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Abstract

This paper focuses on constructing sentiment indices from financial news articles which
exploit topic clusters made by the Dirichlet-Hawkes process with as final goal to predict
the next day movement of the S&P 500 in a VAR model. Our research compares the
prediction accuracy of multiple sentiment indices and we find that sentiment indices
which exploit the clusters made with the Dirichlet-Hawkes process can, in some cases,
provide a greater prediction accuracy of the next day price movement of the S&P 500

than the base sentiment score which does not exploit the clusters.
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1 Introduction

Making accurate predictions on future stock market movement can lead to very large rewards.
Because of this, research about stock market prediction has always been of interest. In the
1930s research by Alfred Cowles proposed that stock market predictors of the day could not
beat the market returns (Cowles 3rd, 1933). A theoretical explanation for this can be found
in the Efficient Market Hypothesis (EMH) (Fama, 1995). The EMH states that stock prices
reflect all of the available information. Changes in the price of a stock are due to the release of
new information or overall market changes. Because new information and the overall market
are unpredictable (Malkiel, 1973) proposed that the stock market can not be accurately
predicted when looking at historic prices, because stock prices follow a random walk around
a equilibrium. However, this absolute theory has proven to be not entirely accurate. Only
five years later, Fama himself proposed multiple versions of the EMH, which correspond to
different levels of information availability. This categorization itself shows that the original
EMH does not hold in all cases. Also, empirical evidence against the EMH can be found in
numerous studies. Butler and Malaikah (1992) studied thinly traded stocks in Saudi Arabia
and Kuwait which showed significant departures from a random walk. Results of Kavussanos
and Dockery (2001) similarly showed stocks traded in the Athens Stock Exchange (ASE) to
be unsupportive of the EMH.

More recent research has also questioned the Efficient Market Hypothesis (Malkiel, 2003).
Critics of the EMH come from different fields of research, namely, behavioral economics
(Smith, 2003), behavioral finance (Nofsinger, 2005) and the Socioeconomic Theory of Finance
(Prechter Jr and Parker, 2007). The latter one states that financial decision making is
partly steered by non-rational sentiment driven motives, which results in non-mean-reverting
dynamics, which is the opposite of the equilibrium seeking behaviour described in the EMH.

Building on the notion that markets are in reality rarely strongly efficient, and that
financial decision making is steered by non-rational sentiment driven motives multiple studies
have tried to link sentiment analysis to stock markets (Nassirtoussi et al., 2014). For instance,
Bollen et al. (2011) did research on the correlation between public mood and stock prices.

Their research uses the textual data contained in tweets to determine the public mood, which



is shown to be positively correlated to the Dow Jones Index. Schumaker et al. (2012) use
sentiment gathered from financial news articles to predict the stock movements. Closely
relating to our research, Si et al. (2013) use tweets to compute a sentiment index which
exploits the clustering of tweets into topics by a Dirichlet Process Mixture model. They
compute the sentiment of a single tweet by counting positive and negative words from a
sentiment lexicon. To exploit the clusters in the construction of a daily sentiment index
they only use the sentiment of the tweets which appear in the biggest topic of the day. The
resulting daily sentiment index is then used in a Vector Autoregressive model (VAR) setting
to predict the next day movement of the S&P 100. These predictions are made by making
a one day ahead prediction and evaluating whether it correctly predicted a rise or a fall. A
possible shortcoming of this method of exploiting clusters to compute a sentiment index is
that it disregards the dynamics of the topics and it does not consider the sentiment of the
tweets which appear in any of the smaller clusters. Sentiments contained within a cluster
which is not the biggest, but has a very rapid rising temporal dynamic, are not considered
while they could be valuable.

Our research builds on Si et al. (2013) since we also construct daily sentiment indices by
counting sentiment words from textual documents, in our case financial news articles. We
also construct sentiment indices which exploit topic clusters. Then, we also use our sentiment
indices in a VAR setting to make next day price predictions of a stock index. In our case
the S&P 500, which contains the top 500 companies on the U.S. stock exchanges. Due to its
broad composition it provides a reliable picture of developments in the US stock market.

But our research differs, because instead of a Dirichlet Process Mixture model we use the
Dirichlet-Hawkes process (DHP) (Du et al., 2015) to cluster the textual documents. The DHP
can be used to cluster textual documents based on their temporal dynamics as well as their
textual contents, by combining Dirichlet and Hawkes processes. Dirichlet processes can be
used to cluster textual documents, where the likelihood of a document belonging to a certain
cluster depends on the size of the cluster. The DHP extends this by assigning a self exciting
temporal point process, a Hawkes process, to each cluster. These self exciting temporal
point processes are then also taken into account for determining the preferential attachment

of a document to a cluster. This allows the DHP to improve clustering of continuous time



document streams into topics, because it can separate documents both based on their textual
contents as well as their temporal dynamics. It also allows for the forecasting of new arrival
times for a cluster, based on the learned temporal dynamics.

Another difference compared to Si et al. (2013) is that we consider multiple ways to exploit
the topic clusters to create sentiment indices. Their research only exploited the clusters by
using the sentiment contained within the largest cluster for each day, this disregards sentiment
not contained in the biggest topic cluster. To overcome this we create two indices which
exploit the topic clusters and retain the sentiment contained within all of the articles. We do
this by assigning a weight to the individual cluster sentiment based on the size of the cluster.
We also differ because we create a weighted index which is based on the one day ahead size
predictions of the topic clusters. In this way we also take into account topic dynamics, the
idea behind this is if a certain topic cluster is not yet very large but is rising very fast, then
its sentiment could be weighted too little when not taking into account topic dynamics. To
compare our own sentiment indices we compare them with a few from the literature.

Within this setting we will tackle the following research questions:
o Is the Dirichlet-Hawkes process suitable for clustering financial news?

o Can S&P 500 prediction be improved by incorporating DHP cluster size into the sen-

timent index?

o Can S&P 500 prediction be improved by incorporating DHP cluster size and dynamics

into the sentiment index?

The first research question will be tackled by examining the clusters created by the
Dirichlet-Hawkes Process. We do this by running the DHP on a news article data set,
for different parameter settings, and examining the resulting clusters.

The second and third research questions will be tackled by creating multiple sentiment
indices which exploit the DHP clustering. The results will be compared to a base index,
which does not use the clustering. The performance metric we use is the accuracy. To
compute the accuracy we first convert each one day ahead price prediction into a correct or
incorrect prediction of a rise or fall, also called a sign prediction. The fraction of correct sign

predictions is the accuracy.



