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Abstract

Intermittent demand forecasting is a significant issue in the industries. Pre-

dicting trends and demands could be difficult, resulting in a high stock cost and

losing business opportunities. Therefore, an accurate forecasting method is a must

to prevent corporations from suffering from the loss. This research compares the

XGBoost model and other conventional methods under multiple trends and item

patterns with both the simulated and empirical datasets. Accuracy rate (MASE

and sMAPE) and inventory control (tradeoff curve) are applied to test the per-

formance of different methods. The results indicate that XGB outperforms other

methods under multiple trends. The XGBoost method also shows its superiority in

predicting the category of Intermittent and Lumpy.
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1 Introduction

1.1 Motivation of experiment

The lumpiness and intermittency result from irregular demand size and demand intervals

have considerably impacted specific industries. According to Gallagher et al. (2005), the

spare parts market has been a business that reached 400 billion per year. Beata Ślusarczyk

(2018) also claim that it is incredibly vital that the spare parts are provided in time for

air transport because the delay of specific materials raises amounts of costs. Kim et al.

(2016) assert that spare parts availability is also essential to customer satisfaction and

lowering inventory costs.

Thus, an accurate prediction for spare parts demand is crucial in business operation.

The prediction higher than actual demand leads to high stock cost while that lower than

the actual makes companies lose business opportunities since the variation in non-zero

demand size and zero demand that seemed to occur randomly make the prediction more

difficult.

The mainstream forecasting methods includes Simple Exponential Smoothing method

(SES) (Brown (1960)), the Croston method (Croston (1972)) , and its advanced ver-

sion(Syntetos, Boylan (2005); Teunter et al. (2011)), and the bootstrapping methods

(Willemain et al. (1994); Porras, Dekker (2008)). As the machine learning techniques keep

developing rapidly, they are applied to forecast intermittent spare parts differently from

traditional methods, giving credit to faster and stronger computing capability nowadays.

Smyl (2020) argues that the success of machine learning algorithms lies in identifying the

non-linearity of demand without a hypothesis distribution. Yet, the comparative studies

that include machine learning methods are not the majority. Rather, most of the studies

that compare multiple techniques focus only on the Croston method and its alterations.

What is more, despite the prevalence of the Neural Network and support vector ma-

chine (SVM) model in forecasting intermittent demand, the other machine learning meth-

ods, such as XGBoost, are less mentioned in this field. Originated from the gradient tree
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boosting machine (GBM), XGBoost(eXtreme Gradient Boosting) is a state-of-the-art

tree-based method in forecasting, which can be applied as in classification or regression.

It has been proven successful in applications in many industries. For example, this en-

semble tree-based technique has been proven to prevent models from overfitting and has

better performance and efficiency than SVM in forecasting wind turbine fault detection

( Zhang et al. (2018)).

The applications of the machine learning method have been conducted in recent years.

Makridakis et al. (2018) compares the several classic machine learning methods except

for the XGBoost technique with eight traditional statistical ones using the data from

M3 competition. According to Makridakis et al. (2018), the accuracy of the machine

learning method compared to that of standard statistical techniques come under ques-

tion. The performance of statistical ones dominates among accuracy measures. However,

none of these eight statistical methods include the Croston method, its variants, and

bootstrapping methods.

Even though Kiefer et al. (2021) mention XGBoost and the Croston method, there is

no comparison between XGBoost and other statistical methods. Thus, there is a vacuum

left between XGBoost and those methods commonly used in predicting intermittent spare

parts demand. This paper mainly applies traditional statistical methods and general

XGBoost in intermittent spare parts forecasting to find out the insights by comparing

them.

In addition, it is noteworthy that most studies forecasting using XGBoost are only

evaluated by accuracy rate instead of inventory control. Inventory performance measures

should also be considered a vital measure in spare parts forecasting because it is not only

more practical for firms in stock control but also the accuracy measure cannot ensure an

excellent stock performance. The latter reason is mentioned in several studies Syntetos,

Boylan (2006); Teunter, Duncan (2009); Syntetos et al. (2010).

At last, a decreasing trend or obsolescence of items is also worth considering be-

cause this is quite common in business operation and inventory management. Pince,
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Dekker (2010) mention that the dead stock that accounts for 5 percent of all inventory

in aerospace industries causes 1 million dollars in total value in aerospace industries.

Sugiono, Alimbudiono (2020) also note that the stocks brought by slow-moving items

are a big issue in ceramic tiles industries. Therefore, taking this obsolescence into ac-

count,Teunter et al. (2011) propose a new method based on the Croston method. One of

the purposes is to evaluate if the XGBoost way captures the decreasing trends, leading

to better performance.

1.2 Research questions

Thus, according to the motivation in the previous section, the research contribution leads

to two research questions as follows:

Research Question 1: Does XGBoost have a better prediction result than

traditional statistical methods in forecasting intermittent demand, especially

under the evaluation of inventory control?

Regarding research question 1, multiple methods are applied to forecast intermittent

items in simulated and empirical datasets, and are tested by forecasting accuracy and

inventory performance in the following chapters. It is noteworthy that we offer a com-

parative study between a machine learning method and other conventional techniques.

Specifically, it is emphasized that inventory control is introduced to measure performance

for a machine learning method, which is less frequent used than accuracy measurement

is.

Research Question 2: Under which demand patterns does XGBoost per-

form better than conventional forecast models?

Regarding research question 2, we consider a decreasing trend to test the performance

of the XGBoost method and other conventional ones under such a pattern.

Research Question 3: What is the relationships between the forecasting
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performance and computation cost for XGBoost in prediction?

Regarding research question 3, it is no doubt that the tradeoff between forecasting

performance and time of model training exists and is discussed in our research.

Overall, we summarize the contribution of our research below:

1. Since XGBoost is rarely mentioned in this domain, we evaluate the performance of

XGBoost in intermittent forecasting.

2. A comparative study between a machine learning method and other conventional

techniques is provided.

3. Less frequently used than accuracy measurement, the measurement of inventory

control is introduced to test the performance for a machine learning method.

4. A decreasing trend in demands is considered to test the performance of XGBoost.

1.3 Research Design

Figure 1 indicates that the flow of the forecasting process and presents a clear picture of

this paper. First, we generate simulated datasets divided into training data and test data

with several patterns using a hybrid method simply combining Syntetos et al. (2005) clas-

sification scheme and linearly decreasing demand processes in two cases. These patterns

include lumpy, erratic, intermittent, and smooth, and along with the decreasing demand

process, are discussed in detail in the following section. On the other side, the empirical

datasets are collected and also be identified if there’s any pattern contained. Second,

both simulated datasets and empirical datasets are analyzed by five forecasting methods

mentioned in Chapter 3, including SBA, TSB, the EMP ( the empirical method proposed

by Porras and Dekker), WSS, and XGBoost. Finally, we compare the outcome of different

methods evaluated through both accuracy measures and inventory performance.

More specifically, the structure of this thesis is organized as follows. In Chapter 2,

forecasting methods are introduced, and we further describe the XGBoost model in detail.
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Figure 1: The flow of experiment design

In Chapter 3, a brief related work of forecasting methods are provided. In Chapter 4,

we introduce the data descriptions, especially the data classification scheme classifying

SKUs (stock keeping units), the empirical data, and the method that simulates a certain

decreasing pattern of data. In Chapter 5, evaluation methods are proposed. In Chapter 6,

the results from the comparisons between statistical methods and the XGBoost approach

are presented for both simulated data and empirical data. Also, the cost of time training

a model along with model performance are investigated. In Chapter 7, the conclusions

and limitations are provided.
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2 Brief Literature Review

Spare parts demand forecasting is always tricky due to the bumpiness. According to

Kennedy et al. (2002), the irregularity comes from several aspects, one of which is pro-

duction characteristics. Thus, the intermittency and lumpiness can be viewed as an issue

related to the variability of demand and sporadicity of the interval period. In other words,

the variation for both demand size and interval length can be an uncertainty followed by

a parametric distribution. Those two factors, demand size and demand interval, result in

different demand patterns, increasing the prediction complexity. Subsequently, the data

classification scheme is incorporated into this paper to offer further practical insights.

The categorization includes the smooth, intermittent, erratic, and lumpy proposed by

Syntetos et al. (2005). In some circumstances, the item of the spare part involves de-

creasing demand processes. According to Pinçe Çerag, Dekker (2011), this decreasing

trend brought by obsolescence indicates that spare parts items phase out over time, lead-

ing to a risk of high inventory costs due to the excess holding stocks resulting from the

obsolete forecast. Subsequently, the thing with the trend finally becomes very lumpy

(slow-moving). Since the different data patterns complicate prediction, the accuracy of

prediction is significant for those companies that try to lower their inventory cost or avoid

the loss of business opportunities when facing the substantial operational impact brought

by intermittency and lumpiness.

