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also negatively priced in the cross-section. The negative price of the VRP is
in line with theory’s predictions, if VRP is indeed a proxy for risk-aversion.
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1 Introduction

How volatility on individual assets and on the stock market as a whole impact asset
prices is a widely researched topic. The intertemporal CAPM (ICAPM) of Merton (1973)
predicts a time-series relationship between risk and expected returns, as well as a cross-
sectional one. Previous work such as French, Schwert and Stambaugh (1987) and
Campbell & Hentschel (1992) show a negative relation between unexpected market
returns and expected volatility, especially in times of market crashes. Glosten,
Jagannathan & Runkle (1993) also find a negative correlation between the conditional
mean and conditional volatility of excess return on stocks, using a GARCH-M framework
to model stochastic volatility of stock returns. In this paper I investigate whether this
negative relation between expected market volatility and market returns is also present
in the cross-section.

Ang, Hodrick, Xing and Zhang (2006) (henceforth AHXZ) extend the relation
between stock returns and market volatility by analyzing the cross-section of U.S stock
returns. In their paper they document a negative risk premium on systematic volatility
using innovation in the VIX, an index of future expected volatility based on option prices,
as their measure for systematic market volatility. Their interpretation for this negative
coefficient is that risk-averse investors pay a premium to hedge against volatility
increases. AHXZ also report significant negative returns for a portfolio that goes long
stocks with a high sensitivity to systematic volatility, while going short in stocks with a
low sensitivity to systematic volatility. They argue that investors want to hedge against
volatility since high volatility is associated with downward market movements. Therefore
stocks with high sensitivity to innovations in volatility have a higher price, and thus
lower expected return. Apart from investigating the cross-sectional effect of the
systematic volatility, AHXZ also test the effect of idiosyncratic volatility on the
distribution of stock returns. By doing this the authors attempt to capture the price of
un-systematic volatility risk that is not priced in the standard asset pricing models. They
find that a zero-investment strategy with maximum exposure to idiosyncratic risk
relative to the Fama & French (1993) three factor model shows a negative monthly
return of 1,06%. This negative return is interpreted as puzzling, since behavioral
(Barbaris & Huang, 2001) and imperfect-information (Merton, 1987) theory predicts that
investors require higher returns for holding high idiosyncratic volatility stocks. The
robust negative premium on systematic volatility and negative returns on the zero-
investment strategy found by AHXZ are computed over U.S. stocks during 1986 to 2000.

The first goal of this research is to test the robustness of their findings in an updated



data sample, using the cross-section of U.S stocks over the period 1990-2020. This leads
to the first hypothesis; The negative price of systematic volatility and puzzling high (low)
returns on low (high) idiosyncratic volatility stocks found by AHXZ are present in the
1990-2020 period.

Apart from testing the robustness of AHXZ’s results in newer data, I also employ an
alternative way of measuring changes in market volatility, and idiosyncratic volatility.
As stated by AHXZ their measure for systematic volatility (the VIX index) includes
jump components and can not distinguish between the stochastic volatility and the
volatility risk premium. They do not make any specification to address this for the sake
of simplicity. I will instead follow the methodology of Bollerslev, Tauchen & Zhou (2009)
(Henceforth BTZ) by distinguishing between implied and realized variance (volatility
squared). In their paper BTZ find that the variance risk premium, defined as implied
variance minus realized variance, explains more than fifteen percent of the market return
ex-post. This research aims to answer whether a volatility premium measure (VRP),
equal to the square root of BTZ’s variance risk premium, explains cross-sectional
differences in stock prices. This question result in the second hypothesis; The VRP is a
cross-sectionally priced factor.

The implied volatility is defined as the ex-ante risk-neutral expected future volatility.
It can be measured by the VIX since this index is based on option prices. The realized
volatility on the other hand is based on observed return data, and therefore gives an
accurate ex-post view of the return volatility. Then, subtracting the ex-post realized
volatility from the ex-ante implied volatility, results in the VRP (BTZ, Drechsler &
Yaron (2011)). Both of these volatility measures are so-called “model-free” volatilities,
since they are not based on Black-Scholes based option pricing models.

Influential papers such as Fama, Schwert and Stambaugh (1987) and Campbell &
Hentschel report the variability of stock market volatility. Especially in times of
unexpected low market returns, volatility is often high. I take a detailed look of the cross-
sectional effects of systematic and un-systematic volatility by comparing the result of
these effects for the full sample and during crisis months, defined by the NBER recession
indicator. In these crisis months, expected volatility, measured by the VIX, is often high.
The VRP is often referred to as a measure for risk aversion in the market (BTZ), which
is generally also high in times of crisis. Hence the third hypothesis reads; The cross-
sectional effects of systematic and un-systematic volatility, as well as the VRP, are more
pronounced in crisis months.

If the premium on systematic volatility risk, proxied by the VIX, is negative, stocks
with high (low) sensitivity to the VIX should have low (high) returns. In the 1990-2020



data sample negative risk-adjusted returns are found for a difference portfolio that goes
long in the 20% highest sensitivity to VIX and shorts the 20% lowest sensitivity stocks.
Controlling for the FF-3 model, this portfolio results in an alpha of -0,38% per month (t-
stat -2,08). The risk premium associated with a factor based on innovations in VIX found
in the sample is -1,85% per month (t-stat -2,84). A similar difference portfolio is formed
using idiosyncratic volatility as sorting variable, resulting in a negative FF-3 alpha of -
0,98% per month (t-stat -4,17). These results indicate that AHXZ’s findings in their
1986-2000 dataset are still present in a newer sample. Using the model-free measure VRP
as sorting variable, I find similar return patterns on the difference portfolio. The cross-
sectional risk premium found for the VRP is -2,35% per month with a t-stat of -3,27.
Moreover, this risk factor is more robust to adding additional factors to the estimation
model, compared to the systematic risk factor of AHXZ. Finally, when comparing these
results in crisis months, the estimated risk premia for the VIX and VRP measures are
more pronounced in times of crisis. The difference portfolios show negative returns that
are statistically insignificant, which can be attributed to the low number of observations
in the crisis subsample.

The next section described the theoretical derived expectations for the cross-sectional
pricing of VIX and VRP. In the data section I describe the collection of data that is
needed to perform the methods which are laid out in the methodology section. The result
section provides an overview of the empirical results that result from this methodology,

which are carefully interpreted. The final section concludes.
2 Theoretical motivation

2.1 Pricing of changes in systematic volatility

Influential papers of the previous century, such as Merton (1973) and Campbell
(1993) have established theoretical models in which variables that contain information
about future market returns command a risk premium. In these models investors are
assumed to maximize their lifetime utility. These theories are based on the set of
investment opportunities and aggregate consumption levels. Assets that covary positively
(negatively) with increases in future return forecasts have higher (lower) returns,
assuming risk averse representative agents. The underlaying intuition is that investors
want to hedge against a low payout in a bad state of the economy, proxied by the return
on the market portfolio. Thus, when an asset pays out when market returns are low,
signaling a bad state of the economy, investors will pay a premium to hold this asset,

leading to lower expected returns on said asset. Chen (2002) shows that investors do not



only want to hedge against lower future returns, but also against higher future volatility.
Chen argues that a decrease in future volatility allows investors to increase their
consumption today, as they reduce their precautionary savings.

