
 

 

Predicting bank distress: testing the additional 

predictive power of an equity market indicator           

with machine learning algorithms 

 

 

Master Thesis Accounting, Auditing and Control 

 

 

Johannes van der Drift 

382577 

 

Supervisor: Dr. F.M. Elfers 

Second assessor: Dr. M.H.R. Erkens 

 

 

 

Disclaimer: The content of this thesis is the sole responsibility of the author and does not reflect the view 

of either the supervisor, second assessor, Erasmus School of Economics or Erasmus University.  



Johannes van der Drift 
2021                                  

1 
 

Table of Contents 

1. Introduction ................................................................................................................................................ 2 

2. Literature review  ....................................................................................................................................... 3 

2.1 Hypothesis development  ..................................................................................................................... 6 

3. Data and methodology   .............................................................................................................................. 6 

3.1 Distress events  ..................................................................................................................................... 6 

3.2 Distress signals ..................................................................................................................................... 9 

3.3 Machine learning ................................................................................................................................ 12 

 3.3.1 Dealing with missing data and class imbalance ..................................................................... 12 

3.3.2 Performance metrics ............................................................................................................... 13 

3.3.3 Machine learning algorithms .................................................................................................. 14 

4. Empirical results and analysis   ................................................................................................................ 15 

4.1 Machine learning algorithm results  ................................................................................................... 17 

4.2 Variable importance  .......................................................................................................................... 20 

5. Additional modelling and robustness tests ............................................................................................... 23 

5.1 Implied cost of capital  ....................................................................................................................... 23 

5.2 Equity volatility  ................................................................................................................................. 27 

5.2 Too-Big-To-Fail distortions  .............................................................................................................. 28 

5.3 Resampling robustness test  ................................................................................................................ 29 

5.4 Imputation robustness tests  ................................................................................................................ 30 

6. Conclusion ................................................................................................................................................ 31 

7. Reference list ............................................................................................................................................ 33 

8. Appendix A .............................................................................................................................................. 36 

9. Appendix B............................................................................................................................................... 37 

10. Appendix C............................................................................................................................................. 39 

11. Appendix D ............................................................................................................................................ 42 

12. Appendix E ............................................................................................................................................. 43 

13. Appendix F ............................................................................................................................................. 44 

14. Appendix G ............................................................................................................................................ 45 

15. Appendix H ............................................................................................................................................ 46 

16. Appendix I .............................................................................................................................................. 48 

17. Appendix J .............................................................................................................................................. 50 

 

 



Johannes van der Drift 
2021                                  

2 
 

1. Introduction 

More than ten years after the global financial crisis of 2008, we still observe the effects of regulatory reforms 

to improve the stability of financial institutions and the debt and equity markets. The financial crisis showed 

that regulations and oversight were ineffective in preventing the financial crisis (Dewatripont, Rochet and 

Tirole, 2010). When oversight by regulatory bodies or government intervention fails, market discipline can 

be a powerful governance mechanism to monitor and signal excessive risk taking by banks. Market 

discipline can be defined as the monitoring by and actions of depositors and shareholders to signal excessive 

risk in banks (World Bank, 2019). Two components of market discipline can be identified: monitoring and 

influencing (Bliss and Flannery, 2002). I will focus on the monitoring of banks to assess the additional 

predictive power of a market indicator for predicting bank distress. Earlier research has centered around the 

distance to default1 as market indicator (Gropp, Vesala and Vulpes, 2006; Auvray and Brossard, 2012). 

However, their research methodology is based on logistic regression. Logistic regression fails to capture 

non-linear effects and advanced machine learning methods are recognized to consistently outperform 

logistic regression in classification problems (Dumitrescu, Hué, Hurlin and Tokpavi, 2021). Machine 

learning can be used to analyze large datasets, uncover the best variables and combinations of variables to 

explain and predict an outcome variable (Bertomeu, Cheynel, Floyd and Pam, 2020). Advanced machine 

learning techniques have not yet been used to ascertain the capabilities of a market indicator to predict 

banking distress. The models to predict defaults have improved substantially since the seminal works of 

Beaver (1966) and Altman (1968). Early research mainly comprised discriminant analysis. The work of 

Martin (1997) provided a shift in default research, by employing a logistic regression. Research using 

machine learning techniques started in the 1990s, when Odom and Sharda (1990) found Neural Network 

(NN) outperformed a multivariate discriminant analysis based on Altman (1968) for prediction 

bankruptcies. I will assess the additional predictive power of the distance to default market indicator on 

multiple distress events, which leads to the following research question as the focal point of this research:  

Can the addition of a market indicator to established risk indicators improve predictions of bank distress? 

To answer this question multiple analyses are conducted based on advanced machine learning algorithms. I 

formulate one hypothesis in the alternative form, to help answer the research question. 

H1a: Market indicators improve machine learning models based on established risk indicators when 

predicting bank distress. 

The findings of this paper give an indication that the market indicator distance to default can improve models 

predicting bank distress. These results however are not adequate enough to indicate an immediate shift in 

prediction models is needed. The results also indicate that the importance of a market indicator in bank 

distress prediction models becomes greater when a longer prediction horizon is employed. When the implied 

cost of capital is used as market indicator, there are significant improvements in predictions of bank distress 

one year ahead of the event. 

The contribution of this paper is to assess the predictive power of market indicators on bank distress using 

machine learning. Prior research covering this approach on financial institutions is limited. This research 

corroborates the findings of Miller, Olson and Yeager (2015) of the small improvement a market indicator 

                                                           
1 The distance to default (DD) is a measure of distance in the number of asset value standard deviations from a point 

of default where the value of assets and debt are equal. 
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has on bank distress predictions, but expands on the methodology by using advanced machine learning 

algorithms. When predicting bank distress over a larger horizon the importance of a market indicator as 

additional predictor becomes larger. Additionally, this paper shows the improvement in bank distress 

predictions when using implied cost of capital or equity beta as market indicator. The results of this study 

can be applied by regulatory bodies, as well as investors and banks, to assess warning signs of excessive 

risk taking by banks or predict financial instability.  

The paper continues as follows. Section 2 will detail the relevant literature on banking supervision, risk 

indicators for predicting bank distress, machine learning, and hypothesis development. Section 3 will 

address the data used in this research. Section 3 will explain the distress events used as a dependent variable 

for the research, the risk and market indicators for predicting the distress events, and the machine learning 

methodology to test the hypothesis. Section 4 will show the results from four machine learning algorithms 

on various models for predicting bank distress. Section 5 will elaborate on additional modelling and 

robustness testing. Section 6 will state the conclusion of the research, and will address limitations of the 

paper and possible further research. 

 

2. Literature review 

This part of the paper will highlight previous research on banking supervision and bank distress predictions.  

Previous literature in the use of market signals for bank supervision has mainly focused on debt markets, as 

opposed to equity market information (Curry, Fissel and Elmer, 2003). However, Levonian (2001) finds 

that the information content of debt markets is similar to that of equity markets with regard to market 

discipline. Moreover, equity markets are thought to process information more efficiently than bond markets 

(Saunders, 2001), and there are more banking institutions with publicly traded equity than those with 

publicly traded debt (Curry et al., 2003). The potential problems from using debt signals as market discipline 

indicator arise from their implementation into prediction models. Hancock and Kwast (2001) show that 

multiple bonds issued by a single U.S. bank can result in multiple spread estimates. Contradictory to the 

positive relation between yields and ratings, Bliss (2001) shows spreads have low predictive power when 

estimating ratings. In addition, spreads can incorporate time-varying liquidity premia, and this diminishes 

their usefulness in predicting bank distress. Elton (2001) shows that the premium in corporate rates over 

treasuries is in a surprisingly small fraction explained by expected default. This is corroborated by Huang 

and Huang (2012), who conclude that credit risk accounts for only a small fraction of yield spreads for 

investment-grade bonds.  

There are also difficulties in using market indicators like the distance to default, and related expected default 

frequency. These difficulties are threefold; opacity, option value effect and moral hazard due to the public 

safety net (Auvray and Brossard, 2012). The first problem is embedded in the opacity of some bank assets, 

meaning they are not easily monitored by outside shareholders and creditors. The screening and monitoring 

of these assets must therefore be done by bank employees, which the outside stakeholders have to rely upon 

(Diamond, 1984; Freixas and Rochet, 1999). This opacity effect can be controlled for in models by using 

accounting variables. Another stated drawback of equity based signals is that upside gains for equity holders 

stemming from increased risk-taking also lead to increased asset volatility. In the case of high default 

probability, shareholders take more risk, because the option value is larger than the charter value (Park and 

Peristiani, 2007). Gropp, Vesala and Vulpes (2006), as well as this research, therefore use the distance to 
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default indicator, because this combines equity price information, leverage and asset volatility in one 

indicator. Gropp and Vesala (2004) show that distance to default can indicate bank distress when asset 

volatility increased. The last issue is the rise of moral hazard with the presence of a public safety net for 

certain banks, also known as the “too-big-to-fail” banks (Dewatripont and Tirole, 1993). Effective market 

discipline can in this case be diminished because government in effect replaces market monitoring with 

government supervision. Risk is not fully incorporated in the cost of uninsured funding for these banks with 

systemic importance2, as evidence shows (Acharya, Anginer and Warburton, 2017). This moral hazard 

effect can hinder the improvement of prediction models and needs to be controlled for (Distinguin, Rous 

and Tarazi, 2006). Other papers merely mention this problem (Gropp et al., 2006) or circumvent the problem 

by choosing a sample that does not contain “too-big-to-fail” banks (Curry, Elmer and Fissel, 2007). 

Berger, Davies and Flannery (2000) find that the information gathered on the condition of large U.S. bank 

holding companies by supervisors and bond rating agencies can complement each other. They also find that 

supervisory assessments are less accurate in predicting future performance changes when compared to bond 

and equity market assessments. Their market indicators are based on the abnormal returns, insider or 

institutional holdings, and rating downgrades crossing the investment grade threshold. Gunther, Levonian 

and Moore (2001) find that an expected default frequency (EDF) market signal provides incremental 

information during the period between bank inspections. Their findings state EDF’s as statistically 

significant in predicting supervisory rating downgrades. Other research by Krainer and Lopez (2004) 

concluded that equity market variables are useful for assessing the condition of bank holding companies. 

While they did not find an improvement in out-of-sample forecast accuracy when including equity market 

variables, this conclusion might be biased by their sample period of 1990-1999, which contained less bank 

distress than the years preceding their sample period. Gropp et al. (2006) provide evidence that market 

signals predict bank distress, based on a sample of European banks between 1990 and 2001. They find the 

distance to default can predict bank issuer rating downgrades between 6 and 18 months before the 

downgrade, but closer to the downgrade it performs quite poorly. Furthermore, the predictive power of 

spreads diminishes beyond the horizon of 12 months before a downgrade. Their results also suggest that 

spreads are only useful predictors for banks that are not insured against default by the government, while 

the predictive power of the distance to default is not affected by public support. They conclude that spreads 

and distance to default indicators complement each other, and that equity market information in addition to 

accounting data improves forecasting. Another paper using the distance to default indictor to predict bank 

distress was written by Auvray and Brossard (2012). They concluded that, for European banks between 

1997 and 2005, the distance to default indicator had more predictive power in the case of concentrated 

ownership.  

Two studies have focused on the distance to default indicator around the financial crisis period of 2008. 

Milne (2014) studied the distance to default for the 41 largest global banking institutions between the second 

half of 2006 and the second half of 2011. His findings suggest the distance to default indicator failed to 

predict either failure or bank share decline. Only for the latter half of 2008 did the indicator have statistically 

significant predictions of failure for the banks. He also finds the ‘option value’ of the bank safety net 

remained small, and bank shareholders were largely unaware of the exposed risk, suggested by the failure 

                                                           
2 If there is no explicit guarantee by the government, the security prices should reflect the financial condition of a 

bank. However, Acharya, Anginer and Warburton (2017) find that bond premiums do not fully reflect the risk taking 

of banks because bond holders believe the government will prevent the adverse consequences of failure of these 

systemically important banks. 
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of the distance to default indicator as predictor for bank distress. He found little indication that the bank 

safety net was being used by bank shareholders to shift risk onto the taxpayers. Another paper by Miller, 

Olson and Yeager (2015) studies the contribution of equity and subordinated debt signals as predictors of 

bank distress during the financial crisis. The sample of their research contained bank holding companies 

(BHC) between the fourth quarters of 2006 and 2012. They concluded the expected default frequency, 

derived from the distance to default, did not improve predictions relative to accounting-based indicators. 

The yield spreads on subordinated debt also did not improve bank distress predictions, because the “too-

big-to-fail” subsidies distorted the risk rankings of the largest BHC’s. For large BHC’s, the tier 1 leverage 

ratio was the most accurate distress indicator, this holds for the period during the crisis as well as outside of 

that period.  

The accounting-based signals used in this paper are proxies developed by Thomson (1991). He provided 

five variables that could accurately predict bank defaults in the period 1984-1989. The variables were 

proxies for capital adequacy, asset quality, management quality, earnings and liquidity. These factors 

combined make up the acronym CAMEL, which is a system used to rate financial institutions by regulatory 

banking authorities. In 1997 sensitivity to market risk was included to expand the system to CAMELS. 

More recently, Cole and White (2012) tested proxies for CAMELS and found they are accurate predictors 

of bank failures in both periods of 1985-1992 and following the financial crisis of 2008. Their results also 

suggest real-estate loans play an important role in the strength and weakness of a bank. With more 

construction loans, commercial mortgages and multi-family mortgages, banks have a higher probability of 

failure, while banks with more loans allocated to the residential single-family market are either neutral or 

have higher probability of survival. Jin, Kanagaretnam and Lobo (2011) also test various accounting 

variables to predict banking failure in the period leading up to the crisis of 2008. They identify the following 

ten predictors: auditor type, Tier 1 capital ratio, proportion of securitized loans, nonperforming loans, loan 

loss provisions, growth in commercial loans, growth in real estate loans, growth in overall loans, loan mix, 

and a dummy if the bank is traded publicly. 

The recent developments in advanced machine learning techniques have made them a viable option for 

many empirical researchers. Machine learning algorithms can detect complex patterns in large sets of data 

(Bertomeu, Cheynel, Floyd and Pan, 2020). The algorithm selects variables that best explain an outcome 

variable, and can find appropriate combinations of variables to make accurate predictions out-of-sample. 

Odom and Sharda (1990) were among the first to apply this approach for distress prediction, using neural 

networks (NN) to predict corporate defaults. This was later expanded on by Tam (1991) and Tam & Kiang 

(1992) as an application for bank default prediction. Their findings suggest NN outperformed other 

prediction models. Heo and Yang (2014) found that adaptive boosting outperformed other models, when 

classifying bankruptcy predictions for Korean construction companies. They especially found higher 

predictive power for larger companies. Although their research only focuses on one industry, this paper will 

focus on distress in the banking sector. Danenas (2015) evaluated various machine learning models for 

credit risk evaluation and default assessment for US firms. He found an overall high classification accuracy 

but stated support vector machines are less stable than other classification models. Kim, Kang and Kim 

(2015) provide valuable insight into the problem of data imbalance, when predicting classifications with a 

majority class. The issue of data imbalance has two sides. Firstly, the performance of classification models 

is mostly based on the arithmetic accuracy. With imbalanced samples, the model’s predictive performance 

is highly skewed towards the majority class. Banks in distress, for instance, are relatively less abundant in 

most samples than banks not in distress. This holds even more for default instances. Basically the model 
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learns to predict the majority class, but not so much the minority class, which in most cases is the instance 

at the center of research. In this case a model with high accuracy can be argued to be meaningless. Like Kim 

et al., this paper will use the area under the receiver operating characteristic (ROC) curve to assess 

classification accuracy of both majority and minority classes. The second problem arising from data 

imbalance is the distortion of the decision boundaries. With largely imbalanced samples, the decision 

boundary for the majority class tends to gradually expand, while the decision boundary for the minority 

class is gradually reduced. This results in decreased accuracy for minority class classification. The proposed 

solution for this issue is boosting, which gives more learning opportunities to the minority class. More 

recently Barboza, Kimura and Altman (2017) researched various machine learning models for corporate 

bankruptcy prediction. They found that machine learning models show approximately 10 percent more 

accurate predictions in relation to traditional models, on average. Their result also suggested the machine 

learning technique related to random forest performs the best out of all tested machine learning techniques. 

They also touch on the drawback of machine learning in reduced explanatory validation for the models. The 

goal, however, is to correctly predict and not explain it. In that case the estimation of prediction error is 

more important than the relative contribution (Efron and Hastie, 2016).  

