
Erasmus University Rotterdam

Erasmus School of Economics

Master of Science Thesis

Business Analytics and Quantitative Marketing

LATS: Low-Resource Abstractive Text

Summarization

Author
C.B. van Yperen
413732

Supervisor
Dr. F. Frasincar

Second assessor
Dr. K. Gruber

Abstract

In this paper we investigate the effectiveness of curriculum learning strategies and data aug-
mentation techniques on the state-of-the-art abstractive text summarization method PE-
GASUS to increase performance with low-resource training datasets. Curriculum learning
strategies require a method to sort training data according to difficulty, which, to the best
of our knowledge, does not exist in current literature for text summarization. Therefore,
we introduce a novel text-summary pair complexity scoring algorithm along with two simple
baseline difficulty measures. We find that our novel complexity sorting method consistently
outperforms the baseline sorting methods. The Baby-Steps curriculum learning strategy with
this sorting method leads to performance improvements of 5.7%, and when combined with the
data augmentation techniques to 6.5%, compared to a baseline of with curriculum learning
or data augmentation and measured in a combined ROUGE F1-score.

Keywords— Abstractive Text Summarization, Curriculum Learning, Low-Resource
Summarization, Complexity Scoring

April 27, 2021

Contents

1 Introduction 3

2 Related work 6
2.1 Abstractive text summarization . 6
2.2 Curriculum learning . 9
2.3 Low-resource text summarization . 10

3 Data 12
3.1 Pre-training corpus . 12
3.2 Training corpus . 13

4 Methodology 15
4.1 The Model . 15

4.1.1 Sequence-to-sequence model . 15
4.1.2 Transformers . 16
4.1.3 PEGASUS . 19

4.2 Pre-training . 19
4.3 Model training . 21

4.3.1 Curriculum learning . 21
4.3.2 Data Augmentation . 24

4.4 Evaluation methods . 25
4.4.1 ROUGE-N . 25
4.4.2 ROUGE-L . 26
4.4.3 Combined ROUGE . 26

5 Results 28
5.1 Complexity scoring . 28
5.2 Summarization results . 31

6 Concluding Remarks 37
6.1 Conclusion . 37
6.2 Further research . 38

A Summarization results 45

1

List of Tables

3.1 CNN/DailyMail dataset summary statistics 13

4.1 An overview of the data augmentation text operations 25

5.1 The results of the curriculum learning complexity scoring strategy hyperpa-
rameter optimisation . 30

5.2 The average occurrence, with the respective standard deviation in brackets, of
each task in the 1000 samples used for the complexity scoring strategy hyper-
parameter optimization. 31

5.3 The ROUGE F1 scores of the various model training strategies applied 34

A.1 Summarization results . 45

List of Figures

4.1 The transformer model architecture. 17
4.2 The attention mechanism . 17

5.1 This figure shows the relative combined ROUGE F1 scores for the complex-
ity scoring hyperparameter comparison for all the weight combinations as de-
scribed in Table 5.1. 31

2

Chapter 1

Introduction

The amount of information available to all individuals with an Internet connection is in-

creasing at an incredible rate. Processing even a tiny proportion of the available information

is a daunting task for many of us. As a large part of this information is text-based, text

summarization (Shi et al., 2020) can help alleviate this task and thereby help to solve many

real-world problems.

Text summarization comes in two forms, extractive and abstractive summarization (Gamb-

hir and Gupta, 2017). The former takes words and/or sentences from the original text and

pastes those together to generate a summary whereas the latter method can additionally gen-

erate new words and change sentences and thus produce a summary using a much broader

vocabulary. Generally, the latter technique results in more grammatically fluent summaries

and is therefore preferable. Because of this, we focus our work on abstractive summarization.

As the amount of digital information is increasing, the sizes of datasets available for

researchers are growing. A vast majority of the prevalent literature concerned with Natural

Language Processing tasks, including the text summarization task, explore the performance

of various models and techniques based on large English training corpora of several hundred

thousand training examples. Although this is a sensible approach in academic literature, in

real-world applications it is often difficult and costly to collect a vast amount of example

text-summary pairs to train a summarization model. Therefore, there is a mismatch between

the datasets used in academic research and those commonly available in potential real-world

applications (Zhang et al., 2019). It would be of great value to close this gap between the state-

of-the-art results achieved in a research setting and the real-world performance of these models

when faced with dataset sizes more common to many organisations worldwide. Closing this

gap would help unlocking the massive potential that lies in the huge amount of data dispersed

over many organisations in relatively small chunks.

When faced with a low-resource situation where a limited amount of training data is

available, and the possibility of gathering more data is excluded, there are two approaches to

explore in order to find solutions to this data scarcity problem. First of all, the available data

3

can be more effectively exploited by training a model in a more efficient manner. A possible

approach to achieve this is a curriculum learning strategy (Bengio et al., 2009). Curriculum

learning is captured in the idea that a machine learning model can be more efficiently trained

by presenting the training data ordered from easy samples to more complex ones instead of in

random order. In addition, the dataset can be artificially expanded by creating new samples

based on the available data such that more training data will become available without the

necessity to collect more data. This strategy of data augmentation has been applied in

multiple research domains and with various types of data (Wang et al., 2020; Aftab and

Siddiqui, 2018; Ramirez et al., 2019). Here, data augmentation techniques can be applied to

generate altered versions of the text-summary pair training data from which the model can

extract new information which leads to further performance improvements.

This research aims to make the abstractive summarization models more accessible to

use cases with smaller amounts of training data by exploring the effectiveness of curriculum

learning strategies and data augmentation techniques that are aimed at increasing the training

efficiency of these models.

We utilise the pre-trained PEGASUS model introduced by Zhang et al. (2019) and the

CNN/DailyMail dataset (Hermann et al., 2015) for further model fine-tuning to optimise the

model for the text summarization task. We select this model because of the state-of-the-

art performance that it achieved after extensive training and because of the relatively high

performance it achieved in the zero-shot setting (a situation where the model is only pre-

trained and not fine-tuned) (Zhang et al., 2019). The fine-tuning of the model is considered

for dataset sizes of 10, 100, and 1,000 training samples. We compare the performance of the

model without any additional techniques with two curriculum learning strategies and three

complexity sorting methods per strategy. In order to apply curriculum learning strategies

on text-summary pairs, a method to determine the complexity of the specific summarization

task is required. To the best of our knowledge, no such method exists in current literature,

therefore we introduce a novel complexity scoring algorithm along with two baseline sorting

methods which are based on the length of the input text and the percentual text reduction

between the original text and the summary.

We found that the One-Pass curriculum learning strategy and the Baby-Steps curriculum

learning strategy in combination with our novel complexity scoring method achieves 4.0%

and 5.7% better performance measured in a combined ROUGE F1 (Lin, 2004) score when

compared to the baseline performance of the model with a 1,000 sample dataset, respectively.

Additionally applying Easy Data Augmentation (EDA) (Wei and Zou, 2019) techniques in-

creased the performances to 6.4% for the One-Pass curriculum and 6.5% for the Baby-Steps

curriculum. Furthermore, we found that the complexity scoring algorithm consistently out-

performs the length and reduction baseline sorting methods for the dataset consisting of 1,000

samples.

4

For the setting with 10 and 100 sample datasets we found that the curriculum learning

strategies in combination with any of our sorting algorithms had a minimal effect due to the

limited variation in the ordering possible with such low amount of data points. Hence, we

conclude that a minimum sample size somewhere between 100 and 1,000 is required to benefit

from the curriculum learning strategy. Applying EDA techniques did result in performance

gains for these sample sizes, however only in combination with the Baby-Steps curriculum

learning strategy. Finally, an examination of the best model generated summary in these low-

resource settings leads to our conclusion that the summaries are promising, but of insufficient

quality to be applied in any real-world applications. The code of our implementation is

available on https://github.com/CBvanYperen/LATS.

The remainder of this paper is organised as follows. Chapter 2 describes the existing

literature concerning abstractive text summarization and curriculum learning strategies. We

describe the data we used and collected in order to perform our research in Chapter 3.

Chapter 4 lays out our methodology, where we describe the model type, pre-training and

training methods, as well as the performance evaluation techniques. In Chapter 5 we discuss

the results and draw conclusions based on our findings. Last, in Chapter 6.1 we conclude our

paper and mention subjects for future research.

5

https://github.com/CBvanYperen/LATS

Chapter 2

Related work

In this Chapter we outline the current related literature. The Chapter is divided into three

Sections which will address the literature concerned with abstractive text summarization,

curriculum learning, and low-resource text summarization. In Section 2.1, a number of notable

approaches to abstractive text summarization are explored, each of which resulted in state-of-

the-art results at the time of publishing. Section 2.2 describes the existing curriculum learning

strategies. Last, Section 2.3 shows other notable research that explored text summarization

specifically in a low-resource setting.

2.1 Abstractive text summarization

One of the earlier work on abstractive text summarization was performed by Banko et al.

(2000) when he used traditional phrase-based machine translation approaches to generate

newspaper article headlines. The machine translation approaches were used because Banko

et al. considered the problem of summarization as analogous to translation where the target

language in this case was still English, the same as the original language, however a much more

compact form of English. Therefore the original text was translated to this “Compact English”

language and thus effectively making abstractive summarizations of the text which could be

used as headlines. This way of looking at the text summarization problem is still applicable

in more recent research as some of the most common text summarization frameworks were

originally applied in the machine translation domain.

Cohn and Lapata (2008) approached the text summarization problem through sentence

compression. At the time, sentence compression was already applied to text summarization,

but the compression of the sentences was limited to word deletion. Therefore, the compression

approaches up until then were all of extractive nature. Cohn and Lapata rewrote the text into

a summary by additionally using word substitution, reordering, and insertion, thus making the

method an abstractive one. In their work, the authors use weighted tree-transformation rules

where the appropriate weights are trained on a novel dataset created by having annotators

6

compress sentences.

Another methodology to create abstractive text summaries was proposed by Woodsend

et al. (2010). This was a solution that contained a quasi-synchronous grammar (Smith and

Eisner, 2006) approach to capture rendering preferences (e.g., paraphrases and compressions)

to ensure a grammatically correct and fluent summary output. In contrast to earlier work,

where the compression and extraction problem was considered merely at a sentence level,

Woodsend et al. allow their methods to operate at a phrase level. Since phrases are shorter

than sentences, the text compression comes more naturally as only important phrases are

selected instead of whole sentences which often would also include ample unimportant infor-

mation which was difficult to filter out when compressing those sentences.

The approaches described thus far all rely on linguistic knowledge to design effective

solutions. Collobert et al. (2011) greatly decreased this dependency on the researcher’s lin-

guistic knowledge when they proposed deep learning as an alternative approach for several

NLP problems. Ever since, researchers have considered deep learning as a viable approach

to text summarization. The tendency towards a deep learning architecture was amplified by

Sutskever et al. (2014) who’s work introduced sequence-to-sequence (seq2seq) models with an

encoder-decoder architecture based on RNNs (Rumelhart et al., 1986). This became the dom-

inant framework for abstractive text summarization (Zhang et al., 2019) and is also applied

plentifully in other NLP tasks such as machine translation.

Various researchers have achieved state-of-the art results by building further upon seq2seq

models with an encoder-decoder architecture. The work of Rush et al. (2015), a collaboration

between Harvard University and the Facebook AI Research team, reported notable results

with an Attention-Based Summarization approach. This approach was developed with the

encoder-decoder architecture as its foundation and used the attention-based encoder of Bah-

danau et al. (2015), whose work introduced an extension to the encoder-decoder model, which

uses a latent soft alignment over the input text to gain additional contextual information for

the summary.