Conventional methods such as simple exponential smoothing (SES) and moving aver-

age approach are frequently applied to predict spare parts demands for most companies

for decades. Yet, these traditional methods are not accurate compared to other methods

since Croston (1972) introduces another alternative method, an approach based on expo-

nential smoothing, separating the forecast into two elements that estimate demand size

and inter-demand intervals. The recent period under the SES application has heavier

weights because the simple exponential method focuses only on the non-zero demand

period, doesn’t consider periods with zero demands, and treats them equally, leading to

bias. Croston (1972) assumes that the demand intervals follow the geometric distribu-

tion and that the demand size follows the normal distribution. However, Willemain et al.

8



(1994) challenge this assumption because the correlations and distribution in industrial

data show that this is not the case. Subsequently,Syntetos, Boylan (2005) offer a modi-

fied version of the Croston method by adding a bias correction coefficient. Furthermore,

Teunter–Syntetos–Babai method, also known as TSB (Teunter et al. (2011)) , is intro-

duced to be an improvement based on the Croston method and taking obsolescence into

account.

In addition to the methods above, which are categorized as parametric methods, the

mainstream methods also include non-parametric bootstrapping models. Willemain et al.

(2004) propose an approach based on classic bootstrapping, using a two-state Markov pro-

cess and a jittering procedure. Syntetos et al. (2015) argue that the Willemain method

(WSS) has superior performance than SBA because the inter-demand interval is erratic

and with short lead times. Yet, this case is not the other way around. The SBA outper-

forms WSS when demand is more erratic with longer lead times. Porras, Dekker (2008)

introduce a new non-parametric method in which the histogram of the lead time demand

is constructed through a series of successive demand windows over the data’s historical

horizon. In general, those bootstrapping methods show good performance when applied

to the empirical data, compared to parametric methods.

The earliest study using the machine learning technique in predicting time series

dataset is proposed by Gutierrez et al. (2008). They point out that the neural network

technique solves the shortcomings of the conventional forecasting method, including the

unable to capture nonlinear patterns in data occasionally and the bias brought by out-

liers. According to the result, the neural network model outperforms the traditional

methods (SES, Croston, and SBA) in predicting lumpy demand from a real-world data

series. Another method based on machine learning technology is Support Vector Machine

(SVM) in predicting intermittent demand. Kaya, Turkyilmaz (2018) compare three ma-

chine learning methods, including artificial neural networks, support vector machines,

and decision tree models. They claim that the support vector machine has the most

appropriate performance with the lowest error rate. Jiang et al. (2020) argue that adap-

tive univariate SVM, an extension of the SVM model, achieves a statistically significant
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accuracy improvement and better inventory performance for the SKU with non-smooth

demand series.

Proposed by Chen, Guestrin (2016), the XGBoost method is applied in some papers

regarding time series prediction in recent days. WANG et al. (2017) propose the XGBoost

approach based on Discrete Wavelet Transform that outperforms DWT-SVR (support

vector regression based on Discrete Wavelet Transform) and DWT-ANN (artificial neural

network based on Discrete Wavelet Transform) in electricity consumption dataset. Alim

et al. (2020) use a hybrid model containing XGBoost and ARIMA methods to improve the

predictive performance of stock market volatility. Alim et al. (2020) compare the ARIMA

model and XGBoost model to predict human brucellosis in mainland China and show the

XGBoost model’s performance is better than that of the ARIMA model. Apart from the

papers mentioned above, the related research in intermittent demand forecasting has come

along recently. Kiefer et al. (2021) compares methods from statistical, machine learning,

and deep learning in predicting Intermittent and lumpy demand, using SPEC (Stock-

keeping-oriented Prediction Error Costs) metric and MASE (Mean Absolute Scaled Error)

to evaluate performance. The result indicates that the XGBoost method ranks 6th out

of 9 approaches when comparing by MASE, better than the Croston method. As we

discuss in the last chapter because there is a gap between the XGBoost algorithm and

other conventional techniques, one of the objects of this paper is to compare them both

numerically and empirically.
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3 Forecasting Methods

In our work, we discuss different methods, including parametric methods, bootstrapping

methods, and machine learning methods. These methods are applied to both simulated

data and the empirical part of this thesis work. After presenting the notation and equa-

tion, we introduce the discussions of these methods. Apart from these methods mentioned

above, the zero-forecast process is also considered a baseline, i.e., a benchmark forecasting

method.

3.1 Parametric Methods

Parametric methods don’t assume that the demand follows a specific distribution. Main-

stream parametric methods include the Croston method and its modifications. Before the

Croston method is proposed, exponential smoothing is widely used in forecasting spare

parts demands. However, the shortcoming is evident due to the forecasts made only in

periods with non-zero demand.

3.1.1 Notation

The notation is applied in the remainder of this section of parametric methods:

zt: The actual demand size in t period

z′t: The demand forecast for the next period in period t .

st: The actual inter-demand intervals in period t

s′t: The estimate of inter-demand intervals in period t for period t+ 1

Y : The actual mean demand per period made in period t for period t+ 1

Y ′t : The estimate of average demand per period made in period t for period t+ 1

pt: The probability of non-zero demand occurs in period t for period t

p′t: The estimate of the probability of non-zero demand occurs in period t for period t

α: The smoothing parameter that is less than 0

β: The smoothing parameter that is less than 1
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3.1.2 The Croston method

Croston (1972) introduce the Croston method correcting this drawback through the fore-

cast of two elements, z, demand size, and, s, inter-demand intervals. Subsequently,

non-zero demand size and inter-demand intervals are both modeled through exponential

smoothing and only updated when demand size is positive or otherwise remain the same

s′t and z′t in last period s′t−1 and z′t−1. The forecast is written as the quotient of demand

size forecast and inter-demand intervals forecast. This method is given by:

if zt = 0 : s′t = s′t−1, z′t = z′t−1

if zt 6= 0 : s′t = αst + (1− α)s′t−1, z′t = αzt + (1− α)z′t−1

Y ′t =
z′t
p′t

where the zt denotes the actual demand size in t period, the z′t denotes the demand

forecast for the next period in t period. st is the actual inter-demand intervals, s′t the

estimate of inter-demand intervals for period t + 1 . Y ′t denotes the estimate of average

demand per period made in period t for period t+ 1. α is the smoothing parameter.

Even though Croston is always used as a benchmark, in most cases, Croston’s modifi-

cations have more superior performance than Croston itself. For this reason, we exclude

the Croston method in comparison in this thesis and only keep its modification methods

as followed.

3.1.3 The SBA method

Syntetos–Boylan approximation, known as the SBA method, is proposed by Syntetos,

Boylan (2005). Pointing out that the Croston method is biased, the authors developed
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this SBA method by providing a bias correction. Incorporating this bias approximation,

SBA method is described as follows:

if zt = 0 : s′t = s′t−1, z′t = z′t−1

if zt 6= 0 : s′t = αst + (1− α)s′t−1, z′t = αzt + (1− α)z′t−1

Y ′t =
(
1− α

2

)
z′t
p′t

where 1 − α
2
is the correction coefficient with a constant alpha, the Y ′t the new demand

forecast in the end of period t. Yet, the modified equation with separate smoothing pa-

rameters initially proposed by Schultz (1987) are introduced in some researches ( Teunter

et al. (2011); Babai et al. (2019)). The equation modified is provided below:

if zt = 0 : s′t = s′t−1, z′t = z′t−1

if zt 6= 0 : s′t = αst + (1− α)s′t−1, z′t = βzt + (1− β)z′t−1

Y ′t =
(
1− β

2

)
z′t
p′t

The two different smoothing parameters are used to achieve the best performance for the

modifications of the Croston method.

3.1.4 The TSB method

Teunter et al. (2011) develop a method called TSB, a new method originating from

Croston by replacing inter-demand interval forecast with demand probability forecast

while remaining part of demand size forecast. Considering the obsolescence in inventory

control, TSB updates the demand probability right after zero demand happens. Also,

Teunter et al. (2011) claim that this method is unbiased compared to the Croston method
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and argue that the result of the TSB method indicates good performance in linking

intermittent forecasting and inventory obsolescence. The TSB method is written:

if pt = 0 : p′t = p′t−1 + β(0− p′t−1), z′t = z′t−1

if pt = 1 : p′t = p′t−1 + β(1− p′t−1), z′t = z′t−1 + α(zt − z′t−1)

Y ′t = p′tz
′
t

where pt and zt denotes the probability and demand size respectively. The probability

is either 0 or 1 at period t and the forecast probability at time t can be written by

the exponential smoothing. The demand size part follows what the Croston method

does, only updated when the positive probability occurs. The final forecast Yt is the

product of probability and demand size. Teunter et al. (2011) argue that the result of

TSB method indicate a good performance in linking the intermittent forecasting and

inventory obsolescence.

