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Executive summary

Increasing vehicle uptime is in the interest of transport companies, Original
Equipment Manufacturers (OEMs), and society. Transport companies are seek-
ing new ways of staying competitive; OEMs are making a profit by selling
transport services; and society is looking for environment-friendly solutions to
transportation capacity crunch.

Predictive maintenance answers this need. Predictive maintenance tech-
niques estimate the health status of a component, and find a preferred time
to repair or replace it (Sakib and Wuest, 2018). Vehicle uptime gets increased,
and cost savings can be obtained by both transport companies and transport
service providers. However, predictive maintenance is often associated with
sensors, telematics, cloud platform and complicated analytics, discouraging
practitioners from stepping forward.

This thesis proves that predictive maintenance can be introduced based
solely on maintenance records, a prevalent data source kept by almost every
garage and OEM. The proposed solution predicts turbocharger failure, increases
truck uptime, and brings cost savings. Detailed steps of analysis and advice on
execution are presented. This thesis is especially applicable for companies that
are either about to launch pilot projects or unaware of the business value that
predictive maintenance can create.
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1 Introduction

In recent years, predictive maintenance, i.e., maintenance based on estimates of
the health status of equipment (Susto et al., 2015), has been introduced in many
industries, especially where optimization of asset management is desired. By
taking advantage of predictive maintenance techniques, companies can prevent
unexpected equipment downtime, improve service quality for customers, and
reduce the additional cost caused by over-maintenance in preventive mainte-
nance policies (Wang et al., 2017). Choosing an optimal time to replace or repair
a part based on the prediction given by predictive maintenance models can
optimize a trade-off between maintenance and performance cost, as well as in-
crease availability and reliability of assets (Sakib and Wuest, 2018). For example,
it is observed that by implementing predictive maintenance techniques, the
potential for companies in heavy industries to increase asset availability is 5
to 15 percent, and reduce maintenance costs 18 to 25 percent (Bradbury et al.,
2018).

Despite the promising outlook of predictive maintenance, the levels of adop-
tion of predictive maintenance across different industries are still relatively
low. A study of 280 companies from Belgium, Germany and the Netherlands
(Haarman et al., 2017) shows that two thirds of the surveyed companies still
adopt periodic inspections, and draw conclusions based either solely on in-
spector’s expertise or on a combination of inspector’s expertise and instrument
read-outs. Haarman et al. (2017) also observe that among all critical success
factors of predictive maintenance implementation, such as data availability,
budget, culture, technology, and data security, data availability is considered
as the most important one. This can be partly explained by the fact that it is
still technologically challenging to collect sensor data from assets in real-time
(Haarman et al., 2017), whereas unawareness of the potential business value
which maintenance data can create may also stop companies from stepping
forward.

Geissbauer et al. (2016) surveyed over 2,000 senior executives from industrial
products companies worldwide, and showed that transportation and logistics,
among all surveyed industries, has the highest percentage of industry experts
who think that data and analytics are of high importance to decision-making.
An important reason is that transportation and logistics is a low margin indus-
try (Tipping and Kauschke, 2016) where sudden vehicle breakdown quickly
turns profit to loss (Prytz et al., 2015). Thus, increasing vehicle uptime is a
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preoccupation for transport and logistics companies seeking new ways of being
competitive (Prytz, 2014). However, it is estimated that freight transport across
Europe will increase by 60% by 2050 (European Commission, 2019). Meanwhile,
European Commission (2019) points out that capacity crunch is already be-
ing felt in relevant sectors, and that solutions which have a negative impact
on greenhouse gas emission reductions, like deploying more vehicles, are not
favored. These concerns call for advanced techniques which improve vehicle
uptime while contribute to sustainable development.

Closely associated with the transportation and logistics industry is the au-
tomotive industry, in which original equipment manufacturers (OEMs) are
heading towards selling transport services, such as maintenance and uptime
guarantee, alongside with vehicles (Prytz et al., 2015). If a vehicle is under
warranty (service costs covered by a fixed monthly fee), its sudden breakdown
affects not only the fleet operator but also the OEM, because expenses, such
as towing, disruption of garage workflow, costs of components, and rent of
replacement vehicle, are borne by the latter (Prytz et al., 2013).

Typically, in these two industries, a fault is fixed only after it becomes an issue
affecting vehicle’s performance (Prytz et al., 2013). One of the key reasons for
the huge gap between current situations and the future promised by predictive
maintenance techniques is the inherent complexity of these industries. Wireless
communication becomes less reliable when vehicles operate in remote areas, on
country borders or in harsh environments, resulting in fewer opportunities for
continuous monitoring (Prytz et al., 2015). Meanwhile, it is not worth installing
sensors purely for diagnostic purposes, as they are usually expensive and need
to fulfil rigorous safety standards (Prytz et al., 2015).

Nevertheless, the immaturity of continuous monitoring should not be an
obstacle to embracing predictive maintenance. Predictive maintenance can be
implemented even without real-time sensor data. Maintenance records, which
record the details of maintenance operations of vehicles, are widely available
in workshops and garages. Patterns that correlate with failure can be detected
not only from real-time sensor data, but also from maintenance records (Haar-
man et al., 2017). It is hardly cost-effective for relevant companies to overlook
existing data sources and chase for more complex prediction systems which
are not necessarily mature in their situations. For these companies, exploiting
maintenance records is a means to quickly introduce predictive maintenance
solutions (Prytz et al., 2015), as well as a feasibility study of more advanced
systems.
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The present study presents a data-driven approach that predicts the health
status of truck turbocharger. Models are based on maintenance records from a
truck dealership1 which sells trucks as well as maintenance services to fleet op-
erators. These maintenance records are generated when trucks visit the garage,
due to either scheduled maintenance or sudden breakdown. The predictive
maintenance solution proposed in the present study is designed to be adopted
as an aid to technicians (Prytz et al., 2013), reminding them to focus on the
trucks which are labeled by the model as in need of turbocharger inspection.
The outcomes of the present study will enable the company to increase vehicle
uptime, establish better customer relationships, and cut maintenance costs for
both its clients and itself.

The remainder of the thesis is structured as follows. Section 2 states the
research objective and research questions. Section 3 introduces the theoretical
background of the present study. Section 4 explains the data and methods which
lay a foundation for subsequent analysis. Section 5 presents the steps of analysis.
Section 6 reflects and concludes this thesis.

1The name of the company is masked for privacy reasons.
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2 Objective and research questions

2.1 Research objective

The objective of the present study is to increase truck uptime and bring cost
savings to fleet operators by predicting turbocharger failure based solely on
maintenance records. Among the myriad of components inside a truck, some
components are more crucial than others. Failure of these crucial components
will almost always lead to a truck’s sudden breakdown. Predicting when they
fail is at the core of improving truck uptime. Praveenkumar et al. (2018) address
the use of vibration signal for automated fault diagnosis of automotive gearbox.
Liljefors (2020) presents a recurrent neural network-based method for predicting
turbocharger failure in heavy-duty trucks based on sensor data and maintenance
records. Truck compressor failure is studied by Prytz et al. (2013; 2015) and
Nowaczyk et al. (2013) based on a Volvo internal database. Mashhadi et al.
(2020) propose a stacked ensemble model to predict the remaining useful life of
truck turbocharger based on the same Volvo database.

(a) 3D sketch of automotive turbocharger
(Schweizer, 2010)

(b) Illustration of the action of a passenger
vehicle turbocharger (Tetsui, 2002)

Figure 1: Turbocharger

The present study focuses on turbocharger (see Figure 1). Turbocharger is ‘a
device in which heat energy from engine exhaust gas turns a turbine along with
a compressor on the same axis, such that inflow air is pressurized by the com-
pressor and supplied to the engine, thereby improving the engine’s combustion
efficiency’ (Tetsui, 2002, p. 582). When a turbocharger fails, it causes significant
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collateral damage to the truck (Prytz et al., 2013). Although turbochargers are
usually designed to last the full lifetime of the truck or scheduled for planned
maintenance, this is not enough to prevent all unanticipated failures (Prytz et al.,
2013).