Our research finds that the next day price movement predictions with a VAR model with
a sentiment index can, in some cases, be improved by exploiting topic clusters.

This paper will continue in Section 2, where the data will be presented. Afterwards, in
Section 3, the methods and performance measures will be explained. Then, this paper will
finish with a discussion of the obtained results in Section 4 and a conclusion on this research

in Section 5.

2 Data

2.1 Data Overview

This research uses two data sets. Firstly, we use a data set which contains financial news
articles. Secondly, we use a data set of the S&P 500 returns.

The financial news data set contains 306242 financial news articles. These articles are
all published within a five month window, from January 1st to May 31st in 2018. Each
article was published by one of the following sources: Bloomberg, CNBC, Reuters, WSJ and
Fortune. Within these sources only financial oriented articles were extracted. Furthermore,
all articles are written in English and published in the United States, which suits our research
since we predict the S&P 500. The original data set, obtained from Kaggle (Jeet.J, 2018),
contains the textual data of the articles as well as a lot of metadata, such as the url at which
the article was uploaded and date of crawling. This research only uses the textual contents
and time of publication of the articles.

Figure 1 shows the amount of articles published per day for the entire data set. This plot
shows that the articles have a fairly constant publishing rate. We do however see a reoccurring
pattern, which takes place around 4 times every month. When we look at the average amount
of publications per weekday in Figure 2 it becomes apparent that this reoccurring pattern is
caused by a weekly pattern, namely a dip in publications in the weekend.

Figure 3 shows the average number of publications for each hour of the day, where we see
that publications start building up around 9:00, reach their peak at around 13:00, and then
slowly decrease till just after midnight.

Previous figures only showed information about the temporal attribute of our data set.
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Figure 2: Average number of publications per day of the week.

But our data set also contains textual data, the textual contents of the articles. Figure 4 is a
histogram of the log transformed amounts of words per article. We plotted a log transformed
histogram because the amount of words per article is very skewed. The minimum amount
per article is 0, the maximum 35218 and the mean 401.

We also have a data set containing the time series with daily closing price of the S&P
500. For this research we have picked out the time window which matches our news article

data set. Figure 10 shows these daily close values. We can see that this period was fairly
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Figure 3: Average number of publications per hour of the day
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Figure 4: Log transformed words per article

stable, the lowest point is less than a 15% decrease from the highest point. But nevertheless
there are two periods of fast decline which are surrounded by steady climb, which make for
an interesting prediction problem.

Furthermore, we have a small data set which contains our sentiment lexicon. This senti-
ment lexicon is used to give a sentiment to an article. We use the sentiment of Hu and Liu
(2004), which contains 2004 positive words, like: good, best, great, and 4781 negative words,
like: bad, bankrupt and disaster.
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Figure 5: S&P 500 daily closing prices

2.2 Data Preprocessing

To be able to use the textual data in the Dirichlet-Hawkes process we preprocess it first.
The main goal of this is to make the entire corpus, the set of unique words, as small as
possible while still retaining the information in it, because the smaller the corpus is, the
less parameters we will have in our model. We also try to minimize the amount of different
conjugations of a word which contain the same or similar meaning. To achieve this we run
every article through the following process. To illustrate what goes on in the processing we

keep track of the following example sentence:
Apple is set to release the best iPhone yet, the iPhone 12. See more on www.apple.com.

Firstly, we make all letters lower case, to make sure there is no difference between upper and

lower case words.
apple is set to release the best iphone yet, the iphone 12. see more on www.apple.com.

Secondly, we remove all links which are possibly present in the articles. We do not want these
in there because they are very likely unique and thus provide no use for clustering. Neither

do they contain sentiment which also makes them redundant.

apple is set to release the best iphone yet, the iphone 12. see more on.



Thirdly, we remove all special characters, which are also not useful for our clustering or

sentiment analysis.
apple is set to release the best iphone yet the iphone see more on

After we have made these changes, we remove the words which are in our sentiment lexicon
from the articles, and use them to calculate the sentiment score of the article. We do this
by summing over all opinionated words, where positive words have a value of 1 and negative
words have a value of -1. We remove them because we do not want them to interfere with
the clustering. We do keep the sentiment score of the article for constructing the sentiment

indices later on.
apple is set to release the iphone yet the iphone see more on

The next step is to stem each word. When we stem the words we chop of the end or the
beginning of words to bring multiple conjugations or derivations back to a single word, an
example of this is: ‘Playing’, ‘plays’, ‘played’ would all be stemmed to ‘play’. In our example
iphone is stemmed to iphon, but iphones would also be stemmed to iphon. This allows for
a single parameter in the clustering model which relates to both iphone and iphones. For

stemming we use the NLTK python package.
appl is set to releas the iphon yet the iphon see more on

Finally, we do one more processing step to our article data set. In this processing step we
remove all words which appear in less than 100 articles, because these words are too specific.
We also remove words which appear in more than 50% of all the articles, because they are
too general. At last, we only keep the 10,000 most used words, because we want to limit the

amount of parameters in our model.
appl releas iphon iphon

And in this final form the news information is used in the clustering.



3 Methodology

In this section the methods used in this research are described. Section 3.1 explains the
Dirichlet-Hawkes process which is used as a prior for clustering the articles. Section 3.2
describes the Inference algorithm which is responsible for clustering the articles. Section 3.3
describes how the different sentiment index time series are computed. And finally, In Section
3.4 it is described how we forecast the movement of the S&P 500 using our sentiment indices

with the VAR model.

3.1 Dirichlet-Hawkes process

To cluster the articles into topics, a Dirichlet-Hawkes process (DHP) based model is used
(Du et al., 2015). The Dirichlet-Hawkes process is a combination of the Dirichlet Bayesian
nonparametric Process and the Hawkes temporal point process. The resulting process can
be used to model a stream of events based on the intensity, through the Hawkes process, as
well as the diversity, through the Dirichlet process. Before explaining the Dirichlet-Hawkes
process we will separately explain both fundamental building blocks of the DHP, the Dirichlet

process and the Hawkes process, in Section 3.1.1 and 3.1.2 respectively.

