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Abstract

Bayesian vector autoregressions (BVARs) are an important tool for the modeling of
the macroeconomy. However, for a long time these models could only contain a small
number of variables, otherwise the number of parameters grew to be unwieldy and
estimation became infeasible. This changed when De Mol et al. (2008) showed that
shrinkage could be used to reliably estimate parameters even with a large number of
variables in the BVAR. Several methods of selecting the amount of shrinkage have been
developed that improve on past ad hoc heuristics by taking data-driven approaches.
This paper investigates the merits of two promising methods. The first procedure aims
to find the level of shrinkage that results in a target in-sample fit. The second uses
a hierarchical prior and automatically selects the appropriate amount of shrinkage by
maximizing the marginal likelihood. We find no significant differences in forecasting
performance, short or long-term. Structural analysis shows that both methods can
accurately capture macroeconomic dynamics through the impulse response functions.

The content of this thesis is the sole responsibility of the author and does not reflect the view of

either Erasmus School of Economics or Erasmus University.



Contents

1 Introduction 2

2 Methodology 4

2.1 Defining the priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Choosing the amount of shrinkage . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Forecasting with BVARs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Forecast evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Impulse response functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Data 13

4 Forecasting with BVARs 14

5 Robustness analysis 18

6 Posterior distributions 21

6.1 Posterior distribution of the hyperparameter . . . . . . . . . . . . . . . . . . 21

6.2 Posterior distribution of the VAR coefficients . . . . . . . . . . . . . . . . . 22

7 Structural analysis 23

8 Conclusion 27

A Variables 30

B Derivation of posterior parameters 32

C Additional Results 34

1



1 Introduction

In the field of macroeconomics the vector autoregressive (VAR) model is one of the most

important tools available to the researcher. After Sims (1980) introduced VAR models to

economics they have quickly been adopted for the use of macroeconomic forecasting and

structural analysis. VAR models lend themselves well to capturing the linear interdepen-

dencies of multiple time-series. Without restrictions, the VAR model is very general and

able to capture complex dynamics between the variables, but it has a lot of parameters

that need to be estimated. Since the sample size that is typically available in macroeco-

nomic applications is not enough to reliably estimate a large number of parameters, the

researcher is faced with a dilemma: estimating an overparametrized system that will in-

evitably lead to unstable estimates, or limiting the number of variables, which will in turn

result in an omitted variable bias. Past literature has proposed different solutions to this

problem. One example is to use factor models to impose restrictions on the covariance

structure, reducing the number of parameters to estimate (Forni et al., 2000; Stock &

Watson, 2002). Other solutions often involve other types of restrictions, e.g. exclusion,

exogeneity or homogeneity restrictions (Canova & Ciccarelli, 2004; Dees et al., 2007).

The seminal work of Bańbura, Giannone, and Reichlin (2010) shows that Bayesian

shrinkage can be used to accurately estimate unrestricted VARs, even when they con-

tain a large number of variables. They build on previous research from Litterman (1980,

1986) and others (Doan et al., 1984) that suggests that even for VARs of a modest size

Bayesian shrinkage can improve the forecasting performance. The prior used in the paper

by Bańbura et al. (2010) is based on the Minnesota prior (Litterman, 1979) but is adapted

to include findings from the asymptotic analysis by De Mol, Giannone, and Reichlin (2008).

This analysis shows that as the cross-sectional dimension of a Bayesian regression grows,

the degree of shrinkage should be increased. In Bayesian vector autoregressions (BVARs)

the amount of shrinkage is determined by a prior hyperparameter. The value of this hy-

perparameter is crucial for the performance of the model as it reflects the importance that

the researcher puts on the prior beliefs. The early literature uses mostly ad hoc methods

to set the value for this tightness parameter. Litterman (1980) maximizes the forecasting

performance over a presample, Sims and Zha (1998) use fixed values for hyperparameters,

and Bańbura et al. (2010) choose a value that achieves a desired in-sample fit.

A more inference-based approach to setting the hyperparameter is provided by Gian-

none, Lenza, and Primiceri (2015), they use a hierarchical modeling framework, where

the procedure automatically selects the appropriate amount of shrinkage. Their findings

align with the results in Bańbura et al. (2010) and De Mol et al. (2008), showing that

larger BVARs benefit from more shrinkage. Our research analyzes the impact of different

hyperparameter specifications on model performance in Bayesian vector autoregressions.
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The main focus is on two different methods of estimating BVARs, that only differ in how

the amount of shrinkage is chosen. The first is based on Bańbura et al. (2010), we use a

natural conjugate prior that imposes the beliefs from the Minnesota prior. The shrinkage

parameter is fixed to attain a certain level of in-sample fit. The second method resembles

the hierarchical BVAR from Giannone et al. (2015), where a gamma distribution is set as a

hyperprior for the tightness parameter. There are minor differences between the methods

as they are described in the papers and our application of them. In Bańbura et al. (2010)

an additional prior is set on the sum of coefficients and all prior beliefs are imposed by

adding dummy observations. The hierarchical prior as presented in the second paper has

a lot more than just one hyperparameter, the diagonal elements of the error covariance

matrix and the tightness of two extra priors are all treated as hyperparameters. In our

analysis the additional priors are omitted and we set prior densities on parameters, this

ensures that the only difference across the methods is the way in which the shrinkage is

chosen.

The hierarchical BVAR from Giannone et al. (2015) aims to set the shrinkage at a

level that maximizes the marginal likelihood as a way of ensuring optimal forecasting

performance at a one-step horizon. Putting this approach opposite the targeted fit, we

might expect forecasts made by the hierarchical BVAR to perform better at forecasting

short horizons. While the method from Bańbura et al. (2010) might lead to a more

accurate modeling of the interdependencies of the variables, resulting in more plausible

impulse response functions and more accurate forecasts at further horizons. Slight partial

evidence for this hypothesis can be found in the results of Giannone et al. (2015). Their

findings show that the hierarchical BVAR has a slight edge in performance at forecasting

one step ahead, which is lost for some variables when forecasting four quarters ahead.

The analysis is set up such that the methods differ only in the way shrinkage is se-

lected. The two different procedures, along with a fixed shrinkage BVAR, are evaluated

by estimating VAR models that differ in size. These models are constructed with variables

from a large set of U.S. macroeconomic time series, which contains monthly observations

over the period 1960-2003. The estimated models are compared based on their ability to

predict key variables at different horizons, up to one year ahead. We look at point fore-

casts as well as predictive densities. As a structural analysis, we also investigate the effect

of a monetary policy shock on the system by estimating the impulse response functions

and seeing if they are in line with expectations from literature and theory.

We find that all BVARs can beat the benchmark model of a random walk with drift at

short horizons, but the difference in performance between the BVARs is mostly minimal.

One of the causes for this is that the methods arrive at similar shrinkage values. We also

see that shrinkage can benefit the forecasting performance in VARs with as few as three

variables. Furthermore, we confirm two observations from Bańbura et al. (2010) on larger
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BVARs: as the size of a BVAR increases, 1) the priors should be set tighter to prevent

over-fitting 2) the estimated size of the non-systematic component of monetary policy

decreases.

The remainder of the paper is structured as follows. section 2 explains the priors and

evaluation measures in more detail. section 3 provides more information on the dataset

and defines the VAR models. In section 4 and section 5 we compare the forecasting

performance and conduct a rudimentary robustness analysis. section 6 investigates the

posterior distributions of the parameters, followed by the structural analysis in section 7.

section 8 concludes.

2 Methodology

Vector autoregressive models offer a very general representation and can capture complex

data relationships, but this brings with it the risk of overparametrization. Given the usual

sample size in macroeconomic applications, only a small number of free parameters can be

confidently estimated. Because of this, traditionally, the number of variables that can be

included is very limited. Typically, three to ten variables are used when estimating VARs.

This, in turn, introduces a high potential for omitted variable bias. Bańbura et al. (2010)

show that Bayesian shrinkage allows the handling of large unrestricted VARs. Motivated

by results in De Mol et al. (2008), they increase the tightness of the priors as the models

become larger.

2.1 Defining the priors

Let us first consider a VAR model of order ? for a vector HC containing = dependent

variables,

HC = 2 + �1HC−1 + . . . + �?HC−? + DC for C = 1, . . . , ), (1)

where the =-dimensional residuals DC have a normal distribution with zero mean and co-

variance matrix Var(DC ) = Σ, 2 is an = × 1 vector of intercepts and �1, . . . , �? are = × =
parameter matrices.

It is clear that VAR models are far from parsimonious, there are = equations, each of

which contains 1+=? parameters. This means that a model for 5 dependent variables that

considers 4 lags will already have more than 100 coefficients to estimate. With the limited

sample size that is usually available in macroeconomic applications it becomes hard to

obtain precise estimates, making it necessary to introduce extra prior information into

the system. The applications in this paper use the Bayesian method of imposing prior

densities on the parameters.

Both the method of Bańbura et al. (2010) and Giannone et al. (2015) use the Min-
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nesota prior as a starting point, with adjustments proposed by Kadiyala and Karlsson

(1997) and Sims and Zha (1998). The Minnesota prior was put forward by Robert Litter-

man in the early 80’s and quickly became popular for its simplicity and effectiveness. In

Litterman (1979) he observes that it is common for economic variables to have a random

walk component and proposes to center the equations around a random walk with drift.