Chen theoretically derives an equilibrium pricing relation, using the Euler equation.
This model assumes rational investors, and perfect capital markets without transaction
costs, short-sales constraints or any other market imperfections. Also it assumes the
presence of a riskless asset, and the law of one price to hold. For a detailed derivation

see Chen (2002). The expected return is then given by
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An asset’s return therefore depends on its covariance with three factors; V;,, ; (asset’s
covariance with the market), Vi, (asset’s covariance with changes in the forecasts of
future market returns) and V;,,, (asset’s covariance with changes in the forecast of future
market volatility). The covariance of an asset with changes in forecasts of future volatility
enters negatively in the return equation, since risk-averse investors tend to increase their
precautionary savings in times of high volatility which lowers current consumption.
Assets that positively covary with changes in the VIX index, which is based on investors

expected future volatility, should then earn lower returns.

2.2 Pricing of changes in VRP

The VRP is computed as the difference between a measure of risk-neutral
expectations of future volatility and an ex-post realized (physical) volatility measure.
Because this measure displays the difference between investor expectation actual
observed volatilities, the VRP is often interpreted as a measure of risk-aversion (BTZ).
Bakshi & Madan (2006) formally show that the volatility spread, a similar measure to
the VRP, defined as the relative difference of implied and physical volatilities, can be
expressed as a non-linear function of risk-aversion. Assuming a quadratic pricing kernel

and power utility, they show how the volatility is approximated by the following

relationship;
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Here, the left hand expression is Bakshi & Madan’s definition of volatility spread.
The 6,(t,7) and k,(t, T) represent the physical skewness and kurtosis, respectively. The
coefficient of relative risk aversion is denoted by y. Therefore the divergence of risk-

neutral ‘implied’ volatility and physical ‘realized’ volatility can be attributed to exposure



to tail events, fatter left-tails of the physical distribution, and the risk-averse behavior of
investors (Bakshi & Madan, 2006).

Analyzing the exact relation between a volatility measure such as the volatility
spread or VRP and the investor risk-aversion requires careful modelling of the
relationship. In this research I focus on the cross sectional pricing of the VRP measures,
therefore it is sufficient to establish a positive relation between VRP and risk-aversion.

In order to justify a risk premium on risk-aversion, it must be allowed to vary over
time. Instead of assuming a constant risk-aversion y as in Chen’s (2002) model, using
habit persistent utility function as introduced by Campbell (1996), risk-aversion can vary
over time. In Campbell’s habit persistence model, investors maximize the following

intertemporal utility function;
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Here C; and X; are defined as consumption and level of habit, respectively. Now
assume that the habit is external and the law of one price holds. Also, assume that a
stochastic discount factor m; prices the assets so that E;[m, ;R ;] = 1. Using the above
utility function, the stochastic discount factor can be expressed as;

&

o (Litdya (4)
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For a detailed derivation see Nyberg & Wilhelmsson (2010). Given the assumption
that habit is exogenous, it is not affected by current consumption. As long as this habit
level is positive, the relative risk-aversion y correlates negatively with consumption, given
Campbell’s utility function. Consequently, the two bracketed terms in equation (4) are
positively correlated. In the finance literature, it is well known that an asset’s covariance
with the stochastic discount factor plays a role in determining it’s equilibrium asset price.
An asset that correlates positively with the SDF has lower expected returns. Then, from
equation (4) is follows that assets that covary positively (negatively) with changes in
risk-aversion must have lower (higher) lower returns, since assets that covary positively
with risk-aversion also covary positively with the SDF.

In finance literature, the SDF is described as a proxy for the state of the economy.
In a bad state, a high SDF is found. Since the model predicts that risk-aversion positively
influences the SDF, risk-aversion can be seen as a proxy for the state of the economy.
Intuitively, a negative risk premium on risk-aversion then makes sense. If an asset’s

return covaries positively with changes in risk-aversion, it earns high returns in bad states



of the economy (high SDF), when risk-averse investors value them most. As these assets
are considered as a hedge against bad states of the economy, investors pay a premium
to hold these assets, leading to a low return on these assets. Hence, the VRP, as a proxy
for risk-aversion, is expected to be negatively priced in the cross section. This will be

investigated in the empirical application of this research.

3 Data

The VIX index, obtained directly from the CBOE, is used as a measure for expected
volatility. This index is based on S&P 500 index option bid/ask quotes, and measures
the expected volatility of the S&P 500 index over the next 30 days. Since the VIX is
available from 1990 onwards, data is collected from January 1990 to December 2020. To
replicate AHXZ’s methods to test the pricing of systematic volatility, The VIX index is
converted to daily innovation in the VIX (denoted as dVIX), measured as the daily
change of the VIX index. This transformation is done due to high autocorrelation in the
VIX index, as shown by AHXZ.

In order to distinguish between stochastic aggregate volatility and the VRP, ex-post
realized volatility is subtracted from the VIX index. BTZ compute the realized volatility
as the sum of the squares of five-minute returns on the S&P 500 index. The intraday
data on S&P 500 prices is not available publicly, therefore other measures are used in
this research. Shu & Zhang (2003) investigate four different ways to capture realized
volatility. The first measure is the traditional close-to-close estimator of volatility.
Second, an extreme value estimator introduced by Parkinson (1980), using daily high
and low prices is computed. Third, Yang & Zhang (2000)’s volatility measure, based on
daily high and low as well as open and close prices, is tested. And last, an intraday
volatility measure based on 5-minute returns is used, similar to BTZ. Considering
availability of data, I will employ the first three realized volatility measures. In order to
compute these measures daily closing, open high and low prices of the S&P 500 index
are obtained from the CRSP database.

To test the effect of volatility risk on the cross-sectional pricing of U.S stocks I collect
the prices of all AMEX, NYSE and NASDAQ listed common stocks from 1990 through
2020 from the CRSP database. Other asset classes such as ADRs, REITSs, closed-end
funds, and units of beneficial interests are excluded. The common Fama & French risk

factors used in the analyses described in the next section are downloaded from the



Kenneth R. French library!. The liquidity factor LIQ, as defined by Pastor & Stambaugh
(2003), is downloaded from Robert F. Stambaugh’s website’.

4 Methodology

4.1 Systematic volatility

To examine the pricing of systematic volatility in recent years I follow the
methodology used by AHXZ. The cross section of U.S stocks are regressed on a market
factor Mkt and innovation in the VIX index dVIX, as specified in equation (5). The

market factor resembles the excess return on the CRSP value weighted market index.
ri =i+ B4y Mkt + Bl dVIX + €} (5)

The coefficient Bqy;x as specified in equation (5), resembles a stock’s sensitivity to
innovations in systematic volatility. This sensitivity is estimated over the past one month
window, with a daily return frequency. This window allows for time-varying factor
loadings while maintaining a sufficient number of observations. Only those stocks which
have available price levels for at least 15 observations in the estimation month are
included. The stocks are then sorted into five quintile portfolios based on their sensitivity
Bavix, applying monthly rebalancing. The portfolios are value-weighted, using a stock’s
market equity relative to the portfolio’s total market equity, at the beginning of the
respective month. The market equity values are winsorized at the first and 99" percentile,
in order to maintain reasonable stock weights. Quintile 1 resembles the portfolio with
the lowest dVIX factor loadings, while quintile 5 has the highest loadings. According to
previous research the return on a portfolio with high (low) sensitivity to the volatility
measure should be low (high). Therefore the portfolio return difference of quintiles 5-1 is
expected to be negative. As well as negative returns, a negative alpha with relation to
various asset pricing model is expected.