Most studies on predictive maintenance are solely or partly based on sensor
data. Choudhary et al. (2009) study 150 papers that are related to the use of
data mining in manufacturing, and conclude that almost all research consid-
ers the case when continuous monitoring of devices is possible. Prytz et al.
(2013) also argue that it is common in fault prediction research to be able to
continuously monitor the device in question. Later, Prytz et al. (2015) demon-
strate the scarcity of academic literature on optimizing maintenance strategy
based on maintenance records. A recent study (Carvalho et al., 2019) also shows
that vibration signals are the most common data used to design predictive
maintenance models.

However, since maintenance records are so ubiquitous, it is interesting to
know whether predictive maintenance can be realized based solely on mainte-
nance records. To achieve this objective, the following research questions are
developed.

2.2 Research questions

Understanding the failure patterns of turbocharger is conducive to a solid study.
Therefore, the first research question is generated as follows.

RQ1: What are the failures patterns of turbocharger?

To predict turbocharger failure, machine learning models are built. These
models should learn from maintenance records, and predict whether the status
of a turbocharger is healthy or unhealthy, i.e., whether a turbocharger has a long
way to fail or will fail soon. This leads to the second research question.

RQ2: How well can turbocharger failure be predicted?

To create business values, maintenance operations should be considered
from not only a technical perspective, but also an economic perspective. For fleet
operators, when not replacing a turbocharger incurs more costs than replacing
it, the economic life of the turbocharger is depleted, and replacement should be
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immediately carried out for the purpose of cost savings. Hence, the last research
question is developed as follows.

RQ3: For fleet operators, to what extent can maintenance costs be reduced when the
predictive maintenance model is implemented?

Apart from the above research questions, the present study also explores the
relationship between the health status of turbocharger and the replacement of
other components. When predicting truck compressor failure, Prytz et al. (2015)
consider pumped air volume since last compressor change, mean compressed
air per distance, and air compressor duty cycle, all of which are directly related
to compressor usage pattern. However, maintenance records restrict the present
study, as there is no information directly related to turbocharger usage pattern.
To extract more features, the ages of other components are considered.

2.3 Academic relevance

Table 1 lists papers particularly relevant to the present study. All these studies
use data-driven methods to predict the failure of a specific truck component.
However, none of them are based solely on maintenance records.

Table 1: Most relevant papers to the present study

Reference Component Dataa

Prytz et al. (2013) compressor SD
Nowaczyk et al. (2013) compressor SD
Prytz et al. (2015) compressor MR and SD
Liljefors (2020) turbocharger MR and SD
Mashhadi et al. (2020) turbocharger SD

a The data types are Maintenance Records (MR) and Sensor Data (SD).

The present study addresses the scarcity of literature on the use of mainte-
nance records in predicting truck component failure, and is one of the pioneering
studies of predicting truck component failure based solely on low-quality, less
advanced, but more common data. The feature engineering techniques em-
ployed in the present study contribute to the field of data mining by providing
new ideas of extracting information from maintenance records, which have
limited numerical columns.

7



2.4 Managerial relevance

The predictive maintenance solution proposed in the present study benefits the
company in three ways. First, customer satisfaction is increased, as the fleet
operators associated with the company can enjoy longer truck uptime and suffer
less from truck breakdown. Second, as fewer sudden breakdowns happen, the
company can manage its labors and physical assets more efficiently, reducing
cost from both aspects. Third, the solution can act as a pilot project inside the
company, laying a foundation for more advanced and complicated prediction
systems.

Meanwhile, the present study encourages more transport and automotive
companies to introduce predictive maintenance, as the presented methods
only rely on maintenance records, one of the most prevalent data sources in
these industries. Successful implementation of predictive maintenance reduces
operational costs, helping these businesses to stay competitive.

Society can also benefit from a wide adoption of predictive maintenance, be-
cause total vehicle uptime gets increased without more vehicles being deployed.
This is in line with sustainability.
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3 Theoretical background

This section outlines the theoretical background that makes predictive main-
tenance happen, beginning with the illustration and comparison of the cur-
rent three maintenance strategies. The mathematical principles behind failure
prognostics and some failure reasons are then presented, as they are the funda-
mentals of prediction models. Next, practical aspects of data are reviewed. An
overview of the statistical and machine learning techniques used in predictive
maintenance, particularly in the present study, is given. This section concludes
with cost savings, an indicator which can determine whether a predictive main-
tenance solution is accepted by the company.

3.1 Maintenance strategies

Different nomenclatures and groups of maintenance strategies exist (Carvalho
et al., 2019). The present study adopts the classification of maintenance strategies
proposed by Susto et al. (2015) into: run-to-failure (R2F), preventive maintenance
(PvM), and predictive maintenance (PdM).

Under the run-to-failure strategy, maintenance interventions are performed
only after failure happens (Carvalho et al., 2019). Run-to-failure is obviously
the simplest maintenance strategy, hence frequently adopted (Susto et al., 2015;
Prytz et al., 2013). However, sudden truck breakdown can increase the lead
time of a consignment, and unanticipated failure of a mechanical or electronic
component can paralyze a production line. Besides, the costs of interventions
and the ramifications of downtime are by and large much more substantial than
those associated with preventive maintenance (Susto et al., 2015).

Preventive maintenance, also known as scheduled maintenance, is a mainte-
nance strategy under which maintenance actions are carried out according to a
planned schedule based on time or process iterations (Susto et al., 2015). In this
way, failures are usually reduced to varying degrees, but unnecessary replace-
ments are inevitably performed (Susto et al., 2015). With the rapid development
of technology, industrial products are becoming more and more sophisticated,
while better quality and reliability are required (Jardine et al., 2006). These facts
challenge preventive maintenance, as it has become a major expense of many
industrial companies (Jardine et al., 2006).

A good maintenance strategy needs to overcome the drawbacks in the above
two strategies, and is supposed to both improve equipment condition and mini-
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mize maintenance costs (Carvalho et al., 2019). Predictive maintenance, which
leverages predictive tools to determine when maintenance actions are necessary
(Carvalho et al., 2019), is the strategy that stands out among others (Jezzini
et al., 2013). Its advantages include: maximizing equipment uptime, delaying
or reducing maintenance activities, and minimizing labor and material costs
(Carvalho et al., 2019). Regarded as closely associated with Industry 4.0 (Kumar
et al., 2019), predictive maintenance is attracting more and more scholarly atten-
tion. This is demonstrated by the fact that the number of published articles on
this topic grows steadily in the last decade (Carvalho et al., 2019).

3.2 Failure prognostics

Prognostics is a technique aiming at predicting failures before they occur (Jar-
dine et al., 2006). There are two main prediction types in equipment prognostics
(Jardine et al., 2006). The most widely used type of prognostics is to predict the
remaining useful life (RUL) of a piece of equipment, i.e., how much time is left
before failure occurs given the current equipment condition and past operation
profile (Jardine et al., 2006). Since remaining useful life is a random variable, its
expectation can be expressed as

E[T − t|T ≥ t, Z(t)], (3.1)

where T denotes the random variable of equipment lifetime, t is the current
age, and Z(t) is the past condition profile up to the current time (Jardine et al.,
2006).

However, in some situations, especially where a failure is catastrophic (e.g.,
nuclear power plant), it is more desirable to estimate the probability that a piece
of equipment stays functional up to some point (e.g., next inspection or planned
downtime) given the current equipment condition and past operation profile
(Jardine et al., 2006). This motivation makes it necessary to estimate the posterior
probability

P(T − t ≤ ∆|T ≥ t, Z(t)), (3.2)

where T denotes the random variable of equipment lifetime, t is the current
age, Z(t) is the past condition profile up to the current time, and ∆ is the time
horizon of interest (Prytz et al., 2013).
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3.3 Failure reasons

In reliability engineering, failure patterns are often analyzed by using the failure
rate function, which can be interpreted as the probability (risk) of failure in an
infinitesimal unit interval of time (Finkelstein, 2008). Arguably the most popular
failure rate function is the ‘bathtub curve’ (Klutke et al., 2003), see Figure 2,
where λ(t) is the failure rate.