The work of Nallapati et al. (2016) also built further upon the attentional RNN encoder-

decoder model proposed by Bahdanau et al. (2015). The authors implement several im-

provements to the original model which solve certain abstractive text summarization-specific

problems that were not addressed in the model of Bahdanau et al., because it was developed

for machine translation. They applied the large vocabulary ‘trick’ (Jean et al., 2015) which

reduces the computational bottleneck in the softmax layer by focusing on the most frequent

words in the text. In addition, a more elaborate way of embedding words was presented

that included additional features such as parts-of-speech tags, named-entity tags, and Term

Frequency (TF) and Inverse Document Frequency (IDF) statistics in order to better capture

the keywords in a document. Last, the authors present a novel switching generator-pointer

architecture to improve the handling of words that are unseen or rare in the training data

7

text but could be essential for summarising a new text. At the time it was common that,

if a model would not be able to generate a word required for the summary, it would output

an ‘[UNK]’ token as a placeholder, which resulted in ineligible summaries. The generator-

pointer architecture allows the model to switch between generating output from its training

data vocabulary, as long as it was able to generate output based on its training data vocab-

ulary, and pointing to a word in the input text to use in the summary whenever the model

encountered a word not sufficiently represented in the training data vocabulary. The model

uses an activation function to determine whether it should generate or copy a word, and an

attention layer is used to determine which word it should copy if required. Both of these are

trained during the training process and executed at every step of the decoding process, i.e.,

after each word added to the summary the model determines whether the next word should

be generated or copied.

Further work on eliminating issues not yet addressed by abstractive text summarization

models was performed by See et al. (2017). They proposed a hybrid pointer-generator frame-

work, which is a combination of extractive and abstractive text summarization as it has the

ability to copy words from the original text through the pointer mechanism and can also gen-

erate new words not yet seen in the original text. The advantage of copying words from the

original text improves accuracy and handling of out-of-vocabulary words, that is, words that

are present in the input text but have not yet been seen by the model in any of the training

data. Furthermore, a commonly occurring problem in text summarization is the repetition

of words in the summary. See et al. propose a new variant of the coverage vector (Tu et al.,

2016) to keep better track of the text parts that have already been summarised in order to

prevent repetitions in the summary. These novel methods showed an improvement compared

to the work of Nallapati et al. (2016) for the CNN/DailyMail dataset (Hermann et al., 2015).

A recently introduced model is the PEGASUS model and was proposed by Zhang et al.

(2019). The model showed state-of-the-art text summarization results measured by ROUGE

F1 scores across all twelve considered datasets. The PEGASUS model is a seq2seq encoder-

decoder based on Transformers (Vaswani et al., 2017) instead of RNN’s which were used by

Nallapati et al. (2016). An important contribution to their state-of-the-art results was their

novel pre-training method. They pre-trained the model by removing one or more sentences

from the input text and letting the model generate the missing sentences based on the re-

maining text. As this pre-training method does not require training texts to have parallel

summaries, it was possible to pre-train the model on a massive dataset consisting of ∼1.85 bil-

lion texts. The vast majority of the data (∼1.5B) is part of the HugeNews dataset consisting

of articles from news and news-like Web sites.

8

2.2 Curriculum learning

The concept of curriculum learning was introduced by Elman (1993) when he showed that

a neural network could be trained better at the task of learning a grammatical structure by

first training the model on simple sentences and gradually adding more complex sentences.

The final model showed high performance levels even on complex sentences, whereas a model

that was trained with all (simple and complex) sentences in random order showed very poor

performance. A generalization of this idea is that a network can learn a task better when first

presented with easier training data for the task followed by training data gradually increasing

in complexity.

The concept of curriculum learning has gained more attention in recent years because, i.a.,

the complexity of the problems that are considered has increased (Bengio et al., 2009). Bengio

et al. (2009) shows that a curriculum learning strategy can improve vision and language tasks.

Zaremba and Sutskever (2014) show that when considering recurrent neural networks with

LTSM units in a sequence-to-sequence model, as introduced in Sutskever et al. (2014), the

naive curriculum strategy described in the work of Bengio et al. (2009), where training buckets

gradually increase in complexity, did not consistently improve the network performance. The

authors proposed a new curriculum learning strategy that did consistently outperform both

the baseline of no curriculum learning and the naive curriculum learning strategy. This newly

introduced strategy consists of a combination of the naive strategy and randomly selected

samples, such that each bucket has at least some examples of all complexity levels while

the majority of the samples, and thus the average complexity of the bucket, still gradually

increases in complexity. The advantage that this combined strategy gives compared to the

naive strategy, according to the authors, is that since the combined strategy provides at least

some complex examples from the beginning, the network does not specialise too much in the

simple task. The authors provide the following example to illustrate this: If a network is

trained to add two numbers, there is certain memorisation that needs to take place in order

to remember those numbers. For example, if the training data initially consists of 5-digit

numbers, the network might allocate its available memory capacity to five slots, one for each

number. When later presented with a 9-digit number, the memory allocation needs to change

to be able to store all 9-digits. The combined strategy does not require such a memory

reallocation and thus significantly outperforms the naive strategy proposed by Bengio et al.

(2009).

Although curriculum learning is gathering more attention in recent academic literature,

the adoption of the concept is still slow (Graves et al., 2017). Graves et al. (2017) state that

a reason for this could be the sensitivity of the effectiveness of curriculum learning to the

mode of progression through the task. That is, how does one determine which example is

more complex than the others and in which order should one present the training examples

to achieve an optimal result. Therefore Graves et al. propose a stochastic policy to determine

9

which training example should be presented next. The authors found that their method of

using a stochastic syllabus led to significant improvements in the efficiency of a curriculum

learning strategy.

Recent work by Platanios et al. (2019) introduced a curriculum learning strategy for neural

machine translation based on the difficulty of a training sample and the competence of the

model. Thus, a training sample is only presented to the model if the model’s competency at

that moment is sufficient. The competence of a model is measured as a root based function of

the proportion of the training data it has been trained on. The difficulty score of a sentence

is based on the sentence length and the rarity of the words in the sentence. The results of

this curriculum learning approach showed a decrease in training time of 70% compared to no

curriculum learning, while increasing the accuracy of the model. This curriculum learning

strategy can be applied to both RNN and transformer-based models.

2.3 Low-resource text summarization

As the amount of available training data is growing for many tasks within natural language

processing, the performance that models achieve has been increasing rapidly. These systems

all rely on the vast amount of labelled training data to achieve these levels of performance

which makes them very good at a very specific task, but usually the performance on other

tasks than what they have been trained for is mediocre at best. Radford et al. (2019) trained

a transformer based model on a new dataset called WebText containing millions of Web

pages and measured the results that it achieved without any further task specific training on

several NLP problems including text summarization. Here, the model, called GPT-2, achieved

a ROUGE-2 F1 score of 8.27 on the CNN/DailyMail dataset in the zero-shot1 setting. The

model is trained on a large dataset called WebText, consisting of a large amount of scraped

Web pages. As many Web pages and articles include a “TL;DR:” (Too Long; Didn’t Read)

section after which the author writes a summary of the preceding text and the model is a

language model that predicts the next word in a sequence, it is able to understand that if the

input is a text ending with “TL;DR:”, then the words that will follow are a summary, thus

achieving abstractive summary generation without any task-specific training.

Another result for low-resource text summarization was presented by Khandelwal et al.

(2019) who achieved a ROUGE-2 F1 score of 13.1 with a pre-trained decoder-only network.

The decoder-only setting, instead of decoder-encoder setting, forces the same transformer to

both encode the source and generate the summary. This is made possible by appending the

summary (output) to the article (input) such that text summarization can be treated as a

1Zero-shot refers to the situation where the model has been pre-trained on a pre-training task, usually a
different task than the training task, but no further training involving text-summary pairs have taken place
and thus the weights and biases are not adjusted to match the specific task. Since all the pre-training is done
through unsupervised tasks this model is an unsupervised model.

10

language modelling task. Having a decoder-only setting allows all of the parameters, including

the attention layer parameters to be pre-trained before the fine-tuning step and the number of

training samples for the fine-tuning step to be reduced considerably. The authors showed this

by achieving the aforementioned ROUGE-2 F1 score of 13.1 with only 3000 training samples

from the CNN/DailyMail dataset whereas the decoder-encoder framework pre-trained and

trained on the same data achieved a ROUGE-2 F1 score of 2.3.

Lastly, the aforementioned PEGASUS model by Zhang et al. (2019) achieved a ROUGE-

2 F1 score of 13.28 in a zero-shot setting and was able to increase this score to 19.35 with

merely 1000 training samples of the CNN/DailyMail dataset. To the best of our knowledge,

these results make the PEGASUS model the current state-of-the-art performing model in

low-resource abstractive text summarization.

11

Chapter 3

Data

In this Chapter we describe the datasets used in our research. As the PEGASUS model that

we are applying in this research requires both pre-training and training (fine-tuning) we need

two datasets, both with their own requirements. We will build our research upon an already

pre-trained model introduced in Zhang et al. (2019), therefore we will not directly be using

the pre-training dataset. However, as it is a substantial part of our research model we will

address the dataset used for pre-training in Section 3.1. For the training of our model we

require a dataset that consists of texts and parallel summary texts such that the generated

summary can be compared to the actual human-written summary. This dataset is described

in Section 3.2.

3.1 Pre-training corpus

In our research we utilize the pre-trained model provided by Zhang et al. (2019). This model

was pre-trained on a combination of the Colossal Clean Crawled Corpus (C4), introduced in

Raffel et al. (2019), and HugeNews (Zhang et al., 2019) datasets. The pre-training corpus

consists of ∼1.85 billion texts stochastically sampled from the two corpora weighted by the

individual dataset sizes. The pre-training corpus does not include any summaries as the

pre-training task is unsupervised and therefore does not require text-summary pairs. The

pre-training task is described in further detail in Section 4.2.

The first dataset, the Colossal Clean Crawled Corpus (C4), is composed of English texts

from 350 million Web pages. The dataset is based on the Common Crawl Web archive which is

publicly available and contains scraped HTML files from which the markup has been removed.

The HTML files have been scraped from a large variety of domains and as a result contain a

diverse set of Web page content. The majority of these files do not consist of natural language,

therefore Raffel et al. cleaned the dataset by following a number of heuristics which resulted

in the C4 dataset of cleaned natural English language. These heuristics include removing all

sentences that do not end in a terminal punctuation mark or contain less than four words,

12

and discarding pages with less than 5 sentences, containing inappropriate words, containing

programming code, or containing placeholder text such as “lorem ipsum”.

For their work on the PEGASUS framework, Zhang et al. (2019) created a new English

text corpus which comprises of 1.5 billion news and news-like articles between 2013 and 2019.

This dataset is called HugeNews and is the second dataset that is used in the pre-training

corpus. The articles were collected with a Web crawler which scraped news-like articles from

white-listed website domains. These domains range from high quality news websites to high-

school newspapers and blogs.

3.2 Training corpus

For the model fine-tuning, a dataset is required that contains texts with a parallel summary.

For this research we chose to utilize the CNN/DailyMail (CNN/DM) dataset introduced by

Hermann et al. (2015). The CNN/DM dataset contains 287,000 documents, all of which are

articles from either the CNN (∼93,000) or DailyMail (∼220,000) news websites. The reason

these articles are very suitable for the abstractive text summarization task is that both news

websites provide multi-sentence human generated summarizing sentences for each article. This

provides us with a gold standard on which the model can be trained and evaluated. Table 3.1

shows summary statistics for the CNN articles, DM articles, and the combined dataset. The

average text length, average summary length, and reduction percentage are similar in both

datasets which shows that the datasets are well suitable to be combined.

Table 3.1: This table shows the summary statistics concerning the text-summary pair
datasets. The first column shows the number of samples in the dataset, followed by the
average, minimum, and maximum text and summary length. These lengths are measured by
the number of words that a text contains.

Text-summary
pairs

Average length
text

Average length
summary

Average
reduction

Range length
article

Range length
summary

Range
reduction

Full datasets

CNN Dataset 92,541 757 46 79% [20,2529] [7,108] [59%,99%]
DM Dataset 219,506 787 55 91% [9,2865] [7,197] [66%,99%]
CNN/DM Dataset 312,047 778 52 87% [9,2865] [7,197] [59%,99%]

CNN/DM Dataset samples

CNN/DM Dataset 1,000 763 46 92% [32,2072] [11,76] [64%,99%]
CNN/DM Dataset 100 772 46 92% [180,2049] [21,67] [66%,98%]
CNN/DM Dataset 10 923 51 91% [214,2049] [40,58] [77%,97%]

Additionally, Table 3.1 shows the summary statistics of the dataset subsets which have

been used in our research. These were obtained by taking random samples of size 1,000,

100, and 10, from the combined CNN/DM dataset. The data shows that the average values

are similar to the full CNN/DM dataset with some metrics leaning more towards either the

CNN or DM dataset for the dataset consisting of 1,000 and 100 samples. The ranges of the

lengths and reduction is showing a clear shift away from the extreme values resulting in a

13

narrower range for the dataset consisting of 1,000 samples and to an ever further extend

for the datasets consisting of 100 and 10 samples. The latter dataset additionally shows a

deviation from the average length summary which is significantly longer than the average

length in the full dataset. The average length of the summary, however, is closer to the

average of the complete dataset compared to the dataset samples of size 100 and 1,000.