This is accomplished by setting the prior mean for the diagonal elements of �1 to 1, for

the remaining coefficients the mean is set at 0. Litterman (1986) argues that it is reason-

able to assume that more recent lags hold more pertinent information in explaining future

values, this belief is incorporated by shrinking the coefficients on lags of a higher order

more towards 0. These beliefs can be represented by the following moment definitions:

Var[(�A )8 9] =
_2

A2

f2
8

f2
9

, (2)

where 8 and 9 are variables indices, and A is the lag length. The coefficients on lags of

different variables are not scale invariant. To account for the differing levels of variability

between the variables, the term f2
8
/f2

9
is included. Here f8 is a measure of the variance of

variable 8, for which Litterman (1986) uses B8, the estimated standard error of the residuals

of an AR(1) model on variable 8. Note that for lags of variables in their own equation,

8 = 9 , so the term f2
8
/f2

9
disappears and the variance of coefficients on the diagonal of �A

is equal to _2/A2.
The hyperparameter _ functions as a tightness parameter that reflects the weight that

the researcher puts on the prior beliefs. For example, if _ = 0, the prior means become

dogmatic and the data has no impact on posterior results. But if we set _ = ∞, estimates

are completely determined by the data and are equal to the estimates obtained from an

ordinary least squares regression. Bańbura et al. (2010) argue that the researcher should

let _ depend on the size of the equation. A larger number of endogenous variables should

correspond to a tighter prior that shrinks more to prevent over-fitting (this is also shown

in De Mol et al., 2008). We let prior variances decrease quadratically with lag order (1/A2).
Early implementations (Kadiyala & Karlsson, 1997; Litterman, 1979) of the Minnesota

prior would sometimes use a linear rate (1/A), but we take the more common view that

the relevance of past observations drops off more quickly.

The specification of the Minnesota prior is completed by choosing a normal distribution

for the coefficients, a diffuse prior on the intercept, and setting the covariance matrix of

the residuals Σ fixed and diagonal, with diagonal elements Σ88 = B
2
8
.

This last condition especially is considered problematic as it is difficult to justify the as-

sumption of uncorrelated errors in a macroeconomic setting. We therefore follow Kadiyala

and Karlsson (1997) in their use of an inverted Wishart distribution as a prior for Σ. This

combination of distributions is known as the Normal-inverse-Wishart prior and it is the
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natural conjugate prior for data that is assumed normal. To implement these priors it

is preferable to use a different representation where the VAR(?) model is stacked over C.

The dependent variables are stacked into a ) × = matrix . = (H1, . . . , H) ) ′, so that row 8

is H′
8
. The regressors are grouped together in -C = (1, H′C−1, . . . , H′C−?) ′, to create vectors of

length : = =? + 1, which are then stacked to form the ) × : matrix - = (-1, . . . , -) ) ′. We

gather the coefficients together in � = (2, �1, . . . , �?) ′ with dimensions : × =, so that (1)

can be written as

. = -� +*, (3)

where * = (D1, . . . , D) ) ′ is the ) × = matrix of innovations.

The normal-inverse-Wishart prior is then defined on these variables by a matricvariate

normal distribution on the coefficient matrix � and an inverted Wishart distribution on

the covariance matrix of the disturbances Σ

�|Σ ∼ "# (V0,Σ ⊗ Ω0) and Σ ∼ �, ((0, 30). (4)

Where "# (·) is the matricvariate normal distribution, to reflect the beliefs described

earlier, its mean V0 is a : × = matrix1 filled mainly with zeros except for the elements

corresponding to the diagonal of �1. The scale matrix of the inverse Wishart distribution,

(0, is diagonal with elements B2
8
. The prior mean of Σ is equal to (0/(30 − =−1), so for the

prior degrees of freedom we choose = + 2, giving a prior mean of (0. The moments from

(2) are then maintained by setting Ω0 = diag(F) and constructing F in the following way

F@ =


_2

A2
1
B2
9

if @ ≠ 1

^ if @ = 1
(5)

where A = b @−2
=
c + 1 and 9 = @ − 1 − b @−2

=
c=. The first element of the diagonal corresponds

to the intercepts and is set to a large number ^ to establish an uninformative prior.

Following Kadiyala and Karlsson (1997) we use the value ^ = 107. With this definition

of Ω the Kronecker product of Σ and Ω reproduces the prior covariances as they were

previously established.

Because this combination of priors is a natural conjugate, the posterior distribution is

1This notation deviates from the convention of using V for the vectorized form of the VAR coefficients �,
instead V0 and V1 denote the prior and posterior means of � and they therefore have the same dimensions
as �.
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of the same form, a conditional matricvariate normal and an inverse Wishart distribution

�|Σ ∼ "# (V1,Σ ⊗ Ω1) and Σ ∼ �, ((1, 31),

where V1 =

(
- ′- +Ω−10

)−1 (
- ′. +Ω−10 V0

)
,

Ω1 =

(
- ′- +Ω−10

)−1
,

(1 = (0 + (. − -V1) ′(. − -V1) + (V1 − V0) ′Ω−10 (V1 − V0) ,

31 = 30 + ).

The derivations of the posterior parameters can be found in Appendix B. From these

definitions it is clear that the posterior variance of the coefficients is inversely proportional

to the term - ′-, which is a measure of the variability in the data, as well as proportional

to the prior variance. While the posterior mean is a weighted average of the prior mean

and the OLS estimate. To elucidate the role of _, consider decomposing Ω0 into two

terms, the shrinkage factor and a covariance matrix that adheres to the beliefs set out

previously, Ω0 = _
2Ω∗. The matrix Ω∗ is constructed in a way very similar to (5), but with

elements 1
A2B2

9

, so this matrix represents the prior belief that coefficients on higher lags

should be shrunk more towards zero. The formulae of the posterior mean and variance of

the coefficients can then be written as

Ω1 =

(
- ′- + 1

_2
Ω∗−1

)−1
V1 =

(
- ′- + 1

_2
Ω∗−1

)−1 (
- ′. + 1

_2
Ω∗−1V0

)
.

From this formulation one can more clearly see the influence of _ on the posterior pa-

rameters. The prior information enters the equations through V0 and Ω∗, the shrinkage

term regulates their weight relative to the information from the observations in the data.

As the hyperparameter is set to smaller values and gets closer to zero, the influence of

the prior becomes more dogmatic until lim_→0 V1 = V0. On the other hand, setting _

at increasingly larger values diminishes the contribution of the prior information in the

posterior parameters, lim_→∞ V1 = (- ′-)−1- ′. = �̂OLS.

In Bańbura et al. (2010) the informativeness of the priors is set at a value that achieves

a desired level of in-sample fit. The authors of Giannone et al. (2015) take a different

approach and make the argument that the tightness of the priors should be treated as

another parameter. They suggest the use of a hierarchical modeling procedure, where

a prior is put on the hyperparameters as well. This method would make it possible to

perform inference on the hyperparameters, giving further insight into the role of prior

distributions. To do so, we would need their posterior. If we let V+ be the vector that
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collects all parameters from the VAR model, and X is a vector of hyperparameters with

corresponding hyperprior ?(X), then the posterior of X is given by

?(X |H) ∝ ?(H |X)?(X). (6)

Here ?(H |X) is the marginal likelihood (ML) of the data, which can be obtained by inte-

grating the parameters V+ out of the joint likelihood

?(H |X) =
∫

?(H |V+, X)?(V+ |X)3V+.

From (6) it is clear that when a flat hyperprior is used, the posterior is proportional to

this marginal likelihood. It can be shown that maximizing the posterior likelihood of

the hyperparameters then becomes equivalent to maximizing the predictive densities of

one-step-ahead forecasts

?(H |X) =
)∏
C=1

?

(
HC |HC−1, X

)
.

The ML is rewritten into the product of conditional densities of the individual observations.

Combined with (6) this shows that, under a flat hyperprior, maximizing the ML equates

to optimizing the predictive capability of the model at the one-step horizon.

2.2 Choosing the amount of shrinkage

In this paper we will focus on two different approaches to setting the amount of shrinkage.

The first focuses on attaining a certain level of in-sample fit. We use the same measure

for fit that is defined in Bańbura et al. (2010). Before we explain this method, we first

define the mean squared forecast error (MSFE)

MSFE =

)∑
C=1

( ĤC − HC )2 .

This metric takes the average of the squared forecast errors over a certain sample, when

measuring forecast performance this can be the sample of a pseudo-out-of-sample forecast-

ing exercise. In this particular instance, we use it as a measure of in-sample fit, meaning

the ĤC are the fitted values in a pre-sample. The specific metric that is used in Bańbura

et al. (2010) is the average of the ratios of the MSFEs obtained by estimating a simple

model and a random walk in a pre-evaluation period. We set the target fit at the level

that is obtained by estimating a small benchmark model with _ = ∞, so that it becomes

equivalent to OLS. The target fit is defined as

Fit =
1

3

∑
8∈I

msfe∞8
msfe08

,
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where msfe_8 is the MSFE score that is achieved for variable 8 over the presample with

shrinkage set at _, and I is defined as the set that contains the three key variables in

the simple model. The uncapitalized letters indicate that this is an MSFE score over the

pre-evaluation period. When we have found the desired level of fit, we then use a grid

search to find the value for _ that best achieves that degree of fit

_ = arg min
_

�����Fit − 1

3

∑
8∈I

msfe_8

msfe08

����� .
This value is then used to estimated the BVAR at each iteration throughout the sample.

Note that when we use this method to find a shrinkage value for the small benchmark

model, it will always select _ = ∞, i.e. no shrinkage.