3.2 Non-parametric Methods

Unlike parametric approaches, non-parametric methods do not follow a specific distri-

bution; instead, non-parametric methods obtain the lead-time demand directly from a

dataset. Amongst non-parametric forms, the bootstrapping techniques are one of the

most common ones. Hasni et al. (2019) assert the bootstrapping techniques use resam-

pling with replacement to draw a virtual copy of the real population. In this paper,

we consider two bootstrapping methods, including the method introduced by Willemain

et al. (2004) and Porras, Dekker (2008).

3.2.1 The WSS method

Willemain et al. (2004) create a Markov process to estimate transition probabilities based

on the historical data, and thus this process captures and models autocorrelation. Sub-
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sequently, according to transition probabilities, a forecast of zero and non-zero values are

generated over the forecast horizon. Each non-zero value marked in the set of forecasts

is replaced by a numerical value sampled randomly from non-zero historical demands.

Consequently, the predicted non-zero demand size are obtained after jittering and sum-

ming over the horizon. Finally, the distribution of lead time demand is generated based

on the above procedure. The WSS approach has been proven to be more accurate than

exponential smoothing and Croston’s Method as an advanced bootstrapping method.

3.2.2 The EMP method

Porras, Dekker (2008) introduce an empirical model (EMP) that estimates the LTD

distribution, a histogram of demands over lead time. The function without sampling is

simpler than bootstrapping and is explained as follows. First of all, a fixed lead time is

obtained from the historical data. Moreover, we move the lead time range one period

at a time, and the sum of the lead time demand is calculated after each move. Finally,

the empirical distribution of lead time demands is constructed by repeating the method

moving this range. Porras, Dekker (2008) claim that the empirical method has superior

performance to the WSS method.

3.3 Machine learning Methods

Based on the gradient boosting machine introduced by Friedman (2001), Chen, Guestrin

(2016) propose the XGBoost that is categorized as a supervised learning method in

forecasting. XGBoost is also a tree ensemble model, which denotes that the sum of

the predictions of each leaf in multiple trees equals the prediction for each example:

ŷi =
K∑
k=1

fk(xi), fk ∈ F

where F denotes the regression trees space, f the function in F , and K means the trees

numbers.
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XGBoost can be applied to not only regression but also classification issues. The

difference lies in the objective function that allows the model to fit the training data by

minimizing the function itself. The loss function and regularization term compose the

objective function together.

As a function for smoothing weight that controls the model complexity, the regular-

ization term prevents the model from overfitting. In light of the regression issue, the error

rate, such as root mean square error (RMSE), instead of binary classification error rate,

is used to be a loss function in this paper.

Furthermore, the prediction in t-th iteration(tree) can be described by the following

equation:

ŷi
(t) =

t∑
k=1

fk(xi) = ŷi
(t−1) + ft(xi)

The final objective function at the t-th iteration of trees can be denoted as follows:

obj(t) =
T∑
j=1

[Gjwj +
1

2
(Hj + λ)w2

j ] + γT

where Gj =
∑
i∈Ij gi, Hj =

∑
i∈Ij hi, and γ is a penalty defined by user to encourage

pruning, and T denotes the number of tree leaves.

The way to prune the tree is expressed by the equation below:

Gain =
1

2

G2
L

HL + λ
+

G2
R

HR + λ
− (GL +GR)2

HL +HR + λ
− γ

where L denotes the left node, R the right node. As long as the Gain is negative, the

pruning takes place.

As a tree-based model, XGBoost develops a unique tree splitting rule. The greedy

algorithm allows the model to detect the best split for constructing an XGBoost tree. For

every single tree, the node with the most significant scores is selected to be split. Yet,

this traditional tree splitting method, the exact greedy algorithm, is inefficient due to

numerous thresholds caused by multiple features and examples in the dataset. Therefore,

16



an approximate algorithm is introduced and shows its efficiency by dividing data into

quantiles splitting observations. Subsequently, a weighted quantile sketch is presented

to propose candidate split points. Unlike the usual percentile of a feature that evenly

distributes candidates, the weighted quantile method maintains that each quantile has

an equal sum of weight.

Learning rate and subsampling ratio are two techniques to avoid overfitting in XG-

Boosting. The learning rate, between 0 to 1, prevents the model from overfitting by

controlling bias reduction. Yet, in each iteration, it takes a small step of prediction to-

wards the actual value. Consequently, the final prediction equals the sum of the learning

rate multiplied by prediction in each tree across all iterations. XGBoost can choose a

portion of both features and samples to construct a tree, like the random forest method.

Furthermore, column subsampling and training instance subsampling is determined by a

subsampling ratio.

3.4 Benchmark technique

The zero forecast method is a simple method, by which each forecasted value is given

zero over the forecast horizon. (function) Chatfield, Hayya (2007) argue that comparing

to Croston, SES (simple exponential smoothing), and MA (moving average methods),

the zero forecast method has the best performance on both accuracy error and inventory

cost for the demands with high lumpiness which denotes the degree of probability of

non-zero demand. However, there is only one advanced forecasting method, the Croston

method, that compares with zero forecasts, indicating insufficient proof of its superiority

over other methods in this paper. According to Teunter, Duncan (2009), the zero forecast

method is perceived as the poorest method because there is no prediction from inventory

control. Despite the zero forecast method having low accuracy error, it is not doubted

that the zero forecast method performs worst in inventory control measures (ibid). Our

work considers the zero forecast method as a baseline method assumed to have the worst

performance against other methods since it does not predict anything.
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4 Data Description

This chapter discusses the dataset to which forecasting methods are applied in this thesis

work. To make our research more robust, we include two types: simulated and empirical.

We will investigate whether the results from the simulated dataset are in line with those

in the empirical one. Besides, generating data for simulated datasets, especially the simu-

lation in decreasing trends, is provided. Moreover, we examine the data descriptions and

their traits for four empirical datasets from different industries. Lastly, the classification

scheme is presented, which is necessary since different forecasting methods might have

good performance for specific item categorization.

4.1 Simulated data and settings

For the investigation of forecasting, a simulated dataset of 200 months, along with dif-

ferent patterns, is generated. As a part of the R package “tsintermitten” proposed by

Kourentzes (2014), the simulated function contains four inputs, i.e., the number of SKUs,

the observation in time series for each SKU, the average inter-demand interval, and the

squared coefficient of variation of the non-zero demands. We use the latter two arguments

of the inputs for the function to generate time-series data in two parts: (1) the non-zero

demand interval following a binomial distribution (2) the non-zero demand size following

a negative binomial distribution.

In addition, those two arguments also construct the classification scheme that creates

four patterns: smooth, intermittent, erratic, and lumpy. From this point, we simulate

the patterns using the R package “tsintermittent”. In terms of combining the latter two

arguments, we create intermittent data with all those four patterns.
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(a) The decreasing trend for demand size

(b) The decreasing trend for demand probability

Figure 2: Two cases of decreasing trend

Besides these four patterns, a decreasing trend in the demand process is also consid-

ered. The figure 2 shows two cases: (1) a decreasing trend for demand size but in demand

probability. (2) a decreasing trend for demand probability but demand size.

In the first case, in other words, the demand size decreases linearly without the prob-

ability decreases. We firstly simulate data DO as that there is no trend and extract the

non-zero demand D′O from DO. Furthermore, we manufacture another decreasing dataset

that equals the product of a random series of numbers following a normal distribution

and a descending arithmetic sequence of which the common difference is 1. In addition,

the result is rounded. The formula is provided as follows:

Dnew = S ·N

where Dnew denotes the new dataset, S the vector contains a descending arithmetic

sequence where the largest element equals to the total observations of non-zero demand

D′O, with a common difference that is 1, N the vector follows a random normal distribution
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with mean that equals 3 and standard deviation that is 1. The mean, which is 3, prevents

the negative numbers occur. Furthermore, the descending sequence S usually guarantees

a linearly decreasing trend after the multiplication because the trend in S is more extreme

in the N following a normal distribution. Figure 4 offers an example by breaking down

the process and giving detail.

