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1 Introduction

A novel coronavirus (so-called SARS-COV-2 or COVID-19) emerged in Wuhan, China at

the end of 2019 (Chen et al., 2020). Cases quickly spread to other countries as the outbreak

reached global proportions. On 11 March 2020, the World Health Organization declared

the outbreak as a pandemic (WHO, 2020b). Many countries’ healthcare systems were not

prepared for outbreaks of such a scale, causing healthcare systems to operate at maximum

capacity and not being able to provide adequate care (Kandel et al., 2020). At the end of

2020, after nearly a year after the beginning of the pandemic, roughly 1.8 million people have

reportedly died by COVID-19 worldwide (WHO, 2020a). During this time, countries reacted

by implementing non-pharmaceutical interventions (NPIs) to combat the rapid spread of

the virus. However, the effectiveness of NPIs vary and thus a need arises to evaluate NPI

strategies to avert future health crises.

On 12 March 2020, the Dutch government introduced the first NPI by banning gatherings

of more than 100 people. On subsequent days, the government introduced more stringent

NPIs and on 23 March, the government initiated a self-proclaimed ‘intelligent’ lockdown,

a set of additional NPIs (RIVM, 2020). In this lockdown, all gatherings were canceled, all

citizens were asked to stay home as much as possible and adhere to health regulations. These

NPIs reduced the number of contacts between people and lessened the pressure on the Dutch

healthcare system, and on 11 May some NPIs were relaxed. Given the complexity of society,

the prediction of the impact that interventions strategies have on a potential epidemic is not

a trivial task. For this purpose, policy makers can be informed by model-based predictions

of the impact of different NPIs on the course of the epidemic.

Computational models can provide insights and evaluate effectiveness of interventions

(Furguson et al., 2020). In epidemiology, the two main approaches are equation-based model

and agent-based models. Equation-based models simulate the spread of a disease on a

population level, while agent-based models simulate interactions and behavior of a population

at an individual level.
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In this paper, I develop and present results of a stochastic agent-based model (ABM) of

the COVID-19 epidemic in Dutch municipalities. The model can be applied to the Nether-

lands as a whole, however due to computational limitations, it is implemented for two mu-

nicipalities: Delft and Apeldoorn during a two-month time span. The model is calibrated

using observed data on hospitalizations and validated on number of infections, hospitaliza-

tions and deaths. Hereafter, the impact of various NPIs on the course of the epidemic is

evaluated in terms of hospitalizations. Finally, a sensitivity analysis is performed to better

understand the ABM dynamics and address potential limitations.

The proposed model calibrated and validated the number of hospitalized patients for

both municipalities well. While the model was not trained on deaths, it could explain the

simulated deaths well for both municipalities. However, tests showed a significant difference

between the model-predicted and observed age distribution of diseased people in hospitals.

In line with expectations, the model overestimated the observed number of infected individ-

uals. This difference is likely caused by an under-representation of asymptomatic individuals

in the observed data. The model shows that NPIs targeting children have a large impact on

the spread of cases in the two municipalities studied. Furthermore, the model showed that

a delay on enacting NPIs resulted in a large spread of the disease in the Dutch municipali-

ties, showing that implementing NPIs early is of great importance. The sensitivity analysis

revealed, by varying values of parameters with uncertainty, that population features (e.g.,

classroom size and social network size) did not have a large impact on the outcome of the

model. While uncertainties concerning the transmissibility of the disease (e.g., symptomatic

or asymptomatic duration) affected the model outcome substantially.

The main contributions of the paper are the following. First, I contribute to a literature

that examines COVID-19 NPIs. Numerous models have evaluated various NPIs and showed

that school closure and early NPIs are effective measures (Soltesz et al., 2020), (Flaxman

et al., 2020). My results support these findings for Dutch municipalities. Second, this

paper contributes to a literature that examines agent-based models concerning diseases in

2



Europe. ABMs exist for epidemic spreading in Switzerland (Hackl and Dubernet, 2019),

France (Hoertel et al., 2020), Italy (Ciofi degli Atti et al., 2008), (Merler et al., 2009),

(Sjödin et al., 2020) and Ireland (Hunter and Kelleher, 2021). However, no ABM is yet

developed for any infectious diseases in the Netherlands. Thus, this paper provides a first

overview on available data for ABMs in Dutch municipalities. Furthermore, as NPIs impact

countries differently due to social and cultural differences (WHO, 2019), this paper analyzes

the effectiveness of NPIs specifically in Dutch municipalities. Third, the proposed model

differs from the above-mentioned studies, in that data of 2.260 unique individuals’ activity

patterns of Dutch citizens are included in the model. An activity patterns dictates what

activity individuals execute at different time periods for each day (e.g., going to work at

9AM or going to bed at 10PM). Most data-driven models on COVID-19 do not include

empirical information about human activity patterns, but rather use aggregated activity

patterns. Which limits the external validity, as infection rates are highly dependent on

patterns of individuals (Wang et al., 2021).

The rest of the paper is organized as follows: Section 2 provides a brief overview of

related work. Section 3 describes the model and calibration process. Section 4 details the

synthetic geography and population generation process. Section 5 discusses the calibration

and validation results. In section 6, the sensitivity analysis results are presented and finally

in Section 7, the paper is concluded and limitations and future directions are discussed.