For the hierarchical BVAR, we do not directly set a value for _, but we impose a

hyperprior.

?(V,Σ, _ |H) ∝ ?(V |Σ, _)?(Σ|_)?(_)?(H |V,Σ, _)

In this case inference on _ can be performed by deriving the marginal posterior. This is

done by integrating the model parameters out of the joint posterior

?(_ |H) =
∫

?(V,Σ, _ |H) 3V 3Σ

Following Giannone et al. (2015) we use a Gamma distribution as a hyperprior. For the

parameters of this distribution we use values that result in the characteristics recommended

by Sims and Zha (1998), a mode of 0.2 and a standard deviation equal to 0.4.

2.3 Forecasting with BVARs

After the models have been estimated there are a two ways in which we create forecasts,

the first is to use the posterior mode of the parameter estimates to compute point fore-

casts. The second method reflects the uncertainty that the Bayesian models put on the

parameter estimates by producing a predictive density. This density is not available in

its unconditional form, so it is approximated by draws that are made using the posterior

distributions. These random draws can then be used for inference.

The posterior mode of the coefficient matrices corresponds to the value that the model

has deemed the most likely after combining the information in the priors and the data.

They are used to create point forecasts of future observations

Ĥ) +1 |) = 2̂ + �̂1H) + . . . + �̂?H) −?+1, for ) = )start, . . . , )end.

Where the hat superscript is used to denote a model estimate and the |) subscript signifies

that the forecast is made at time ) , i.e. only information available at that point is used.
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)start and )end are the first and last observation of the sample used for the pseudo-out-of-

sample forecasting exercise.

Forecasts at horizons further ahead than one step are computed iteratively as follows

ĤC+ℎ |C = 2̂ + �̂1 ĤC+ℎ−1 |C + . . . + �̂? ĤC+ℎ−? |C , for C = )start, . . . , )end, (7)

where ĤC |) is defined as the observed value HC if C ≤ ) , or the model estimate otherwise.

As ℎ increases, observed values get replaced by model predictions of future values.

The predictive densities cannot be analytically evaluated, only conditional posteriors

are available in their analytical form. We can still perform inference on the predictive

likelihoods by drawing from them using two different sampling algorithms. When we

estimate the BVAR with a fixed hyperparameter the posterior density is of a convenient

form, because of the natural conjugate prior. In this case draws can be sampled from the

conditional distribution.

1. Get a draw Σ(8) from its posterior distribution �, ((1, 31).

2. Get a draw � (8) from the conditional posterior distribution "# (V1,Σ(8) ⊗ Ω1).

3. Draw an innovation from a Gaussian noise density: D (8)C ∼ # (0,Σ(8) ).

4. Sample from the predictive density by multiplying with the predictive variables and

adding the innovation draw H
(8)
) +1 |) = -) �

(8) + D (8)
)

.

Repeating these steps # times results in a set {H (8)
) +1 |) }

#
8=1, which can be used as an empir-

ical predictive likelihood. To create forecasts at horizons further than one, use (7) in the

last step, with � (8) = (2̂, �̂1, . . . , �̂?) ′. The series of draws for � and Σ are later used in

the calculation of the impulse response functions. Sampling in the case of the hierarchical

prior is slightly more complicated, since we cannot directly make draws for the hyperpa-

rameter we have to resort to some MCMC algorithm. Giannone et al. (2015) suggest the

following Metropolis-Hastings sampler:

1. Initialize _ (0) at its posterior mode, obtained using numerical maximization. Set

iteration counter, 8 = 1.

2. Draw a candidate value _∗ from the proposal distribution # (_ (8−1) , 2�−1), where �

is the Hessian of the negative of the log-posterior of _ evaluated at the mode, and 2

is a scaling constant.

3. Compute the acceptance probability U (8) = min
{
1, ? (_∗ |H)

? (_(8−1) |H)

}
. Accept the candidate

draw (i.e. _ (8) = _∗) with probability U (8) , otherwise set _ (8) = _ (8−1) .
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4. Draw Σ(8) , followed by � (8) and D (8)C and compute H (8)
C+1 |C using the previous sampling

scheme.

5. Set 8 = 8 + 1, go to 2.

The posterior mode of _ is found by maximization of the marginal likelihood, this is done

in MATLAB with Christopher Sims’ function csminwel.m2, which uses a quasi-Newton

method with BFGS updates of the inverse Hessian. It is designed to be robust against

certain characteristics of likelihood functions that can make optimization difficult. The

final approximation of the inverse Hessian from this function is used for the proposal

distribution. The value of the scaling constant 2 should be chosen to achieve a desired

acceptance rate. It is shown in Gelman et al. (1996) that the optimal acceptance rate for

a univariate target distribution is approximately 44%.

2.4 Forecast evaluation

Evaluation of the point forecasts is performed using the ratios of MSFEs. For the purpose

of this forecasting exercise we provide a more elaborate definition of the MSFE than the

one previously given

MSFE"8,ℎ =
1

)end − )start + 1

)end∑
C=)start

(
Ĥ"
8,C+ℎ |C − H8,C+ℎ

)2
,

where " is the model used to forecast, 8 is a specific variable contained in the model, and

ℎ is the forecast horizon. The subscript |C is used to reflect that only information up to

time C is used in making the forecast. Results are reported relative to a benchmark MSFE:

RMSFE"8,ℎ =
MSFE"8,ℎ

MSFE0
8,ℎ

.

Where MSFE0
8,ℎ is the value of the metric obtained by the benchmark for variable 8 at

horizon ℎ. A value of one for this statistic indicates a forecasting performance on par with

the benchmark, values below one mean that the BVARs perform better.

A metric that is better suited for comparing Bayesian models is the log predictive

score, because it takes into account the uncertainty of the predictions. In Giannone et

al. (2015) the log predictive score is measured using Gaussian approximations for all

predictive densities. To compare the performance of two competing models, we take the

average difference of the scores.

DLPS"1,"2 =
1

)end − )start + 1

)end∑
C=)start

log
?"1 (HC |H)
?"2 (HC |H)

,

2The function and related files are available for download at Christopher Sims’ personal page.
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where ?"8
(HC |H) is the predictive density produced by model "8 evaluated at the realized

value HC .

2.5 Impulse response functions

The estimated VAR models provide us with representations of the macroeconomic vari-

ables and their interdependencies. Because of this they can be used to identify structural

shocks and assess their transmission mechanism. One example of such an application

where this is useful is when policy makers want to investigate the wider effect of a pro-

posed change in monetary policy. This is achieved through a structural analysis using the

impulse response functions (IRFs), these enable us to calculate the effects of an exogenous

shock. Before this can be done, the VAR needs to be rewritten into its structural form.

The goal is to find the effects of a monetary policy shock, so we need to isolate these

effects, which cannot be done with the VAR in (1). Since the assumption of independent

shocks is not reasonable in a macroeconomic setting, the VAR in (1) is structured to have

non-zero dependence, which means a single shock cannot be applied. To remedy this, con-

sider the following. Let % be the lower diagonal Cholesky matrix of the covariance of the

disturbances, i.e. E(DCD′C ) = Σ = %%′. Then 4C = %
−1DC is defined as a linear transformation

of the VAR innovations. Apply the same transformation to the rest of the VAR model in

(1) to get

B0HC = a + B1HC−1 + . . . + B?HC−? + 4C with 4C ∼ # (0, �), (8)

where a = %−12, B0 = %−1, and B8 = %−1�8 for 8 = 1, . . . , ?. The covariance matrix of

the disturbances 4C is diagonal, so a singular shock can be entered into the system. Note

that since % is lower triangular, depending on the order of the variables, some variables

are affected contemporaneously. Therefore, the monetary policy shock is identified using a

standard recursive identification scheme that takes this into account. The scheme works by

dividing the variables in the dataset based on how fast they react to an unforeseen change

in monetary policy. Following Christiano et al. (1999), Bernanke et al. (2005), Stock and

Watson (2005b), we use two categories: fast-moving and slow-moving. The variables are

then ordered as HC = (GC , AC , IC ). Here GC contains the =1 slow-moving variables that are

assumed to not react contemporaneously to the shock in monetary policy, such as prices

and real variables, AC is the monetary policy instrument, and the fast-moving variables are

gathered in IC , these are expected to be affected contemporaneously by the shock. Mostly,

IC are financial variables. In the experiment, the shock is then applied to element =1 + 1

of 4C .

With the appropriate order of variables the IRFs can be correctly computed, similarly

to Canova (1991) and Gordon and Leeper (1994). For each draw (�,Σ) from the posterior,

we calculate % and B8 for 8 = 0, . . . , ?, followed by calculating the effects of the shock on
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the variables

6C+ℎ = a + B16C+ℎ−1 + . . . + B?6C+ℎ−? + 1ℎ=14C+ℎ

Here 6C is used to denote the impact of the shock on the variables, 1ℎ=1 is an indicator

function that takes the value one when ℎ = 1 and zero otherwise. The shock enters through

innovation 4C+1 which has one non-zero element in position =1 + 1.

3 Data

We use the macroeconomic data set from Stock and Watson (2005a), which contains

monthly observations on 131 US macro indicators. The time span covered by this data

set is January 1960 to December 2003. It contains 540 observations on the included

variables. The methods will be tested by using them on models of different sizes. The first

model contains three key variables (Small), a measure of real economic activity (employees

on nonfarm payrolls) a measure of the price level (core consumer price index), and a

measure of monetary policy (federal funds rate). The second model will be medium-size

at 7 variables (Medium), in addition to the three key variables it contains the index of

sensitive material prices and three monetary variables: the total reserves and the non-

borrowed reserves of depository institutions, and the M2 money stock. The third model

consists of 20 variables (Large), it is created by expanding the Medium model with other

macroeconomic variables that enrich the system with information on total consumption

and production, the labor market, the housing market, and the financial markets.

