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1. Introduction

The vehicle routing problem has been studied extensively since first introduced in 1959 by Dantzig

and Ramser. It considers the problem of determining a set of routes for a fleet of vehicles such that

every customer is visited only once and costs are minimised. In addition to its basic formulation,

several variations of the problem have also been studied. Examples of these variations include the

capacitated vehicle routing problem where the vehicles all have a maximum amount of goods they

can travel with, and the vehicle routing problem with time windows where each customer has to

be served within its respective time window.

When solving vehicle routing problems, one or more features of the problem are assumed to be

fixed. These could be the number of goods demanded, the travel times between locations or even

the presence of customers at the time of delivery. In real-life problems this is of course not always

true, and what was a deterministic situation becomes a stochastic vehicle routing problem. Indeed,

we often see reports in the news about disruptions of the normal flows of transportation. Examples

include containers lost at sea or the recent obstruction on the Suez canal. These are often distant

accidents that fortunately have little or no impact on our lives as individuals. Very different of

course was the covid-19 pandemic in which virtually all of us were profoundly affected.

In the context of vehicle routing problems with stochastic demand, it is interesting to consider

for example Labad et al. (2021), where the shortage of toilet paper in supermarkets, one very

puzzling, almost comical, effect of the pandemic is discussed. This gives just one example of how

supply chains can be disrupted to the extent of causing almost social panic. This “stochastic

demand” is of course a very exceptional situation, that would require equally exceptional and

unpractical measures to overcome. But in general, being able to handle unexpected events in a

delivery process is a very important capability if any of these very common situations occur:

• There is a road accident that forces the route to be replanned.

• The vehicle has a technical failure.

• The business accepting the goods had to close due to sickness.

• The customer decides to change the amount of the order at the last minute, for example,

when the delivery happens.

In this thesis we will focus on the capacitated vehicle routing problem with stochastic demands.

When demand is subject to uncertainty, routes must be defined (at least partially) before the real

demand values of the customers become known. Companies might for example have access to
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some statistical information about the demands in order to define these routes. In some situations,

a vehicle may not have sufficient stock available to meet a customer’s demand upon arrival, in

which case a route failure is said to have occurred. Recourse actions can be applied in order to

amend these failures. The action to take when a failure takes place has strong implications on the

satisfaction of customers, as well as on the profitability of suppliers. In this thesis the effect of

choosing different recourse actions is studied.

Our numerical experiments show that it is possible to improve on the simplest recourse action

(detour to depot) by introducing more sophisticated recourse actions. In particular, re-optimizing

the routes when failures occur provides significantly better results compared to using routes that

are completely planned a priori.

The remainder of this thesis is organised as follows. In Section 2 the problem is defined and

some notation is introduced, followed by a discussion of the relevant literature in Section 3. Section

4 introduces our proposed recourse actions. Next, a description of the data sets is provided in

Section 5. Finally, Section 6 presents the results obtained and Section 7 provides some concluding

remarks.
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2. Problem description

We are given n customers, v vehicles and their maximum capacities Q. Furthermore, we know

the distance cij and the time tij (in seconds) it takes to travel from location i to location j. The

demand of each customer i follows a uniform distribution U(ai, bi) and has an expected demand

value equal to di. Our objective is to find a set of routes such that the total travelling distance of

the vehicles is minimized, while still satisfying the following constraints:

1. Each customer is visited exactly once

2. Each route starts and ends at the depot

3. Each route has a total demand less than or equal to Q

4. Each route has a duration less than or equal to T , which corresponds to the work shift of the

drivers.

In addition, a few assumptions are made:

1. The demands of the customers are only revealed upon arrival at their location

2. The service time for each customer is negligible

3. All vehicles leave the depot at the same time

4. Communication between the depot and the vehicles is available at all times, which will be

very important in order for us to be able to adapt the routes as information regarding the

customers’ demands becomes available

When applying recourse actions, the duration of the planned routes can change. An example

of this is when a route failure occurs and a detour to depot is implemented. The duration of the

route will then increase by the time required to travel to the depot and travel back to the customer

where the failure happened. For that reason, a penalty is incurred when the duration of a route

exceeds T . In real life situations this might be the case, since the employees of a company would

probably have to receive overtime pay for extra hours of work.
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3. Literature review

The vehicle routing problem is an NP-hard problem, and hence determining an optimal solution

for medium and large sized instances within a reasonable amount of time might be an impossible

task. Therefore, many authors turn to heuristics as opposed to exact algorithms (Toth and Vigo,

2002). The vehicle routing problem with stochastic demands has been the most studied version of

the stochastic vehicle routing problems according to Oyola et al. (2018), followed by the vehicle

routing problem with stochastic travel times, whereas the most commonly adopted recourse action

has been the detour to depot policy. This may be due to the fact that this recourse action is very

easy to understand and to implement.

In Juan et al. (2011) the capacitated vehicle routing problem with stochastic demands is

solved as a capacitated vehicle routing problem. First, the stochastic demands are replaced by

deterministic demands set to the expected values of each customer demand. In addition, part of

the vehicle’s capacity is reserved as safety stock. This provides a baseline solution whose quality can

be evaluated by means of a Monte Carlo simulation. The expected total costs due to possible route

failures are estimated by applying a detour to depot policy whenever a failure occurs. Similarly,

the reliability of each route is estimated by calculating the probability that a vehicle fails to serve

every customer on its route.

Gauvin et al. (2014) formulate the CVRPSD as a set partitioning problem and the recourse

action chosen is a detour to depot policy whenever the demand is larger than the remaining capacity

of the truck. In the particular case where the vehicle becomes exactly depleted when serving a

customer, the vehicle goes to the depot to replenish and then returns to the same customer. This is

done because the authors believe that the increased complexity of calculating the expected failure

cost will probably not justify the savings of returning to the next customer in the route in case a

vehicle gets exactly depleted (instead of returning to the customer that the driver failed to service).

A Poisson distribution is used to model the customers’ demand.

