used a Bernoulli process to
distinguish between active and inactive selling periods, DCMMs build on this conceptualization.
As do (Jiang et al., 2019), who classify intermittent demand data into zero and non-zero values, to
afterwards fit non-zero values into amixed zero-truncated Poissonmodel, yielding better results than
the Poisson and hurdle-shifted Poisson models for their case study. Another critical research is that
of (Kolassa, 2016) who recognized that traditional evaluation metrics as the MAD and MASE are
inherently unsuitable for count data and therefore propose new metrics.

2.3 Bayesian Estimation of State-Space Models

Bayesian estimation methods in general have seen a spike in popularity brought about by the recent
surge in computing power. Their ability to provide a coherent approach for specifying sophisticated
hierarchical models for complex data (Calder & Cressie, 2009) along with the ability to showcase the
uncertainty of estimates, has made them popular in both academic and commercial research. This is
also the case for state-space models of multivariate time-series, a survey of recent researches in this
field is given in (West, 2020). In order to estimate the parameters of the state-space based DCMMs
this paper employs Sequential Bayesian analysis. A notable study also based on this analysis with
comparable intentions is (Aktekin et al., 2018), who develop a new class of dynamic multivariate
Poisson count models, Multivariate Poisson-scaled beta (MPSB) models. Whilst their model shows
encouraging results it has an identifiability issue when dealing with uninformative priors and does
not have a mechanism to deal with sparsity. Another form of Sequential analysis is Particle Learning
(Carvalho et al., 2010), an extension of the Sequential Monte Carlo methods known as Particle Filters
(Gordon et al., 1993). The key idea behind thismethodology is represent the density of the state vector
through a set of random samples, which are consequently updated and propagated via an algorithm.
This approach is more elastic than a Kalman-Filter based method, as it does not require restricting
assumptions as linearity or a Gaussian distribution of the noise, it is however computationally de-
manding. Nonetheless, the approach achieves favorable results compared to existing models and has
the added benefit of "being an intuitive and easy-to-implement computational scheme" and as such
is a promising line of research which warrants further study. A case study which demonstrates the
power of the method in the context of daily retailer sales is (Ping et al., 2018). Other applications of
Bayesian forecasting for dynamic multivariate state-space models include (Nakajima & West, 2013)
whomodel dynamic sparsity inmultivariate time series by thresholding latent processes to adaptively
actuate zero values and link these to time-varying parameters, this is done to generate natural vari-
able selection. (Zhou et al., 2014) extend this by including dependencies between the dynamic latent
factors. However these models are forms of Time-Varying Auto-Regressions (TV-VAR) (Kitagawa &
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Gersch, 1996) and therefore become highly complex as the number of time series grows making them
less suitable for our case study.

An alternative family of techniques within the world of Bayesian inference is that of Variational
Inference (VI) (Gordon et al., 1993). They are particularly useful as a substitute for Monte Carlo
sampling methods for complex distribution that are problematic to sample or evaluate directly.
Recent advancements in this field have led to new approximate inference methods which are capable
of estimating non-Gaussian models (Archer et al., 2015). Whilst these methods are faster than
traditional sampling, the deriving of the equations needed to iteratively update the parameters is
complex, laborious work (Zhang et al., 2018). If applied correctly they have still promising outcomes,
in a case study similar to this one, (Seeger et al., 2017) apply the methodology when forecasting
intermittent demand in linear state-space models. This paper employs VI to forecast and update the
individual DGLMs within each DCMM.

2.4 Multi-Scale Modelling

As previously touched upon, this paper employs a multi-scale modelling approach whereby mul-
tivariate time series are decoupled into univariate series thereby ensuring scalability whilst still
allowing information to be shared across time-series via latent factors. Multi-scale refers to a mod-
elling design, originating from the natural sciences, in which multiple models are used at different
scales of resolution to simultaneously describe a system (E & Lu, 2011). The exact approach employed
is a decouple-recouple framework which has seen several interesting applications in recent literature.
(Zhao et al., 2016) first devised the concept in their Dynamic Dependence Networks Models (DDNM)
which define coherent multivariate dynamic models through the coupling of customized univari-
ate DLMs. This concept is extended in Simultaneous Graphical Dynamic Linear Models (SGDLM)
(Gruber &West, 2017, 2016) where each series is permitted to be a contemporaneous predictor of any
other. Whilst both thesemodels are suitable for sales forecasting of a large catalogue of products, they
rely on the assumption of Gaussian distribution of the noise which is not realistic for products with
intermittent demand. The approach has also led to innovations in the context of dynamic networks,
(X. Chen et al., 2018, 2019) apply it twofold. Firstly to split a conditionally multinomial variable into
Poisson DGLMs which model the in-flows into a network, to later map these DGLMS to Dynamic
Graphical Model. The primary aim of these models is however not forecasting precision but rather
"characterizing normal patterns of stochastic variation in flows and allowing models to monitor and
adapt to these changes", rendering them less suitable to sales data. Final mentions should be made
of a recent paper which is strongly linked to DCMMs, (Berry et al., 2020) initially employ DCMMs
to forecast individual consumer transactions and consequently introduce Dynamic Binary Cascade
Models to predict the counts of items per transaction.

3 Data

The ensuing section provides an overview of the variables used, which have been compiled from
several publicly available data sets. These sources will be mentioned at the outset of each subsection,
in which a summary of each included variable is given, beginning with the dependent variable and
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continuing with the predictors. Each subsection is concluded with a report of the data preparation
applied, if anywasdeemednecessary. Beforedoing so, further explanationof themulti-scale approach
is in place to justify certain choicesmade. Eachmodel framework specification consists of twomodels,
one higher-level DLM whose main purpose is to generate accurate forecasts of the common latent
factors and a lower-level DLM, DGLM or DCMM which relies on these latent factors as predictors
and whose main purpose is to forecast the dependent variable. The higher and lower-level models
therefore rely on different predictor sets. This distinction is crucial as certain aggregations or data
treatments were employed on particular variables in the higher-level DLMs, in order to ensure that
the corresponding effect of these variables was captured as accurately as possible via the latent
factor.

3.1 Iowa Liquor Wholesales

1. Iowa state government website:
https://data.iowa.gov/Sales-Distribution/Iowa-Liquor-Sales/m3tr-qhgy/data

Wholesales of liquor areheavily regulated and catalogued in themidwesternUS state of Iowa, forClass
E liquor license holders this data is extensive and publicly available. Class E liquor licenses pertain to
grocery, convenience and liquor stores and allow for the sale of liquor with an alcohol percentage of
30% or higher for off-premise consumption. As such it contains all the purchases of liquor by Class E
liquor license holders from the Alcoholic Beverages Division (ABD), these include grocery & liquor
stores but exclude bars & restaurants. It should be noted that the consequent purchases of consumers
at these stores is not included. This is an important distinction given the different characteristics of
consumer sales data and wholesale data. To illustrate, the former is often characterized by heavy
weekly seasonality with increased purchasing on the weekend days whereas the latter sees stocking
up on the days leading up to holidays. The data set includes observations starting in January 2014 and
ending in January 2021, for each observation 21 variables are included, aside from the date, which
can be classified as either geographic, categorical or order-specifics (e.g. six-pack or bottle volume).
Unique 4/5 digit Store, County, Category, Vendor & Item Number Codes are included for identification
purposes as well as the wholesale and retail price of the item in question. These aforementioned
variables primarily served for aggregation purposes, to illustrate, if the aim was to forecast the sales
of Whiskies in a certain county then all the observations with the corresponding County Number and
Category fields could be filtered out. The data set provided two different dependent variables, Bottles
Sold and Sales. In all bar one model specification HC represented Sales or logSales, as ultimately this
deemed to be the main dependent variable of interest to the commercial stores and manufacturers.
The one exception being DCMMs which aimed to forecast the intermittent orders of a particular
product from an individual store. Here Bottles Sold served as a directly proportional proxy to Sales,
given that the price of these products remained unchanged for the given time-frame. This substitution
wasmade as the distribution of Bottles Soldwas found to be closer to the required Poisson distribution
on which the underlying Poisson DGLM component of DCMMs relies.

7

https://data.iowa.gov/Sales-Distribution/Iowa-Liquor-Sales/m3tr-qhgy/data


3.1.1 Data Preparation

Before analysis could be performed, the data set had to be cleaned and certain practical adjustments
applied. The original data set included a total of 108 different categories which were deemed to be
unnecessarily specific, examples include "Tropical Fruit Schnapps" and "Bottled in Bond Bourbon". It
was chosen to aggregate these categories down to 11 broad categories which are listed below:

1. Vodka

2. Brandies

3. Liqueurs

4. Tequila

5. Whiskies

6. Cocktails

7. Schnapps

8. Rum

9. Gin

10. Spirits

11. Specials

This choice was made in consideration of the fact that the category time-series would primarily be
estimated to generate latent factors which could consequently be passed down to the individual
product-level as predictors. By down-scaling from 108 to 11 categories, each category time-series
would have significantly more observations, thereby breeding preciser estimates. Furthermore it
was reasoned that the loss of specificity brought about by the aggregation would be of limited-to-no
impact. Estimating the effect of any latent factor on "Grape Schnapps" and "Spearmint Schnapps"
separately rather than on "Schnapps" seemed excessively detailed.

The ensuing step was to treat the data for missing values. In order to be deemed valuable, an observa-
tion needed to includeDate, Sale, Bottles Sold in addition to geographical and categorical information of
any level. Entries lacking theDate, Sale orBottles Soldfieldswere dropped altogether, thiswas however
only the case for 10 observations. Observations which lacked item-specific categorical information
would still be of value in the category-level DLMs, just as observations which lacked store-specific
geographical information could be in county or state-level DLMs. To ensure no observations were
needlessly dropped on the basis of missing geographic or categorical information, mappings were
made of all the related variable groups, e.g. geographic→ (Store Number, Store Name, Address, City,
Zip Code, County Number, County Name). Doing so served a dual purpose, firstly to impute missing
values from observations with identical inputs in related fields. To illustrate, if an observation lacked
both County Name, County Number but included the City field, the County information could be im-
puted from the City:County mapping. Secondly these mappings acted as means of cross-referencing
to eliminate incorrect entries, if an observation originated from the same store as another but not all
geographical variables were identical, it suggested one of the fields was incorrectly entered. After
all data points were cross-referenced for false input and imputed accordingly, the observations still
lacking necessary information were dropped. This was the case for 79,927 observations accounting
for 0.4% of the total set, ultimately resulting in 16,203,716 complete observations. Given the relatively
small number of observations with missing fields, their exclusion is not expected to have a significant
impact on the estimation of the model.

Since it’s inception the ABD has maintained ordering windows of Monday through Friday. However,
included within the data set were certain pre-2018 observations which appeared to have taken place
on a weekend day (Saturday or Sunday). The website of the Iowa ABD notes that these are the result
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of a change in administration implemented in 2018 regarding weekend orders. They state that these
’false’ weekend orders were most likely listed by delivery date and not order date, suggesting that the
order presumably occurred on the preceding Friday. The dates of these observations were therefore
adjusted accordingly.

Further consideration had to be made for the absence of observations on national holidays. This
was of particular importance for estimating the seasonality, as the procedure for doing so functioned
on an iterative basis and gaps in the time series would therefore distort estimates. To avoid such
miscalibration, it had to be assured that entries where included for all weekday dates that took place
between the first and last date of the set. Therefore if certain dates were absent in the data set
pertaining to the orders of a specific store, it simply suggested the store did not place orders on these
dates and a zero-valued observation was appended. However if dates were absent which coincided
with national holidays, thesewere considered false zero-observations as theABDwas closedmeaning
stores could not possibly place an order. These dates were therefore appended as ’NaN’-observations,
which were simply skipped during analysis.

3.2 COVID-19 Cases & Deaths

2. County level COVID-19 data from the New York Times:
https://github.com/nytimes/covid-19-data

The New York Times maintain a publicly available data set on Github which lists the number of new
COVID-19 cases and the number of COVID-19 related deaths per day at a county level for the United
States. The data set was complete so no imputation had to be performed, it was however presented
on a cumulative scale. Portraying the sum of all the preceding COVID-19 cases and deaths within
a certain county for a particular date. As these variables were included to reflect the magnitude of
the spread of the virus at any given time, it was instead chosen to first-difference the values resulting
in the number of new COVID-19 cases and deaths for each given date. It was further reasoned that
the nature of the data made it prone to outliers, primarily caused by delayed reporting, a common
example being new statistics from weekend days not being disclosed till the following weekday
producing inflated numbers for these days. To account for this, the seven-day average was instead
taken to which one final transformation was applied, namely a log-transformation. The logic behind
this decision being that the COVID-19 statistics were included to not only depict the level of spread of
the virus but also the fear this spread breeds amongst consumers, who may be more hesitant to travel
to grocery and liquor stores in times of elevated spread. It seems unreasonable to model this fear on
a linear scale, a doubling of the number of cases from 10 to 20 is unlikely to lead to twice as much
fear. The log-transformation was therefore applied to remove the assumption of linearity.