2.1 Hypothesis development 

The focal point of this paper is whether market signals provide an improvement in predicting bank distress 

in addition to other public indicators. The market signal used to test this is the distance to default. Earlier 

research has shown that this indicator captures three important aspects of the condition of a bank: first is the 

total market value of assets, second the debt level of the firm as indication of risk which has to be paid off 

by the total market value of assets, and third is the volatility of assets (Gropp et al., 2006; Miller et al., 

2015). To properly test the predictive power of this indicator, a machine learning method approach will be 

used. Distress in banks can result in high costs for all stakeholders, this shows the need for accurate 

indicators to assess a banks’ condition. Therefore, the hypothesis tested in this paper is as follows: 

H1a: Market indicators improve machine learning models based on established risk indicators when 

predicting bank distress. 

 

3. Data and methodology 

This section will detail the distress events tested, the book- and market signals to classify those distress 

events, and the machine learning methods to achieve the best possible classification. The data used in this 

research was collected from multiple sources. The quarterly data for US banks for the period 1990-2020 

was collected from Compustat Bank Fundamentals Quarterly. For the same sample period, the Center for 

Research in Security Prices (CRSP) provided market data, like stock information. The equity volatility 

indicated by the beta was collected from the WRDS Beta Suite.  

3.1 Distress events 

To test the hypothesis that market information improves the prediction of a bank in distress, two different 

distress events are applied in this paper: a Texas ratio greater than one hundred percent and a bank failure. 

Table 1 gives an overview of all distress events. 
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The main distress event in this paper is recorded using the Texas ratio. This ratio is the sum of non-

performing assets (loans more than 90 days outstanding) and real estate other than bank premises owned, 

which is divided by the sum of tangible common equity (TCE) and loan loss reserves. Tangible common 

equity is calculated by subtracting intangible assets and preferred stock from the banks’ total equity. The 

Texas ratio was developed as a result of the large amount of bank failures in Texas in the 1980s. Gerard 

Cassidy and fellow analysts at RBC Capital Markets found that banks with a Texas ratio over one hundred 

percent have a high probability of default. A Texas ratio greater than one hundred percent indicates the non-

performing assets are larger than the available resources to cover potential losses on those assets. Only the 

first observations of a Texas ratio over one hundred percent are included as a distress event. To properly 

test the predictive power of the models, the Texas ratio dependent variable will be a dummy with value of 

1 in the quarter preceding a recorded Texas ratio over one hundred percent. This way, a distress event in the 

following quarter can be predicted based on the information available in the current quarter. Predictions will 

also be made for a one year and two year prediction horizon. The sample includes 63 bank quarter 

observations of a Texas ratio over one hundred in the following quarter, 33 observations of this distress 

event one year ahead, and 10 observations for predictions two years prior to the distress event. 

A bank failure is also classified as a distress event. The Federal Deposit Insurance Corporation (FDIC) 

provides a list of failed banks since October 2000. This list was linked with quarterly data through the 

collection of Federal Reserve Bank ID’s for the Bank Holding Company (RSSD ID) which could be linked 

with the CRSP PERMCO numbers. The resulting observations were cross-referenced with CRSP delist 

events for all banks in the sample. For this research the focus was on delisting events where a bank was in 

distress. Bank failure observations were added based on liquidation (delist code 450), insufficient assets 

(delist code 561), bankruptcy (delist code 574), and for the protection of investors and the public interest 

(delist code 585). The distress event for bank failure is the last quarter recorded within one year of the bank 

failure or delist date. The dependent variable to test the predictive power of the models will again be a 

dummy with value 1 in the quarter preceding the bank failure quarter. The sample to test this includes more 

observations than the sample tested for the Texas ratio, because this sample includes subsequent 

observations of a Texas ratio over one hundred. Also in the case of bank failures, no bank quarter 

observations are included after the distress event. The observation of a bank failure is also highly correlated 

with a Texas ratio over one hundred. Of the 12 observations with a bank failure in the following quarter, 11 

of these observations coincided with a Texas ratio over one hundred in the following quarter. Predictions 

are made on the 12 observations in the following quarter, 7 observations one year ahead, and 5 observations 

for a two year prediction horizon. 

A third distress event can be indicated by the credit rating a bank receives, if that rating drops below a 

certain threshold. However, after collecting all relevant data and issuer level credit ratings for the banks in 

the sample, the amount of distress observations was not adequate for robust testing.3 Therefore, contrary to 

earlier research (Auvray and Brossard, 2012; Miller et al., 2015), this distress event will not be included in 

this paper.  

 

                                                           
3 The credit ratings were collected from the Eikon database and include both Fitch and Moody’s long term issuer 

credit ratings. After all necessary calculations for the ratios used in testing, just two bank distress observations 

remained.  
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Table 1

Panel A: Distress events

Panel B: Distress event frequencies

Year

1993 0 0 0 0 0 0

1994 0 0 0 0 0 0

1995 0 0 0 0 0 0

1996 0 0 0 0 0 0

1997 0 0 0 0 0 0

1998 0 0 0 0 0 0

1999 0 0 0 0 0 0

2000 0 0 0 0 0 0

2001 0 0 0 0 0 0

2002 0 0 0 0 0 0

2003 0 0 0 0 0 0

2004 0 0 0 0 0 0

2005 0 0 0 0 0 0

2006 0 0 0 1 0 0

2007 0 0 1 1 0 0

2008 2 0 1 0 0 0

2009 43 5 23 7 3 3

2010 13 2 7 1 3 2

2011 4 4 1 0 1 0

2012 1 1 0 0 0 0

2013 0 0 0 0 0 0

2014 0 0 0 0 0 0

2015 0 0 0 0 0 0

2016 0 0 0 0 0 0

2017 0 0 0 0 0 0

2018 0 0 0 0 0 0

2019 0 0 0 0 0 0

2020 0 0 0 0 0 0

Total 63 12 33* 10* 7* 5*

Total n 15391** 16065 15391** 15391** 16065 16065

This is a dummy dependent variable taking value 1 in the quarter preceding an observation of a Texas ratio 

over 100%. This ratio is the sum of non-performing assets (loans more than 90 days outstanding) and real 

estate other than bank premises owned, which is divided by the sum of tangible common equity (TCE) and 

loan loss reserves.

This is a dummy dependent variable taking value 1 in the quarter preceding an observation of a bank failure as 

per FDIC or CRSP delisting event related to bank distress. 

* These totals are less then the totals for models with q+1 as prediction horizon because data is not available. Some banks enter 

the sample at a later stage than year 1993. If a bank is in distress at year 2009 for example, but only data one year prior is 

available, the bank will have no observation when the distress event is q+8 away.

** The number of observations in this sample is reduced from the sample for bank failures. This is due to deletion of subsequent 

Texas ratio distress observations after the first recorded distress observation for robust testing.
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(1) 

(2) 

3.2 Distress signals 

The main focus of this research is the added value of market signals when classifying a bank as in distress. 

An overview of all dependent and independent variables is shown in table 2. The Merton-KMV distance to 

default (DD) provides a risk indicator based on market prices (Merton, 1974). Several researches have 

shown the added value of this indicator, because it takes the leverage of the bank and asset volatility into 

account (Auvray & Brossard, 2012). The DD can be derived from the modelling of equity as a call option 

on the assets of a company (Crosbie and Bohn, 2003). The value of equity and value of assets are connected 

by the following equation: 

𝑉𝑒 = 𝑉𝑎𝑁(𝑑 ) −  
−𝑟𝑇𝐷𝑁(𝑑2) 

for        𝑑 =
log(

𝑉𝑎
𝐷
) (𝑟 

𝜎𝑎
2

2
)𝑇

𝜎𝑎√𝑇
       and      𝑑2 = 𝑑 − 𝜎𝑎√  

Where 𝑉𝑒(𝑉𝑎) is the value of equity (assets), 𝐷 is the level of debt, 𝜎𝑎 is the volatility of assets, 𝑁(𝑑 ) and 

𝑁(𝑑2) are the normal distributions of 𝑑  and 𝑑2, and r is the risk-free rate. Then, following the Black-

Scholes option pricing model, the level and volatility of the market value of assets can be determined using 

the market value of equity, equity volatility and debt level (Merton, 1974). The volatility of equity can be 

derived from the beta. To reduce noise in observations, the average beta per quarter is taken from daily 

estimated beta’s with a 252 day estimation window in the WRDS Beta Suite. The level of debt can be 

obtained from quarterly data. A common approach for the debt in this calculation, following Auvray & 

Brossard (2012) and Moody’s KMV, is to take a one year horizon using the sum of short-term debt and half 

of the long-term debt. This is because of the reduced impact of long term debt on the probability of default 

when there is a trend of growing assets. The value of equity is stock price multiplied by outstanding shares. 

To obtain the value and volatility of assets, one solves the system of two non-linear equations to minimize 

sum of squared errors (Shah, Singh and Aggarwal, 2013):  𝑞2 =  𝑞 
2 +  𝑞2

2 

for        𝑞 = 𝑉𝑒 − 𝑉𝑎𝑁(𝑑 ) −  
−𝑟𝑇𝐷𝑁(𝑑2)         and          𝑞2 = 𝑉𝑒𝜎𝑒 −𝑁(𝑑 )𝑉𝑎𝜎𝑎 

When 𝑉𝑎 and 𝜎𝑎 are known, one can calculate the distance to default: 

𝐷𝐷 = 
log (

𝑉𝑎
𝐷
) + ( − 𝜎𝑎

2) 

𝜎𝑎√ 
 

The DD is a measure of distance in the number of asset value standard deviations from a point of default 

where the value of assets and debt are equal. A higher DD can be the result from an increase in valuation of 

the assets. A higher DD can also come from a decrease in volatility reflecting less uncertainty about the 

asset values. 

To determine a benchmark for classifying the financial stability of a bank, the approach in this paper will 

be based on multiple established risk indicators similar to the CAMELS rating system for financial 

institutions (Auvray & Brossard, 2012; Miller et al., 2015). This results in creating variables reflecting 

Capital adequacy, Asset quality, Management quality, Earnings, Liquidity and Sensitivity. Capital adequacy 

reflects the amount of capital that serves as protection against potential losses. Banks should have adequate 

capital reflecting the risk of operations. Capital adequacy ratios (C1, C2, C3) are expected to be negatively 

related with bank distress. Asset quality measures the amount of risk a bank is exposed to relating to various 
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(3) 

(4) 

asset portfolios (e.g. loans, other real estate owned). Asset quality is impaired when earning assets are 

exposed to higher risk. Asset quality ratios (A1, A2, A3, A4) are expected to be positively related to bank 

distress. Adequate management of the bank also forms an important part of its stability. However, it is very 

difficult to correctly capture the ability of management to control for risk exposure of a bank. This study 

captures management quality by calculating total operating expenses over income before provisions4. The 

variable for management quality (M1) is expected to be positively related to bank distress. Next is earnings 

quality, which can determine the long term viability of a bank. Earnings should be stable, not reliant on one-

time gains, and cover the credit risk exposure of a bank. Earnings quality variables (E1, E2, E3, E4, E5, E6) 

are expected to be negatively related to bank distress. Following earnings quality, the liquidity of a bank is 

measured. The liquidity of a bank is especially important to assess a bank’s financial stability. A bank should 

have adequate liquidity to meet its obligations. Liquidity ratios (L1, L2, L3) are expected to be positively 

related to bank distress. The last part of the CAMELS rating is sensitivity to market risk, which was a recent 

addition to the rating system. Regulators regard this as the degree to which the earnings and financial 

stability of a bank are affected by changes in interest rate or other macroeconomic factors. Following earlier 

research (Kerstein and Kozberg, 2013), the proxy used for market sensitivity in this paper is the ratio of 

interest bearing deposits to total assets. As this measure increases, the bank will be more sensitive to interest 

rate changes, and therefore be positively related to distress. Besides proxies for the CAMELS variables, I 

will further apply variables used in other bankruptcy prediction research. One important factor stressed by 

Barboza et al. (2017) is to include one or more variables reflecting a change in certain indicators. I will 

therefore construct two variables reflecting changing conditions. The first variable indicates liquidity change 

(X1), and is expected to be negatively related to bank distress. It is calculated as the sum of change in cash, 

cash equivalents and receivables, divided by the sum of change in deposits and current debt. The second 

variable indicates change in loans receivable to total assets. This second change variable (X2) is expected 

to be negatively related to bank distress. The last variable to account for size of the banks is a log transformed 

total amount of assets. No expectation is set on the relation between this variable and bank distress. An 

overview of the descriptive statistics for all variables can be seen in table 4, panel A. The formula which 

forms the basis of testing is as follows: 

𝐷𝑡 𝑖 = 𝐶 𝑡 + 𝐶2𝑡 + 𝐶3𝑡 + 𝐴 𝑡 + 𝐴2𝑡 + 𝐴3𝑡 + 𝐴4𝑡 +𝑀 𝑡 + 𝐸 𝑡 + 𝐸2𝑡 + 𝐸3𝑡 + 𝐸4𝑡                         

+ 𝐸5𝑡 + 𝐸6𝑡 + 𝐿 𝑡 + 𝐿2𝑡 + 𝐿3𝑡 + 𝑆 𝑡 + 𝑋 𝑡 + 𝑋2𝑡 + 𝑋3𝑡  

Where 𝐷𝑡 𝑖 denotes bank distress (dummy value 1)  +   quarters away and all independent variables are 

taken from the current quarter. To clarify, a model with 𝐷𝑡   as a dependent variable predicts bank distress 

one year ahead. The formula used to test the additional predictive power of a market indicator for predicting 

bank distress is as follows: 

𝐷𝑡 𝑖 = 𝐷𝐷𝑡 + 𝐶 𝑡 + 𝐶2𝑡 + 𝐶3𝑡 + 𝐴 𝑡 + 𝐴2𝑡 + 𝐴3𝑡 + 𝐴4𝑡 +𝑀 𝑡 + 𝐸 𝑡 + 𝐸2𝑡 + 𝐸3𝑡 + 𝐸4𝑡               

+ 𝐸5𝑡 + 𝐸6𝑡 + 𝐿 𝑡 + 𝐿2𝑡 + 𝐿3𝑡 + 𝑆 𝑡 + 𝑋 𝑡 + 𝑋2𝑡 + 𝑋3𝑡  

This formula follows the same logic as the first, with the addition of the distance to default as an independent 

variable. 

                                                           
4 It should be noted this only captures management quality in the short term, and does not asses the long-term effect 

of management on the financial stability of a bank. However, as this proxy captures the cost-effectiveness of revenue 

realization it can give an indication as to how this cost-effectiveness was realized by previous management, both in 

the short-term and long-term. 
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Table 2 

Predictive variables used to assess whether a bank will be in distress. For Texas ratio distress and bank failure the current quarter 

values are used as input to predict distress in the following quarter.  

Variable Calculation method 

DD log(
𝑉𝑎
𝐷
) (𝑟−𝜎𝑎

2)𝑇

𝜎𝑎√𝑇
  

C1        𝑐 𝑝     
           𝑤  𝑔ℎ  𝑑        

 

C2 𝐶 𝑚𝑚    𝑞   𝑦 
             

 

C3 𝐶 𝑚𝑚    𝑞   𝑦 
         𝑔    𝑚 𝑑 𝑏  

 

A1 𝐿         𝑝  𝑣      𝑦
𝑁              𝑣    𝑦

 

A2 𝑁   𝑐ℎ  𝑔       
𝐺             𝑐 𝑚  

 

A3 𝑁   𝑝     𝑚  𝑔        
𝐿         𝑝  𝑣       

 

A4 𝑅             ℎ    ℎ   𝑏    𝑝  𝑚     (𝑂𝑅𝐸𝑂) 
             

 

M1 𝐶        𝑝      𝑔   𝑝      
𝑁     𝑐 𝑚  𝑏                𝑝  𝑣       

 

E1 𝑁     𝑐 𝑚               𝑑    𝑦    𝑚  
             

 

E2 Earnings per share, diluted, excluding extraordinary items and  2 month moving average 

E3 
Net interest margin =

𝐼          𝑣    − 𝐼          𝑝     

𝐴𝑣   𝑔        𝑔       
 

E4 𝑅      𝑑       𝑔  
             

 

E5 𝐶        𝑝      𝑔       𝑔  𝑏          
             

 

E6 (𝑂𝑝      𝑔 𝑐  ℎ    𝑤𝑦 + 𝐹    𝑐  𝑔 𝑐  ℎ    𝑤𝑦 + 𝐼 𝑣     𝑔 𝑐  ℎ    𝑤𝑦)/4

𝐿  𝑔    𝑚 𝑑 𝑏  
 

L1 𝐶  ℎ   𝑑 𝑑      𝑚 𝑏     + 𝐹 𝑑        𝑑     𝑑 
𝐷 𝑝      + 𝑆ℎ       𝑚 𝑏    𝑤  𝑔  

 

L2 𝐶 𝑚𝑚  𝑐    𝑝 𝑝   
             

 

L3 𝐹   𝑑        (𝑝𝑝 ) 
𝐿 𝑞  𝑑        (𝑐  ℎ   𝑑 𝑑      𝑚 𝑏    +   𝑑        𝑑     𝑑) 

 

S1 𝐼        𝑏     𝑔 𝑑 𝑝      
             

 

X1 ∆ 𝐶  ℎ   𝑑  𝑞  𝑣      𝑦 + ∆ 𝑅 𝑐  𝑣 𝑏   𝑦
∆ 𝐷 𝑝     𝑦 + ∆ 𝐶       𝑑 𝑏 𝑦

 

X2 (∆ 𝐿       𝑐  𝑣 𝑏  𝑦)/4

             
 

X3 log (             ) 
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3.3 Machine learning  

As technology and archival financial research evolves, we are continuously introduced to new streams of 

data. Machine learning algorithms can discover complex patterns in the data, pick the best variables that 

explain a certain outcome variable, and detect appropriate combinations of variables to make out-of-sample 

predictions as accurate as possible (Bertomeu et al, 2020). In this research, several machine learning 

algorithms are used to classify a bank as in distress or not in distress, based on the aforementioned variables. 