Figure 3: The new data Dnew is constructed by multiplying vector S with vector N .

We then reorder the non-zero demand in the original data simulated initially with the

sequence followed by the new linearly decreasing series just created.

Lastly, building a linear regression model using S as the independent variable and

using the non-zero demand size D′O as a dependent variable to test whether the linear

trend is significant. Thus, if the p-value is lower than 0.05, a linearly decreasing series is

established.

The steps of the simulation in the first case are presented as follows:

1. Create a dataset DO with no trend and build another dataset D′O composed by

non-zero demand in DO.

2. Construct a new dataset using formula: Dnew = S ·N .

3. Apply the order of Dnew to D′O, and replace the original sequence of non-zero

demand in the dataset DO.

4. Build a linear regression model for examination, keep the observations with a
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negative coefficient, and remove the ones with an insignificant linear model.

In the second case, contrary to the first case, the demand sizes remain the same

while the probabilities decrease through all periods. We divide the data into five buckets

(usually the number is five1), and for each bucket, the probabilities of demand sizes drop

by a certain level, which is the initial probability divided by 5. For example, the initial

probability is 0.9, and the probability in each following bucket is 0.72, 0.54, 0.36, 0.18,

respectively, with a fixed reduction. In other words, the frequency of non-zero demand

in each block is decreasing. However, in this case, the probability doesn’t drop to zero

because we only simulate a decreasing trend in demand probability instead of complete

obsolescence. A similar technique that dividing the whole demand history into several

blocks is also used in the paper proposed by Babai et al. (2014). Instead of 5 blocks, 3

blocks containing 8 periods in each block and 4 blocks containing 21periods in each block

are used. Choosing five non-overlapping blocks is arbitrary yet it guarantees 40 periods

in each block for simulated data with 200 periods in total.

In addition, like the first case, the second one is also applied by a linear model to

check the significance of the linear model. Constructing a linear regression model of

which the dependent variable is the frequency of non-zero demand within each block and

the independent variable is the number of non-overlapping blocks.

The simulation in the second case is provided in the following steps:

1. Break the entire periods into n non-overlapping periods. If the periods with each

block are lower than 10 periods, change n to make the period number equal to 10.

2. Compute the frequency of non-zero demand in each block.

3. Build a linear regression model for examination, keep the observations with a

negative coefficient, and remove the ones with an insignificant linear model.

According to the result, note that the demand pattern is quite lumpy, resulting from

the high average zero demand interval led by the low probability of zero demand. The
1the number of blocks depends on the number of periods, generally with ten periods minimum.
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spare parts simulated are either lumpy or intermittent.

The method to identify this decline in empirical data for either non-zero demand size

or non-zero demand probabilities is explained in the next section. What is more, for the

simplicity of the analysis, the lead time remains one period for all SKUs in all cases. We

may further advance this research by incorporating different lead times as an argument

to validate forecasts in our future work.

Unlike the lead time and price of SKUs are both given in the empirical dataset, the

lead time and the price in the simulated dataset are assumed to be 3 and 1, respectively,

for all SKU for the reason of simplicity. These are designed in such a way because the

lead time and price are difficult to simulate, hardly to find an appropriate distribution.

After the process mentioned above, we finally simulated a dataset including 270 ob-

servations and 120 periods.

4.2 Empirical data and settings

In this paper, the empirical data includes four datasets. The number of datasets and

abbreviations are given in table 1. The first dataset contains the information of spare

parts from a large refinery oil company with 56 months. The second one comes from the

automotive dataset used by Syntetos, Boylan (2005) with 24 months periods and 3000

SKUs. The third one is a dataset from a manufacturing firm in the Netherlands with

46 weeks and 3451 SKUs. The fourth one is the RAF (Royal Air Force), first described

by Teunter, Duncan (2009), and it contains seven years periods (84 months) with 5000

SKUs. Except for the third dataset from the manufacturing firm, the lead time and price

for each item are available. Both lead time and price are assumed to be one in the only

exception.

Table 2 to Table 4 describe the statistics that include the average demand sizes,

inter-demand intervals, and demand per period. Subsequently, the table provides the

information regarding the pattern for each SKU by evaluating the minimum, median,
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Table 1: The abbreviation of datasets

No. Dataset Abbreviation References

1 Refinery oil company RO Porras, Dekker (2008)

2 Manufacturing firm MF Syntetos, Boylan (2006)

3 Royal Air Force RAF Teunter, Duncan (2009),

and maximum number of three metrics. All these three datasets are quite lumpy or slow,

with a minimum number of demand intervals equal to 2 and 3.82, respectively, meaning

it takes a long time to fulfill a demand. Finally, Table 5 of the classification demonstrates

the characteristics of each dataset.

Moreover, the price and lead time are offered in four datasets except for Dataset MF

from the manufacturing industry. We then assume that the lead time equal to 1, and the

price for each SKU remains the same. Also, just as we do to simulate a decreasing trend

in simulation data, two decreasing patterns in the demand process plan to be identified

in the empirical data.

Empirical datasets may contain the obsolescence items in which the decreasing trend

is identified by a linear model. For both decreasing cases mentioned in the last section,

the independent variable of the linear model is the time period while the dependent

variables are different due to the characteristics of decreasing patterns. In the first case

where only non-zero demand decrease, it is obvious that the non-zero demand is the

dependent variable and the periods number is the independent variable. In the second

case where only probabilities of non-zero demand decline, we assign the frequency of

non-zero demand as the dependent variable and the blocks number from 1 to n2 as the

independent variable. In addition, the items with decreasing patterns are selected on the

condition that the coefficient of the independent variable, namely the slope, is negative

and that the p-value of the model is smaller than 0.05, demonstrating a significant linear

relationship.
2The number of blocks is five except for the dataset MF due to its entire periods only 46 periods.

Therefore, the n equals 4 in this case
3All means and standard deviations in the table are computed for each SKU in each dataset unless

otherwise stated.
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Table 2: The summary of Dataset 1 –RO

Demand size Demand interval Demand per period

percentile Mean3 Std. Dev. Mean Std. Dev. Mean Std. Dev.

0%(min) 1 0 2 0 0.04 0

25% 1 0 7.14 4.37 0.15 0.1

50% 1.56 0.58 10.67 7.23 0.37 0.35

75% 4 2.81 16.33 12.02 0.94 1.01

100%(max) 1600 1612.31 28 38.18 465.38 667.42

Table 3: The summary of Dataset 2 – MF

Demand size Demand interval Demand per period

percentile Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

0%(min) 0.08 0 1.11 0 0 0

25% 3.07 1.89 4.93 3.81 0.54 0.59

50% 8.5 6.56 10.92 8.51 2.05 2.43

75% 22.05 17.99 23.46 20.81 6.08 7.81

100%(max) 10780.44 7358.02 74 101.82 1523.85 1516.14

Table 4: The summary of Dataset 3 – RAF

Demand size Demand interval Demand per period

percentile Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

0%(min) 1 0 3.82 0 0.04 0

25% 1.56 0.81 7.27 5.43 0.38 0.37

50% 3.83 3.06 9 6.93 0.84 0.97

75% 11.33 9.31 11.57 8.63 2.67 3.44

100%(max) 668 874.42 24 16.46 232.06 363.6

4.3 Classification scheme

In this paper, the classification of SKUs is taken into account by aggregating items

according to their characteristics. Applying the classification scheme is to detect the best

forecasting methods for a specific item categorization. Johnston, Boylan (1996) suggest
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Table 5: The number of SKUs for different patterns in multiple datasets.

SKUs number

Pattern RO MF RAF Simulated

Intermittent 7967 640 2565 29

Lumpy 2770 974 2434 133

Smooth 6 2 1 77

Erratic 0 26 0 31

that when the mean inter-demand interval is higher than 1.25, the size/interval method,

known as Croston’s intermittent demand estimation procedure, outperforms the weighted

moving average approach (EWMA) comparing these two methods. Then Syntetos et al.

(2005) propose an alternative classification scheme based on the research of Johnston,

Boylan (1996) by comparing the Croston method, SBA, and EWMA, in which mean

squared errors (MSE) are taken as the evaluation measures. This method is also known

as the SBC classification scheme.