In Zhu et al. (2014) a paired cooperative reoptimization strategy is developed for a pair of

vehicles. It is considered that the customer demands follow a uniform distribution. As recourse

actions detour to depot and a partial reoptimization strategy are applied. This is done by assuming

that the two vehicles can communicate and adapt their planned routes in real time, while important

information such as the remaining capacities and customers left to be visited is known to both

vehicles. The service times of the customers are assumed to be negligible.

Some authors do not take any actions at all when failures occur. In Chepuri and Homem-de
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Mello (2005), if a failure occurs, the respective vehicle is dismissed and returns to the depot. The

failed customer along with the possible remaining customers that were part of the route are simply

not served, and in turn a penalty is paid for each unserved customer. Demands are assumed to

follow a gamma distribution.

It is also possible to determine a set of routes that is feasible for all possible demand outcomes

belonging to a bounded uncertainty set, and consequently no recourse actions need to be considered.

In Sungur et al. (2008), the solution found optimizes the worst-case scenario since it is assumed

that all customers can attain their highest possible demand simultaneously. The authors show that

the solution protects against unmet demand while incurring a small additional cost in comparison

to the deterministic optimal solution.

In general, these studies choose one particular recourse action (mostly the detour to depot

recourse action because of its easy implementation) and aim at achieving the best possible initial

solution that minimizes the total expected travel costs. In other words, the goal is to obtain a

solution that minimizes the total cost of the initial routes, and at the same time also minimizes

the expected costs of executing a particular recourse actions in the second stage of the problem. In

order to achieve this, the initial solution will tend to be “pessimistic” in the sense that it has to be

able to cope with the higher possible amount of demands placed by the customers.

This thesis takes a different approach because we will not try to come up with the best per-

forming initial routes. The initial solution obtained will likely incur in more failures than if we

were to take the stochastic demands into account before the initial routes are created. Instead we

will mainly focus on studying and comparing the performance of different recourse actions.
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4. Methodology

In order to study the effects of different recourse actions, a starting solution is required. Therefore,

the problem is first solved in a deterministic way. This will provide the baseline solution that will

be used to study the effect of stochastic demands. Then, in order to assess the different recourse

actions, a Monte Carlo simulation generates random demand values for each customer. These real

demands are expected to differ from the demands that were initially assumed as fixed, and therefore

some routes will have a lower total demand and others will have a higher total demand. Some of

which might even fail if their total demand exceeds the maximum capacity of the trucks.

We are of course interested in the cases that do fail. Four different recourse actions are applied

separately, and individually, in an attempt to amend or prevent possible route failures. The cost

function is also separately evaluated in order to give us insights into which recourse action is more

appropriate in which situation.

4.1 Initial solution

We first solve a deterministic capacitated vehicle routing problem by assuming that the demands

of the customers are given in advance and are equal to di. To come up with an initial set of routes,

the following mixed integer programming formulation is used.

max
n∑
i=1

n∑
j=1,i 6=j

sijxij (1)

s.t.

n∑
j=1

x0j = v (2)

n∑
i=0,i 6=j

xij = 1 ∀j ∈ {1, ..., n} (3)

n∑
j=0,i 6=j

xij = 1 ∀i ∈ {1, ..., n} (4)

yi + djxij −Q(1− xij) ≤ yj ∀i, j ∈ {1, ..., n}, i 6= j (5)

zi + tijxij − T (1− xij) ≤ zj ∀i, j ∈ {1, ..., n}, i 6= j (6)

di ≤ yi ≤ Q ∀i ∈ {1, ..., n} (7)

t0i ≤ zi ≤ T − ti0 ∀i ∈ {1, ..., n} (8)

xij ∈ IB ∀i, j ∈ {0, ..., n}, i 6= j (9)
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This formulation is based on the CVRP model introduced by Borčinová (2017), where instead

of minimizing the costs cij of traversing arc (i, j), the savings sij are maximized. For every pair of

customers i and j the savings sij for joining the cycles 0 → i → 0 and 0 → j → 0 are calculated,

where sij = ci0 + c0j − cij . The binary variables xij indicate if arc (i, j) is traversed in the optimal

solution. Constraint (2) ensures that exactly v trucks leave the depot. Constraints (3) and (4)

make sure that all customers are visited exactly once. Auxiliary variable yi represents the load of

the truck after leaving customer i, and so constraint (5) guarantees that the total demand of every

route does not exceed Q.

Additional constraints (6) and (8) have been added to ensure that the routes do not exceed the

maximum duration T . The auxiliary variable zj indicates how much time has gone by from the

moment a route departs from the depot until its arrival at customer j.

The model proposed by Borčinová (2017) and referred to as the modified assignment formulation

is a very fast formulation due to the way it eliminates sub-tours (that is, cycles that do not go

through the depot). It is shown to take just a few seconds to solve instances with up to 23 customers.

We therefore make use of the formulation presented above, and a time limit is given to find an initial

solution. After this time limit the best solution found is retained. Even though the instances used

in this thesis contain much more than 23 customers, the formulation is expected to still deliver a

good solution within a certain time limit.

4.2 Recourse actions

This section introduces the four recourse actions mentioned above. In general, a recourse action

(called a recourse policy by some authors) is a corrective measure applied in case of a route fail-

ure. Many recourse actions are possible, with different degrees of implementation complexity and

performance. A recourse action is a fundamental feature of a delivery route subject to uncertainty.

Without instructions on how to proceed in case a demand cannot be met, the vehicle driver would

have no clear indication of what to do next. In order to optimise resources it is therefore required

to have at least one recourse action prepared so that the behaviour of the delivery process can be

properly managed.

4.2.1 Detour to depot

The simplest recourse action that can be adopted is the detour to depot action, shown in Figure

1. There are two situations in which a detour to depot happens:

1. A truck arrives at a customer but the actual demand of the customer exceeds the truck’s
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current load. In this situation, in order to amend the failure, the truck driver leaves his

current load with the customer and goes to the depot to restock. Afterwards, the truck driver

returns to the customer it had failed to fully serve and delivers the remainder of the order to

the customer. The truck then continues on to the next customer in the planned route. See

Figure 1b).