3.1.1 Dirichlet process

The first building block of the DHP is the Dirichlet process (DP). Dirichlet processes are
probability distributions with other probability distributions as its range. The DP is first
proposed by Ferguson (1973) The process is parameterized by a concentration parameter
a > 0, and a base distribution G(8). The expected value of the DP is the base distribution,
which means samples from a DP will lay around the base distribution. Also, distributions
drawn from the DP are almost always discrete, even if the base distribution is continuous.
The amount of discretization is controlled by a. If & — 0, the samples are all concentrated
on a single value. When o — oo, the samples are continuous. In the middle of these two
limits the samples are discrete with decreasing concentration when « increases. Because a
DP sample, G, is a distribution itself, it allows us to draw a sample from it, 6;.,,. Drawing

from a DP can be simulated with the Chinese Restaurant process:

10



1. Draw 0, from Gy , forn =1

2. For n > 1:

(a) Draw @, from Gy with probability —%—.

(b) Reuse ), for 8,, with probability "+~ where my is the amount of past samples

with values 6,,.

This process is called the Chinese Restaurant process because it follows the following
analogy: We have a (Chinese) restaurant with infinitely many tables, each corresponding to
a different value of 8. When a new customer walks into the restaurant he or she has two
choices. Either picking a new table, or joining a table where there are already mj; people

seated. The first option is executed with probability and matches drawing a new 6

o
a+n—1"

mg
a+n—17

from Gy as 6,, The second option is executed with probability and matches reusing
a previous 6, as 6,. Because the probability of reusing a 6, is directly proportional to
my, the Chinese restaurant process captures the ‘rich-get-richer’ phenomenon. To translate
this to the analogy: The more people are sitting at a table, the higher the chance a new
customer will join the table. This behaviour combined with the fact that there is always a

small probability that a new table, or cluster, is filled or created makes the DP an often used

prior in data clustering models.

3.1.2 Hawkes process

The second building block of the Dirichlet-Hawkes process is the Hawkes process. Hawkes
processes are a special kind of temporal point process, first proposed by A.G Hawkes (Hawkes,
1971a) and (Hawkes, 1971b). Temporal point processes are processes which have a set of
isolated event times ¢, as outcome. Many real life events can be modelled as a temporal
point process; an example of this is people visiting a website. Temporal point processes can
be characterized by their conditional intensity function, which models the chance of a next
arrival given all previous events. A(t)dt denotes the probability of the occurrence of a new

event given all past events 7, in a small interval [¢,¢ + dt):
A(t)dt = P{ event in [t,t + dt) | T} (1)

11



The most basic temporal point process is a homogeneous Poisson process. The intensity
function of a Poison process is independent of all past events and constant over time:
A(t) = Ao > 0. An inhomogeneous Poisson process also has an intensity function which
in independent of past event, but its intensity does vary over time: A(t) = gt > 0. A Hawkes
process has an intensity function which is both varying over time as well as dependent on
previous events. Its intensity is defined as:

At) =y +a ) y(tt), (2)

t; €T

where 79 > 0 is the base intensity, which is independent of past events, and ~ (¢,t;) is
the triggering kernel function which holds the temporal dependency. When there are no
previous events, the intensity function is equal to the base 7y, but the intensity can increase
because of previous events. This self-exciting behaviour is characteristic for Hawkes processes.
This behaviour makes Hawkes processes suitable for modelling activities with self exciting
behaviour, such as likes on social media: On social media platforms the intensity of the
next like is dependent on the likes before, since posts gain traction when they get more
likes. Hawkes processes are very adaptable because multiple types of functions can used as
kernel functions. Functions can either be chosen in advance, for example, v (¢,¢;) = L[t > ;]
or v (t,t;) = exp(—|t—t;]). Parameters can also be added to kernel functions. These
parameters can then be estimated through the likelihood. In this way a kernel function can

be fitted to the data (Aalen et al., 2008).

3.1.3 Dirichlet-Hawkes process

Before delving deeper, we first explain the general DHP, which is a process from which we can
sample multiple arrival times with corresponding event types. This process is parameterized
by the intensity parameter, Ay > 0, which controls the intensity of the creation of new events,
a base distribution Gy(0), defined over an event space 8 € ©, and multiple triggering kernel
functions {vg (¢,%')}, each associated to an event type 6. With these we can generate data

as follows:

1. Draw t; from Poisson ()\g) and 6, from Gy(8)

12



2. Forn>1:

(a) Draw t, > t,_; from Poisson ()\0 + 3 e, (8, tz))
(b) Draw 6,, from G(0) with probability :

Ao
o+ X e, (tn, t)]

or reuse @, for @, with probability :

)‘9k (tN)
Ao + 2?2_11 e, (tna ti) 7

where A, (t,) == S0 70, (tn, t:) 1[0; = %] is the intensity of the Hawkes process

for previous events corresponding to 0y

This process can capture four desirable properties: Preferential attachment, the higher the
intensity of a cluster, the higher the probability of a next event of that cluster. Adaptive
number of clusters, because of the base intensity there is always a probability of creating
a new cluster. Self-excitation, the intensity of a clusters’ Hawkes process is dependent on
previous draws of the same cluster. Temporal decays, the triggering kernels decay over time.
Also, the temporal dynamics, controlled by the triggering kernel functions can be learned

from data.

3.1.4 Generating text

This DHP process can be used as a prior for clustering a continuous-time stream of docu-
ments, where the goal is to find clusters based on both the contents and temporal dynamics.
For this purpose we use an altered version of the process to generate text. This is done
by using the 6; which we sample from the DHP as the parameters for the content model.
Also, we let clusters have a distinct triggering kernel, by defining the triggering kernel as the
weighted sum of K base kernels.

We use the sampled vector 8; as the parameters for the content model. In our case we
choose a Dirichlet distribution, Dir(8|6,), for G(0). Then, we can sample the words for the
n-th document from a multinomial distribution, w,, ~ Multi (85, ). Here w,, corresponds to

an integer vector, where the entries account for the number of times a certain word appears

13



in the document. 6, refers to the parameters which belong to the cluster of document n,
since s,, refers to the cluster label of document n.