3.3 Bar & Restaurant Restrictions

3. COVID-19 related county/state level restrictions:
https://iowastartingline.com/iowa-covid-19-timeline/

https://ballotpedia.org/Documenting_Iowa

In order to properly model the effects of the COVID-19 pandemic on the wholesales of liquor a
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measure must be included which reflects the level of restrictions on freedom of movement. The Iowa
state government has thus far been relatively reluctant to impose travel restrictions on it’s citizens,
with the state not yet seeing a total lockdown nor have the grocery stores been forced to closed during
certain hours. From the aforementioned sources a list of imposed restrictions was compiled, of all
these the ones that would logically have an impact (via a substitution effect) on liquor wholesales
in grocery and convenience stores were the restrictions on restaurants and bars. A timeline of these
restrictions is presented in Appendix A.1. Upon construction of the timeline it was noted that aside
from restrictions during the initial lockdown, which took place when the virus first hit in the Spring
of 2020, the majority of the 99 counties saw little-to-no further restrictions. Only a few, predominantly
densely populated counties containing major cities, saw returning restrictions throughout the year.
To best model the impact of these restrictions on wholesales, it was therefore chosen to discard the
smaller counties which only saw one period of restrictions and focus on the six counties which were
the most affected: Polk, Johnson, Linn, Story, Dallas & Black Hawk. To incorporate this information
a categorical variable was initially included with four levels, whereof the first was omitted from the
analysis as a baseline:

0. No restrictions on bars and restaurants.

1. Bars and restaurants can open up to 50% capacity.

2. Bars must be closed but restaurants can open up to 50% capacity.

3. Bars and restaurants must be closed.

Furthermore, it should be mentioned that governor Kim Reynolds intentionally chose not to impose
any restrictions on the transport of goods in Iowa in a bid tominimize the impact on the state economy.
As such there is no reason to consider that changes in demandwere caused byCOVID-related stocking
problems for the retailers.

3.4 Climatic Data

4. Temperature & precipitation data from the Iowa State University:
https://mesonet.agron.iastate.edu/request/coop/fe.phtml

Recent studies on the relation between temperature and alcohol sales in the United States show a
strong correlation, particularly in colder climates such as Iowa (Hirche et al., 2021). For the six
aforementioned counties, temperature was thus included as a predictor. Each of the counties housed
several weather stations from which daily high and low temperatures were obtained, these were con-
sequently averaged over the stations as well as over both temperaturemeasurements to spawn amean
temperature. Aside from temperature, precipitation levels were also included as a regressor.

3.5 Google Mobility Reports

5. Changes in movement trends drawn from Google mobile phone data:
https://www.google.com/covid19/mobility/

At the request of public health officials worldwide, Google began publicly releasing Community
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Mobility Reports to help policymakers make more informed decisions in the fight against COVID-19.
The reports aim to present how public response changes to imposed policies via movement trends,
generated from themobile phone data of Google users. The data relay how the number of visitors that
travel to six categorized locations change in comparison to baseline days, which have been determined
over the 5-weekperiod from January 3rd through toFebruary 6th 2020. Thebaseline consists of 7values,

County Retail Grocery

Black Hawk 0 18
Dallas 18 22
Johnson 0 6
Linn 0 0
Polk 0 0
Story 6 25

Table 1: Missing Values

one for eachdayof theweek, to avoid comparing changes inmovement
betweenweekends andweekdays. The six categories forwhich trends
are charted are: parks, transit stations, workplaces, residential, retail
& recreation and groceries & pharmacies, of which the final two are
particularly relevant for this case study. Every store found in our data
set can evidently be placed in one of these categories, the majority
under grocery stores but the liquor stores are classified as retail. For
each store, be it grocery or retail, both variables were included to
test for a possible substitution effect. On days where Google lacked
sufficient data to "confidently and anonymously estimate the change
from the baseline", no values were included. Table 1 displays the
number of missing values out of 318 for the six chosen counties. These values were imputed from the
state-average values for the corresponding days.

3.6 Holidays

To account for a holiday effect, seen through increased orders on days around a national holiday, an
indicator variable was included. As previouslymentioned, formost national holidays the ABD closed
it’s doors and thus any holiday effect would have to be observed on the days surrounding the holiday.
To form an initial prediction of how many days, either before or after the holiday, should be marked
as having a holiday effect, the state-wide sales were plotted over time with holiday dates highlighted
as can be seen in Appendix A.2. A gradient analysis was subsequently performed, focusing on the
number of days around the holidays which saw positive deviations from the current trend. It was
estimated that this was strongest on the two days directly after a holiday, suggesting stores generally
re-stocked after holidays rather than stocking up beforehand in anticipation of increased sales. This
served as a starting point which would later be assessed via model selection.

3.7 Data Exploration

Once the data set had been properly treated and completed, primary data explorationwas performed.
The principal objective in doing so was to get a grasp of any long-running trends and strong cor-
relations at play which affected all time-series. It was therefore chosen to focus on the state-wide
aggregated wholesales to best capture these ’global’ relations. A plot of the state-wide aggregated
sales for all products over the period 2017-2020, Figure 1, showed a strong seasonal pattern as well as
an increasing trend. Each year appears to show an linear rise, from January to December, followed
by an acute drop in the following January. Closer inspection of Figure 2, which presents a box-plot
of the monthly levels, confirms this and also suggests a slight dip in the summer months of July and
August. When evaluated next to a plot of the average temperature over the same period, as seen in
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Figure 1: 1A: Total state-wide sales of all liquor products between 2017-2020 & 1B: Temperature and
weekly-averaged temperature (orange) between 2017-2020

Figure 1, correlation between the two seems to follow a pattern. For the first six months of the year,
temperature and sales seem to grow concurrently, until the summer months arrive when their paths
seem to deviate. A remarkable feature of the top graph in Figure 1, which plots the total sales, is that
there appears to be no significant change around the time the pandemic first hit Iowa (March 2020).
To inspect whether this effect, or lack thereof, was visible at all granularity levels of the data the focus
moved to the six counties of interest. The aggregated sales for all products across all six counties for
the years 2019 and 2020 are presented in Figure 3. Where the bottom graph, pertaining to 2020, has a
colour-coded highlight scheme to reflect the level of restrictions that were in place. Red denotes the

Figure 2: Box-plot of the monthly level of total state-wide sales of all liquor products between 2017-2020
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Figure 3: Total sales for all liquor products for the six aforementioned counties in 2019 (top) & 2020 (bottom)

highest level of restrictions, level 3, blue for level 2 and green-shaded areas correspond to times when
level 1 restrictions were imposed. Interestingly, aside from an apparent change in volatility during
the period of heaviest restrictions, there appears to be little noticeable change in comparison with
2019.

Once the zoomwas adjusted to themost granular level, that of individual stores, significant differences
did however become visible as portrayed in Figure 4. The two stores depicted belong to the same
local chain of liquor stores and are located in the same city less than 7 kilometres apart. Whilst the
store displayed on top appears to enjoy an increase in sales during the initial lockdown period, the
other store sees their sales almost disappear entirely. This could be for several reasons, firstly it was
theorized that the second store may have closed it’s doors during this period, however this seems
unlikely as both stores belong to the same chain and the store in question still placed orders, be it
far smaller ones. More probable was that location played a role, whilst the top store sits at central,
downtown location the bottom store lies in the outskirts of the city. These contrasting time-series
were seen for stores throughout the set. Although strong conclusions could not be drawn from these
plots, one note-able feature was apparent. Whilst the residents of Iowa did not appear to drastically
change their level of liquor consumption during these periods, aside from a relatively small increase,
the data suggests they did change their means of acquisition. Unfortunately the data set lacked
information regarding whether or not stores offered online delivery, otherwise this would seem to be
a plausible explanation for the disparities and is therefore an interesting line of further research. A
further point of notice which surfaced during the data exploration was the differing impacts amongst
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Figure 4: Comparison of the total liquor sales of two different stores in the same city between 2019-2020

the categories. As seen in Appendix A.3, the majority of categories saw relatively little change in
their state-wide sales time-series, with a few exceptions. Most notably, Tequila and Cocktails, whose
popularity seemed to rise once the pandemic struck. Inspection of the mobility report plots revealed
a potential point of concern, namely multicollinearity. Figure 5 plots the two variables, retail and
grocery, alongside one another and their movements appear to coincide perfectly which suggests that
including both in the analysis may be redundant, this will therefore be tested further on.

Figure 5: Time-series of the changes in movement trends for Retail (blue) & Grocery (orange) between
March-December 2020
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4 Modelling Approach

Upon assemblance of the data set, a model design was constructed in which consideration was made
for which parties had commercial interests in the Iowa wholesale liquor supply chain. By doing so it
could be determinedwhat the dependent variables in the lower-levelmodels,ℳ1, would be to thereby
test the model framework for commercial purposes. It was ultimately chosen to focus on two parties,
the ABD themselves as well as individual stores. To establish which aggregation and multi-scale
design suited each of the two parties a new lookwas cast upon the data set. The data could be decom-
posed along

Geographic Categorical Temporal

State All Week
County Category Day
Store Product

Table 2: Possible Aggregations

three general dimensions, the first termed ’geographic’ which rep-
resented the scale of aggregation of retailers, the second, ’categor-
ical’, which acted equivalently for products and the third, ’tempo-
ral’, denoted whether the data was on a daily or weekly basis. A
total of 18 various aggregation possibilities were therefore possi-
ble, which are presented in Table 2. For the ABD, forecasting the
order timeline of all 2387 stores individually would be needlessly
exact. From an operational standpoint greater gains could be made if they obtained accurate fore-
casts of the total demand that was to be expected, for stocking purposes, as well as a decomposition
of this demand along category/county lines for logistical purposes which could be modelled on a
daily scale. For this specification the higher-level modelℳ0 would therefore model state-level sales
whereas the lower level modelℳ1 would forecast county-level sales. For individual stores a weekly
aggregation proved to be more suitable given systematic differences between weekdays, with stores
often implementing fixed order schedules making daily order forecasting redundant. Furthermore,
given that individual stores by definition lay on the most granular level of the geographic dimen-
sion, the difference between their higher and lower-level models was between product categories and
individual products. Once the dependent variables have been determined for both layers of each
specification, the appropriate model could be chosen. This was done by examining the distribution
of the chosen dependent variable, as well as the distribution of the errors produced by an OLS re-
gression of .C = ^ ′#. For the majority of these a DLM proved to be most suitable, often after a
log-transformation, the only exceptions were for the time-series of the sales of one specific product
in an individual store, where a DCMM proved more appropriate given that stores generally did not
order specific products every week but rather once every few weeks.

Determining which regressor would be placed on which level was straightforward. The majority
of the regressors were county-specific (Climatic, COVID-19, Restrictions and Mobility) and these
therefore had to be placed on the county-level of the first specification, the remaining variables were
placed at the state-level. For individual stores all regressors were placed within the higher-level
model, as the order data for one product for a single store often did not provide enough data points
to estimate the effect of all the regressors. For all specifications, the regressors estimated atℳ0 would
be passed toℳ1 as latent factors. To summarize, an overview of the complete model specifications is
presented in Table 3.
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Model Layers Dependent Variable .C Regressors LC

ABD ℳ0: DLM State sales of all products Holidays & Seasonality (Daily & Monthly)
ℳ1: DLM* County sales of product category Climatic, COVID-19, Restrictions & Mobility

Individual ℳ0: DLM Store sales of a product category All
Stores ℳ1: DCMM* Store sales of one product

Table 3: Overview of the 2 model specifications with layers, dependent variables and regressors. * is included
for theℳ1 level models to indicate these are latent-factor models.

5 Methodology
The three differentmodel types that are placed on the varying levels are thus, Dynamic LinearModels,
Dynamic Count Mixture Models and Dynamic Generalized Linear Models within the DCMMs. The
ensuing section serves to expand upon the structure, updating and forecasting of each of these, in
the aforementioned order. Initially, the working of each of these models will be laid out without the
inclusionof latent factors, afterwhich subsection 5.4will outline how latent factors canbe incorporated
into DGLMs and DLMs respectively.