2. The truck’s load is exactly depleted after successfully serving a customer. It is clear that if this

customer is the last customer of the route, the truck driver has finished his shift and simply

returns to the depot. On the other hand, it can also happen that there are still customers

in the route left to serve. In that case, we know with certainty that a failure will take place

at the next customer and hence a preventive detour to depot is undertaken in order to avoid

a pointless trip to the next customer. The truck driver travels to the depot to restock, and

afterwards moves on to the following customer. See Figure 1c).

(a) Planned route (b) Failure (c) Exactly depleted

Figure 1: Detour to depot: a) the planned route as calculated by the deterministic formulation; b) the
truck cannot (fully) serve the order at this customer; c) the truck is empty after serving this customer

This recourse action focuses on each route independently, and only implements a detour to

depot in case one of the previous situations happens. This means that the order in which the

customers are visited per route (which is given by the initial planned routes) is never changed. In

terms of computation time, the impact of implementing this recourse action is negligible.

4.2.2 Preventive restock

Performing a preventive restock is another recourse action that can be used. This recourse action

aims to prevent trucks from travelling to a customer that will most probably result in a failure.

This is shown in Figure 2.
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(a) Checking k = 1 (b) Checking k = 2 (c) Preventive restock

Figure 2: Preventive restock: a) current customer i was just served and there is a probablitity smaller than
p of failing at customer i+ 1; b) the probability of failing at customer i+ 2 is larger than p, therefore c) the
algorithm may choose to do a preventive restock at customer i

Each time a truck is finished serving a customer in its route, this recourse action calculates

the probability of a failure occurring at the subsequent k customers in the route (see Appendix

A.1 for details on how this probability is calculated). We start with k = 1, and increase k by 1

until a customer is found for which the probability of failure exceeds a certain value p, or until all

remaining customers in the route have been covered.

If all the remaining customers in the route can be served without incurring a failure with a

probability larger than p, then no preventive restock is done, and the truck proceeds to the next

customer. In the case that they cannot all be served, a preventive restock is considered at the

current location. The cost of performing a preventive restock at the current customer is compared

with the cost of performing a detour to depot at each one of the next k customers. In the example

depicted in Figure 2 we have that k = 2.

If the cost of restocking at the current customer is cheapest and the sum of the average demands

of all the remaining customers left to serve in the route does not exceed q · Q, then a preventive

restock is chosen. The parameter q has been introduced in order to make sure that a preventive

restock is not implemented at the beginning of a route, when a truck still has a lot of customers

left to serve. This way we can reduce the risk of performing multiple trips to the depot in the same

route.

Figure 2c) shows a situation where it is cheaper to perform a preventive restock after customer

i than to wait for a failure to occur and having to implement a detour to depot at either one of

the next k = 2 customers. In this example, the sum of the average demands of the 3 remaining

customers in the route is smaller than q ·Q and so a preventive restock is executed.

There is, of course, always a risk. Since we can never be certain of a failure (unless p is set

to 1), it could happen that a failure would actually occur at the last customer of the route from
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Figure 2. In that case we can see that the last customer of the route is closer to the depot than our

current customer, and therefore it would have been cheaper to wait for the failure to occur. There

might even be no failure at all. Therefore the parameter p has to be chosen carefully. If it is set too

low, there will be more unnecessary preventive restocks and costs might be higher. If it is set too

high, this recourse action will only implement a preventive restock when it is almost certain that a

failure will occur. Similarly, we can also analyse qualitatively the effect of changing parameter q.

Higher values of q will increase the number of preventive restocks performed because they will also

be allowed at earlier stages of the route.

Just like the detour to depot recourse action, the initial planned routes are not changed when

applying the preventive restock recourse action. Furthermore, this recourse action also has an

extremely low running time since calculating the probabilities can be done almost instantly. There-

fore, the amount of time that a truck driver has to wait to know if it will go to the depot to replenish

or not is negligible.

4.2.3 Reoptimization

Contrary to the previously discussed recourse actions, the reoptimization recourse action takes into

account not only the current truck and the remaining customers in its route, but customers from

other routes as well. In general, a customer can be in one of the following classes:

1. Already served customers

2. Not yet served, but a vehicle is already traversing the arc to that customer (referred to as

“fixed” customers)

3. Not yet served, and no truck en route

So, whenever a truck successfully serves a customer, the customer to which the truck heads to

next becomes “fixed”. A fixed customer, although not having been visited yet, is excluded from

the reoptimization procedure, as well as all the customers that have already been served.

Upon arrival at a customer, two options exist: either a failure happens or not. In case the truck

is able to meet the current customer’s true demand, all the customers that have not been visited

yet (excluding fixed customers) are reoptimized over again. When optimizing over these customers,

the true demand of the current customer is used instead of its average demand. Therefore, it might

happen that the customer to which the current truck was planning to go to next differs from the

customer where he will actually go to according to the routes obtained from the reoptimization

method. This could be the case, for example, if the true demand of the current customer is much

12



larger than its average demand. It might be a better option to let another truck serve one of the

customers in the current truck’s route since it now has a much larger total expected demand, or

even to change the route entirely.

In case the demand of a customer cannot be met, no reoptimization is done. The truck is

dismissed and the driver returns to the depot. The customer that was not able to be served along

with the possible remaining customers meant to be served by the current truck will be reassigned

to other trucks still operating. These customers will be included in the next reoptimization round.

An exception to this is when the current truck is the last operating vehicle, in which case a detour

to depot is performed by the current truck in order to serve the current customer and the remaining

unvisited customers.