A few of the variables are already expressed in annual rates, these we take in levels. To

the other variables we apply a logarithmic transformation. As discussed in section 2, the

prior means on the coefficients are set to reflect the belief that the random walk with drift

is an accurate approximation of the behavior of the variable. This is true for variables with

a high degree of persistence, but not for variables that are better characterized by a mean-

reverting process. We therefore perform a few statistical tests to determine whether the

random walk prior is correct for every variable in our dataset. We conduct the augmented

Dickey-Fuller test and the Phillips-Perron test that both test for the presence of a unit

root, as well as the Kwiatkowski-Phillips-Schmidt-Shin test with a null hypothesis of

stationarity. The results are in Table 6. Conclusive evidence of stationarity is only shown

for the variable housing starts (HOUST), so when setting the prior mean on the first

coefficient matrix �1, the diagonal element corresponding to this variable is set to 0, while

the other diagonal entries are 1. Table 5 in Appendix A presents the dataset concisely,

it contains all information discussed in this section as well as the categorization into fast-

moving and slow-moving variables for the purpose of the strucural analysis.

The first moment in time that we start estimating and making forecasts is June 1971

()start), at each point from then up until December 2002 ()end), we use the previous 120
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observations to estimate the models and make forecasts for four horizons, up to 12 months

ahead. At each of the 379 observations, the three BVARs of different sizes are estimated

with three methods of determining the amount of shrinkage, resulting in nine estimated

BVARs at every one of those points. Each of these models is then used to make point

forecasts and produce predictive densities for the four different horizons.

4 Forecasting with BVARs

We start off with the evaluation of point forecasts made using the different BVARs. These

methods only differ in how the amount of shrinkage is chosen. The first is based on

Bańbura et al. (2010), here we set _ at the value that best achieves the fit in a presample

of 10 years, from now on this is referred to as BGR. The second method follows Giannone

et al. (2015), at each iteration we maximize the posterior distribution of _, this peak value

is then used for the point forecast, we call this GLP. For the third method we fix the value

of _ at 0.2, the value suggested in Sims and Zha (1998), from now on referred to as Sims.

Table 1: Relative MSFE of point forecasts.

Small Medium Large

Horizon Variable BGR GLP Sims BGR GLP Sims BGR GLP Sims

ℎ = 1 EMPL 0.60∗ 0.54∗ 0.52∗ 0.60∗ 0.60∗ 0.62∗ 0.51∗ 0.52∗ 0.57∗

CPI 0.63∗ 0.53∗ 0.53∗ 0.52∗ 0.52∗ 0.54∗ 0.46∗ 0.50∗ 0.56∗

FED 1.09 0.96 0.97 0.88∗ 0.89∗ 0.86∗ 0.86∗ 0.81∗ 0.85

ℎ = 3 EMPL 0.46∗ 0.46∗ 0.44∗ 0.56∗ 0.55∗ 0.57∗ 0.45∗ 0.45∗ 0.51∗

CPI 0.56∗ 0.51∗ 0.50∗ 0.45∗ 0.46∗ 0.48∗ 0.34∗ 0.41∗ 0.46∗

FED 1.31∗∗ 1.17 1.15 0.95 0.96 0.94 1.01 0.97 1.02

ℎ = 6 EMPL 0.52∗ 0.57 0.55∗ 0.64 0.64 0.67 0.56 0.60 0.68
CPI 0.63 0.55 0.54∗ 0.46∗ 0.46∗ 0.49∗ 0.33∗ 0.38∗ 0.40∗

FED 1.39 1.29 1.26 1.03 1.03 1.03 1.28 1.26 1.38

ℎ = 12 EMPL 0.60 0.74 0.71 0.74 0.76 0.78 0.74 0.83 1.02
CPI 0.70 0.60 0.59 0.53∗ 0.53∗ 0.57 0.37∗ 0.38∗ 0.38∗

FED 1.46 1.43 1.38 1.28 1.27 1.25 1.51 1.52 1.88∗∗

Reported values are relative to the MSFE of a random walk forecast. Results are reported for the variables
employment (EMPL), consumer price index (CPI) and federal funds rate (FED) at forecast horizons of one
month, one quarter, six months, and one year ahead. The methods differ in the way _ is chosen: optimize the fit
in a presample (BGR), maximize the posterior likelihood (GLP), or fixed value _ = 0.2 (Sims). The results are
obtained using different model sizes: Small: 3 variables, Medium: 7 variables, Large: 20 variables. All BVARs
are estimated with five lags (? = 5). For each combination of model, variable, and horizon the lowest score is
printed in boldface. Values below one indicate that the methods outperform the benchmark. Asterisks indicate
whether the difference in predictive ability is significant based on the Diebold-Mariano test.
∗: Null hypothesis of equal predictive accuracy is rejected in favour of the BVAR at a confidence level of 5%.
∗∗: The null hypothesis is rejected in favour of the benchmark at a confidence level of 5%.

The results in Table 1 show the forecasting performance of the BVARs relative to a

random walk with drift. The presented values are ratios of the MSFE statistics of the
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BVARs and the benchmark. We see that all three methods outperform the benchmark

at almost every instance. However, the BVARs seem unable to better forecast the federal

funds rate (FED) at horizons beyond one quarter. None of the three shrinkage methods

consistently outperforms the other two, in a lot of the cases the methods lie very close

together. This is especially true for GLP and Sims in combination with the Small and

Medium model, the reason for this is that the hierarchical model uses shrinkage values

between 0.2 and 0.35, while for Sims the value is fixed at 0.2. Litterman (1986) has

shown that the forecasting performance of a BVAR exhibits little sensitivity to changes

in shrinkage within this range. Another observation we can make is that forecasting

performance for the CPI increases with model size at all horizons, indicating that the

added variables in the larger models contain useful information in predicting the price

level. We run all our VAR models with five lags, in section 5 we show that results are

largely robust to changes in the lag order.

The asterisks in Table 1 mark where the difference in forecasting performance is signif-

icant. The significance is based on a two-sided Diebold-Mariano test with quadratic loss,

the statistics themselves are provided in Appendix C. At the shorter horizons the BVARs

dominate the benchmark in predicting employment and price level. For longer horizons

this difference remains significant only for the price level. Lastly, we note the two instances

where a BVAR is found to be significantly worse than the benchmark. Both occur for the

FED, once at the three-month horizon (Small BGR) and once at the one-year horizon

(Large Sims).

Comparing the point forecasts can be very useful in determining the relative perfor-

mance of models. However, it does not capitalize on one of the great benefits of Bayesian

models, the fact that each model provides a measure of the uncertainty of the forecast.

The log predictive score is a simple measure that allows us to evaluate and compare this

uncertainty. The predictive score is defined as the likelihood that a model puts on the

realized value of a variable, which we compute by evaluating the predictive density at the

observed value. Since the analytical expressions of unconditional predictive densities are

not available, we use Gaussian approximations. This approximation is both simple and a

close representation of the actual density. After taking the logarithms of these scores, we

take the differences between two models to compare them against each other, the averages

of these differences are reported in Table 2. The three different shrinkage methods are

compared against the random walk with drift. A higher log predictive score means that

the model assigned a higher likelihood to the realization of an observed value, therefore a

positive statistic in Table 2 indicates that on average the BVAR outperformed the random

walk prior.

The table also shows HAC estimates of the standard errors to give an indication of

the statistical significance of the results. Looking at the results it is hard to find any
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Table 2: Average difference of log predictive scores.

Small Medium Large

Horizon Variable BGR GLP Sims BGR GLP Sims BGR GLP Sims

ℎ = 1 EMPL 0.31
(0.71)

0.29
(0.65)

0.29
(0.63)

0.26
(0.70)

0.24
(0.73)

0.27
(0.70)

0.32
(0.66)

0.35
(0.68)

0.33
(0.75)

CPI 0.29
(1.03)

0.36
(0.88)

0.36
(0.89)

0.33
(0.87)

0.33
(0.88)

0.33
(0.87)

0.34
(0.86)

0.31
(0.84)

0.27
(0.90)

FED 0.12
(0.42)

0.10
(0.36)

0.11
(0.33)

0.11
(0.33)

0.10
(0.34)

0.14
(0.40)

0.14
(0.35)

0.16
(0.47)

0.15
(0.62)

ℎ = 3 EMPL 0.43
(1.44)

0.35
(1.46)

0.35
(1.42)

0.26
(1.58)

0.22
(1.53)

0.29
(1.61)

0.38
(1.52)

0.37
(1.52)

0.34
(1.58)

CPI 0.61
(2.21)

0.65
(2.05)

0.65
(2.04)

0.64
(1.85)

0.63
(1.86)

0.57
(1.86)

0.71
(1.81)

0.60
(1.82)

0.57
(1.79)

FED −0.11
(0.99)

−0.04
(0.95)

−0.02
(0.94)

0.06
(0.85)

0.05
(0.83)

0.04
(0.97)

0.04
(0.81)

0.07
(0.90)

0.04
(1.05)

ℎ = 6 EMPL 0.67
(2.41)

0.55
(2.64)