14

Chapter 4

Methodology

In this research a sequence-to-sequence framework with a transformer-based encoder-decoder

architecture is used. The model is pre-trained and then fine-tuned with a variation of curricu-

lum learning strategies and data augmentation techniques. The following Sections delve into

the various components of this framework. Section 4.1.1 describes the sequence-to-sequence

model. Next, Section 4.2 describes the strategies applied to pre-train the model. Thirdly,

Section 4.3 describes the various curriculum learning strategies and data augmentation steps

applied during the model’s training phase. Lastly, Section 4.4 describes the evaluation meth-

ods used to determine the performance of the models.

4.1 The Model

The model we use in this research is the PEGASUS model, as introduced in Zhang et al.

(2019). PEGASUS is a sequence-to-sequence model with a standard transformer encoder-

decoder architecture. Before we describe further details of the PEGASUS model in Section

4.1.3, we first delve further into sequence-to-sequence models in Section 4.1.1 and transformer

architectures in Section 4.1.2.

4.1.1 Sequence-to-sequence model

Sequence-to-sequence models based on a neural network were introduced by Sutskever et al.

(2014) for machine translation and are generally applied to problems where both the input and

output are sequences, although not necessarily of equal length. This is the case for, e.g., text

translation, speech recognition, and text summarization. In the case of text summarization,

the summary (output) clearly must have a different length that the original text (input). It

is called a sequence-to-sequence model as it maps the original text, which is a sequence of

words, to a summary, which is another sequence of words.

Typically, a sequence-to-sequence model consists of two sections: an encoder and a de-

15

coder. The encoder turns the model input into a vector representation, which is then used as

input for the decoder. The decoder turns this vector representation into an output sequence.

In the context of text summarization this would be equivalent to the encoder taking the orig-

inal text as input and transforming it into a vector representation. The decoder takes this

vector representation as input and decodes it to an output summary. In the following section

we will delve further into the details of the encoding and decoding processes.

4.1.2 Transformers

Before Vaswani et al. (2017) introduced transformers, most sequence-to-sequence models

in NLP were based on recurrent neural networks (RNN) (Rumelhart et al., 1986; Werbos,

1990) which was considered the state-of-the-art approach in sequence-to-sequence modeling

(Vaswani et al., 2017). These RNN’s used Long Short-Term Memory (LTSM) (Hochreiter and

Schmidhuber, 1997) or Gated Recurrent Unit (GRU) mechanisms (Cho et al., 2014) which

were developed in order to deal with the vanishing gradient problem (Hochreiter et al., 2001)

that occurs within RNN when dealing with long sequences. Although these models dealt

with the vanishing gradient successfully to a certain extent, there were still some drawbacks

(Vaswani et al., 2017). The most fundamental and impactful drawback being the constraint

of sequential sequence processing. That is, a sequence-to-sequence model based on RNNs

required the input sequence to be processed (encoded and decoded) one element at a time

because the processing of the current element depends on the preceding elements in the se-

quence. Thus, the preceding elements had to be processed first. Although there have been

successful efforts to increase the computational efficiency of these networks, due to the nature

of modern computing systems a process executed sequentially will not achieve the efficiency

levels of a parallel process (Xhafa et al., 2015).

To deal with the previously identified shortcoming of RNNs, Vaswani et al. (2017) intro-

duced transformers which can process the input sequences in parallel, thereby making them

significantly faster. Transformers are able to process sequences in parallel while still manag-

ing to take into account the relevant information from the entire sequence through the use

of a combination of feedforward neural networks (FNN) and an attention mechanism (Bah-

danau et al., 2015), specifically self-attention (Cheng et al., 2016). Self-attention is a concept

which allows the transformer to consider all other words in the sequence and their relation to

the word it is currently processing. By implementing a self-attention layer, the transformer

“knows” that for the 8th word in the sequence it is important to take into account the 2nd

and 5th word in the sequence without having to process any of those words first.

Figure 4.1 shows the model architecture of a transformer. Transformers consist of an

encoder (left) and a decoder (right) stack, both of which are composed of a stack of N

identical layers as is indicated by the “Nx” in the figure. Each encoder layer consists of a

multi-head attention sub-layer and a feed-forward sub-layer. The decoder layer also consists

16

Figure 4.1: The transformer model architecture.

of these two sub-layers and an additional multi-head attention sub-layer to take into account

the output of the decoder. The input of the encoder and decoder is first embedded and

positional encoding is added to the embedding.

The embedding of the input and output sequences converts the text, a string, to a low-

dimensional vector representation which preserves the contextual similarity of words (Press

and Wolf, 2017) such that the algorithm can process the corpus of text. Subsequently, the

embedded vectors are supplemented with a positional encoding (Gehring et al., 2017) which

contains information about the position of each element in the sequence. In this research

we will follow Vaswani et al. (2017) and Zhang et al. (2019), and use sinusoidal positional

encoding. Vaswani et al. (2017) hypothesised that this type of positional encoding would

allow the model capture the relative positions between words well and allow the model to

extrapolate for sequences that are longer than those that encountered during the training

process.

Figure 4.2: The attention mechanism.

The embedded words with positional encoding are then processed by the self-attention

17

layer. Figure 4.2 shows a representation of the scaled dot-product attention mechanism

and the multi-head attention mechanism, which are several parallelized scaled dot-product

attention mechanisms such that multiple input vectors can be processed simultaneously and

thus increase computational efficiency. The scaled dot-product attention mechanism is almost

identical to the dot-product attention mechanism and can be captured with the following

equation;

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V, (4.1)

where Q is a matrix of queries, K is a matrix of keys, V is a matrix of values, and dk

is the dimension of the model. The difference between the scaled dot-product attention

mechanism and the dot-product attention mechanism is the scaling factor 1√
dk

, which improves

the performance of the dot-product attention model for a large dimension (large values of dk)

according to Vaswani et al. (2017). A possible explanation is that the gradients of softmax

function become very small as the dimension and thus the dot-products grow exceedingly

large (Vaswani et al., 2017). The scaling product counteracts this growth of the dot-products

and thus the gradients do not become as small which in turn improves the performance of

the attention mechanism.

The Multi-Head Attention, displayed on the right in Figure 4.2, shows h layers (also

referred to as “heads”) of the scaled dot-product attention. That means that the process that

occurs within the scaled dot-product attention as described above is performed h times in

parallel where each one is initialised randomly. This creates multiple representation subspaces

which improves the models ability to incorporate the information about the position of the

word in a sentence, because each attention head can focus on a separate relationship within

the sentence. To illustrate this point further, consider the sentence “The chicken crossed

the road because it wanted to get to the other side.”, while processing the word “it” in this

sentence there could be one attention head which focuses on the relation between “it” and

“the chicken”, while another head captures the relation between “it” and “wanted”. As this

creates h separate output values, whereas the next layer of the model expects only one input,

the h output matrices are concatenated and multiplied with weight matrix WO which is

trained jointly with the model. This results in a single matrix containing information from

all h attention heads. Equation 4.2 describes this process.

MultiHead(Q,K, V) = Concat(head1, ..., headh)WO

where headi = Attention(QWQ
i ,KWK

i , V W V
i)

(4.2)

The output of the multi-head attention blocks is passed through a fully connected feed-

forward network (Sainath et al., 2015). This output contains information about the position

18

of each word in the sentence and the relation with respect to the other words in the sentence.

Since this information is now all captured in a single matrix, the recurrence of an RNN

is no longer required to capture this information. Using a self-attention layer has several

advantages, first of all they can be parallelized which makes them significantly faster than

RNNs. Furthermore, the distance between the words in a sequence becomes much smaller as

the distance is logarithmic in an FNN and linear in an RNN, which makes it easier to learn

long-term dependencies in an FNN (Vaswani et al., 2017). The feed-forward network consists

of two linear transformations and a ReLU function (Nair and Hinton, 2010) as is shown in

equation 4.3.

FNN(x) = max(0, xW1 + b1)W2 + b2 (4.3)

The last steps in the transformer, shown on the right top in Figure 4.1, consists of a learned

linear transformation and softmax function to convert the output of the decoder feed-forward

network to the probabilities which can be used to predict the next word in the sequence.

4.1.3 PEGASUS

PEGASUS is a transformer based sequence-to-sequence model. There are several parameters

that can be set in this type of model which we will describe in this section. Two versions of

the PEGASUS model have been introduced in Zhang et al. (2019), however, we will use only

the larger model in this research.

As indicated by “Nx” in Figure 4.1, the amount of decoder and encoder layers need to

be specified, PEGASUS consists 12 of these layers. This is only half of the amount of layers

in the BERTLARGE model (Devlin et al., 2019), which is another transformer model widely

applied in Natural Language Processing. Furthermore, the amount of attention heads in the

Multi-Head attention layer is set to 16, BERTLARGE has 12. The dimensionality of the hidden

layers is set to 1024, that is, the size of the output of each encoder and decoder layer is 1024,

this is the same as in BERTLARGE . Last, the size of the feed-forward layer is set to 4096,

which is also the same as in BERTLARGE . The total amount of parameters to be fine-tuned

is 568M.

For optimisation, both pre-training and fine-tuning used Adafactor (Shazeer and Stern,

2018) with square root learning rate decay and a dropout rate of 0.1.

4.2 Pre-training

The essence of training a neural network lies in the ability to find the optimal weights and

biases for each node in the network. This is traditionally done through training on a large

training dataset with, e.g., back-propagation (Rumelhart et al., 1986), where at the beginning

of the training, the weights and biases are initialized randomly. Pre-training gives the network

19

a head-start by training it on a task that is not the same as the main task, but it is similar

enough such that the weights and biases for this task can be used as good starting values

for the main task. Therefore, the subsequent training-phase requires less training data in

order to find the optimal weights and biases for the main task as it starts off closer to the

optimal values. Determining a good pre-training task is more of an art than a science and

is where the work of Zhang et al. (2019) provided a significant contribution by developing a

novel pre-training method, called gap sentences generation.

The gap sentences generation method consists of removing one or more sentences from

a text and then using the remaining text to fill in those gaps in the text. That is, the

remainder of the text is the input data for the model which then generates the missing

sentences as output. The generated sentence can then be compared with the original sentence

and thereby the model can be trained. Zhang et al. (2019) showed that this task is similar

enough to the main task, abstractive text summarization, that this pre-training method leads

to high quality generated summary outputs. The question that remains is which sentence

should be deleted from the original text to achieve optimal results. Zhang et al. (2019)

introduced and compared several approaches. These are the following; (1) masking a random

selection of m sentences, (2) masking the first m sentences, and (3) masking the m most

important sentences, where the importance is determined through the ROUGE-1 F1 (Lin,

2004) score between each sentence and the remainder of the document. The latter method,

called the Principal approach, can be further subdivided into four variations. First of all, the

sentences can be scored independently or sequentially (Nallapati et al., 2017). Additionally,

when calculating the ROUGE-1 F1 score, the n-grams can be considered as a set in order to

prevent identical n-grams to be counted multiple times or simply as a bag where duplicates

are allowed. Thus leading to the four options: (1) independent scoring + set of n-grams,

(2) independent scoring + bag of n-grams, (3) sequential scoring + set of n-grams, and (4)

sequential scoring + bag of n-grams. The methods were compared by pre-training the pre-

training dataset with each approach and fine-tuning the model on four different datasets. All

training and pre-training was done with a batch size of 256 and a learning rate of 5e − 4,

pre-training was done for 500,000 steps and fine-tuning for 50,000 steps. The performance

was measured by a non-weighted average of the ROUGE-1, ROUGE-2, and ROUGE-L F1

scores. The results showed that the principal approach with independently scored sentences

and a bag of n-grams outperformed or performed very similar to the other approaches across

all 4 datasets. Therefore, our research will build further upon the model pre-trained with the

principal gap-sentences approach with independently scores sentences while allowing multiple

identical n-grams.