First, the general process of applying machine learning will be explained, after which we go into detail about 

the specific algorithms.  

3.3.1 Dealing with missing data and class imbalance 

After collecting the data, new variables are created to use in testing. Missing data also needs to be addressed. 

There are multiple ways to impute missing data. Deleting observations leads to a robust model, but works 

poorly if there is a large portion of data missing. Mean/median imputation is an easy solution, however this 

does not take the covariance between variables into account. A powerful tool to deal with missing values is 

the MICE5 package available in R statistical software. The MICE package works under the assumption that 

data is missing at random. This means the probability of missing data is reliant on observed data, therefore 

observed data values can be used to make predictions of missing data. Through linear regression and 

“Predictive Mean Matching” a distribution is formed per missing data point, from which plausible 

replacements are drawn for the missing values (Van Buuren and Groothuis-Oudshoorn, 2011). Another 

potential problem are outliers in the data. The machine learning algorithms employed in this research are 

more robust when dealing with outliers, than a logistic regression for example, so this will pose less of a 

problem. With the input of imputed data, a machine learning algorithm learns to predict the classification 

of a bank as being in distress or not. To correctly test this, the data will be split into a training set and a 

validation set to validate the predictions of the algorithms against known values of the outcome variable. 

To ensure the algorithms get equal opportunity to learn the features of each of the classes in the dataset, and 

subsequently test what it has learned on the same number of instances of each class, a stratified split would 

commonly be applied. Stratified splitting is important when predicting a binary outcome variable. However, 

following earlier research on machine learning models with yearly or quarterly observations, the data is split 

at a certain point in time (Barboza et al., 2017; Bertomeu et al., 2020). This while making sure the algorithms 

have sufficient data to both train and test on the outcome variable of interest. By setting the split at year 

2010, the training set contains 45 Texas ratio distress observations and the validation set contains 18. A 

potential issue with predicting bank distress is that it does not happen often. This is seen by the low amount 

of distress events in table 1 when compared with the total amount of quarter observations. This creates an 

imbalance in the data, meaning there is a clear majority class (no distress) and minority class (distress), with 

a ratio of 37:1. Machine learning algorithms will then create biased predictions because they assume 

balanced classes, and aim to minimize the error of the whole set for which a minority class has little effect. 

There are several methods to solve this and create a balanced training dataset. These methods are known as 

resampling methods and they modify the training data to create a balance between the two classes. The first 

method is oversampling. This method duplicates values from the minority class to create balance in the data. 

However, this will lead to overfitting and possibly lead to worse out-of-sample predictions. The second 

method is undersampling, which works the opposite of oversampling. This method chooses random 

observations from the majority class to be deleted until the data is balanced. A problem with this method is 

                                                           
5 Multivariate Imputation via Chained Equations (MICE) 
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that deleting observations will in effect delete important information to classify the majority class. One can 

combine over- and undersampling as well to balance the data. The last method is synthetic data generation, 

this is a type of oversampling, but instead it creates new observations rather than duplicating them from the 

minority class. One such technique is called ROSE, this technique applies bootstrapping; duplicating 

observations in the training data as assessment set and resampling the training data. The most widely used 

technique for synthetic data generation is called ‘synthetic minority oversampling technique’ (SMOTE). 

This works with bootstrapping and K-Nearest Neighbor. The SMOTE algorithm takes the distance between 

the variable vector of a certain minority observation and its nearest neighbor, and multiplies this distance 

with a random number between 0 and 1. This is added to the variable vector and creates random points on 

the space between two variables of observations. In effect, the algorithm creates new observations that are 

similar to other observations in the minority class, instead of just duplicating them or creating complete 

random values. To justify choosing one of the aforementioned resampling techniques, the results of a k-

nearest neighbor and random forest algorithm predicting Texas ratio distress using all these techniques are 

shown in table 3. The best method is one that maximizes true positive predictions (1,1 in confusion matrix) 

and true negative predictions (0,0 in confusion matrix). As shown in the table ROSE provides the best results 

for predicting positive instances, however the negative instances are the worst. The next best technique is 

undersampling, with fifteen out of twenty true positive predictions. The number of false positives is however 

still substantial. The best performing resampling technique is SMOTE, with a very high accuracy and 

maximizing both true positives and true negatives. SMOTE will be used for all subsequent testing in this 

research. The three best performing resampling techniques (SMOTE, oversampling, and both over- and 

undersampling) will also be addressed in robustness testing.  

 

3.3.2 Performance metrics 

After imputation and creating a balanced train set, all models can be trained using the risk indicators as input 

variables and the different distress events as outcome variables. Classifiers can calculate the binary outcome 

variable based on predicted values for the positive instance or the negative instance. Based on a threshold 

for the predicted probability, the actual binary outcome will then be selected. To evaluate the performance 

of the models multiple metrics are used. These metrics include the true positive rate (TPR, sensitivity, recall, 

Table 3

Method

1 0 1 0 1 0 1 0 1 0

1 4 269 14 1977 4 558 18 5080 10 1212

0 14 13275 4 11567 14 12986 0 8464 8 12332

Accuracy

Method

1 0 1 0 1 0 1 0 1 0

1 0 5 13 440 2 27 16 11611 3 73

0 18 13539 5 13104 16 13517 2 1933 15 13471

Accuracy

Undersampling Both (Under & Over) ROSE SMOTEOversampling

Actual

Oversampling Undersampling Both (Under & Over) ROSE SMOTE

0.8539 0.9578 0.6254

Actual Actual Actual Actual

0.91

Panel A: Confusion matrix results from resampling training data using a k-nearest neighbor model to predict bank distress 

(Texas ratio q+1).

Panel B: Confusion matrix results from resampling training data using a randomforest model to predict bank distress (Texas 

ratio q+1).

0.96720.9983 0.9968 0.1437 0.9935

ActualActualActualActualActual

Prediction

Prediction

0.9791
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(5) 

1- Type I Error) and the true negative rate (TNR, specificity, 1- Type II Error). True positive is when a bank 

in distress is correctly classified, and true negative is when a bank not in distress is correctly classified. Of 

these two, the TPR is more important, as higher Type I errors result in higher losses when predicting a bank 

will not be in distress while it actually will be. Another measure is the precision. This is the ratio of true 

positive prediction to all positive predictions. The most basic performance metric is accuracy, calculated as 

the number of correct predictions divided by the total amount of observations in the validation set. As 

mentioned earlier, this is a very crude performance metric. A model with none of the banks in distress 

correctly classified can have a high accuracy, but basic intuition tells us this is not a desirable model. There 

is also a trade-off between precision and sensitivity (recall) based on the threshold (Calders and Jaroszewicz, 

2007). A high threshold will result in high precision but low sensitivity, and the opposite holds as well. This 

research will follow the approach that all predicted probabilities of the outcome variable above 0.5 will be 

classified as 1, and 0 otherwise. The last performance metric covered is also the most comprehensive 

because it can measure the performance of a model without fixing the threshold, which is the AUC (area 

under the ROC curve). The Receiver Operating Characteristics (ROC) curve is a plot of the sensitivity on 

the y-axis and specificity on the x-axis for different thresholds. An AUC of 0,5 means a random prediction, 

so the models must at least perform better than that, and the performance increases as the AUC approaches 

a maximum of 1. The AUC follows a Wilcoxon-Mann-Whitney equation (Hanley and Mcneil, 1982) in the 

following form: 

𝐴𝑈𝐶 =
∑ ∑ 𝑆(𝐷0, 𝐷 )

𝑁𝐷1
 

𝑁𝐷0
 

𝑁𝐷0 ∗ 𝑁𝐷 
 

Here  𝑁𝐷0 denotes the total number of banks not in distress in the set and 𝑁𝐷  denotes the total number of 

banks in distress, and 𝑆(𝐷0, 𝐷 ) is 1 if 𝑃(𝐷0) < 𝑃(𝐷 ). The AUC measures the probability that a random 

chosen positive instance will be ranked ahead of a randomly chosen negative instance. To test the central 

hypothesis of this research, the distance to default variable will be added as input variable for the models, 

and the potential improvement in model performance will be measured. 

3.3.3 Machine learning algorithms 

The machine learning techniques applied in this research include K-Nearest Neighbors (KNN), Naïve 

Bayes, Random Forest (RF), and XGBoost. Data transformation and modelling will be done with R 

statistical software. All R software packages used, are not modified before introducing the learning 

algorithms. The first algorithm is K-Nearest Neighbor. This algorithm forms clusters in the data based on 

similar observations. The advantage is that no assumptions are made about the data distribution. A 

disadvantage however, is that KNN is not suited for large datasets and is sensitive to irrelevant variables. 

Also, if variables have different scaling units, the variables have to be normalized so all distances have the 

same range of values. We move on to Naïve Bayes, which is particularly suited for classification with large 

datasets and a large number of variables. However, the drawback of this approach is it assumes rigid 

independence between the variables to predict the outcome, and this does not hold in most cases. The next 

algorithm is Random Forest, which is an ensemble model based on Decision Trees. The Decision Tree splits 

data based on decision classifications, whether a person is above or below a certain age for example. The 

base of a tree is the root node which gives the highest information gain in classification. The data is then 

further split through decision nodes until all data is classified. A single decision tree has multiple drawbacks; 

complex trees through overfitting, non-optimal solutions when a decision node is not optimal (greedy trees), 

and instability because of high variance in the data. An alternative is Random Forest. It consists of multiple 
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decision trees and averages the outcomes across all trees. The classification outcome for RF is the class 

selected by the majority of trees. The final algorithm we apply is XGBoost. This stands for “Extreme 

Gradient Boosting”, and is similar to the random forest algorithm but adds gradient boosting. The technique 

of boosting refers to ensemble models that add new models to correct an existing model. Specifically with 

gradient boosting, a new model (tree) is added to predict the error (residual) of the previous model (existing 

forest). The name gradient boosting comes from the gradient descent algorithm that is used to minimize 

training losses with the addition of a new model. This training loss indicates how well the model predicts 

the training data, shown by the mean squared error. For all algorithms the hyper parameters will be tuned to 

improve model performance.  

4. Empirical results and analysis 

The descriptive statistics for all variables are shown in table 4. Panel A shows the descriptive statistics 

before imputation of missing values, and panel B shows the descriptive statistics after imputation. The 

potential issues of missing data and class imbalance are already addressed. Another potential issue of 

outliers does not apply to this research because all machine learning algorithms used are less sensitive to 

outliers then other algorithms like a logistic regression.  
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Figure 1: ROC curves for models with Texas ratio over one 

hundred as distress event in q+1. The corresponding area under 

curve (AUC) is also printed per model. 

Figure 2: ROC curves for models with a bank failure as distress 

event in q+1. The corresponding area under curve (AUC) is also 

printed per model. 

Figure 3: ROC curves for models with Texas ratio over one hundred 

as distress event in q+4. The corresponding area under curve (AUC) 

is also printed per model. 

Table 4

Panel A: Descriptive statistics Texas ratio testing sample.

Variable DD C1 C2 C3 A1 A2 A3 A4 M1 E1 E2 E3 E4 E5 E6 L1 L2 L3 S1 X1 X2 X3

Min -24.133 -1.710 -0.033 -0.240 -1.391 -0.068 -41,857.000 0.000 -959.929 -0.071 -166.900 -212.470 -0.359 -0.084 -2,515.824 0.003 0.000 0.000 0.283 -5,620.152 -0.037 4.487

1st Quartile 2.444 10.850 0.088 0.740 0.021 -0.001 5.800 0.000 1.008 0.001 0.540 3.190 0.023 0.002 -0.026 0.030 0.000 0.166 0.463 -0.156 0.001 7.001

Median 4.425 12.380 0.103 1.240 0.054 0.000 13.750 0.001 1.220 0.002 1.210 3.550 0.047 0.003 0.007 0.053 0.000 0.340 0.514 0.087 0.005 7.900

Mean 15.142 12.870 0.108 26.110 0.118 -0.001 34.910 0.003 1.798 0.002 1.432 3.537 0.044 0.002 -0.227 0.074 0.003 0.458 0.509 -0.382 0.007 8.170

3rd Quartile 9.167 14.320 0.123 2.280 0.124 0.000 29.860 0.003 1.586 0.003 2.100 3.900 0.068 0.004 0.084 0.090 0.000 0.621 0.566 0.595 0.012 9.001

Max 14,363.169 98.400 0.868 75,937.000 6.382 0.018 148,066.000 0.075 5,130.783 0.065 47.500 11.260 0.189 0.061 1,071.384 0.975 0.072 6.030 0.708 596.909 0.088 15.035

Missing - 523 1 - 667 155 1065 1 86 86 32 118 4 5 942 1,189 14,100 1,020 13,335 9,420 11,372 1

Total  n 15,391

Panel B: Descriptive statistics Texas ratio testing sample after MICE imputation.

Variable DD C1 C2 C3 A1 A2 A3 A4 M1 E1 E2 E3 E4 E5 E6 L1 L2 L3 S1 X1 X2 X3

Min -24.133 -1.710 -0.033 -0.240 -1.391 -0.068 -41,857.000 0.000 -959.929 -0.071 -166.900 -212.470 -0.359 -0.084 -2,515.824 0.003 0.000 0.000 0.283 -5,620.152 -0.037 4.487

1st Quartile 2.444 10.840 0.088 0.740 0.022 -0.001 5.800 0.000 1.009 0.001 0.540 3.190 0.024 0.002 -0.028 0.030 0.000 0.162 0.529 -0.049 0.002 7.001

Median 4.425 12.400 0.104 1.240 0.055 0.000 13.980 0.001 1.221 0.002 1.210 3.550 0.047 0.003 0.007 0.053 0.000 0.331 0.580 0.116 0.007 7.900

Mean 15.142 12.900 0.108 26.110 0.124 -0.001 44.280 0.003 1.813 0.002 1.430 3.534 0.044 0.002 -0.102 0.073 0.000 0.449 0.576 0.996 0.010 8.169

3rd Quartile 9.167 14.380 0.123 2.280 0.131 0.000 31.150 0.003 1.590 0.003 2.100 3.900 0.068 0.004 0.086 0.090 0.000 0.605 0.634 1.008 0.016 9.001

Max 14,363.169 98.400 0.868 75,937.000 6.382 0.018 148,066.000 0.074 5,130.783 0.065 47.500 11.260 0.189 0.061 1,071.384 0.975 0.072 6.030 0.709 596.909 0.088 15.035

Missing - - - - - - - - - - - - - - - - - - - - - -

Total n 15,391
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4.1 Machine learning algorithm results 

Table 5 panel A shows the performance metrics for classifying bank distress for all base models and all 

models including the DD as an independent variable. Figure 1 shows the ROC curves for the models 

predicting                    , figure 2 shows the ROC curves for testing                , and 

figure 3 shows the ROC curves for testing                    . First, the results from the classifiers 

of Texas ratio over one hundred percent in the next quarter will be evaluated. Thereafter the results of bank 

failure in the following quarter will be addressed, followed by the results for a one year and two year 

prediction horizon. In the next section, variable importance will be addressed. For predicting a Texas ratio 

distress event one quarter ahead, the base model that had the lowest performance metrics is Naïve Bayes 

(NB). Although the AUC estimate of 80.91% is not the worst, the sensitivity is the highest (77.78%), the 

low precision (0.22%) indicates this model has a large amount of errors when predicting positive instances. 