2 Related work

In epidemiology, the most famous approach to model the spread of epidemics is the equation-

based model (EBM) proposed by Kermack and McKendrick (1927). Generally, EBMs for

diseases assume that a population (of size N) is compartmentalized into a small number of

groups. These separated groups represent various phases of a disease, and a set of equations

specify the transition rates between the compartmentalized health states. Commonly used
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phases are those that can contract the disease (called susceptible, denoted by S), those that

are infected and thus contagious (infectious, I) and those who are recovered from the disease

(recovered, R). The Susceptible-Infected-Susceptible (SIS) model by Iannelli et al. (1992)

only contains two transitions, either from susceptible to infected, or the other way around.

Another model by Shulgin (1998) is the Susceptible-Infected-Recovered (SIR) model, where

individuals cannot be infected more than once by the disease. The Susceptible-Exposed-

Infectious-Recovered (SEIR) model by d’Onofrio (2002) extends the standard model by in-

cluding a phase where an individual was exposed to the disease, while not being infectious

(the so-called incubation period). The SIS, SIR, SEIR models form the basis of EBMs for dis-

eases, other models are proposed that include or exclude variations of the before mentioned

disease phases.

EBMs fail to capture the heterogeneous mechanisms that are present in the spread of a

disease. For instance, EBMs, generally, cannot model spatial heterogeneity, contact patterns

and individual behaviors (Di Stefano et al., 2000). ABMs however, are capable of handling

these mechanisms (Hunter et al., 2018). For this reason, and the increase of computational

power available, the ABM framework has become popular for disease modeling. ABMs can

include spatial (e.g., locations such as schools, offices and homes) and population character-

istics (e.g., activity patterns, employment rate) and offer a high-resolution representation of

a population (Bonabeau, 2002).

In ABMs, spatial aspects of epidemics can be studied by permitting interactions between

individuals or “agents”. Generally, ABMs consist of a population, an environment and a

set of rules that dictate the actions of individuals (Epstein et al., 1996). In agent-based ap-

proaches for epidemiology, health states of individuals obey compartmentalized frameworks,

such as SEIR. However, unlike EBMs, changes in health states of individuals in agent-based

approaches come from interactions between individuals. As ABMs track contacts of every

individual in physical locations, the transmission of the disease follows through these con-

tacts. Actions of agents are determined by their surroundings and a set of rules. The rules
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that dictate the movement of individuals (e.g., going to work/school, visiting friends) and

the transmission of the disease are explicitly modeled (Gilbert, 2005).

The purpose of existing ABMs, for epidemiology, is mostly to analyze the behavior of a

system under certain conditions or to evaluate the impact of policies to slow the spread of

a disease in an epidemic. ABMs have been implemented for many diseases (e.g., influenza,

HIV or Ebola) and in many countries (Willem et al., 2017). Furthermore, ABMs have been

applied in various fields, such as flows (e.g., evacuation, traffic), ecology, economics, and

finance (Wallace et al., 2015).

Since the start of the COVID-19 pandemic, the scientific community had a fast response

by dedicating studies using models to focus on treatment and forecasting. Most studies using

EBMs implemented SEIR-based approaches, as COVID-19 has a known incubation period

(McAloon et al., 2020). Some studies added new phases to the SEIR approach, for instance:

isolated, hospitalized, or asymptomatic (He et al., 2020), (Tang et al., 2020), (Wu et al.,

2020). Several ABMs are implemented to explore the impact of interventions and on the

epidemic spread of COVID-19. Some studied the impact of NPIs, such as Furguson et al.

(2020) in GB and USA, Hoertel et al. (2020) in France, Silva et al. (2020) in Brazil. Others

studied contact tracing with ABMs, such as Shamil et al. (2021), Truszkowska et al. (2021)

and Kerr et al. (2020) in USA and Bicher et al. (2020) in Austria. These studies show that

ABMs calibrate and validate well for the COVID-19 pandemic.

3 Model description

In this section, the agent-based model is further elaborated. First, the transmission dynamics

for COVID-19 in the model are described. Hereafter, the disease model is discussed. Finally,

the process of simulating the COVID-19 spread is explained.
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3.1 Disease transmission

In the model, a set of A = {1, ..., n} agents are able to move between locations of set

L = {1, ...,m}. Each location lq ∈ L has a corresponding location type q. Appendix 8.1

denotes all location types. Interactions between individuals arise when multiple individuals

are present at locations (e.g., schools, households or workplaces). The probability that any

susceptible individual i becomes infected when residing at a location of type q at any time

t, is equal to

pi(t) = 1− e−∆(t)λq(t), (1)

based on the paper by Ajelli et al. (2010). Where ∆(t) denotes the time spent in location

lq. Furthermore, λq(t) specifies the infection risk associated with location lq at time t. Note

that pi(t) → 1 as ∆(t) · λq(t) → ∞. Thus, individual i is more likely to get infected if the

individual resides longer at a certain location or if the risk associated with that location is

higher.

The parameter λq(t) specifies the infection risk at the associated location of type q (e.g.,

household, school, or workplace) and is equal to

λq(t) =
1

nq

nq∑
k=1

(Ek + Syk · c) · Pk · βq · γ · θt,q. (2)

The infection risk is calculated by performing a sum over all (nq) individuals present

at time t at the corresponding location lq. Ek is an indicator variable that is equal to 1

if individual k is at time t in the exposed (E) health state, and 0 otherwise. If individ-

ual k is symptomatic, Syk is equal to 1 or 0 otherwise. The parameter Pk depicts the

infectiousness of individual k. The infectiousness varies among individuals and is drawn

from Gamma(0.25, 4) distribution with mean 1 (Furguson et al., 2020). The infectious-

ness difference between symptomatic and exposed individuals is captured in the term c.