A negative return on the 5-1 portfolio indicates the factor loadings during the pre-
formation period have an effect on future returns. However, in order to establish a risk
factor explanation, the relation between sensitivity to innovations in volatility and
returns (alphas) must be shown in the same period. To estimate the premium associated
with the volatility risk, AHXZ and other research such as Breeden et al. (1989) and

Lamont (2001) construct a factor mimicking portfolio that aims to replicate the

" http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
2 http://finance.wharton.upenn.edu/~stambaug/



innovation in VIX. Hereby the price of volatility risk can be estimated at any frequency
by cumulating the daily returns on this portfolio. To construct the factor mimicking

portfolio the following regression is used:
dVIX, =c+ VX, +¢ (6)

X; represents the base assets at time ¢, and b the portfolio weights needed to mimic
the innovations in VIX. b’ X, equals the daily return on the factor mimicking portfolio,
denoted as FVIX. The weights b are rebalanced monthly. The quintile portfolios based
on sensitivity to dVIX, as described earlier, are used as the base assets X;,.

To assess the premium related to the systematic volatility factor, 25 test portfolios,
comprised of the universe of U.S stocks listed on the AMEX, NYSE and NASDAQ), are
regressed on multiple factors over the sample period (1990-2020). These 25 portfolios are
the result of a 5x5 double sort first by market beta, using the CRSP value weighted
index as market portfolio, and then by sensitivity to innovations in systematic volatility,
Bavix- Using the Fama-Macbeth (1973) procedure it is possible to control for a set of
different factors in determining the F'VIX premium. I follow AHXZ using the FF'3 model
with the addition of a momentum factor UMD as constructed by Fama & French (2018),
a liquidity factor LIQ as introduced by Pastor & Stambaugh (2003) and the F'VIX factor.
Naturally, the FF-3 factors are used as the FF-3 model was the commonly agreed upon
model at the time of AHXZ’s research. The addition of the LI(Q) and UMD factors allows
controlling for momentum and liquidity effects, leading to a more accurate systematic
volatility factor premium. Alternatively I also estimate the factor premia using the FF5
model, including a profitability factor RMW, and an investment factor CMA, as
constructed by Fama & French (2015) as well as the UMD, LIQ) and FVIX factors. This

results in equation (7);

i = ¢+ BiaA e + Bsmsrsms + Ban A amr + Bresw A raw + Benaroma +
BumpAump + Briornio + PrvixArvix + €t (7)

Estimating the factor premia is done in two steps. First the betas used in equation
(7) are estimated using cross-sectional multivariate regressions. These betas are then
used to estimate the factor premia A for each factor at each month ¢. the factor premia
are averaged over time and checked for significance. To check the results for robustness
of the model specifications, I estimate the factor premia using four models. The first

model being the FF3 factors and the FVIX factor, after which the remaining factors;



UMD, LIQ, RMW and CMA are added to each subsequent model, to arrive at equation
(7).

To asses whether a cross-sectional pricing effect is present for the VRP, I differentiate
between implied and realized volatility using three different measures of realized
volatility (RV) as defined by Shu & Zhang (2003). To be able to compare the implied
and realized volatility, they should be based off of the same market index, namely the
S&P500. The measures for RV are computed on a monthly basis using daily price data,
and multiplied by 100 to compare them to the VIX index. The first measure RV is based

on close-to-close daily S&P 500 prices and computed as:

RV, = /4 > 7 x 100 (8)

Where 13 is the return on day t calculated by the natural logarithm of the ratio of
two consecutive closing prices, and d the number of trading days in the estimation month.
RV, Resembles the Parkinson estimator based on high and low daily prices and is

computed as:

RV, = \/g > g (nH, —InL,)? x 100 9)

Daily high and low prices of the S&P500 are denoted as H, and L,, respectively.
Finally the Yang and Zhang estimator, RV;, is computed as:

RVy = d* \/V, + KV, + (1 — k)Vpg x 100 (10)

Vy, V. and Vi from equation (10) are defined as follows:

Vo= iy (0 = 0)% 0 =0, =n0O;_y, 0= w X%

n—1

V.= - Z:ﬁ(@ —c)?, ¢ =InC —InC_y, €= %Z;':l €t

n—1

Vig = %Z:lzl[(ln H,—nO,)(InH, —InC,)+ (InL, — InO,)(In L, — InC,)].

Here O, and C, are the daily open and close prices of the S&P 500 on date t. k from
equation (10) is a constant, chosen to minimize the variance of the estimator, computed
by

k= 0.34

—q - +1 -
1.34+77
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Using the three different measures of realized volatility as described by Shu & Zhang
(2003), three realized volatility factors are constructed. A set of factors is constructed by
subtracting the realized volatility measures from the implied volatility, leading to the
VRP as described in equation (11). This VRP time-series, often interpreted as a measure
of risk-aversion, is then translated into a risk factor using the same methodology as used
to construct F'VIX. Note that the implied volatility IV, is forward looking, based on
option prices over the period t to t+1. To estimate the VRP over this time period, the
realized variance RV, ;, must be subtracted. BTZ subtract the past month realized
variance instead, in favor of a forecasting perspective. In this research, however, I aim to
discover the distribution of the VRP in the cross-section instead of discovering profitable
investment strategies or forecasting the state of the stock market. Therefore the VRP is

computed as;
VRP? = IV, — RV,,, (11)

4.2 Idiosyncratic volatility

The volatility measures discussed in the previous section are based on the volatility
of the S&P 500 market index, which reflects the systematic component of volatility.
AHXZ also investigate the influence of idiosyncratic volatility on the expected returns,
defined as residual volatility relative to the Fama & French 3-factor model. In order to
isolate the idiosyncratic stock volatility more effectively, I will instead consider
idiosyncratic volatility with relation to the Fama & French (2018) 6-factor, adding a
profitability, investment and momentum factor. Therefore the equation estimating the

residuals is as follows:
ri =o'+ Bhp Mkt + By 5 SMB + Biyp HML + By RMW + 8Ly ,CMA + B4, , UMD + ¢} (12)

The market factor Mkt is defined as the excess return on the CRSP value-weighted
market index. The other factors are constructed as in Fama & French (2018). The
idiosyncratic volatility is then computed as \/W(e') I investigate the pricing of
idiosyncratic volatility by setting up a trading strategy based on the residual volatility,
similar to AHXZ. Equation (12) is used to estimate the residuals on a daily frequency
for the entire universe of U.S stocks that trade on the NYSE, AMEX and NASDAQ
stock markets. The idiosyncratic volatility is estimated on a monthly bases using the
previous month’s residuals. Five value-weighted portfolios are formed using monthly

rebalancing, sorted on idiosyncratic volatility. Quintile 5 resembles the 20% of firms with
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the highest idiosyncratic volatility, whereas quintile 1 resembles the 20% of lowest

idiosyncratic volatility firms.