Figure 2: The bathtub curve (Finkelstein, 2008)

The bathtub curve suggests that age is associated with failure rate, and that
their relationship is nonlinear. The risk of failure is relatively high at the early
and late stages.

Khare et al. (2012) show that most failures in the automotive systems depend
on age and accumulated usage. Besides, temperature can affect the working
condition of a vehicle component. Pesaran et al. (2013) show that both cold and
hot weather can damage Li-Ion batteries and even result in safety incidents.

It should be noted that, repairing or substituting some of the components
in a complex system does not necessarily improve the condition of the overall
equipment or a certain component. Louit et al. (2009) define two types of
maintenances: (i) hazardous maintenance, in which the condition of the focused
component is worsened after maintenance and (ii) imperfect repair, in which
the condition of the focused component is improved after maintenance.
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3.4 Data types and sources

There are two types of data used in predictive maintenance: real data and
synthetic data (Carvalho et al., 2019). Synthetic data are often generated when
building or evaluating models, such as when using SMOTE (Synthetic Minority
Over-sampling TEchnique) to amplify the minority class (Chawla et al., 2002).
However, most academic papers use real data (89%) instead of synthetic data
(11%), and this may occur due to the fact that synthetic data are not able to
represent a real-world application in most cases (Carvalho et al., 2019).

Data can come from different parties and are stored in various entities. The
present study adopts the nomenclature of data sources in Prytz (2014). In a
predictive maintenance project, data mainly come from two sources: on-board
data and off-board data. The more prevalent data source is off-board data,
which span from maintenance records to vehicle usage statistics (Prytz, 2014). In
particular, maintenance records contain repair information and are kept by OEM
(Original Equipment Manufacturer) authorized workshops and garages (Prytz
et al., 2015). Since maintenance records are seldom designed for the purpose
of data mining, they are by and large of low quality, consisting of errors and
inconsistencies (Prytz et al., 2015). For example, it is sometimes hard to tell
whether a specific date refers to the date of diagnosis or the date of repair (Prytz
et al., 2015), as the technicians who input the data were not able to foresee that
these data would be used for data mining. Thus, maintenance records pose
a dilemma in which people either select a data set with inconsistencies and
deal with missing values or limit the analysis to vehicles that have the desired
features (Prytz et al., 2015).

On-board data include vehicle usage patterns and ambient conditions col-
lected by sensors (Prytz et al., 2013; 2015; Hashemian, 2010). These data are
either transmitted through a telematics gateway on the cloud or to the OEM,
or stored inside a vehicle for retrieval at a workshop (Prytz, 2014). However,
both approaches have limitations. The former approach is limited by unreliable
real-time wireless communication, as discussed earlier. The latter approach is
limited by the memory and computing power of the devices inside a vehicle.
As a result, the data stored inside a vehicle are often simple statistics of various
kinds (Prytz et al., 2015).
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3.5 Data construction

To construct a data set suitable for estimating the posterior probability in Ex-
pression 3.2, the data construction techniques proposed by Prytz et al. (2013)
and Prytz et al. (2015) are reviewed.

A new parameter, time-to-repair, is constructed. This parameter captures the
time interval between when a truck visits the garage and when its component
is replaced. It is straightforward to calculate time-to-repair for trucks on which
the component fails (hereinafter referred to as ‘faulty trucks’). For trucks on
which the component does not fail (hereinafter referred to as ‘non-faulty trucks’),
when their components fail is not known. This part of data (the majority part)
is right-censored. To overcome this, for a non-faulty truck, its component is
assumed to fail immediately after its latest visit to the garage.

Estimating the posterior probability is a classification problem where the
prediction model returns a value between 0 and 1. The response (target vari-
able, dependent variable) is constructed by comparing time-to-repair and the
prediction horizon, i.e., ∆ in (3.2). Prediction horizon is defined as the period
of interest for the predictive algorithm (Prytz et al., 2015). A binary variable,
the response equals 1 (positive) when time-to-repair falls within the prediction
horizon and 0 (negative) when time-to-repair is outside the prediction horizon.
Obviously, constructing time-to-repair is for labeling examples as positive or
negative, not for including a new feature into the models.

Prytz et al. (2013) mention that if some trucks have many occurrances in
the data set, machine learning algorithms learn to almost exclusively consider
individual idiosyncrasies, instead of indicators of component failure. To address
this problem, Prytz et al. (2013) suggest that each vehicle can contribute at most
two examples: one positive and one negative. However, the drawback is that the
size of available data is reduced (Prytz et al., 2013). Prytz et al. (2015) propose
another way to prevent models from learning individual patterns. They argue
that data should be split into training set and test set on a per vehicle basis: if one
or more examples from a given vehicle belong to the test set, no examples from
the same vehicle can go to the training set, and vice versa.

3.6 Corrgram and the two-sample Kolmogorov-Smirnov test

Corrgram is a visual display of the correlation matrix of numerical data
(Friendly, 2002). Correlation matrix is a square, symmetric matrix with rows

13



and columns corresponding to variables, in which the off-diagonal elements
are correlations between pairs of variables, and elements on the main diag-
onal are unity (Everitt and Skrondal, 2002, p. 107). Pearson correlation and
Spearman’s rank correlation are two widely used correlations. Unlike Pearson
correlation, which assumes linear relationship, Spearman’s rank correlation
assesses monotonicity, thus being more robust and sensitive to non-linear rela-
tionships (Croxton and Cowden, 1939; Aitken, 1957; Dietrich, 2017). Correlation
matrix can be ordered using various agglomerative clustering algorithms, in-
cluding complete linkage, single linkage, and average linkage (Hastie et al., 2009,
p. 523). Specifically, the complete linkage agglomerative clustering algorithm
calculates the dissimilarity of two groups by finding that of the furthest pair
(Hastie et al., 2009, p. 523).

The two-sample Kolmogorov-Smirnov test (two-sample K-S test) determines
whether two samples appear to follow the same distribution (Berger and Zhou,
2014). Therefore, for any classification problem, the two-sample K-S test can be
used to explore whether a numerical feature has different distributions in the
positive and negative groups. This provides more insight into the data, and can
be used as a tool for feature selection. For example, Prytz et al. (2015) decide
whether a feature is included in the predictive maintenance model by the results
given by the two-sample K-S test.

3.7 Class imbalance

The class imbalance problem arises when modeling data sets with discrete
classes, where the proportions of the classes are highly skewed (Liljefors, 2020).
This problem has been extensively studied due to its prevalence in the real
world (Japkowicz and Stephen, 2002). An overview of the various techniques to
tackle class imbalance can be found in He and Garcia (2009).

Many predictive maintenance use cases are troubled by class imbalance.
The number of failure (positive) records is extremely small compared to that of
normal (negative) records. It is even argued that the class imbalance problem
in the field of predictive maintenance would never disappear, since as the
aim of maintenance is to make failures rare events, one could expect that as
maintenance improves, fewer failures should occur (Louit et al., 2009). When
built on a data set whose target variable is hugely imbalanced, most algorithms
will be biased towards the majority class and hence, perform poorly on the
minority class (Prytz et al., 2015).
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SMOTE (Synthetic Minority Oversampling TEchnique) is a well-known tech-
nique to fight class imbalance (Chawla et al., 2002; Branco et al., 2016). SMOTE
over-samples the minority class by creating new synthetic data points, each
of which is generated as a convex combination of a selected minority class
instance and one of its k minority class neighbors (He and Ma, 2013). Compared
to techniques which only under-sample the majority class, a combination of
under-sampling the majority class and over-sampling the minority class can
achieve better classifier performance (Chawla et al., 2002). In the area of predic-
tive maintenance, studies that use SMOTE to address class imbalance include
Prytz et al. (2015), Cerqueira et al. (2016), and Ramentol et al. (2016).