Looking at the difference between performance when including the DD indicator, the NB algorithm 

performed worse by 0.08% in the AUC. Possible explanations for this performance lie in the assumptions 

of Naïve Bayes models. NB assumes independence of all variables that predict the outcome. This 

assumption does not hold in most cases, as variables are often correlated in some way. Next is the K-Nearest 

Neighbor base model. Again this model has a high AUC estimate (84.41%), but a moderate sensitivity 

(61.11%). Meaning, out of all true bank distress observations, KNN correctly identified just more than half 

of them. This is combined with a precision rate of 1.18%, meaning out of all predicted distress observations 

only 1.18% were true positives. If the DD indicator is added, the AUC performance of the KNN model 

changes by just 0.16% in the negative direction. A drawback from KNN is that it does not learn, but 

memorizes distances, and it is sensitive to irrelevant variables. The third model we evaluate is XGBoost. 

The AUC estimate is the lowest out of all models (73.98%). The sensitivity of 50.0% indicates XGBoost 

correctly identified 50% of all true positive distress observations. The precision rate of 3.17% means 

XGBoost performed better when predicting positive instances than both NB and KNN. When the DD 

indicator is included, there is an ambiguous change in performance metrics. The model predicts less false 

positives, however it also identifies less true positive instances. This results in a drop in the AUC estimate 

of 5.35%. The final model is Random Forest, which produced the highest AUC metric. The AUC for the 

base model is measured at 95.03%. The RF model predicted less true positive instances of bank distress 

than the XGBoost model, but the RF model also predicted less false positives than the XGBoost model. 

Taking the DD indicator into account, the RF model shows a slight improvement when compared to the RF 

base model. With the DD added as an independent variable, the RF AUC increased by 0.88%. There are 

some caveats to the results, which will be discussed in a later section. These findings are not an indication 

that the addition of a market variable improves models when predicting bank distress, so they do not support 

the hypothesis. It could be expected that variables containing information not yet covered by other variables 

would improve the predictive accuracy of the outcome variable. However, the economic effect of adding 

the DD indicator for this model is questionable. 
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Table 5 also shows the results for the different algorithms concerning failed banks in the following quarter. 

For failed banks the true positive rates are lower than those resulting from the Texas ratio testing. The NB, 

KNN and RF models showed improvement in prediction performance measured by the AUC when the DD 

was included, while it remained unchanged for the XGBoost models. All algorithms showed change of less 

than one percent for this model. These results should be treated carefully, because there are few instances 

on which to test on. The imbalance in the training set is again addressed with SMOTE, but the small number 

of bank failure observations make it harder to draw significant results. The small number of observations 

also affect the changes in performance metrics. With only twelve true observations of bank failure in the 

following quarter for training and test set combined, the effect of one additional positive prediction is far 

greater than when more data is available. This means no definitive conclusion can be drawn whether these 

results support or reject the hypothesis.  

 

Table 5

Distress event Model* TP FP TN FN AUC Sensitivity Specificity Precision Accuracy

KNN Base 11 925 12619 7 0.8441 0.6111 0.9317 0.0118 0.9313

KNN DD 11 967 12577 7 0.8425 0.6111 0.9286 0.0112 0.9282

NB Base 14 6335 7209 4 0.8091 0.7778 0.5323 0.0022 0.5326

NB DD 14 6332 7212 4 0.8083 0.7778 0.5325 0.0022 0.5328

RF Base 4 60 13484 14 0.9503 0.2222 0.9956 0.0625 0.9945

RF DD 5 61 13483 13 0.9591 0.2778 0.9955 0.0758 0.9945

XGB Base 9 275 13269 9 0.7398 0.5000 0.9797 0.0317 0.9791

XGB DD 7 221 13323 11 0.6863 0.3889 0.9837 0.0307 0.9829

KNN Base 1 74 14037 6 0.7080 0.1429 0.9948 0.0133 0.9943

KNN DD 1 73 14038 6 0.7081 0.1429 0.9948 0.0135 0.9944

NB Base 0 16 14095 7 0.9470 0.0000 0.9989 0.0000 0.9984

NB DD 0 18 14093 7 0.9491 0.0000 0.9987 0.0000 0.9982

RF Base 0 9 14102 7 0.9047 0.0000 0.9994 0.0000 0.9989

RF DD 0 8 14103 7 0.9052 0.0000 0.9994 0.0000 0.9989

XGB Base 0 32 14079 7 0.4989 0.0000 0.9977 0.0000 0.9972

XGB DD 0 32 14079 7 0.4989 0.0000 0.9977 0.0000 0.9972

* KNN is k-nearest neighbor, NB is naive bayes, RF is randomforest and XGB is XGBoost.

Panel B: Model performance metrics

Metric Formula

Panel A: Results of machine learning predictions shown by distress event and model.

AUC

Explanation

AUC stands for the area under the ROC curve. It is the 

probability that a random chosen positive instance will be 

ranked ahead of a randomly chosen negative instance.

Accuracy

Sensitivity is 1 - Type I error. It is the rate at which a 

positive prediction is indeed positive.

Specificity is 1 - Type II error. It is the rate at which a 

negative prediction is indeed negative.

Precision is also called the "positive predictive value". It is 

the ratio of true positive predictions to all positive 

predictions.

Overall accuracy is the ratio of all correct predictions to all 

predictions made.

Sensitivity

Specificity

Precision

              
     

               

 𝑃 +  𝑁

 𝑃 + 𝐹𝑃 +  𝑁 + 𝐹𝑁

 𝑃

 𝑃 + 𝐹𝑃

 𝑁

 𝑁 + 𝐹𝑃

 𝑃

 𝑃 + 𝐹𝑁

∑ ∑ 𝑆(𝐷0 , 𝐷 )
𝑁𝐷1
 

𝑁𝐷0
 

𝑁𝐷0 ∗ 𝑁𝐷 
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Following these results, table 6 shows the results when a longer prediction horizon is applied to assess the 

additional predictive power of the DD indicator. Here                     was set as the dependent 

variable, denoting a distress event one year ahead of the independent variables used to predict this distress 

event. As the prediction horizon is larger, data from a single bank spanning a longer time span is needed. 

This data is not available for all banks in the sample. Therefore the amount of true positive instances in the 

sample is lower for this test than the test with just one quarter horizon. Out of the four tested algorithms, 

NB predicted the most true positive instances of bank distress one year in advance. This coincided with a 

large amount of false positives. The addition of the DD indicator showed improvement for all models. The 

AUC of the KNN improved by 5.93%, the AUC of the NB model improved by 1.20%, the AUC of the RF 

model improved by 3.22%, and the AUC of the XGBoost model improved by 0.08%. A market indicator 

like the DD can be expected to be a stronger indicator for an event more into the future, because the 

information embedded in market signals is forward-looking, instead of the backward-looking information 

embedded in established risk indicators based on accounting information. The results from these tests are 

an indication this is indeed the case, and support the hypothesis that adding a market variable improves 

predictions of bank distress. To further test the additional predictive power of the DD indicator, a longer 

than one year time horizon was taken. Table 6 also shows the results when predicting bank distress two 

years into the future. The AUC from the RF model is the highest. When including the DD indicator, three 

models improved in the AUC estimate. However, all changes were below 1%, therefore cannot be 

considered as economically significant.  

A longer prediction horizon was also applied to algorithms predicting bank failure. For a one year horizon 

the RF and XGBoost models showed no improvement when the DD indicator was included. The NB model 

and KNN model improved their AUC estimate, but the difference was less than 1%. It should be noted that 

these improvements coincided with no true positive predictions, except for the KNN model, therefore 

questioning the performance of these models. A two year prediction horizon for bank failure showed 

stronger differences when including the DD indicator. XGBoost showed no change and the KNN AUC 

decreased by 2.11%. The NB and RF models showed improvements of 1.99% and 4.95% respectively. 

These predictions again coincided with no true positive predictions. The results from table 6 are an 

indication that the DD has additional predictive power with a longer predictive horizon, therefore supporting 

the hypothesis. The economic effect of this improvement is questionable, as not one algorithm showed one 

additional true positive prediction with the addition of the DD indicator. Figure 3 shows the ROC curves 

for                     as distress event, the ROC graphs for the other three models from table 6 are 

shown in appendix A. 
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4.2 Variable importance 

One important factor of empirical research is model interpretability. The decisions makers (regulators, 

investors) will want to understand how they can infer knowledge from underlying causal mechanisms. For 

randomforest models we can gain an understanding about the importance of the different variables by 

looking at the mean decrease in Gini index. First, one must understand that gini impurity is a measure for 

decision trees, and consequently tree ensemble models, that indicates how important variables are for 

predicting the dependent variable (distress in this case). The mean decrease in gini then measures the 

decrease in decision node impurity for a variable, and averages this decrease across all decision trees in the 

forest. A relatively high value of mean gini decrease means that a particular variable reduces the impurity 

more than other variables, and is more important in determining the outcome variable. Table 7 shows the 

Table 6

Distress event Model* TP FP TN FN AUC Sensitivity Specificity Precision Accuracy

KNN Base 3 796 12758 5 0.6864 0.3750 0.9413 0.0038 0.9409

KNN DD 3 800 12754 5 0.7457 0.3750 0.9410 0.0037 0.9406

NB Base 5 5891 7663 3 0.6223 0.6250 0.5654 0.0008 0.5654

NB DD 5 5831 7723 3 0.6343 0.6250 0.5698 0.0009 0.5698

RF Base 0 49 13505 8 0.7729 0.0000 0.9964 0.0000 0.9958

RF DD 0 47 13507 8 0.8051 0.0000 0.9965 0.0000 0.9959

XGB Base 1 134 13420 7 0.5576 0.1250 0.9901 0.0074 0.9896

XGB DD 1 110 13444 7 0.5584 0.1250 0.9919 0.0090 0.9914

KNN Base 0 966 12595 1 0.8185 0.0000 0.9288 0.0000 0.9287

KNN DD 0 989 12572 1 0.8139 0.0000 0.9271 0.0000 0.9270

NB Base 0 5962 7599 1 0.0452 0.0000 0.5604 0.0000 0.5603

NB DD 0 5897 7664 1 0.0464 0.0000 0.5652 0.0000 0.5651

RF Base 0 57 13504 1 0.9889 0.0000 0.9958 0.0000 0.9957

RF DD 0 60 13501 1 0.9890 0.0000 0.9956 0.0000 0.9955

XGB Base 0 492 13069 1 0.4819 0.0000 0.9637 0.0000 0.9636

XGB DD 0 452 13109 1 0.4833 0.0000 0.9667 0.0000 0.9666

KNN Base 1 887 13227 3 0.8127 0.2500 0.9372 0.0011 0.9370

KNN DD 1 889 13225 3 0.8138 0.2500 0.9370 0.0011 0.9368

NB Base 0 92 14022 4 0.4786 0.0000 0.9935 0.0000 0.9932

NB DD 0 117 13997 4 0.4813 0.0000 0.9917 0.0000 0.9914

RF Base 0 91 14023 4 0.9342 0.0000 0.9936 0.0000 0.9933

RF DD 0 100 14014 4 0.9293 0.0000 0.9929 0.0000 0.9926

XGB Base 0 179 13935 4 0.4937 0.0000 0.9873 0.0000 0.9870

XGB DD 0 179 13935 4 0.4937 0.0000 0.9873 0.0000 0.9870

KNN Base 0 1063 13053 2 0.6660 0.0000 0.9247 0.0000 0.9246

KNN DD 0 1194 12922 2 0.6449 0.0000 0.9154 0.0000 0.9153

NB Base 0 512 13604 2 0.4248 0.0000 0.9637 0.0000 0.9636

NB DD 0 578 13538 2 0.4447 0.0000 0.9591 0.0000 0.9589

RF Base 0 38 14078 2 0.8415 0.0000 0.9973 0.0000 0.9972

RF DD 0 42 14074 2 0.8910 0.0000 0.9970 0.0000 0.9969

XGB Base 0 235 13881 2 0.4917 0.0000 0.9834 0.0000 0.9832

XGB DD 0 235 13881 2 0.4917 0.0000 0.9834 0.0000 0.9832

* KNN is k-nearest neighbor, NB is naive bayes, RF is randomforest and XGB is XGBoost.

Results of machine learning predictions shown by distress event and model for a one and two year prediction horizon.
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mean gini decrease per variable for all models. To get a better feeling of the relative importance of all 

variables, the related ranks are shown for all variables. When looking at the                model, one 

can see the DD variable has a mean decrease in gini of 31.4957 and ranks 14th among the other variables for 

predicting bank distress. Particularly interesting in these importance ranks is the difference between 

               and the                and the                models. Here we can see that the DD 

indicator becomes more important, when predicting over a longer time horizon, indicated by the jump from 

rank fourteen to five and nine. For predicting bank failure, we can also see a clear progression when 

predicting over a longer horizon. As the DD for                 is ranked number eighteen, this rank 

jumps to thirteen for                , and thirteen for                . Also included is the sum of 

ranks to see which variable was most important over all the models. E1 and E2 have the lowest sum of ranks 

with a value of forty-two. This means the variable calculated by dividing net income after extraordinary 

items over total assets (E1) is on average the most important factors for predicting bank distress in the 

random forest models, together with the variable earnings per share, diluted, excluding extraordinary items 

and 12 months moving (E2). 

 

 

 

 

 

 

Table 7

Variable Gini decrease Rank Gini decrease Rank Gini decrease Rank Gini decrease Rank Gini decrease Rank Gini decrease Rank Sum of ranks

DD 31.4957 14 0.1157 18 52.3608 5 13.1956 9 0.4526 13 0.5278 13 72

C1 33.4202 13 25.8376 2 19.1585 16 26.5083 2 0.8387 10 0.5505 12 55

C2 76.5280 5 14.7513 4 21.5954 13 7.5104 12 0.3258 15 0.4872 14 63

C3 25.0994 18 0.3119 14 19.8657 14 2.5218 21 0.0122 22 2.2508 5 94

A1 61.7777 6 1.0194 12 57.3079 3 7.0004 14 1.4627 9 1.9707 7 51

A2 45.4703 10 8.7413 5 17.6641 17 6.4435 15 3.9650 5 2.0400 6 58

A3 46.4200 9 0.3219 13 14.6238 20 5.3095 17 0.0934 19 0.4122 15 93

A4 253.4886 1 1.2449 10 77.4958 2 21.6499 5 2.9725 6 0.1192 21 45

M1 40.8553 11 2.2724 9 14.3284 21 8.1097 11 0.0740 20 0.2940 19 91

E1 155.5406 3 30.9189 1 77.8400 1 3.1360 20 8.5370 1 0.3917 16 42

E2 51.5350 7 6.6319 6 56.2036 4 3.5942 18 4.0133 4 3.4428 3 42

E3 25.8788 16 2.3867 8 41.1081 9 2.3844 22 0.1457 16 0.6170 11 82

E4 26.4673 15 6.4075 7 19.8158 15 12.8119 10 2.4052 7 1.2071 10 64

E5 182.4812 2 16.2765 3 31.0554 11 13.3028 8 6.3130 2 0.3098 18 44

E6 24.6508 19 0.1831 15 48.3405 7 14.4259 7 2.2217 8 3.5029 2 58

L1 13.9215 21 0.1280 17 23.0503 12 5.9856 16 0.7205 11 4.3883 1 78

L2 7.0090 22 0.0093 22 5.7805 22 41.2657 1 0.1065 17 0.0990 22 106

L3 25.7562 17 0.0184 21 43.9571 8 24.8618 3 0.3956 14 0.3665 17 80

S1 140.6045 4 0.0511 20 37.3641 10 7.2916 13 0.5856 12 2.5235 4 63

X1 17.6434 20 0.0733 19 50.7625 6 18.6885 6 0.0999 18 1.2988 9 78

X2 47.2374 8 1.0807 11 14.6858 19 3.1977 19 0.0680 21 0.2714 20 98

X3 38.3379 12 0.1754 16 17.4235 18 24.7265 4 5.1653 3 1.8413 8 61

Variable importance for randomforest models, calculated with the Mean Decrease in Gini index. Per variable and model the mean decrease in gini index 

is shown. The higher numbers mean a larger decrease, indicating these independent variables are more important in predicting the dependent variable 

for that model. The ranks are shown to indicate how important the different variables are in relation to the other variables.
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Because XGBoost is similar to random forest as a decision tree ensemble model, the same variable 

importance can be extracted from the trained models. In table 8, gain is stated as the contribution to the 

model for a particular variable, relative to other variables in the same model. The higher values, similar to 

the random forest importance, mean a more important variable for predicting the outcome variable of bank 

distress. In correlation with the results from table 7, we see an increase in importance of the DD indicator 

when the prediction horizon moves further into the future. For the first model,               , the DD 

counts for a gain of 2.54% in the model and is ranked number eleven. For the one year horizon, the DD 

jumps to a gain of 6.45% and is ranked number six, and for a two year prediction horizon the DD has a gain 

of 4.00% and has rank ten. When looking at bank failure predictions we see no improvement in rank for the 

DD indicator. For bank failure the DD indicator is excluded because the importance was below the threshold 

to be included. Table 8 also shows the sum of ranks. Similar to table 7, one can see E1 has the lowest sum 

of ranks, meaning net income after extraordinary items over total assets is on average the most important 

indicator for predicting bank distress in the XGBoost models. 