Before diving in, mention should be made of the hyper-parameters present in the model, namely the
discount factors, �, %, �, each denoted by a different symbol as they discount different components.
These need to be set prior to analysis, with their importance being paramount as they control the rate
at which coefficients are allowed to change, miscalibration can therefore be costly. They determine
the change in the coefficients by discounting the old, historical information thereby increasing the
contribution of new information, a discount factor set at 0.99 adds 100%−99% = 1%more uncertainty
at each time-step. The implementation of these hyper-parameters will be become apparent in the
equations below.

5.1 Dynamic Linear Models

Conditionally Gaussian/linear state-space models (West & Harrison, 1997; Prado &West, 2010), also
known as DLMs, have become a fundamental tool for modellers since their inception. Their flexible
linear structure makes them widely applicable whilst the dynamic nature of the model allows for the
modelling of more complex relations than a standard linear model. Their merits become even clearer
from a Bayesian perspective, with their parameters defined by known distributions at each time step.
To present the working of a DLM, the full equation system for an arbitrary time point C − 1 will be
given first, followed by the updating steps from C−1 to C, lastly mentionwill bemade of the parameter
initializations in section 5.5 which will complete the full DLM specification.

The structure of a standard univariate DLM is of a state-space form, characterized by an observation
equation which relates the dependent variable to the regressors via dynamic regression as shown in
(1). Where as per usual, .C represents the dependent variable at time C, LC a vector of regressors and
constants, )C the state vector and the observation error is  C with variance 1/)C .

Observation: .C = L′

C)C +  C  C ∼ N(0, 1/)C) (1)

A system equation (2) describes the structural evolution of the state vector via the state evolution
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matrix, MC , and state evolution error, $C , which is T-distributed with =C − 1 degrees of freedom and
has variance]C .

System: )C = MC)C−1 + 8t 8t ∼ )=C−1(0,]C) (2)

If )C were to be :-dimensional vector, then MC would therefore be a :x:-dimensional matrix. In
the remainder of this paper MC will be a block-diagonal matrix wherein the diagonal elements each
correspond to the coefficients of regressors found in )C . This matrix will thus consist of ones along
the diagonal and zeros elsewhere, the only exceptions are for model specifications with two trend
components which will add a single off-diagonal 1 to the matrix, whilst the block-diagonal elements
ofMC which correspond to the seasonality predictors will be filledwith harmonic componentmatrices
((West & Harrison, 1997) Section 8.6). To illustrate the working, an exemplary LC and MC are given
below for a model which includes a single trend component, a indicator variable for holidays and a
Fourier seasonal component of period length 5 to account for weekday seasonality, where N1 ,N2 are
the harmonic component matrices.

L′

C = (1,HolidayC , 1, 0, 1, 0) & MC = diag[1, 1,N1 ,N2]

where N1 =

(
cos(2�/5) sin(2�/5)
−sin(2�/5) cos(2�/5)

)
, N2 =

(
cos(4�/5) sin(4�/5)
−sin(4�/5) cos(4�/5)

)
A common extension is the allowance of dynamic observational variance, primarily imposed via
a Beta-Gamma stochastic volatility model for the observational variance((West & Harrison, 1997),
Section 10.8). To impose this, the variance of the  C is given a structural evolution equation referred to
as the precision, presented in (3), in which the reciprocal of the observation variance )C is multiplied
by the Gamma-distributed �C and divided by the discount factor �, where =C−1 is once more the
degrees of freedom parameter whose initialization and evolution will be presented below.

Precision: )C = �C)C−1/� (3)

with �C ∼ Beta(�=C−1/2, (1 − �)=C−1/2) (4)

The parameters of interest are thus )C and 5C , the information available regarding these parameters
at any point in time is summarized by the their respective priors and posteriors. These are displayed
below in (5)-(9) inwhich the symbolDC−1 encompasses all the information, parameters and regressors,
available at time t-1. Firstly for )C−1, the posterior at C − 1 (5) is T-distributed with =C−1 degrees of
freedom, mean state vector of mC−1 and state covariance matrix IC−1. Via the evolution defined in (7)
the posterior for C − 1 becomes the prior for C (6).

Information: ()C−1 |DC−1) ∼ )=C−1(mC−1 , IC−1) (5)

()C |DC−1) ∼ )=C−1(aC ,XC) (6)

with aC = MCmC−1 & XC = MCIC−1M′

C +]C (7)
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In an identical fashion (8) and (9) present the Gamma-distributed posterior for )C and prior for )C−1,
in this notation BC−1 denotes the C − 1 estimate of the observational variance 1/)C−1.

()C−1 |DC−1) ∼ �(=C−1/2, =C−1BC−1/2) (8)

()C |DC−1) ∼ �(�=C−1/2, �=C−1BC−1/2) (9)

Having defined IC−1, the setting of ]C can now be clarified, which in accordance with ((West &
Harrison, 1997), Section 2.4.2) is set at]C = IC−1(1− �)/� to ensure the error is proportionally related
to the initial variance, where � is the discount factor for regressor information. Varying discount
factors for different regressors and latent factors are implementable, where %would then take a vector
form.

5.1.1 Updating & Forecasting

Before the next observation, HC , becomes available and the updating can commence a forecast distri-
bution is generated based on the state vector prior at C (6). In which the mean and covariance of this
distribution are generated via vector multiplication with the regressors LC while accounting for the
observational variance via BC−1.

Forecast: (.C |DC−1) ∼ )�=C−1( 5C , &C) (10)

with 5C = L′

CaC & &C = LCXCLC + BC−1 (11)

From there the parameters are updated according to the following Kalman-filter based equations (12)-
(17) in which 4C defines the difference between the forecast and the realized observation and together
with GC forms the ’Kalman filter gain’ which is applied to (aC ,XC) in (14). Furthermore AC is termed
the volatility ratio, which represents the change in the estimate of the observational variance.

Updating: ()C |DC) ∼ )=C (mC , IC) (12)

()C |DC) ∼ �(=C/2, =C BC/2) (13)

with mC = aC + GC 4C , IC = AC(XC − GCG′

C&C), (14)

=C = �=C−1 + 1, AC = (�=C−1 + 42C /&C)/=C (15)

BC = AC BC−1 (16)

where 4C = .C − 5C & GC = XCLC/&C (17)

(10),(12) & (13) provide the primary output of interest, the forecast distribution for the dependent
variable and the posterior distributions for the relevant parameters.

The initialization of the four parameters defining the two processes of interest, are generated outside
the model and passed through as initial priors: m0 , I0 , =0 , B0. Together with the equations systems
above, these initial priors form a complete specification of a DLM.
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5.2 Dynamic Generalized Linear Models

Given that a DGLM is a generalized extension of a DLM, the framework of a DGLM will be briefly
explained ((West et al., 1985), Chapter 14). A DGLM consists of an observation model (18) with a pdf
belonging to the exponential family, defined by the natural parameter �C and a known scale factor
).

?(HC |�C , )) = 1(HC , ))4G?[){HC�C − 0(�C)}] (18)

The observation model is consequently linked to a linear predictor, �C , via a link function 6(�C) = �C ,
in the predictor the regressors and state vectors take place: �C = L′

C)C . In the three distributions used
in this specification, Bernoulli, Poisson and Normal, the link function is the identity function and as
such �C = �C . The known scale factor, ) is set to 1 in Bernoulli and Poisson models whereas in DLMs
(Normal) it becomes time varying and is estimated via a Beta-Gamma stochastic volatility model as
explained above. To observe how this generalized notation leads to the observation equation of a
DLM (1), input �C = �C = �C , )C = 1/ C , 0(�C) = �2C /2 and 1(HC , )C) = ()C/2�C)1/2exp(−)CH2C /2). For
further details regarding the parameters and functions of (18) for the other distributions, please refer
to Appendix A.4. Given �C , a state space form defines the dynamic regression:

�C = L′

C)C where )C = MC)C−1 + 8t 8t ∼ (0,]t ) (19)

Where the included parameters are equally defined as above. Aside from the lack of an observational
error, (19)mirrors the observation and system equations of theDLM.An extension presented in (Berry
& West, 2019) attempts to mimic the effect of the observational error for data which displays over-
dispersion relative to a Poisson model, a common issue. By redefining state and regression vectors
as follows, L∗C = (1, L′

C )′ and )∗C = (�C , )′

C)′, a new model is generated: log(�C) = L′

C
∗)∗C = L′

C)C + �C .
The new random-effects parameter, �C , is accompanied by it’s own discount factor, �. This extension
allows for time C-specific variation above the baseline level thereby accounting for the over-dispersion.
The conditional variance of �C is defined as V[�C |DC−1] = &C(1 − �)/� where &C = L′

CXCLC . Given this
setting, the level of � determines the impact of the random effect, where � = 1 results in a standard
PoissonDGLMwithout the extension. For further details please refer to ((Berry &West, 2019), Section
2.3).

5.2.1 Updating & Forecasting

Unlike DLMs the prior and posterior of the state vector is not of a known distribution for DGLMs. The
standard Kalman-filter based updating outlined above is therefore infeasible and DGLMs therefore
rely on Variational Bayes and Linear Bayes conceptuality to achieve the same. The process is as
follows:

1. At any given time, t-1, the mean vector and variance matrix of the posterior of the state vector
encapsulate the current information set: ()C−1 |DC−1) ∼ (mC−1 , IC−1)

2. Standard evolution ensues resulting in the 1-step ahead prior moments of the state vector:
()C |DC−1) ∼ (aC ,XC)where aC ,XC are defined identically as for DLMs.
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3. Here the Variational Bayes concept determines that a conjugate prior for �C , (�C |DC−1) ∼
CP(
C , �C), must be chosen of the form: ?(�C |DC−1) = 2(
C , �C)exp(
C�C − �C0(�C)) where 2(., .) is
a known function of the hyper-parameters (
C , �C) specific to each exponential family model.

4. These hyper-parameters are consequently evaluated as to ensure the conjugate prior meets the
prior moment constraints: E[�C |DC−1] = 5C = L′

CaC & V[�C |DC−1] = @C = L′

CXCLC

5. Through employment of the conjugacy-induced predictive distribution
?(HC |DC−1) = 1(HC , ))2(
C , �C)/2(
C + )HC , �C + )) a forecast for HC is generated.

6. Once the true HC is observed, the posterior for �C enjoys the conjugate form:
(�C |DC) ∼ CP(
C + )HC , �C + ))

7. Given this posterior, mapping backwards to �C = �C implies posterior mean and variance:
E[�C |DC] = 6C & V[�C |DC] = ?C

8. Ultimately, the state vector’s posterior mean vector and variance matrix are determined via
Linear Bayes updating: ()C |DC) ∼ (mC , IC)where:
mC = aC + XCLC(6C − 5C)/@C & IC = XC − XCLCL′

CX
′

C(1 − ?C/@C)/@C

5.3 Dynamic Count Mixture Models

A combination of two DGLMs, one binary and one conditionally Poisson, generates a dynamic count
mixture model (DCMM). The idea behind the DCMM is that the first component, the binary DGLM,
models the probability of a sale occurring and consequently the second component, the conditionally
Poisson DGLM, models the magnitude of the sale given that a sale occurs. It is often essential to filter
out the zero outcomes as failing to do leads to significant underestimation of the true level of sales. To
form a DCMM for a non-negative count time series, HC defines a parallel binary series IC = 1(HC > 0),
the corresponding DGLM is characterized by:

IC ∼ Ber(�∗C) where logit(�∗C) = L′∗
C )
∗
C (20)

The ensuing conditional Poisson DGLM has the following observation model:

HC |IC =

0 if IC = 0

1 + GC , GC ∼ Po(�+C ) if IC = 1
where log(�+C ) = L′+

C )+C (21)

Where the differing notation between L′∗
C )
∗
C and L′+

C )+C is used to highlight that both the regressors
and latent state factors can differ between the two DGLMs. Certain factors or regressors may be
important predictors for determining whether or not a sale may occur (Bernoulli DGLM) but may be
fairly irrelevant for determining the size of the purchase (Poisson DGLM), therefore these vectors are
allowed to differ.
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5.3.1 Forecasting

Given that a DCMM is simply a composition of two DGLMs, it too provides a full predictive distri-
bution for any future point in time. This distribution is mixture of the two independent DGLMs, a
shifted Poisson and a Bernoulli. To obtain forecasts for n-days ahead, the forward evolution of the
state vectors of both respective DGLMs explained above provides analytic amendability. The form of
the probability density function, at time t, for HC+= is as follows:

?(HC+= |DC ,�C+=) = (1 − �C+=)�0(HC+=) + �C+=ℎC ,C+=(HC+=) (22)

with (�C+= |DC) ∼ Beta(
0
C (=), �0C (=)) which represents the forecast probability of a zero-valued obser-

vation and consequently �0(H), the Dirac Delta function at zero, imposes this zero-value. Furthermore
ℎC ,C+=(HC+=) is the forecast density of HC+= = 1 + GC+= where GC+= is the product of the shifted Poisson
DGLM and thus has a Negative-Binomial forecast distribution:

(GC+= |DC) ∼ NB
(

1
C (=),

�10(=)
1 + �1C (=)

)
(23)

For clarity, the 0-superscripted 
, � refer to the conjugate parameters of the Bernoulli process whereas
the 1-superscripted 
, � serve the same purpose for the Poisson process. The aforementioned process
describes a marginal forecast distribution for HC+= , what is often of greater practical relevance is a
path forecast for HC+1 , HC+2 , .., HC+= . The framework above allows for trivial computation of these path
forecasts as follows.