4.3 Volatility and crisis

In order to test the premia on systematic and idiosyncratic volatility in times of
crisis, I define a subsample of crisis months. The full sample consists of 372 months over
the 1990-2020 period, 44 of which are listed as ‘crisis months’, following the NBER
recession indicator. These 44 months are the result of the early 1990s recession, the
internet bubble of 2000, the credit crisis of 2007 and the corona crisis. The time series of
factor premia related to the systematic volatility measures, as well as the return on the

trading strategy based on idiosyncratic volatility are investigated in this subsample.
5 Empirical findings

In this section, the empirical findings resulting from the methods described in the
research design are laid out and discussed. First, the pricing of systematic volatility is
investigated, here I will discuss the different cross-sectional effects of sensitivity to the
VIX index and the VRP, as defined in the data section. Secondly the returns of portfolios
sorted on idiosyncratic volatility relative to the Fama & French (2018) 6-factor model
are analyzed. Finally, the effects of both systematic and idiosyncratic volatilities are

compared in times of expansion and recession.
5.1 Pricing of systematic volatility

5.1.1 The VIX and VRP measures

Summary statistics of the VIX index and the three measures of the VRP as well as
their respective first order differences are given in table (1). Both the VIX and VRP
measures are highly autocorrelated time series. The VIX has a first-order autocorrelation
of 0,98, that of the VRP measures varies between 0,96 and 0,97. Therefore first order
differences are used to analyze the sensitivities to these measures. The time series of the
first order differences each have low autocorrelation and a mean close to zero (between
0,001 and 0,002). The analyses performed in the rest of this research are based on the
first-order difference time series of volatility measures. Table (1) also reports each
measure’s Z-value, resulting from the dickey-fuller test for stationarity. The null-
hypothesis of this test states that a unit root is present and is rejected in all cases,

meaning that each measure is stationary.

12



Table 1: Summary statistics

The table shows summary statistics over for the daily time series over the period 1990-2020. VIX refers
to the CBOE’s daily closing price on their VIX index. VRP1, VRP2 and VRP3 are the result of
subtracting RV, RV2 and RV3, respectively from the VIX index. dVIX, dVRPI, dVRP2 and dVRP3
are each of the measures first-order differences. The reported Z-score is the result of a dickey-fuller test
for stationarity.

Nominal series First-order-differenes

VIX  VRPI VRP2 VRP3 dVIX dVRP! dVRP2 dVRP3
mean 19.472  15.037  15.735  13.825 0.001 0.001 0.001 0.002
St. dev 8.116 6.290 6.615 5.960 1.636 1.636 1.627 1.637
skewness 2.196 1.845 2.119 1.937 1.476 1.702 1.703 1.786
kurtosis 11.265 9.561 10922 10.241 31.637  32.389  32.678  32.356
AR(1) 0.980 0.966 0.970 0.962 -0.134  -0.122  -0.135  -0.145
Z-score -7.343  -9.805  -9.098 -10.167 - - - -

VIX
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0
1990 1995 2000 2005 2010 2015 2020
dVIX

30
25
20
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Figure 1: daily time-series of VIX, and daily innovations in VIX, dVIX.
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Figure 1 shows the VIX and its first-order difference counterpart. The time-series of
the three VRPs and their respective first-order differences show a similar pattern,
displayed in appendix A. One can clearly identify the 2008 credit crisis and the initial
shock of the corona crisis of march 2020, by the high levels of the VIX index.

5.1.2 VIX and VRP sorted portfolio returns

The full sample over the 1990-2020 period is sorted into five quintile portfolios based
on their sensitivity to one of the four measures displayed in table (2). This process,
described in the research design, result in the portfolios displayed in table (2). portfolio
returns are decreasing in ranking on sensitivity to dVIX. For the VIX measure, the value
weighted return on the difference portfolio 5-1 (return on the portfolio with the highest
sensitivity to d VIX minus the return on the portfolio with the lowest sensitivity to d VIX)
averages -0,27% per month, which is statistically indifferent from zero (t-statistic of -
1,24). The VRP based difference portfolios have similar negative average returns which
are also statistically insignificant. Contrary to what AHXZ find in their 1986-2000
sample, no significant negative raw returns are found for a difference portfolio sorted on

sensitivity to innovations in systematic volatility in the more recent 1990-2020 sample.

Table 2: B y1x and B yrp sorted portfolios

This table displays the raw and risk-adjusted returns for the quintile portfolios sorted on Byv;x, Baver:
Bavere and By rps- The quintile portfolio ‘Rank 1’ is the portfolio with lowest respective sensitivity,
while ‘Rank 5’ has the highest sensitivity. The difference portfolio ‘5-1" is the return on portfolio rank 5
minus portfolio rank 1. Risk-adjusted returns with relation to the CAPM and Fama & French 3-factor
models are given by the CAPM and FF3 alpha. The t-statistics are in parenthesis.

Quintile portfolios sorted on B,y7x

Rank Mean Std. Dev. CAPM I3
alpha alpha

1 1.103 5.821 0.252 0.260
(1.96) (2.13)

2 1.079 4.392 0.400 0.391
(5.33) (5.69)

3 0.975 4.157 0.326 0.309
(5.56) (7.99)

4 0.981 4.732 0.249 0.239
(3.23) (3.44)

5 0.831 6.747 -0.137 -0.122
(-1.11) (-1.18)

5-1 -0.272 -0.390 -0.382
(-1.24) (-2.11) (-2.08)

(continued)
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Quintile portfolios sorted on B, ynp

Rank Mean Std. Dev. CAPM I3
alpha alpha

1 1.760 5.720 0.933 0.938
(5.71) (6.08)

2 1.413 4.401 0.735 0.725
(6.75) (7.62)

3 1.257 4.172 0.605 0.590
(8.73) (10.92)

4 1.243 4.658 0.517 0.507
(7.69) (8.43)

5 1.461 6.944 0.478 0.496
(3.45) (4.31)

5-1 -0.299 -0.455 -0.442
(-1.33) (-2.25) (-2.21)

Quintile portfolios sorted on B;ypp

Rank Mean Std. Dev. CAPM s
alpha alpha

1 1.788 5.715 0.959 0.964
(5.88) (6.35)

2 1.355 4.380 0.679 0.669
(7.18) (8.05)

3 1.254 4.153 0.604 0.589
(8.31) (10.33)

4 1.304 4.706 0.574 0.566
(7.48) (7.94)

5 1.458 6.868 0.480 0.470
(3.48) (4.36)

5-1 -0.331 -0.479 -0.468
(-1.52) (-2.54) (-2.47)

Quintile portfolios sorted on B,y pps

Rank Mean Std. Dev. CAPM i3
alpha alpha

1 1.743 5.761 0.905 0.911
(5.81) (6.40)

2 1.384 4.349 0.712 0.704
(7.93) (8.58)

3 1.260 4.144 0.616 0.599
(8.09) (10.10)