Figure 4: SBC categorization scheme

As the metrics classifying all spare parts, the squared coefficient of variation of non-

zero demands and the mean demand interval are computed for all SKUs. They take the

average demand interval p that equals 1.32 and the squared coefficient of variation CV 2,
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which is 0.49 as the cut-off point for average demand interval and squared coefficient of

variation. This classification scheme is eventually built by those two cut-off points that

construct a matrix with four demand patterns: smooth (p < 1.32 and CV 2 < 0.49),

intermittent (p >= 1.32 and CV 2 < 0.49), erratic (p < 1.32 and CV 2 >= 0.49), and

lumpy (p >= 1.32 and CV 2 >= 0.49). Figure 5 explains how this categorization works:

smooth item has comparatively low non-zero demand interval and low squared coefficient

of variation for non-zero demand; intermittent demand has a low squared coefficient of

variation of non-zero demand and high demand interval in average; the items of erratic

and lumpy both have high variability in average demand interval yet the former one has

low demand timing while that of the latter one is relatively high. With the widespread

application in the industry, we decide to apply this classification scheme in this paper to

specify the type of spare parts both in simulated datasets and empirical datasets.

26



5 Evaluation metrics

To evaluate those five methods mentioned in the previous chapter, we apply forecasts

accuracy and inventory performance, both of which are the leading performance measures

in forecasting intermittent spare parts.

5.1 Accuracy measures

Forecast accuracy is considered as an “error measure”, which means the gap between

forecasts value and actual value. Although there are many forecast accuracy measures,

the measure perfectly designed for the intermittent dataset is few. Prestwich et al. (2014)

claim that existing error measures do not help predict intermittent demand. Therefore,

more than one accuracy measure is applied in a paper for most of the cases.

Pinçe Çerağ et al. (2021) suggests that, among all papers related to intermittent spare

parts forecasting, the most popular six forecast accuracy are ME, MAE, MSE, MAPE,

MASE, and RMSE. Despite their prevalence, Prestwich et al. (2014) argue that scale-

dependent measures, such as ME, MAE, MSE, and RMSE, are not accepted as valuable

methods to compare several series due to their scale dependency. It is reasonable to use

these measures only if the forecasting methods applied to single time series or multiple

time series that share the same units.

Apart from those four methods above and for simplicity and comparison with the

results in other papers, MAPE ranked 4th amongst those accuracy measures may be a

candidate for the accuracy measure. Unlike scale-dependent measures, it allows us to

compare the series from different SKUs due to its benefit of unit-free. Thus, it is used

to compare forecasting methods between different datasets. However, the drawback of

MAPE is still apparent. The method categorized as percentage errors, such as MAPE, is

undefined once the actuals, the denominator in the equation, equals zero. Also, Syntetos,

Boylan (2005) claim that removing the period with zero demand or summing a small

number to avoid zero demand has no significant effect in enhancing this MAPE’s con-
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fidence measure. Therefore, it is not advisable that many software exclude the periods

with actual that is zero. Moreover, MAPE is asymmetric, namely more penalty on the

negative errors (forecasts higher the actual) than that on positive ones (forecasts lower

than the actual) since the ratio cannot over 100 percent if the estimates are much higher

than the actuals. Therefore, a modified version of MAPE, sMAPE (symmetric MAPE),

is considered because the issue brought by the zero actuals value in MAPE is eliminated

and expands its upper range from 100 to 200.

Since every measure has its disadvantage, the second measure is introduced to val-

idate each other. MASE, Mean Absolute Scaled Error, is proposed and recommended

by Hyndman, Koehler (2006) due to its ability to be independent of the scale of time

series and to deal with the occurrence of infinite and undefined values. According to

the argument of Hyndman, Koehler (2006), MASE is considered to outperform several

methods in forecasting competitions. What is more, according to Prestwich et al. (2014),

MASE exceeds other methods specifically in forecasting competitions and more valid for

non-stationary data, such as demand with trends or seasonality.

In the end, two accuracy measures are calculated, including:

• Symmetric Mean absolute percentage error: sMAPE = mean
(
200|et|
Yt+Ŷt

)

• Mean Absolute Scaled Error: MASE = mean
(

|es|
1

t−1

∑t

i=2
|Yi−Yi−1|

)

where t denotes the period, and et equals Yt−Ŷt. According to the equations, it is obvious

that for sMAPE the less the error (close to zero) is, the better in forecasting and that

for MASE the greater the scaled error is than one, the worse the forecast performance

is.

Considered multiple items, we calculate the mean of accuracy rate across all SKUs.
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5.2 Inventory performance

On the other side, inventory performance is also vital to measurement because Syntetos,

Boylan (2006) assert that a high accuracy method doesn’t guarantee a high performance

of inventory investment. We adopt an order-up-to-level policy that replenishment is

triggered to make the stock return to the reorder point once stock is below it. The order-

up-to-level stock can be computed by the demand size, lead time, and cycle service level

CSL (i.e., the probability of no out-of-stock). The main focus of this approach is to find

out the minimum stock on a condition of a certain service level. The CSL is described as

follows:

CSL = P (LTD <= S)

where P denotes the probability, LTD the lead time demand, and S the reorder point.

Order up to a level stock that achieves a certain service level is then calculated as follows:

S = µLTD + σLTD × Φ−1(CSL)

where µLTD denotes the average of the lead time demand, σLTD the deviation of lead

time demands, Φ−1 the inverse of cumulative distribution function over lead time, and

CSL is the target service level that we expect to achieve. It is noteworthy that in this

paper Φ denote a cumulative function the standard normal distribution for parametric

methods, while a cumulative function of empirical distribution for non-parametric tech-

niques. Moreover, in this equation, we can know that order up to level S is also known as

reorder point and σLTD ×Φ−1(CSL) means the safety stock, and service level is given as

the equation above: CSL = p(LTD <= S). Furthermore, this paper assumes that the

demand is uncertain and the lead time itself is stable. The mean of lead time demand

can be described as µLTD = µLT × µD and the variance of demand σLTD is described as

σLTD =
√
µLT × σD , where µLT denotes the average lead time, µD the mean of demand

size per period, and σD one standard deviation of demand size per period. Note that,

in some papers, it mentions RMSE (Root mean squared error) which is identical with

standard deviation mathematically.
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Subsequently, we consider the trade-off curve between achieved cycle service level

and Inventory holding cost; these trade-off curve measures are applied in several papers

(Syntetos, Boylan (2006); Syntetos et al. (2015); Babai et al. (2014)). To construct this

trade-off curve, we first set a series of target CSL. In this paper, we use forecasting

methods to meet the seven CSL targets: 0.8, 0.85, 0.9, 0.92, 0.95, 0.97, 0.99. Then, for

each SKU in the dataset, the base stock can be computed using the total forecast demand

over the lead time to meet CSL targets. Moreover, the achieved CSL can be obtained

in the same way by using the actual demand instead of forecast demand. Finally, we

calculate the inventory investment by multiplying the base stock and price for each SKU.

The trade-off curve is constructed as following steps:

1. Set a series of CSL target.

2. For normal distribution, the equation S = µLTD + σLTD × Φ−1(CSL) calculate

inventory cost using forecast demand. For empirical distribution, we change the equation

and let S = Φ−1(CSL)

3. For each cycle, once the safety stock is less than thee actual demand, then this

cycle is define as a shortage cycle. Calculate the number of shortage cycle and determine

the achieved CSL.

4. For each target CSL and inventory cost, the achieved CSL can be found, constitut-

ing several dots that finally form a curve by connecting them in lines, and the trade-off

curve is then constructed.

In this paper, two types of distribution of lead time demands are considered: the

normal distribution and the empirical distribution. For parametric methods (SBA, TSB)

and machine learning method (XGB), the normal distribution are applied, while for

non-parametric methods (EMP and WSS), the lead time demand are are assumed to

follow empirical distribution. Teunter, Duncan (2009) mention that the mean of normal

distribution equals the product of per period forecast and lead time, converting period

forecasts into lead time forecasts.
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Finally, we build a the tradeoff curve with its x-axis the inventory investment and

y-axis the achieved CSL. By summing across all SKUs in the dataset, we multiply the

unit price by the amount calculate and compute the inventory investment. Note that the

achieved CSL is averaged across all SKUs. Also, a curve for comparison between achieved

CSL and target CSL is constructed to show to what extend target CSL can reach to the

achieved one.
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6 Model Setups

In this research, we construct a model for each SKUs across multiple forecasting meth-

ods. For this purpose, this chapter mainly introduce the detail setups in sampling and

forecasting, the settings of different measures, and the parameters tuning in parametric

methods and the XGBoost method, except for the non-parametric methods since they

don’t contain any parameters. Moreover, the application of the XGBoost method in time

series data is provided using a feature engineering technique to generate multivariate data

based on univariate data.