20

4.3 Model training

The following section outlines the model training approaches that are applied after the pre-

training methods and are aimed at optimising the model’s performance with the smallest

amount of required training samples. Section 4.3.1 describes the curriculum learning concept

and how it is applied in our research where we introduce a novel text-summary pair difficulty

scoring system. Last, Section 4.3.2 describes the data augmentation techniques that are

applied in our research.

4.3.1 Curriculum learning

The concept of curriculum learning is that algorithms, just like humans, learn better when

initially presented with easy examples followed by other examples which gradually increase in

complexity. This idea was introduced by Elman (1993) and the concept has been successfully

applied in various machine learning and NLP applications (Pentina et al., 2015; Spitkovsky

et al., 2010). Although the general concept behind each curriculum learning approach is the

same, many variations exist and have been applied (Cirik et al., 2016; Bengio et al., 2009;

Spitkovsky et al., 2010).

To the best of our knowledge, curriculum learning strategies have not been applied to the

abstractive text summarization problem. Therefore, it is not be possible to directly apply

previously developed methods. However, there are curriculum learning strategies which have

been applied to other natural language processing tasks which we can base our strategy on.

Algorithm 1: One-Pass Curriculum

Result: Trained model based on one-pass curriculum

M = Model

D = Dataset

di = sample i from the dataset

Function C(di):
return complexity score i

D’ = sort(D,C)

{D1, D2, ..., Dk} = D′ where C(da) < C(db), da ∈ Di, db ∈ Dj , ∀i < j Dtrain = ∅
for s = 1, ..., k do

Dtrain = Ds

while model accuracy improved during the last p epochs do

TrainForOneEpoch(M,Dtrain)

end

end

Firstly, a curriculum learning strategy that we will apply is the One-Pass curriculum

21

learning strategy as proposed by Bengio et al. (2009). In this strategy the training data D

is sorted from easy samples to complex samples by a curriculum C which is then divided

into k buckets. The strategy, as proposed by Bengio et al. (2009) would train the model on

the first bucket, containing the simplest training samples, then continue to the next bucket

once it trained on the first bucket for a fixed number of epochs. In this paper we will follow

the modified version with early stopping (Cirik et al., 2016) which means that the training

from a bucket will stop once the accuracy of the model has not improved during the last p

epochs, therefore, allowing it to move to the next bucket of training samples faster in order

to avoid over-fitting on any particular sample bucket. The model accuracy is computed on

a sample held-out from each bucket consisting of 10% of the samples in the bucket. The

training of the model is finalised once all buckets have been used to train the model. The

one-pass curriculum learning strategy pseudo-code is shown in Algorithm 1.

Spitkovsky et al. (2010) proposed another curriculum learning strategy, Baby-Steps cur-

riculum, which is identical to the one-pass curriculum until the moment where the accuracy

of the model does not improve for p subsequent epochs. Whereas the samples in the current

bucket are discarded in the one-pass curriculum strategy, in the baby-steps curriculum the

current bucket’s training samples are merged with the next training bucket, thereby, increas-

ing the average complexity of the training samples through expansion of the total sample pool

instead of replacement of the sample pool as in the one-pass curriculum strategy. Algorithm

2 shows the pseudo-code of the baby steps curriculum strategy.

Algorithm 2: Baby-Steps Curriculum

Result: Trained model based on baby steps curriculum

M = Model

D = Dataset

di = sample i from the dataset

Function C(di):
return complexity score i

D’ = sort(D,C)

{D1, D2, ..., Dk} = D′ where C(da) < C(db), da ∈ Di, db ∈ Dj , ∀i < j

Dtrain = ∅
for s = 1, ..., k do

Dtrain = Dtrain ∪Ds

while model accuracy improved during the last p epochs do

TrainForOneEpoch(M,Dtrain)

end

end

All of the methods above have in common that the training samples need to be sorted

22

by difficulty before the curriculum learning strategy can be implemented. To the best of our

knowledge, a difficulty measure for abstractive text summarization training data is not de-

scribed in existing literature. Therefore, we propose a novel difficulty measure for abstractive

text summarization based on the rewriting operations required to get from the original text

to the summary. The available operations are (1) word deletion, (2) word addition, (3) word

substitution, and (4) word reordering (Cohn and Lapata, 2008). In order to sort the sentences

it would be ideal to capture the difficulty of a text-summary pair in a single number. We

propose to use a weighted sum of the text operations. Naturally, some operations will be

much more common than others and some operations are harder for a model to learn. A

weighted average will therefore give a fairer representation of the difficulty of a text-summary

pair than an unweighted average.

We hypothesise that the magnitude of the weights, from lowest weight to highest weight,

of the text operations are expected to be in the following order:

1. Word deletion;

2. Word reordering;

3. Word substitution;

4. Word addition.

Each of these text operations could be further subdivided into easier and more complex

versions of their respective operation. E.g., we expect that adding the word “the” to a

sentence will be much easier for the model to learn than adding the word “snowstorm”,

simply because the former word is much more common than the latter. However, as there

is certainly value in the simplicity of a ranking system we choose to not delve further into

these possible sublevels of text operations and consider all versions of a text operation as

equivalent. Let us formalise the method described above by defining the complexity (C) of

a training sample (s) as the weighted sum of the text operations word deletion (wd), word

reordering (wr), word substitution (ws), and word addition (wa) as described in Equations

4.4 - 4.6.

C(s) = wwd ∗
∑
i

wdi + wwr ∗
∑
j

wrj + wws ∗
∑
k

wsk + wwa ∗
∑
l

wal (4.4)

wwd, wwr, wws, wwa ∈ [0, 1] (4.5)

wwd + wwr + wws + wwa = 1 (4.6)

The weights of these text operations will be optimized through a random search approach.

We will iterate though 10 randomly generated possible weight combinations within the lim-

itations given by Equations 4.5 and 4.6. Using these weight combinations, 10 sets of 1.000

training samples each are generated and divided into 5 buckets (200 samples per bucket) after

23

sorting them according to the complexity scores using their respective hyperparameters. Each

bucket is trained up to 5 epochs using the one-pass curriculum learning strategy without early

stopping and a checkpoint is created after each epoch. Then the performance of each model

checkpoint will be evaluated on the valuation set and the best checkpoint will be used as the

initialization point of the next bucket. The performance is measured based on a combined

ROUGE F1 score as defined in Section 4.4. In order to incorporate our hypothesis stated in

Section 4.3.1, we add an 11th weight combination into the comparison which is in line with

our hypothesis and has the following weights;

- wwd = 0.1

- wwr = 0.2

- wws = 0.3

- wwa = 0.4.

Finally, two baseline measures will be included in our comparison. Firstly, the length of

the input text, measured in number of words, will be used as a proxy for complexity. Second

of all, the reduction percentage between the input text and human-written summary will

be considered as a complexity proxy. E.g., if a text has 1000 words and the corresponding

summary consists of 50 words, then the reduction percentage is 95%. The input data will be

sorted from low to high based on these values and then the curriculum learning strategies will

be applied. The performance of these methods will then be compared to our novel complexity

scoring method in order to assess its effectiveness to improve performance.

4.3.2 Data Augmentation

Another technique to improve model performance with small training datasets is Data Aug-

mentation (Shorten and Khoshgoftaar, 2019). Data augmentation is a technique to artificially

expand the pool of training samples by altering the existing training samples in some way

without diverting from the original meaning too much. Common applications in image based

training samples include rotating, cropping and mirroring the image. In our research we will

apply the data augmentation techniques for NLP proposed by Wei and Zou (2019). Their

work presents four easy-to-implement data augmentation techniques that create significant

performance improvements for five classification tasks, especially with small datasets. There-

fore we expect that applying similar techniques to our text and summary data could result

in performance improvements in the abstractive summarization task. The four techniques

proposed by Wei and Zou (2019) are (1) Synonym Replacement (SR), (2) Random Insertion

(RI), (3) Random Swap (RS), and (4) Random Deletion (RD). Synonym replacement The

details of the four techniques are outlined in Table 4.1.

24

Operation Description Example Sentence

None
His very rough summary does not do justice
to the original text and its intellectual sophistication.

SR
Choose n words from the sentence at random (excluding stop words).
Replace those words with a randomly selected synonym.

His very unpolished summary does not do justice
to the original text and its intellectual sophistication.

RI
Insert a synonym of a random word in the sentence (excluding stop words)
at a random position in the sentence.
Perform this n times.

His very rough summary does not do elegance justice
to the original text and its intellectual sophistication.

RS
Swap the position of two random words in the sentence.
Perform this n times.

His do rough summary does not very justice
to its original text and the intellectual sophistication.

RD Remove each word in the sentence with probability p.
His rough summary does not do
to the original text and its sophistication.

Table 4.1: This table shows the four operations proposed by Wei and Zou (2019)
and applied in our research. The operations described are Synonym Replacement (SR),
Random Insertion (RI), Random Swap (RS), and Random Deletion (RD). For further

clarification an example sentence is included for each operation.

4.4 Evaluation methods

A metric that is widely applied as an evaluation method for text summarization models is the

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) package introduced by (Lin,

2004). The ROUGE package consists of a precision metric, a recall metric, and an F1 score

which combines the precision and recall scores by calculating their harmonic mean. Several

variations of the ROUGE score exist, the key difference between each variation is the manner

in which the overlap between the generated output and the gold standard output is measured.

In this paper we will be applying the ROUGE-N and ROUGE-L score, as these are commonly

used in existing literature to evaluate abstractive summaries. The ROUGE-N and ROUGE-L

scores are further described in Sections 4.4.1 and 4.4.2, respectively.

4.4.1 ROUGE-N

The ROUGE-N method considers the overlap of N-grams (a sequence of n words) between the

generated summary and the actual summary. The N-gram recall is the amount of overlapping

N-grams divided by the total amount of N-grams in the reference summary, i.e., the human

written summary. The precision measure is calculated by dividing the number of overlapping

N-grams by the total amount of N-grams in the model generated summary. Thus, the recall

measure measures how many of the possible N-grams the model is able to generate and the

precision measure measures how many of the generated N-grams are in the reference summary.

The F1 measure combines these measure into a single value through a harmonic mean. The

three measures are defined in Equations 4.7, 4.8 and 4.9.

F1N−gram =
2

1
recallN−gram

+ 1
precisionN−gram

, (4.7)

25

where

recallN−gram =
number of overlapping N-grams

total N-grams in the reference summary
, (4.8)

and

precisionN−gram =
number of overlapping N-grams

total N-grams in the model summary
. (4.9)

4.4.2 ROUGE-L

The ROUGE-L compares the generated and actual summary, similarly to ROUGE-N, but

does this based on the longest common sub-sequence (LCS) (Cormen et al., 1989). The LCS

is the longest sequence of words that is present in both the reference summary and the model

generated summary. The recall is the LCS divided by the total number of words in the

reference summary (m) and precision is the LCS divided by the total number of words in

the model generated summary (n). The F1 score is the harmonic mean between these two

measures. The three ROUGE-L measures are defined in Equations 4.10, 4.11 and 4.12.

F1LCS =
2

1
recallLCS

+ 1
precisionLCS

, (4.10)

where

recallLCS =
LCS(sentencereference, sentencemodel)

m
, (4.11)

and

precisionLCS =
LCS(sentencereference, sentencemodel)

n
. (4.12)

4.4.3 Combined ROUGE

In this research we follow the measures used by Nallapati et al. (2016) and Zhang et al. (2019),

which are the ROUGE-1 (ROUGE-N with N = 1), ROUGE-2 (ROUGE-N with N = 2) and

ROUGE-L F1-scores. Although we believe that using all three of these measured gives a more

complete evaluation of a summary than using merely one of these scores, it presents us with a

challenge when comparing performance of various models. Namely, three separate scores can

provide inconsistent conclusions when comparing 2 or more models, since different measures

may result in multiple best performing models. Therefore we combine these measures into

a combined ROUGE score (see Equation 4.13) through a weighted average of these three

scores, as was introduced in the code of the implementation of the work of Zhang et al.