4 1.324 4.732 0.592 0.585
(7.73) (7.99)

5 1.463 6.918 0.471 0.482
(3.62) (4.34)

5-1 -0.280 -0.434 -0.429
(-1.35) (-2.49) (-2.40)
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When the returns are risk-adjusted using the CAPM or Fama & French 3 factor
model, results are in line with those in AHXZ. Table (2) reports alphas w.r.t both models
for each of the four volatility measures. The 3,5 sorted portfolios 1 through 4 each
have significant positive alphas, while portfolio 5, the highest 3;,;x portfolio shows a
negative, although insignificant, alpha. The difference portfolio has a significant negative
alpha of -0,38 per month, compared to AHXZ’s alpha of -0,83. The FF-3 alphas of the
difference portfolios when sorting on 3;,;p vary between -0.43 and -0.48. An interesting
observation concerning the sorted portfolio returns is the high risk-adjusted returns on
value weighted portfolio with the lowest sensitivity to the VRP measures. The monthly
FF3 alphas of the three VRP measures varies between 0.91 and 0.96. These alphas drive
the negative alpha on the respective difference portfolio. On average, stocks that have
low correlation with last month’s VRP seem to earn higher risk-adjusted returns. When
comparing the three VRP measures, the results appear to be similar. To summarize,
AHXZ’s result sorting portfolios based on sensitivity to systematic volatility is generally
replicated in this newer sample, albeit less pronounced. Moreover, using the volatility

risk premium VRP as sorting variables does not significantly change the results.

5.1.3 Factor mimicking portfolios and risk premia

Using the portfolios displayed in table (2) as base assets, a factor mimicking portfolio
is constructed using equation (5). Using daily returns of the base assets, the regression
based on equation (5) is performed for each month. The monthly portfolio weights b
resulting from these regressions are then used to estimate the daily factor mimicking
portfolio returns b’X,. The factor mimicking changes in VIX is constructed using the
five quintile portfolios based on sensitivity to VIX, whereas the factor mimicking changes
in VRP are constructed using the respective quintile portfolios based on each of the
sensitivities to the VRP measures. Correlations of the mimicking portfolios and their
respective factors are shown in table (3), as well as the correlations between the factors

used to estimate the risk premia on a monthly basis.
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Table 3: Factor correlations

Panel A shows the daily correlations of each of the four factor mimicking portfolios with their respective
volatility measure. Panel B shows the monthly correlations of the common risk factors with the factor
mimicking portfolios. Here the factor mimicking portfolios are aggregated to monthly factor returns.

Panel A: daily factor mimicking portfolio correlations

dVIX dVRP1 dVRP2 dVRP3
FVIX 0.879
FVRP1 0.864
FVRP2 0.873
FVRP3 0.869
Panel B: monthly factor correlations

MKT SMB HML RMW CMA UMD LIQ
FVIX -0.786 -0.194 0.057 0.250 0.247 0.203 -0.134
FVRP1 -0.819 -0.172 0.035 0.262 0.243 0.193 -0.170
FVRP2 -0.824 -0.197 0.049 0.270 0.231 0.207 -0.166
FVRP3 -0.783 -0.200 0.064 0.253 0.248 0.173 -0.135

The factor mimicking portfolios appear to be good proxies for their respective factor,
judging by the high correlations in panel A of table (3) which lie between 0.87 and 0.88.
The advantage of using factor mimicking portfolios is the interchangeable time dimension
of these portfolios. The returns on the factor mimicking portfolios are accumulated by
month. These monthly returns are then used to compute the monthly factor premia as
described in equation (7). Correlations between the monthly factor mimicking portfolio
returns and the risk factors used in equation (7) are displayed in panel B of table (3).
The VIX and VRP factors show a high negative correlation with the market factor,
consistent with previous literature, such as French, Schwert and Stambaugh (1987) and
Campbell & Hentschel (1992), showing that high volatility is negatively related to market
returns. The factor mimicking changes in VIX has a correlation with market returns of -
0,79, while the lowest correlation with market returns is that between VRP2 and the
market with a value of -0.82. Correlations with other factors are weaker, he highest
correlations being between VRP2 and profitability factor RMW of 0.27, and VRPS3 and
investment factor CMA of 0.25, both being relatively low.
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Table 4: Fama-Macbeth (1973) factor premia
The estimated factor premia resulting from equation (7) are displayed. Models (1) through (5) are
estimated using each of the four volatility factors, FVIX, FVRPI, FVRP2 and FVRPS3. The estimated
risk premium A is shown in the table, in parenthesis are the robust Newey-West (1987) t-statistics.

FVIX FVRPI1
1 2 3 4 5 1 2 3 4 5
Cons 1.178 1290 1406  1.252  1.281  1.054  1.165 1.157  1.004  1.027
(3.82)  (4.06) (4.99) (4.69) (4.62) (3.37) (3.57) (4.17) (3.68) (3.69)
MKT 20506 -0.491 -0.566 -0.583  -0.657 -0.196 -0.270 -0.264 -0.294 -0.341
(-1.50)  (-1.47) (-1.78) (-1.81) (-1.89) (-0.60) (-0.78) (-0.81) (-0.89) (-0.98)
SMB 0670  0.001 -0.036  0.344  0.339 0467  0.044  0.046 0440  0.429
(1.56)  (0.00) (-0.10) (0.74) (0.73) (1.12) (0.12) (0.13)  (0.93)  (0.90)
HML 0119 0462 0519 0332 0492 0003 0280 0275  0.091  0.199
(0.26)  (0.97) (1.07) (0.66) (0.87) (0.01) (0.59) (0.57)  (0.18)  (0.35)
FVIX/  -1851 -0.901 -0.714 -0.588 -0.569 -2.354 -1.560 -1.577 -1.467 -1.422
FVRP  (-2.84) (-1.42) (-1.13) (-0.89) (-0.87) (-327) (-2.18) (-2.30) (-2.14) (-2.11)
UMD 1371 -1.391  -1.154  -1.151 0754 -0.749  -0.507  -0.517
(-2.26) (-2.28) (-1.96)  (-1.96) (-1.30)  (-1.29) (-0.87) (-0.88)
LIQ 1390 -1.977  -1.539 20.040  -0.598  -0.343
(-1.08)  (-1.51) (-1.17) (-0.03)  (-0.51)  (-0.29)
RMW 0.362  0.323 0277 0.256
(1.39)  (1.23) (1.14)  (1.04)
CMA 0.045 -0.020
(0.16) (-0.07)
adjR™2 0508 0534 0540 0551 0568 0.530  0.546  0.548  0.558  0.574