Furthermore, we let each cluster have their own temporal dynamics by constructing the
Hawkes Process triggering kernel as a linear combination of K base kernels. Here, vector

Qp, contains the parameters for cluster s,, which we abbreviate to as:

tzat Zae K Tl) t)u (3>

where k (7;,t; — t;) is the kernel function, ¢; < t;, >;ab =1, a) > 0, and 7; is the reference

time point belonging to a base kernel. We use the Gaussian RBF kernel,

k(T t; —t;) = exp(—(t; — t; — 7)%)/20}) /\/ 270} (4)

Because every cluster has its own ag we can track its unique evolving process. Given T =

{(tn,0,)}._,, the intensity function of the cluster 6 is:

)= 7 (tt)1[0;=6]. (5)

t; <t

Then, the likelihood of observing T before time T is

exp (— Y ogge— Ao) I[I > agk(ay), (6)

0,=6 0,=60 tj<ti,0j=0

where gh = Y. 10,0 ftT (1,t —t;) dt and Ay = [ Aodt. Then the the integral g}, has the

1 Tl T — ti — T
Yo cledfe| ——— | —efe | ———] | . (7)
t<T0=0 2 \/ 202 \/ 207

We consider the reference time points, 79, and standard deviations, oy, as fixed parameters

analytic from:

so they do not need to be sampled. Then, the generative process looks like this (Du et al.,
2015):

1. Draw t¢; from Poisson ()g), 6 from Dir (8 | 8y), and oy from Dir (¢ | ap)
2. For each word v in document 1 : w? ~ Multi (6,)

3. Forn>1:

14



(a) Draw t, > t,_; from Poisson ()\0 + 3 e, (tn, tz))
K
where yg, (tn, ti) = > oty - K (71, b — t;)
=1

(b) Draw 6,, from Dir (8 | 8y) with probability
Ao
Ao+ X ve, (tn, i)
and draw «a,, from Dir (a | ap), or reuse previous @y for 8,, with probability

)\Ok (tn)
)\0 + 2?2_11 ’}/01' (tna tz)
where A, (t,) = S0 Yo, (tn, t:) 1[0; = 6]

(¢) For each word v in document n :

w, ~ Multi (6,,)

3.2 Inference

We cluster the documents by applying the Sequential Monte Carlo (SMC), or particle filter
method. We denote the latent cluster labels of all documents as s1.,. In SMC, a particle
f € {1,...F} contains an estimation of the cluster memberships s1.,_; for all past documents
based on all past documents and arrivals times, d;., and t;.,. When a new document, d;.,,
with arrival time t¢;., arrives, we update each particle as follows.

To sample the cluster label s, for document d,,, we use:

)\gk (tn) . .
AT if k& occupied
Py =k |ty rest} = § 2Fom oiltntd (8)
0]

otherwise

Mo+ 7 e, (tn i)
to calculate the probabilities of document d,, belonging to a already formed cluster as well
as the probability that d, creates a new cluster. These chances are based on the learned
triggering kernels of the existing clusters and the base density A.

Given the sampled cluster membership we can update the triggering kernel of the corre-
sponding cluster. Updating the triggering kernel equates to updating the parameter ag,, .

The Bayesian rule dictates that the posterior is:

P, 17.) P(T. 0. P o,

) (9)

15



where T;, = {(ti,s;) | s; = sn} or all past events of the same cluster. To update oy, we

K
can draw a set of K samples, {a’ },71, from the prior P (aGSn | a0>, which is the Dirichlet

Sn

distribution with parameters ay. With this sample we can update by taking a weighted

average.
K

i=1
where the weights, w; are defined as:

_ P(Tlep,) P (e, )
S P (Te, | e,,) P (e, | o)
After updating the triggering kernel we update the particle weight by,

(11)

Wy

U)f 0.8 'U)f_l - P (dn ‘ s£7 dl:nfl) (12)

n n

Here, because of the Dirichlet-Multinomial conjugate relation,
F (CSn\dn + VOO) Hz‘)/ F (C{jn\dn + an + 00)

P(d, | s,, rest) = ,
(@ =T (Cs\dn 4 Ctn + V) [1Y T (C5\ + )

(13)

where C*\% denotes the word count of cluster s, without document d,, C% denotes the
word count of document d,,. And where C37\% and C% denote the count of the v-th words
in the same sets respectively. Finally, V' is the vocabulary size of the data.

After we have sampled the cluster label, updated the triggering kernel and updated the
particle weight for each particle f € {1,...F'} we normalize the particle weights w”/ by dividing
each weight w/ by the sum of the weights, > fef1..F} w/.

After we have updated the weights of each particle we resample the particles if ||w][3? < e,
where € is a predefined threshold. In SMC, resampling means throwing away particles with
a low weight, or low probability of being correct, and replacing them with the particles with
a higher weight. This is done to prevent a so called weight collapse, where one particle has a
weight very close to 1 and the others a negligible weight. We coded the inference algorithm
in python 3 and based it on previous work (JFChi, 2018).

3.3 Sentiment index

The goal of this research is to construct a sentiment index time series which exploits the

clustered topics to predict stock market movement most accurately. The forecasting challenge

16



is to predict the next-day movement of the S&P 500. This next-day forecast will be made
with a sentiment index up to the current day.

We consider multiple strategies to construct an index. However, all of the strategies make
use of the same opinion lexicon O, a list of positive and negative words, proposed by Hu and
Liu (2004). This lexicon will be used in the following way: I(w) equals 1 if w is a positive

opinion word, -1 if w is a negative opinion word and 0 otherwise. This results in equation:

1
T > lw), (14)

a ’LUEWa

60 =

where ¢, is the sentiment score of article a, and W, is the set of opinionated words in
article a. It is good to note that we we do not take into account the opinionated words for the
clustering because we assume that they do not contain information about topic of an article.
When calculating the sentiment of a single article we do take into account the opinionated

words.

3.3.1 Baseline strategy (BL)

The first strategy that we apply is a baseline strategy. In this baseline the overall sentiment
of all articles published in a day is measured by taking the average sentiment score within

the day,
ZaGAt 50
Al

where S; is the sentiment index at time ¢, and A; is the set of articles published in day t.

SPt = (15)

|A;| is the cardinality of this set, which means the amount of articles published on day ¢.

With this baseline we can compare and evaluate the performance of the following measures.

3.3.2 Biggest cluster strategy (BC)

The second strategy that we apply is the biggest cluster strategy. In this baseline the overall
sentiment of the articles which appear in the biggest cluster of the day is measured by taking

the average sentiment score within the day,

SBC _ ZGEAFC 5“

_ ZaeAp O 16
VY 1o
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where Sy is the sentiment index at time ¢, and AP is the set of articles published in day ¢ in
the biggest cluster of that day. |A”“| is the cardinality of this set, which means the amount
of articles within the cluster on day ¢. With this baseline we can compare and evaluate the

performance of the following measures.