(a) Initial routes (b) Reoptimized routes

Figure 3: Reoptimizaion

An example of the reoptimization procedure is given in Figure 3. In Figure 3a), the initial

routes obtained for a particular instance are shown. The trucks all leave the depot at the same

time, and when they do, the initial arcs become fixed. Fixed arcs are shown in Figure 3 as being

colored. Since we are given the travel time between each pair of customers, we know the exact

time at which each truck driver will arrive at its respective fixed customer. As can be deduced

from Figure 3a), the first truck to arrive at a customer is the red one. Upon arrival, the true

demand of that customer becomes known and the truck driver is able to meet that demand. We

proceed to perform a reoptimization, now using the known demand of the customer instead of the

previously used average demand. Because the initial conditions changed, and the problem space is

now smaller, the solver might be able to find a better solution compared to the initial one. Figure

3b) shows the solution obtained after reoptimizing the routes. The red truck heads to its next

customer, which is now different from the one he would go to if the previously planned routes were
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followed, and the arc becomes fixed so that it can not be changed anymore.

The reoptimization procedure is done by using the formulation presented in Section 5.1. Since

the search is performed in real time, while a truck driver is waiting to know which customer to

serve next, a time limit of 30 seconds is given to the solver to find a solution.

4.2.4 Limited reoptimization

The limited reoptimization recourse action differs from the reoptimization recourse action in the

sense that it does not perform a reoportimization every time a vehicle is finished serving a customer.

Instead, this recourse action only reoptimizes the routes in the following two situations:

1. A failure happens. In this situation the truck leaves its current stock with the customer and

goes to the depot. To determine what happens next, the reoptimization method considers

both options of the truck returning or not to service. The truck can be dismissed, in which

case the reoptimization procedure returns a configuration where the unserved customer and

the possible remaining customers that were supposed to be served by the current truck are

assigned to some other truck(s). Likewise, if returning this truck to service delivers a better

solution, the truck goes to the depot to restock and the reoptimization method computes

a solution where all the remaining customers left to serve (excluding fixed customers) are

shared by all the available trucks (so, including the current truck). The routes are optimised

without regard to the old state, so that there is no memory of what the previous planning

was.

2. A truck is able to successfully serve a customer but is likely to fail on the next one. If the

remaining load of the current truck is sufficient to satisfy the average demand of the next

customer in its route, the truck simply continues on to the next planned customer. If it is

not enough, the truck driver goes to the depot and a reoptimization is done according to the

algorithm described in the previous item.

Just like in the reoptimization recourse action, we use the formulation introduced in Section 5.1,

with an additional constraint that allows for an extra vehicle to be added to the solution or not.

Again, a time limit of 30 seconds is given to the solver to find a solution. The difference between

the two recourse actions is that in the limited one we only reoptimize the routes whenever a failure

happens or is likely to happen at the next customer. These situations will most probably happen

near the end of each route, which means that the first time a reoptimization is performed, a lot of

customer have already been served. The less customers a capacitated vehicle routing problem has,
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the faster it can be solved, meaning that 30 seconds will likely be more than enough time for the

solver to find a good solution.

4.3 Monte Carlo simulation

After having obtained the initial routes, each recourse action is implemented separately in order

to improve the planned routes. The vehicles start by following the initial planned routes when

departing from the depot, and depending on which recourse action is implemented, these routes

can be altered or not. We make use of a Monte Carlo simulation that will generate random demand

vectors by randomly picking for each customer i a demand value contained in its respective interval

(ai, bi). Afterwards, for a fixed number of iterations, the costs of applying each corrective policy

are compared.

In the detour to depot and the preventive restock policy each route is adapted independently,

meaning that we never assign a customer from one route to another. Thus there is no need need to

keep track of which vehicle arrives first at which customer during our simulation. We can simply

monitor one vehicle at a time, while keeping track of its capacity, until all vehicles have been

checked.

For the limited reoptimization and the reoptimization recourse action we do need to keep track

of time. In these recourse actions, the current solution is altered as a whole, and so not only the

current vehicle is affected, but all the other routes are adapted as well. For these policies, the

simulation program moves to the vehicle that is the next one to arrive at a customer, and continues

until all customers have been served. This can be done because we know all times tij , and so

each time routes are optimized, we can determine the times at which the vehicles arrive at their

respective fixed customers.
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5. Data

The CVRP data sets generated by De Smet (2014) are used to test the methods presented in this

thesis. The following characteristics make these datasets particularly useful:

• The goal of De Smet was to create realistic datasets and therefore these instances consist of

real locations for cities, towns and subtowns of Belgium. The distances between every pair

of locations are given as the real road distances as opposed to the euclidean distances most

commonly used in datasets available on the internet.

• De Smet studied the difference between solving the capacitated vehicle routing problem using

the real road distances and using euclidean distances. When euclidean distances are used to

solve the problem, certain routes are selected; interestingly, these are different from the routes

obtained when using real distances. It turns out that the “euclidean solution” is suboptimal

compared to the “real solution” in the sense that the total distance covered by the trucks is

smaller in this case than the distance obtained using the euclidean metric.

• The instances contain the time it takes to travel between every pair of customers in seconds.

Reasonable vehicle capacities and customer demands were also added. In order to perform

the simulation, the given deterministic demand values di ∈ N of each customer are changed to

stochastic demands Di. Each customer demand follows a discrete uniform distribution U(ai, bi)

where:

E[Di] = di (10)

ai = bdi · (1− ε)c (11)

bi = ddi · (1 + ε)e (12)

In Appendix A.2 we show that (10) is always satisfied regardless of the value that is chosen for

ε. For the simulation an ε of 0.4 will be used, unless stated otherwise.

Finally, regarding the size of the problem instances, the two smallest instances generated contain

49 and 99 customers, while the remaining three instances contain 499 or more customers, with the

biggest one having 2749 customers. Only the first two instances will be used for testing so that the

problem can be solved within reasonable time.
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6. Results

In this section, the methodology is tested on the two smallest instances generated by De Smet

(2014). For both instances, the initial solution obtained when running the formulation proposed in

Section 5.1 for a certain time limit is compared to the optimal solution of the deterministic version

of the problem. That is, the optimal solution when the demands of each customer i are assumed

to be fixed and equal to di, and no maximum duration on the routes is imposed. We have used a

method by Nóbrega (2021) to obtain the optimal solution of both instances. The time limit given

to the solver to find an initial solution differs according to the size of the problem instance. For

the smaller instance we allow 30 seconds, and for the larger instance 1 minute.