FVRP2 FVRP3

1 2 3 4 5 1 2 3 4 5
Cons 1.342  1.386 1457 1258  1.306 1377 1412 1473 1.281  1.344
(4.24)  (4.31)  (4.99) (4.61) (4.60) (4.34) (4.40) (5.11) (4.66)  (4.68)
MKT 0416  -0.435 -0.492 -0.516 -0.634 -0.567 -0.543 -0.58 -0.603 -0.758
(-1.25)  (-1.29) (-1.52) (-1.58) (-1.82) (-1.67) (-1.63) (-1.84) (-1.87) (-2.12)
SMB 0427 -0.108 -0.126 0352  0.356  0.639  0.028  0.007 0458  0.476
(1.02)  (-0.29) (-0.33)  (0.75)  (0.76)  (1.52)  (0.08)  (0.02)  (0.96)  (1.00)
HML 20131 0283 0344  0.122 0358 -0.064 0316 0361  0.147  0.430
(-0.28)  (0.59)  (0.70)  (0.24)  (0.64) (-0.14)  (0.66) (0.74) (0.28)  (0.76)
FVIX/  -1588 -0.773 -0.611 -0.562 -0.632 -1.546 -0.859 -0.756 -0.760  -0.805
FVRP  (-2.83) (-1.30) (-1.06) (-0.96) (-1.07) (-2.68) (-1.50) (-1.38) (-1.39) (-1.46)
UMD 1163 -1.207  -0.896  -0.803 1162 -1.186  -0.888  -0.816
(-1.85)  (-1.89) (-1.47) (-1.34) (-1.97)  (-1.99) (-1.51) (-1.40)
LIQ 0975 -1.595  -0.634 0951  -1.540  -0.538
(-0.76) (-1.23)  (-0.49) (-0.77)  (-1.29)  (-0.44)
RMW 0372  0.295 0.356  0.271
(1.46)  (1.15) (1.44)  (1.11)
CMA -0.154 -0.181
(-0.51) (-0.57)
adjR™2 0511 0536 0542 0553 0571 0511 0535 0540 0550  0.570
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Table (4) shows the result of the factor premia estimation resulting from equation
(7), this equation is represented by model (5) in the table. The estimation is done based
on 25 test portfolios double sorted on both market beta and the respective volatility
measure. These test portfolios, by construction, have a sufficient distribution in
sensitivity to the volatility measures to make cross-sectional inferences on the factor
premia. The table also shows models (1) through (5), adding one of the factors, UMD,
LIQ, RMW and CMA to the Fama-Macbeth procedure each time. Adding one factor at
a time allows for a better analysis of the contribution of each separate factor. Looking at
each of the four volatility measures, the adjusted R? increases only slightly when moving
from model (1) to (2) through (5). The FVIX models’ adjusted R? increases from 0,51
to 0,57 for models (1) and (5) respectively. The addition of the UMD, LIQ, RMW and
CMA factors does not seem to add much to the explanatory power of the model for the
25 relative test portfolios.

The premium on the market factor appears to be negative over the full sample, the
t-statistic lies between -1,50 and -2,00 in most of the estimated models. The exception
being the models based on VRPI1, where the t-stat is above -1,00 for each model
specification, making the market factor premium insignificant. This negative premium
on the market beta is consistent with the notion that high beta assets and/or portfolios
earn lower risk adjusted returns and Sharpe ratios than assets and/or portfolios with low
beta. Frazzini & Pedersen (2014) for example find positive significant risk-adjusted
returns on a betting-against-beta factor that goes long in low-beta assets and shorts high-
beta assets. The insignificant premia on Fama & French’s size and value factors, SMB
and HML, is consistent with the poor performance of these factors in the last few decades.
The negative premium on the momentum factor, UMD, is significant in most of the
specified models. This result may seem surprising given the results of papers such as
Jegadeesh and Titman (1993) who find positive returns on momentum strategies. Blitz,
Huij & Martens (2011) find returns on a total return momentum strategy, such as the
UMD factor, of -8,54% from 2000 to 2009. The results from table (4) suggests these poor
returns on a total momentum strategy continue into the 2010s, given the negative
premium on the total 1990-2020 sample. Risk premia on the liquidity (LIQ), profitability
(RMW) and investment (CMA) factors are insignificant in each specified model, similar
to the size (SMB) and (HML) factors.

The FVIX factor premium estimated in models (1) through (5) are negative,
consistent with the results from AHXZ. When only the MKT, SMB, HML and FVIX
factors are used in the regression estimation this negative premium is -1,85% per month,

significant at the 1% level. The statistical significance of the FVIX premium disappears
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when adding the UMD, LIQ), RMW and CMA factors, and the coefficient is lowered to
-0,57%. The negative premium on innovations in systematic volatility found by AHXZ
over their 1986-2000 sample is robust to using an updated data sample.

The addition of UMD, the momentum factor seems to have the biggest impact on
the FVIX premium. It is possible that the systematic volatility premium actually
captures some stock momentum effect. Given the negative price on the momentum factor,
which is found in all of the specified models and significant in most, stocks with high
momentum factor loadings generally have lower returns. The results shown in table (4)
suggests that stocks with a high loading on the innovations in VIX volatility or VRP
factors are often stocks that earned high returns in the past (months ¢-2 to t-12). Then,
due to the negative premium on momentum, these high volatility loading stocks have,
on average, lower returns.

Comparing the results of F'VIX to those of the three FVRP factors, similar patterns
are observed. Especially looking at FVRP2 and FVRPS3, the factor premium of the
volatility measure is absorbed by including the UMD and LI(Q factors. Interestingly, the
FVRP1 factor premium stays negative and significant, at the 5% level, irrespective of
the model used. The UMD and LIQ factors are less negative and not statistically
significant, and do not seem to absorb the effect of the FVRPI factor. FVRPI1, the
measure for the VRP, computed using a realized volatility measure based on only end-
to-end closing prices appears to be effective at capturing a volatility risk price story. This
measure for VRP has a stronger negative premium of -2,35% per month compared to the
VIX volatility premium of -1,85%. These results are consistent with the theoretical
prediction that an asset’s covariance with changes in risk-aversion lead to lower expected
returns. This negative premium on risk-aversion, proxied by the VRP, is stronger and
more robust than the negative premium on systematic volatility risk, as proxied by
changes in the VIX index. Furthermore significance of the VRP factor premium does not
disappear when adding common risk factors such as UMD, LIQ), RMW and CMA.

5.2 Pricing of idiosyncratic volatility

5.2.1 Portfolios sorted on idiosyncratic volatility

The previous section investigates the pricing of systematic volatility using the VIX
and VRP measures, based on S&P500 prices. These price effects are based on sensitivity
to systematic volatility risks. In this section I investigate the cross-sectional price effects
of idiosyncratic volatility risk, using residual volatility with relation to the Fama &
French (2018) 6-factor model. The residual volatility is computed as the square root of

the variance of the error terms resulting from equation (12) over the last month.
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Table 5: Portfolios sorted on idiosyncratic volatility

This table displays the raw and risk-adjusted returns for the quintile portfolios sorted on idiosyncratic
volatility. The idiosyncratic volatility is computed as the square root of the variance of the residuals
estimated by equation (12), over the past one month returns. The quintile portfolio ‘Rank 1’ is the
portfolio with idiosyncratic volatility, while ‘Rank 5 has the highest idiosyncratic volatility. The
difference portfolio ‘5-1" is the return on portfolio rank 5 minus portfolio rank 1. Risk-adjusted returns
with relation to the CAPM and Fama & French 3-factor models are given by the CAPM and FF3 alpha.
The t-statistics are in parenthesis.