Current research estimates that symptomatic individuals are more infectious compared to
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Home Work Healthcare Shop Religious School Leisure Public transport Horeca

βq 0.8 1 1 1.5 1.5 1.5 1 1.5 3

Table 1: Location dependent transmissibility factor.

asymptomatic individuals. However, there exists some heterogeneity in the estimates of the

relative infectiousness (McEvoy et al., 2021). Therefore, the term c is assumed to be equal

to 2, in line with the recommended studies by McEvoy et al. (2021). The relative infectious-

ness estimate of 2 indicates that symptomatic individuals are twice as infectious relative to

asymptomatic individuals. The sensitivity of c will be analyzed in the sensitivity analysis.

To capture differences between activities at locations, each location is assigned a location

type dependent transmission factor (βq) based on Rǎdulescu et al. (2020). These location

transmission factors are depicted in Table 1.

The infection risk, λq(t), represents the risk of infection that each susceptible individual

is exposed to, while residing at a location lq at time t. Each susceptible individual present

at location lq at time t experiences the same risk, as λq(t) approximates the chance of

interactions between susceptible and infectious individuals at locations. Furthermore, each

susceptible individual i is subject to the same probability of infection pi(t), as recent studies

suggest that no large differences of susceptibility by age exist for COVID-19 (Omori et al.,

2020).

The parameters βq, Pk and c of the infection risk are not calibrated, as estimates for these

parameters exist in the literature on COVID-19 and the inclusion of these parameters can

lead to overfitting the model. However, two parameters of the infection risk are calibrated

by the model: γ and θt,q. By calibrating the parameter γ, the model is able to adjust the

infection risk caused by infectious individuals and thus alter the probability of infection that

susceptible individuals experience when in contact with infectious individuals. The second

calibrated parameter, θt,q is included to captures the change in transmissibility caused by

the implementation of a NPI on 14 October. From this date onward, the Dutch government

forced individuals to wear face masks in schools and public transport, reducing the conta-
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Figure 1: Schematic representation of health states and its transitions for individuals.

giousness of individuals in these locations. In the model, θt,q is equal to 1 before 14 October,

equal to the calibrated value for subsequent time periods for schools and public transport

locations or 1 otherwise.

3.2 Disease model overview

The disease model adopts a compartmentalized standard SEIR transmission dynamics. Ad-

ditional states are included as COVID-19 is known to have a latent period and cause asymp-

tomatic illness, studied in meta-analysis studies by McAloon et al. (2020) and Byrne et al.

(2020). The following states are included in the model: susceptible (S), latent - where

an individual has been infected, but is not yet infectious (L), exposed asymptomatic - an

individual is infectious but does not develop symptoms (Ea), exposed presymptomatic -

where an individual is infectious, but has not yet developed symptoms (Ep), symptomatic

infectious (Sy), and permanently recovered (R) or dead (D) individuals.

In the model, exposed and symptomatic individuals can get tested on their own accord.

The probability of getting a test is based on the average willingness (45%) of Dutch citi-

zen in the period 30 September till 4 October as based on the research of RIVM (2021e).

All asymptomatic individuals that receive a positive test result, will be placed into home
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Value Reference

Transition duration
Latent period, days Lognormal(1.63, 0.5) (McAloon et al., 2020)
Presymptomatic period, days 2.5 (Byrne et al., 2020)
Sympotmatic period, days 7.5 (Byrne et al., 2020)
Asymptomatic period, days Gamma(3, 2) (Byrne et al., 2020)

Testing parameters
Time for PCR result, days 3 (RIVM, 2021d)
Test willingness symptoms 45.0% (RIVM, 2021e)
Test willingness housemate positive 83.5% (RIVM, 2021e)

Age-dependent value
0-14 15-24 25-44 45-64 65+ Reference

Probability
Developing symptoms 10% 30% 50% 50% 50% (Furguson et al., 2020)
Hospital admission 0.30% 0.51% 1.45% 5.21% 20.00% (Papst et al., 2021)
Death 0.00% 0.01% 0.03% 0.48% 5.42% (Papst et al., 2021)

Duration, days
Time until hospitalization 2 6 6 6 4 (CDC, 2021)
Hospitalization 2 3 3 4 5 (CDC, 2021)

Table 2: Parameter values and references of disease characteristics.

isolation (Eah) (RIVM, 2021e). Furthermore, if an individual is hospitalized or receives a

positive test result, its housemates can get themselves tested (83.5% do so). Thus, presymp-

tomatic individuals can get tested if their housemate received a positive test result. These

presymptomatic individuals will be placed into home isolation (Eph) after receiving its re-

sult. If an individual develops symptoms, while already in home isolation, it is transferred to

the symptomatic home isolation state (Syh). Finally, some symptomatic individuals develop

such severe symptoms that they need to be hospitalized (H). An overview of health states

and transitions are shown in Figure 1.