1. Generate the 1-day ahead forecast distribution as laid out above.

2. Simulate an observation H∗C+1 from the forecast distribution.

3. Regard this simulated outcome as true and update the respective DGLMs state vectors from
prior to posterior accordingly.

4. Progress to day t+2 and repeat the process.

5. Repeat for days t+3,..,t+n,

One run-through of the steps above generates a single path H∗C+1 , H
∗
C+2 , .., H

∗
C+= Monte Carlo sample.

Sufficient repetition of the process generates a full Monte Carlo representation of the joint predictive
distribution.

For certain product/county model specifications it became apparent that the shifted Poisson DGLM
component was inappropriate. After filtering out the zero-valued observations what remained de-
viated too far from a Poisson distribution, even with correction from the random effects extension.
For these cases the non-zero valued observations were log-transformed resulting in an approximately
normal distribution, the Poisson component was therefore replaced by a DLM. The derivations above
remain applicable, with only theNegative-Binomial forecast distribution replaced by the T-distributed
forecast distribution seen in (10).
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5.4 Latent Factor Models

The latent factors are the building block of the multi-scale model approach defined above, allowing
the models to transfer information to one another from different levels. To illustrate the working,
consider the conditionally Poisson modelℳ1 for a single time series, 8, pertaining to the orders of a
certain product by one store. The relevant vectors are defined as:

)i ,t =

©­­­­­­­«

$i ,t

"i ,t

#i ,t

2i ,t

+i ,t

ª®®®®®®®¬
L′+
8 ,C =

©­­­­­­­«

f8 ,C
5C

%C
'C
6C

ª®®®®®®®¬
(24)

where f8 ,C contains series specific constants and the following three latent factor vectors 5C , %C , 'C
represent the effects of temperature, holidays, seasonality and COVID-19-related variables which are
estimated, in parallel, on the other level of the modelℳ0. The latent factors thereby transfer from
being elements of )C in ℳ0, to being elements of LC in ℳ1. Given the vectors above, the linear
predictor is thus:

�8 ,C = $′i ,t f8 ,C + "′i ,t5C + #′i ,t%C + 2′i ,t'C + +
′
i ,t6C (25)

Note that each series has different state components $i ,t , "i ,t , #i ,t , 2i ,t , +i ,t allowing the common
factors to impact the individual series differently in addition to being time-varying.

Identically to regular DLMs and DGLMs, the underlying distributional distinctions between latent
factor DLMs and latent factor DGLMs cause the parameter estimation to differ. The two estimation
approaches are therefore separately presented below.

5.4.1 Updating & Forecasting Latent Factor DLM

When forecasting a latent factor DLM, two distinct groups of parameters have to be estimated and
projected into the future. The first are the DLM-related dynamic parameters ΦC = ()t ,  C), the second
are the latent factors forecasts generated by "0, denoted by ΛC . Given that the higher-level "0 is,
in each specification, a DLM in which the latent factors are elements of )C , the resulting forecast
distribution of ΦC is thereby T-distributed as laid out in (12). In this context the added benefit of a
DLM as opposed to a DGLM, is the known distributions of the DLM parameters as this allows for
Markov chain Monte Carlo (MCMC) estimation via a two component Gibbs sampler.

The procedure of the sampler for obtaining posterior results is as follows, MCMC draws from
?(ΦC |ΛC ,DC−1) are taken after conditioning on initial latent agent statesΛC . The sampling is performed
using the well-known forward filtering backward sampling algorithm (FFBS) (Frühwirth-Schnatter,
1994). Subsequently, MCMC draws are taken from ?(ΛC |ΦC ,DC−1) whereby the previously drawn ΦC
is conditioned upon. To achieve this, a standard approach from (Frühwirth-Schnatter, 1994; West &
Harrison, 1997) is used inwhich the forecast T-distributions in the proportionality below are rewritten
as a scale mixture of Normal distributions, simplifying the right-hand side to an entirely Gaussian
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expression from which draws can be taken.

?(ΛC |ΦC ,DC−1) ∝ N(.C |L′

C)C ,  C) )(ΛC |mC , IC) (26)

For a detailed explanation of the sampler and the exact steps please refer to Appendix A.2 of (McAlinn
& West, 2019), where the Gibbs sampler which served as inspiration for the sampler employed in
this case study is presented. The code corresponding to the adjusted Gibbs sampler used in this
thesis is presented in Appendix B.1. Once posterior MCMC draws have been obtained forecasting is
straight-forward. For a 1-step ahead forecast, first generate a draw of ΦC+1 = ()t+1 ,  C+1) by drawing
 C+1 according to (3) for each sampled ΦC . Given )C and  C+1, )C+1 follows from (2) after which ΛC+1
can be independently drawn from the forecast T-distribution. Together these forecasts provide the
necessary components to draw a forecast .C+1 from (1), this process can easily be adjusted to allow for
more distant forecasts. To optimally customize multi-step ahead forecasting to a specific k-step ahead
horizon, (McAlinn &West, 2019) suggest replacing the 1-step ahead forecast distribution )(ΛC |mC , IC)
in (26)with the k-step ahead forecast distribution)(ΛC |mC−: , IC−:). The reason for doing so is that "this
changes the interpretation of the dynamic model parameters ΦC to be explicitly geared to the k-step
horizon. Bayesian model fitting then naturally “tunes” the model to the horizon k of interest."

5.4.2 Updating & Forecasting Latent Factor DGLM

To illustrate how the updating and forecasting works in a DGLM/DCMM which takes an externally
generated latent factor as input, the following example is included. Consider two models,ℳ0 is the
higher-level model which generates the latent factor, andℳ1 is the model which includes the latent
factor ) as a regressor. If we wish to forecast H1,C:C+10, that is a path forecast of the dependant variable
ofℳ1 10 days into the future, the following process is run:

1. ℳ0 independently generates N samples of )C:C+10, the trajectory of the latent factor till C + 10.

2. ℳ1 consequently runs N analyses, each one conditional on a sample )=C:C+10, to forecast H1,C:C+10.
These trajectories H=1,C:C+10 create a N-sized Monte Carlo sample of the implied predictive distri-
bution thereby accounting for the uncertainties of the latent factor process fromℳ0.

Once the true value of H1,C has been observed, the state vectors can be updated as follows:

1. Via conditionally conjugate analysis for DGLMs compute the value of 1-day ahead forecast
probability density function: ?(H1,C:C+10 |)=C:C+10 ,DC−1), for each n. Generate implied posterior
probabilities for the n=1:N latent factor samples by using the calculated values as marginal
likelihoods and comparing them to uniform (1/N) prior probabilities.

2. Consequently, for each )=C , perform DGLM updating to compute the posterior mean vector
and variance matrix of )1,C |)=C , H1,C ,DC−1. Use the probabilities calculated before as weights
to marginalize over the N samples to generate implied Monte Carlo approximations to the
posterior mean vector and variance matrix.
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5.5 Priors

Before the updating of the parameters can commence, an initial prior must be passed through to
the model as a starting point. A subset of the data set was set aside to do so, with the temporal
aggregation level determining the size of the subset. For data sets with daily observations the first
60 observations were used, whereas for weekly data the first 20 observations were deemed sufficient.
These initial priors, which consisted of the parameters m0 , I0 were generated by running standard
OLS and GLS, for DLMs and DGLMs respectively, on the subset using Zellner’s objective g-prior
(Zellner, 1986), where g was set at 30 for daily-valued data sets and 10 for weekly. The additional
parameters =0 , B0 for DLMs were set as the prior sample size and 1 respectively.

5.6 Hyper-Parameter and Model Selection

To optimize the forecasting performance it was crucial to properly tune the model hyper-parameters,
the discount factors, and find the right model specification. To compare various model specifica-
tions, with differing variable sets, the forecasting performance of the specifications was compared.
Over a period of two weeks, from the test set (October-December 2020), the likelihood of the true
observed H under the forecast distribution was calculated. The product of all these likelihoods,∏

ℎ=1:C ?(.ℎ |ℳ ,Dℎ−1), was compared between model specifications to determine which performed
best in terms of forecasting power.

The tuning of the discount factors was equally important, by their nature there is a trade-off to
lowering them, whilst the coefficients are allowed to vary more giving the model greater flexibility, it
also increases the uncertainty in forecasts and makes the coefficients increasingly vulnerable to noise.
A discount factor between [0.9,1] is reasonable as below this range the variance becomes excessively
large ((West & Harrison, 1997), Section 6.3). To find the optimal discount levels for the the stochastic
volatility, random effects parameter and all the regression components (trend, seasonal, regressors
and latent factors) a grid search was performed, testing the forecasting performance at the following
levels :[0.9,0.92,0.94,0.95,0.96,0.98,0.985,0.99,0.995,0.999].

5.7 Implementation

The model was implemented using the open-source PyBATS python package (Lavine, 2020), which
was developed by Isaac Levine in collaboration with Mike West. Designed to enable both quick
analyses as well as flexible customization options for the model form, prior and forecast period. It is
capable of running both DCMM models (Berry & West, 2019) and DBCM models (Berry et al., 2020),
the only open-source python package at the moment which does so. The package did however lack
certain functionalities which were necessary to run the model design laid out above, specifically; the
two-step Gibbs sampler for latent factor DLMs aswell as sample-based updating and path-forecasting
for latent factor DLMs. The option to return the log-probability density of observations under the
estimated forecast distribution was also lacking. These functionalities were therefore coded outside
the package, in consultation with the package developer, and will be appended to the package during
the upcoming patch. For completeness, the code pertaining to the aforementioned functionalities has
been included in Appendix B.
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6 Application & Results

The following section presents and analyzes the obtained results. Given that themulti-layer structure,
latent factor working and interpretation of results were the same for both model specifications, it was
chosen to focus on one specification to demonstrate the working of the model and particularly the
latent factors. The specification chosen was the first of Table 3, the DLMs designed to forecast state-
wide sales, the reason for doing so was that this specification could serve a dual purpose. Aside
from showcasing the model working it was also deemed the most appropriate to evaluate the effects
of the COVID-19 pandemic, through the COVID-statistics, restriction levels and mobility reports.
The second specification was less suitable given that it involved weekly observations and thereby
aggregated out vast amounts of information, furthermore it revolved around the sales of a single store
and therefore store-specific circumstances, e.g. promotions onwhichwe have no data, could influence
the outcome. Aside from the detailed analysis of the first specification, the forecasting performance
of both specifications are presented and compared to a standard non-multi-scale alternative.

6.1 State-Level Wholesales Dynamic Linear Model

6.1.1 Application

The first point of action was applying a log-transformation to the dependent variables ofℳ0 andℳ1,
the aggregated state-wide sales of all products and the aggregated county-wide sales for a particular
category, respectively. This was done to to reduce the scale of .C and generate multiplicative effects
for the regressors, increasing the interpretability.