SMOTE has two design parameters: the number of neighbors to consider
k, and the percentage of synthetic data to create (Prytz et al., 2015). The lower
the value of k, the more similar synthetic data are to existing data. The second
parameter determines to what degree the minority class is amplified.

3.8 Machine learning algorithms

Machine learning methods have been emerged as a promising tool in predic-
tive maintenance use cases (Carvalho et al., 2019). However, the performance
of predictive maintenance applications relies on the appropriate choice of the
machine learning algorithm (Carvalho et al., 2019). According to Carvalho et al.
(2019), the most employed machine learning algorithm in predictive mainte-
nance is random forest (33%), followed by neural network-based methods (27%),
support vector machine (25%), and k-means (13%), see Figure 3.

Lasso, random forest, and gradient boosting are reviewed below. These three
machine learning algorithms are used to predict turbocharger failure in the
present study.

3.8.1 Lasso

According to Everitt and Skrondal (2002, p. 242), the lasso estimate is defined by

β̂lasso = argmin
β

{ N

∑
i=1

(yi − β0 −
p

∑
j=1

xijβ j)
2 + λ

p

∑
j=1

|β j|
}

. (3.3)

Lasso is closely related to least squares regression (Everitt and Skrondal, 2002,
p. 242), as shown in the first term in 3.3. However, lasso introduces a penalty
term λ ∑

p
j=1 |β j| which shrinks coefficients. λ ≥ 0 is the tuning parameter and
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Figure 3: Most employed machine learning algorithms in predictive mainte-
nance (Carvalho et al., 2019)

the penalty term, showing the complexity of the model. The larger the value
of λ, the greater the amount of shrinkage is, and the less complex the model
becomes (Hastie et al., 2009, p. 63). A unique feature of lasso is that when λ

increases, some coefficients will shrink to exactly zero, and all coefficients will
be zero when λ reaches a certain value (Hastie et al., 2009, pp. 69-73). This
allows lasso to perform feature selection (Everitt and Skrondal, 2002, p. 242),
making the model more interpretable (Hastie et al., 2009, p. 57). Moreover, lasso
could increase prediction accuracy by sacrificing a little bit of bias to reduce the
variance of the predicted values (Hastie et al., 2009, p. 57).

3.8.2 Random forest

Random forest is a collection of individual tree predictors (Breiman, 2001), each
of which is built on a random subset of features and uncorrelated with any
other trees. Because of the Kolmogorov’s strong law of large numbers (Loeve,
1977), the out-of-sample error converges a.s. to a limit when the number of
trees increases, avoiding the risk of overfitting (Breiman, 2001; James et al.,
2013, p. 321). Although the bias of a random forest is the same as that of any
of the individual trees, combining a number of individual trees can reduce
variance, thus improving prediction (Hastie et al., 2009, p. 600). The built-in
feature selection mechanism decorrelates individual classifiers. It is shown that
in random forest, decorrelation is associated with lower out-of-sample error
(Breiman, 2001).
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Random forest estimates the out-of-sample error by computing the so-called
out-of-bag error. For each observation in the training data set, its own random
forest predictor is constructed such that all individual trees are built on bootstrap
samples in which the observation does not show up (Hastie et al., 2009, p. 593).
Despite the fact that both out-of-sample error and out-of-bag error converge
as the number of trees increases, a random forest model can only have a finite
number of trees, and out-of-bag error always fluctuates before convergence.
Growing a forest with an enormous number of trees is both time-consuming
and unnecessary.

When splitting a node, m ≤ p out of all p features are considered. If m = p,
the unique feature selection mechanism no longer plays a part, and random
forest degrades into bagging (Montillo, 2009). The inventors recommend that
the default value for m is

√
p for classification problems (Hastie et al., 2009,

p. 592). However, if the ratio of relevant features to all available features is
small, the chance can be small that the relevant features are selected at each split
(Hastie et al., 2009, p. 596). It is argued that the best value of m depends on the
specific problem, and should be considered as a tuning parameter (Hastie et al.,
2009, p. 596).

For each of the individual trees in a random forest, fewer splits could result
in lower variance and higher bias (James et al., 2013, p. 307), making tree
depth a parameter worth tuning. Segal (2004); Duroux and Scornet (2018) and
Duroux and Scornet (2018) show that regulating tree size can result in gains in
prediction performance, and that doing so incurs almost no additional cost due
to the intrinsic recursive nature of random forest. However, Hastie et al. (2009,
p. 596) suggest that using full-grown trees seldom costs much, and reduces
computation time as a result of less tuning parameters.

3.8.3 Gradient boosting

Similar to that for random forest, the motivation for boosting is a procedure that
combines the outputs of many base learners to produce a powerful ensemble
(Natekin and Knoll, 2013; Hastie et al., 2009, p. 337). In most cases, decision
trees are selected as the base learner of boosting methods because of their
interpretability (if they are small), built-in feature selection mechanism, invari-
ance under strictly monotone transformations of features, and fast construction
(Hastie et al., 2009, p. 352). However, while all individual trees are indepen-
dently built in a random forest, boosting methods build new trees sequentially.
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For each iteration, the weights of the observations that are misclassified in the
previous iteration get increased, and those of the observations that are correctly
classified get decreased (Hastie et al., 2009, p. 338). Thus, each successive tree is
forced to focus on the observations that are wrongly classified by previous trees
in the sequence (Hastie et al., 2009, pp. 338-339).

Boosting seeks to empirically minimize a loss function (Zhang et al., 2005). In
its original version as well as AdaBoost, one of the family members of boosting
methods, this is realized by numerical optimization in a greedy fashion (Zhang
et al., 2005; Vezhnevets and Vezhnevets, 2005; Hastie et al., 2009, p. 356). In
contrast, gradient boosting performs numerical optimization by constructing a
tree at the latest iteration in a way that the predictions given by the new tree are
maximally correlated with the negative gradient of the loss function (Natekin
and Knoll, 2013; Hastie et al., 2009, pp. 359-360).

Learning rate ν and the number of boosting iterations M are two of the
tuning parameters of gradient boosting algorithm. Learning rate ν is defined
such that the contribution of each tree is scaled by a factor 0 < ν ≤ 1 when
the latest tree is added to the current ensemble (Hastie et al., 2009, p. 364). It
is shown both theoretically and empirically (Friedman, 2001; Ridgeway, 1999;
Breiman, 1999; Hastie et al., 2009, p. 365) that small values of ν are conducive to
lower generalization error. Hastie et al. (2009, p. 365) argue that the best strategy
appears to be a combination of a very small ν < 0.1 and an M chosen by
early stopping, a regularization technique which tackles overfitting by stopping
iterations before global minimum is approached (Hastie et al., 2009, p. 364).

Gradient boosting framework has various implementations, including XG-
Boost (Chen and Guestrin, 2016), CatBoost (Dorogush et al., 2018) and LightGBM
(Ke et al., 2017). XGBoost is claimed by its authors to be a “scalable end-to-end
tree boosting system” (Chen and Guestrin, 2016).

3.9 Model evaluation metrics

In a binary classification problem, the receiver operating characteristic (ROC)
curve and the precision-recall (PR) curve are two commonly-used methods to
assess and compare binary classifier performance (Cao et al., 2020). However, for
some problems, researchers face the challenge of evaluating classification with
imbalanced response, where one class (usually negative) greatly outnumbers
the other (Cao et al., 2020). When class imbalance arises, ROC curve has been
shown to be misleading (Kleinbaum et al., 2002; Davis et al., 2005; Davis and
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Goadrich, 2006; Jeni et al., 2013; Saito and Rehmsmeier, 2015; Prytz et al., 2015).
Recently Cao et al. (2020) prove that PR curve is ineffective on some imbalanced
data sets.