0.51
(2.71)

0.45
(2.56)

0.38
(2.47)

0.48
(2.54)

0.55
(2.58)

0.61
(2.66)

0.57
(2.69)

CPI 1.13
(3.83)

1.27
(3.51)

1.28
(3.47)

1.20
(3.05)

1.18
(3.07)

1.10
(3.17)

1.36
(2.81)

1.26
(2.68)

1.21
(2.71)

FED −0.16
(1.48)

−0.13
(1.66)

−0.16
(1.67)

0.01
(1.28)

0.00
(1.26)

−0.01
(1.34)

0.01
(1.38)

0.04
(1.42)

0.00
(1.41)

ℎ = 12 EMPL 1.47
(4.30)

1.19
(4.78)

1.14
(4.56)

1.20
(4.40)

1.16
(4.36)

1.22
(4.29)

1.33
(4.39)

1.36
(4.64)

1.30
(4.66)

CPI 3.29
(8.81)

3.75
(9.00)

3.77
(8.90)

3.33
(7.00)

3.32
(7.00)

3.17
(6.67)

3.60
(6.60)

3.55
(6.59)

3.51
(6.62)

FED 0.00
(2.69)

−0.05
(2.79)

−0.04
(2.84)

0.04
(2.16)

0.11
(2.09)

0.01
(2.02)

−0.06
(1.82)

−0.02
(1.82)

−0.04
(1.93)

Reported are the average differences of the log predictive scores of the three methods when compared against
the random walk with drift. Values are shown for the variables employment (EMPL), consumer price index
(CPI) and federal funds rate (FED) at forecast horizons of one month, one quarter, six months, and one
year ahead. The methods differ in the way _ is chosen, optimize the fit in a presample (BGR), maximize the
posterior likelihood (GLP), or fixed value _ = 0.2 (Sims). The results are obtained using different model sizes,
Small: 3 variables, Medium: 7 variables, Large: 20 variables. All BVARs are estimated with five lags (? = 5)
and predictive densities are evaluated based on 1000 draws. Positive values indicate the BVAR performed
better than the benchmark. Values in parentheses are HAC standard errors.

significant patterns. Most of the scores are positive, which indicates that the three BVARs

outperform the benchmark. However, not even the most positive results surpass half a

standard error. Which does not support the notion that these differences are statistically

significant. Overall, the results in Table 2 are further evidence that the three methods are

very close in their forecasting ability, even when the whole predictive density is considered.

Next we will take a closer look at two specific periods where all methods perform very

poorly, to see if the high forecast errors are the result of the models failing to capture the

macroeconomic dynamics, or an exogenous shock, or if there is a different explanation.

The first occasion is of two subsequent large forecasting errors, which seem to be the result

of a sudden dip in employment in August 1983. Figure 1 shows a plot of the employment

variable from 1982 to 1985 with corresponding forecasts made using the different methods.

The figure shows that over the course of 1982 the variable is tough to forecast on account

of the recession, this is accompanied by an irregular downward slope that is difficult stick

close to. After the economy starts picking up in the first quarter of 1983 the prevailing
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trend is in an upward direction and forecast errors are very minimal, until suddenly there

is drop in August, which appears to be gone entirely the next month. Since the drop is

so unexpected we immediately incur a large forecast error as the models overshoot their

prediction. In the following period the models have incorporated the latest information

and have adjusted accordingly, only to find that employment has reverted to a level that

coincides with the trend that was established in the first half of 1983, resulting in another

large forecast error. It is unlikely that this is the result of an exogenous shock, since

it appears to affect only one observation, it is more plausible that this is caused by an

observational error. Indeed, in The Employment Situation of August 1983, a monthly

report that is published by the Bureau of Labor Statistics, we read that during this month

700,000 communications workers went on a three-week strike. The variable used in our

analysis is defined as the total number of workers on private non-farm payrolls. Since

workers on strike are not on any payroll, they were not counted for this observation, this

resulted in a one-time observational error.

What we further see from this figure is that the different methods are very alike in

their forecasts. Even though there are substantial differences in the amount of shrinkage

between methods for this model, recall that the BGR imposes no shrinkage on the Small

model, there is not much difference to be observed in the actual forecasted values. Another

striking feature of this figure, is the disparity between the accuracy of the forecasts at the

beginning of this subsample and at its end. The apparent cause of this is the change

in economic climate that occurred around the start of 1983. We enter the subsample

in the middle of a recession that started in 1981. Recessions are often accompanied by

macroeconomic turbulence, which makes forecasting more difficult. When the economy

starts picking up again, we see that employment is characterized by a clear upward trend,

all three methods manage to stay close to it, and we observe very minimal forecast errors.

The second period of interest is the three years between 1980 and 1983. The federal

funds rate during this time is characterized by extremely high volatility, which makes it

difficult to model (see Figure 2). Since this rate is set by the Federal Reserve System,

its dynamics are quite different from those of other variables. To understand the large

fluctuations in the interest rate, one has to look at the rate of inflation during this time.

Following the 1973-1975 recession, inflation remained high throughout the rest of the ’70s.

When the energy crisis hit in 1979, inflation shot up even further and the US economy

went into a recession. One of the functions of the federal funds rate is to offset the effects of

high inflation, because of this the FED often follows the movements of the rate of inflation.

This explains why we observe such large changes that result in big forecast errors during

this period.

Contrasting with Figure 1, there are definite differences across methods, in particular

we see that the largest forecast errors are realized by the BGR model. Indeed, when
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Figure 1: A dip in employment in August of 1983.
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Plotted is a subsample showing the observations for log employment and the forecasts made by the different
methods at one step ahead using the Small model.

we revisit Table 1 and Table 2, we can see that they confirm that the BGR method is

comparatively the worst in predicting with the Small model. For the federal funds rate

it even fails to beat the random walk benchmark at any horizon. This may indicate that

even in a BVAR with as few as three variables, forecasting performance benefits from any

amount of shrinkage.

It was previously mentioned that changes in the FED are largely dictated by move-

ments in the rate of inflation. To highlight this, Figure 2 also plots the year-on-year

inflation during this period. If we direct our attention to the inflation series, another

pattern emerges. During the first few years of this subsample, the FED is kept around the

same level as inflation and the predicted values are very close to the observed values. Then

we enter the period of high volatility that was discussed before, after which the inflation

gradually decreases, but the interest rate does not follow suit. For the remainder of this

subsample, the FED stays at a much higher level and we can see that this coincides with

larger forecast errors. Even though both variables are at a stable level and changes are

relatively small, as long as there is a discrepancy between the two variables forecasting

performance remains poor.

5 Robustness analysis

In order to verify the robustness of the previous results, we now investigate the sensitivity

of results to changes in two model parameters. Up until this point we have failed to give

justification for our choice in the number of lags included in the VAR models. The decision
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Figure 2: High volatility in the Federal Funds Rate during the early 80’s.
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Plotted is a subsample showing the observations for the Federal Funds Rate and the forecasts made by
the different methods at one step ahead using the Small model. Also plotted is the year-on-year rate of
inflation.

to use a lag order of five is mainly motivated by computational considerations. With a lag

order of thirteen (the preferred choice in Bańbura et al., 2010) the number of parameters

to estimate for the Large model is over five thousand. However, estimating the Small

and Medium models with thirteen lags remains feasible, Table 3 shows the MSFE ratios

relative to the benchmark.
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Table 3: Robustness check for the number of lags, relative MSFE of point fore-
casts.

Small Medium

Horizon Variable BGR GLP Sims BGR GLP Sims

ℎ = 1 EMPL 0.89 0.54 0.52 0.64 0.58 0.59
CPI 0.97 0.50 0.50 0.55 0.51 0.52
FED 1.42 0.91 0.93 0.85 0.86 0.84

ℎ = 3 EMPL 0.73 0.48 0.45 0.60 0.53 0.55
CPI 0.83 0.47 0.46 0.52 0.45 0.47
FED 1.36 1.13 1.10 0.96 0.92 0.92

ℎ = 6 EMPL 0.81 0.58 0.54 0.80 0.65 0.71
CPI 0.89 0.51 0.49 0.52 0.45 0.48
FED 1.82 1.36 1.28 1.19 1.02 1.05

ℎ = 12 EMPL 0.75 0.65 0.62 1.02 0.81 0.88
CPI 1.03 0.57 0.56 0.58 0.51 0.54
FED 2.34 1.58 1.42 1.65 1.29 1.39

As a robustness check for the number of lags in the BVARs, the Small and Medium models
are run with thirteen lags (? = 13). Values shown are the MSFE’s relative to the MSFE of a
random walk forecast. Results are reported for the variables employment (EMPL), consumer
price index (CPI) and federal funds rate (FED) at forecast horizons of one month, one quarter,
six months, and one year ahead. The methods differ in the way _ is chosen, optimize the fit in
a presample (BGR), maximize the posterior likelihood (GLP), or fixed value _ = 0.2 (Sims).

When we compare these results to those presented earlier in Table 1 we see that there

are very few differences. In most instances the forecasting performance relative to the

random walk with drift barely changes. The notable exception to this is the first column

with results for the Small model with BGR shrinkage. There we see that the additional

lags have led to a decrease in forecasting ability for all three variables at all horizons. This

can be explained through how the shrinkage is set. The method as it is defined in Bańbura

et al. (2010) will always select _ = ∞ for the Small model, which means that in this case

there is no shrinkage. With a model size of only three variables, parameter instability

is not a large concern, unless the number of lags becomes too large. With thirteen lags,

the number of coefficients to estimate has already grown to 120. The results in Table 3

indicate that at that point, forecasting performance suffers in the absence of shrinkage.