3.3.3 Weighted by cluster size based strategy (CS)

The third index is an index which uses the cluster sizes to create a weighted score. The
main idea behind this index is that the sentiment of bigger topics has a bigger effect on the
movement of the stock market. This and the following strategy both use the learned clusters.
We have the data about the clusters in the form of s, where a is the index of the article. We
define the set of clusters C as the set of unique values in vector of cluster memberships, s,.

Then, to create this index we evaluate the sentiment of each individual cluster:

> aeAs Oa

St = |At| )

(17)

where S is the sentiment index at time ¢ for cluster ¢ and Aj is the set of documents in
cluster ¢ published in day t. This set can be constructed with the sampled cluster labels s,
of each article. With this topic specific score we create a weighted overall index:

AL o
=2

214 R

(18)

3.3.4 Kernel forecasting based strategy (FCS)

Lastly, an index is created which exploits the learned triggering kernels of the clusters. The
idea behind this index is that topics which are fast rising today will have a big impact
on tomorrow. The Dirichlet-Hawkes process learns the triggering kernel of each individual
cluster. What this means in practice is that we have a vector ayg for each cluster @. This
vector contains the weights for K base kernels. This learned triggering kernel can be used to
predict arrivals of new events. This index exploits this by forecasting the amount of arrivals
for the next day. These predicted arrivals will then be used to create an index in a similar
weighted fashion as the cluster size weighted index, S“°. The index is created as follows:

_y A

ceCl ’At+1|

St (19)
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where | A 1] and |A;,| are the predicted amount of articles 1 day ahead. We make these
one day ahead predictions by sampling new arrivals from the learned triggering kernels for

the next day. We do this multiple times and take the average.

3.3.5 Indices from the literature

Next to the indices we construct ourselves we also consider multiple indices from the liter-
ature. We compare our own indices with the indices from the literature by examining the
values and comparing the forecast performance.

Firstly, we consider the VIX index, which is a measure for expected volatility. Secondly,
we consider the Economic Policy Uncertainty (EPU) index by Baker et al. (2016), which
combines three components to quantify economic uncertainty. Namely, one component is
economic news coverage, the second component is disagreement among financial forecasters
and the third is the amount of federal tax code provisions which are set to terminate in
coming years. The third index we consider is the Daily News Sentiment (DNS) index by
Buckman et al. (2020) which closely resembles our own indices by extracting sentiment from

economic related articles.

3.4 S&P 500 Predictions

To predict the movement of the S&P 500 with our sentiment indices we use a Vector Autore-

gressive model (VAR) (Si et al., 2013). A VAR model with a lag of 1 is given by:

St = $11.51-1 + Pr2yi—1 + €54 (20)

Y = P215i—1 + P2olr—1 + €y (21)

In this model, S, is the sentiment time series, ¥, is the daily closing price of the S&P
500 and ® = [¢,, ¢,] are the model parameters, which represent the influence of the lagged
sentiment and price on the current sentiment and price. € are the error terms, which are
assumed to be normally distributed with mean 0 and variance o?. We fit the model using
least squares regression. For the fitting and predicting process we use a moving window, that

is, we train in [t, ¢+ w] and predict [t +w + 1], where w is the amount of days in the training
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window. We do this because, firstly, we are interested in the short term effect of the sentiment
index, and secondly, in this way we have more test and training points. In the prediction
process we make one day ahead forecasts. For each one day ahead forecast we count the
forecasts which predict the right direction, up or down. Using this count we calculate the
percentage of times the sentiment index correctly predicts the next day movement. We try
training windows of 1, 2, 3, 4, 5 and 6 weeks. Furthermore, there are only stock market
trades on business-days, so not on weekends and holidays. To account for this we disregard
the dates in the sentiment indices where the stock market is closed. We consider lags of 1,
2, 3 & 4 days.

Furthermore, since we are using a VAR model our time series need to be stationary. We
test for this with the Augmented Dickey-Fuller (ADF) test, which has the null hypothesis
that there is a unit root in the time series. The alternative hypothesis can differ based on
the chosen equation. In our case the alternative hypothesis is stationarity (Fuller, 2009).
The result section will contain the outcomes of applying the ADF test on the S&P 500 time
series and the sentiment indices. We use the statsmodels package in python to implement

the tests.

4 Results

This section contains the results obtained using our methods. Firstly, we discuss results
of clustering the financial news articles with the Dirichlet Hawkes process in Section 4.1.
Secondly, in Section 4.2 we discuss the different financial news sentiment indices. Section 4.3
contains the results from the VAR regression predictions on the S&P 500 with the sentiment

indices.

4.1 Dirichlet-Hawkes clustering

In this section we discuss the results obtained from clustering the financial news article data
set using the Dirichlet-Hawkes process. The main goal of the clustering is to group together
articles with the same topic. In this research we have used a similar setup as in Du et al.

(2015). We have defined the triggering kernels with reference time points, 6o, at 0.5, 1, 8,
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12, 24, 48, 72, 96, 120, 144 and 168 hours with respective bandwidths, o, at 1, 1, 8, 12, 12,
24, 24, 24, 24, 24, and 24 hours. Because of this setup we can capture both short term and
long term dynamics. The concentration parameter is set to & = 0.1 and the Dirichlet prior
for language model is set to 8y = 0.01 x 1 for each value in the vector. For inference we used
8 particles. Since the base intensity parameter A\g determines the rate at which new clusters
are created, it has great influence over the quality of the results. Because we do not infer the
base intensity, we have run the clustering on five different values: 1, 0.5, 0.1, 0.05 and 0.01.
Due to computational limitations we only used articles published in the first month of our
data set, which is January 2018. This month contained 59073 articles. Table 1 shows how

many clusters were created for each of the five base intensities.

Ao 1 0.5 0.1 | 0.05 | 0.01
Amount of clusters | 3574 | 1907 | 442 | 245 | 76

Table 1: Amount of clusters per base intensity

Looking at the results in Table 1, the influence of the base intensity becomes apparent.

A base intensity of 1 results in 3574 clusters while a base intensity of 0.01 results in only 76

clusters.