(2019) available at https://github.com/google-research/pegasus. The weights are 1 for

the ROUGE-N, and ROUGE-L F1 scores and 2 for the ROUGE-2 F1 score, which is in line

with the work of Zhang et al. (2019). The weights are chosen in favour of the ROUGE-2

F1 score as we believe this score strikes the best balance when evaluating summary quality

between determining whether a model generates the correct words and whether it places

26

https://github.com/google-research/pegasus

them in the correct order. The ROUGE-2 F1 score does not assign any value to a model

that chooses all the correct words but places them in a completely wrong order, however, we

would certainly prefer such a summary to a summary that has none of the correct words.

Therefore, the ROUGE-1 F1 score is still an important measure to include in the combined

ROUGE score. Furthermore, the ROUGE-L F1 score is beneficial to include in the combined

ROUGE F1 score as it captures the value of the longer correct sequences that a model can

generate. For example, a model with merely a ROUGE-1 F1 and ROUGE-2 F1 score would

not be able to differentiate between a model that can generate 7 words in the correct (1-2-3-4-

5-6-7-9-8-10) order compared to a model that can correctly order at most a 4 word sequence

correctly (1-2-3-4-6-5-7-8-9-10).

Combined ROUGE F1 score = R1 + 2 ∗R2 + RL (4.13)

As all the ROUGE scores are proportions, the range of the ROUGE scores is [0, 1]. For

improved readability we scale all the reported ROUGE scores in this paper by 100 (e.g., a

ROUGE score of 0.20567 will be 20.567).

27

Chapter 5

Results

The following section outlines the results of our research. First of all, Section 5.1 outlines

the results of the optimal parameters for our novel summary-text complexity ranking system.

Then, Section 5.2 describes the achieved combined ROUGE F1 scores through the various

strategies and techniques applied to the datasets.

5.1 Complexity scoring

Our novel complexity scoring system required us to set a number of hyperparameters, namely

the weight of each text operation. In order to find the optimal values for these weights we

applied a random search approach as previously described. The resulting scores are shown in

Table 5.1.

Table 5.1 shows that the best overall results were achieved by combination number 4 (in

bold) which was 1.7% above the overall average. The weights that resulted in this highest score

where not particularly close to those anticipated, especially the weight for word additions.

This indicates that the word addition has a smaller impact on the training sample complexity

than we hypothesised. This is likely explained by the fact that the word additions task was far

less common that the word deletion and word reordering task, as shown in Table 5.2. Thus,

although the task is likely still more complex for the model to learn, it is not so important to

learn it because even if the model performs poorly in that task the generated summary can

still be of high quality. With the same logic one might expect that the word deletion task

should receive the highest weight, as it is by far the most common task that the model is

required to perform. However, when comparing the results in Table 5.1 it is clear that this is

not the case as there are several combinations with high weights for the word deletion task (2,

7, and 8), which all show average or below average results. Furthermore, when considering

the low average occurrence and low standard deviation of the word substitution task one can

conclude that the effect of the word substitution weight is very small. This leads us to believe

that the quality of the complexity scoring system is determined by the relative distribution of

28

the weights between the remaining three tasks. Our results indicate the the optimal solution

is a weight combination where similar weights are attached to the word deletion and word

addition task and a weight approximately four times as high to the word replacement task.

One might argue that the word addition task also has a low occurrence in this dataset, and

thus the only relevant weights are those for word deletion and word reordering. However,

when considering combination 5, where the weight of the word reordering task is also four

times as large as that of the word deletion task, we see that the performance is merely average

and significantly worse than that of combination four. If the word addition weight would have

a very minimal effect on the score, just like the word substitution weight, then combination 4

and 5 should be equivalent as the ratio of the only two relevant weights under this assumption

is almost the same (1:4). However, since this is not the case, these results indicate that the

word addition task weight does make a significant impact.

The astute reader might note that, when rounding off the weights of each text operation

to two decimals, we are left with 1,061,106 possible weight permutations. This is a well-known

discrete mathematics problem commonly solved by a “stars-and-bars” approach (see equation

5.1). In order to determine how many ways there are in which one can assign a value between

0 and 1 to four weights such that they sum to 1 let us first consider a single possible solution

as shown in Equation 5.1. In this solution we assign a weight of 0.97 to wwd, 0.01 to wwr,

0.01 to wws, and 0.01 to wwa. We can represent this solution in “stars” and “bars”, where we

split up the numbers into their smallest components, which we chose to be 0.01, and represent

them by stars and use the bars to show where the split is made between the weights. That

is, every star to the left of the first bar represents a value of 0.01 assigned to the first weight,

every star in between the first and second bar represents a value of 0.01 assigned to the second

weight, etc.. Using this representation it becomes clear that the number of possible ways that

we can assign the weights is the same as the number of ways we can place 3 bars among those

100 stars. This is equal to the number of possible permutations of length 3 (3 bars) out of a

set of 103 elements (100 stars + 3 bars), namely 1, 061, 106 (see equation 5.2).

Figure 5.1 shows that the Baby-steps and One-Pass curriculum learning strategies fol-

low a similar pattern for the majority of the combinations, indicating that the effect of the

hyperparameter choice is comparable for both strategies. Although we do not expect both

curriculum learning strategies to have the same optimal hyperparameters, we will continue

our research with the weights of combination four for both curriculum learning strategies as

it gave the highest overall combined ROUGE F1 score.

Although the random search approach has shown to be efficient at finding a solution that

is reasonably close to the optimal solution (Bergstra and Bengio, 2012), we would agree that a

more thorough examination of the optimal weight combination could benefit the performance

of the complexity scoring strategy as we could potentially find a better weight combination.

However, we are unfortunately limited in our time and resources and chose to concentrate

29

Table 5.1: The results of the curriculum learning complexity scoring strategy hyperparam-
eter optimisation. Through a random search approach weight combination 1-10 have been
generated and weight combination 11 has been added based on our hypothesis. The weights
indicate the relative importance given to a text operation. These operations are word dele-
tion (wwd), word reordering (wwr), word substitution (wws), and word addition (wwa). After
sorting a dataset of 1,000 samples using these hyperparameters and separating the samples
into 5 buckets based on their complexity score, the PEGASUS model fine-tuned using the
One-pass and Baby-steps curriculum learning strategy. This resulted in a Rouge-1, Rouge-2,
and Rouge-L F1 score for all weight combinations. All ROUGE scores have been divided by
their mean value across the 11 weight combinations, as this gives easier insight into relative
performance. The scores are aggregated into one score such that comparisons can be made
by adding up the Rouge-1 score, 2 times the Rouge-2 score and the Rouge-L F1 score. The
last row shows the overall score, which consists of the average of the combined scores of the
One-pass curriculum learning strategy and Baby-steps curriculum learning strategy.

Combination 1 2 3 4 5 6 7 8 9 10 11

wwd 0.02 0.52 0.25 0.11 0.02 0.19 0.64 0.33 0.08 0.30 0.10
wwr 0.01 0.06 0.23 0.41 0.08 0.53 0.21 0.19 0.23 0.45 0.20
wws 0.43 0.20 0.41 0.37 0.81 0.02 0.01 0.14 0.57 0.20 0.30
wwa 0.54 0.21 0.11 0.11 0.09 0.26 0.13 0.34 0.12 0.06 0.40

One-Pass Curriculum

Rouge-1 1,003 1,007 1,005 0,994 1,008 0,997 1,001 0,998 0,993 1,003 0,992
Rouge-2 1,009 1,014 1,018 0,987 1,004 0,999 1,004 0,999 0,983 1,004 0,980
Rouge-L 0,996 0,995 0,996 1,124 0,984 0,985 0,991 0,987 0,976 0,990 0,975
Score 1,003 1,006 1,007 1,028 1,000 0,994 0,999 0,995 0,985 1,000 0,983

Baby-Steps Curriculum

Rouge-1 0,994 0,999 0,996 1,006 1,006 1,006 0,986 1,017 1,000 1,001 1,003
Rouge-2 1,000 0,989 0,995 1,004 1,003 1,004 0,985 1,008 0,998 1,017 1,008
Rouge-L 0,995 0,996 1,000 1,007 0,999 1,007 0,991 1,002 1,002 1,005 1,006
Score 0,996 0,995 0,997 1,005 1,003 1,006 0,987 1,010 1,000 1,007 1,005

Overall score 1,000 1,000 1,002 1,017 1,001 1,000 0,993 1,002 0,992 1,003 0,994

our efforts for this paper on other sections of our research. Nonetheless, we would highly

encourage further research into the optimal weight combination by either applying a different

strategy or by increasing the number of random combinations considered.

wwd + wwr + wws + wwa = 1

0.97 + 0.01 + 0.01 + 0.01 = 1

? ? ?... ? ??︸ ︷︷ ︸
97

| ? | ? |? = 1, with ? = 0.01

(5.1)

Number of weight sets = P (103, 3) =
103!

(103− 3)!
= 103 ∗ 102 ∗ 101 = 1, 061, 106 (5.2)

30

Table 5.2: The average occurrence, with the respective standard deviation in brackets, of each
task in the 1000 samples used for the complexity scoring strategy hyperparameter optimiza-
tion.

word deletion word reordering word substitution word additions

Average occurence 287.2 (156.54) 18.31 (5.82) 0.4 (0.62) 4.4 (2.99)

0,97

0,98

0,99

1

1,01

1,02

1,03

1,04

1 2 3 4 5 6 7 8 9 1 0 1 1

CO
M

BI
N

ED
 R

O
U

G
E

F1
 S

CO
RE

COMBINATION

CL COMPLEXITY SCORING COMPARISON
Babysteps One-Pass Overall

Figure 5.1: This figure shows the relative combined ROUGE F1 scores for the complexity
scoring hyperparameter comparison for all the weight combinations as described in Table 5.1.

D(s) = wwd ∗
∑

wd + wwr ∗
∑

wr + wws ∗
∑

ws + wwa ∗
∑

wa (5.3)

wwd, wwr, wws, wwa ∈ [0, 1] (5.4)

wwd + wwr + wws + wwa = 1 (5.5)

5.2 Summarization results

Table 5.3 shows the achieved ROUGE F1 scores for the various training strategies described

in the methodology section of this paper. The first row shows the results with no adaptation

to the original PEGASUS framework and is the baseline against which we compare our other

strategies.

In an ideal situation we would be able to compare our results with the state-of-the-art

results achieved by the PEGASUS model as introduced in Zhang et al. (2019). In order to

fairly compare our results with the results reported there, we would have to use comparable

parameters and hyperparameters in our research. To get their low-resource results, Zhang

31

et al. (2019) used 2,000 training steps and a batch size of 256. This means that 512,000

(2, 000 ∗ 256) training samples have been available to the model for training, e.g., a dataset

of 1,000 examples was trained up to 512 (512, 000/1, 000) epochs. A batch size is the amount

of samples that are being used per iteration on the model parameters. That is, a batch size

of 1 means that after each sample the model updates all the model parameters based on the

result of that single sample. A batch size of 256 means that the parameter adjustments from

256 samples are combined and then used to update all model parameters only once. The

batch size is limited by the available hardware resources such as Graphics Processing Units

(GPUs) or Central Processing Units (CPUs) as the intermediate results of all the samples are

stored on their memory until an entire batch can be processed. The memory stores all the

model parameters, intermediate calculations, model specific optimization variables and then

it additionally needs free working space to process the next sample.

With the hardware resources available to us we are able to train the model with a maximum

batch size of 21, which means that to train on a comparable number of training steps, we

would have to train the model for 256,000 (512, 000/2) steps. This would take us an estimated

114 hours and 284.40 EUR of cloud computing costs to train each model which is infeasible

due to the limited funding and time constraints for this research. Therefore we have opted

run the model made available by Zhang et al. (2019) with a much lower number of steps and

compare our results with those results, such that comparison between the results is meaningful

and relative differences can be shown.

The obvious downside to this approach is that there is no guarantee that any differences

in results achieved on this smaller scale will translate into equivalent results in a setting with

larger batch-sizes and higher number of training steps. However, as there is no indication

that this would not be the case we believe that this small scale comparison is meaningful and

a worthwhile contribution to the existing research literature. Nonetheless, we would highly

encourage other researchers with greater resource availability to perform further research on

this matter.