 

 

 

 

Table 8

Variable Gain Rank Gain Rank Gain Rank Gain Rank Gain Rank Gain Rank Sum of ranks**

DD 0.0254 11 * 16 0.0645 6 0.0400 10 * 14 * 19 76

C1 0.0168 14 0.1996 2 0.0395 10 0.0826 3 0.0064 8 0.0843 4 41

C2 0.0566 5 0.0055 5 0.0367 11 0.0079 16 * 19 * 21 77

C3 0.0136 16 * 19 0.0348 13 0.0017 19 * 21 0.1153 3 91

A1 0.0326 8 * 13 0.0491 8 0.0060 17 0.0068 7 0.0026 13 66

A2 0.0224 12 0.0028 6 0.0133 19 0.0525 7 0.0210 5 0.0623 5 54

A3 0.0350 7 0.0009 9 0.0363 12 0.0093 15 * 18 * 20 81

A4 0.3803 1 * 11 0.2154 1 0.0272 11 * 15 0.0035 12 51

M1 0.0260 10 * 15 0.0069 20 0.0649 4 * 11 * 16 76

E1 0.0691 4 0.7655 1 0.0853 3 0.0007 22 0.6596 1 * 15 46

E2 0.0059 21 0.0061 4 0.0232 14 0.0008 21 0.0219 4 0.1692 2 66

E3 0.0116 18 0.0025 7 0.0469 9 0.0030 18 * 20 0.0078 9 81

E4 0.0097 19 * 21 0.0027 21 0.1553 2 0.0084 6 0.0035 11 80

E5 0.0941 2 0.0003 10 0.0021 22 0.0577 5 * 12 * 17 68

E6 0.0097 20 0.0012 8 0.0671 4 0.0242 12 0.0830 3 0.0297 7 54

L1 0.0055 22 * 22 0.0137 18 0.0225 13 * 16 0.4497 1 92

L2 0.0145 15 * 18 0.0194 15 0.2795 1 * 10 0.0197 8 67

L3 0.0182 13 * 17 0.0599 7 0.0458 8 * 13 * 18 76

S1 0.0752 3 * 12 0.0156 16 0.0437 9 0.0006 9 0.0441 6 55

X1 0.0135 17 * 20 0.0875 2 0.0180 14 * 17 0.0063 10 80

X2 0.0358 6 0.0156 3 0.0142 17 0.0013 20 * 22 * 22 90

X3 0.0285 9 * 14 0.0657 5 0.0554 6 0.1922 2 0.0022 14 50

* Variable excluded because importance was below threshold to be included in output.

Variable importance for XGBoost models, calculated as the relative contribution of the corresponding variable to a model. The higher 

numbers indicate these independent variables are more important in predicting the dependent variable for that model. The ranks are shown to 

indicate how important the different variables are in relation to the other variables.

** Because some variables are not important predictors for multiple models, and due to random assignment of the corresponding low ranks, 

the high ranks (low sum of ranks) are more representative of the most important predictors than the low ranks (high sum of ranks) are 

accurate representations of the least important predictors. 
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(6) 

(7) 

(8) 

5. Additional modelling and robustness tests 

5.1 Implied cost of capital 

The first form of additional modelling centers around the theoretical basis for the market variable. The main 

testing in this paper is done to assess the additional predictive power of the distance to default market 

variable. Another market variable that has gained more attention in academic literature, is the implied cost 

of capital (ICC) (Lee, So and Wang, 2011). “The implied cost of capital (ICC) for a given asset can be 

defined as the discount rate (or internal rate of return) that equates the asset‘s market value to the present 

value of its expected future cash flows” (Lee, So and Wang, 2011). This could provide a viable alternative 

to improve prediction results of bank distress. To construct the ICC variable, additional data is gathered 

from the IBES database with detailed analyst forecasts of future earnings for all US banks in the sample and 

expected long term growth rates of these earnings. Forecasted earnings are calculated as the average EPS 

forecasts of all individual analysts per bank quarter observation. Forecasts for the next five years are 

collected where possible, but only observations are included in the sample with at least forecasts for one 

year and two years ahead. Following Gebhardt, Daske and Klein (2006), missing forecasts are estimated as 

  𝑝 𝑡  =   𝑝 𝑡 ∗ ( + 𝑔𝑡) where 𝑔𝑡 is the long-term growth rate retrieved from IBES. If 𝑔𝑡 is not known, 

the forecasts for year three, four and five are estimated as follows: 

  𝑝 3 =   𝑝 2 +
(𝑓𝑒𝑝𝑠2−𝑓𝑒𝑝𝑠1)

 
          𝑝  =   𝑝 3 +

(𝑓𝑒𝑝𝑠3−𝑓𝑒𝑝𝑠1)

2
          𝑝 5 =   𝑝  +

(𝑓𝑒𝑝𝑠4−𝑓𝑒𝑝𝑠1)

3
  

In the calculation of two ICC estimates for this research, a growth rate is needed as input. This paper will 

use a rolling average (moving average) over the last two years of quarterly US gross domestic product 

growth, to proxy for the growth rate per bank quarter observation. Dividend forecasts are calculated by 

multiplying the earnings forecast with the dividend payout rate. The remaining data, like stock price, was 

already collected for earlier testing. Three models are then applied to estimate the ICC per bank quarter 

observation. The first model is known as the Gordon growth model (GGM) and provides a seminal approach 

in valuing the stock price of a company based on future dividend payments (Gordon and Shapiro, 1956). 

The model is estimated with the following equations: 

GGM:    𝑃0 = ∑ 𝐷0
(  𝑔)𝑡

(  𝑟)𝑡
∞
𝑡=     which simplifies to    𝑃0 = 

𝐷1

𝑟−𝑔
     solve for r gives      =  

𝐷1

𝑃0
+ 𝑔 

Here 𝑃0 is the current stock price, 𝐷0 and 𝐷  are dividend payments for the current period and one period 

ahead, 𝑔 is the growth rate, and r is the implied cost of capital.  

The second model is derived from the work of Ohlson and Juettner-Nauroth (2005), and is based on the 

same principle that current stock price is determined by discounting forecasted earnings. For estimating 

short term growth, this paper will follow the work of Gode and Mohanram (2003), that takes the average of 

near term growth (
𝑓𝑒𝑝𝑠𝑡+3−𝑓𝑒𝑝𝑠𝑡+2

𝑓𝑒𝑝𝑠𝑡+2
) and five year growth (

𝑓𝑒𝑝𝑠𝑡+5−𝑓𝑒𝑝𝑠𝑡+4

𝑓𝑒𝑝𝑠𝑡+4
). The Ohlson and Juettner-

Nauroth model (OJM) calculates the ICC with the following equation: 

OJM:     = 𝐴 + √𝐴2 +
𝑓𝑒𝑝𝑠𝑡+1

𝑃0
∗ [ 

 

2
∗ (

𝑓𝑒𝑝𝑠𝑡+3−𝑓𝑒𝑝𝑠𝑡+2

𝑓𝑒𝑝𝑠𝑡+2
+
𝑓𝑒𝑝𝑠𝑡+5−𝑓𝑒𝑝𝑠𝑡+4

𝑓𝑒𝑝𝑠𝑡+4
) − (𝛾 −  )]   

where   𝐴 =  
 

2
[(𝛾 −  ) −

𝐷1

𝑃0
] 
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(9) 

(10) 

Here 𝑃0 is the current stock price, 𝐷  are dividend payments for one period ahead, 𝛾 is the growth rate 𝑔, 

  𝑝 𝑡 𝑖 are forecasted earnings and r is the implied cost of capital. The original approach of the Ohlson and 

Juettner-Nauroth model would only use (
𝑓𝑒𝑝𝑠𝑡+2−𝑓𝑒𝑝𝑠𝑡+1

𝑓𝑒𝑝𝑠𝑡+1
) as short term growth, now five period forecasts 

can be implemented into the model.  

The third model for estimating the ICC, the price earnings growth (PEG) model comes from the work of 

Easton (2004). He takes a forecast horizon of just two periods and a growth rate of zero to estimate the 

implied cost of equity capital. There are two equations that estimate the ICC, one that includes future 

dividends and the other in the case of no forecasted dividends. 

PEG: 𝐷 ≠  →   = √
(𝑓𝑒𝑝𝑠𝑡+2 𝑟∗𝐷1−𝑓𝑒𝑝𝑠𝑡+1)

𝑃0
  solve for r gives   =

𝐷1 √𝐷1
2− ∗𝑃0

2∗(𝑓𝑒𝑝𝑠𝑡+1−𝑓𝑒𝑝𝑠𝑡+2)

2∗𝑃0
2   

(M)PEG6: 𝐷 =  →   = √
(𝑓𝑒𝑝𝑠𝑡+2−𝑓𝑒𝑝𝑠𝑡+1)

𝑃0
 

Finally, all positive ICC estimates from the three models are averaged, to form an aggregate ICC estimation. 

Negative ICC estimates will be dropped for testing, since ICC is in essence a discount rate reflecting risk, 

and negative risk is nonsensical. This results in samples with 5005 observations for the average ICC 

estimate, 4436 observations for the GGM ICC, 4391 observations for the PEG ICC and 4872 observations 

for the OJM ICC, as shown in table 9. Other notable ICC calculation models stem from papers by Claus and 

Thomas (2001), and by Gebhardt, Lee, and Swaminathan (2002). These models are excluded from this 

research because they include book value per share in their calculation, besides earnings forecasts. This is a 

problem because data to calculate book value per share comes from Compustat which is based on GAAP 

principles and earnings forecasts are retrieved from IBES which is based on Non-GAAP principles. To 

combine these different methods of estimation would lead to distorted calculations. The additional 

predictive power of the market indicator (ICC in this case) will again be tested by comparing models that 

include and exclude the indicator as an independent variable when predicting a Texas ratio over one hundred 

percent. Two year ahead predictions are not included because the data was not sufficient. The results are 

shown in table 10. The corresponding ROC curves are shown in appendix H. Appendix I contains table 17 

with results for one quarter predictions with ICC and table 18 with the corresponding variable importance 

for one quarter predictions. 

 

 

 

 

 

 

 

                                                           
6 MPEG stands for the modified price earnings growth model.  
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The results from table 10 are an indication the ICC can improve models predicting bank distress. The timing 

of this added value is similar to the results from table 5 and table 6. As earlier results show the DD market 

indicator had little added value over a one quarter horizon prediction, the average ICC market indicator 

shows no significant improvement for this horizon. However, for a one year prediction horizon, the average 

ICC in table 10 shows more improvement for a single model than previously calculated. The NB AUC 

increases 0.17%, the XGBoost AUC increases 2.23%, the KNN AUC increases 5.11%, and the RF AUC 

increases by 9.72%. This shows improvement that could be considered as economically significant. When 

looking at the individual ICC estimates, we see a breakdown of the prediction improvement per ICC 

estimate. The most improvement in the AUC estimate when adding the ICC variable is shown by the OJM 

KNN and PEG KNN models. The AUC improves by 10.84% and 10.81% respectively. Table 11 shows the 

variable importance for the RF algorithms testing these ICC models, so the following statements only apply 

to the random forest algorithm. Table 11 contradicts previous results, because it shows the average ICC is 

more important for predicting bank distress one quarter ahead than predicting one year ahead. For one 

quarter ahead, the average ICC is the most important factor by a clear margin. For one year ahead, the ICC 

has rank number 2. The highest rank of the DD variable was five for predicting one year ahead. These results 

are an indication a market variable has added value when prediction bank distress, therefore supporting the 

hypothesis. Moreover, these results show the average ICC estimate could be superior to the distance to 

default as risk estimator. Table 11 also shows the average ICC is ranked highest for predicting one year 

ahead, compared with individual ICC model estimates. For the ICC models, variable A4 (real estate other 

than bank premises over total assets) is the most important, indicated by the lowest sum of ranks. One 

important drawback from ICC estimation models is their reliance on earnings growth. This, combined with 

the forecast bias of analysts (Gu and Wu, 2003), is an important consideration when evaluating these results. 

 

Table 9

Descriptive statistics for the implied cost of capital and equity beta.

Variable Average ICC GGM ICC PEG ICC OJM ICC Beta

Min 0.000 0.000 0.000 0.000 -1.689

1st Quartile 0.046 0.020 0.026 0.056 0.283

Median 0.058 0.026 0.072 0.073 0.684

Mean 0.070 0.031 0.091 0.074 0.706

3rd Quartile 0.072 0.038 0.107 0.088 1.046

Max 1.000 0.483 1.000 1.000 3.536

Total  n 5005 4436 4391 4872 17034
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Table 10

Distress event ICC* Model** TP FP TN FN AUC Sensitivity Specificity Precision Accuracy

Average KNN Base 3 142 4579 3 0.8910 0.5000 0.9699 0.0207 0.9693

Average KNN ICC 3 120 4601 3 0.8935 0.5000 0.9746 0.0244 0.9740

Average NB Base 3 482 4239 3 0.8644 0.5000 0.8979 0.0062 0.8974

Average NB ICC 3 424 4297 3 0.8651 0.5000 0.9102 0.0070 0.9097

Average RF Base 1 8 4713 5 0.9729 0.1667 0.9983 0.1111 0.9972

Average RF ICC 0 5 4716 6 0.9673 0.0000 0.9989 0.0000 0.9977

Average XGB Base 1 68 4653 5 0.5761 0.1667 0.9856 0.0145 0.9846

Average XGB ICC 0 7 4714 6 0.4993 0.0000 0.9985 0.0000 0.9972

Average KNN Base 0 1281 3443 3 0.4793 0.0000 0.7288 0.0000 0.7284

Average KNN ICC 0 1165 3559 3 0.5304 0.0000 0.7534 0.0000 0.7529

Average NB Base 0 104 4620 3 0.3968 0.0000 0.9780 0.0000 0.9774

Average NB ICC 0 103 4621 3 0.3985 0.0000 0.9782 0.0000 0.9776

Average RF Base 0 23 4701 3 0.7695 0.0000 0.9951 0.0000 0.9945

Average RF ICC 0 24 4700 3 0.8667 0.0000 0.9949 0.0000 0.9943

Average XGB Base 1 321 4403 2 0.6327 0.3333 0.9320 0.0031 0.9317

Average XGB ICC 1 110 4614 2 0.6550 0.3333 0.9767 0.0090 0.9763

GGM KNN Base 0 1094 3630 3 0.4836 0.0000 0.7684 0.0000 0.7679

GGM KNN ICC 0 1063 3661 3 0.4907 0.0000 0.7750 0.0000 0.7745

GGM NB Base 0 273 4451 3 0.4151 0.0000 0.9422 0.0000 0.9416

GGM NB ICC 0 223 4501 3 0.4526 0.0000 0.9528 0.0000 0.9522

GGM RF Base 1 141 4583 2 0.7528 0.3333 0.9702 0.0070 0.9697

GGM RF ICC 0 96 4628 3 0.7589 0.0000 0.9797 0.0000 0.9791

GGM XGB Base 1 1161 3563 2 0.5438 0.3333 0.7542 0.0009 0.7540

GGM XGB ICC 1 1161 3563 2 0.5438 0.3333 0.7542 0.0009 0.7540

OJM KNN Base 0 764 3960 3 0.4575 0.0000 0.8383 0.0000 0.8377

OJM KNN ICC 0 765 3959 3 0.5659 0.0000 0.8381 0.0000 0.8375

OJM NB Base 0 70 4654 3 0.4062 0.0000 0.9852 0.0000 0.9846

OJM NB ICC 0 77 4647 3 0.4061 0.0000 0.9837 0.0000 0.9831

OJM RF Base 0 28 4696 3 0.7635 0.0000 0.9941 0.0000 0.9934

OJM RF ICC 0 28 4696 3 0.7741 0.0000 0.9941 0.0000 0.9934

OJM XGB Base 0 758 3966 3 0.4198 0.0000 0.8395 0.0000 0.8390

OJM XGB ICC 0 758 3966 3 0.4198 0.0000 0.8395 0.0000 0.8390

PEG KNN Base 1 565 4159 2 0.7229 0.3333 0.8804 0.0018 0.8801

PEG KNN ICC 2 586 4138 1 0.8310 0.6667 0.8760 0.0034 0.8758

PEG NB Base 0 226 4498 3 0.4359 0.0000 0.9522 0.0000 0.9516

PEG NB ICC 0 223 4501 3 0.4874 0.0000 0.9528 0.0000 0.9522

PEG RF Base 1 41 4683 2 0.8291 0.3333 0.9913 0.0238 0.9909

PEG RF ICC 1 40 4684 2 0.8694 0.3333 0.9915 0.0244 0.9911

PEG XGB Base 1 529 4195 2 0.6107 0.3333 0.8880 0.0019 0.8877

PEG XGB ICC 1 529 4195 2 0.6107 0.3333 0.8880 0.0019 0.8877

** KNN is k-nearest neighbor, NB is naive bayes, RF is randomforest and XGB is XGBoost.

Results of machine learning predictions shown for Texas ratio distress event in q+1 and q+4 per method of ICC calculation.