After that, the results obtained when implementing each one of the proposed recourse actions

are reported and discussed. Compared to the detour to depot and the preventive restock recourse

actions, the reoptimization recourse action has a very long simulation time because we are reopti-

mizing the routes multiple times, potentially as many times as there are customers. In the limited

reoptimization recourse action, the reoptimization procedure is performed much less often, and

for that reason, the simulation time is reduced significantly compared to the simulation time of

the reoptimization recourse action. We therefore first compare all four recourse actions by run-

ning the Monte Carlo simulation 50 times. Afterwards, 1000 iterations are performed, testing only

the detour to depot, preventive restock and limited reoptimization policies. The simulations are

performed using the same initial routes and demand realizations.

The work shift T of the drivers is set to 8 hours. If it happens that a driver ends up working

for longer than T , a penalty of 1 is incurred for every minute extra exceeding T . Parameters p

and q are chosen as follows: for the small instance, the probability p is set to 70%, and q is set to

70%, leading to a preventive restock only being possible if a failure is at least 70% likely to occur

at some next customer in the route, and if the cumulative demand of all the remaining customers

in the route does not exceed 70% of the maximum capacity Q of a truck. As for the big instance,

p is set to 50% and q is set to 60%. The reason as to why these values were chosen is explained in

Section 6.4 where the effect of choosing different values for p and q is analysed. Finally, the effect

of changing the parameter ε is also studied in Section 6.5.

6.1 Instance 1

The first and smallest instance tested contains 49 customers and a depot, and there are 8 vehicles

available. As mentioned above, the time limit to find an initial solution using the formulation
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presented in Section 5.1 is set to 30 seconds.

6.1.1 Initial solution

The optimal solution of this instance has a total cost of 2046.7, and the respective routes are shown

in Figure 4a). Curiously, these optimal routes all have a duration shorter than 8 hours, even though

this was not required by the method used to find the optimal solution. This makes the comparison

more meaningful. The initial solution obtained which will be used to test the recourse actions has

an objective value of 2184.8, which is a value less than 7% higher than the optimal solution. The

resulting routes can be seen in Figure 4b), and are quite different from the optimal routes. Overall

the formulation performs well on this instance, given that it achieves a good initial solution within

30 seconds. In Appendix A3 a list of the customers visited by each truck is given for both the

optimal and initial routes.

(a) Optimal routes (b) Initial routes

Figure 4: Solution for instance 1

6.1.2 Recourse actions

As mentioned above, we start with comparing the recourse actions by performing 50 iterations of

the simulation. Table 6.1 shows the average costs of applying each recourse action when using the

initial routes depicted in Figure 4b). From the table we can see that the detour to depot recourse

action is, on average, the most expensive recourse action, followed by the preventive restock recourse

action. The reoptimization recourse action performs, on average, slightly better than the preventive

restock recourse action, whereas the limited reoptimization recourse action performs best. In 46

out of 50 iterations, at least one route failure occurred as can be seen in Table 6.2. At least one
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preventive restock was executed in 5 iterations, and an unnecessary preventive restock was never

performed. This means that, if in any of these 5 iterations a preventive restock would not have

been chosen, then there would eventually have been a route failure. When taking only these 5

iterations into account, the average cost of the preventive restock recourse action is 2432.4, while

the average cost of the detour to depot recourse action is 2454.2. Even though there is a noticeable

difference for these 5 iterations, in the other 45 iterations the two recourse actions behaved in the

same way, and so their total costs were identical. That is why their average costs, shown in Table

6.1, are very similar.

The simulation times were also included in Table 6.1. As mentioned earlier, the reoptimization

recourse action takes a very long time, namely almost 8 hours just to finish 50 iterations.

Table 6.1: Average costs of the recourse actions for the small instance, 50 iterations

Recourse action Average cost Total simulation time

Detour to depot 2425.5 6 milliseconds
Preventive restock 2423.4 47 milliseconds
Reoptimization 2418.1 7.8 hours
Limited reoptimization 2377.4 174 seconds

Table 6.2: Number of failures for the small instance, 50 iterations

Iterations

Failures 46
Preventive restock 5
Unnecessary preventive restock 0

Table 6.3 provides more accurate values of the average cost of the detour to depot, preventive

restock and limited reoptimization recourse actions, calculated over 1000 demand simulations. The

total simulation times are also included. As mentioned above, due to its long simulation time, the

reoptimization recourse action is not included this time. Once again, the limited reoptimization

recourse action performs best. As can be seen in Table 6.4, at least one route failure occurred in 959

iterations. The preventive restock recourse action chose to execute at least one preventive restock

in 79 iterations. The average cost of the final routes of these 79 iterations is 2448.0 when using a

preventive restock recourse action compared to the average cost of 2482.8 when using a detour to

depot recourse action. Even though, on average, it was indeed cheaper to implement the preventive

restock recourse action in these 79 iterations, a replenishment is still not executed very often given

that 1000 iterations were performed. Therefore the difference in the average cost of the detour to

depot and the preventive restock recourse actions is small, as can be concluded from Table 6.3.

Additionally, an unnecessary preventive restock was never executed, meaning a preventive restock
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was never executed in a solution where a route failure would actually not occur.

Table 6.3: Average costs of the recourse actions for the small instance, 1000 iterations

Recourse actions Average cost Total simulation time

Detour to depot 2408.3 50 milliseconds
Preventive restock 2405.5 259 milliseconds
Limited reoptimization 2352.3 62 minutes

Table 6.4: Number of failures for the small instance, 1000 iterations

Iterations

Failures 959
Preventive restock 79
Unnecessary preventive restock 0

6.2 Instance 2

The second and largest instance tested contains 99 customers and a depot, and there are 8 vehicles

available. This instance is a superset of the previous instance, meaning that the granularity of the

locations has increased. In order to find an initial solution, and given the increase in the number

of customers compared to the first instance, the time limit for the solver is set to 60 seconds.