The curriculum learning strategies have been executed as described in Section 4.3.1 with

p = 3. Thus, if the validation performance of a model has not improved during the last 3

epochs, the algorithm moved forward to the next training bucket. For the dataset with 10

samples we chose to use 2 buckets, for the dataset with 100 samples we use 5 buckets and for

the dataset with 1,000 samples we use 10 buckets. All the results are achieved by testing on

the out-of-sample test set as commonly used when using the CNN/DM dataset (Wang et al.,

2019) consisting of 11,490 samples.

Let us first consider the results of the One-Pass curriculum learning strategy. In the

dataset consisting of 10 samples, the various sorting methods did not result in any major

differences with a 0.1% decrease in performance for a curriculum learning strategy without

1A larger batch size caused the model to run out of memory and throw an error.

32

sorting and a 0.3% increase for all other strategies compared to the baseline performance of

no curriculum learning. This is not surprising, as with such a small dataset a variation in the

sample training order is likely to have limited effects. Furthermore, in this case, the length,

reduction, and complexity sorting methods led to the exact same results as all strategies led

to the exact same ordering of the samples. Applying EDA to the complexity scoring strategy

resulted only in a very small score improvement compared to the complexity strategy without

EDA, namely from 78.47 to 78.51. When considering the results for the dataset consisting of

100 samples, Table 5.3 shows that the performance of the CL strategy without any sorting

method is slightly worse than the baseline (No CL) performance (-1.1%). We expect this to

be due to the limited sample, and consequently, bucket size in this training process. The first

buckets determine the starting point for the parameter optimisation process and thus has a

large effect on the final performance. We expect that the limited sample representation in the

initial buckets, due to their small size, resulted in a too narrow representation of summaries for

the model. The remainder of the training sample set seems to not be large enough to correct

for this initial misalignment. This is also the case for the length, reduction, and complexity

strategies, which all resulted in the same result (-1.5%) as all sorting methods ended up

with an identical training bucket distribution. Applying EDA to the dataset in combination

with complexity scoring boosted the performance by 2.0% in comparison to the complexity

scoring strategy without EDA. The final sample size we considered in our research consists

of 1000 samples as shows in Table 5.3. With a dataset of this size we see the hypothesised

performance improvements resulting from the Curriculum Learning strategy and EDA. The

complexity sorting strategy results in an performance improvement of 4.0% compared to the

baseline performance of no curriculum learning strategy. Extending the curriculum learning

strategy with the EDA techniques increased the performance further to a total performance

increase of 6.4% compared to the the no curriculum learning baseline.

The Baby-Steps strategy seems to improve model performance more than the One-Pass

curriculum in most situations. This is likely due to the nature of the algorithm which expands

the training buckets instead of replacing them. Thus, if the number of epochs is equal, the

Baby-Steps curriculum will see the simpler training samples more often than the One-Pass

curriculum. Especially in a low-resource setting, as we are considering, it is not surprising

that this has a positive effect on performance. The samples consisting of 10 and 100 sam-

ples sizes showed similarly limited performance differences as with the one pass curriculum

learning strategy. A major difference between the two strategies is the effect EDA has on the

performance. With the one pass curriculum learning strategy the performance improvement

between the complexity sorting method without EDA and with EDA for the sample sizes

of size 10 and 100 are 0.1% and 2.4%, respectively. When considering the same effects for

the baby-steps algorithm, we see performance improvements of 3.1% and 5.8% for these two

datasets. This again indicates the increased exposure the model has to the simpler examples

33

Table 5.3: The results of the abstractive summarization tasks. The CL strategy indicates the
curriculum learning strategy we used, either One-Pass (CLOP) or Baby Steps (CLBS). The
EDA column indicates whether the data has been augmented with the EDA techniques. The
sorting method column shows the data sorting method for the curriculum learning strategy,
where complexity refers to our novel complexity scoring algorithm and length and reduction
refer to the baseline sorting methods. The score column shows the sum of R1, 2 ∗ R2, and
RL. All results were achieved with a batch size of 2 and learning rate of 5e−4.

CL strategy EDA Sorting method 10 samples 100 samples 1.000 samples

R1 R2 RL Score R1 R2 RL Score R1 R2 RL Score

No CL No None 32.14 12.33 21.44 78.24 32.41 12.58 22.27 79.84 33.21 13.45 23.17 83.28

CLOP No None 32.15 12.29 21.40 78.13 32.16 12.32 21.44 78.24 33.25 13.74 23.38 84.11
CLOP No Length 32.22 12.39 21.47 78.47 32.05 12.24 21.40 77.93 33.33 13.46 23.11 83.37
CLOP No Reduction 32.22 12.39 21.47 78.47 32.05 12.24 21.40 77.93 33.73 13.76 23.30 84.56
CLOP No Complexity 32.22 12.39 21.47 78.47 32.02 12.22 21.47 77.93 34.31 14.25 23.78 86.60
CLOP Yes Complexity 32.24 12.38 21.51 78.51 32.42 12.67 22.07 79.83 34.74 14.72 24.46 88.63

CLBS No None 32.10 12.27 21.50 78.14 32.49 12.60 22.16 79.85 34.65 13.74 23.04 85.17
CLBS No Length 32.06 12.22 21.50 78.00 32.39 12.54 22.08 79.55 34.05 13.42 23.43 84.33
CLBS No Reduction 32.06 12.22 21.50 78.00 32.39 12.54 22.08 79.55 35.51 14.16 24.08 85.48
CLBS No Complexity 32.06 12.22 21.50 78.00 32.13 12.38 21.85 78.74 33.89 14.20 23.93 87.99
CLBS Yes Complexity 32.77 12.79 22.06 80.41 33.39 13.39 23.10 83.27 36.56 13.87 24.43 88.73

is strengthened further by the application of EDA techniques.

An interesting aspect to highlight is the effect of the sorting methods. For this examination

we consider the CLOP and CLBS strategies without any sorting as our baseline performances.

In this comparison we ignore the dataset of 10 samples as the sorting methods resulted in

identical order for each method. In the CLOP strategy for 1000 samples, the length (-0.9%)

and reduction (+0.5%) sorting methods show little difference in performance when compared

to the non-sorted baseline. Thus, we can can conclude that in this setting these sorting meth-

ods have very limited effect on the model’s performance. The complexity sorting algorithm

does show a performance improvement of 3.0% compared to the One-Pass algorithm without

any sorting. Thus, our complexity sorting algorithm seems to have a positive effect on the

model’s performance. Similar results are achieved with the CLBS strategy with 1000 samples,

the length and reduction sorting method resulted in very limited performance differences of

-0.2% and 0.4%, respectively, compared to the CLBS strategy with no sorting strategy. How-

ever, the complexity sorting algorithm does result in a performance improvement of 3.3%

compared to the baseline without a sorting strategy.

Combining the individual effects described the in the previous paragraphs allows us to

compare the final performance compared to the initial baseline performance of no curriculum

learning strategy. The combination of methods that achieves the best performance is the

CLBS strategy with a complexity sorting algorithm and with EDA techniques applied, which

resulted in a performance gain of 6.5% compared to the baseline of no curriculum learning.

The performance gain for the CLOP strategy with the complexity sorting algorithm and EDA

applied is very close with 6.4%.

34

Appendix A shows a few examples of the model generated summaries. We see that

the model is certainly able to shorten certain sections while maintaining the meaning a good

fluency as is shown for example in the case where the original sentence “the football association

will be contacting qpr and chelsea” was summarised by the model as “football association

to contact qPr and chelsea”. The generated texted is objectively shorter and we, of course

subjectively, consider it fluent and equally informative as the original text. Furthermore,

the human written summary includes the sentence “qpr unlikely to face disciplinary action

over the incident” without any elaboration of what “the incident” is, which in our opinion

is an incompleteness in the human written summary. The model generated summary does

incorporate this information through the sentence “football association to contact qPr and

chelsea after incident which saw Branislav ivanovic struck on the head objects were thrown

onto the pitch”, which we would consider a much more informative sentence about “the

incident”. Although these are clearly promising signs in the model generated summaries we

simultaneously have to acknowledge that there are still simple mistakes left in the generated

summaries. An example of this would be that both the text “objects were thrown onto the

pitch by the crowd” and “objects being thrown onto the pitch by the crowd” were in generated

summary A in appendix A.

Summary B in the appendix shows another example of a situation where the generated

summary arguably outperforms the human written summary in a certain aspect. Here the

human written summary includes the sentence “ the girl,dressed in pink, tells man off camera

she has killed 400 fighters”. This information is captured in the generated summary through

the sentence “young girl fires a machine gun at isis militants , claims to have killed 400

fighters”. According to us, the model generated summary outperforms the human written

summary here in terms of conciseness as the detail “dressed in pink” seems redundant and is

not captured by the model generated summary.

In our opinion the best generated summary is generated summary C. We consider this

to be an almost complete and fluent summary: “gold ring found at finns beach club in bali

has been shared 23 thousand times on Facebook The message on the ring is: ’darling joe ,

happy 70th birthday 2009 ,love jenny’ continues the search for joe and jenny”. The only clear

flaw we notice is of grammatical nature as the second sentence implies that “The message”

continues a search for Joe and Jenny as opposed to the woman who wrote the Facebook post.

However, besides this one error we consider it to contain all the relevant information and no

redundant details.

The first two summaries highlight some situation in which the model performs well, how-

ever we must also acknowledge that that the model does still make errors on deciding which

information to include in the summary as is shown in summary C. In this summary the model

included the text “His owner , duane Smith , saystank is a real good one”, which is not a

piece of information that according to us belongs in a well written summary and which is also

35

not present in the corresponding human written summary. Furthermore, generated summary

D shows that the model can sometimes fail to deliver an understandable and informative

summary as the generated summary “NEW : : ’s attorney says defendant ’s plea is not guilty

to murder” is missing almost all relevant information which is present in the human written

summary.

36

Chapter 6

Concluding Remarks

In this final chapter we give some concluding remarks about our research. In Section 6.1 we

present the conclusions that we draw based on the findings described in this paper. Addi-

tionally, multiple topics for further research are outlined in Section 6.2.

6.1 Conclusion

In this research we investigated whether the state-of-the-art summarization models could be

improved by combining these models with methods that are aimed at improving the training

efficiency. We did this by applying curriculum learning strategies in combination with data

augmentation techniques and in order to do so we introduced a novel text-summary pair

complexity scoring algorithm.

Due to resource limitation we were only able to investigate the effects on the state-of-the-

art models in a setting with a lower number of training steps than the amount with which

the model achieved the state-of-the-art results. In this setting we found that our methods

were able to improve the model’s performance and thus, under the assumption that these

improvements would hold up when increasing the number of training steps, allow the model

to achieve new state-of-the-art performance.

We believe that our novel complexity scoring system for text-summary pairs is an impor-

tant step which opens up extensive possibilities for further research into curriculum learning

strategies within text summarization, as well as other applications where a ranking system is

useful. We found that the optimal operation weight assignment gave a much higher weight to

word reordering and word substitution operations, compared to the word deletion and word

addition operations. This implies that the proficiency of a model in the former two tasks are

much more indicative of the summary quality of the model, measured in ROUGE F1 scores,

than the latter two tasks.

We examined the performance of this complexity scoring system by comparing it with

baseline performances of the state-of-the-art PEGASUS model and with baseline scoring

37

systems based on the length and reduction measurements of the test-summary pairs. We found

that our complexity scoring system outperformed the baseline sorting methods up to 5.7%

with 1,000 samples without EDA techniques. Applying the EDA techniques in combination

with the complexity sorting algorithms increasing this improvement up to 6.5%.

6.2 Further research

The first and foremost recommendation we would provide for further research is to apply

the methodology presented in this paper and increase the length of the training process such

that it can be directly compared to the low resource results as presented in Zhang et al.

(2019). In order or achieve this the methods need to be replicated with parameters and

hyperparameters comparable to those reported by Zhang et al.. This will show whether

the performance improvements shown in this paper result in similar improvements when the

models are trained longer and thus whether it results in new state-of-the-art performances.