All infected individuals start their latent period after infection occurred. When the la-

tent period has expired, the individual progresses into the exposed state. All individuals

can develop symptoms, with the probability based on its age. Any individual that devel-

oped symptons, is transferred from the latent health state into the presymptomatic state

(Ep). After their presymptomatic period has elapsed, the individual is transitioned into

the symptomatic infectious state (Sy). If an individual does not develop any symptoms,
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the individual remains in the asymptomatic exposed state until the recovery duration has

elapsed (Ea). Some of the individuals need to be hospitalized, based on probabilities from

an age-distribution. If an individual is hospitalized, it is placed into an isolated location

at hospitals. In these isolated locations, the individual cannot infect others as the RIVM

(2021a) projected that less than 1 percent of individuals are infected in Dutch hospitals.

Finally, an hospitalized individual can recover from the disease or die, based on probabilities

from an age-distribution. After an individual died or recovered, it cannot be infectious or

infected. The disease parameters on the age-dependent transitions, the duration of health

states and test willingness are depicted in Table 2.

3.3 Simulation process

The agent-based model proposed in this research is driven by a discrete-event simulation

(DES). A DES models a system as a sequence of events, chronological in time. Within this

research, events are transitions between locations or changes in health states of individuals,

as these events produce interactions between susceptible and infectious individuals. The

DES assumes that no changes occur in the time between events and as such, the simulation

time can jump to the time of the next event in the chronological sequence (hence the term

discrete). In the DES, individuals are modeled as independent entities with attributes.

These attributes dictate the movement of individuals and affect the disease progression of

individuals. Furthermore, the DES keeps track of variables that form the output of the

model. For this model, the output variables are the cumulative infections, hospitalizations

and deaths of individuals.

Before the simulation is started, all individuals with their unique attributes and the

environment are initialized. This procedure is further elaborated in Section 4. Hereafter, at

the start of the simulation, the entire population is initialized at home and their health states

are set to be susceptible (S). Hereafter, for each individual an event is created that signifies

the time when that individual leaves their home. All these events of the entire population
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Algorithm 1: Pseudocode for the Discrete Event Simulation

Initialize agents and locations;
Create initial events of agents;
Infect random agents;
while simulation clock does not exceed simulation clock limit do

while event sequence contains events for the current simulation clock do
Remove next event from sequence and process the event;

end
Update output variables;
Increment simulation clock;

end

Algorithm 2: Pseudocode for an activity event subroutine

Parameter: Agent
Depart Agent from its current location;
Add Agent to new location;
Schedule new event at end time of activity;

are added to the event sequence. Then, a number of individuals are randomly selected and

set to the exposed (E) health state, to form the set of initially infectious individuals. These

infectious individuals will subsequently infect other individuals and so forth. Hereafter,

events are chronologically processed. Algorithm 1 depicts the pseudocode for the general

DES.

When an event is processed, a subroutine is executed. Algorithm 2 displays the pseu-

docode for the subroutine of an activity event. In such an event, an individual is departed

from its current location, and will be added to a new location. Finally, a new event will be

scheduled to signify the departure of its new location. For example, let us consider an empty

location, an event sequence containing two events and a simulation clock at time t0. In the

first event (E1), an infectious individual, i1, arrives at time t1 at the location, the individual

will subsequently depart at t3. The second event (E2) contains the arrival of a susceptible

individual, i2, at time t2. Individual i2 will departure at time t4. The processing of three

events will be further elaborated below. Figure 2 depicts the three events of the DES for the

arbitrary location, where Ei denotes the ith processed event.
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Figure 2: Example of processing events in the DES for a location and two individuals.

At the start, the simulation clock is incremented to t1, as no events are available at t0.

Hereafter, the event E1 is removed from the sequence for processing, as it is the first event in

chronological order. Thus the individual i1 is removed from its current location, and added to

the empty location. The infection risk at the empty location is not calculated, as there were

no individuals present at the location before t1. Finally, a new event E3 is created for the

departure of i1 from the location at time t3. Hereafter, the simulation clock is incremented

to t2 and the next event E2 is removed from the sequence. In the processing of E2, the

individual i2 is added to the location. No infection risk is calculated, as only one person was

present between t1 and t2. A new event is subsequently created for the departure of i2 at

t4. The simulation clock is incremented to t3 and finally, the next event E3 is removed from

the sequence. Individual i1 is removed from the location and the infection risk is calculated,

as two individuals were present between t2 and t3, one being susceptible and one infectious.

As such, individual i2 is exposed to the disease with probability p(t3) = 1–e−∆(t3)λ(t3) (as

described in Equation 1). Where ∆(t3) = t3–t2.

Travel is explicitly modeled in the simulation. However, if an individual travels by car,

bike or foot, it is assumed that this type of travel is executed in isolation. This is achieved

by placing the individual into a unique location only containing the individual for the entire

duration of that travel activity. If the specified mean of transport is public transportation,

interactions between individuals are allowed. Any individual that performs a travel activity
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using public transport, enters a fictitious location containing other individuals using public

transport at that time.

Social activities between individuals are modeled through social events. At the start of a

social event, an organizer invites other individuals from its social network to its home. The

invited individuals can only accept an invitation if their current activity allows for social

interaction with other agents. Furthermore, the organizer can only invite other agents if

the number of individuals visiting its home does not exceed the maximum allowed number

by the government. Research by RIVM showed that the compliance regarding visitors was

99.1% during the considered period (RIVM, 2021e).