6.1 Sampling and forecasting

To evaluate the performance of forecasting methods, we divide both the simulated datasets

and empirical ones into training data and test data. The training data provides input

for the model and optimizes the parameters of parametric methods, while the purpose of

test data is to report the performance by comparing it with the actual value. Within the

dataset, 70% of the demand history is selected to be the training data and 30 % for test

data.

Besides, a rolling method is applied to the training and test process. For example, a

forecasts Y ′t at period t is based on the periods from 1 to t − 1 from training data. We

keep updating the training data after obtaining each forecast.

Note that since the forecast is designed to be over the lead time, the final forecast

equals the prediction result of a one-period unit that multiplies lead time, making it to

be lead time forecasts.

6.2 Settings for the variants of the Croston method

For parametric methods mentioned in Chapter 3, we take the first non-zero demand

and the first interval as the initial demand and initial interval. Furthermore, the model
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parameters are specified to be 2, namely that the demand and interval parameters are

different in fitting the model.

In addition, we optimize smoothing parameters over training data using the Nelder-

Mead method (Nelder, Mead (1965) ) from the R package “tsintermittent", which min-

imizes the cost function by varying its parameters. The reason why we don’t apply the

popular grid search is that local search such as the Nelder-Mead method is much more

efficient in finding optimized parameters. It is more effective in saving time since each em-

pirical dataset contains thousands of observations in this research along with thousands

of models needed to be built.

Besides, we used the accuracy measures (sMAPE and MASE) mentioned in Chapter

5 to obtain the optimized smoothing constants seperately. The parameters with the

smallest error provided by sMAPE and MASE are chosen for each model based on each

SKU.

6.3 Settings for the non-parametric methods

The procedure of fitting the non-parametric models (EMP and WSS) are basically the

same as that mentioned in Chapter 2. According to same replications mentioned by

Willemain et al. (2004), we jitter the non-zero demand 1000 times to get a robust result

when fitting the WSS model. Through the bootstrapping process, a distribution of lead

time demand is obtained under these two methods, and the forecast over the lead time

equals the mean from this distribution.

6.4 The application of XGBoost in demand forecasting

Inder (1984) use an approach to apply the lag of the response data to time series fore-

casting. In other words, the lag features as dependent variable are values from previous

periods. To elaborate that, Figure 5 demonstrates the input dataset for the XGBoost

method and explains the way that the function used to establish the model by creating
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a matrix of features based on lagged terms of each demand period, and we further feed

that matrix as the variables for the XGBoost model. As an example, the number of

lagged periods in Figure 5 is four. However, considered that variables are not enough for

training a model, the rule for lagged period number is made. In this research, the rule

that determines the number of the lagged period comes from the R package “forecastxgb"

introduced by Ellis (2017), and it is described as follows:

Nlagged = max(8, 2 · Freq)

where Nlagged denotes the number of max lagged periods, and Freq means the frequency

of a time series dataset. Freq is higher than one if the dataset is cyclical or it equals one,

For example, if the basic period of a dataset with periodicity is month, then the frequency

might be 12 because of 12 months each year. The equation above indicates that Nlagged is

simply but the max value between eight and two times the dataset frequency, meaning at

least there are 9 variables (one original period as a dependent variable and eight lagged

period as independent variables) as an input in the XGBoost method. The number

of eight is a given volumn according to Ellis (2017). Assuming that there is neither

seasonality nor any other periodicities in the dataset, we then assign the lagged periods

with 8, which means that we take eight lagged times as variables for our model. Thus, a

multivariate data is generated by creating lagged periods that originates from univariate

time series data.

The cross-validation technique is also applied in constructing a preferable model. By

doing so, a good iteration number, namely the number of the tree, is computed. When

tuning the hyperparameters of the XGBoost model, we obtain the optimized parameter

using 10-fold cross-validation and max iterations that is up to 100. In order to keep this

model simple and efficient when applying it to thousands of spare parts with hundreds of

time periods, we only select one parameter, which is the number of iterations, for model

training in such a way that sMAPE and MASE are selected to be the accuracy measure.
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Figure 5: The example of input data for XGBoost in intermittent demand forecasting.
The left table is the original datasets while the right one is processed as a result of adding
variables of which value from previous periods. Note that this case is merely an example
with four lagged periods without a rule applied for selecting a minimum lagged number
because the number in this research is at least eight.

6.5 An example of the experiment

To better illustrate the experiment in this research, we apply item No.16 from simulated

datasets to the procedure mentioned above. Figure 6 demonstrates the monthly demand

for item No. 16.

Figure 6: Monthly demand of item No. 16 from simulated dataset with a probability
decreasing trend.

First, we determine the trend type and pattern type based on the characteristics of

this SKU. For this item, the coefficient of the linear relationships between the non-zero

demand and frequency of the demand occurrence is -4.9, and the p-value of this regression
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model equals 0.0019. Thus, a probability decreasing trend is undoubted with this SKU.

The pattern type is determined by the average demand p and CV 2, which is 1.70 and

0.60 respectively, and thus classified as pattern Lumpy.

Moreover, we apply each forecasting method to build the model and predict the de-

mand. For multiple items, we average the accuracy rate across all SKUs.

Figure 7: The empirical cumulative distribution of lead time demand based on the WSS
methods for item No. 16.

Lastly, the evaluation is executed under the measures of accuracy rate and inventory

performance. Applying the accuracy rate techniques, we compute the sMAPE and MASE

under different patterns and trends. As for the inventory performance, we determine the

lead time demand distribution, compute the safety stock, and then calculate the achieved

CSL. Figure 7 demonstrates the empirical cumulative distribution of WSS. For item No.

16, target CSL= 0.92, safety stock = 458, achieved CSL = 0.917. Target CSL = 0.95,

safety stock = 495, achieved CSL = 0.944. By varying the target CSL, we can compute

a series of achieved CSL. For parametric methods, we apply the normal distribution.

Regarding multiple items, we average the achieved CSL by forecasting methods.
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7 Results

This section introduces the results from the simulated dataset and the dataset in the real

world discussed in Chapter 4, where we introduce three empirical datasets, RO (Refinery

oil company), MF (Manufacturing firm), and RAF (Royal Air Force). For each part,

there are two types of measurement mentioned in Chapter 5: the forecasting accuracy and

the inventory performance under different demand trends. Both measurements include

further information on different patterns. Therefore, this section presents the forecasting

accuracy and inventory investment separately.

Furthermore, the results from different patterns discussed in Chapter 3 are provided in

the section on forecasting accuracy. Table 5 in Chapter 4 indicates that most of the items

are intermittent and lumpy in the three datasets. For the section on inventory investment,

the results based on different types are not included because of the limitations of this

research space.

Due to the same reason, the part of accuracy rate cannot adequately address the

results from all the datasets. Yet, the tradeoff curve is discussed for each empirical

dataset.

7.1 Forecasting accuracy

According to the previous chapter, two accuracy measures, MASE and sMAPE, are

considered to evaluate forecasting accuracy across different methods. These two measures

are both smaller, the better.

Table 6 demonstrates the comparison of forecasting accuracy between multiple models

under MASE and sMAPE in the simulated dataset. For each row in Table 6, the bold

number indicates the methods with the best performance.
4N denotes the normal demand without trends, PD the demands with decreasing probabilities, and

SD the demands with decreasing size.
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Table 6: A comparison of the accuracy of forecasting methods in simulated dataset is
provided. N is the abbreviation of the normal demand without trends, PD the abbrevia-
tion of demands with decreasing probabilities, and SD the abbreviation of demands with
decreasing size. The method of best performance is highlighted for each row.

Parametric Non-parametric ML Benchmark

Measure Trend4 SBA TSB EMP WSS XGB ZF

MASE N 0.87 0.87 0.87 0.88 0.79 0.99

PD 1.90 1.88 1.89 1.98 0.96 0.58

SD 1.78 1.46 1.54 1.90 0.92 1.20

sMAPE N 1.24 1.24 1.24 1.23 1.33 2.00

PD 1.77 1.78 1.77 1.77 1.85 2.00

SD 1.21 1.23 1.26 1.28 1.26 2.00

Note that under MASE measurement, XGB and ZF outperform other methods for

three types of trends. First, the XGB performs best under the pattern N and SD. However,

when applying sMAPE, this is not the case. The error rates of traditional methods

are lower than those of XGB and zero forecasts. Significantly, the ZF has the worst

performance of which value equals 2 using sMAPE as the measure. Thus, a contradiction

appears.