Finding a perfect evaluation metric for predictive maintenance is not straight-
forward. It is desirable to discover as many unhealthy components as possible,
but labeling healthy components as unhealthy incurs additional costs. Thus,
both precision and recall need to be as high as possible. However, it is tempting
to use one metric instead of two, not only for conciseness, but also for comparing
candidate models. F1-score synthesizes precision and recall by calculating their
harmonic mean (Guns et al., 2012), but treats them as equally important. The
general version of F-score, Fβ, is calculated as

Fβ = (1 + β)
precision · recall

β2 · precision + recall
. (3.4)

Fβ “measures the effectiveness of retrieval with respect to a user who attaches
β times as much importance to recall as precision” (Van Rijsbergen, 1974). When
predicting air compressor failure, Prytz et al. (2013) use Fβ as the evaluation
metric, and set β to 0.5 based on the fact that precision is more important than
recall.

Another evaluation metric for classification problem is the Matthews corre-
lation coefficient (MCC), which is calculated as

MCC =
TP · TN − FP · FN√

(TP + FP)(FP + TN)(TN + FN)(FN + TP)
. (3.5)

To get a high score in MCC, the model has to make correct predictions
both on the majority of the negative cases and on the majority of the positive
cases, independently of their ratios in the overall data set (Chicco and Jurman,
2020; Cao et al., 2020). MCC is easy to interpret: a coefficient of +1.0 indicates
perfect prediction; 0.0 means random guessing; -1.0 indicates total disagreement
between prediction and observation (Matthews, 1975; Cao et al., 2020). It is
encouraged that for any binary classification problem, each test performance
should be evaluated through the Matthews correlation coefficient, instead of
F-score and accuracy (Chicco, 2017).

3.10 Cost savings

Prytz et al. (2013) propose a formula to estimate the cost savings when a predic-
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tion model is adopted. The cost savings Csave is calculated as

Csave = TP · (Cu − Cp)− FP · Cp, (3.6)

where TP denotes true positive (correctly discovering an unhealthy compo-
nent), FP denotes false positive (erroneously labeling a healthy component as
unhealthy), Cu denotes costs of sudden breakdown, and Cp denotes costs of
replaced component. There are no cost savings associated with true negative
(correctly identifying a healthy component), but the cost savings associated with
false negative (erroneously labeling an unhealthy component as healthy) is indi-
rect. Failing to discover an unhealthy component is equivalent to maintaining
the status quo, neither incurring additional costs nor saving costs.
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4 Data and methods

This section first describes the data used in the present study, and the procedures
to transform the original data into what can be used for modeling. Modeling
approaches are then presented. Finally, a formula for estimating the cost savings
is given.

4.1 Data

4.1.1 Data source

The data set used in the present study is retrieved from the company’s garage,
where trucks are inspected and repaired. The original data set contains more
than 400,000 rows and more than 20 columns. The data set contains information
regarding historical maintenance events. When a truck is sent to the garage
for maintenance, invoices which record that specific maintenance event are
generated. Each row represents a certain component which is replaced in a
maintenance event. In most cases, one maintenance event is represented by mul-
tiple rows, for it is rare that only a single component is replaced in a maintenance
event.

The columns contain maintenance information and truck information. Main-
tenance information includes invoice number, invoice creation date (mainte-
nance date), invoice status, the component name, component amount, com-
ponent price, invoice status, and invoice description. Truck information in-
cludes engine code, license plate, license plate acquisition date, age, cumulative
mileage, engine type, vehicle type, and whether a truck’s maintenance services
are covered by a monthly fee.

4.1.2 Data cleaning

Like Prytz et al. (2015), the present study also faces data quality problem. Du-
plicate rows account for 12.8% of the data set. The reason for duplication is
unknown. However, even if duplication means a larger amount of units, the
present study only cares about what, instead of how many, components are re-
placed in a single maintenance event. Hence, these duplicate rows are removed.

Whether an invoice is actually executed is shown in the invoice status col-
umn. Rows whose invoice status belongs to one of “depreciated”, “canceled”,
and “expired” are not associated with actual maintenance operations. These
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rows account for 0.7% of the data set, and are removed.
According to the Netherlands Vehicle Authority (Dutch: Rijksdienst voor

het Wegverkeer, RDW), a license plate identifies the vehicle, and it remains
unchanged even if the owner is changed (RDW, 2021). Thus, a truck can only
have one license plate and the acquisition date associated with the license plate.
The license plate acquisition date indicates the first day that a truck operates on
the road. However, some trucks in the data set have more than one license plate
acquisition date. Human errors are likely to be the reason. Since license plate
acquisition date is used to calculate the time interval between when a truck
first operates on the road and when a truck is maintained at the garage, it plays
an important role in feature engineering. 1.6% of the rows are associated with
trucks with abnormal license plates. To ensure data quality, all these rows are
removed from the data set.

In the majority of cases (76%), invoice creation date is preceded by license
plate acquisition date, meaning that a truck is maintained after it operates on
the road. But in some cases (24%), it is the other way around. This happens
when a truck is maintained before it operates on the road, or loosely, before it
is sold to a client. These maintenance events are filtered out, as they are not
associated with on-road operations.

Some trucks in the data sets have more than one vehicle type, which makes
no sense and is definitely due to input error. 0.2% of the rows are associated
with this kind of truck. These rows are removed for data quality. Besides, vehicle
type is one of the features in the models.

Some rows in the data set do not have cumulative mileage. Moreover, in
some cases, two rows which have the same invoice number have disparate
mileage readouts. As cumulative mileage is a feature in the present study, these
rows (22.5%) are removed.

Trucks that have only one maintenance event in the data set are discarded,
because they are not representative (Prytz et al., 2013), and account for 0.1% of
the data set. Turbocharger is usually replaced at most once during the whole
lifetime of a vehicle (Prytz et al., 2013), and only 8.7% of the faulty trucks in the
data set have more than one turbocharger replacement. Thus, it is reasonable to
focus on the first turbocharger replacement. All maintenance events which take
place after the first turbocharger replacement are not considered.
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4.2 Methods

4.2.1 Feature engineering

From the textual description which accompanies each maintenance event, most
turbocharger replacements are associated with safety incidents, such as engine
failure and stranding. Few turbocharger replacements are due to reasons like
diagnosis or general periodic inspection (Dutch: algemene periodieke keuring).
These two types of reasons are regarded as equivalent – they are all labeled as
turbocharger failure. The reason is that the vast majority of trucks do not have
their turbochargers replaced. This fact accentuates the meaning of turbocharger
replacement, whatever reason the replacement is due to.

Cumulative mileage, month, and age are included in the analysis. Defined
as the time between the license plate acquisition date and the maintenance date,
age indicates how long a truck has operated on the road. As weather condition
changes all year round, the month of the maintenance event is included as a
substitute for ambient environment.

There are four distinct vehicle types in the data set. Two of these types
account for a very small portion of the data (0.8%) compared to the other two
major types. To address the imbalance in vehicle type, the two types with the
smallest numbers are combined to form a new category. This approach does
not mean that these two types are so similar that they can be regarded as one
category. Categories are also combined in the column of engine type, but based
on similarity in engine.

Driving behaviors could change when a truck’s maintenance services are
covered by a monthly fee, thus having a different impact on the mechanical
systems. Hence, whether a truck is warranted, subscription, is included as a
feature.

When a truck is maintained, no matter how many components are replaced,
the overall mechanical and electronic systems are renewed, and this could
have an impact on the health status of turbocharger. Considering this, the time
interval between two consecutive maintenance events is included as a feature.

The present study relies heavily on expert features, i.e., truck components
that are assumed to correlate with turbocharger failure by technical experts at
the company. Twenty-seven components are identified and included. Not all
of them indicate one specific model of a component. Some models are similar
to each other and are grouped into one component. For example, air filters of
different specifications are all considered as air filter. Components that belong
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to the same system or share the same purpose are also grouped. For example,
coolant pipe, coolant pump and other coolant-related components are grouped
into one category, as all of them are responsible for circulating coolant. For each
truck, the time interval between the previous time when a certain component
is replaced and the current maintenance event, or in other words, the age of a
certain component, is calculated.