6.2.1 Initial solution

The optimal solution for the second instance is shown in Figure 5a), and has a total cost of 2320.634.

Again, all routes part of the optimal solution take less than 8 hours to complete. The formulation

used to obtain the initial routes does not perform as well on the second instance, since these routes

are not as close to optimal compared to the initial routes of the first instance. The initial solution

is presented in Figure 5b), and has a cost of 2644.1, a result that is around 14% above the optimal

value. Appendix A4 contains the routes shown in Figure 5.
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(a) Optimal routes (b) Initial routes

Figure 5: Solution for instance 2

6.2.2 Recourse actions

We now compare the different recourse actions, by performing 50 iterations of the Monte Carlo

simulation. Table 6.5 shows the average costs of applying each recourse action separately. Similar

to the results of the small instance, a much better result is achieved when the limited reoptimization

recourse action is adopted. Again, the reoptimization recourse action performs slightly better than

the preventive restock recourse action. However, the difference between the detour to depot recourse

action and the preventive restock recourse action is now more noticeable. As can be seen in Table

6.6, at least one route failure occurred in 43 iterations, and a preventive restock was executed in

13 iterations. The average cost of the preventive restock recourse action in these 13 iterations is

2940.5, while the average cost of the detour to depot recourse action is 3071.6.

Table 6.5: Average costs of the recourse actions for the large instance, 50 iterations

Recourse actions Average cost Total simulation time

Detour to depot 2889.2 13 milliseconds
Preventive restock 2855.2 322 milliseconds
Reoptimization 2850.4 26.4 hours
Limited reoptimization 2815.2 7 minutes

Table 6.6: Number of failures for the large instance, 50 iterations

Iterations

Failures 43
Preventive restock 13
Unnecessary preventive restock 0
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Now, 1000 demand simulations are executed comparing only the detour to depot, preventive

restock and limited reoptimization recourse actions. Table 6.7 shows the average costs of these

recourse actions.

Table 6.7: Average costs of the recourse actions for the large instance, 1000 iterations

Recourse actions Average cost Total simulation time

Detour to depot 2877.6 99 milliseconds
Preventive restock 2858.0 3 seconds
Limited reoptimization 2812.6 152 minutes

Table 6.8: Number of failures for the large instance, 1000 iterations

Iterations

Failures 908
Preventive restock 342
Unnecessary preventive restock 39

While in the previously tested instance a preventive restock was executed at least once in 79

iterations, it is now executed at least once in 342 iterations, as is shown in Table 6.8. On average,

the final routes obtained in these 342 iterations have an objective value of 2969.5 when applying

the detour to depot recourse action, and a total cost of 2907.1 when using the preventive restock

recourse action. In 39 iterations a preventive restock was executed when in reality it was not

needed. In other words, if no preventive restock would have been executed in any of these 39

iterations, meaning that the the truck drivers would simply have continued their planned routes

without going to the depot to replenish, there would not have been a route failure anyway. So, in

reality there was no need to restock.

6.3 Performance of the recourse actions

The preventive restock recourse action has, on average, a better performance than the detour to

depot recourse action. However, for the small instance, a preventive restock is not executed very

often, and so the difference in average cost between the detour to depot recourse action and the

preventive restock recourse action is almost insignificant. As for the larger instance, the difference

between the average cost of these two recourse actions is more noticeable.

On the other hand, the reoptimization recourse action performs worse than the limited reopti-

mization recourse action. The difference between these two approaches is that in the limited case

the routes are modified each time a failure occurs, whereas in the reoptimization situation they are

modified at each delivery, so, much more often. These solutions are likely to be less robust than
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the ones from the limited reoptimization because they will tend to follow very closely the average

demands from which they are calculated, and adjust poorly to the effective, stochastic demands.

This would be similar to the mechanism we know from machine learning, where a solution that

follows the training data too closely will tend to generalise poorly for test data. In this analogy,

training data corresponds to the average demands, whereas test data corresponds to the stochastic

demands.

It is interesting to mention that when using the reoptimization or limited reoptimization recourse

action, it so happens that in some iterations the final routes generated by these recourse actions

have an even lower cost than the cost of the initial routes (in spite of the stochastic nature of the

demands). This mostly occurred in iterations where the initial planned routes would not incur in

a failure if they had not been changed.

6.4 The effect of parameters p and q

In order to understand the effect of p and q, simulations were performed on a grid of (p, q) values,

where p = 0.4, 0.5, . . . , 0.9 and q = 0.7, 0.8, . . . , 1.0. The cost functions of the preventive restock

recourse action were calculated for each pair of values p and q (using the same 1000 simulated

demand values for each pair) and the result is shown in Figure 6. Each function represents a

different value of q. Due to the way these parameters influence the outcome, we would expect

some kind of minimum in the cost function within these regions. This minimum will depend on the

particular instance, meaning that if the the initial routes change, or if the locations or the average

demands of the customers change, the logistics company should calculate new optimal values of p

and q and use these new values in the preventive restock algorithm.

For instance 1, we can conclude by looking at the top graph of Figure 6 that the probability

that delivers the best results is p = 0.7. It turns out that, no matter what value is chosen for q,

using this probability always delivers the same result, namely, a result of 2402.9. We have therefore

chosen to set both values to 70% in our simulations of instance 1.
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Figure 6: Comparing results for different values of p and q. The image above represents the results for
instance 1, and the image below the results for instance 2.