We believe that ZF has the worst performance when applied to sMAPE may because

the error |et| is always equal to Yt yet Ŷt is zero all the time according to the formula

sMAPE = mean
(
200|et|
Yt+Ŷt

)
. Compared to sMAPE, the MASE owns a denominator from in-

sample, bring no such issue under sMAPE. To solve this contradiction between the results

of two measurements, we introduce a method to evaluate the models. We start with the

max-min normalization adopted to calculate the scaled score of each model for each row

in Table 7. The smaller number after scaled is preferable since it’s a transformation as

the accuracy rate. Moreover, we average the value with the same trend pattern. Finally,

Table 7 summarizes the results, which can be thought that the accuracy rate of the target

method is how far away from that of the best method.

5The time is measured by second.
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Table 7: The comparison of the accuracy of forecasting methods in the simulated and
empirical dataset is presented by averaging the max-min normalization of MASE and
sMAPE. The larger the percentage, the worse the performance. The method of best
performance is highlighted.

Parametric Non-parametric ML Benchmark

Trend Data Type SBA TSB EMP WSS XGB ZF

N Simulated 20% 20% 20% 23% 6% 100%

Empirical 49% 49% 50% 54% 52% 50%

PD Simulated 48% 48% 47% 50% 31% 50%

Empirical 48% 48% 48% 51% 29% 50%

SD Simulated 44% 29% 35% 54% 3% 64%

Empirical 47% 47% 45% 52% 40% 50%

Time5 Total 1.4s 1.4s 0.1s 5.3s 9.7s 0.04s

After taking the average of the accuracy results using max-min normalization, from

Table 7, we conclude Finding S1 as follows:

Finding 1. XGB outperforms the traditional methods under three types of trends,

significantly PD and SD.

Regarding Finding 1, it is evident that XGB dominates under three trends in simulated

data. Compared to the condition in simulated data, the performance of XGB in empirical

data is the best except for Trend N.

Note that TSB exceeds the others in trend SD among traditional methods, showing

the sensitivity to demand obsolescence due to the update of the occurrence of nonzero

demand. But, surprisingly, WSS has relatively higher numbers (low performance) than

others, even than the non-parametric method EMP in trend SD.

In addition, Table 7 also includes the time that each forecasting methods spend in

building the models. The numbers denote the average time for each SKU. As expected,

it takes the longest for XGB to compute since the machine learning technique requires

training and validation to determine the optimized parameters. There is no doubt that

the second time-consuming method is WSS because of the 1000 times of bootstrapping
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generating the lead time demand distribution. Thus, we can conclude another finding:

Finding 2. XGB and WSS are the most and second most time-consuming methods,

respectively, among all techniques.

Table 8 shows that under which pattern the forecasting methods outperform others.

Similarly, as the case containing two opposite results between the conventional methods

and XGB (and ZF) mentioned previously, we calculate the mean of the max-min normal-

ization again for each method 7. Finally, more details of results regarding the patterns

are summarized by Table 8 as follows:

Finding 3. For Intermittent and Lumpy under the trend of simulated data, XGB

has the best performance. Yet, XGB performs worse than others in empirical data.

Finding 4. The preferable method for trend PD is XGB, no matter under what

pattern it is. This results in simulated data and empirical data are consistent.

Finding 5. XGB beats other methods in the pattern Erratic and Lumpy under trend

SD for both simulated and empirical data.

Regarding Finding 3, for the pattern under the trend N, the reason the conventional

methods win over XGB could be that the forecast variation of conventional methods is

smaller than that of XGB. This fact results in a small error rate in the pattern Smooth and

Erratic, under which the non-zero demand interval is lower than that under Intermittent

and Lumpy.

Moreover, Finding 4 and Finding 5 are following Finding 1. According to Finding 4

and Finding 5, it is proved that XGB performs well under trend PD and SD, even for

the performance for the SKUs divided into multiple patterns.
6NA means no type under this demands trend.
7For more details of the results under different patterns in MASE and sMAPE, Table 9 in the appendix

describes the plots.
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Table 8: A comparison of the accuracy of forecasting methods under different pattern
in simulated and empirical datasets using the max-min normalization is provided. The
method with best performance is highlighted.

Parametric Non-parametric ML Benchmark

Trend Data Type Pattern SBA TSB EMP WSS XGB ZF

N Simulated Smooth 0% 0% 0% 0% 8% 100%

Erratic 1% 0% 0% 3% 16% 100%

Intermittent 49% 49% 49% 50% 21% 50%

Lumpy 46% 46% 46% 50% 27% 50%

Empirical Smooth 37% 39% 41% 40% 50% 50%

Erratic 12% 25% 0% 4% 22% 100%

Intermittent 39% 39% 39% 40% 52% 50%

Lumpy 46% 46% 48% 50% 47% 50%

PD Simulated Smooth NA6 NA NA NA NA NA

Erratic NA NA NA NA NA NA

Intermittent 49% 50% 48% 50% 33% 50%

Lumpy 46% 44% 46% 50% 26% 50%

Empirical Smooth NA NA NA NA NA NA

Erratic NA NA NA NA NA NA

Intermittent 46% 46% 43% 48% 39% 50%

Lumpy 45% 44% 46% 51% 29% 50%

SD Simulated Smooth 0% 6% 13% 21% 5% 100%

Erratic 24% 34% 58% 67% 0% 62%

Intermittent 47% 46% 48% 50% 23% 50%

Lumpy 41% 41% 48% 52% 14% 50%

Empirical Smooth NA NA NA NA NA NA

Erratic 11% 13% 21% 53% 6% 98%

Intermittent 48% 47% 48% 48% 50% 50%

Lumpy 41% 40% 41% 50% 34% 50%

41



7.2 Inventory performance

Chapter 5 discusses the measure that applies the tradeoff curve between achieved CSL and

inventory cost to evaluate the extent to which the circle service level can achieve under

the same inventory cost. Obviously, the higher the curve, the better the performance

because at the same inventory cost, the curve far away from the x-axis achieves a higher

circle service level. The tradeoff curve shows that different methods under three types of

trends where the achieved CSL (y-axis) correspond to the target CSL i.e. 0.8, 0.85, 0.9,

0.92, 0.95, 0.97, 0.99. To demonstrate the curve more clearly, ZF is not considered in the

following figures. Without a doubt, it has the worst performance due to the zero forecasts

for each cycle, which leads to a low safety stock level, making the actual demands levels

higher than that. Note that the price remains the same in the simulated dataset, and

thus the inventory investment (x-axis) equals the stock amounts.

7.2.1 Numerical Investigation

Figure 8 describes the tradeoff curve between average achieved CSL and inventory in-

vestment. Note that SBA and TSB in Figure 8 sometimes overlap with each other. The

main findings are listed as follows:

Finding 6. According to Figures 8a, 8c, and 8e, the performance of XGB falls behind

the others. The gap between XGB and other methods under SD is even more significant

than those of the other two trends. The result is also in line with that in Figures 8b, 8d,

and 8f.

Finding 7. Figure 8 indicates that SBA and TSB outperform WSS or EMP in the

higher target CSL point.

Regarding Finding 8, even though XGB has a low error rate presented in the previous

section, it doesn’t mean XGB has a good inventory performance. Considering the opposite

result between accuracy rate and tradeoff curve, we can conclude that XGB may have

a good forecasting demand averagely but is weak in inventory control, bringing some
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(a) Trend N: A normal demands without decreasing
trends

(b) Trend N: A normal demands without decreasing
trends

(c) Trend PD: A decreasing demands probabilities (d) Trend PD: A decreasing demands probabilities

(e) Trend SD: A decreasing demands size (f) Trend SD: A decreasing demands size

Figure 8: The tradeoff curve of simulated data: average achieved CSL vs. inventory
investment.
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shortages in the cycle period.

(a) The tradeoff curves in the lumpy pattern under
trend N

(b) The achieved CSL and target CSL in the lumpy
pattern under trend N

Figure 9: The result from pattern Lumpy under trend N in simulated data.

As for item patterns under three trend types, XGB also performs worse than others

in most scenarios except the performance in pattern Lumpy in trend N. Despite the

exception, XGB only wins over EMP, according to Figure 9.

7.2.2 Empirical Investigation

Figure 10, Figure 11, and Figure 12 describe the relationships between average achieved

CSLs and inventory investment in three empirical datasets, representing the dataset RO,

MF, and RAF, respectively.

Sometimes, the figures on the left side are not totally in line with those on the right

side. For example, the lines in Figure 11a, Figure 11c, and Figure 11e, and those in

Figure 11b, Figure 11d, and Figure 11f don’t always have the same position at the same

level. This difference may be because the empirical distributions of EMP and WSS are

discrete. Therefore, we give priority to the left side of the figure since it refers to the

inventory investment. However, if it is difficult to compare each line in the figure, we

can only compare different methods through the plots on the right side. For example, in

Figure 12, we notice that the tradeoff curve of EMP and WSS is too left to compare with

the other three methods. Thus, we take Figure 12b, Figure 12d, and Figure 12f as the

primary basis for comparison due to the precise position provided.