To simulate the COVID-19 epidemic in Dutch cities, restrictions initiated by the Dutch

government are implemented in the simulation. At the start of the simulated period, eating

establishments are closed from 8 pm, and households could invite at most 3 individuals over

per day. On 14 October, the Dutch government closed all eating establishments all day

and closed all shops from 8pm onward. Furthermore, face masks were made mandatory

in secondary and higher education institutions and public transport. On 4 November, the

government closed all public buildings (e.g., museums, theaters) and limited the number of

visitors a household could receive per day to 1.

3.4 Calibration

The parameter configuration of the model is identified by using simulation optimization.

Simulation optimization integrates an optimization technique into the simulation modeling,

creating a loop of: simulation, evaluation and parameter updating. This loop is terminated

when a certain criterion is met. The objective of the optimization problem is to closely

match the simulated and observed hospitalization data.

In the ABM, a parameter configuration evaluation is computationally expensive, as mul-

tiple independent replications of the simulation are performed to obtain the output of a

single configuration. Furthermore, the function of the proposed model does not have an ana-
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lytical form, the parameter configuration can only be evaluated with nonlinear optimization

methods. For this purpose, a direct search approach called Nelder-Mead (NM) is imple-

mented (Nelder and Mead, 1965). The NM framework is well suited for the proposed model

as only a couple parameters need to be evaluated for each iteration. The objective function

of the model consists of two components: the Kolmogorov-Smirnov (K-S) statistic and the

percentage difference between the predicted and observed hospitalized on the last day. The

K-S statistic serves as a goodness of fit of the distribution. The K-S statistic is defined as

D = sup
x
|F1(x)− F2(x)|, (3)

where Ft(x) denotes the distribution function of either the observed or simulated sample.

The K-S statistic (D) quantifies the maximum distance between the simulated and observed

cumulative distribution function of hospitalizations at any point. This maximum distance

can be observed at the final day of the calibration period, while preferably the simulated

hospitalizations are close to the observed values on the final day. For example, multiple

parameter configuration could posse the same K-S statistic value, while some of these con-

figurations could closely match the simulated to the observed cumulative hospitalizations on

the final day. For this purpose, a percentage difference between the predicted and observed

hospitalized on the final day is included in the objective value.

The key parameters of the calibration are: initial infections, transmissibility probability

(γ) and lockdown transmission transmissibility (θt,q). The number of initial infections is

calibrated to account for reporting errors in number of infected individuals, and is calibrated

over the range [150, 250] for both Delft and Apeldoorn. As Apeldoorn has a larger popula-

tion, while Delft suffered a more severe COVID-19 outbreak. Transmissibility is calibrated

over the range [2x10-4, 3x10-4]. The transmissibility reduction parameter (θt,q) is calibrated

over the range [0.90 – 1.00] for schools and public transport after the 14 October, and is

equal to 1 for all other locations during this period. The time-span of the model is 61 days,
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ranging from 1 October until 30 November. The model is calibrated on the first 31 days,

starting from the 1 October. While the last 30 days serve as a validation period.

In the validation process, three measures are used to evaluate the goodness of fit: the

coefficient of determination (R2), Pearson’s r and the Kolmogorov-Smirnov two sample test.

The coefficient of determination, is defined as

R2 = 1−

∑
t

(yt − ŷt)2

∑
t

(yt − ȳ)2
, (4)

where yt depicts the observed value at time t, ŷt the estimated value and ȳ the average of

observed values. The R2 represents the proportion of the variance explained by the model.

Pearson correlation coefficient (Pearson’s r), defined as

rx,y =

∑
t

(xt − x̄)(yt − ȳ)√∑
t

(xt − x̄)2
∑
t

(yt − ȳ)2
, (5)

and represents the correlation between two sets of data. A value of 0 would imply that

no linear correlation is present in between the sets, while a value of 1 would suggest that

the observed and simulated data are perfectly correlated. Finally, the K-S two sample test

is used to compare the cumulative distribution functions between two samples. The null

hypothesis of the K-S two sample test states that both distributions are drawn from the

same distribution. If the null hypothesis is rejected, it concludes that both distributions

are not drawn from the same underlying distribution. All following tests are evaluated a

significance level of 0.05.

The used optimization algorithm is prone to be stuck in local minima due to the initial-

ization values of the parameters. To combat this, the algorithm is restarted to escape these

local minima, by randomizing parameter configurations within their ranges. The optimiza-

tion of the parameter configuration is terminated when the number of iterations exceeds a
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user-specified number, or if the similarity between observed and simulated data converged

sufficiently. The returned parameter configuration is used to validate the model on the last

30 days of the 61 day period for each municipality.

4 Data

In this section, the data and the generation process of the synthetic geography and pop-

ulation are described. Hereafter, the activity patterns and the creation of social networks

for individuals is outlined. The disease data is discussed and finally, the results and the

limitations of the generation process are discussed.

4.1 Synthetic geography

All 355 municipalities are divided into multiple districts by the Central Bureau of Statistics

(CBS) of the Netherlands. This subdivision provides a high resolution view of each mu-

nicipality. A geographical information system software (QGIS version 3.16.2) was used to

obtain administrative bounds for all (12.814) districts, provided by CBS (2021f). The Basic

Registration of Addresses and Buildings (BAG) from the Dutch cadaster provides a dataset

on all buildings in the Netherlands (Kadaster, 2021). Each building in the BAG dataset has

its function categorized (residential, office, retail, industrial, educational, healthcare).