The following step towards performing any analysis was model selection, in which consideration had
to be taken for the wholesale nature of the data. This implied that there was a certain lag between
the regressors and the dependent variable at each stage, the logic being that the regressors were
primarily predictors of in-store liquor purchases by consumers. Changes in these purchases would
subsequently be translated through to the wholesale data, where periods of increased in-store sales
would result in greater or more frequent wholesale orders. To determine the optimal length of this
lag, the forecasting performance of model specifications with varying lag length were compared
as explained in Subsection 5.6. The outcome of these comparisons were however inconclusive and
further inspection of store-specific sets revealed the reason. Whilst the model set-up did account for
the lag, by aggregating all the stores in a certain county (ℳ1) or state (ℳ0) it incorrectly assumed
that the lag was equal for each store. Ensuing isolated analysis of stores of varying sizes found
that larger supermarkets had lags between 7 to 10 days whereas small-scale liquor stores had lags
between 1-3 days. To therefore perform meaningful analysis the stores had to be split by size to
ensure an appropriate lag could be imposed. The results presented below pertain to the set of large
supermarkets and the optimal lag for this set was found to be 9 days.

The ensuing stepwas to determine the optimal variable set for eachmodel layer,ℳ0 andℳ1. Initially
the set-up was chosen as described in the first row of Table 3, however after subsequent analysis it
became apparent that two alterations had to be made. Firstly, given that the climatic data was
available on a county level, it was initially placed inℳ1 to thereby allow for different temperature
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effects between counties. However after comparing variations of the model set-up, a specification
with climatic data on the state level proved to generate better forecasts, in which the magnitude of the
coefficient was, on average over the test set, smaller than the individual county-level coefficients but
also had a far smaller variance. This provided forecasts of greater accuracy whilst also lowering the
forecast variance, the climatic data was therefore moved up fromℳ1 toℳ0. The second alteration
was in regard to the restriction variable, which was initially included as a ordinal categorical variable
with 4 levels based on an assumption of linear effects. This assumption was proven to be misplaced,
with particularly the highest level of restrictions having proportionally a much greater effect, the last
three levels were therefore included as dummy variables as opposed to a single categorical variable.
Two variables, (Precipitation, log(7-day avg.Deaths)), were dropped from the regressor vector as they
were found to be of little contribution, with coefficients quickly converging to 0 and remaining there,
whilst their inclusion did increase the overall variance of themodel forecasts. Furthermore, instead of
including bothRetail andGrocery only one of the twowas always included, for the larger supermarkets
this was Grocerywhilst for the smaller liquor stores this was Retail as these were officially classified as
retail stores as opposed to grocery or convenience stores. The reason for doing so was that whilst the
second variable ,e.g. Retail for supermarket specifications, did pick up a small substitution effect with
a opposite sign to the first variable, this contributed little to the forecasting accuracy and did increase
the forecast uncertainty.

Ultimately this led to the following regression vector LC and state evolution matrix MC forℳ0 and
ℳ1 (27-28), where the harmonic component matrices N1 ,N2 are defined as in Subsection 5.1 and
the variables FebC ..,DecC are indicators included to capture the monthly seasonality compared to the
omitted baseline January.

ℳ0 :LC ,0 = (1, TempC ,HolidayC , 1, 0, 1, 0, FebC ..,DecC), MC ,0 = diag[1, 1, 1,N1 ,N2 , 1, 1.., 1] (27)

ℳ1 :LC ,1 = (1,�C , logCasesC ,GroceryC ,Restr.1C ,Restr.2C ,Restr.3C), MC ,1 = O12G12 (28)

where �C = (.∗ℳ0 ,C
, Temp∗ℳ0 ,C

,Holiday∗ℳ0 ,C
,Daily Seas.∗ℳ0 ,C

,Monthly Seas.∗ℳ0 ,C
) represents all the la-

tent factors generated in ℳ0 that are passed down to ℳ1, in which .∗ℳ0 ,C
is the forecast for the

dependent variable ofℳ0. The construction ofℳ0 laid out above generated 11 latent factors for the
monthly seasonality, one for eachmonth included, which was filled with zeros for all time-points out-
side the month corresponding to the latent factor. To save space and computational time, these were
all combined into one latent factor. To illustrate how the seasonality latent factors works, consider the
following example of the 4-day ahead forecast of the daily seasonality latent factor:

Daily Seas.∗ℳ0 ,C+1 = [0.05099, 0, 0, 0, 0]

Daily Seas.∗ℳ0 ,C+2 = [0, 0.09767, 0, 0, 0]

Daily Seas.∗ℳ0 ,C+3 = [0, 0, 0.01507, 0, 0]

Daily Seas.∗ℳ0 ,C+4 = [0, 0, 0,−0.19674, 0]

Where at time-point C the latent factor forecast for C + 1, a Monday, estimates a multiplication factor of
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40.05099 = 1.0523 or a 5% increase, whereas the upcoming Thursday is expected to see a 18% decrease
(4−0.19674 = 0.8214) from the baseline level. The final preliminary settings which needed to be tested
were the levels of the discount factors, � and �, for the observational variance and the regressors
respectively. A grid search revealed that the forecasting performance was best at [�,�] = [0.98,0.99], it
was also chosen to only discount regressor coefficients at time-points with non-zero regressor values.
As otherwise coefficients belonging to regressors with few non-zero values, e.g. Restriction level 2
was only in place for six weeks and therefore had zero values for all other dates, would be pushed to
0 by the consistent discounting.

6.1.2 Results

After having tuned the model to the preferred settings, analysis could be performed. The 1-step
ahead forecasts ofℳ0 generated from there are presented below in Figure 6, where the point forecast
line (blue) is the median of the samples produced. The forecasting accuracy proved to be significantly
better than a OLS regression with the same regressors, yielding a Mean Absolute Percentage Error
(MAPE) of 10.21% for 1-step ahead forecastswhich rose to 12.92% for 14-step ahead forecasts compared
to 24.12%and 33.82% for theOLSmodelwith the same forecast horizons. The forecasting performance

Figure 6: 1-step ahead forecast for .C ,ℳ0
, the aggregated state-wide sales of all liquor products, the shaded

blue area represents the 80% credible interval

ofℳ0 is however not the primary output of interest, but rather the latent-factors generated to aid
the forecasting of ℳ1, which are, as explained in Subsection 5.4, the coefficients of the relevant
regressors inℳ0. A plot of both seasonality latent factor means is displayed below in Figure 7, the
left-hand side pertains to the daily seasonality whereas the right hand side to the monthly. From
the daily seasonality plot it becomes apparent that there strong level differences between the various
weekdays, the model estimates that in December 2020 the weekday multiplication factor of a Friday
leads to, on average, 19% lower sales than a Thursday. Both graphs showcase how the model learns
from new information as it comes in, particularly the right-hand side, in which a clear yearly pattern
can be seen that is repeated 4 times. As the model learns, the peaks and troughs of the cycle are
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deflated resulting in a stable monthly seasonality pattern for 2020, characterized by a dip during the
summer months which is followed by a great peak around the end of the year.

Figure 7: Coefficient plots of the daily (left) and monthly (right) seasonality components

The other two latent factors generated, for the temperature (left) and holiday (right) effect, are pre-
sented in Figure 8, where the holiday latent factor also appears to undergo large adaptations over
time with the holiday effect in 2017 initially estimated as being more than twice the magnitude than
the effect in 2020. The temperature latent-factor, on the left-hand side, appears to accurately capture
the correlation originally observed in Figure 1, with the coefficients steadily rising during the first
half of each year to consequently fall in the second half.

Figure 8: Coefficient plots of the temperature (left) and holiday (right) effect

Including these latent factors inℳ1 as shown in (28) and running the two-component Gibbs sampler
for 8000 samples (of which 3000 burn-in samples), ultimately led to the 10-step ahead forecasts
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presented in Figure 9, where .C ,ℳ1
denotes the aggregated sales of Whiskies in Polk, the most

populous county of Iowa.

Figure 9: 10-step ahead forecast for .C ,ℳ1
, the aggregated sales for Whiskies in Polk county, where the median

of the samples is depicted by the blue line, the shaded blue area represents the 80% credible interval and the
red line shows an OLS estimate

The plot appears to better capture the changes in the time-series than an OLS model (red line) with
the same regressor set, which is confirmed by Table 4, which displays a comparison of the MAPE for
1 to 14-step ahead forecasts. With the latent factor DLM achievingMAPE scores which are nearly half
the size of the OLS model throughout the forecast horizon.

Forecast Mean Absolute Percentage Error

Model 1-step 2-step 3-step 4-step 5-step 6-step 7-step 8-step 9-step 10-step 11-step 12-step 13-step 14-step

M1 19.141 19.719 21.178 20.115 20.580 21.772 20.916 22.884 23.114 23.656 22.018 24.529 24.113 24.916
OLS 35.156 35.892 36.214 39.153 38.944 38.792 39.991 41.256 40.901 41.113 42.361 42.178 44.052 44.452

Table 4: Comparison of the Mean Absolute Percentage Error for 1-14 day ahead forecasts between the latent
factor DLM,ℳ1, and an OLS regression for six most-sold product categories

As previously mentioned, one of the merits of an Bayesian estimation approach is the overview of
the uncertainty of estimates which are provided, as opposed to a single prediction for each time-
point. This uncertainty is depicted in Figure 9 by the 80% credible interval of the 5000 samples
and an example for a single time-point, the 26th of November, is presented below in Figure 10. The
managerial insights provided by these graphs are self-evident, with decision-makers not only given
a forecast but also an idea of how likely other forecasts are.

The working of the latent factors in a multi-scale approach are illustrated in Figure 11, which displays
the coefficients of the latent factors fromℳ0 inℳ1. These latent factors have been estimated at a
higher, aggregated level to generate a clearer picture of the true effect, the lower-level models can
however determine towhich degree they agreewith this effect, by altering the latent factor coefficients.
In the example given here, the effects of temperature, holiday and Yℳ0

have been estimated for the
sales of all liquor categories in Iowa, these effects are however not entirely correct for the sales of
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Figure 10: Histogram displaying the samples of the forecast for .C ,ℳ1
for the 26th of November

Whiskies in Polk county. Figure 11 shows that whilst the effect of temperature appears to have
been estimated correctly, with the coefficient hovering around 1, the holiday effect has been heavily
underestimated leading to a doubling of the coefficient. On the other hand, the effect of the level of
total aggregated liquor sales in Iowa, Yℳ0

, appears to have been overestimated with it’s coefficient
sharply dropping. This beautifully illustrates the power of the multi-scale latent factor approach,
namely that all the data is used to generate an estimate of a particular effect, whilst consequently
allowing this effect to impact the underlying individual time-series in a bespoke manner.

Figure 11: Latent factor mean coefficient plots for Temperature (left), Holidays (center) and .C ,ℳ0
(right) for

ℳ1

Of all the predictors included in the aforementioned specification ofℳ0, three proved to be the most
powerful. These were the Google mobility reports for grocery stores, the harshest level of restrictions
(level 3) and the log-transformed number of COVID-19 cases, the plots of their coefficient evolutions
are presented in Figure 12, by far the largest effect is contributed to the restrictions, which reaches -1
at certain times whereas the other coefficients peak at a fraction of that.

This raised the question of whether this impact was equally large for all liquor categories and fur-
thermore what the impact was of the other restriction levels and COVID-related variables. To answer
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Figure 12: Regressor mean coefficient plots for Grocery (left), Restrictions level 3 (center) and logCases (right)
forℳ1

these questions, similar analyses were performed for the other liquor categories over the six counties
which saw heavy restrictions. An immediately evident result was that the coefficient for restriction
level 2 was always small and varied greatly between the specifications, the reality was that there was
most likely too little data to accurately forecast the effect. Restriction level 2 was namely first imposed
directly after the ending of the harshest restriction level 3 in May, meaning these coefficients were
often initially estimated to be extremely large, +4.2 in certain cases, but this was most likely due to the
ending of restriction level 3 rather than the imposition of restriction level 2. After this there were too
few data points with non-zero observations for restriction level 2 to accurately adjust the coefficient
to it’s true, unknown value. A comparison of the effects of restriction level 3 between the categories
revealed a striking difference. Eight of the eleven categories exhibited a strongly negative effect for
the imposition of these restrictions whereas three three showed slightly positive effects, these were
Tequila, Spirits and Cocktails. When these restrictions were ultimately uplifted on the 1st of May,
these categories showed coefficients of [0.12, 0.06, 0.18] respectively. Overall the Google Mobility
reports and the third level of restrictions were shown to have the greatest forecasting contribution
over all product categories, whilst the log-transformation of the number of COVID-19 cases was also
a strong predictor for most categories.