* Implied Cost of Capital (ICC) calculation models; Average is the average of positive ICC values per bank quarter observation (5005 total 

observations), GGM is the Gordon Growth Model (4436 total observations), OJM is the Ohlson-Jeuttner-Nauroth Model (4872 total 

observations) and PEG is the Price Earnings Growth Model (4391 total observations).
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5.2 Equity volatility  

So far two market variables have been tested in this paper as potential additions for improving bank distress 

predictions. The distance to default and implied cost of capital indicators are very comprehensive. This 

makes them a very sophisticated approximation of the underlying risk for a bank, on the other hand, they 

are difficult to calculate and are prone to measurement error. One way to solve this is to take a much more 

simple approach to estimate risk and find an elementary proxy to use for predicting bank distress. The 

volatility of equity, indicated by the beta, gives such a proxy. We will use the same beta as used in earlier 

calculations. This is the average beta per quarter is taken from daily estimated beta’s with a 252 day 

estimation window in the WRDS Beta Suite. By comparing models with the beta as added market variable, 

its viability as predictive indicator can be assessed. The results from these tests are shown in table 12, the 

corresponding ROC graphs are shown in appendix J. Similar to earlier testing, the most improvement is 

calculated for a one year prediction horizon. The difference in AUC estimate for NB and XGBoost models 

is marginal. However, the RF AUC improves by 2.72% and the KNN AUC improves by 5.66%. Appendix 

J also shows the importance for random forest models including the beta variable. The importance rank of 

the beta increases for predicting one year ahead, compared to predicting one quarter ahead. However the 

Table 11

Variable Gini decrease Rank Gini decrease Rank Gini decrease Rank Gini decrease Rank Gini decrease Rank Sum of ranks

ICC 43.1891 1 4.3097 2 0.9054 11 0.1235 22 0.7253 12 48

C1 8.4252 7 1.0256 13 0.8735 12 0.6695 12 0.6434 13 57

C2 2.3486 14 2.0044 7 1.4430 6 4.8275 3 3.6101 3 33

C3 0.7819 22 0.0926 22 0.0568 22 0.2782 18 0.0837 22 106

A1 7.4910 9 1.1968 11 0.3186 17 0.7503 11 0.1217 21 69

A2 2.1092 17 0.2938 17 0.4170 14 0.1739 20 0.3356 19 87

A3 3.1248 13 3.0792 5 1.3400 7 3.5016 4 2.0720 6 35

A4 14.1411 6 6.6738 1 1.8076 4 5.5807 2 4.8314 2 15

M1 2.2120 16 3.2491 4 2.7477 3 1.5941 7 0.3806 18 48

E1 17.8156 5 0.6620 15 1.0306 9 0.4254 14 0.2237 20 63

E2 4.5810 10 0.1350 20 0.1967 21 0.1704 21 1.1105 11 83

E3 2.0792 19 4.1827 3 8.7269 1 9.4350 1 3.1052 4 28

E4 0.8022 21 1.9294 8 0.5566 13 1.3694 9 1.8433 7 58

E5 29.5873 2 1.4900 10 0.9991 10 0.8610 10 1.3745 10 42

E6 2.0920 18 0.1238 21 0.3858 16 0.4199 16 0.6322 14 85

L1 3.2719 12 1.0337 12 0.2966 18 0.5547 13 0.5379 16 71

L2 2.3110 15 0.2329 18 0.2916 19 0.3945 17 0.3971 17 86

L3 8.2333 8 0.8807 14 1.6648 5 1.4971 8 2.0784 5 40

S1 23.0686 4 0.3421 16 0.3896 15 0.4217 15 1.6320 9 59

X1 1.6116 20 0.1737 19 0.1971 20 0.2647 19 0.5749 15 93

X2 4.3212 11 1.5479 9 1.3218 8 2.0109 6 1.6979 8 42

X3 29.2876 3 2.3034 6 5.9650 2 2.6169 5 9.9587 1 17

* GGM is the Gordon Growth Model, OJM is the Ohlson-Jeuttner-Nauroth Model and PEG is the Price Earnings Growth 

Variable importance for randomforest models, calculated with the Mean Decrease in Gini index, for different implied cost of 

capital models as market variable. Per variable and model the mean decrease in gini index is shown. The higher numbers mean a 

larger decrease, indicating these independent variables are more important in predicting the dependent variable for that model. 

The ranks are shown to indicate how important the different variables are in relation to the other variables.

Average ICC Average ICC GGM* OJM* PEG*
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importance drops again for a two year ahead prediction. These results are an indication a market variable 

can improve bank distress predictions, therefore supporting the hypothesis. It is questionable if the beta 

provides a superior risk estimator over the distance to default or implied cost of capital, as they produce 

similar results. 

 

 

5.3 Too-Big-To-Fail distortions 

One issue raised in the literature comes from the notion of ‘Too-Big-To-Fail’ banks. These banks will be 

supported by the government to avoid the widespread consequences in case they would otherwise fail. This 

is an ambiguous problem, because the public safety net provided by government support for banks covers 

losses for debt holders, which does not affect the shareholders. However, the effect of this support for the 

shareholders correlates to the risk taking by banks. Afonso, Santos and Traina (2014) found that banks with 

higher support ratings would have higher impaired loan ratios. Because higher risk would also bring higher 

potential returns, this government support could introduce a moral hazard problem. Another effect this 

support could have is that risk assessments could be distorted, therefore impairing the correct assessment of 

financial stability of a financial institution. As an additional test, this paper will add a factor variable 

Table 12

Distress event Model* TP FP TN FN AUC Sensitivity Specificity Precision Accuracy

KNN Base 13 921 14131 7 0.8059 0.6500 0.9388 0.0139 0.9384

KNN Beta 11 953 14099 9 0.8154 0.5500 0.9367 0.0114 0.9362

NB Base 15 7222 7830 5 0.7329 0.7500 0.5202 0.0021 0.5205

NB Beta 15 7230 7822 5 0.7327 0.7500 0.5197 0.0021 0.5200

RF Base 6 70 14982 14 0.9512 0.3000 0.9953 0.0789 0.9944

RF Beta 5 64 14988 15 0.9465 0.2500 0.9957 0.0725 0.9948

XGB Base 7 183 14869 13 0.6689 0.3500 0.9878 0.0368 0.9870

XGB Beta 7 213 14839 13 0.6679 0.3500 0.9858 0.0318 0.9850

KNN Base 4 1025 14039 4 0.8032 0.5000 0.9320 0.0039 0.9317

KNN Beta 4 947 14117 4 0.8598 0.5000 0.9371 0.0042 0.9369

NB Base 5 7357 7707 3 0.5345 0.6250 0.5116 0.0007 0.5117

NB Beta 5 7338 7726 3 0.5339 0.6250 0.5129 0.0007 0.5129

RF Base 0 59 15005 8 0.8262 0.0000 0.9961 0.0000 0.9956

RF Beta 1 58 15006 7 0.8534 0.1250 0.9961 0.0169 0.9957

XGB Base 0 137 14927 8 0.4955 0.0000 0.9909 0.0000 0.9904

XGB Beta 0 127 14937 8 0.4958 0.0000 0.9916 0.0000 0.9910

KNN Base 1 1408 13663 0 0.9202 1.0000 0.9066 0.0007 0.9066

KNN Beta 1 1530 13541 0 0.9137 1.0000 0.8985 0.0007 0.8985

NB Base 0 6958 8113 1 0.0414 0.0000 0.5383 0.0000 0.5383

NB Beta 0 6883 8188 1 0.0413 0.0000 0.5433 0.0000 0.5433

RF Base 0 183 14888 1 0.5512 0.0000 0.9879 0.0000 0.9878

RF Beta 0 168 14903 1 0.5552 0.0000 0.9889 0.0000 0.9888

XGB Base 0 692 14379 1 0.4770 0.0000 0.9541 0.0000 0.9540

XGB Beta 0 711 14360 1 0.4764 0.0000 0.9528 0.0000 0.9528

* KNN is k-nearest neighbor, NB is naive bayes, RF is randomforest and XGB is XGBoost.

Results of machine learning predictions shown for Texas ratio distress event with the equity beta as additional market variable.
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representing the levels of outside support. The data for this comes from the Fitch bank support rating7. 

Models predicting a bank failure will be evaluated on whether adding the support rating as an independent 

variable has changed the results from earlier testing. These results can be seen in table 14 in appendix B. 

Variable importance for random forest models is shown in table 15 in appendix B. These results show no 

clear distortions from the support rating variable for predicting bank distress. Table 15 also shows the 

support rating variable is the least important over all three models, indicated by the highest sum of ranks. 

This result confirms the conclusion by Miller et al. (2015), that Too-Big-To-Fail distortions have no effect 

on the distance to default testing. Earlier comments about the ambiguity of this issue should again be taken 

into account when considering these results. The effects shown in these results, do not guarantee these 

distortions have no effect. It should be noted that the data for this test was not adequate to provide robust 

conclusions. Appendix F shows the ROC graphs for models predicting Texas ratio distress with Fitch bank 

support rating as added variable. 

 

5.4 Resampling robustness test 

To provide some robustness to the results, additional testing was performed that changed parts of the basis 

of the methodology. One robustness test is to use multiple resampling techniques, and assess how much the 

results change for one model. Each time a new training sample is created, new observations are created for 

the minority class and random observations discarded from the majority class. The three best performing 

resampling techniques from table 3 (SMOTE, oversampling, and both over- and undersampling) are used 

to test the robustness of the results shown in table 6. These results are also compared to results when no 

resampling is applied. The model used for this has                     as the dependent variable. 

Table 13 shows the performance metrics for different resamples of the training data used as input. These 

results reconcile with the earlier results from SMOTE set 1, also shown in table 13. The  majority of 

improvements shown by adding the DD variable are still marginal for predicting one year ahead. No 

resampling results in true positive predictions, except for NB which also has a lot of false positives, which 

indicates resampling improves the predictions of the minority class. This minority class is the class of 

interest because it contains the actual banks in distress. No resampling shows better performance metrics 

than oversampling and both over- and undersampling. SMOTE, however, still shows the best results for 

predicting the minority class. Also applying a different SMOTE resampled training set does not change the 

results significantly. XGBoost still shows the most improvement, followed by the RF algorithm when 

adding the DD indicator. The ROC graphs for these test are shown in appendix D. 

                                                           
7 Fitch bank support ratings indicate the probability a bank will receive external support and is used as a proxy for 

‘Too-Big-To-Fail’ indication (Schaeck, Zhou and Molyneux, 2010). The rating ranges from 1 (high likelihood of 

support) to 5 (low likelihood of support). 
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5.5 Imputation robustness tests 

Another possible cause of variation in the results is the formation of new data sets by applying multiple 

iterations of the MICE algorithm to the original sample with missing data. This was again tested on the 

models with                     as the dependent variable. These results are shown in table 16 in 

appendix C. The largest difference in true predicted positives was from two true positives in data set 1 to 

four true positives in data set 3 for the KNN algorithm. These results in table 16 show more variation than 

the results shown in table 13. This indicates multiple iterations of the SMOTE algorithm on the same sample 

data gives more robust results than when different MICE imputed datasets are used. For consistency, this 

Table 13

Distress event Resample method Model* TP FP TN FN AUC Sensitivity Specificity Precision Accuracy

SMOTE 1 KNN Base 3 796 12758 5 0.6864 0.3750 0.9413 0.0038 0.9409

SMOTE 1 KNN DD 3 800 12754 5 0.7457 0.3750 0.9410 0.0037 0.9406

SMOTE 1 NB Base 5 5891 7663 3 0.6223 0.6250 0.5654 0.0008 0.5654

SMOTE 1 NB DD 5 5831 7723 3 0.6343 0.6250 0.5698 0.0009 0.5698

SMOTE 1 RF Base 0 49 13505 8 0.7729 0.0000 0.9964 0.0000 0.9958

SMOTE 1 RF DD 0 47 13507 8 0.8051 0.0000 0.9965 0.0000 0.9959

SMOTE 1 XGB Base 1 134 13420 7 0.5576 0.1250 0.9901 0.0074 0.9896

SMOTE 1 XGB DD 1 110 13444 7 0.5584 0.1250 0.9919 0.0090 0.9914

SMOTE 2 KNN Base 3 1076 12478 5 0.6672 0.3750 0.9206 0.0028 0.9203

SMOTE 2 KNN DD 4 1081 12473 4 0.6706 0.5000 0.9202 0.0037 0.9200

SMOTE 2 NB Base 5 5504 8050 3 0.6233 0.6250 0.5939 0.0009 0.5939

SMOTE 2 NB DD 5 5392 8162 3 0.6357 0.6250 0.6022 0.0009 0.6022

SMOTE 2 RF Base 0 31 13523 8 0.8189 0.0000 0.9977 0.0000 0.9971

SMOTE 2 RF DD 0 29 13525 8 0.8300 0.0000 0.9979 0.0000 0.9973

SMOTE 2 XGB Base 1 112 13442 7 0.5584 0.1250 0.9917 0.0088 0.9912

SMOTE 2 XGB DD 1 93 13461 7 0.5591 0.1250 0.9931 0.0106 0.9926

Oversampling KNN Base 1 118 13436 7 0.5526 0.1250 0.9913 0.0084 0.9908

Oversampling KNN DD 1 125 13429 7 0.5513 0.1250 0.9908 0.0079 0.9903

Oversampling NB Base 7 8243 5311 1 0.6601 0.8750 0.3918 0.0008 0.3921

Oversampling NB DD 7 8069 5485 1 0.6746 0.8750 0.4047 0.0009 0.4050

Oversampling RF Base 0 7 13547 8 0.6970 0.0000 0.9995 0.0000 0.9989

Oversampling RF DD 0 4 13550 8 0.6928 0.0000 0.9997 0.0000 0.9991

Oversampling XGB Base 0 15 13539 8 0.4994 0.0000 0.9989 0.0000 0.9983

Oversampling XGB DD 0 12 13542 8 0.4996 0.0000 0.9991 0.0000 0.9985

Both over and under KNN Base 2 266 13288 6 0.7264 0.2500 0.9804 0.0075 0.9799

Both over and under KNN DD 2 292 13262 6 0.7853 0.2500 0.9785 0.0068 0.9780

Both over and under NB Base 7 8072 5482 1 0.6725 0.8750 0.4045 0.0009 0.4047

Both over and under NB DD 7 7920 5634 1 0.6856 0.8750 0.4157 0.0009 0.4159

Both over and under RF Base 0 10 13544 8 0.6757 0.0000 0.9993 0.0000 0.9987

Both over and under RF DD 0 8 13546 8 0.6881 0.0000 0.9994 0.0000 0.9988

Both over and under XGB Base 0 49 13505 8 0.4982 0.0000 0.9964 0.0000 0.9958

Both over and under XGB DD 1 65 13489 7 0.5601 0.1250 0.9952 0.0152 0.9947

No resampling KNN Base 0 7 13547 8 0.5508 0.0000 0.9995 0.0000 0.9989

No resampling KNN DD 0 7 13547 8 0.5503 0.0000 0.9995 0.0000 0.9989

No resampling NB Base 7 7580 5974 1 0.6570 0.8750 0.4408 0.0009 0.4410

No resampling NB DD 7 7484 6070 1 0.6711 0.8750 0.4478 0.0009 0.4481

No resampling RF Base 0 0 13554 8 0.7467 0.0000 1.0000 0.9994

No resampling RF DD 0 0 13554 8 0.8514 0.0000 1.0000 0.9994

No resampling XGB Base 0 0 13554 8 0.5584 0.1250 0.9917 0.0088 0.9912

No resampling XGB DD 0 1 13553 8 0.5000 0.0000 0.9999 0.0000 0.9993

* KNN is k-nearest neighbor, NB is naive bayes, RF is randomforest and XGB is XGBoost.

Results of machine learning predictions shown for Texas ratio distress event in q+4 for different resampling methods applied to the training set.
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research based testing on only one MICE imputed dataset. The ROC graphs for these tests are shown in 

appendix E. 