Hereafter, geographical coordinates of amenities (e.g., restaurants, cinemas, or supermar-

kets) were obtained from OpenStreetMap (OSM) by using the software Osmosis (Osmosis,

2021). A full list of amenities included in the model is provided in Appendix 8.1. OSM is a

volunteer geographic information dataset, where individuals can submit information about

the environment which they are living in (OSM, 2021). Numerous scientific studies, stud-

ied the data quality of OSM. These studies show that around urban areas, a vast amount

of positional accurate data can be obtained (Ali and Schmid, 2014). The geographical co-

ordinates of amenities obtained from OSM were mapped to buildings. To this extent, a
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Figure 3: Map of Delft. Grey circles represent households, yellow circles office buildings,
green circles shops, red circles religious buildings, blue diamond supermarkets and green
triangle hospitals.

QuadTree data structure was employed to determine the closest building to a coordinate

(Aizawa et al., 2008). Some amenities in the OSM dataset specified an address, while others

did not. Those that did not contain an address, were matched based on nearest relevant

building, while matching by address was used in cases whenever possible.

School data is obtained from the Dutch office of education (DUO, 2021). The dataset

includes all locations and number of students of all types of schools in the Netherlands.

These schools are matched to buildings according to their address. Finally, all buildings

were matched to their corresponding district in QGIS. Figure 3 depicts the distribution of

some building types throughout Delft.
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4.2 Synthetic population

For each district in the Netherlands, data is available on the number of people living in

the district categorized into age groups (0-14, 15-24, 25-44, 45-64 and 65+ years) and types

of household (single parent, living alone, living together without children, living together)

(CBS, 2021i). The age-distributions per household type was not available on a district-level,

but was obtainable on municipality-level (CBS, 2021h). Using these datasets, synthetic

households were created and synthetic individuals were distributed over these households.

The resulting households were hereafter assigned to residential buildings within the corre-

sponding districts.

Data on the number of students for all education types was obtained for each municipality

(CBS, 2021j). Individuals were assigned to education types (primary, secondary, vocational,

college or university) based on their age. Hereafter, students were assigned to nearby schools

based on the distance between the school and the student’s home. Finally, all students were

assigned to classes in each school. For primary and secondary schools class sizes are on

average 25 students per class (Slob, 2021), while for higher types of education, school class

size was assumed to be 60.

The number of workers per industry type (industry, healthcare, culture, retail, education,

or office) was obtained on a municipality-level (CBS, 2021d). Each individual, not a student

or retired, is assigned to be a worker based on the employment rate corresponding to its

household position (being a parent, single, single parent, child, adult without children). Data

on household position employment was not obtainable on a district or municipal-level, but

only available on a national-level from CBS (2021c). Commute data was obtained from CBS

(2021l), it specified the number of commuters between all municipalities in the Netherlands.

Finally, workers are assigned to companies with varying sizes (5, 15, 35 and 100+) and

companies to buildings matching the industry type. The distribution of company size for

each industry type is based on national-level data (CBS, 2021e).

In the COVID-19 epidemic, the government has urged individuals to work from home.
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However, not all type of jobs are suitable to work from home (e.g., industrial jobs or eating

establishments). To account for these differences, data was obtained from TNO (2021) about

the percentages of employees working from home for each industry type.

4.3 Activity patterns and social networks

An activity pattern dataset is obtained from the Netherlands Institute for Social Research

(SCP, 2021). This dataset provides sequences of activity patterns of 2,260 individuals that

kept a diary of their activities for one week in 2016. Activities in a sequence denote the type

of activity (e.g., working, traveling, or eating), location (e.g., home, at work or restaurant)

and duration in 10 minute intervals. To assign activity patterns to individuals, the dataset

is categorized into three categories: age, social role, and household role. The social role of

an individual signifies its occupancy (unemployed, school-going, worker or retired), while the

household role denotes the position of the individual in a household (e.g., child or parent).

Based on the categorized dataset, each individual is assigned a random activity pattern from

their respective categories.

Furthermore, each individual is assigned a network that consist of people with who the

individual discussed personal matters or would visit in their leisure time. This network is the

so-called ’core discussion network’ studied by Mollenhorst (2009) by analyzed the Survey of

the Social Networks of the Dutch (Röper et al., 2009). These networks for individuals in the

Netherlands, have an average size of 9.75 (SD = 4.65). The network consists of 4 types of

relationships: friends (24.6%), relatives (21.7%), colleagues (17.4%), and neighbors (36.2%).

In the model, all individuals are assigned a social network size sampled from a Gamma(4.33,

2.70) distribution, with corresponding mean 9.75 and standard deviation 4.65. However, dif-

ferences exist between individuals (age, gender, household position and social role) that

influence the probability that two individuals will be included in each others social network.

For instance, an 80-year-old retiree is not likely to have a 20-year-old student included in

their network. For this purpose, a social similarity score is calculated between individuals
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based on the approach used in the ABM by Zhang (2016).

The similarity between two individuals A and B, is evaluated by a weighted Euclidean

distance, expressed by

S(A,B) =

√∑
f

µf (Af −Bf )
2, (6)

where f denotes a feature of set F = {age, gender, social role and household position} and

µf is the weight factor for feature f ∈ F . This score signifies the percentage of similarity

between two agents.