There are 34 features to be considered, with four categorical and 30 numerical.
The response, unhealthy, is constructed using the method proposed by Prytz
et al. (2013), see Section 3. The prediction horizon is set to eight weeks (56 days).
This time horizon gives the company and its clients sufficient time to plan and
coordinate, thus is a reasonable choice from a business perspective.

The data set is then grouped by maintenance event so that each row repre-
sents a single event. The final data set is constructed in a way that each faulty
truck offers one positive example, and each non-faulty truck offers one negative
example. The final data set has 3,284 rows coming from 3,284 unique trucks.
80% (2,626 rows) of the data are used as the training set, and the rest (658 rows)
as the test set. The test set has 10 positive examples, accounting for 1.5% of the
data set.

4.2.2 Modeling

The present study uses three machine learning models: lasso, random forest, and
gradient boosting. To avoid the influence of unit of measurement, all numerical
features in the training and test sets are normalized based on the values in the
training set.

Since positive examples only account for 1.4% of the data set, Synthetic
Minority Over-sampling TEchnique (SMOTE) is used to amplify the portion
of positive examples. The number of neighbors to consider, k, is set to nine.
Synthetic data are created, making the size of the minority class five times larger.
The size of the majority class is halved for under-sampling. After these, the
new training set consists of 1,475 examples, with 1,295 (87.8%) negative and 180
(12.2%) positive. One fifth of the negative examples are real data, while the rest
are synthetic data.

In lasso, the shrinkage parameter λ in 3.3 is tuned. The number of trees and
the number of features to consider at each split are tuned in random forest.
While the number of trees and tree depth are tuned in gradient boosting, early
stopping is introduced. The present study uses XGBoost (Chen and Guestrin,
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2016), one of the implementations of gradient boosting framework.
To find the best combination of tuning parameters (in lasso there is only one),

10-fold cross validation is performed on the training set to calculate the MCC
(Matthews correlation coefficient) for each combination. For each algorithm,
the most parsimonious model whose error is no more than one standard error
above the error of the best model is selected as the final model (Hastie et al.,
2009, p. 244). The MCC’s of three finalized models are compared on the test set
where the threshold varies.

4.2.3 Estimation of cost savings

When a fleet operator adopts the prediction model, the estimated cost savings
can be imputed as

Csave =
(

β− 1
precision

) n · Cp · TP
TP + FP + TN + FN

, (4.1)

where Csave denotes cost savings; n is the number of trucks that the fleet
operator owns; Cp is the cost of planned turbocharger replacement; β is the ratio
of cost of sudden breakdown to cost of planned turbocharger replacement; and
TP, FP, TN and FN denote the four elements of the confusion matrix on the
test set.

Equation (4.1) is based on an important premise: the fault frequency of
turbocharger is equal to the proportion of positive examples in the test set.
The fault frequency of turbocharger refers to the percentage of turbochargers
that fail within a given time (Prytz et al., 2013). Hence, when the time interval
increases, fault frequency also increases. This means that the ratio of positive
to negative examples in the test set can be set to an arbitrary value, so long
as it makes sense from a business perspective. But in the present study, fault
frequency, i.e., the ratio of positive to negative examples in the test set, is not
adjusted. Derivation of Equation (4.1) is given in Appendix A.
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5 Analysis

After finalizing the data set, summary statistics of the whole data set (before
splitting, over-sampling and under-sampling) are presented. The best tuning
parameters for each algorithm are obtained by performing 10-fold cross valida-
tion on the training set. The test set is used to compare the three tuned models
in terms of Matthews correlation coefficient (MCC) and cost reduction.

5.1 Data description

The data set contains 3,284 rows, with 46 positive (unhealthy) examples and
3,238 negative (healthy) examples. A positive example indicates that the tur-
bocharger will fail within 56 days. There are four categorical features and thirty
numerical features. The distributions of the categorical features in the positive
and negative groups are shown in Figure 4. It is observed that no categorical
feature has significantly different distributions in the two groups.

Figure 4: Distributions of categorical features

Summary statistics of the numerical features are presented in Appendix B.
A feature whose name begins with ‘prv’ refers to the age of the component.
Figure 5 shows the corrgram of all numerical features. The correlation matrix
is calculated using the Spearman’s rank correlation coefficient. All correlation
coefficients are positive, meaning that for every pair of features, an increase in
the value of one feature is by and large associated with an increase in the value
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of the other feature. This is due to the fact that all components are getting older
when a truck operates on the road. For example, the age of wear indicator is
highly correlated with the age of brake pad set, suggesting that these two parts
are frequently replaced together.

Figure 5: Corrgram of numerical features

To detect the features which are distributed differently in the positive and
negative groups, the two-sample Kolmogorov-Smirnov test (two-sample K-S
test) is performed for each numerical feature. The results of the two-sample K-S
test is given in Table 2. Ten features are significant at the 0.05 level, i.e., they are
distributed differently in the positive and negative groups. Figure 6 shows the
kernel density estimations (KDEs) of cumulative mileage and the age of fuel cap
with DAF lock. On average, positive examples have higher cumulative mileages
than do negative examples. Examples with cumulative mileages higher than
500,000 km account for a small portion of the negative group, but a considerable
portion of the positive group. Examples with age of fuel cap with DAF lock

28



older than 2,500 days account for a negligible portion of the negative examples,
but a visible portion of the positive examples. Both the two-sample K-S test and
the KDEs show that maintenance records can provide information that can be
used to separating positive and negative examples.

Table 2: Results of the two-sample Kolmogorov-Smirnov test

Feature p-value

cum_mileage 0.0004
prv_FuelCapWithDafLock 0.001
prv_CarbonStoveFilter 0.001
prv_HeatFilterCarbon 0.001
age 0.002
prv_Coolant 0.018
prv_BrakePadSet 0.027
prv_WearIndicator 0.032
prv_Fuse 0.034
prv_GadusGrease 0.048

Figure 6: KDEs of cumulative mileage and fuel cap with DAF lock

5.2 Failure patterns

Figure 7 shows the failure patterns of turbocharger. As there are 46 faulty trucks
in the data set, the sample size is 46. All turbochargers fail within 2,500 days
after license plate acquisition date, but no time period has a significantly higher
or lower turbocharger failure rates than do other age periods, given the small
sample size. No turbocharger failure happens after 1 million km, and most
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turbocharger failures happen before a cumulative mileage of 700,000 km is
reached. To know whether turbocharger failures are concentrated in certain
months, Pearson’s chi-squared test is performed. The null hypothesis is that
turbocharger failure happens equally likely across all months. The result given
by the Pearson’s chi-squared test (p = 0.981) fails to reject the null hypothesis
at the 0.05 level of significance, suggesting that no month sees more or fewer
turbocharger failures than do other months.

Figure 7: Failure patterns of turbocharger

5.3 Model performance

Figure 8 shows the impact of the tuning parameters on MCC of the training
set. For gradient boosting, the best performing tree depth is three, with which
five out of six models have an MCC above 0.65. In terms of MCC, the best
performing gradient boosting model has 9,000 trees and a maximum tree depth
of three, and achieves an MCC of 0.664. However, using the one-standard-error
rule, the selected gradient boosting model has 5,000 trees and a maximum tree
depth of three, and achieves an MCC of 0.651.

Compared to gradient boosting, random forest by and large performs worse
on the training set, with only three models achieving an MCC above 0.6. The
best number of features to consider at each split, mtry, is 15. The best performing
random forest model has 1,000 trees and an mtry of 15, and achieves an MCC of
0.608. However, using the one-standard-error rule, the selected random forest
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model has 1,000 trees and an mtry of 12, and achieves an MCC of 0.589.