Cluster Size (00,10000) | [10000,1000) | [1000,100) | [100,10) | [10,1) | [1]
Base Intensity
1 0 10 52 377 2261 874
0.5 0 12 55 294 1102 | 444
0.1 0 13 33 121 200 75
0.05 0 16 28 83 80 38
0.01 2 10 11 22 18 13

Table 2: Number of clusters per base intensity and cluster size range

Table 2 shows the amount of cluster created within six different size ranges for each
base intensity. We consider these different size ranges to gain more insights into different
types of clusters. Here it becomes apparent that the smallest base intensity is the only base

intensity which creates clusters with more than 10000 articles, namely 2 of them. For the

21



range [10000,1000) all of the base intensities create a similar amount of clusters with the
smallest amount being 10 for the smallest and largest base intensity, and the largest amount
being 16 for the base intensity 0.1. For the smaller ranges we see that a higher intensity leads

to more clusters being created.

Cluster Size
(o0, 10000) | [10000,1000) | [1000,100) | [100,10) | [10,1) 1]

Base Intensity

1 0,00% 0.28% 1.45% 10.55% | 63.26% | 24.45%
0.5 0.00% 0.63% 2.88% 15.42% | 57.79% | 23.28%
0.1 0.00% 2.94% 7.47% 27.38% | 45.25% | 16.97%
0.05 0.00% 6.53% 11.43% 33.88% | 32.65% | 15.51%
0.01 2.63% 13.16% 14.47% 28.95% | 23.68% | 17.11%

Table 3: Percentile distribution of clusters over cluster size

Table 3 shows which percentage of clusters falls within each size range. Here the share of
clusters within size ranges (oo, 10000), [10000, 1000) and [1000, 100) increases when the base
intensity decreases. For the size range [100, 10), the share increases as well for 1 till 0.05, only
decreasing a bit for 0.01 compared to 0.05. For the size range [10, 1), the complete opposite
happens; here the share increases when the base intensity increases. The share of clusters
with only one single article stays fairly stable for the different base intensities. While it does
decrease when the base intensity decreases till 0.05, and only rising again a bit for 0.01, the
differences are relatively small compared to the other ranges. Conclusively, a higher base
intensity lead to more clusters being created but also favours small clusters, i.e., clusters
with more than 1 and a maximum of 10 articles, more than lower base intensities, which
create relatively more larger clusters, namely clusters with more than 10 documents.

While these figures provide us with insight about the distribution of the cluster sizes it
still leaves questions about the quality of the clusters. Since we do not know the true clusters
of the news articles, we need to examine the words contained within documents in the clusters
to make statements about the quality of the clusters. By examining these textual contents,
we can say something about the cluster uniqueness and coherence.

To quantify cluster uniqueness, we compare the word vectors of each cluster. The word

vector of each cluster contains the count of each word of the documents contained within
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the cluster. By computing the cosine similarity of two of these vectors we can say something
about the textual similarity of two clusters and thus how well they reflect two different topics.
Cosine similarity between two vectors @ and b is defined as: cos(a, b) = %. To examine
the overall performance of a base intensity we compute the cosine similarity between all
cluster pairs contained within a size range for each base intensity. By doing this we can say
something about the uniqueness and similarity of the clusters contained within a size range.

What we consider desirable is that any two clusters have low similarity, which means that
the topics contained within the clusters are textually different. Table 4 shows the average
cosine similarity for each base intensity and cluster size range. To be able to compare clusters

with different sizes fairly we divide the word distribution vector of each cluster by the sum

of that vector.

Cluster Size
(,10,000) | [10,000,1000) | [1000,100) | [100,10) | [10,1) | [1] All ranges

Base Intensity

1 - 0.8 0.61 0.28 0.11 0.05 | 0.11
0.5 - 0.73 0.59 0.29 0.1 0.04 | 0.12
0.1 - 0.67 0.56 0.3 0.11 0.03 | 0.16
0.05 - 0.67 0.51 0.31 0.11 0.04 | 0.21
0.01 0.63 0.56 0.43 0.24 0.12 0.04 | 0.22

Table 4: Average between cluster pairwise similarities, in bold the lowest similarity per cluster

size range.

Table 4 shows that the base intensity of 0.01 results in the least similar clusters for
size ranges (00,10000), [10000,1000), [1000,100) and [100,10). This is expected since this
intensity creates by far the least amount of clusters. Because of this, the clusters created
with this intensity have relatively more articles contained within them, which in turn makes
it more likely that the clusters are more different but do contain articles which in reality have
different topics. Furthermore, we conclude that for all base intensities the cosine similarities
of the clusters within each size range are very similar, especially for the smaller clusters.
Independent of the base intensities we also conclude that the larger the cluster, the larger the
cosine similarity tends to be. Following this, we can conclude that the large clusters contain

articles which are all very similar to one another topic wise. This can be explained by the fact
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that financial news articles often revolve around very generic topics, like investment related
new or news about government decision making, where a lot of the same words are used. So,
articles about these generic topics tend to cluster in a few very large clusters with similar
topics. Furthermore, it can be seen that for all size ranges the cosine similarity between
clusters decreases when the base intensity increases, meaning that a higher base intensity
results in more similar clusters and thus less well separated topics.

To quantify the coherence, we compare the word vectors of individual articles contained
within a cluster. To examine the overall performance of a base intensity, we compute the
average pairwise similarity of 3000 randomly chosen articles within a cluster, using all of
the articles if a cluster contains less than 3000 articles. Of these averages within cluster
similarities we then compute a average again. Here we consider a high similarity desirable
since that relates to articles containing similar words and thus similar topics. These averages

are shown in Table 5.

Cluster Size
(c0,10000) | [10000,1000) | [1000,100) | [100,10) | [10,1)

Base Intensity

1 - 0.0556 0.0748 0.0692 0.0719
0.5 - 0.0575 0.0742 0.0671 0.0699
0.1 - 0.0636 0.0746 0.0669 0.0683
0.05 - 0.06 0.0706 0.0673 0.093
0.01 0.0536 0.0674 0.0742 0.0757 | 0.0788

Table 5: Average within cluster pairwise similarities, in bold the highest per cluster size

range.

Table 5 shows that, although there are small differences, within cluster similarity is rel-
atively similar for each base intensity and cluster size range. Because these differences are
so small, it is hard to make conclusions regarding the influence of the base intensity on the
coherence of the topics.