The similarity score is used to determine whether individuals are included in each oth-

ers social network. The process of assigning individuals to a social network differs between

relationship types. Specifically, colleagues are randomly selected from an individuals’ place

of work, and accepted in its network if they are sufficiently similar. Neighbors are deter-

mined by searching for the 100 nearest households utilizing a nearest-neighbor search in the

QuadTree originating from an individual’s home. Friends and relatives are randomly selected

individuals within a range of 20 km from an individuals’ home, as on average 87% of social

trips occur within 20km (CBS, 2021g). Moreover, the relatives in a social network include

all individuals that live together with a family relationship (e.g., child-parent, or parents in

the some household).

4.4 Disease data

The daily cumulative number of positively tested individuals, hospitalized patients and

deaths for each municipality was obtained from RIVM (2021c). The considered period is

from 1 October until 30 November 2020. This period is commonly regarded as the ‘second’

wave in the Netherlands. Like the first wave, the second wave crippled the Dutch healthcare

systems and had a potential to cumulate into a catastrophe. While testing was not widely

available in the first wave, it was available for all individuals by appointment during the

second wave (Algemene Rekenkamer, 2021). At the start of October, only a very limited
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number of NPIs were enacted by the government. A combination of tests being widely avail-

able, the low number of NPIs and the low number of hospitalizations at the beginning of the

second wave, provides the model a good position to estimate the effects of alternative NPIs.

The RIVM notes that the actual number of positive tests, hospitalizations and deaths are

under-reported as not all individuals get tested. Especially the daily number of positive tests

lacks accuracy, as individuals can be asymptomatic and thus do not get tested as they are

unaware of their COVID-19 infection. Furthermore, the RIVM notes that the data regarding

hospitalized individuals and deaths could be delayed due to delays in registration by medical

professionals.

4.5 Synthetic data generation results and limitations

The proposed synthetic population generation process and its data, as described in para-

graph 4.2, can be applied to all municipalities in the Netherlands. However, due to limited

computation power, this research focuses on two Dutch municipalities: Delft and Apeldoorn.

Individuals (so-called agents in the model) are assumed to be contained in the municipal-

ity (i.e., no individual can enter or leave a municipality). This assumption restricts the

individuals commuting between municipalities for work or schools, and limits the model in

its ability to simulate the spread of the disease throughout neighboring municipalities by

omitting interactions between individuals from various municipalities. However, neighbor-

ing municipalities show similar infection rates to the studied municipalities (RIVM, 2021f),

and thus individuals are exposed to relatively the same infection risks even if they cannot

commute. The scalability of the model to all municipalities in the Netherlands is discussed

in Appendix 8.2. Delft and Apeldoorn consist of 101,474 and 157,198 residents respectively.

The two municipalities were selected based on their relevance in the Dutch epidemic. Apel-

doorn is regarded the most average Dutch municipality, as its population composition closely

resembles the whole of Netherlands (Whooz, 2021). Moreover, of all municipalities, the re-

sults of Apeldoorn for the 2021 national elections closest resemble those of the Netherlands
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Delft Apeldoorn
Category Synthetic Census Synthetic Census
Population

Total individuals 101,474 101,910 157,198 160,995
Male 53.2% 53.2% 49.7% 49.7%
Female 46.8% 46.8% 50.3% 50.3%

Age distribution
0-14 years 12.5% 12.5% 16.0% 16.1%
15-24 years 20.2% 20.2% 11.5% 11.2%
25-44 years 28.4% 28.4% 23.1% 22.7%
45-64 years 23.3% 23.3% 29.1% 28.4%
65+ years 15.6% 15.6% 20.4% 20.0%

Household characteristics
Number of households 58,488 58,565 72,760 72,035
Average household size 1.85 1.76 2.16 2.23
One person households 56.8% 57.0% 35.5% 35.9%
Households with kids 20.9% 21.3% 32.2% 33.4%
Household without kids 22.2% 21.7% 32.3% 30.7%

Student count per school type
Primary 6,600 6,600 12,989 12,989
Secondary 4,203 4,203 9,436 9,436
Vocational 1,839 1,839 5,096 5,096
College 2,967 2,967 3,445 3,445
University 13,480 13,480 932 932

Table 3: Population characteristics of the created synthetic population.

(ANP, 2021), further indicating that Apeldoorn is a good representation of the Dutch aver-

age. While Delft, at the start of the selected time span, had the most infections per 100.000

individuals of all municipalities in the Netherlands (RIVM, 2021b). Thus, the municipality

of Delft provides additional information on the effect of NPIs on municipalities struggling

with a COVID-19 outbreak.

Every building obtained through the cadaster dataset was mapped to a district of a

municipality in the Netherlands. Hereafter, the geography generation process successfully

matched all 215,179 amenities and 8,668 schools in the Netherlands to these buildings. In the

geography data generation process, these amenities and schools were matched to buildings

with an offset of 6 meters if their addresses were specified. While, the offset was 81 meters if

the address of the amenity of school could not be extracted from its data. The coordinates
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Category
Delft

Synthetic
Apeldoorn
Synthetic

Census

Social network
Average size (std. dev.) 9.75 (4.65) 9.82 (4.59) 9.75 (4.65)
Friends 24.3% 23.7% 24.6%
Colleagues 22.0% 19.7% 21.7%
Neighbors 17.7% 19.6% 17.4%
Relatives 36.0% 37.1 36.2%