From the bottom graph of Figure 6 it is clear that for instance 2 the best probability to choose

is p = 0.5. The total cost of the preventive restock recourse action when using p = 0.5 and any

value of q between 60% and 90% is 2859.7. The total cost remains the same for all those values

of q, except for q = 1. In this case, the total cost is higher and equal to 2868.6. This is because

of route number 6 from the initial routes of instance 2 (see Appendix. A4). After serving the first

customer of this route (customer 75), the probabilities of a failure happening at the next customers

are calculated. Eventually, a customer is found for which the probability of failing is larger than

or equal to p = 50%, and a preventive restock is considered because customer 75 is located very

close to the depot. Afterwards, it is checked if the sum of the average demands of the remaining
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customers in the route, which is equal to 229, is larger than q · Q = 1 · 250. This is not the case

and can actually never happen because we never plan routes that have a sum of (average) demands

larger than Q. So, a preventive restock is chosen. However, a failure is now very likely to happen

later in the route since 229 is a very high average demand. In the other cases for p = 50%, for

example when q = 90%, we have q ·Q = 0.9 · 250 = 225. Since in this case, (and the other ones as

well) 229 is a larger sum, the preventive restocking is not performed. Therefore a higher average

cost is associated to p = 0.5 and q = 1. For the simulations of instance 2, we use p = 50% and

q = 60%.

6.5 The effect of parameter ε

The simulations in this study were executed with a value of ε = 0.4. This means that the stochastic

demands were allowed to vary 40% around the average demands. However, this was just a sample

value. In reality, the width of the uniform distributions could be higher, and that is why this

parameter ε was introduced in the model. If we increase ε, demands will have a wider distribution,

and we should expect that the benefits of using the more sophisticated recourse actions become

more noticeable. This is indeed what happens, as is shown in Figure 7. Here, for each instance,

parameter ε varies from 0.2 to 1.0, and 200 demand simulations have been performed for each value

of ε. The initial routes shown in Figure 4b) and 5b) have been used for testing.

For each instance, three cost functions of applying each recourse actions are shown (left y axis),

respectively detour to depot (DTD), preventive restock (PR) and limited reoptimization (LR) in

addition to two ratios (right y axis). The ratios show the gains in cost function for PR and LR

against DTD.

We can see from the graphs of Figure 7 that for both instances, as ε increases, the average

cost of applying DTD, LR or PR also increases. This makes sense because the more uncertainty

present, the more the expected demands will differ from the true demands, and therefore more

failures will occur which translates into higher costs. Furthermore, LR shows consistently higher

gains compared to PR. We note that the higher the value of ε, the more important it is to apply

the limited reoptimization recourse action, compared to the other two recourse actions. Whereas

gains are around 1-2% for ε = 0.2, they grow to about 4% for ε = 1.0, which can translate into

substantial operational gains for the company.
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Figure 7: Comparing results for different values of ε. The image above represents the results for instance
1, and the image below the results for instance 2.
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7. Conclusion

In this thesis we considered the capacitated vehicle routing problem with uncertainty in customer

demand. The uncertainty was modeled using a uniform distribution, with parameterised width,

and a formulation was adapted from the literature to assist in the calculation of delivery routes.

Four recourse action were developed in order to prevent or amend route failures, ranging from the

simplest (detour to depot) to the most complex (reoptimization). Monte Carlo simulations were

then performed, supported by a combination of a Java program and a commercial solver (CPLEX),

with the aim of comparing the performance of the different recourse actions.

The results show that the limited reoptimization recourse action can achieve substantial im-

provement compared to the detour to depot recourse action. In particular, the wider the demand

distribution is (meaning, the higher the uncertainty), the more relevant it is to apply the limited

reoptimization recourse action, with improvements up to 4% in the cost function.

7.1 Suggestions for further study

Even though the preventivive restock, the limited reoptimization and the reoptimization recourse

actions already show improvements compared to detour to depot recourse action, there are partic-

ular areas where we believe that further exploration could be worthwhile.

7.1.1 Time constraints

Currently, the routes in the limited reoptimization and reoptimization recourse action are not

allowed to have a duration exceeding T . This could be a potential limitation of these recourse

actions. Incorporating a more sophisticated way of modeling the time costs could be a better

option. It might happen that a cheaper solution is available if the routes are allowed to exceed T .

Even though one or more truck drivers would have to extend their shift for a bit longer, the cost

of these routes (including the penalty costs of exceeding T ) could be cheaper than the cost of the

routes when dismissing these truck drivers so that their shifts take less than T .

7.1.2 Impact of the initial routes

In this thesis the same initial routes are used for all simulations. It would be interesting to know just

how much impact the initial routes have on the average costs of a company. If more time was spent

in this study finding an initial solution for the vehicles, would the average cost of implementing each
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recourse action also have delivered noticeable better results? Or would preparing the initial solution

for uncertainty in demand be a better option? In most approaches adopted in the literature, the

initial routes are calculated in such a way that they end up being more robust to uncertainty,

meaning that failures are less likely to occur in these routes. These initial routes will have higher

costs compared to initial routes that do not take any uncertainty into account. But do these

additional costs compensate in the end?

7.1.3 Optimal location for the depot

The performance of the recourse actions depends on the location of the depot compared to the

locations of the customers. In our instance which is located in Belgium, the depot is located in

Brussels and is therefore in the central portion of the country. The detour to depot recourse action

here performs relatively well because the trucks are always within a short distance from the depot.

For countries where this is not the case, like for example in Austria, where the capital is located

close to the northeastern border of the country, it is expected that the detour to depot recourse

action (assuming a depot in Vienna) would perform worse. Using a simple model where countries

are circles of radius R, having the depot at the center would give an average distance between

customers and the depot of 2R/3 compared to 32R/(9π) (see Stone, 1991) for a depot at the

border, almost twice the distance, and therefore almost twice the additional cost in case of failure.

Having this in mind, a company may therefore consider relocating the depot in order to reduce

costs. The methods and algorithms we developed in this thesis could be easily extended or modified

to tackle this problem: we would simply have to estimate the cost function (and the recourse actions’

performance) for each proposed location and determine the best solution.

7.1.4 Trucks sharing stock

An interesting feature of an additional recourse action would be the ability for the trucks to share

their stock in real time.