From Figure 10, Figure 11, and Figure 12, the results of three empirical datasets are
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(a) Trend N: A normal demands without decreasing
trends

(b) Trend N: A normal demands without decreasing
trends

(c) Trend PD: A decreasing demands probabilities (d) Trend PD: A decreasing demands probabilities

(e) Trend SD: A decreasing demands size (f) Trend SD: A decreasing demands size

Figure 10: Dataset RO: The figure on the left side shows the tradeoff curve of average
achieved CSL and inventory investment; The figure on the right side presents the tradeoff
curve between average achieved CSL and target CSL
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(a) Trend N: A normal demands without decreasing
trends

(b) Trend N: A normal demands without decreasing
trends

(c) Trend PD: A decreasing demands probabilities (d) Trend PD: A decreasing demands probabilities

(e) Trend SD: A decreasing demands size (f) Trend SD: A decreasing demands size

Figure 11: Dataset MF: The figure on the left side shows the tradeoff curve of average
achieved CSL and inventory investment; The figure on the right side presents the tradeoff
curve between average achieved CSL and target CSL
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(a) Trend N: A normal demands without decreasing
trends

(b) Trend N: A normal demands without decreasing
trends

(c) Trend PD: A decreasing demands probabilities (d) Trend PD: A decreasing demands probabilities

(e) Trend SD: A decreasing demands size (f) Trend SD: A decreasing demands size

Figure 12: Dataset RAF: The figure on the left side shows the tradeoff curve of average
achieved CSL and inventory investment; The figure on the right side presents the tradeoff
curve between average achieved CSL and target CSL
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presented below:

Finding 8. XGB shows competitive inventory performance under three trends in

empirical datasets.

Regarding Finding 8, XGB in Figure 10 and Figure 12 achieves better inventory

performance under three trends. Despite that XGB is not the best method according to

Figure 11 for dataset MF, the line of XGB still slightly runs above those of others.

However, the result in empirical datasets is not following that in the simulated dataset.

This may be due to the number of SKUs with different patterns. In empirical datasets,

according to Table 5, the items of Intermittent and Lumpy are the majority, while in the

simulated dataset, the distribution of the pattern is more even. Thus, we suppose XGB

presents better inventory performance in Intermittent and Lumpy.

Finding 9. Overall, the Croston-based methods are better than EMP and WSS in

the empirical dataset.

Regarding Finding 9, WSS has a better performance than the Croston-based meth-

ods, SBA and TSB. Yet, for most of the cases, SBA and TSB outperform the non-

parametric methods in inventory control. This result is in line with Finding 7 from

simulated datasets.
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8 Conclusions

In this chapter, the summary of the findings above is presented, corresponding to the re-

search questions brought up in Chapter 1. The findings include the simulated results and

empirical study. In addition, the contribution of this paper is brought up. Furthermore,

we discuss the limitations of our research.

8.1 Summary

The forecasting accuracy from simulated datasets and empirical ones are basically in

line with each other. Considering the consistent results from simulated and empirical

datasets, we can conclude that the XGBoost outperforms other methods under trend

PD and SD. Furthermore, the XGBoost method dominates in pattern Intermittent and

Lumpy under trend PD and pattern Erratic and Lumpy under trend SD. Overall, the

XGBoost method gains its superiority in forecasting accuracy when the non-zero demand

trend decreases for demand probabilities and demand size. The result in accuracy rate is

consistent with the results of Kiefer et al. (2021) that shows the XGBoost outperforms

the Croston method.

Furthermore, even though the performance of the XGBoost method is excellent. Yet,

it takes the longest computing time to train and validate the model. Thus, the tradeoff

between time and accuracy still needs to be considered when applied to forecasting in

the industry.

According to the results of inventory investment, two out of three empirical datasets

show the superiority of XGB for three trends. Thus, even though XGB doesn’t dominate

other methods in dataset MF, it is still better or equal to other methods. Yet, the results

in simulated datasets are quite the opposite: XGB has the worst inventory performance

under all trends. There are two differences between simulated and empirical datasets.

First, the simulated datasets’ price equals 1, and the lead time is assumed three periods.

Second, the empirical datasets contain much fewer items of Smooth and Erratic than the
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simulated datasets do. Figure 7 shows that Lumpy is the only pattern where XGB has a

slight advantage, yet it is still not dominated. Therefore, differences between the outcome

of simulated data and empirical data could be because of the price of the items, the lead

time, or other factors such as variation of demands or demands intervals, other than

what the simple categorization scheme can explain. Although more research is needed to

explain this gap, the empirical results are more convincing since the datasets come from

the real world. In addition, we believe that the XGBoost has a better result because the

XGBoost method applies the lag of the response data to forecasting, thus enabling to

catch the pattern of the demand.

The contribution of this study can be concluded as follows. The XGBoost method has

been tested to be an effective technique in forecasting intermittent SKUs in this research,

providing a new technique to forecast intermittent items. Moreover, as a comparative

study, this research that compares the XGBoost method with other conventional statis-

tic techniques also fills the gap between this particular technique and other traditional

methods under the prevalence of neural networks in this area. Also, identified in this

study, an innovative trend of obsolescence in which the probability decreases, offers a

new condition to consider. Another contribution of this study is also indicated by the

application of inventory performance to the XGBoost method, leading to a more realistic

evaluation of the actual world.

8.2 Limitations

Overall, XGB has demonstrated a method that performs well in decreasing trends using

forecasting accuracy and inventory investment as measurement (except for the results

in inventory investment in the simulated dataset). However, this paper includes some

assumptions and restrictions, and thus some limitations are identified.

Firstly, the normal distribution of lead time demand for SBA, TSB, and XGB is as-

sumed. Yet, the results might be different if another distribution is introduced, such as

negative binomial distribution(Teunter, Duncan (2009)) or lognormal distribution(Teunter,
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Duncan (2009))

Secondly, the simulated datasets assume that the price is one and the lead time

demand is three for each SKU. That could lead to a different tradeoff curve of inventory

investment. Therefore, a more diverse simulated dataset is needed to be more similar to

the actual world data.

Lastly, this paper only includes one machine learning method as a result of lacking

another benchmark method. Other machine learning techniques can also be incorporated

in future work.

51



A Accuracy rate

Table 9 describes the original accuracy rate before taking max-min normalization.

Table 9: The comparison of accuracy of forecasting methods for MASE an sMAPE. The
accuracy rate of XGB and the method of best performance are highlighted.

Parametric Non-parametric ML Benchmark

Measure Trend Pattern SBA TSB EMP WSS XGB ZF

MASE N Smooth 0.72 0.72 0.72 0.73 0.84 1.93

Erratic 0.73 0.73 0.73 0.75 0.80 1.04

Intermittent 0.99 0.99 0.99 1.00 0.80 0.73

Lumpy 0.89 0.89 0.89 0.92 0.73 0.67

PD Smooth NA8 NA NA NA NA NA

Erratic NA NA NA NA NA NA

Intermittent 1.99 2.00 1.96 2.03 1.05 0.61

Lumpy 1.75 1.68 1.78 1.89 0.82 0.54

SD Smooth 0.92 1.09 1.29 1.51 1.00 2.69

Erratic 1.79 2.12 3.01 3.32 0.93 1.52

Intermittent 1.28 1.27 1.30 1.33 0.89 0.76

Lumpy 1.94 1.93 2.12 2.22 0.91 0.71

sMAPE N Smooth 0.48 0.48 0.48 0.48 0.57 2.00

Erratic 0.76 0.76 0.76 0.77 0.88 2.00

Intermittent 1.61 1.61 1.61 1.60 1.67 2.00

Lumpy 1.56 1.56 1.56 1.55 1.68 2.00

PD Smooth NA NA NA NA NA NA

Erratic NA NA NA NA NA NA

Intermittent 1.77 1.77 1.77 1.77 1.85 2.00

Lumpy 1.78 1.78 1.78 1.78 1.85 2.00

SD Smooth 0.40 0.44 0.48 0.53 0.49 2.00

Erratic 0.86 0.93 1.08 1.13 0.69 2.00

Intermittent 1.51 1.51 1.50 1.50 1.61 2.00

Lumpy 1.48 1.48 1.49 1.50 1.56 2.00

8No type under this demands trend.
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