An attempt to test whether consumers had shifted to higher-end, luxury liquors once the restaurants
and bars had closed was unfortunately fruitless. Dividing the products into expensive and non-
expensive proved to be challenging, with often the expensive products sets unable to generate accurate
forecasts due to a lack of sufficient data. These products were logically sold significantly less and
therefore provided far fewer observations, often not enough to generate accurate forecasts of all the
regressors making a comparison difficult. Lowering the threshold of ’expensive’ products to increase
the sample size simply led to ambiguous results.

6.2 Forecasting Weekly Store-Product Orders

As previously mentioned, because the multi-layer structure and latent factor implementation work in
a similar fashion for DCMMs as for DLMs, this subsection omits latent factor and coefficient plots to
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avoid repetition and serves solely to demonstrate the models ability to forecast intermittent sales. To
showcase the forecasting performance of themulti-layeredmodel framework described on the second
layer of Table 3, the intermittent order history of a store in Des Moines, Polk for a particular whiskey
was chosen as the dependent variable inℳ1, where each order consisted of six bottles. Aside from
the variables mentioned in Table 3, the retail price was also included as this product was one of a
handful of products which saw several price changes throughout the data set, thereby presenting an
opportunity to measure the price elasticity. Ultimately this led to the following regressor vectors LC ,8
and state evolution matrices MC ,8 :

ℳ0 :LC ,0 = (1, PriceC , TempC ,HolidayC , 1, 0, 1, 0, FebC ..,DecC ,GroceryC ,Res.1C ,Res.2C ,Res.3C)
MC ,0 = diag[1, 1, 1, 1,N1 ,N2 , 1, 1.., 1, 1, 1, 1, 1]

ℳ1 :LC ,1 = (1,�C , ), MC ,1 = O10G10

where �C once more represents all the latent factors generated in ℳ0, including .∗ℳ0 ,C
, and where

N1 ,N2 are equally defined as above. The additional hyper-parameter for DCMM specifications, the
random effects discount factor �, was set at 0.6. Of all the predictors present in this set-up, the
price, grocery mobility reports and restrictions levels were found to have the greatest predictive
contributions, particularly the mobility reports, which was a trend that was observed for other stores
as well. Figure 13 displays the 3-week ahead forecast for the second half of 2020 in comparison to a
GLM model with the same variable set, whereas Table 5 also includes the comparison for a 1-week
ahead forecast horizon. The latent factor DCMMparticularly seems to outperform the standard GLM
in forecasting zero observations, where the latter tends to consistently generate forecasts around the
baseline level of 1. Notable deviations are for the weeks including Thanksgiving and Christmas,
which see spikes in both models.

Figure 13: 3-week ahead forecast for .C ,ℳ1
, the orders of one product by an individual store, the shaded blue

area represents the 80% credible interval whereas the red line shows an GLS estimate

32



Forecast ZAPE

Model 1-step 3-step

M1 29.142 34.152
GLS 54.041 59.142

Table 5: Comparison of the Zero-Adjusted Absolute Percentage Error for 1 & 3 week ahead forecasts between
the latent factor DCMM,ℳ1, and a GLS regression

7 Discussion

Whilst the model framework lends itself to the forecasting of product sales of all kinds and provided
favorable forecasting performance compared to standard OLS and GLS models, it was also shown
to have disadvantages. In a general summation, the model framework was sensitive and hard to
calibrate, partly due to the characteristics of the data set used in this case study as will be explained
below, but also due to it’s inherent structure. This section serves to present the challenges undergone
during the modelling process, beginning with the data-specific issues and concluding with possible
improvements.

To properly exploit the merits of the multi-scale approach, careful consideration must be made by the
modeller in regard to the nature of the data, which common factors are trying to be estimated and
what aggregation level is most suited to do so. This became particularly evident after analysis was
performed under the initial set-up of the model, which led to ambiguous results. The initial model
design was as follows:

1. State Level: DLM tomodel the daily aggregated sales of all observations for all counties in order
to capture the effect of temperature, precipitation, holiday and seasonality (daily and monthly).

2. County/Category Level: DLM or DGLM depending on the distribution of the county/category
level sales data, to model the daily aggregated sales of all product categories per county and
capture the effect of the COVID statistics, restrictions and mobility reports.

3. Store/Product Level: DCMM to model the daily sales of each individual product in each store
where the effects of the aforementioned variableswill be incorporated through the latent factors.

The flaws in this design turned out to be two-fold, firstly the set-up failed to account for the wholesale
nature of the data thereby making it impossible to determine the optimal lag-length as laid out
in Subsection 6.1.1. Whilst the aggregations imposed in the lay-out above were revealed to be
inappropriate, particularly for the third level, because the majority of stores were found to not
place new wholesale orders on a day-to-day basis but rather have a fixed weekly stocking schedule.
Therefore modelling all weekdays within the same model led to inaccurate forecasts, an example
is shown in Appendix A.5. Whilst the model correctly captures the day-to-day seasonality, the
magnitude of the orders are systematically underestimated. A model specification with a local level
(as shown in the appendix) led to forecasts for high-order days which lay between the high and
low-order days because the level had to cover each day of the week thereby settling on a midway
compromise. A more suitable approach for modelling daily sales of this nature would be to be model
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each day separately, with bespoke local levels and volatility parameters. These issues stemmed from
the wholesale nature of the data and it should therefore be noted that other applications of the model
framework may not encounter these problems. However, a model intended for commercial purposes
is only of limited practical relevance if it proves to be needlessly hard to calibrate, the difficulty in
modelling the wholesale data of this case study could therefore be mentioned as a downside.

A point of possible improvement for future applications of the framework is hyper-parameter tai-
loring. In this case study, the level of the hyper-parameters (discount factors (�, �)) was determined
by applying a grid-search, wherein the forecasting performance was compared, to ℳ0 in the first
specification of Table 3. These discount factors were later imposed on all other model specifications
due to the computationally demanding nature of the grid search, it may however be that searching for
bespoke discount factors for each model specification leads to better results. A further improvement
could be the inclusion of informative priors. As explained in Subsection 5.5 the models were initial-
ized with the objective g-prior, however given that certain variables provided relatively few non-zero
data points making the influence of the prior greater, the results may improve if a modeller is able to
input accurate informative priors. Lastly, given that the higher-levelℳ0 models served primarily to
generate latent factors forℳ1, a potential point of further research may be smoothing the time-series
of ℳ0 in a bid to generate better forecasts of the latent factors effect. The time-series of ℳ0 were
often found to be affected by outliers, with single orders of tens of thousands of bottles occasionally
occurring. If the forecasts ofℳ0 are not of importance to the modeller it may therefore be worthwhile
to smooth the time-series to reduce the impact of these outliers.

8 Conclusions

In this thesis a model framework is tested which has been designed to forecast the sales of products
with all types of demand, from intermittent to steady. A framework of such kind would have great
commercial uses, if found to perform adequately. An expansive, publicly available data set was
chosen as the subject of the case studywhich included liquor products with the desired varying levels
of demand. The data was of a wholesale nature, which induced several challenges which may have
hampered the forecasting performance of the various models found in the layers of the framework.
Nonetheless, the framework generated favorable results compared to standard alternative models for
both intermittent and frequently sold products. By estimating common effects at an aggregated level,
in order to circumvent the noise of individual time-series, and sharing these effects via latent factors
with these individual time-series the model framework proved to be scalable. The output generated
was also easily interpretable, as is common to linearmodels, thereby enhancing the practical relevance
of the framework. There were however downsides as well, the model framework was sensitive and
often required great amounts of work to optimize for a particular specification, the reducing of a
discount factor by 0.01 or shortening of the prior sample size by 10 days could completely shift the
outcome, making the framework unstable in certain specifications.

A further point of research in this case study was the impact of the COVID-19 pandemic on liquor
wholesales in Iowa. Whilst the analysis provided inconclusive results for certain research questions,
a general picture of the impact could still be composed. Over the course of 2020 the residents of
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Iowa have not appeared to significantly change the amount of liquor they consume, with the total
level following along the trend of the past few years namely a slight but steady increase. There
were however changes in the composition of their demand, three liquor categories in particular,
Spirits, Cocktails and Tequila appeared to suddenly enjoy increased consumption during the harshest
restrictions. Leading to the hypothesis that grocery store sales of these ’party’ liquors may benefit
from the closing of bars and nightclubs as people attempt to move the parties to their own homes. It
was also striking that the impact of the COVID restrictions differed immensely between stores, with
some stores seeing increased sales whilst others saw their entire demand decimated, this was even
the case for stores belonging to the same chain and located within the same city. It would therefore be
an interesting line of further research to compare the sales of liquor retailers with and without online
delivery, as this could well be the cause of the differing impacts. As far as forecasting power goes for
the COVID-related predictors, the Google mobility reports for grocery and retail stores proved to be
the strongest in addition to the harshest level of restrictions, which had the greatest impact on almost
every time-series observed.
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A Appendices

A.1 Timeline of Restrictions

Table 6: Timeline of Restrictions

Date Restrictions Affected Counties

17th March All restaurants and bars are closed for dine-in till 30th of March. All Counties
20th March All bars are allowed to do carry-out orders of alcohol. All Counties

26th March Closing of bars and restaurants extended till 7th April,
many retail shops closed. All Counties

2nd April Closing of bars and restaurants extended till 30th of April. All Counties
6th April Closing of social clubs, arcades, parks, music stores etc. All Counties

1st May 77 Counties will reopen restaurants, gyms and stores.
22 remained closed. See Table Caption

13th May Restaurants and stores can open with restrictions. All Counties
28th May Bars, wineries and distilleries can reopen at 50% capacity. All Counties

27th August Bars, nightclubs and breweries closed.
No alcohol is restaurants after 10pm till 5th September.

Polk, Black Hawk,
Johnson, Story,
Dallas & Linn

16th September Bars allowed to re-open. Polk, Black Hawk,
Dallas & Linn

18th September Bar closing extended till 27th September. Story & Johnson
5th October Bars can re-open. Story & Johnson

17th November All restaurants and bars must close between 10pm and 6 am,
and limit group sizes to 8. All Counties

16th December Restrictions on bars and restaurants loosened,
normal hours resumed. All Counties

These 22 are: Allamakee, Benton, Black Hawk, Bremer, Dallas, Des Moines, Dubuque, Fayette, Henry, Iowa,
Jasper, Johnson, Linn, Louisa, Marshall, Muscatine, Polk, Poweshiek, Scott, Tama, Washington, Woodbury.

A.2 State-Wide Sales with Highlighted Holidays
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A.3 Category Sales
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A.4 Table of DGLM Conjugate Information

Distribution

Bernoulli Poisson Normal

HC ∼ Relabeled as IC ∼ Ber(�C) Poi(�C) N(�C ,  C)
�C = logit(�C) log(�C) �C
) = 1 1 )C = 1/ C
0(�C) = log(1 + exp(�C)) exp(�C) �2C /2
1(HC , )C) = 1 1/HC ! ()C/2�C)1/2exp(−)CH2C /2)
Conjugate Prior �C ∼ Beta(
C , �C) �C ∼ Gamma(
C , �C) �C ∼ N(0C , �C C)
Forecast Distribution BetaBer(1, 
C , �C) NegBin(
C , �C/(1 + �C)) T�=C−1( 5C , &C)

A.5 Daily Store Forecasts
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B Code

B.1 Code Gibbs Sampler Latent Factor DLM
1 def Gibbs_LF_DLM(y , a_ j , A_j , n_j , de l ta ,m_0 , C_0 , n_0 , s_0 , burn_in , mcmc_iter , reg ) :
2 def sv ( x ) :
3 re turn ( x+x . T ) /2
4 mcmc_iter = burn_in+mcmc_iter
5 T = len ( y )
6 p_x = a_ j . shape [ 1 ]
7 p_f = reg . shape [ 1 ]
8 p = p_x+p_f ;
9 m_t = np . zeros ( ( T+1 ,p ) )
10 C_t = np . zeros ( ( ( T+1) ,p , p ) )
11 n_t = np . zeros ( ( T+1 ,1) )
12 s_ t = np . zeros ( ( T+1 ,mcmc_iter ) )
13 v_t = np . zeros ( ( T , mcmc_iter ) )
14 a_t = np . zeros ( ( T , p ) )
15 R_t = np . zeros ( ( T , p , p ) )
16 f _ t = np . zeros ( ( T , 1 ) )
17 q_t = np . zeros ( ( T , 1 ) )
18 phi_t = np . zeros ( ( T , p_x ) )
19 X_t = np . zeros ( ( T , p_x , ( mcmc_iter +1) ) )
20 t h e t a _ t = np . zeros ( ( T , p , mcmc_iter ) )
21 a_k = np . zeros ( ( ( mcmc_iter ) ,p ) )
22 R_k = np . zeros ( ( ( mcmc_iter ) ,p , p ) )
23 v_k = np . zeros ( ( ( mcmc_iter ) , 1 ) )
24 n_k = np . zeros ( ( 1 , 1 ) )
25 d = de l t a [ 0 ]
26 beta = de l t a [ 1 ]
27 m_t [ 0 , : ] = m_0
28 C_t [ 0 , : , : ] = C_0
29 n_t [ 0 ] = n_0
30 s_ t [ 0 , : ] = s_0
31 f o r t in range ( 0 ,T ) :
32 phi_t [ t , : ] = ( ( 0 . 5 ∗ beta∗n_ j [ t , : ] ) /np . random .gamma( shape =0.5∗ beta∗n_ j [ t , : ] , s c a l e