In addition, the optimisation of the weights in the complexity scoring system should be

investigated further. A more elaborate exploration of the optimal weights using the random

search technique applied in this paper could reveal better weight combinations that lead

to higher performing curriculum learning strategies. Additionally, other methods could be

applied to find these weight combinations such as grid search, Bayesian optimisation, or

meta-heuristic algorithms for optimisation such as Genetic algorithms. A second aspect of

the weight optimisation process which could be improved upon in further research is the

evaluation of the weight combinations, due to resource limitations the performance of each

weight combination was evaluated on a smaller training set than the actual task. Although,

this is a common approach it may result in a weight combination that is not actually the

combination leading to the best performing curriculum learning strategy once it is applied to

the final task. Therefore, an evaluation of the weight combination in a setting which is more

closely related to the actual task may provide more insightful results.

Additionally, we would recommend further research into the optimal representation of

the quality of a summary such that easy comparison is possible, e.g., by having the qual-

ity represented by a single number. In this paper we used a combination of the ROUGE-1,

ROUGE-2, and ROUGE-L F1 scores, with more importance assigned to the ROUGE-2 F1

score. To the best of our knowledge, no research has investigated whether this combination

of these F1 scores is the best representation of the quality of a summary. We believe that this

would be a valuable contribution to the text summarization literature. Firstly, an investiga-

tion could be done into the relevant ROUGE F1 scores, or other measures, that would need

to be included in this representation. E.g., besides the ROUGE-N and ROUGE-L measures,

Lin (2004) additionally introduced the ROUGE-W and ROUGE-S measures, which are rarely

considered in summarization evaluation. ROUGE-W measures a weighted longest common

38

sub-sequence, which allows us to differentiate between consecutive and non-consecutive com-

mon sub-sequences. ROUGE-S measures the Skip-bigrams, which are pairs of words that can

have arbitrary gaps between them. Secondly, the relative importance of each score could be

researched such that they can be combined into a single value.

Lastly, we would consider further research concerned with low resource text summariza-

tion, where well performaning models are combined with techniques aimed at improving train-

ing efficiency, to be a valuable addition to the existing literature. The methods presented in

this paper could be applied to other datasets, both English datasets and other languages, in

order to analyse whether the results achieved with the datasets applied in our research lead to

similar results with other data. Furthermore, there are other techniques available to improve

performance with low resource datasets, including active learning or other curriculum learn-

ing strategies such as “Less is More” and “Leapfrog” (Spitkovsky et al., 2010). All of these

research efforts would contribute to making high quality text summarization more accessible

in real world application without requiring enormous training datasets.

39

Bibliography

Aftab, U. and Siddiqui, G. F. (2018). Big data augmentation with data warehouse: A survey.

In International Conference on Big Data (IEEE 2018), pages 2775–2784. IEEE.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learning

to align and translate. In 3rd International Conference on Learning Representations, (ICLR

2015).

Banko, M., Mittal, V. O., and Witbrock, M. J. (2000). Headline generation based on statistical

translation. In 38th Annual Meeting of the Association for Computational Linguistics (ACL

2000), pages 318–325. ACL.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning. In

26th Annual International Conference on Machine Learning (ICML 2009), volume 382 of

ACM International Conference Proceeding Series, pages 41–48. ACM.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal

of Machine Learning Research, 13:281–305.

Cheng, J., Dong, L., and Lapata, M. (2016). Long short-term memory-networks for machine

reading. CoRR, abs/1601.06733.

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., and

Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statis-

tical machine translation. In 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP 2014), pages 1724–1734. ACL.

Cirik, V., Hovy, E. H., and Morency, L. (2016). Visualizing and understanding curriculum

learning for long short-term memory networks. arXiv preprint, arXiv:1611.06204.

Cohn, T. and Lapata, M. (2008). Sentence compression beyond word deletion. In 22nd

International Conference on Computational Linguistics (COLING 2008), pages 137–144.

ACL.

40

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. P. (2011).

Natural language processing (almost) from scratch. Journal of Machine Learning Research,

12:2493–2537.

Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1989). Introduction to Algorithms. The

MIT Press and McGraw-Hill Book Company.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019). BERT: pre-training of deep

bidirectional transformers for language understanding. In 2019 Conference of the North

American Chapter of the Association for Computational Linguistics (NAACL 2019), pages

4171–4186. ACL.

Elman, J. L. (1993). Learning and development in neural networks: The importance of

starting small. Cognition, 48(1):71–99.

Gambhir, M. and Gupta, V. (2017). Recent automatic text summarization techniques: a

survey. Artificial Intellingence Review, 47(1):1–66.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). In 34th Interna-

tional Conference on Machine Learning (ICML 2017), volume 70 of Proceedings of Machine

Learning Research, pages 1243–1252. PMLR.

Graves, A., Bellemare, M. G., Menick, J., Munos, R., and Kavukcuoglu, K. (2017). Automated

curriculum learning for neural networks. In 34th International Conference on Machine

Learning (ICML 2017), volume 70 of Proceedings of Machine Learning Research, pages

1311–1320. PMLR.

Hermann, K. M., Kociský, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., and

Blunsom, P. (2015). Teaching machines to read and comprehend. In Advances in Neural

Information Processing Systems 28: Annual Conference on Neural Information Processing

Systems (NIPS 2015), pages 1693–1701.

Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J. (2001). Gradient flow in recur-

rent nets: the difficulty of learning long-term dependencies. In A Field Guide to Dynamical

Recurrent Neural Networks. IEEE Press.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation,

9(8):1735–1780.

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2015). On using very large target vo-

cabulary for neural machine translation. In 53rd Annual Meeting of the Association for

Computational Linguistics (ACL 2015) and the 7th International Joint Conference on Nat-

ural Language Processing of the Asian Federation of Natural Language Processing (IJCNLP

2015), pages 1–10. ACL.

41

Khandelwal, U., Clark, K., Jurafsky, D., and Kaiser, L. (2019). Sample efficient text summa-

rization using a single pre-trained transformer. arXiv preprint, arXiv:1905.08836.

Lin, C.-Y. (2004). ROUGE: A package for automatic evaluation of summaries. In Text

Summarization Branches Out, pages 74–81. ACL.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann ma-

chines. In 27th International Conference on Machine Learning (ICML 2010), pages 807–

814. Omnipress.

Nallapati, R., Zhai, F., and Zhou, B. (2017). Summarunner: A recurrent neural network

based sequence model for extractive summarization of documents. In 31st Conference on

Artificial Intelligence, (AAAI 2017), pages 3075–3081. AAAI Press.

Nallapati, R., Zhou, B., dos Santos, C. N., Gülçehre, Ç., and Xiang, B. (2016). Abstrac-

tive text summarization using sequence-to-sequence rnns and beyond. In 20th SIGNLL

Conference on Computational Natural Language Learning (CoNLL 2016), pages 280–290.

ACL.

Pentina, A., Sharmanska, V., and Lampert, C. H. (2015). Curriculum learning of multiple

tasks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015),

pages 5492–5500. IEEE Computer Society.

Platanios, E. A., Stretcu, O., Neubig, G., Póczos, B., and Mitchell, T. M. (2019). Competence-

based curriculum learning for neural machine translation. In 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies (NAACL-HLT 2019), pages 1162–1172. ACL.

Press, O. and Wolf, L. (2017). Using the output embedding to improve language models. In

15th Conference of the European Chapter of the Association for Computational Linguistics

(EACL 2017), pages 157–163. ACL.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language

models are unsupervised multitask learners. OpenAI Blog, 1(8):9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,

and Liu, P. J. (2019). Exploring the limits of transfer learning with a unified text-to-text

transformer. arXiv preprint, arXiv:1910.10683.

Ramirez, J. M., Montalvo, A. R., and Calvo, J. R. (2019). A survey of the effects of data

augmentation for automatic speech recognition systems. In Pattern Recognition, Image

Analysis, Computer Vision, and Applications (CIARP 2019), volume 11896 of Lecture

Notes in Computer Science, pages 669–678. Springer.

42

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by

back-propagating errors. Nature, 323(6088):533–536.

Rush, A. M., Chopra, S., and Weston, J. (2015). A neural attention model for abstractive

sentence summarization. In 2015 Conference on Empirical Methods in Natural Language

Processing (EMNLP 2015), pages 379–389. ACL.

Sainath, T. N., Vinyals, O., Senior, A. W., and Sak, H. (2015). Convolutional, long short-term

memory, fully connected deep neural networks. In 2015 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP 2015), pages 4580–4584. IEEE.

See, A., Liu, P. J., and Manning, C. D. (2017). Get to the point: Summarization with

pointer-generator networks. In 55th Annual Meeting of the Association for Computational

Linguistics (ACL 2017), pages 1073–1083. ACL.

Shazeer, N. and Stern, M. (2018). Adafactor: Adaptive learning rates with sublinear memory

cost. In 35th International Conference on Machine Learning (ICML 2018), volume 80 of

Machine Learning Research, pages 4603–4611. PMLR.

Shi, T., Keneshloo, Y., Ramakrishnan, N., and Reddy, C. K. (2020). Neural abstrac-

tive text summarization with sequence-to-sequence models: A survey. arXiv preprint,

arXiv:1812.02303v3.

Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep

learning. Journal of Big Data, 6:60.

Smith, D. A. and Eisner, J. (2006). Quasi-synchronous grammars: Alignment by soft pro-

jection of syntactic dependencies. In Workshop on Statistical Machine Translation (WMT

2006), pages 23–30. ACL.

Spitkovsky, V. I., Alshawi, H., and Jurafsky, D. (2010). From baby steps to leapfrog: How

”less is more” in unsupervised dependency parsing. In 17th Annual Conference of the

North American Chapter of the Association of Computational Linguistics: Human Lan-

guage Technologies (NAACL-HLT 2010), pages 751–759. ACL.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural

networks. In 27th Annual Conference on Neural Information Processing Systems (NIPS

2014), pages 3104–3112. Curran Associates, Inc.

Tu, Z., Lu, Z., Liu, Y., Liu, X., and Li, H. (2016). Modeling coverage for neural machine

translation. In 54th Annual Meeting of the Association for Computational Linguistics (ACL

2016), pages 76–85. ACL.

43

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,

and Polosukhin, I. (2017). Attention is all you need. In 31st Annual Conference on Neural

Information Processing Systems (NIPS 2017), pages 5998–6008. Curran Associates, Inc.

Wang, Q., Liu, P., Zhu, Z., Yin, H., Zhang, Q., and Zhang, L. (2019). A text abstraction sum-

mary model based on bert word embedding and reinforcement learning. Applied Sciences,

9(21):4701.

Wang, X., Wang, K., and Lian, S. (2020). A survey on face data augmentation for the training

of deep neural networks. NCA, 32(19):15503–15531.

Wei, J. and Zou, K. (2019). EDA: Easy data augmentation techniques for boosting perfor-

mance on text classification tasks. In 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural Language Pro-

cessing (EMNLP-IJCNLP), pages 6382–6388. ACL.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Pro-

ceedings of the IEEE, 78(10):1550–1560.

Woodsend, K., Feng, Y., and Lapata, M. (2010). Title generation with quasi-synchronous

grammar. In Conference on Empirical Methods in Natural Language Processing (EMNLP

2010), pages 513–523. ACL.

Xhafa, F., Naranjo, V., and Caballé, S. (2015). Processing and analytics of big data streams

with Yahoo!S4. In 29th International Conference on Advanced Information Networking

and Applications (AINA 2015), pages 263–270. IEEE.

Zaremba, W. and Sutskever, I. (2014). Learning to execute. arXiv preprint, arXiv:1410.4615.

Zhang, J., Zhao, Y., Saleh, M., and Liu, P. J. (2019). PEGASUS: pre-training with extracted

gap-sentences for abstractive summarization. arXiv preprint, arXiv:1912.08777.

44

Appendix A

Summarization results

Table A.1 shows a sample of the results that our best model was able to achieve in a low-

resource setting of 1000 training samples. This is the model trained through a baby-steps

curriculum learning approach where data augmentation has been applied as described in

chapter 4. The table shows four examples of text-summary pairs used in the evaluation of

our models performance. For each example the table contains the original text as it has been

prepared as input for our model, a human written summary, and a summary generated by

the model.

Table A.1: This table shows a sample of the results. The table contains the input, human
written summary, and the model generated summary. The model used for these summaries
was the best performing model, thus the model that was trained with a baby steps curriculum
learning approach based on a complexity-based sorting method and a dataset consisting of
1,000 samples which have been augmented with data augmentation techniques.