CAPM FF3

Rank Mean Std. Dev. alpha alpha
1 1.025 3.808 0.460 0.435
(4.68) (4.05)

2 1.044 4.850 0.291 0.277
(3.32) (3.93)

3 1.086 6.279 0.135 0.152
(1.17) (1.70)

4 0.935 7.884 -0.188 -0.151
(-1.00) (-1.12)

5 0.639 9.503 -0.593 -0.550
(-2.14) (-2.80)

5-1 -0.387 -1.053 -0.984
(-1.24) (-3.00) (-4.17)

Table (5) shows the portfolio return and standard deviations for each quintile
portfolios sorted on idiosyncratic volatility with relation to the FF6 model, as well as
their respective CAPM and FF3 alphas. Portfolio 1 is the quintile portfolio with the
lowest past month idiosyncratic volatility, while portfolio 5 is the quintile portfolio with
the highest past month idiosyncratic volatility. The 5-1 portfolio is defined as the
difference portfolio between portfolio 5 and 1. The 5-1 portfolio has negative monthly
returns of -0,39%, although not statistically significant. The quintile portfolios show a
clear pattern in risk-adjusted returns (alphas) with relation to the CAPM as well as the
FF3 model. The portfolios with high idiosyncratic volatility loadings enjoy high risk-
adjusted returns, whereas the portfolios with lower idiosyncratic volatility loading show
lower risk-adjusted returns. Furthermore, a self-financing portfolio long leveraged in high
idiosyncratic volatility stocks, financed by going short in low idiosyncratic volatility
stocks, has a negative monthly alpha of -1,05. Hence, risk-adjusted returns appear to
decrease with previous month’s residual volatility with relation to the FF6 model. In
unreported results, I employ the same methodology using FF3 residuals, yielding similar
outcome.

AHXZ find a negative FF-3 alpha of -1,31 on a 5-1 idiosyncratic difference portfolio.

They describe this negative risk-adjusted return as a puzzle, as it contradicts existing
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theory. Merton (1987) described how in informationally segmented markets, stocks with
high firm-specific risks require higher return. Similarly behavioral theory as in Barbaris
& Huang (2001) also predict a positive relation between idiosyncratic volatility and
returns, resulting from investors requiring a higher return for holding the stock in their
portfolio. Given the significant negative 5-1 alpha of -0,98 from table (5), the

idiosyncratic volatility puzzle is still present in a modern sample.

5.2.2 Controlling for sensitivity to systematic volatility and VRP

In the previous section a negative risk premium was found for the factors based on
systematic volatility (FVIX) and volatility risk premium (FVRP), using the 25 test
portfolio returns. The negative risk-adjusted returns resulting from the idiosyncratic
volatility trading strategy shown in table (5) could be attributed to the stocks’ sensitivity
to these risk factors. To investigate this possibility, I compute the idiosyncratic volatility
sorted portfolio returns, while controlling for either systematic volatility, or the VRP.
This is done by first sorting the cross section of stocks into five portfolios based on
sensitivity to the volatility measure, and then sorting each of these portfolios into five
portfolios based on idiosyncratic volatility. The average of the value-weighted returns of
the five portfolios sorted on sensitivity to volatility measure is then taken across all five
idiosyncratic sorted portfolios. Each of the five average value weighted portfolio returns,
ranking from lowest idiosyncratic volatility (1) to highest volatility (5) should then have
equal sensitivities to the volatility measure used. The resulting alphas w.r.t the FF-3
model are shown in table (6), as well as the mean average value weighted return of the
difference (5-1) portfolio.

Using sensitivity to changes in VIX as control variable, the pattern of alphas remains
the same; high idiosyncratic volatility portfolios earn low returns. When one of the VRP
measures is used as control variable, this pattern changes. Alphas monotonically increase
with idiosyncratic volatility, and the 5-1 portfolio has raw mean returns of 1.29% per
month, significantly different from zero at 1% level. The idiosyncratic volatility puzzle
disappears. This effect is similar for each of the three VRP measures. This result suggests
that the negative returns on high idiosyncratic stocks, shown by AHXZ and in this
research, is caused by a high sensitivity to the VRP. When the sensitivity to the VRP is
controlled for, stocks with a higher past month idiosyncratic volatility relative to the FF-
3 model, earn higher returns. This positive relation is logical, considering that investors
require higher returns for holding more volatile stocks. Controlling for each of the three
VRP measures all lead to similar results. These results suggest that the idiosyncratic

volatility puzzle is actually the result of assets sensitivity to changes in risk-aversion.
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One possible explanation is that high past-month idiosyncratic volatility assets earn low
returns because they are a hedge against increases in risk-aversion, and thus bad states

of the economy. To investigate this relation, however, is beyond the scope of this research.

Table 6: Idiosyncratic sorted portfolios controlled for VIX/VRP

This table shows the FF3-alphas of the quintile portfolios sorting on idiosyncratic volatility, controlling
for one of the systematic volatility measures. The idiosyncratic volatility is computed as the square
root of the variance of the residuals estimated by equation (12), over the past one month returns.
Controlling for VIX or VRP is done by first sorting the cross section of stocks into five portfolios based
on sensitivity to the volatility measure, and then sorting each of these portfolios into five portfolios
based on idiosyncratic volatility. The average of the value-weighted returns of the five portfolios sorted
on sensitivity to volatility measure is then taken across all five idiosyncratic sorted portfolios. The last
column displays the difference ‘5-1’ portfolio’s raw returns. The t-statistics are displayed in parenthesis.

FF3-alphas mean

Ranking on idiosyncratic volatility return

1 2 3 4 5 5-1 5-1

VIX controlled 0.355 0.193 0.075 -0.041 -0.386 -0.741 -0.270
(6.02) (3.29) (0.87) (-0.32) (-2.13) (-3.56)  (-0.76)

VRP1 controlled 0.579 0.635 0.695 0.941 1.378 0.799 1.293
(8.21) (8.31) (7.09) (5.86) (5.56) (3.08) (3.36)

VRP2 controlled 0.588 0.638 0.691 0.980 1.365 0.777 1.269
(8.37) (8.29) (6.77) (5.86) (5.89) (3.25) (3.30)

VRP3 controlled 0.552 0.653 0.707 0.991 1.390 0.838 1.346
(8.15) (8.77) (7.15) (6.14) (5.77) (3.29) (3.47)

5.3 Volatility and crisis

The full sample of stock returns dating from 1990 to 2020 show negative risk-adjusted
returns on trading strategies that go long in stocks with high sensitivity to one of the
volatility measures and short in those stocks with a low sensitivity to the same volatility
measure. Over this 30 year period, 44 months are defined as ‘recession months’ by the
NBER. To investigate the relation between systematic volatility, the VRP and stock
returns during crisis months, a subsample using only the recession months is compared
to the full sample, shown in table (7). In this subsample, the trading strategy based on
systematic volatility earn negative risk-adjusted returns. This alpha, however, is not
statistically significant, due to the low number of observations in the NBER recessions
subsample. The same pattern is found for the trading strategies based on the sensitivity
to the VRP measures. The trading strategy based on previous month’s idiosyncratic
volatility has a positive average return, and a negative risk-adjusted return, both
statistically insignificant. None of the trading strategies seem to result in statistically
significant returns during crisis months, this is mainly due to the small size of this

subsample.
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Table 7: Difference ‘5-1’ portfolios in different subsamples