As discussed earlier, mean/median imputation is another form of dealing with missing data. Therefore, 

additional robustness tests are performed to compare results between a imputed dataset with the MICE 

algorithm and a dataset where missing values are replaced with the median per variable. The results of this 

test are shown in table 17 in appendix C. Table 17 shows the results from using median imputation are 

similar to MICE imputation for the testing applied in this research. One notable difference is seen when 

predicting one year ahead with the XGBoost algorithm. Here MICE imputation shows an improvement of 

just 0.08% in the AUC when adding the DD variable, but median imputation shows an improvement of 

12.54% in the AUC when adding the DD variable. Furthermore, table 17 shows that on average the 

performance metrics of models using MICE imputation do not differ from the models using median 

imputation. This gives no indication that MICE is a superior form of imputation. However, this adds to the 

robustness of the results, because the form of imputation does not significantly alter the results. The ROC 

graphs for models with median imputation are shown in appendix F. To complete this robustness test, the 

variable importance is calculated for random forest models using median imputation. These results can be 

seen in table 18 in appendix C. The importance of the DD variable shows a different progression when 

predicting bank distress over a longer horizon, compared to results using MICE imputation. The variable 

importance of DD under median imputation shows a continuing increase as the prediction horizon becomes 

larger.  

 

6. Conclusions 

The research question of this paper is as follows: Can the addition of a market indicator to established risk 

indicators improve predictions of bank distress? To help answer the research question, the following 

hypothesis was formulated: H1a: Market indicators improve machine learning models based on established 

risk indicators when predicting bank distress. 

The failure to correctly predict the financial crisis of 2008 underscored the need for more robust prediction 

methods. The CAMELS rating system currently used by financial regulators provides a solid basis for 

predicting bank distress. The potential improvement of the distance to default indicator to models based on 

CAMELS indicators has been tested using advanced machine learning algorithms. The findings give an 

indication that the addition of a market variable improves models when predicting bank distress, so they 

support the hypothesis. It might be expected that variables containing information not yet covered by other 

variables would improve the predictive accuracy of the outcome variable. However, it is questionable 

whether the adding of the DD indicator has economic effect. This is because in most cases, where 

improvement is realized with the addition of the DD indicator, the improvement is only marginal. The 

finding that a market indicator becomes more important for prediction distress over a longer horizon, could 

have implications for models predicting an event at different times in the future. When the event predicted 

is close to the moment of the prediction, the accounting variables should provide ample information. When 

the event is further into the future however, it could be more important to include a market indicator as a 

predictor for bank distress, because of the forward-looking nature of most market indicators. Finally, the 

type of market variable has important implications for prediction models and perceived improvement of 

predictions of bank distress. The implied cost of capital was more important for predicting bank distress in 
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the short-term, where the distance to default did not show this for the same prediction horizon. This could 

implicate different market variables could be used for predicting bank distress over different horizons. 

Testing the beta as market variable did not significantly alter the results, therefore could provide a simple 

alternative as added variable for predicting bank distress. 

This paper adds to previous literature by testing the additional predictive power of a market indicator for 

predicting bank distress with advanced machine learning techniques. The result of previous research that a 

market indicator provides little additional predictive value over existing risk indicators, is now also tested 

with a research design that is based on more advanced statistical tests. The result of this testing implies that 

practitioners (regulators, investors) should not view a market indicator as the holy grail of bank distress 

prediction, just as they should not discard the value of a market indicator altogether. A distance to default 

market indicator could still have additional value, especially over a longer prediction horizon. Another 

consideration of the results stems from the market indicators used in the research. These indicators are an 

approximation or proxy for the assessment made by the market of the underlying risk of a bank. If this 

approximation could be improved, we would also see a greater effect on the prediction of bank distress. 

This is shown by the different assumptions underlying the different market indicators that could yield 

different results. This difference between market indicators should be taken into account when evaluating 

the added value for predicting bank distress.  

This research and the produced results have some limitations that affect the conclusions. The sample taken 

is only tested on US banks, so the results cannot be generalized for all banks. Further research could be done 

that includes banks from other regions. This research also includes smaller banks into the sample for which 

all needed data was available. This could be a limitation as results could differ when taking only one size or 

specific bank holding companies into account. This is controlled with a logarithm of total assets to account 

for size, however other characteristic differences between a holding bank and its subsidiaries could impact 

the findings. One other limitation lies in the data needed to make all calculations. Because this research has 

a market indicator as the focal point, only publicly traded banks are included in the dataset, which reduces 

the number of observations by a substantial amount. Further research could also include other machine 

learning techniques. As this field of research is constantly evolving, new or improved methods are applied. 

The finding of this research, that the variable importance of the DD indicator became larger as the models 

predicted events further into the future, could also form the basis for further research. Further research could 

test when the improvement of importance of a market indicator for predicting bank distress holds and when 

it fails. Lastly, further research could done to test other market variables than the ones employed in this 

research. 
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Figure 4: ROC curves for models with Texas ratio over one 

hundred as distress event in q+8. The corresponding area 

under curve (AUC) is also printed per model. 
Figure 5: ROC curves for models with a bank failure as 

distress event in q+4. The corresponding area under curve 

(AUC) is also printed per model. 

Figure 6: ROC curves for models with a bank failure as 

distress event in q+8. The corresponding area under curve 

(AUC) is also printed per model. 
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Table 14

Distress event Model* TP FP TN FN AUC Sensitivity Specificity Precision Accuracy

KNN Base 1 72 14039 6 0.6370 0.1429 0.9949 0.0137 0.9945

KNN DD 1 42 14069 6 0.7083 0.1429 0.9970 0.0233 0.9966

NB Base 0 13 14098 7 0.9415 0.0000 0.9991 0.0000 0.9986

NB DD 0 13 14098 7 0.8876 0.0000 0.9991 0.0000 0.9986

RF Base 0 9 14102 7 0.9462 0.0000 0.9994 0.0000 0.9989

RF DD 0 7 14104 7 0.9626 0.0000 0.9995 0.0000 0.9990

XGB Base 0 48 14063 7 0.4983 0.0000 0.9966 0.0000 0.9961

XGB DD 0 48 14063 7 0.4983 0.0000 0.9966 0.0000 0.9961

KNN Base 1 393 13721 3 0.8140 0.2500 0.9722 0.0025 0.9720

KNN DD 1 254 13860 3 0.8184 0.2500 0.9820 0.0039 0.9818

NB Base 0 23 14091 4 0.4850 0.0000 0.9984 0.0000 0.9981

NB DD 0 41 14073 4 0.4886 0.0000 0.9971 0.0000 0.9968

RF Base 0 32 14082 4 0.8675 0.0000 0.9977 0.0000 0.9975

RF DD 0 34 14080 4 0.8835 0.0000 0.9976 0.0000 0.9973

XGB Base 0 131 13983 4 0.4954 0.0000 0.9907 0.0000 0.9904

XGB DD 0 131 13983 4 0.4954 0.0000 0.9907 0.0000 0.9904

KNN Base 1 1008 13108 1 0.6420 0.5000 0.9286 0.0010 0.9285

KNN DD 0 372 13744 2 0.6274 0.0000 0.9736 0.0000 0.9735

NB Base 0 505 13611 2 0.4048 0.0000 0.9642 0.0000 0.9641

NB DD 0 569 13547 2 0.4230 0.0000 0.9597 0.0000 0.9596

RF Base 0 97 14019 2 0.7823 0.0000 0.9931 0.0000 0.9930

RF DD 0 100 14016 2 0.7999 0.0000 0.9929 0.0000 0.9928

XGB Base 0 332 13784 2 0.4882 0.0000 0.9765 0.0000 0.9763

XGB DD 0 332 13784 2 0.4882 0.0000 0.9765 0.0000 0.9763

* KNN is k-nearest neighbor, NB is naive bayes, RF is randomforest and XGB is XGBoost.

Results of machine learning predictions shown by distress event and model. For all these models the Fitch support rating is added 

as independent variable.
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Table 15

Variable Gini decrease Rank Gini decrease Rank Gini decrease Rank Sum of ranks

DD 0.8872 12 0.4481 14 0.6026 11 37

C1 24.0336 2 0.4945 13 0.2649 16 31

C2 9.8250 4 0.0437 21 0.3865 15 40

C3 0.1901 17 0.0187 22 7.3820 2 41

A1 1.2293 11 6.5777 1 2.3665 6 18

A2 9.7167 5 4.4144 4 1.8495 10 19

A3 0.3152 15 2.4136 7 0.1516 19 41

A4 2.5825 10 3.1751 6 0.0837 21 37

M1 2.9659 9 0.1145 18 0.1996 18 45

E1 31.6814 1 3.3110 5 0.5900 12 18

E2 9.6174 6 1.3515 9 7.6056 1 16

E3 3.5645 8 0.2796 17 0.5882 13 38

E4 5.2277 7 1.0575 11 3.4352 3 21

E5 20.6945 3 5.3742 2 0.5158 14 19

E6 0.1289 19 1.1122 10 2.9923 4 33

L1 0.3205 14 0.3509 15 1.9339 8 37

L2 0.0000 22 0.3095 16 0.0333 22 60

L3 0.2748 16 0.0810 20 0.2001 17 53

S1 0.1136 20 0.5090 12 2.1362 7 39

X1 0.0734 21 1.7552 8 2.6433 5 34

X2 0.3777 13 0.0970 19 0.1014 20 52

X3 0.1512 18 4.6818 3 1.8789 9 30

Support rating 0.0000 23 0.0000 23 0.0000 23 69

Variable importance for randomforest models, calculated with the Mean Decrease in Gini 

index, with Fitch support rating as added independent variable. Per variable and model the 

mean decrease in gini index is shown. The higher numbers mean a larger decrease, 

indicating these independent variables are more important in predicting the dependent 

variable for that model. The ranks are shown to indicate how important the different 

variables are in relation to the other variables.
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Table 16

Distress event MICE imputation Model* TP FP TN FN AUC Sensitivity Specificity Precision Accuracy

1 KNN Base 3 796 12758 5 0.6864 0.3750 0.9413 0.0038 0.9409

1 KNN DD 3 800 12754 5 0.7457 0.3750 0.9410 0.0037 0.9406

1 NB Base 5 5891 7663 3 0.6223 0.6250 0.5654 0.0008 0.5654

1 NB DD 5 5831 7723 3 0.6343 0.6250 0.5698 0.0009 0.5698

1 RF Base 0 49 13505 8 0.7729 0.0000 0.9964 0.0000 0.9958

1 RF DD 0 47 13507 8 0.8051 0.0000 0.9965 0.0000 0.9959

1 XGB Base 1 134 13420 7 0.5576 0.1250 0.9901 0.0074 0.9896

1 XGB DD 1 110 13444 7 0.5584 0.1250 0.9919 0.0090 0.9914

2 KNN Base 5 947 12607 3 0.8132 0.6250 0.9301 0.0053 0.9300

2 KNN DD 5 945 12609 3 0.8184 0.6250 0.9303 0.0053 0.9301

2 NB Base 6 5941 7613 2 0.7054 0.7500 0.5617 0.0010 0.5618

2 NB DD 6 5912 7642 2 0.7114 0.7500 0.5638 0.0010 0.5639

2 RF Base 0 46 13508 8 0.8598 0.0000 0.9966 0.0000 0.9960

2 RF DD 0 42 13512 8 0.8619 0.0000 0.9969 0.0000 0.9963

2 XGB Base 2 138 13416 6 0.6199 0.2500 0.9898 0.0143 0.9894

2 XGB DD 2 125 13429 6 0.6204 0.2500 0.9908 0.0157 0.9903

3 KNN Base 2 1210 12344 6 0.7024 0.2500 0.9107 0.0017 0.9103

3 KNN DD 2 1264 12290 6 0.7006 0.2500 0.9067 0.0016 0.9064

3 NB Base 5 5427 8127 3 0.6436 0.6250 0.5996 0.0009 0.5996

3 NB DD 5 5336 8218 3 0.6554 0.6250 0.6063 0.0009 0.6063

3 RF Base 0 37 13517 8 0.8481 0.0000 0.9973 0.0000 0.9967

3 RF DD 0 38 13516 8 0.8473 0.0000 0.9972 0.0000 0.9966

3 XGB Base 1 134 13420 7 0.5576 0.1250 0.9901 0.0074 0.9896

3 XGB DD 0 139 13415 8 0.4949 0.0000 0.9897 0.0000 0.9892

4 KNN Base 4 799 12755 4 0.8159 0.5000 0.9411 0.0050 0.9408

4 KNN DD 5 876 12678 3 0.8270 0.6250 0.9354 0.0057 0.9352

4 NB Base 5 6850 6704 3 0.6026 0.6250 0.4946 0.0007 0.4947

4 NB DD 5 6781 6773 3 0.6147 0.6250 0.4997 0.0007 0.4998

4 RF Base 1 33 13521 7 0.7708 0.1250 0.9976 0.0294 0.9971

4 RF DD 1 32 13522 7 0.7864 0.1250 0.9976 0.0303 0.9971

4 XGB Base 1 90 13464 7 0.5592 0.1250 0.9934 0.0110 0.9928

4 XGB DD 1 105 13449 7 0.5586 0.1250 0.9923 0.0094 0.9917

5 KNN Base 4 955 12599 4 0.7301 0.5000 0.9295 0.0042 0.9293

5 KNN DD 4 957 12597 4 0.7281 0.5000 0.9294 0.0042 0.9291

5 NB Base 4 6189 7365 4 0.5696 0.5000 0.5434 0.0006 0.5434

5 NB DD 4 6052 7502 4 0.5813 0.5000 0.5535 0.0007 0.5535

5 RF Base 0 55 13499 8 0.8723 0.0000 0.9959 0.0000 0.9954

5 RF DD 0 48 13506 8 0.8797 0.0000 0.9965 0.0000 0.9959

5 XGB Base 2 122 13432 6 0.6205 0.2500 0.9910 0.0161 0.9906

5 XGB DD 1 146 13408 7 0.5571 0.1250 0.9892 0.0068 0.9887

* KNN is k-nearest neighbor, NB is naive bayes, RF is randomforest and XGB is XGBoost.

Results of machine learning predictions shown for Texas ratio distress event in q+4 per iteration of the MICE imputed dataset. The MICE 

imputation algorithm is applied five different times. 
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Table 17

Distress event Imputation Model* TP FP TN FN AUC Sensitivity Specificity Precision Accuracy

MICE KNN Base 11 925 12619 7 0.8441 0.6111 0.9317 0.0118 0.9313

MICE KNN DD 11 967 12577 7 0.8425 0.6111 0.9286 0.0112 0.9282

MICE NB Base 14 6335 7209 4 0.8091 0.7778 0.5323 0.0022 0.5326

MICE NB DD 14 6332 7212 4 0.8083 0.7778 0.5325 0.0022 0.5328

MICE RF Base 4 60 13484 14 0.9503 0.2222 0.9956 0.0625 0.9945

MICE RF DD 5 61 13483 13 0.9591 0.2778 0.9955 0.0758 0.9945

MICE XGB Base 9 275 13269 9 0.7398 0.5000 0.9797 0.0317 0.9791

MICE XGB DD 7 221 13323 11 0.6863 0.3889 0.9837 0.0307 0.9829

MICE KNN Base 3 796 12758 5 0.6864 0.3750 0.9413 0.0038 0.9409

MICE KNN DD 3 800 12754 5 0.7457 0.3750 0.9410 0.0037 0.9406

MICE NB Base 5 5891 7663 3 0.6223 0.6250 0.5654 0.0008 0.5654

MICE NB DD 5 5831 7723 3 0.6343 0.6250 0.5698 0.0009 0.5698

MICE RF Base 0 49 13505 8 0.7729 0.0000 0.9964 0.0000 0.9958

MICE RF DD 0 47 13507 8 0.8051 0.0000 0.9965 0.0000 0.9959

MICE XGB Base 1 134 13420 7 0.5576 0.1250 0.9901 0.0074 0.9896

MICE XGB DD 1 110 13444 7 0.5584 0.1250 0.9919 0.0090 0.9914

MICE KNN Base 0 966 12595 1 0.8185 0.0000 0.9288 0.0000 0.9287

MICE KNN DD 0 989 12572 1 0.8139 0.0000 0.9271 0.0000 0.9270

MICE NB Base 0 5962 7599 1 0.0452 0.0000 0.5604 0.0000 0.5603

MICE NB DD 0 5897 7664 1 0.0464 0.0000 0.5652 0.0000 0.5651

MICE RF Base 0 57 13504 1 0.9889 0.0000 0.9958 0.0000 0.9957

MICE RF DD 0 60 13501 1 0.9890 0.0000 0.9956 0.0000 0.9955

MICE XGB Base 0 492 13069 1 0.4819 0.0000 0.9637 0.0000 0.9636

MICE XGB DD 0 452 13109 1 0.4833 0.0000 0.9667 0.0000 0.9666

Median KNN Base 9 797 12747 9 0.8602 0.5000 0.9412 0.0112 0.9406

Median KNN DD 11 807 12737 7 0.8668 0.6111 0.9404 0.0134 0.9400

Median NB Base 14 7567 5977 4 0.6949 0.7778 0.4413 0.0018 0.4417

Median NB DD 14 7501 6043 4 0.6639 0.7778 0.4462 0.0019 0.4466

Median RF Base 3 81 13463 15 0.9340 0.1667 0.9940 0.0357 0.9929

Median RF DD 2 73 13471 16 0.9351 0.1111 0.9946 0.0267 0.9934

Median XGB Base 3 209 13335 15 0.5756 0.1667 0.9846 0.0142 0.9835

Median XGB DD 2 239 13305 16 0.5467 0.1111 0.9824 0.0083 0.9812

Median KNN Base 4 841 12713 4 0.8045 0.5000 0.9380 0.0047 0.9377

Median KNN DD 4 885 12669 4 0.8009 0.5000 0.9347 0.0045 0.9344

Median NB Base 6 7445 6109 2 0.6831 0.7500 0.4507 0.0008 0.4509

Median NB DD 6 7307 6247 2 0.6906 0.7500 0.4609 0.0008 0.4611

Median RF Base 0 44 13510 8 0.9083 0.0000 0.9968 0.0000 0.9962

Median RF DD 0 48 13506 8 0.9197 0.0000 0.9965 0.0000 0.9959

Median XGB Base 0 119 13435 8 0.4956 0.0000 0.9912 0.0000 0.9906

Median XGB DD 2 108 13446 6 0.6210 0.2500 0.9920 0.0182 0.9916

Median KNN Base 0 753 12808 1 0.4219 0.0000 0.9445 0.0000 0.9444

Median KNN DD 0 766 12795 1 0.4214 0.0000 0.9435 0.0000 0.9434

Median NB Base 0 5154 8407 1 0.0322 0.0000 0.6199 0.0000 0.6199

Median NB DD 0 5273 8288 1 0.0348 0.0000 0.6112 0.0000 0.6111

Median RF Base 0 98 13463 1 0.9883 0.0000 0.9928 0.0000 0.9927

Median RF DD 0 94 13467 1 0.9894 0.0000 0.9931 0.0000 0.9930

Median XGB Base 1 186 13375 0 0.9931 1.0000 0.9863 0.0053 0.9863

Median XGB DD 1 213 13348 0 0.9921 1.0000 0.9843 0.0047 0.9843

* KNN is k-nearest neighbor, NB is naive bayes, RF is randomforest and XGB is XGBoost.