=1) )
33 X_t [ t , : , 0 ] = a_ j [ t , : ] + np . random . standard_normal ( s i z e =(1 , len ( a_ j [ t , : ] ) ) )@np . l i n a l g

. cholesky ( sv (np . diag ( phi_t [ t , : ] ∗ A_j [ t , : ] ) ) ) . T
34 f o r i in range ( 0 , mcmc_iter ) :
35 # forward− f i l t e r
36 fo r t in range ( 0 ,T ) :
37 F_t = np . i n s e r t (np . array ( X_t [ t , : , i ] ) , 0 , np . array ( reg [ t , : ] ) )
38 # pr ior fo r time t
39 a_t [ t , : ] = m_t [ t , : ]
40 R_t [ t , : , : ] = C_t [ t , : , : ] / d
41 # pred i c t time t
42 f _ t [ t ] = F_t @ a_t [ t , : ]
43 q_t [ t ] = ( F_t @ C_t [ t , : , : ] @ F_t/d)+s_ t [ t , i ]
44 # compute f o r c a s t e r ro r and adaptive vec tor
45 e_ t = y [ t ]− f _ t [ t ]

43



46 A_t = R_t [ t , : , : ] @ F_t/q_t [ t ]
47 # pos t e r i o r fo r time t
48 n_t [ t +1] = beta∗n_t [ t ]+1
49 r _ t = ( beta∗n_t [ t ]+ ( e_ t ∗∗2)/q_t [ t ] ) /n_t [ t +1]
50 s_ t [ t +1 , i ] = r _ t ∗ s_ t [ t , i ]
51 m_t [ t + 1 , : ] = a_t [ t , : ] + A_t∗ e_ t
52 C_t [ t + 1 , : , : ] = sv ( r _ t ∗ ( R_t [ t , : , : ] − q_t [ t ]∗ ( A_t . reshape ( len ( A_t ) , 1 ) ∗A_t ) ) )
53 # sample the ta a t T
54 v_t [−1 , i ] = 1.0/np . random .gamma( shape=n_t [−1]/2 , s c a l e= 2/( n_t [−1]∗ s_ t [−1 , i ] ) )
55 t h e t a _ t [T−1 , : , i ] = m_t [ −1 , : ]+np . random . standard_normal ( s i z e =(1 , len (m_t [ −1 , : ] ) ) )

@np . l i n a l g . cholesky ( sv ( C_t [ − 1 , : , : ]∗ ( v_t [−1 , i ]/ s_ t [−1 , i ] ) ) ) . T
56 # the ta a t T+1
57 n_k = beta∗n_t [−1]+1
58 v_k [ i , 0 ] = 1.0/np . random .gamma( shape=beta∗n_t [−1]/2 , s c a l e =2/( beta∗n_t [−1]∗ s_ t [−1 ,

i ] ) )
59 a_k [ i , : ] = m_t [ −1 , : ]
60 R_k [ i , : , : ] = ( C_t [ −1 , : , : ] /d) ∗ ( v_k [ i , 0 ]/ s_ t [−1 , i ] )
61 # backward−sampler
62 fo r t in range (T−2,−1,−1) :
63 v_t [ t , i ] = 1/(1/ v_t [ t +1 , i ]∗ beta + np . random .gamma( shape=(1−beta ) ∗n_t [ t +1]/2 ,

s c a l e =2/( n_t [ t +1]∗ s_ t [ t +1 , i ] ) ) )
64 m_star_t = m_t [ t +1 , : ]+d∗ ( t h e t a _ t [ t +1 , : , i ]−a_t [ t + 1 , : ] )
65 C_star_ t = C_t [ t +1 , : , : ]∗ ( 1 −d) ∗ ( v_t [ t , i ]/ s_ t [ t +1 , i ] )
66 t h e t a _ t [ t , : , i ] = m_star_t + np . random . standard_normal ( s i z e =(1 , len ( m_star_t ) ) )

@np . l i n a l g . cholesky ( sv ( C_s tar_ t ) ) . T
67 #sample X_t
68 fo r t in range ( 0 ,T ) :
69 A_st = np . diag ( phi_t [ t , : ] ∗ A_j [ t , : ] )
70 a_s t = a_ j [ t , : ]
71 theta_p = the t a _ t [ t , p_f : , i ]
72 the ta_1 = the t a _ t [ t , 0 : p_f , i ]
73 sigma = theta_p@A_st /( v_t [ t , i ]+ theta_p@A_st@theta_p )
74 a_s t a r = a_s t+sigma ∗ (y [ t ]−( theta_1@reg [ t , : ] + theta_p@a_st ) )
75 A_star = sv ( A_st−A_st@theta_p . reshape ( len ( theta_p ) , 1 ) ∗sigma )
76 X_t [ t , : , i +1] = a_s t a r+np . random . standard_normal ( s i z e =(1 , len ( a_ s t a r ) ) )@np .

l i n a l g . cholesky ( sv ( A_star ) ) . T
77 phi_t [ t , : ] = ( ( 0 . 5 ∗ ( n_ j [ t , : ] + 1 ) /np . random .gamma( shape=( n_ j [ t , : ] + ( X_t [ t , : , i

+1]− a_s t ) ∗∗2/A_j [ t , : ] ) /2 , s c a l e =1) ) )
78 # save r e su l t s
79 the ta_pos t = the t a _ t [ : , : , burn_in : ]
80 X_post = X_t [ : , : , burn_in +1 : ]
81 a_k = a_k [ burn_in : , : ]
82 R_k = R_k [ burn_in : , : , : ]
83 v_k = v_k [ burn_in : , : ]
84 re turn a_k , R_k , v_k , n_k , theta_post , X_post

1 E_Gibbs = np . zeros ( ( mcmc_iter , T−1) ) # Pos t e r i o r mean
2 V_Gibbs = np . zeros ( ( mcmc_iter , T−1) ) # Pos t e r i o r var iance
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3 e r ro r = np . zeros ( ( mcmc_iter , T−1) )
4 mlike = np . zeros ( ( mcmc_iter , T−1) )
5 s = se t ( range ( 0 ,T−1) )
6 ak_ re su l t s = d i c t . fromkeys ( s ) # Pos t e r i o r f o r e c a s t c o e f f i c i e n t mean
7 Rk_resul t s = d i c t . fromkeys ( s ) # Pos t e r i o r f o r e c a s t c o e f f i c i e n t var iance
8 v t _ r e su l t s = d i c t . fromkeys ( s ) # Pos t e r i o r f o r e c a s t observat ion var iance
9 n t _ r e su l t s = d i c t . fromkeys ( s ) # Pos t e r i o r f o r e c a s t degrees of freedom
10 nu = np . zeros ( ( T−1 ,1) )
11 def sv ( x ) :
12 re turn ( x+x . T ) /2
13 fo r t in range (49 ,T−1) :
14 y = yI [ 0 : t +1]
15 a_ j = a [ 0 : t + 1 , : ]
16 A_j = A[ 0 : t + 1 , : ]
17 n_ j = n [ 0 : t + 2 , : ]
18 a_k , R_k , v_k , n_k , theta_post , X_post = Gibbs_LF_DLM(y , a_ j , A_j , n_j , del ta ,m_0 , C_0 , n_0 , s_0 ,

burn_in , mcmc_iter , reg )
19 ak_ re su l t s [ t ] = a_k
20 Rk_resul t s [ t ] = R_k
21 v t _ r e su l t s [ t ] = v_k
22 n t _ r e su l t s [ t ] = n_k
23 nu [ t , 0 ] = n_k
24 f o r i in range ( 0 , mcmc_iter ) :
25 # sample x ( t +1)
26 lmbda = np . sq r t ( ( 0 . 5 ∗ de l t a [ 1 ]∗n [ t +1]/np . random .gamma( shape=de l t a [ 1 ]∗n [ t +1]/2 ,

s c a l e =1) ) )
27 x_t = np . i n s e r t (np . array ( a [ t +1 , : ]+ lmbda∗np . random . standard_normal ( s i z e =(1 , len ( a [ t

+ 1 , : ] ) ) )@np . l i n a l g . cholesky ( sv (np . diag (A[ t + 1 , : ] ) ) ) . T ) , 0 , np . array ( reg [ t + 1 , : ] ) )
28 # compute aggregated mean and var iance
29 E_Gibbs [ i , t ] = x_t@a_k [ i , : ]
30 V_Gibbs [ i , t ] = x_t@R_k [ i , : , : ] @x_t . reshape ( len ( x_t ) , 1 )+v_k [ i , : ]
31 e r ro r [ i , t ] = yI [ t +1]−E_Gibbs [ i , t ]
32 mlike [ i , t ] = np . exp (np . log (gamma( 0 . 5 ∗ ( nu [ t , 0 ] + 1 ) ) )−np . log (gamma(0 . 5∗nu [ t , 0 ] ) )

−0.5∗np . log (np . pi∗nu[ t , 0 ]∗V_Gibbs [ i , t ] ) − (0 .5∗ (nu [ t , 0 ] + 1 ) ) ∗np . log (1+1/(nu [ t
, 0 ]∗V_Gibbs [ i , t ] ) ∗ ( yI [ t +1]−E_Gibbs [ i , t ] ) ∗∗2) )

33 Gibbs_error = np .mean( e r ro r [ : , −K: ] , 0 ) # Average er ror
34 w = range ( 1 , len ( Gibbs_error ) +1)
35 Gibbs_rmse = ( ( np . cumsum( Gibbs_error [ : ] ∗ ∗ 2 ) )/w) ∗∗ (1/2) # RMSFE
36 Gibbs_mlike = np . cumsum(np . log (np .mean( mlike [ : , −K: ] , 0 ) ) ) # Marginal l i ke l i hood

B.2 Code Other Functionalities
1 def forecast_path_l f_sample_dlm (mod, k , X=None , phi_samps = None) :
2 nsamps = len ( phi_samps )
3 samps = np . zeros ( [ nsamps , k ] )
4 F = np . copy (mod. F )
5 fo r samp in range ( nsamps ) :
6 param1 = mod. param1
7 param2 = mod. param2
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8 a = np . copy (mod. a )
9 R = np . copy (mod.R)
10 n = np . copy (mod. n )
11 s = np . copy (mod. s )
12 f o r i in range ( k ) :
13 # Plug in X values
14 i f mod. nregn > 0 :
15 F = update_F (mod, X[ i , : ] , F=F )
16 # Plug in phi sample
17 F = update_F_lf (mod, phi_samps [ samp ] [ i ] , F=F )
18 # Get mean and var iance
19 f t , qt = mod. get_mean_and_var ( F , a , R)
20 param1 = f t
21 param2 = qt
22 # Simulate next observat ion
23 samps [ samp , i ] = mod. s imulate ( param1 , param2 , nsamps=1)
24 # Update the parameters :
25 e t = samps [ samp , i ] − f t
26 # Adaptive c o e f f i c i e n t vec tor
27 At = R @ F / qt
28 # Vo l a t i l i t y es t imate r a t i o
29 r t = (n + e t ∗∗2/qt ) /(n + 1)
30 # Kalman f i l t e r update
31 n = n + 1
32 s = s ∗ r t
33 m = a + At ∗ e t
34 C = r t ∗ (R − qt ∗ At @ At . T )
35 # Get pr io r s a , R fo r the next time step
36 a = mod.G @ m
37 R = mod.G @ C @ mod.G. T
38 R = (R + R . T) / 2
39 # Discount information
40 i f mod. d i s coun t_ fo reca s t :
41 R = R + mod.W
42 n = mod. delVar∗n
43 re turn samps