In this table the Full sample is compared to the sample comprising of NBER recession months. The full
sample consists of all months in the 1990-2020 sample, whereas the NBER recession subsample consists
of the 44 crisis months defined by the NBER. The table displays the means and FF3-alphas of the
difference ‘5-1" portfolios sorting on sensitivity to dVIX, dVRP1, dVRP2 and dVRPS3, and idiosyncratic
volatility. The t-statistics are in parenthesis.

dVIX dVRP1 dVRP2 dVRP3 Idiosyn. Vol.
FF3 FF3 FF3 FF3 FF3
mean alpha  mean alpha mean alpha mean alpha mean alpha
Full sample -0.272  -0.382 -0.299 -0.442 -0.331 -0.468 -0.280 -0.429 -0.387 -0.984
(-1.24) (-2.08) (-1.33) (-2.21) (-1.52) (-2.47) (-1.35) (-2.40) (-1.24) (-4.17)
NBER -0.645 -0.918 -0.562 -0.964 -0.792 -0.970 -0.550 -0.643 0.440 -0.429
Recessions (-0.69) (-1.20) (-0.54) (-1.04) (-0.79) (-1.38) (-0.55) (-0.92) (0.29) (-0.35)

The factor premia of the factors computed in the previous section, FVIX and FVRP,
are also investigated during the recession months. Table (8) shows the factor premia for
the full sample as well as the NBER recession subsample. For each factor a lower
premium is found in the recession subsample. FVIX has a negative premium of -3,16%
per month during crisis months, compared to -0,57% in the full sample. FVRPI1, the
most robust out of the VRPs, has a factor premium of -3,82% in crisis months compared
to -1,42%. All of the factor premia in the crisis subsample are statistically significant at
a 1% level, despite the small sample size. The negative cross-sectional price on systematic
volatility appears to be stronger during crisis months. Assuming that the VRP is a proxy
for risk-aversion, as derived in the theoretical section, the higher risk-aversion in crisis
months leads to a stronger negative cross-sectional premium on sensitivity to the changes

in risk-aversion.

Table 8: Fama-Macbeth (1973) risk premia in different subsamples

The estimated factor premia resulting from equation (7) are displayed for the full sample and the NBER
recession subsample. Model (1) as in table (4) is estimated using each of the four volatility factors, FVIX,
FVRP1, FVRP2 and FVRPS3. The estimated risk premium A is shown in the table, in parenthesis are
the robust Newey-West (1987) t-statistics.

Factor premium

FVIX FVRP1 FVRP2 FVRP3

Full sample -0.569 -1.422 -0.632 -0.805
(-0.89) (-2.11) (-1.07) (-1.46)

NBER recessions -3.157 -3.816 -3.448 -3.492
(-1.57) (-2.22) (-2.13) (-2.76)
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6 Conclusion

This paper aims to replicate AHXZ’s results for the pricing of systematic volatility
as well as idiosyncratic volatility in a newer data sample. The pricing of systematic
volatility, proxied by changes in the VIX index, is analyzed first by forming portfolios
sorted on sensitivity to changes in VIX. As in AHXZ’s data sample, a difference portfolio
going long in high sensitivity to changes in VIX assets, and short in assets with a low
sensitivity, earns statistically negative risk-adjusted returns. By constructing a factor
mimicking portfolio based on changes in VIX, a risk premium is estimated using Fama-
Macbeth procedure. The resulting risk premium found in this research is negative and
significant, similar to that found by AHXZ. To test the presence of a idiosyncratic
volatility puzzle, as defined by AHXZ, in the newer data sample, five portfolios are
formed in a similar fashion as those based on changes in systematic volatility. The
resulting alpha of the difference portfolio using idiosyncratic volatility w.r.t the FF-6
model is negative and statistically significant, consistent with the idiosyncratic volatility
puzzle. Following these results, the first hypothesis; “The negative price of systematic
volatility and puzzling high (low) returns on low (high) idiosyncratic volatility stocks
found by AHXZ are present in the 1990-2020 period”, is true.

In this research I define the volatility risk premium VRP as the difference between
implied and realized volatility. This model-free measure is known to have explanatory
power on future market return, and often interpreted as a proxy for risk-aversion. I show
that changes in VRP is negatively priced in the cross-section, using three different
methods to compute the VRP. The negative risk premium for VRP, found using a Fama-
Macbeth procedure, is robust to including common risk factors. Furthermore. a difference
portfolio based on VRP sorted quintile portfolios, similar to the difference portfolios in
AHXZ, shows a significant negative FF-3 alpha. The second hypothesis; “The VRP is a
cross-sectionally priced factor” is supported by the data. There is potential for a risk-
aversion explanation of the cross-sectional effect of the VRP. Assuming Campbell’s habit
persistence, the existence of a stochastic discount factor and the law of one price to hold,
risk-aversion is time varying. Then, if the VRP is indeed a proxy for risk-aversion, asset’s
sensitivity to VRP would hold information about an asset’s payoff in a bad or good state
of the economy which according to standard finance theory should impact the asset’s
expected return. A more detailed look into the relation between the VRP and risk-
aversion, as well as risk-aversion and the state of the economy could be an interesting

subject for future research.
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The final hypothesis; “The cross-sectional effects of systematic and un-systematic
volatility, as well as the VRP, are more pronounced in crisis months” is tested by
comparing the full 1990-2020 sample to the results in a subsample of NBER recession
months. Looking at the difference portfolio returns, similar results are found for the
NBER recession subsample compared to the full sample. The risk factor premia resulting
from the Fama-Macbeth procedure show a stronger negative coefficient for the recession
months, with a monthly premium for the VRP of -3,82%. Given the mixed results, the
third hypothesis is false, however the stronger coefficients for the VIX and VRP factor
premia do indicate a stronger cross-sectional effect for systematic volatility during crisis
months.

Another interesting finding is the disappearance of the idiosyncratic volatility puzzle
when controlling for sensitivity to VRP. The negative returns on a difference portfolio,
found by AHXZ as well as in this research, are inverted to a positive raw as well as risk-
adjusted return after controlling for VRP. This positive return is in line with the
predictions of standard asset pricing theory. Investigating the relation between the
idiosyncratic volatility puzzle and the VRP, and the role that risk-aversion plays herein,
is beyond the scope of this research.

As mentioned, previous research dealing with measures of VRP in a ‘model-free’ way,
and therefor dealing with measure of realized volatility, make use of more precise data
frequencies. BTZ, as well as Bollerslev, Gibson & Zhou (2011) and others stress the
benefits of using 5-minute frequency return data to estimate the physical realized
volatility. Because of the limited availability of intra-day price data for U.S. stocks, the
measure is not used in this research. To test the robustness of the results of this research,
a realized volatility measure based off these 5-minute returns would be an interesting

addition.
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APPENDIX A
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Figure 1: daily time-series of VRP1 and its first order difference.
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Figure 2: daily time-series of VRP2 and its first order difference.
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VRPS3
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Figure 3: daily time-series of VRP3 and its first order difference.
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