(a) Gradient boosting (b) Random forest

Figure 8: Impact of tuning parameters on MCC of the training set

Figure 9 shows the impact of the penalty in lasso on the MCC of the training
set. As penalty increases, MCC increases slightly, and reaches its peak shortly
before penalty reaches 10−3. After this, MCC decreases significantly, and dives
below zero as penalty continues to increase. The reason why MCC is miss-
ing when penalty is between 10−2 and 10−1 is that the lasso model labels all
observations as negative, thus making the denominator in 3.5 zero. The best
performing lasso model has a penalty of 3.17× 10−4, and achieves an MCC of
0.316. However, using the one-standard-error rule, the selected lasso model has
a penalty of 9.78× 10−4, and achieves the same MCC, i.e., 0.316.

The best performing algorithm on the training set is gradient boosting, fol-
lowed by random forest. Compared to these two algorithms, lasso performs
much worse on the training set. The best lasso model achieves an MCC approxi-
mately half of those achieved by the best gradient boosting and random forest
models.

The test set is used to examine the three selected models. Three selected
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Figure 9: Impact of penalty on MCC of the training set

Figure 10: Impact of threshold on MCC of the test set
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models are compared by MCC on the test set where the threshold increases
from 0.001 to 0.999. When the threshold increases, both the number of true
positives and that of false positives decrease. The impact of threshold on their
performances is shown in Figure 10. Except when the threshold is slightly
above zero, all three algorithms achieve an MCC above zero. However, all three
algorithms perform worse on the test set than the training set. This is mainly
due to two reasons. First, the test set is not used for modeling. Second, and
more importantly, the proportion of positive examples in the test set (1.5%)
is much smaller than that in the training set (12.2%). The worst performing
algorithm is random forest, which achieves the lowest MCC most of the time
and does not generate positive predictions when the threshold is higher than
0.5. Gradient boosting outperforms random forest, and achieves an MCC above
0.1. The best performing algorithms is lasso, which has the highest MCC among
all algorithms when the threshold is higher than 0.2. Lasso keeps generating
positive predictions until the threshold reaches 0.96. The highest MCC in Figure
10 is above 0.2, achieved by lasso when the threshold is set to 0.95.

Table 3 shows the confusion matrix for the test set based on the lasso with
a threshold of 0.95. One tenth of the unhealthy turbochargers are discovered,
making the recall 0.1. Half of the retrieved turbochargers are actually healthy,
making the precision 0.5. The lasso model with the optimal threshold achieves
a high precision, but there is room for improvement on recall.

Table 3: Confusion matrix for the test set (lasso, threshold=0.95)

Predicted
Actual Negative Positive

Negative 647 1
Positive 9 1

Figure 11 shows the ten most important features in lasso. The ages of some
components are positively correlated with turbocharger failure, while those
of others negatively correlated. This might be partly explained by hazardous
maintenance (Louit et al., 2009), which means that the health condition of
turbocharger is worsened after certain components are maintained.

Lasso, the worst performing algorithm on the training set, outperforms the
others on the test set. Although it is not straightforward to conclude whether
random forest and gradient boosting overfit, a plausible explanation is that the
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Figure 11: Most important features in lasso

relationship between the odds of turbocharger failure and available features can
be approximated by linearity.

5.4 Cost reduction

To make the estimation general, in Equation (4.1), n is set to 50, the number of
trucks that a typical fleet operator owns. The exact cost of planned turbocharger
replacement cannot be disclosed due to privacy reasons, but is set to e3,000 for
calculation. The cost of sudden breakdown is difficult to estimate, as it depends
on several factors. As the company’s garage is situated in the Netherlands, the
cost is much higher when the truck breaks down in France than in Belgium,
because of the toll roads and mandatory recovery vehicles. The cost is also
higher when the truck is carrying live animals than standard containers. Besides,
evenings and weekends are more expensive time to break down. To get an
average estimate, the cost of sudden breakdown is set to three times as that of
planned turbocharger replacement, i.e., β = 3. Since the test set has 658 rows,
TP + FP + TN + FN = 658.

After inserting the above numbers, Equation (4.1) can be written as

Csave = 228 · TP ·
(

3− 1
precision

)
. (5.1)

Equation (5.1) shows that cost savings are subject to two (interconnected)
factors: the number of true positives TP, and the precision. Specifically, precision
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determines whether the cost savings are larger than zero, thus having a larger
impact on whether the company adopts the proposed predictive maintenance
solution.

Figure 12: Impact of threshold on cost savings

The impact of threshold on cost savings is shown in Figure 12. When the
threshold is low, cost savings are below zero due to a large number of false
positives, i.e., unnecessary replacements. As random forest stops generating
positive predictions when the threshold is higher than 0.5, the cost savings level
off at zero. Neither random forest nor gradient boosting offer cost reduction.
Lasso can bring cost savings more than e200, but it can only offer benefits when
the threshold is around 0.95. As turbochargers are expensive, cost savings can
only be realized when the algorithm is very sensitive to unhealthy examples
and indifferent to healthy examples.

The algorithm which achieves the highest MCC in Figure 10, lasso, also
offers the largest cost savings in Figure 12. This proves the effectiveness of MCC,
as it evalutates a model based on its performance on both classes.
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6 Discussion and conclusion

6.1 Main findings

The failure patterns of turbocharger can be discovered through the analysis
above. All turbocharger failures happen before the trucks reach 2,500 days
old. Most turbocharger failures happen before a cumulative mileage of 750,000
km, and all failures happen before a cumulative mileage of 1 million km. No
certain age period, no certain cumulative mileage period, and no month see
significantly more or fewer turbocharger failures.

It is hardly possible to predict turbocharger failure by gaining insight
solely from faulty trucks. However, both the results given by the two-sample
Kolmogorov-Smirnov test and the kernel density estimations show that main-
tenance records are able to provide information associated with turbocharger
failure. Since all machine learning algorithms achieve an Matthews correlation
coefficient (MCC) above zero, it can be concluded that factors correlated with
turbocharger failure can be detected by machine learning algorithms. On a data
set in which 1.5% of the examples are positive, lasso can achieve an MCC of
0.219. One tenth of the unhealthy turbochargers can be discovered, while half
of the retrieved turbochargers are actually healthy.

Within a time interval in which fault frequency (see Section 4) equals 1.5%,
lasso can bring cost savings of e228 for a fleet operator who owns 50 trucks. It
should be noted that, the estimated cost savings in Figure 12 is conservative, as
the estimations are based on the premise that turbocharger replacement is exe-
cuted completely according to prediction results. The predictive maintenance
solution proposed in the present study should be adopted as an aid to techni-
cians, who can reduce the number of false positives based on their expertise. In
this case, the threshold could be set to lower values to discover more unhealthy
turbochargers.

6.2 Discussion

The present study reaffirms the argument that failure patterns can be detected
from maintenance records by machine learning algorithms (Haarman et al.,
2017). Compared to Prytz et al. (2013) and Prytz et al. (2015), the present study
realizes cost savings under more restricted condition – maintenance records
are the only data source. Besides, Prytz et al. (2013) construct the test set in a
way that positive examples account for 5% of the test data, but the ratio in the
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present study is 1.5%. Thus, it is more difficult to achieve cost savings in the
present study, as cost savings are sensitive to false positives. Mashhadi et al.
(2020) only consider data related to faulty trucks, whereas the present study
takes both faulty and non-faulty trucks into account, making the results more
general and closer to real-world applications.

The best performing machine learning algorithm in the present study, lasso
brings cost savings to the company when the other two algorithms do not.
However, lasso is not among the most popular machine learning algorithms
in the field of predictive maintenance (Carvalho et al., 2019), see Figure 3. The
present study shows that lasso can effectively perform feature selection, and
improve prediction results.

Unlike the studies in Table 1, the present study does not use information
directly related to the working condition of turbocharger. Nevertheless, ma-
chine learning algorithms still successfully detect patterns that correlate with
turbocharger failure. The results show that the working condition and health
status of different components inside a truck are interconnected, and that it is
worthwhile considering other components when modeling a certain component.