For the other two methods we see that the MSFE ratios show signs of improvement in the

majority of cases, however, these improvements are marginal.

The predictive likelihood scores for Table 2 have been calculated with 1000 draws

from the predictive density. The choice for this value also follows from concerns over

computation times, especially in the case of the Large model. To test the robustness of

results to the number of draws, we now calculate the predictive scores for the Small model

using 10,000 draws from the predictive density. These results are in Table 4.
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Table 4: Robustness check for the number of draws from the pre-
dictive density, average difference of log predictive scores.

Horizon Variable BGR GLP Sims

ℎ = 1 EMPL 0.30
(0.70)

0.30
(0.65)

0.29
(0.62)

CPI 0.30
(1.01)

0.37
(0.89)

0.36
(0.89)

FED 0.12
(0.38)

0.11
(0.35)

0.11
(0.32)

ℎ = 3 EMPL 0.43
(1.44)

0.35
(1.45)

0.35
(1.42)

CPI 0.56
(2.20)

0.65
(2.04)

0.65
(2.02)

FED −0.10
(1.00)

−0.03
(0.96)

−0.01
(0.94)

ℎ = 6 EMPL 0.67
(2.40)

0.55
(2.66)

0.54
(2.56)

CPI 1.13
(3.81)

1.27
(3.52)

1.29
(3.45)

FED −0.18
(1.46)

−0.12
(1.62)

−0.15
(1.77)

ℎ = 12 EMPL 1.43
(4.43)

1.22
(4.78)

1.09
(4.74)

CPI 3.29
(8.79)

3.75
(8.95)

3.78
(8.88)

FED 0.00
(2.69)

−0.03
(2.79)

0.02
(2.82)

Reported are the average differences of the log predictive scores of the three
methods when compared against the random walk with drift. Values are shown
for the variables employment (EMPL), consumer price index (CPI) and federal
funds rate (FED) at forecast horizons of one month, one quarter, six months,
and one year ahead. The methods differ in the way _ is chosen, optimize the
fit in a presample (BGR), maximize the posterior likelihood (GLP), or fixed
value _ = 0.2 (Sims). The BVARs are estimated with five lags (? = 5) and the
predictive densities are based on 10,000 draws. Results are shown only for the
three-variable model, because of computational feasibility issues. Positive values
indicate the model performed better than the benchmark. Values in parentheses
are HAC standard errors.

Since there is no change in the model specification or the method of estimation, we

expect there to be no differences between Table 2 and Table 4. This exercise merely serves

to verify that 1000 draws is a large enough sample to not have to worry about sensitivity to

the seed of the random number generator. Indeed, we find barely any differences between

the two tables, neither in the log predictive scores, nor in the standard errors.

6 Posterior distributions

6.1 Posterior distribution of the hyperparameter

As mentioned before, the literature provides both empirical (Bańbura et al., 2010; Gian-

none et al., 2015) and theoretical (De Mol et al., 2008) evidence regarding the shrinkage of

large Bayesian VARs. It has been shown conclusively that in order to protect against high
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estimation uncertainty and overfitting, priors have to be put tighter as the dimensionality

of the BVAR increases. That is why we now turn to investigate the differences in shrinkage

between models and methods.

The values of the shrinkage parameter, _ are plotted in Figure 3. Since the BGR and

Sims methods both select a fixed value at the start of the procedure, there is no difference

in prior and posterior and all probability mass lies at one point. The hierarchical GLP

method puts a proper hyperprior on _ and also produces a posterior distribution for the

hyperparameter. The figure has a subplot for each model size. This makes it easy to see

that as we consider larger BVARs, the methods that automatically infer the tightness opt

for increasingly tighter priors. In the first figure, the value for BGR is not visible as it

is by definition set to infinity, but in the succeeding plots we can see the selected values

move closer to zero. Since the BGR values are chosen to maintain a certain level of fit this

shows that more shrinkage is required to properly fit a larger model. The same is true for

the GLP posterior distributions, while the imposed hyperprior remains the same across

models, both the posterior mode and variance get smaller as the number of variables in the

model increases. Lastly we note that the GLP hyperprior is sufficiently uninformative, it

is largely flat over the range of reasonable values. As to differences between the methods

it is interesting to note that for the Small model there are large differences in chosen

values across methods. However, we saw before that the forecasting ability of BGR with

the Small model is only slightly worse, indicating that the amount of shrinkage is not of

considerable importance in a three-variable model. For the Medium model, both BGR and

GLP arrive at values very close to Sims’ fixed 0.2, this is attested by the great similarity

in performances that we observed for the Medium model in the previous section. Lastly,

for the Large model we see that both dynamic methods have moved away from the Sims

value. Combined with what we noted on the last columns of Table 1 this proves that

for BVARs of this size a higher degree of shrinkage significantly benefits the forecasting

performance.

6.2 Posterior distribution of the VAR coefficients

In this section we look at the distributions of some of the VAR coefficients. Figure 4 and

Figure 5 shows the distributions for the coefficients on two lags of EMPL, CPI, and FED,

in the equations from the Medium model corresponding to these same variables. Plotted in

these figures are the prior and posterior distributions of both the BGR and GLP methods.

The previous section showed that the GLP and Sims method select the same amount of

shrinkage for the Medium model and as a result their coefficient posteriors look almost

identical, to avoid overcrowding in these figures we present only plots for BGR and GLP.

From the previous section we know that BGR selects tighter priors, this is also apparent

from these figures. Especially for the fourth lag the BGR priors can be noted to have
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Figure 3: Posterior distribution of the shrinkage parameter of the Minnesota prior.
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The figures shows plots of the posterior distribution of the shrinkage parameter _ for the BVARs of different
sizes as determined by the hierarchical prior framework. The presented results are for the entire sample
period 1960 - 2003. Also included is the hyperprior, a Gamma distribution with mode 0.2 and standard
deviation 0.4. The values selected by the BGR and Sims methods are plotted as vertical lines, since they
use fixed values. The BGR value for the Small model is _ = ∞, and is therefore not visible in the figure.

higher peaks than the GLP distributions. The posteriors are plotted as histograms of the

samples {� (8) }#
8=1 that were drawn when making draws from the predictive density. From

the figures we can observe that the tighter prior of BGR results in narrower posteriors for

the fourth lag coefficients, but for the first lags the BGR and GLP histograms seem to be

of very similar shape. Most of the time there are slight differences in the mean value, but

sometimes the two histograms almost completely overlap. The figures in the right column

correspond to coefficients from the FED equation, there we see that there are significant

shifts in location from prior to posterior distributions. This is also where the effect of the

tighter BGR prior is most apparent as the mean manages to shift further away under the

looser GLP prior. This may also indicate that the prior values for the mean are too far

of their true values and need to be adjusted, or the priors on these coefficients should be

loosened further.

When we make a comparison between the two figures we notice that the distributions

for coefficients on fourth lags are a lot narrower. We recall that tightness of the priors

increased quadratically with lag length, so the variance of the fourth lag priors is sixteen

times as small. We see that in the first figure most posteriors move away from the mean

value proposed by the prior. In the second figure a lot of the histograms are still centered

around their zero prior values, but not all of them. This indicates that for most of the

higher order coefficients the zero mean imposed by the prior is appropriate.

7 Structural analysis

VARs are used in the literature not only for forecasting but also as a tool to identify

structural shocks and assess their transmission mechanism. To this end we now investigate

the IRFs, we do this by simulating an exogenous shock to the federal funds rate and

plotting how the estimated models respond to this shock. The exercise consists of adding
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Figure 4: Distributions of the coefficients on the first lags in the Medium model.

These figures show the prior and posterior distributions of selected VAR coefficients. The first row cor-
responds to the coefficients on the first lag of EMPL, the second and third row are for CPI and FED,
respectively. The figures in the first column are for coefficients in the EMPL equation, the second and
third correspond to the equations of CPI and FED, respectively.

Figure 5: Distributions of the coefficients on the fourth lags in the Medium model.

These figures show the prior and posterior distributions of selected VAR coefficients. The first row cor-
responds to the coefficients on the fourth lag of EMPL, the second and third row are for CPI and FED,
respectively. The figures in the first column are for coefficients in the EMPL equation, the second and
third correspond to the equations of CPI and FED, respectively.
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an exogenous shock of one standard deviation, which amounts to approximately 50 basis

points, and calculating the effects over the next 48 months. Figure 6 shows the IRFs as

calculated by the BGR method and the GLP method for the Small model using the entire

sample. Plotted are the IRFs at the posterior mode, as well as the 0.68 and 0.90 coverage

intervals. This figure mainly serves to demonstrate how similar the IRFs of the different

methods are, this is also why there is no figure for the IRFs from Sims. Differences between

BGR and GLP are so small that the plots seem indistinguishable.

Figure 6: Impulse response functions for the Small model.

(a) BGR

(b) GLP

These figures show the impulse response functions to a shock in monetary policy. This shock is
created by an exogenous increase in the federal funds rate (FED) in the Small model. Plotted
are the IRFs calculated at the posterior mode as well as the 0.68 and 0.9 coverage intervals, as
estimated by the BGR and GLP methods.