To make the conclusion on which base intensity is best suited for creating our sentiment
indices, we take into account both the similarity measures as well as the cluster size distri-
butions. First of all, we want to have a base intensity which creates unique and coherent

topics, which by looking at the similarities points us at the lowest tested base intensity, which
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is 0.01. But since we are creating a sentiment score which uses the size of the clusters to
increase or decrease the influence of the cluster sentiment on the final sentiment index, we do
not want the documents to pile up in a few big clusters, since this will diminish the effect of
our weighted approach. And since this behaviour of articles piling up in a few large clusters
is more present when the base intensity is lower, choosing the right base intensity is a tradeoff
between cluster quality and cluster size distribution.

Our final choice is 0.1, because it is a compromise between good cluster quality and a

good cluster size distribution.

4.2 Sentiment indices

This section shows the different sentiment indices and compares them to indices from the
literature. As explained in the methodology, we have created four different sentiment index
time series using the financial news articles. We have a baseline (BL) index which is the
average daily sentiment which does not use the clusters. We have an index based on the
average sentiment in the biggest cluster on each day, the biggest cluster (BC) index. We also
have an index which is a weighted average of the clusters sentiments, weighted by the cluster
sizes (CS). Furthermore, we have an index which is similarly weighted by size, but uses the
next day forecasted cluster sizes (FCS). Both weighted indices give a greater weight to bigger
clusters.

The following figures contain the time series plots of our own indices, the indices in Figure
6, the VIX index in Figure 7, the EPU index in Figure 8, the DNS index in Figure 9 and for
reference the closing values of the S&P 500 in Figure 10.
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Figure 6: Sentiment index values

Figure 6 shows our own indices. Here, we can see that overall the baseline index is more
positive, because of larger values, compared to the indices which use the clustering. We can
also see that the indices which exploit the clusters are very similar, especially for the first
three months. In the last two months the forecasted cluster size index has a few negative
sentiment spikes which cannot be seen in the other indices. When comparing our indices

with the prices of the S&P 500 in Figure 10 it is hard to recognize patterns.
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Figure 7: VIX index values

The VIX index represents the amount of expected volatility, and it is also called the fear
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index. The higher the value of the VIX the higher the fear and the higher the volatility
is to be expected. In Figure 7 we can see a very large surge of the VIX in the beginning
of February, meaning a sure in fear. When looking at the S&P 500 prices we can see that

beginning of march was a period which saw a large dip of the price, so this matches what we

see in the VIX.
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Figure 8: EPU index values

The EPU index tries to capture the overall uncertainty on economic policy. When com-
paring the values of this index in Figure 8 with the prices of the S&P 500 it is hard to
recognize any matching patterns. We see two spikes of the EPU, one in the beginning of

January, and one in the middle of April. But we cannot see any direct result of these spikes

in the prices of the S&P 500.
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Figure 9: DNS index values

The DNS index is the most similar to ours, since it represents the sentiment contained in
economic news articles. For this index we can also not really recognize matching patterns with
its values compared to the S&P 500. It seems like there is almost some kind of reoccurring
pattern, since around the first of each month there is a surge followed by a dip which cannot

be seen in the prices of the S&P 500.
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Figure 10: S&P 500 daily closing prices
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4.3 S&P 500 prediction

This section contains the results obtained from predicting the S&P 500 with the sentiment
indices in a VAR setting. As explained in the methodology, we have created four different
sentiment index time series using the financial news articles. We have a baseline index which
is the average daily sentiment which does not use the clusters. We have an index based on
the average sentiment in the biggest cluster on each day. We also have an index which is a
weighted average of the clusters sentiments, weighted by the cluster sizes. Furthermore, we
have an index which is similarly weighted by size, but uses the next day forecasted cluster
sizes. Both weighted indices give a greater weight to bigger clusters.

For modeling time series with a VAR model the time series need to be stationary. As
explained in the methodology we use the Augmented Dickey-Fuller test with alternative
hypothesis of stationarity to test for this. Table 6 shows the outcomes of this test for each
of the sentiment indices, the part of the S&P 500 we use and the first differenced version of

the S&P 500.

S&P 500 | S&P 500 FD | BL | BC | CS | FCS | VIX | EPU | DNS
p-value | 0.11 0.00 0.04 | 0.00 | 0.00 | 0.00 | 0.05 | 0.00 | 0.00

Table 6: p-values of the ADF test. Accepting null hypothesis in bold.

The table shows that all sentiment indices reject the null hypothesis, suggesting station-
arity. Regarding the S&P 500 index, we see that for the price dataset we cannot reject the
null hypothesis of a unit root, meaning that it is not stationary. For the first differenced
version of the index we can reject the null hypothesis. Since the VAR model requires that
the time series are stationary we use the first differenced version of the S&P 500.

Following, we use each sentiment index to make predictions on the first differenced S&P
500 using rolling window regressions with the S&P 500 and the sentiment indices as variables
in a VAR model we make one day ahead predictions. We have tried different training period
lengths. Due to computational limitations, running the clustering on all five months takes
more than a month. We only consider the clustering based sentiment indices which are

created with base intensity, Ay = 0.1. To evaluate the predictive performance we convert
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each one day ahead price prediction into a binary value which equals 1 if the price prediction

had the correct sign compared to the first differenced S&P 500 value. Then, we are left with

a binary vector, of which we take the average to compute the ratio of correct one day ahead

movement prediction. We call this ratio the prediction accuracy.

Tables 7, 8, 9 & 10, shows the resulting prediction accuracies for each sentiment index

and training window period for lags of 1, 2, 3 and 4 respectively.

Training weeks

1 2 3 4 5 6

Sentiment index

Base 0.45 | 0.38 | 0.45 | 0.51 | 0.44 | 0.49
Biggest Cluster 0.52 | 046 | 0.41 | 0.45 | 0.5 0.49
Weighted 0.51 | 0.47 | 0.38 | 0.48 | 0.47 | 0.49
Kernel forecasting 0.47 | 04 0.38 | 0.45 | 0.47 | 0.52
VIX 0.44 | 0.44 | 0.43 | 0.44 | 0.59 | 0.51
EPU 0.48 | 0.47 | 0.48 | 0.44 | 0.46 | 0.44
DNS 0.46 | 0.4 0.39 | 044 | 04 0.44

Table 7: S&P 500 fractions of correct next day price movement predictions

Best accuracy in bold.

with lag = 1.