The evaluation metric is area under the receiver operating characteristic
curve (AUC) in Liljefors (2020), and F-score in Prytz et al. (2013), Nowaczyk
et al. (2013), and Prytz et al. (2015). Different from these studies, the present
research uses MCC as the evaluation metric, and proves its effectiveness. When
the lasso model achieves the highest possible MCC in Figure 10, the threshold
also maximizes the cost savings, see Figure 12.

6.3 Managerial implications

It has been proved that the maintenance records which the company owns
can lead to a feasible predictive maintenance solution, and that cost savings
can be achieved even under strict assumptions. Hence, it is advised that the
introduction of predictive maintenance should be put on the agenda by the
company.

A committee needs to be established to oversee the introduction of predictive
maintenance. It is imperative that data quality should be improved. Manual
data entry should be either standardized or automated to reduce errors and
facilitate data mining.

The list of components provided by the technicians turns out to be crucial
to modeling turbocharger failure. Their expertise by no means plays a less
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important role in the age of data analytics. Instead, the cooperation between
technicians and data scientists is the key to a successful predictive maintenance
application.

The prediction model needs to be rerun to renew the estimated health status
of turbocharger, and the time interval should be as small as possible. When a
turbocharger is predicted as unhealthy, the company needs to contact the fleet
operator and invites her to send the truck to the garage within eight weeks.
Technicians then inspect the turbocharger as well as other components. Whether
to replace the turbocharger or other components is at the discretion of the
technicians. Technicians’ domain knowledge is likely to reduce unnecessary
replacements, and bring more cost savings.

The present study lowers the barrier to the entry of fleet operators, automo-
tive companies, and relevant practitioners into the field of predictive mainte-
nance. Compared to relevant studies, the present study relies on more prevalent
data source, and uses less complicated techniques for data modeling. It is en-
couraged that relevant companies launch pilot projects to assess their capacities
and prepare for more advanced predictive maintenance solutions.

6.4 Limitations and future research

Although the present study shows that cost savings can be obtained, it is not
entirely clear how long a certain faulty frequency stands for. Thus, the results
are not able to estimate the monthly, quarterly or annual cost savings for a fleet
operator. Besides, the estimated cost savings are for the fleet operators. The cost
savings that the proposed solution brings to the company are not estimated.

The present study assumes that all trucks are maintained only at the com-
pany’s garage. This assumption is reasonable for trucks under warranty, but the
degree to which it holds for trucks not under warranty is hard to estimate. When
a truck visits another garage, the reliability of the data related to subsequent
maintenance events is at question.

The time interval between two consecutive maintenance events varies
greatly, making it sometimes hard to determine what rows belong to a cer-
tain maintenance event. It is likely that a truck stays at the garage for more
than one day, but chances are that a truck needs to be maintained shortly after
it leaves the garage. To simplify analysis, no lower limit for time interval is
stipulated, but there is room for improvement here.

One direction for future research is to take textual descriptions into account.
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Textual descriptions, input by technicians when performing maintenance tasks,
are common in maintenance records. However, due to lack of standardization of
data entry, textual descriptions are usually messy, including ambiguous abbrevi-
ations and typos. Extracting information from these textual descriptions requires
domain knowledge, but it is likely that information related to component failure
is hidden in these descriptions.

Another direction is to add more variables into cost savings estimation. The
cost of sudden breakdown depends on several factors, each of which can be
approximated by a continuous or discrete probability distribution. The extent to
which false positives are reduced by domain knowledge can also be introduced.
In this case, the estimated cost savings for a certain threshold are a distribution
rather than a single number.

The potential of maintenance records has not been fully exploited, as the
present study focuses only on turbocharger. However, there are other crucial
components whose failure leads to sudden breakdown. Future research could
take all crucial components into account to further increase truck uptime and
cost savings.

6.5 Conclusion

The present study proves that it is feasible to introduce predictive maintenance
based solely on maintenance records. It has been shown that factors correlating
with turbocharger failure exist in the maintenance records, and that turbocharger
failure can be predicted by machine learning algorithms. Truck uptime gets
increased, and cost savings can be obtained by fleet operators even under strict
assumptions. When the proposed predictive maintenance solution is adopted,
the company will be able to increase customer satisfaction, and find a new
way of being competitive within the industry. Detailed and tractable steps of
analysis are presented. The present study also recommends relevant companies
to introduce predictive maintenance, and calls for more research into the role of
maintenance records in predictive maintenance.
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Appendices

A Derivation of cost savings formula

Prytz et al. (2013) propose the following formula to estimate cost savings.

Csave = TP · (Cu − Cp)− FP · Cp (A.1)

TP denotes true positive (correctly discovering an unhealthy component);
FP denotes false positive (erroneously labeling a healthy component as un-
healthy); Cu denotes cost of sudden breakdown; and Cp denotes cost of replaced
component.

In Equation A.1, TP and FP are the number of true positive and false neg-
ative cases in the testing set. In practice, however, each fleet operator has a
different number of operating trucks, making the equation unscalable. Suppose
that the fleet operator who will adopt the prediction model has n trucks, and
since the size of the testing set is equal to TP + FP + TN + FN, Equation A.1
can be written as follows.

Csave =
n · [TP · (Cu − Cp)− FP · Cp]

TP + FP + TN + FN
(A.2)

Precision is defined as the proportion of positive results that is true positive
(Fletcher, 2019).

precision =
TP

TP + FP
(A.3)

Let β denote the ratio of cost of sudden breakdown to cost of planned
turbocharger replacement.

β =
Cu

Cp
(A.4)

Equation A.2 can be finally written as follows.

Csave =
(

β− 1
precision

) n · Cp · TP
TP + FP + TN + FN

(A.5)
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B Summary statistics of numerical features

Table 4: Summary statistics of numerical features

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

age 3,284 650 523 1 259.8 982.2 3,140
cum_mileage 3,284 185,088 178,640 1 54,334.5 273,871 1,286,181
since_last_time 3,284 198 299 1 34 229 2,344
prv_AdblueFilter 3,284 538 463 1 216 724.2 3,140
prv_AirFilter 3,284 431 435 1 153 529.2 2,573
prv_BrakePadSet 3,284 585 490 1 225 851 3,140
prv_CarbonStoveFilter 3,284 605 521 1 229 886.2 3,140
prv_Coolant 3,284 446 422 1 147 615 2,573
prv_ElectricalCircuit 3,284 513 456 1 180 718 3,140
prv_EngineOil 3,284 379 430 1 98 447.2 2,477
prv_ExhaustGasket 3,284 621 513 1 238.8 931.8 3,140
prv_Fuel 3,284 419 424 1 138 532.2 2,573
prv_FuelCapWithDafLock 3,284 630 515 1 246.8 939 3,140
prv_FuelWaterDep 3,284 592 515 1 203 898.5 2,573
prv_Fuse 3,284 600 507 1 227 880 3,140
prv_GadusGrease 3,284 551 494 1 186 791.2 2,573
prv_HeatFilterCarbon 3,284 615 527 1 224 924 3,140
prv_Hose 3,284 581 488 1 227 831.2 2,573
prv_IntercoolerCleaner 3,284 577 497 1 218 832 3,140
prv_Lighting 3,284 510 467 1 175 711.2 3,140
prv_MountingMaterial 3,284 406 401 1 123 552 2,520
prv_ORing 3,284 527 468 1 188 731.2 2,573
prv_OilFilter 3,284 432 441 1 140 556 2,520
prv_PolyVBelt 3,284 593 484 1 236 867.2 3,140
prv_Sealing 3,284 412 429 1 133 507.8 3,140
prv_Spirax 3,284 475 437 1 175.8 637 2,573
prv_StrainerFeedPump 3,284 534 482 1 191 728 3,140
prv_UsitRing 3,284 603 502 1 231 892 3,140
prv_ValveCoverGasket 3,284 586 509 1 206.8 867.2 3,140
prv_WearIndicator 3,284 591 493 1 227.8 863 3,140
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