Given the random nature of the actual demands, it could happen that one truck has lack of

goods, while another has excess goods, and their locations at a certain point in time are such, that

it would be possible for them to meet and balance their stocks. In effect, one of the trucks would

behave like a “movable depot” and share its excess stock with the other one. This recourse action,

while more complex to develop and implement, has the potential to deliver additional savings.
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A. Appendix

A.1 About the distribution of the sum of n non-identical discrete

uniform random variables

From Bradley et al. (2002) we know that the distribution can be calculated either by computational

means or by closed form. It is interesting to compare both approaches as this gives us insights into

what is actually required to evaluate this probability.

From Theorem 2 in the paper we know that the probability mass function of the sum of n

uniform variables Xi in the set {−mi, 1−mi, . . . ,mi − 1,mi} is

gn(p) =
M

2n−1

(n−1)/2∑
k=0

(−1)kb
(n)
2k

(n− 2k − 1)!
+

∑
~ε∈{−1,1}n

(
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(2mj + 1)εj
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The authors mention that the probability can be calculated directly using

gn(p) := (χ1 ∗ χ2 ∗ · · · ∗ χn)(p) =
∑

k1+k2+···+kn=p

n∏
j=1

χj(kj)

but that this formula is “inconvenient to apply” so we compared both approaches: their closed-form

expression was evaluated with Mathematica, and a numerical estimate was calculated with Java.

While giving the same results, the Mathematica script takes much longer to compute the prob-

abilities for large values of n. For example for n = 12 Mathematica takes around 10 seconds to

compute the probabilities whereas the Java function finishes in around 70 milliseconds. For this

reason the Java implementation was used in the simulations.

31



A.2 For integer demands, any real ε produces a symmetrical in-

terval

We will show that (10) is always satisfied regardless of the value that is chosen for ε. In order for

(10) to be satisfied, the following equation has to hold:

di − bdi · (1− ε)c = ddi · (1 + ε)e − di (13)

where the left term represents the width of the lower half of the uniform distribution interval and

the right term represents the upper half.

Known properties of the floor and ceiling functions are, for integer m and real x

bm+ xc = m+ bxc and dm+ xe = m+ dxe (14)

In order to simplify (13), we note that di ·(1±ε) = di±di ·ε. This can be written as di±(m+x),

for some m ∈ N and x ∈ [0, 1[. The left term in (13) is

di − bdi · (1− ε)c = di − bdi − di · εc

= di − bdi − (m+ x)c

= di − bdi −m− xc

= di − [(di −m) + b−xc]

= m− b−xc

And the right term is

ddi · (1 + ε)e − di = ddi + di · εe − di

= ddi + (m+ x)e − di

= di +m+ dxe − di

= m+ dxe

For x = 0 we have
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m− b−xc = m

m+ dxe = m

and for x ∈]0, 1[ we have

m− b−xc = m− (−1)

= m+ 1

m+ dxe = m+ 1

In both cases we arrive at an equality. This completes the proof.

A.3 Routes of Instance 1

Optimal routes:

Route 1: 0, 1, 43, 49, 37, 28, 0

Route 2: 0, 13, 10, 41, 33, 38, 0

Route 3: 0, 17, 20, 19, 46, 0

Route 4: 0, 23, 16, 27, 8, 26, 32, 34, 0

Route 5: 0, 24, 18, 30, 21, 15, 40, 0

Route 6: 0, 29, 12, 42, 44, 39, 35, 2, 6, 4, 0

Route 7: 0, 47, 5, 45, 14, 0

Route 8: 0, 48, 3, 22, 11, 36, 7, 25, 9, 31, 0

Initial routes (obtained with a time limit of 30 seconds):

Route 1: 0, 5, 45, 37, 14, 46, 0

Route 2: 0, 12, 1, 42, 44, 39, 35, 2, 0

Route 3: 0, 13, 33, 6, 10, 4, 41, 0

Route 4: 0, 20, 31, 28, 19, 17, 0

Route 5: 0, 23, 16, 27, 26, 15, 40, 0

Route 6: 0, 30, 24, 18, 8, 21, 32, 34, 0

Route 7: 0, 48, 9, 25, 7, 36, 11, 22, 3, 0

Route 8: 0, 49, 43, 47, 29, 38, 0
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A.4 Routes of Instance 2

Optimal routes:

Route 1: 0, 6, 44, 91, 22, 72, 14, 99, 21, 50, 65, 18, 62, 40, 0

Route 2: 0, 17, 93, 9, 94, 10, 28, 75, 55, 92, 0

Route 3: 0, 30, 29, 16, 69, 13, 89, 32, 97, 54, 52, 64, 0

Route 4: 0, 34, 38, 56, 61, 35, 74, 49, 86, 2, 57, 24, 27, 63, 0

Route 5: 0, 60, 39, 87, 26, 53, 85, 36, 48, 5, 0

Route 6: 0, 68, 42, 45, 8, 20, 12, 41, 82, 66, 83, 58, 23, 7, 76, 0

Route 7: 0, 80, 67, 3, 43, 37, 73, 79, 46, 19, 96, 47, 0

Route 8: 0, 90, 25, 81, 59, 15, 98, 95, 77, 71, 51, 31, 84, 33, 88, 11, 78, 70, 1, 4, 0

Initial routes (obtained with a time limit of 60 seconds):

Route 1: 0, 36, 85, 53, 82, 66, 83, 41, 12, 20, 8, 26, 87, 39, 60, 5, 0

Route 2: 0, 40, 38, 56, 61, 35, 74, 90, 10, 28, 55, 92, 34, 0

Route 3: 0, 48, 7, 63, 9, 76, 27, 58, 23, 33, 88, 11, 78, 70, 1, 4, 0

Route 4: 0, 68, 29, 30, 42, 45, 13, 89, 54, 67, 0

Route 5: 0, 73, 6, 44, 91, 22, 72, 14, 99, 21, 50, 65, 18, 46, 0

Route 6: 0, 75, 49, 25, 98, 95, 77, 15, 59, 81, 86, 71, 84, 31, 51, 2, 57, 24, 94, 0

Route 7: 0, 80, 64, 52, 16, 69, 97, 32, 79, 3, 37, 43, 0

Route 8: 0, 93, 17, 96, 19, 62, 47, 0
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