In Table 7 we see the results for a lag of 1 in the VAR model. Looking at the resulting

prediction accuracies we can see that the highest prediction accuracy is 0.59, and is reached

with the VIX index with a training period of 5 weeks. Furthermore, we can see that this

accuracy is the only one which convincingly passes 0.5, the rest of the accuracies where well

below 0.5 or just about 0.5.
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Training weeks . 5 3 4 5 6

Sentiment index

Base 0.44 | 0.39 | 0.41 | 0.45 | 0.54 | 0.56
Biggest Cluster 0.45 | 0.44 | 049 | 0.44 | 0.43 | 0.51
Weighted 0.51 | 0.43 | 0.45 | 0.48 | 0.49 | 0.49
Kernel forecasting 048 | 0.53 | 0.39 | 0.44 | 0.49 | 0.51
VIX 0.39 | 0.48 | 0.45 | 0.43 | 0.49 | 0.49
EPU 0.49 | 0.39 | 0.49 | 0.41 | 0.43 | 0.46
DNS 0.54 | 04 0.39 | 0.45 | 0.51 | 0.49

Table 8: S&P 500 fractions of correct next day price movement predictions with lag = 2.

Best accuracy in bold.

In Table 8 we see the results for a lag of 2 in the VAR model. For this lag the best
prediction accuracy was 0.56 and reached with our baseline index. There is once again not

one index which always outperforms the other ones.

Training weeks ) 5 3 4 5 P

Sentiment index

Base 0.43 | 0.49 | 0.41 | 0.35 | 0.56 | 0.52
Biggest Cluster 0.43 | 0.46 | 0.43 | 0.44 | 0.44 | 0.48
Weighted 0.43 | 0.54 | 0.46 | 0.43 | 0.44 | 0.49
Kernel forecasting 0.43 | 0.55 | 0.44 | 0.47 | 0.54 | 0.59
VIX 0.43 | 0.54 | 0.49 | 0.32 | 0.47 | 0.52
EPU 0.42 | 0.51 | 0.52 | 044 | 04 0.44
DNS 0.43 | 0.49 | 0.43 | 0.43 | 0.43 | 0.52

Table 9: S&P 500 fractions of correct next day price movement predictions with lag = 3.

Best accuracy in bold.

In Table 9 we see the results for a lag of 3 in the VAR model. This time around it does
seem that the kernel forecasted score slightly outperforms the other indices. But this does not
happen for each training week period. The kernel forecasted score also reaches the highest

accuracy, namely 0.59.
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Training weeks . 5 3 4 5 6

Sentiment index

Base 044 | 04 0.48 | 043 | 0.5 0.54
Biggest Cluster 0.44 | 0.48 | 0.5 0.55 | 0.57 | 0.56
Weighted 0.44 | 0.46 | 0.59 | 0.61 | 0.62 | 0.61
Kernel forecasting 0.44 | 048 | 0.46 | 0.47 | 0.53 | 0.61
VIX 0.45 | 049 | 0.46 | 0.39 | 0.41 | 0.49
EPU 0.49 | 0.48 | 0.46 | 0.48 | 0.46 | 0.51
DNS 044 | 049 | 048 | 04 0.35 0.41

Table 10: S&P 500 fractions of correct next day price movement predictions with lag = 4.

Best accuracy in bold.

The best prediction accuracy in Table 10 is reached for the cluster size weighted index,
namely 0.62, on a training period of 5 weeks. Furthermore, we can see that here as well
prediction accuracies look very similar for each sentiment index, fluctuating around ,and

mostly under 0.5, depending on the amount of training weeks and the chosen lag.

5 Conclusion

This paper first of all focuses on clustering financial news articles with the Dirichlet-Hawkes
process. Our data set contains around 300000 articles which contain their textual content
and the date and time of publishing. The articles were published in the first five months
of 2018. Due to computational limitations we have only used articles published within the
first month of 2018 to evaluate the Dirichlet-Hawkes process. In our evaluation we have
considered multiple values for the base intensity, which has a lot of influence on the amount
of clusters which are created and the quality of those clusters. We have found that the base
intensity parameter has a lot of influence on how the clustering results look. A relatively
low base intensity results in very few clusters with very skewed document counts, of the
few clusters that are created a subset contains almost all documents. A relatively high base
intensity resulted in a lot of clusters which contained more similar topics between each other.
Giving a definitive answer to which base intensity is best suited for our data set is hard to

decide. But looking at the way we construct our weighted sentiment indices, we decided
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to use a base intensity which was in the middle of both extremes. Furthermore, we can
answer our first research question: ”Is the Dirichlet-Hawkes process suitable for clustering
financial news?” positively, because we did find clusters which had similarities within the
words contained in the cluster and dissimilarities were also found between the individual
clusters. We also discovered that the bigger clusters created with the DHP have a relatively
high average pairwise cosine similarity, which led us to believe that these large clusters often
contain very similar articles. A reason for this can be the repetitive word use which is found
in financial news articles, which leads to very similar clusters, where a lot of articles can fit
in.

Furthermore, we have created multiple different sentiment indices with using the financial
news articles. The first index is the base index which does not exploit the cluster made with
the DHP. Next to that there are three indices which do exploit the clusters. With these
articles we made one day ahead forecasts with multiple rolling window sizes in a VAR model
setting. Then, we evaluated if the one day ahead forecasts correctly predicted whether the
price of the S&P 500 would rise or fall. Research questions 2 & 3 can be answered with the
results of the predictions. Research question 2 was: "Can S&P 500 prediction be improved
by incorporating DHP cluster size into the sentiment index?”. To answer this question we
consider two sentiment indices, the biggest cluster index and the weighted index. One of these
two indices outperformed the base intensity for some lags and training week period, but not
for all. So, we can confirm that exploiting topic clusters made with a Dirichlet-Hawkes process
can, in some cases, improve the next day ahead predictions of the movement of the S&P 500.
The last research question was: ”"Can S&P 500 prediction be improved by incorporating DHP
cluster size and dynamics into the sentiment index?” To answer this research question we
look at the sentiment index which utilizes the ability to forecast new arrivals for the clustered
topics, based on the learned topic dynamic. This is the kernel forecasted sentiment index.
When looking at the resulting accuracies of this index we can give a similar conclusion, for
some training periods and lags the kernel forecasted index outperforms the other ones, but
not always. So incorporating DHP cluster size and dynamics can, in some cases, improve

prediction accuracies of next day S&P 500 sign predictions in a VAR setting.
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