1 def update_l f_sample_forwardf i l t_dlm (mod, y , F , a , R , phi ) :
2 F = update_F_lf (mod, phi , F=F )
3 f t , qt = mod. get_mean_and_var ( F , a , R)
4 param1 , param2 = f t , qt
5 n = mod. n
6 s = mod. s
7 # Get the log−l i k e l i hood of ’y ’ under these parameters
8 l o g l i k = mod. l o g l i k ( y , param1 , param2 )
9 # Update the parameters :
10 e t = y − f t
11 # Adaptive c o e f f i c i e n t vec tor
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12 At = R @ F / qt
13 # Vo l a t i l i t y es t imate r a t i o
14 r t = (n + e t ∗∗2/qt ) /(n + 1)
15 # Kalman f i l t e r update
16 m = a + At ∗ e t
17 C = r t ∗ (R − qt ∗ At @ At . T )
18 re turn m, C, np . rave l ( l o g l i k ) [ 0 ] , r t

1 def update_lf_sample_dlm (mod, y = None , X = None , phi_samps = None , p a r a l l e l =Fa l se ) :
2 i f y i s None or np . isnan ( y ) :
3 mod. t += 1
4 mod.m = mod. a
5 mod.C = mod.R
6 # Get pr io r s a , R fo r time t + 1 from the pos t e r i o r s m, C
7 mod. a = mod.G @ mod.m
8 mod.R = mod.G @ mod.C @ mod.G. T
9 mod.R = (mod.R + mod.R . T ) /2
10 mod.W = mod. get_W(X=X)
11 e l s e :
12 update_F (mod, X)
13 # Update m, C using a weighted average of the samples
14 i f p a r a l l e l :
15 f = p a r t i a l ( update_lf_sample_forwardfi l t_dlm , mod, y , mod. F , mod. a , mod.R)
16 p = mult iprocess ing . Pool ( 1 0 )
17 output = p .map( f , phi_samps )
18 p . c lo se ( )
19 e l s e :
20 output = map( lambda p : update_l f_sample_forwardf i l t_dlm (mod, y , mod. F , mod. a , mod

.R , p ) , phi_samps )
21 mlist , C l i s t , l o g l i k l i s t , r l i s t = l i s t (map( l i s t , zip (∗ output ) ) )
22 w = (np . exp ( l o g l i k l i s t ) / np . sum(np . exp ( l o g l i k l i s t ) ) ) . reshape ( −1 ,1 ,1)
23 mli s t = np . array ( ml i s t )
24 C l i s t = np . array ( C l i s t )
25 r l i s t = np . array ( r l i s t )
26 r t = np . sum( r l i s t ∗w, ax i s =0)
27 mod.m = np . sum( ml i s t∗w, ax i s =0)
28 mod.C = np . sum( C l i s t ∗w, ax i s =0) + np . cov ( ( ml i s t ) . reshape (−1 , mod.m. shape [ 0 ] ) ,

rowvar=False , aweights = w. reshape (−1) )
29 # Add 1 to the time index
30 mod. t += 1
31 mod. n = mod. n+1
32 mod. s = mod. s ∗ r t
33 # Get pr io r s a , R from the pos t e r i o r s m, C
34 mod. a = mod.G @ mod.m
35 mod.R = mod.G @ mod.C @ mod.G. T
36 mod.R = (mod.R + mod.R . T ) /2 # prevent rounding i s sues
37 # Discount information i f observat ion i s observed
38 mod.W = mod. get_W(X=X)
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39 mod.R = mod.R + mod.W
40 mod. n = mod. delVar ∗ mod. n
41 # pr in t ( ’ a : ’ , mod. a )
42 # pr in t ( ’R : ’ , mod.R)
43 # pr in t ( ’m: ’ , mod.m)
44 # pr in t ( ’C : ’ , mod.C)
45 # pr in t ( ’w ’ , w)
46 # pr in t (mod. n , mod. s )
47 re turn r t

1 def ana lys i s1 (Y , X=None , k=1 , f o r e c a s t _ s t a r t =0 , forecas t_end =0 ,
2 nsamps=500 , family = ’ normal ’ , n = None ,
3 model_prior = None , pr io r_ length =20 , ntrend =1 ,
4 dates = None , hol idays = [ ] ,
5 seasPer iods = [ ] , seasHarmComponents = [ ] ,
6 l a t e n t _ f a c t o r = None , new_la ten t_ fac tors = None ,
7 r e t =[ ’model ’ , ’ f o r e c a s t ’ ] ,
8 mean_only = False , fo recas t_pa th = False , idx = None ,
9 dlm_dof = None , ∗∗kwargs ) :
10 # Check i f i t ’ s a l a t e n t f a c t o r DGLM
11 i f l a t e n t _ f a c t o r i s not None :
12 i s _ l f = True
13 n l f = l a t e n t _ f a c t o r . p
14 e l s e :
15 i s _ l f = Fa l se
16 n l f = 0
17 i f model_prior i s None :
18 mod = define_dglm (Y , X , family=family , n=n , pr ior_ length=pr ior_ length , ntrend=

ntrend , nhol=nhol , n l f =nl f , seasPer iods=seasPeriods , seasHarmComponents=
seasHarmComponents ,∗∗kwargs )

19 e l s e :
20 mod = model_prior
21 # Convert dates in to row numbers
22 i f dates i s not None :
23 dates = pd . S e r i e s ( dates )
24 i f type ( f o r e c a s t _ s t a r t ) == type ( dates . i l o c [ 0 ] ) :
25 f o r e c a s t _ s t a r t = np . where ( dates == f o r e c a s t _ s t a r t ) [ 0 ] [ 0 ]
26 i f type ( forecas t_end ) == type ( dates . i l o c [ 0 ] ) :
27 forecas t_end = np . where ( dates == forecas t_end ) [ 0 ] [ 0 ]
28 # Define the run length
29 T = len (Y) + 1
30 i f r e t . __conta ins__ ( ’ model_coef ’ ) :
31 m = np . zeros ( [ T−1, mod. a . shape [ 0 ] ] )
32 C = np . zeros ( [ T−1, mod. a . shape [ 0 ] , mod. a . shape [ 0 ] ] )
33 i f family == ’ normal ’ :
34 n = np . zeros (T )
35 s = np . zeros (T )
36 i f new_la ten t_ fac tors i s not None :
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37 i f not r e t . __conta ins__ ( ’ new_la ten t_ fac tors ’ ) :
38 r e t . append ( ’ new_la ten t_ fac tors ’ )
39 i f not i s i n s t an c e ( new_la tent_ fac tors , I t e r a b l e ) :
40 new_la ten t_ fac tors = [ new_la ten t_ fac tors ]
41 tmp = [ ]
42 fo r l f in new_la ten t_ fac tors :
43 tmp . append ( l f . copy ( ) )
44 new_la ten t_ fac tors = tmp
45 # I n i t i a l i z e updating + fo r e c a s t i ng
46 horizons = np . arange ( 1 , k + 1)
47 i f mean_only :
48 f o r e c a s t = np . zeros ( [ 1 , forecas t_end − f o r e c a s t _ s t a r t + 1 , k ] )
49 e l s e :
50 f o r e c a s t = np . zeros ( [ nsamps , forecas t_end − f o r e c a s t _ s t a r t + 1 , k ] )
51 r t = np . empty ( len (Y) , dtype= ’ f l o a t 6 4 ’ )
52 f o r t in range ( pr ior_ length , T ) :
53 i f f o r e c a s t _ s t a r t <= t <= forecas t_end :
54 i f t == f o r e c a s t _ s t a r t :
55 pr in t ( ’ beginning fo r e c a s t i ng ’ )
56 i f r e t . __conta ins__ ( ’ f o r e c a s t ’ ) :
57 i f i s _ l f :
58 i f f o recas t_pa th :
59 pm, ps = l a t e n t _ f a c t o r . g e t _ l f _ f o r e c a s t ( dates . i l o c [ t ] )
60 dlm_n = dlm_dof . g e t _ l f ( dates . i l o c [ t ] ) [ 0 ]
61 phi_samps = generate_ l f_samples (pm, ps ,mod. delVar , dlm_n , nsamps )
62 f o r e c a s t [ : , t − f o r e c a s t _ s t a r t , : ] = forecast_path_l f_sample_dlm (

mod, k=k , X=X[ t + horizons − 1 , : ] , phi_samps=phi_samps )
63 e l s e :
64 i f f o recas t_pa th :
65 f o r e c a s t [ : , t − f o r e c a s t _ s t a r t , : ] = forecast_path_dlm (mod, k=k , X

= X[ t + horizons − 1 , : ] , nsamps=nsamps , approx = Fa lse )
66 e l s e :
67 # Get the f o r e c a s t samples fo r a l l the items over the 1 : k step

ahead marginal f o r e c a s t d i s t r i bu t i on s
68 f o r e c a s t [ : , t − f o r e c a s t _ s t a r t , : ] = np . array ( l i s t (map(
69 lambda k , x : mod. forecas t_marg ina l ( k=k , X=x , nsamps=nsamps ,

mean_only=mean_only ) , horizons , X[ t + horizons − 1 , : ] ) ) )
. squeeze ( ) . T . reshape (−1 , k )

70 i f r e t . __conta ins__ ( ’ new_la ten t_ fac tors ’ ) :
71 fo r l f in new_la ten t_ fac tors :
72 i f ( l f == new_la ten t_ fac tors [ 0 ] ) :
73 l f . g ene r a t e _ l f _ f o r e c a s t ( date=dates [ t ] , mod=mod, X=X[ t + horizons

− 1 ] , k=k , nsamps=nsamps , horizons=horizons , idx = idx )
74 e l s e :
75 l f . g ene r a t e _ l f _ f o r e c a s t ( date=dates [ t ] , mod=mod, X=X[ t + horizons

− 1 ] , k=k , nsamps=nsamps , horizons=horizons )
76 # Now observe the true y value , and update :
77 i f t < len (Y) :
78 i f i s _ l f :
79 pm, ps = l a t e n t _ f a c t o r . g e t _ l f ( dates . i l o c [ t ] )
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80 dlmn = dlm_dof . g e t _ l f ( dates . i l o c [ t ] ) [ 0 ]
81 phis = genera te_get_ l f_samples (pm, ps , mod. delVar , dlmn , nsamps )
82 r t [ t ] = update_lf_sample_dlm (mod, y=Y[ t ] , X=X[ t ] , phi_samps=phis , p a r a l l e l

=Fa l se )
83 i f r e t . __conta ins__ ( ’ model_coef ’ ) :
84 m[ t , : ] = mod.m. reshape (−1)
85 C[ t , : , : ] = mod.C
86 i f family == ’ normal ’ :
87 n [ t ] = mod. n / mod. delVar
88 s [ t ] = mod. s
89 i f r e t . __conta ins__ ( ’ new_la ten t_ fac tors ’ ) :
90 fo r l f in new_la ten t_ fac tors :
91 i f ( l f == new_la ten t_ fac tors [ 0 ] ) :
92 l f . g ene ra t e_ l f ( date=dates [ t ] , mod=mod, Y=Y[ t ] , X=X[ t ] , k=k ,

nsamps=nsamps , idx = idx )
93 e l s e :
94 l f . g ene ra t e_ l f ( date=dates [ t ] , mod=mod, Y=Y[ t ] , X=X[ t ] , k=k ,

nsamps=nsamps )
95 out = [ ]
96 f o r ob j in r e t :
97 i f ob j == ’ f o r e c a s t ’ : out . append ( f o r e c a s t )
98 i f ob j == ’model ’ : out . append (mod)
99 i f ob j == ’model_coef ’ :

100 mod_coef = { ’m’ :m, ’C ’ :C}
101 i f family == ’ normal ’ :
102 mod_coef . update ( { ’n ’ : n , ’ s ’ : s } )
103 out . append (mod_coef )
104 i f ob j == ’ new_la ten t_ fac tors ’ :
105 i f len ( new_la ten t_ fac tors ) == 1 :
106 out . append ( new_la ten t_ fac tors [ 0 ] )
107 e l s e :
108 out . append ( new_la ten t_ fac tors )
109 i f ob j == ’ r t ’ : out . append ( r t )
110 pr in t ( ’ adapt_discount : ’ , mod. adapt_discount , ’ d i s coun t_ fo reca s t ’ , mod.

d i scount_ forecas t , ’ delregn : ’ , mod. delregn , ’ d e l l f : ’ , mod. de l l f , ’ de l t rend : ’ , mod
. del t rend )

111 i f len ( out ) == 1 :
112 re turn out [ 0 ]
113 e l s e :
114 re turn out
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