Description Text

Input text A

(1/2)

the football association will be contacting qpr and chelsea after an incident which

saw branislav ivanovic struck on the head by a cigarette lighter thrown from a

section of home supporters at loftus road. qpr are unlikely to face disciplinary

action over the incident which happened as chelsea players celebrated the win-

ning goal in sunday’s 1-0 victory. it is understood however that the fa will seek

observations from each club and will ensure that qpr and the police are taking

the necessary steps to identify the culprit via cctv and for them to face a banning

order. jubilant chelsea celebrations were marred by objects being thrown onto

the pitch by the crowd . during the chelsea celebrations at loftus road, the blues

were targeted by objects thrown from the crowd . qpr are reviewing cctv footage

and have promised to ban those involved. they have also appealed to witnesses to

come forward. a club spokesperson said: ’whilst we understand that passions run

high during derby fixtures, this is not the kind of behaviour the club condones in

any way, shape or form.

45

Input text A

(2/2)

’we take a zero tolerance approach to this sort of behaviour and, if the perpetra-

tors are identified, they will be banned indefinitely from the stadium and, where

appropriate, we will liaise with the metropolitan police. chelsea duo nemanja

matic (left) and branislav ivanovic react after being struck with objects . chelsea

midfielder nemanja matic hands over a coin to referee andre marriner during the

match on sunday . the loftus road pitch was covered in litter and objects following

the west london derby contest on sunday . ’the club are awaiting communication

from the fa following the referee’s report and will work closely with them in en-

suring something like this does not happen again. ’we would also appeal to fans

with any information regarding yesterday’s incident to contact the club, as we feel

it’s important to identify the perpetrators as soon as possible, as we believe they

are not a true representation of the qpr fan-base.’

Human written

summary A

qpr unlikely to face disciplinary action over the incident . queens park rangers

to review cctv and promise to ban anyone involved . cesc fabregas scored a late

winner for chelsea at loftus road .

Generated

summary A

football association to contact qPr and chelsea after incident which saw Branislav

ivanovic struck on the head objects were thrown onto the pitch by the crowd

during chelsea ’ victory was marred by objects being thrown onto the pitch by the

crowd

Input text B

(1/2)

this is the shocking moment a young kurdish girl fires a machine gun at isis, before

boasting she has killed 400 of the islamic militants - as she is egged on with cries

of ’kill, kill’. the little girl, who appears to be around six or seven, is shown sitting

on a ridge in her bright pink jumper and trainers, just behind the large machine

gun. she chats away to a man behind the camera, telling him she is ’shooting at

daesh’ in kurdish - before firing several rounds into the desert. shocking: the little

girl claims she is firing the machine gun at ’daesh’, the arabic name for isis . kill:

she tells the man she has killed 400 of the extremists so far, as he encourages her

to kill more . target: however, it is unclear exactly what the girl is shooting at in

the minute-long video . the man asks her how many isis fighters she has killed so

far, and she holds up four fingers while boasting ’400’. as she fires the gun, and,

according to vocativ.com, he says: ’kill, kill.’however, whether she has actually

hit anything is unclear. the video - entitled young ypg girl shoots pk machine

gun - was posted in january, but has only recently emerged on social networks.

ypg is the acronym for the people’s protection unit, which has been battling isis

since the extremists rise to power last year. but while isis are known for using

young recruits to carry out executions, fight and even become suicide bombers,

the kurds have so far kept their children out of the battle. propaganda: isis are

known to use children in videos like this one, where they are being trained as

fighters . sickening: in more horrific videos, isis have claimed to be using children

as executioners . feared: the kurdish are famous for their female fighters, who

have been key to driving isis out . rumours: isis fighters believe if they are killed

by a woman they won’t get their virgins in the afterlife .

46

Input text B

(2/2)

one of the most horrifying videos released by the islamists showed a young boy

seeming to execute a so-called spy. they have also released a video of dozens

of ’child soldiers’ from kazakhstan, apparently being trained to fight against isis

enemies. instead, they are famous for their female recruits: it has proved to be

one of their strengths against the militants, as they appear to believe if they are

killed by a woman they will not be rewarded with 72 virgins in the afterlife. as a

result isis fighters have been reluctant to enter battles with the women’s protection

units, or ypj, reportedly leading to descent within the ranks of the terrorists and

hastening their retreat from battles in places like kobane.

Human written

summary B

video of little girl firing several rounds ’towards isis’ has gone viral . the girl,

dressed in pink, tells man off camera she has killed 400 fighters . the man encour-

ages her by saying ’kill, kill’ as she shoots machine gun . kurdish known for their

female fighters - but isis known for using children .

Generated

summary B

young girl fires a machine gun at isis militants , claims to have killed 400 fighters ,

in video posted to social networks Video was posted to social networks in January

, but has only recently emerged

Input text C the ocean is known for claiming countless of treasured items, particularly rings and

sentimental jewellery which remain lost forever. however, an australian woman is

on a campaign to reunite a lost ring with its owner after discovering the buried

treasure deep in the ocean. ‘so here’s a super long shot,’ queensland resident roxy

walsh wrote on facebook. ‘found this gold ring snorkelling at finns beach club

in bali today (april 7).’ roxy walsh shared a photo of a gold ring she found on

facebook in the hope of finding its owner . roxy walsh (pictured in bali) found the

ring while snorkelling at finns beach club in bali on april 7 . the ring has what

appears to be a family crest and has been engraved with the heartfelt message:

‘darling joe, happy 70th birthday 2009, love jenny’. the facebook message has

already been shared an astonishing 23 thousand times, taking the search for the

special ring global. ‘sometimes hear of these things finding their way home so

worth a shot,’ ms walsh wrote. travel blog the bali bible shared the post to more

than 171 thousand followers. ‘it would be great if all of you amazing people out

there could (share the picture of the ring) and hopefully reunite this ring with its

owners, joe or jenny asap..! nice find, roxy! respect reunite .’ the search for

joe and jenny continues. travel blog the bali bible shared the post to more than

171 thousand followers .

Human written

summary C

queensland woman roxy walsh found an inscribed gold ring in bali . the senti-

mental jewellery piece was found in the ocean while snorkelling . ms walsh has

launched a campaign to return the ring to the people who own it, hoped to be

”joe” or ”jenny” according to inscription . facebook post has already been shared

by more than 23 thousand people .

Generated

summary C

gold ring found at finns beach club in bali has been shared 23 thousand times on

Facebook The message on the ring is: ’darling joe , happy 70th birthday 2009 ,

love jenny’ continues the search for joe and jenny

47

Input text D the pups came from as far away as new jersey and tennessee in hopes of landing

a new nickname: ’beautiful bulldog.’ they were all defeated by a native who

likes eating snow and watching turtles. a 2-year-old dog from des moines named

tank won the 36th annual beautiful bulldog contest sunday at drake university.

scroll down for video . winner: tank, a 2-year-old bulldog from iowa won drake

university’s 36th annual ’beautiful bulldog’ contest sunday . a real beauty: tank,

who enjoys eating snow and watching turtles, will now serve as mascot of this year’s

drake relays . tank received top honors as well as a crown and cape. he will appear

before more than 16,000 fans – or, royal subjects – at the university’s drake relays

to be honored as mascot of the event, which will be held from thursday through

saturday, according to the contest’s website. the tongue-in-cheek beauty pageant,

which featured 50 dogs, is the kickoff event for the drake relays track meet. ’he’s

funny,’ said tank’s owner, duane smith. ’he’s a real good one.’ pageant organizers

narrowed a pool of more than 100 hopeful pups by a lottery held last month.

owner: here, tank enjoys a rub from his owner, duane smith, after winning the

36th annual contest . judges weren’t looking for beauty though. they wanted

to see the slobber, drool and bulging, bloodshot eyes synonymous with english

bulldogs. they got all that and more from tank — who now willingly shares his

house with a pomeranian and some turtles after smith found him on craigslist a

year ago. should tank be unable to fulfill his duties as the drake relays mascot,

fellow des moines pup steve will step in. steve was second even though he was

initially so shy about the makeshift catwalk set up on drake’s basketball court that

his owner had to pick him up and plunk him down, much to the delight of the

few thousand spectators on hand. pageant: the tongue-in-cheek beauty pageant,

which featured 50 dogs, is the kickoff event for the drake relays track meet . there

also was a ’best dressed’ winner in linus the lovebug — who had to be dragged

around in a wagon because of arthritic legs — and the congeniality award went

to a dog named princess mabel. if there was an award for driving the furthest to

enter the contest it would’ve gone to ronnie sussman and her dog bex, who drove

17 hours from union, new jersey. sussman and bex will go home empty-handed,

but she said the trip was more than worth it. ’this is just like a bucket list item

of life for me,’ sussman said.

Human written

summary D

an iowa bulldog named tank took home the crown sunday at drake university’s

annual ’beautiful bulldog contest’ tank beat out 49 other dogs in the 36th annual

contest . tank will now serve as the mascot for the drake relays .

Generated

summary D

tank , a 2-year-old dog from des moines , Iowa , wins drake university ’ beautiful

bulldog’ contest tank gets the crown and cape His owner , duane Smith , says

tank is a real good one

48

Input text E a retired marine has pleaded not guilty to murdering his clothing-designer girl-

friend, whose skeletal remains were discovered in a jungle in panama two years

after she disappeared. brian karl brimager, 37, entered his plea on friday after he

was indicted by a federal grand jury in san diego, in connection with the death of

yvonne lee baldelli. he has been in custody since june 2013 on charges including

obstruction of justice and falsifying records related to the investigation. the 42-

year-old woman from laguna niguel, california, was last seen in september 2011

when she arrived in panama with brimager. her family reported her missing the

following january. brian karl brimager, 37, was indicted by a federal grand jury

in san diego, in connection with the death of yvonne lee baldelli . the 42-year-old

woman from laguna niguel, california, was last seen in september 2011 when she

arrived in panama with brimager. her family reported her missing the following

january . the indictment alleges that brimager murdered baldelli, dismembered

her body and disposed of her body parts in a remote jungle area. brimager then

engaged in an elaborate scheme to cover up the crime, including destroying evi-

dence and sending a series of emails purportedly from baldelli in order to make

it appear to her friends and family that she was still alive, according to court pa-

pers. the indictment also alleges that brimager attempted to conceal his crime by

disposing of a bloody mattress involved in badelli’s murder in the ocean. brimager

conducted two internet searches on baldelli’s computer, one for ’washing mattress’

and a second for ’washing mattress blood stain,’ according to documents. a man

who was cutting bushes on the island province of bocas del toro found a bag

containing baldelli’s remains in august 2013. baldelli’s family has the clothing de-

signer was frequently out of touch so they did not immediately suspect anything

was wrong. panama police say brimager left panama for costa rica and the united

states about 10 days after last being seen with baldelli. in 2012 fbi agents and

panamanian forensic specialists found traces of blood on the walls and floor of the

hostel el sapo in the bocas del toro archipelago, which is the popular tourist spot

where baldelli was last seen. brimager (right) has been in custody since june 2013

on charges including obstruction of justice and falsifying records related to the

investigation . the indictment alleges that brimager murdered baldelli (pictured),

dismembered her body and disposed of her body parts in a remote jungle area .

panama police say brimager left panama for costa rica and the united states about

10 days after last being seen with baldelli . sorry we are not currently accepting

comments on this article.

Human written

summary E

brian karl brimager, 37, was indicted by a grand jury in san diego . is accused of

murdering clothing designer yvonne lee baldelli in 2011 . allegedly dismembered

her body and disposed of it in a military backpack . then engaged in an elaborate

scheme to cover up the crime . sent emails from her account to make people think

she was still alive . he has been in custody since june 2013 on charges including

obstruction of justice and falsifying records related to the investigation .

49

Generated

summary E

NEW : : ’s attorney says defendant ’s plea is not guilty to murder

50

	Introduction
	Related work
	Abstractive text summarization
	Curriculum learning
	Low-resource text summarization

	Data
	Pre-training corpus
	Training corpus

	Methodology
	The Model
	Sequence-to-sequence model
	Transformers
	PEGASUS

	Pre-training
	Model training
	Curriculum learning
	Data Augmentation

	Evaluation methods
	ROUGE-N
	ROUGE-L
	Combined ROUGE

	Results
	Complexity scoring
	Summarization results

	Concluding Remarks
	Conclusion
	Further research

	Summarization results