Results of machine learning predictions shown for Texas ratio distress event per imputed dataset. For median imputation, missing values are replaced 

with the median of that variable. The results for Texas ratio distress events from table 5 and 6 are included for comparison.
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Table 18

Variable Gini decrease Rank Gini decrease Rank Gini decrease Rank Sum of ranks

DD 28.4241 16 40.1614 9 19.1390 6 31

C1 70.7551 8 30.2402 10 12.3105 8 26

C2 117.3476 4 19.5191 14 7.4090 12 30

C3 33.7410 11 17.0501 17 3.6049 21 49

A1 74.8924 7 100.8784 1 30.4298 3 11

A2 32.7948 13 24.0696 13 6.5117 13 39

A3 60.7847 9 19.0930 15 6.3580 14 38

A4 163.6012 3 86.3650 2 19.7818 4 9

M1 33.4781 12 13.7480 19 11.2545 9 40

E1 210.4071 1 50.8719 6 3.8147 20 27

E2 98.8395 5 41.5997 8 9.0633 11 24

E3 18.4413 19 48.0235 7 3.9198 19 45

E4 83.4001 6 16.2473 18 4.0186 17 41

E5 193.8032 2 29.9728 11 12.4976 7 20

E6 32.5769 14 53.6482 4 19.3286 5 23

L1 18.5544 18 27.2462 12 4.0063 18 48

L2 0.8251 22 0.7299 22 6.0509 15 59

L3 38.9121 10 52.8863 5 34.6365 2 17

S1 5.3567 21 3.6471 21 3.2425 22 64

X1 19.2445 17 60.3052 3 9.2542 10 30

X2 5.6728 20 7.5115 20 4.1161 16 56

X3 29.7472 15 17.9442 16 43.1485 1 32

Variable importance for randomforest models, calculated with the Mean Decrease in 

Gini index, based on a median imputed dataset. The models indicated Texas ratio 

distress event. Per variable and model the mean decrease in gini index is shown. The 

higher numbers mean a larger decrease, indicating these independent variables are 

more important in predicting the dependent variable for that model. The ranks are 

shown to indicate how important the different variables are in relation to the other 

variables.
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Figure 7: ROC curves for models with Texas ratio over one 

hundred as distress event in q+4, for a different SMOTE 

training set than the one shown in figure 4. The 

corresponding area under curve (AUC) is also printed per 

model. 

Figure 8: ROC curves for models with Texas ratio over one 

hundred as distress event in q+4, for both over- and 

undersampled training set. The corresponding area under 

curve (AUC) is also printed per model. 

Figure 9: ROC curves for models with Texas ratio over one 

hundred as distress event in q+4, for an oversampled 

training set. The corresponding area under curve (AUC) is 

also printed per model. 

Figure 10: ROC curves for models with Texas ratio over 

one hundred as distress event in q+4, for a training set that 

is not resampled. The corresponding area under curve 

(AUC) is also printed per model. 
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Figure 11: ROC curves for models with Texas ratio over 

one hundred as distress event in q+4, for MICE imputed 

dataset 2. The corresponding area under curve (AUC) is 

also printed per model. 

Figure 12: ROC curves for models with Texas ratio over 

one hundred as distress event in q+4, for MICE imputed 

dataset 3. The corresponding area under curve (AUC) is 

also printed per model. 

Figure 13: ROC curves for models with Texas ratio over 

one hundred as distress event in q+4, for MICE imputed 

dataset 4. The corresponding area under curve (AUC) is 

also printed per model. 

Figure 14: ROC curves for models with Texas ratio over 

one hundred as distress event in q+4, for MICE imputed 

dataset 5. The corresponding area under curve (AUC) is 

also printed per model. 
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Figure 15: ROC curves for models with Texas ratio over 

one hundred as distress event in q+1, for a dataset with 

median imputation. The corresponding area under curve 

(AUC) is also printed per model. 

Figure 16: ROC curves for models with Texas ratio over 

one hundred as distress event in q+4, for a dataset with 

median imputation. The corresponding area under curve 

(AUC) is also printed per model. 

Figure 17: ROC curves for models with Texas ratio over 

one hundred as distress event in q+8, for a dataset with 

median imputation. The corresponding area under curve 

(AUC) is also printed per model. 
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Figure 18: ROC curves for models with bank failure as 

distress event in q+1, with support rating as added 

independent variable. The corresponding area under curve 

(AUC) is also printed per model. 

Figure 19: ROC curves for models with bank failure as 

distress event in q+4, with support rating as added 

independent variable. The corresponding area under curve 

(AUC) is also printed per model. 

Figure 20: ROC curves for models with bank failure as 

distress event in q+8, with support rating as added 

independent variable. The corresponding area under curve 

(AUC) is also printed per model. 
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Figure 21: ROC curves for models with Texas ratio over 

one hundred as distress event in q+4, for average implied 

cost of capital as added market indicator. The 

corresponding area under curve (AUC) is also printed per 

model. 

Figure 22: ROC curves for models with Texas ratio over 

one hundred as distress event in q+4, for Gordon growth 

model implied cost of capital as added market indicator. 

The corresponding area under curve (AUC) is also printed 

per model. 

Figure 23: ROC curves for models with Texas ratio over 

one hundred as distress event in q+4, for price earnings 

growth model implied cost of capital as added market 

indicator. The corresponding area under curve (AUC) is 

also printed per model. 

Figure 24: ROC curves for models with Texas ratio over 

one hundred as distress event in q+4, for Ohlson-Juettner-

Nauroth model implied cost of capital as added market 

indicator. The corresponding area under curve (AUC) is 

also printed per model. 
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Figure 25: ROC curves for models with Texas ratio over 

one hundred as distress event in q+1, for average implied 

cost of capital as added market indicator. The 

corresponding area under curve (AUC) is also printed per 

model. 
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Table 19

Distress event ICC* Model** TP FP TN FN AUC Sensitivity Specificity Precision Accuracy

Average KNN Base 3 142 4579 3 0.8910 0.5000 0.9699 0.0207 0.9693

Average KNN ICC 3 120 4601 3 0.8935 0.5000 0.9746 0.0244 0.9740

Average NB Base 3 482 4239 3 0.8644 0.5000 0.8979 0.0062 0.8974

Average NB ICC 3 424 4297 3 0.8651 0.5000 0.9102 0.0070 0.9097

Average RF Base 1 8 4713 5 0.9729 0.1667 0.9983 0.1111 0.9972

Average RF ICC 0 5 4716 6 0.9673 0.0000 0.9989 0.0000 0.9977

Average XGB Base 1 68 4653 5 0.5761 0.1667 0.9856 0.0145 0.9846

Average XGB ICC 0 7 4714 6 0.4993 0.0000 0.9985 0.0000 0.9972

GGM KNN Base 2 135 4586 4 0.8091 0.3333 0.9714 0.0146 0.9706

GGM KNN ICC 3 90 4631 3 0.8173 0.5000 0.9809 0.0323 0.9803

GGM NB Base 4 608 4113 2 0.8889 0.6667 0.8712 0.0065 0.8710

GGM NB ICC 1 51 4670 5 0.8562 0.1667 0.9892 0.0192 0.9882

GGM RF Base 1 4 4717 5 0.9685 0.1667 0.9992 0.2000 0.9981

GGM RF ICC 1 3 4718 5 0.9698 0.1667 0.9994 0.2500 0.9983

GGM XGB Base 2 23 4698 4 0.6642 0.3333 0.9951 0.0800 0.9943

GGM XGB ICC 3 24 4697 3 0.7475 0.5000 0.9949 0.1111 0.9943

OJM KNN Base 4 135 4586 2 0.8954 0.6667 0.9714 0.0288 0.9710

OJM KNN ICC 5 145 4576 1 0.8941 0.8333 0.9693 0.0333 0.9691

OJM NB Base 3 515 4206 3 0.8668 0.5000 0.8909 0.0058 0.8904

OJM NB ICC 3 536 4185 3 0.8668 0.5000 0.8865 0.0056 0.8860

OJM RF Base 2 12 4709 4 0.9775 0.3333 0.9975 0.1429 0.9966

OJM RF ICC 2 10 4711 4 0.9782 0.3333 0.9979 0.1667 0.9970

OJM XGB Base 2 30 4691 4 0.6635 0.3333 0.9936 0.0625 0.9928

OJM XGB ICC 2 51 4670 4 0.6613 0.3333 0.9892 0.0377 0.9884

PEG KNN Base 3 124 4597 3 0.8918 0.5000 0.9737 0.0236 0.9731

PEG KNN ICC 4 105 4616 2 0.8983 0.6667 0.9778 0.0367 0.9774

PEG NB Base 4 587 4134 2 0.8794 0.6667 0.8757 0.0068 0.8754

PEG NB ICC 4 533 4188 2 0.8839 0.6667 0.8871 0.0074 0.8868

PEG RF Base 1 11 4710 5 0.9616 0.1667 0.9977 0.0833 0.9966

PEG RF ICC 1 10 4711 5 0.9720 0.1667 0.9979 0.0909 0.9968

PEG XGB Base 3 25 4696 3 0.7474 0.5000 0.9947 0.1071 0.9941

PEG XGB ICC 3 25 4696 3 0.7474 0.5000 0.9947 0.1071 0.9941

** KNN is k-nearest neighbor, NB is naive bayes, RF is randomforest and XGB is XGBoost.

Results of machine learning predictions shown for Texas ratio distress event in q+1 per method of ICC calculation.

* Implied Cost of Capital (ICC) calculation models; Average is the average of positive ICC values per bank quarter observation (5005 total 

observations), OJM is the Ohlson-Jeuttner-Nauroth Model (4872 total observations), PEG is the Price Earnings Growth Model (4391 total 

observations), and GGM is the Gordon Growth Model (4436 total observations).
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Table 20

Variable Gini decrease Rank Gini decrease Rank Gini decrease Rank Gini decrease Rank Sum of ranks

ICC 43.1891 1 6.1961 11 3.8709 9 16.0259 5 26

C1 8.4252 7 6.5394 10 2.8634 14 3.0669 15 46

C2 2.3486 14 2.0497 17 1.5462 19 2.5725 18 68

C3 0.7819 22 0.4648 22 0.4870 21 0.6213 22 87

A1 7.4910 9 11.3189 7 12.5998 6 6.7995 8 30

A2 2.1092 17 1.9624 18 2.5129 15 1.7291 19 69

A3 3.1248 13 2.3217 16 3.3825 12 3.9197 11 52

A4 14.1411 6 20.8598 4 15.6631 5 13.4311 6 21

M1 2.2120 16 2.9088 13 1.9989 17 3.9174 12 58

E1 17.8156 5 14.5666 5 17.2414 4 31.5666 3 17

E2 4.5810 10 2.6677 14 2.4589 16 3.2225 14 54

E3 2.0792 19 1.2625 20 1.8124 18 2.6173 17 74

E4 0.8022 21 0.6681 21 0.4193 22 0.6592 21 85

E5 29.5873 2 38.0350 2 44.4550 2 36.7579 2 8

E6 2.0920 18 2.6129 15 3.2956 13 2.9554 16 62

L1 3.2719 12 7.9429 8 8.3337 7 4.7809 9 36

L2 2.3110 15 6.6841 9 3.7124 11 3.9058 13 48

L3 8.2333 8 14.0032 6 7.3412 8 10.7250 7 29

S1 23.0686 4 41.5592 1 47.1205 1 21.0713 4 10

X1 1.6116 20 1.4118 19 0.8863 20 1.3642 20 79

X2 4.3212 11 4.6372 12 3.7420 10 4.0077 10 43

X3 29.2876 3 22.2741 3 27.2043 3 37.2302 1 10

* GGM is the Gordon Growth Model, OJM is the Ohlson-Jeuttner-Nauroth Mode, and PEG is the Price 

Earnings Growth Model.

Variable importance for randomforest models, calculated with the Mean Decrease in Gini index, for 

different implied cost of capital models as market variable. Per variable and model the mean decrease in 

gini index is shown. The higher numbers mean a larger decrease, indicating these independent variables are 

more important in predicting the dependent variable for that model. The ranks are shown to indicate how 

important the different variables are in relation to the other variables.

Average ICC OJM* PEG*GGM*
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Figure 26: ROC curves for models with Texas ratio over 

one hundred as distress event in q+1, for beta as added 

market indicator. The corresponding area under curve 

(AUC) is also printed per model. 

Figure 27: ROC curves for models with Texas ratio over 

one hundred as distress event in q+4, for beta as added 

market indicator. The corresponding area under curve 

(AUC) is also printed per model. 

 

Figure 28: ROC curves for models with Texas ratio over 

one hundred as distress event in q+8, for beta as added 

market indicator. The corresponding area under curve 

(AUC) is also printed per model. 
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Table 21

Variable Gini decrease Rank Gini decrease Rank Gini decrease Rank Sum of ranks

Beta 18.8452 18 21.9419 14 2.2300 22 54

C1 75.6489 8 27.7337 11 6.0610 13 32

C2 163.9155 4 15.0328 19 6.7884 9 32

C3 45.9354 12 24.7056 13 3.1858 19 44

A1 47.4494 11 96.7004 1 5.6020 14 26

A2 17.8116 20 21.2378 16 6.7728 10 46

A3 57.4694 10 21.2873 15 3.8448 18 43

A4 169.3061 3 85.8439 2 60.8860 1 6

M1 35.4020 15 13.5714 21 15.3874 5 41

E1 177.1434 2 75.2600 3 2.6041 21 26

E2 128.6075 5 28.2586 10 4.6607 16 31

E3 18.8284 19 42.8057 7 2.8082 20 46

E4 110.5124 6 19.1238 17 4.2897 17 40

E5 237.1339 1 41.4014 9 11.7561 7 17

E6 33.5243 16 65.5341 4 13.7061 6 26

L1 17.3033 21 42.1360 8 6.6236 11 40

L2 2.1177 22 2.3390 22 5.3423 15 59

L3 27.2565 17 61.9170 5 16.1308 4 26

S1 85.1134 7 57.5763 6 20.6121 3 16

X1 42.3713 13 26.3237 12 57.3935 2 27

X2 67.0432 9 13.9573 20 6.0754 12 41

X3 36.8362 14 18.0819 18 11.1493 8 40

Variable importance for randomforest models, calculated with the Mean Decrease in 

Gini index, for equity beta as market variable. Per variable and model the mean 

decrease in gini index is shown. The higher numbers mean a larger decrease, 

indicating these independent variables are more important in predicting the 

dependent variable for that model. The ranks are shown to indicate how important 

the different variables are in relation to the other variables.

              
     

              
     

              
     