Therefore, we move on to the discussion of the mechanisms as they are calculated with

the Large model (Figure 7). The increase in the federal funds rate of half a percentage

point simulates a contractionary change in monetary policy. As we would expect, the vari-

ables that measure real economic activity are negatively affected. Employment, income,

consumption, industrial consumption and capacity utilization all show negative responses

that persist for three years or more. An increase in the FED leads to overall higher interest

rates, with the result that people spend less and businesses are less likely to expand now

that borrowing has become more expensive. This causes the economy to slow down. We

expect this reduction in economic activity to also lead to a higher unemployment rate, this

expectation is confirmed by the graph for unemployment. Investors on the stock market

are aware of the mechanisms of the economy and interpret an increase in the FED rate
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Figure 7: Impulse response functions for the Large model calculated by the BGR method.

This figure shows the impulse response functions to a shock in monetary policy in the Large model estimated
with BGR shrinkage. This shock is created by an exogenous increase in the federal funds rate (FED).
Plotted are the IRFs calculated at the posterior mode as well as the 0.68 and 0.9 coverage intervals.

as a signal that business expansions will decline. The more pessimistic prospective view

of the economy is quickly incorporated in stock prices. This is why we see an immediate

drop in the S&P index. The effect on interest rates becomes apparent from the graph of

the yield on 10-year treasury bond, the initial increase is large but fades rather quickly.

The higher borrowing rates also has consequences for the housing market, as mortgages

become more expensive the number of housing starts drops sharply. But after a year,

when the interest rates move back to their previous levels, the housing market recovers.

The FED is a useful tool in combating inflation, when a rise in the rate leads to a

slow-down of the economy, overall demand for goods goes down and prices fall. Indeed,

the graphs show that price levels go down, after some delay we see large drops in the

consumer price index, the producer price index and the PCE deflator, these lower levels

are maintained at least until the end of the four years considered. The effect on the index

of sensitive material prices (PIS) is more immediate, but also more transient. The effective

exchange rate appreciates and it takes more than three years to revert to the pre-shock

level. This is in line with the result from Eichenbaum and Evans (1995) which shows that

a contractionary monetary policy shock leads to significant and persistent appreciation of

exchange rates. Interesting to note is that the effect of the shock on the federal funds rate

itself is highly transitory, while the FED is back at its original level after one year, the

impact on other variables is often much more persistent.

Furthermore, when we compare the graphs produced with the Small model to the

corresponding graphs in Figure 7, we notice that responses become more transient with the
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additional information. This pattern is also observed in Bańbura et al. (2010), who note

that when variables are added to the model the non-systematic component of monetary

policy becomes smaller. To make the comparison easier, we include one final figure where

the impulse response functions are plotted for the three key variables in the three models.

If we take a row of subplots in Figure 8 and follow it from left to right, we can see how

the shape of the IRF changes, in the cases of employment and the federal funds rate the

patterns seems to be as described in Bańbura et al. (2010). The figures of the CPI are less

straightforward. The Medium and Large figures correspond to previous results from the

literature, but in the Small model the effect of the shock is calculated to be much larger

than expected. Moreover, the effect is calculated to be persistent, the maximum horizon

in these figures is four years but the response persists even beyond ten years. Finally, we

note that the confidence intervals indicate that even though there is uncertainty in the

size of the effect, which can be considerable in some cases, there is little doubt about its

sign.

8 Conclusion

The goal of this research was to investigate whether their are any significant advantages

to one of the two developed ways of setting the amount of shrinkage for a Bayesian vector

autoregression. Both methods clearly choose to make the priors tighter as the model size

increases, but there are differences in the exact amount of shrinkage. Results indicate

that already in a small three-variable BVAR results can be improved by shrinking the

model towards a random walk with drift. And for larger models considerable shrinkage is

required to avoid the negative consequences of over-fitting and estimation uncertainty. But

overall, the difference across methods in results such as forecasting performance, posterior

distributions, or impulse response functions is minimal. Confirming Robert Litterman’s

conclusion that forecasting results are not overly sensitive to changes in the shrinkage

parameter (Litterman, 1986).

Both methods have their own shortcomings, the method of Bańbura et al. (2010) as

it is defined now does not impose shrinkage on the smallest model, even when moderate

shrinkage might be appropriate. On the other hand, the hierarchical prior from Giannone

et al. (2015) requires numerical optimization and the running of an MCMC algorithm at

each iteration. Given that the methods are so close to each other in their results, the BGR

method is much more useful when there are limitations to the available computing power.

One limitation of the application of the methods in this paper is the absence of addi-

tional priors that are often used in the VAR literature. The sum-of-coefficients prior and

the dummy-initial-observation prior have both been shown to improve forecasting perfor-

mance in BVARs. Adding these priors would introduce additional hyperparameters, in
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Figure 8: Impulse response functions compared across models.

This figure shows the impulse response functions to a shock in monetary policy for the three different model
sizes estimated with BGR shrinkage. This shock is created by an exogenous increase in the federal funds
rate (FED). Plotted are the IRFs calculated at the posterior mode as well as the 0.68 and 0.9 coverage
intervals.

order to keep this analysis as parsimonious as possible they have been omitted. However,

if the goal were to compare the considered methods under optimal conditions, it would

be appropriate to impose these additional priors. Even if there is little reason to believe

that these extensions would qualitatively change the results, an extended analysis would

provide a more complete answer to our question of interest.
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Appendix

A Variables

Table 5: Descriptions of the variables in the dataset.

Mnemonic Variable Small Medium Log RW Slow/Fast

EMPL Employees on non-farm payrolls + + + + S
CPI Consumer price index, all items less food and energy + + + + S
FED Federal funds rate + + + R
PIS Index of sensitive material prices + + + S
NBORES Non-borrowed reserves + + + F

TOTRES Total reserves + + + F
M2 M2 Money stock + + + F
INC Personal income less transfer payments + + S
CONS Real consumption + + S
IP Industrial production + + S

CAPUTIL Capacity utilization + S
UNEMPL Unemployment rate + S
HOUST Housing starts + S
PPI Producer price index + + S
PCE Personal consumption expenditures price deflator + + S

HOUR Average hourly earnings + + S
M1 M1 Monetary stock + + F
SP S&P common stock price index + + F
YIELD Yield on a 10 year US treasury bond + F
EXR Effective exchange rate + + F

This table gives a description of the dataset used throughout this research. The first two columns give the mnemonic through which
the variable is identified and the description of the variable itself. The next two columns indicate whether a variable is included in
the Small or Medium models. All variables are included in the Large model. The next column tells whether a log transformation is
applied before entering the variable into the model, and the ‘RW’ column shows which variables were assigned the random walk prior.
The last column tells whether a variable is considered slow or fast-moving for the purposes of the structural analysis: S is slow, F is
fast, and R is the monetary policy instrument.
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Table 6: Statistics for stationarity tests.

Variable ADF KPSS PP

EMPL −3.23
(0.08)

8.76∗
(0.01)

−0.79
(0.96)

CPI −0.57
(0.98)

8.84∗
(0.01)

0.53
(1.00)

FED −2.12
(0.53)

1.29∗
(0.01)

−2.26
(0.46)

PIS −2.27
(0.46)

7.86∗
(0.01)

−1.35
(0.88)

NBORES −1.08
(0.93)

8.47∗
(0.01)

−1.14
(0.92)

TOTRES −0.32
(0.99)

8.51∗
(0.01)

−0.37
(0.99)

M2 −0.40
(0.99)

8.80∗
(0.01)

0.12
(1.00)

INC −2.49
(0.35)

8.68∗
(0.01)

−1.96
(0.61)

CONS −2.36
(0.41)

8.73∗
(0.01)

−2.03
(0.58)

IP −2.98
(0.14)

8.33∗
(0.01)

−2.16
(0.51)

CAPUTIL −3.57∗
(0.03)

1.51∗
(0.01)

−2.64
(0.28)

UNEMPL −2.89
(0.17)

1.09∗
(0.01)

−1.92
(0.63)

HOUST −3.49∗
(0.04)

0.21
(0.10)

−3.87∗
(0.01)

PPI −0.40
(0.99)

8.59∗
(0.01)

0.29
(1.00)

PCE −0.62
(0.98)

8.84∗
(0.01)

1.01
(1.00)

HOUR 0.11
(1.00)

8.71∗
(0.01)

1.33
(1.00)

M1 −0.82
(0.96)

8.91∗
(0.01)

−0.10
(0.99)

SP −1.86
(0.66)

8.15∗
(0.01)

−1.66
(0.76)

YIELD −1.64
(0.77)

1.97∗
(0.01)

−1.40
(0.86)

EXR −2.26
(0.46)

4.81∗
(0.01)

−2.25
(0.47)

Test statistics of tests for stationarity with corresponding p-values in paren-
theses. Included are results for the augmented Dickey-Fuller test (ADF), the
Kwiatkowski-Phillips-Schmidt-Shin test (KPSS), and the Phillips-Perron test
(PP). The ADF test tests for the presence of a unit root in the sample, the
alternative hypothesis is that of trend-stationarity. The null hypothesis of the
performed KPSS test is that the time series is stationary, against the alterna-
tive of a unit root. Like ADF, PP tests for the presence of a unit root, the test
statistic that is used is different, but the critical value is the same. All tests are
run on models with five lags.
∗: Null hypothesis is rejected at a confidence level of 5%.

31



B Derivation of posterior parameters

Consider the VAR from section 2 as written in (3)

. = -� +*. (B.1)

Since * = (D1, . . . , D) ) ′, and DC
883∼ # (0,Σ), we have * ∼ # (0,Σ ⊗ �). Therefore, the data

likelihood can be written as

?(. |�,Σ) = (2c)− =)
2 |Σ|−)

2 exp

(
−1

2
tr

[
(. − -�) ′ (. − -�) Σ−1

] )
. (B.2)

Where tr(·) is the trace function. To make upcoming derivations easier, we already split

this likelihood into two components, a conditional normal for � given Σ and an inverse-

Wishart for Σ. We do this using the decomposition rule (. −-�) ′(. −-�) = (. −-�̂) ′(. −
-�̂) + (� − �̂) ′- ′- (� − �̂), where �̂ = (- ′-)−1- ′. is the ordinary least squares estimate

of �. We also drop the integration constant and focus on the kernel:

?(. |�,Σ) ∝|Σ|− :
2 exp

(
−1

2
tr

[
(� − �̂) ′- ′- (� − �̂)Σ−1

] )
(B.3)

|Σ|−)−:
2 exp

(
−1

2
tr

[
(. − -�̂) ′(. − -�̂)Σ−1

] )
.

The two lines above are the kernels of a Normal-Inverse-Wishart distribution with param-

eters

�|Σ, . ∼ #
(
�̂,Σ ⊗ (- ′-)−1

)
, (B.4)

Σ|. ∼ �,
(
(̂, ) − : − = − 1

)
, (B.5)

where (̂ = (. − -�̂) ′(. − -�̂). The likelihood functions of the prior distributions as given

in (4) are as follows

?(�|Σ) = (2c)− :=
2 |Σ|− :

2 |Ω0 |−
=
2 exp

(
−1

2
tr

[
(� − V0) ′Ω−10 (� − V0) Σ−1
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(B.6)
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(0Σ
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Here Γ? (·) denotes the multivariate gamma function. Multiplying the prior distributions

in (B.6) and (B.7) with the data likelihood (B.3) we get a posterior likelihood with the
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following kernel
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As a first step to finding the posterior parameters we gather the terms from the joint

posterior that contain �. Then rearrange the terms so that coefficients can be matched

exp

(
−1

2
tr

[(
(� − �̂) ′- ′- (� − �̂) + (� − V0) ′Ω−10 (� − V0)

)
Σ−1

] )
(B.9)

= exp
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2
tr

[(
(�′- ′-� − 2�′- ′-�̂ + �̂′- ′-�̂) + (�′Ω−10 � − 2�′Ω−10 V0 + V′0Ω−10 V0)

)
Σ−1

] )
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= exp
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Where we used �̂ = (- ′-)−1- ′. to get (B.11).

The posterior density function satisfies the same functional form, because the prior

is a natural conjugate. So for the posterior we know we have a Normal-Inverse-Wishart

distribution as well:

�|Σ, . ∼ # (V1,Σ ⊗ Ω1), (B.12)

Σ|. ∼ �, ((1, 31), (B.13)

with joint probability density function

?(�,Σ|. ) ∝ |Σ|− :
2 exp

(
−1

2
tr[(� − V1) ′Ω−11 (� − V1)Σ−1]

)
|Σ|−
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2 exp
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2
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.

(B.14)

The goal is to match the coefficients of the normal density, the relevant part for this is the

exponent term associated with the conditional normal kernel

exp

(
−1

2
tr[(�′Ω−11 � − 2�′Ω−11 V1 + V1Ω−11 V1)Σ−1]

)
. (B.15)

Now the posterior parameters of the conditional normal can be found by matching coeffi-

cients between (B.11) and (B.15). By matching the quadratic term we find the posterior

variance Ω1 = (- ′- +Ω−10 )−1. If we then match the terms that are linear in � and use the

result of the posterior variance it turns out that V1 = (- ′- +Ω−10 )−1(- ′. +Ω−10 V0).
Once the terms associated with the kernel of the normal distribution are taken out of
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the likelihood, this is what is left

?(Σ|. ) ∝ |Σ|−
) +30+=+1

2 exp

(
−1

2
tr[((0 + (̂ + (̃)Σ−1]

)
, (B.16)

with (̃ = �̂′- ′-�̂ + V′0Ω−10 V0 − V′1Ω−11 V1. (B.17)

The first term is the product of all remaining |Σ| terms, the second term gathers everything

within the exponent, this includes the scale matrix of the prior inverse-Wishart distribu-

tion, the scale matrix from the data likelihood inverse-Wishart distribution, and a term

that is the result of a discrepancy in the constant component after matching coefficients,

(̃. Thus, we have found the parameters of the posterior inverse-Wishart distribution, scale

matrix (1 = (0 + (̂ + (̃ and degrees of freedom 31 = ) + 30.

C Additional Results

Table 7: Diebold-Mariano test statistics of the forecast errors.

Small Medium Large

Horizon Variable BGR GLP Sims BGR GLP Sims BGR GLP Sims

ℎ = 1 EMPL −4.43∗ −5.29∗ −5.60∗ −4.42∗ −4.45∗ −4.09∗ −5.06∗ −4.87∗ −4.07∗

CPI −3.35∗ −4.51∗ −4.50∗ −5.16∗ −5.10∗ −5.00∗ −5.71∗ −5.31∗ −4.84∗

FED 0.76 −0.80 −0.55 −2.27∗ −2.05∗ −2.15∗ −2.21∗ −2.26∗ −1.54

ℎ = 3 EMPL −2.72∗ −2.77∗ −2.90∗ −2.31∗ −2.33∗ −2.14∗ −2.61∗ −2.61∗ −2.29∗

CPI −2.02∗ −2.33∗ −2.34∗ −2.92∗ −2.88∗ −2.81∗ −3.24∗ −3.02∗ −2.82
FED 2.92∗∗ 1.40 1.18 −0.48 −0.38 −0.56 0.04 −0.14 0.07

ℎ = 6 EMPL −2.20∗ −1.91 −2.06∗ −1.62 −1.66 −1.42 −1.82 −1.78 −1.46
CPI −1.47 −1.92 −1.97∗ −2.44∗ −2.43∗ −2.35∗ −2.74∗ −2.58∗ −2.46∗

FED 1.79 1.28 1.12 0.16 0.17 0.13 1.30 1.24 1.68

ℎ = 12 EMPL −1.91 −1.19 −1.37 −1.12 −1.09 −0.89 −1.32 −1.01 0.12
CPI −1.09 −1.55 −1.56 −1.98∗ −2.00∗ −1.93 −2.45∗ −2.37∗ −2.20∗

FED 1.32 1.09 0.91 0.86 0.87 0.86 1.81 1.90 2.22∗∗

Presented are the Diebold-Mariano test statistics related to the results presented in Table 1. To correspond with the MSFE
scores, the test statistics are calculated with a quadratic loss differential. Results are reported for the variables employment
(EMPL), consumer price index (CPI) and federal funds rate (FED) at forecast horizons of one month, one quarter, six
months, and one year ahead. The methods differ in the way _ is chosen, optimize the fit in a presample (BGR), maximize
the posterior likelihood (GLP), or fixed value _ = 0.2 (Sims). The results are obtained using different model sizes, Small:
3 variables, Medium: 7 variables, Large: 20 variables. All BVARs are estimated with five lags (? = 5). Asterisks indicate
whether the difference in predictive ability is significant based on the Diebold-Mariano test.
∗: Null hypothesis of equal predictive accuracy is rejected at a confidence level of 5%.
∗∗: The null hypothesis is rejected in favour of the benchmark at a confidence level of 5%.
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Figure 9: Impulse response functions for the Medium model.

(a) BGR

(b) GLP

These figures show the impulse response functions to a shock in monetary policy. This shock is created by
an exogenous increase in the federal funds rate (FED). Plotted are the IRFs calculated at the posterior
mode as well as the median and the 16th and 84th quantiles.
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Figure 10: Impulse response functions for the Large model.

(a) BGR

(b) GLP

These figures show the impulse response functions to a shock in monetary policy. This shock is created by
an exogenous increase in the federal funds rate (FED). Plotted are the IRFs calculated at the posterior
mode as well as the median and the 16th and 84th quantiles.
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Figure 11: Distributions of the coefficients on the first lags in the Small model.

These figures show the prior and posterior distributions of selected VAR coefficients. The first row cor-
responds to the coefficients on the first lag of EMPL, the second and third row are for CPI and FED,
respectively. The figures in the first column are for coefficients in the EMPL equation, the second and
third correspond to the equations of CPI and FED, respectively.

Figure 12: Distributions of the coefficients on the fourth lags in the Small model.

These figures show the prior and posterior distributions of selected VAR coefficients. The first row cor-
responds to the coefficients on the first lag of EMPL, the second and third row are for CPI and FED,
respectively. The figures in the first column are for coefficients in the EMPL equation, the second and
third correspond to the equations of CPI and FED, respectively.
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Figure 13: Distributions of the coefficients on the first lags in the Large model.

These figures show the prior and posterior distributions of selected VAR coefficients. The first row cor-
responds to the coefficients on the first lag of EMPL, the second and third row are for CPI and FED,
respectively. The figures in the first column are for coefficients in the EMPL equation, the second and
third correspond to the equations of CPI and FED, respectively.

Figure 14: Distributions of the coefficients on the fourth lags in the Large model.

These figures show the prior and posterior distributions of selected VAR coefficients. The first row cor-
responds to the coefficients on the first lag of EMPL, the second and third row are for CPI and FED,
respectively. The figures in the first column are for coefficients in the EMPL equation, the second and
third correspond to the equations of CPI and FED, respectively.
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