% employment by household type
One-person household 63.1% 63.1% 61.3%
Single parent household 74.1% 74.1% 72.0%
Two parent household 89.7% 89.8% 87.2%
Without children household 75.3% 75.4% 73.2%
Living with parents 78.9% 79.0% 76.7%

% working at home by industry type
Industry 27.2% 25.3% 26.2%
Shop 24.7% 24.0% 24.9%
Horeca 25.2% 24.8% 24.9%
Office 70.8% 70.2% 70.6%
Education 26.4% 27.1% 27.1%
Healthcare 13.2% 12.9% 13.0%
Culture 46% 44.1% 44%

Table 4: Social network and employment characteristics of the created synthetic population.

lacking addresses were matched to the nearest building by employing the QuadTree data

structure to find nearest neighbors. The small offset of assignment of buildings indicate that

amenities and schools, especially with addresses, were assigned to nearby buildings in the

model, thus providing high positional accuracy of facilities in the model.

The results of the synthetic population generation are presented in Table 3. For both

municipalities, a column of their synthetic generated population and a column on the relevant

census data is shown. The synthetic population matched the census data well for both Delft

and Apeldoorn. Some differences in census data between the municipalities can be noted,

as Delft has a vast number of university students compared to Apeldoorn. This difference

in students results in an increase of individuals aged 15-24 years, an increase of males due

to the technical university located and an increase of one person households in Delft.

The results of the social network generation and employment assignment is displayed in
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Education type
Average travel
distance (km)

Average occupancy compared
to census data

Primary 0.83 96.7%
Secondary 4.04 101.1%
Vocational 19.28 101.3%
College 16.35 104.0%
University 12.93 95.5%

Table 5: Education characteristics of the synthetic population.

Table 4. The generation process closely adheres the data regarding social networks, indicated

by the closely matched relative group sizes. Furthermore, the average size and standard

deviation of the social network size is similar to the observed data for both municipalities.

Moreover, the employment per household type and the percentage of individuals working

from home per industry type matches the census data.

The results of the student assignment is depicted in Table 5. The table shows that for

each education type, the synthetic schools closely matched the census data on number of

students for each school. For example, primary schools in the model are assigned on average

96.7% of the students they are expected to have per their census data. Furthermore, the

table depicts the average distances that students have to travel to their schools for each

education type. The average distance that a student has to travel to primary and secondary

schools is 0.8 and 4.0 km respectively. The Dutch average distance from a students’ home

to the nearest primary school is 0.7 km (CBS, 2021a), and 2.4 km to the nearest secondary

school (CBS, 2021b). The nearest distance serves as a lower bound of the actual average

distance that a student has to travel, as not all students attend the nearest school to their

home. Only 0.2% of primary school students need to travel more than 3 km to the nearest

primary school (Eurydice, 2021), while 15% of secondary school students need to travel more

than 5 km (CBS, 2021b). Therefore, if a student does not attend the nearest school, the

average distance to travel to the second nearest school is lower for primary schools than

secondary schools. Thus, the student assignments for primary and secondary school shows

that it adheres to the lower bounds and the simulated travel differences between primary and
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secondary schools can be explained by the differences in nearest distance to these schools.

Higher education lacked data on the average distance to students’ homes or nearest

school distance. However, the generated differences in distances for higher educations can

be explained by their relative difference in percentage of independent living. Only 17.8% of

the students enrolled in vocational schools live on their own. College students have a higher

average of 46.8%. While 64.5% of the students enrolled in universities live, on average,

independent (CBS, 2021k). These difference between independent living, can explain the

reduction of average distances from students’ homes to their assigned schools per education

type. For example, university students are more likely to live independently compared to

students enrolled in vocational schools, and thus university students need to travel a shorter

distance to their schools on average. The results on average distance traveled and occupancy

of schools, indicate that the model’s student assignment performs well.

While the generation process is successful, there are limitations regarding the data.

Firstly, by using the OSM dataset, it is possible that not all relevant locations of amenities

are included in their dataset as it is an volunteered geographic information project. However,

Delft and Apeldoorn are urban areas, and the Netherlands is one of the countries with the

highest number of contributors per area (Osmstats, 2021). Secondly, some data regarding

the population was not obtainable on a district or municipal-level. Thus national-level data

was used, while this data represents the average of Dutch municipalities, it does not cap-

ture difference between municipalities. Nevertheless, national-level data provides differences

within the population that would otherwise not be captured. Moreover, the national-level

data is still relevant to the Dutch setting, as it represents Dutch averages. Thirdly, the

disease data can be inaccurate as healthcare professionals can experience delays with reg-

istering the data. To combat this, all disease data is averaged over 3 days. Fourthly, the

activity patterns are not differentiated other than on age, social role and household position.

Thus, the heterogeneity between individuals is not fully captured, as for example, individuals

working in different industry types exhibit different activity patterns. Furthermore, the ac-
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tivity patterns of individuals do not vary between the municipalities, omitting social-cultural

differences between different municipalities. Lastly, the assumptions made regarding simi-

larity for social networks, class size and company size are further analyzed in the sensitivity

analysis to analyze the impact of their uncertainty on the output of the model.

5 Results

The results of the simulated ABM are presented in this section. First, the results of the

calibration and validation periods are presented for Delft and Apeldoorn. Second, the re-

sults of various NPI strategies are discussed. The simulations performance results and the

coefficient of variation are shown in Appendix 8.2.

5.1 Calibration and validation results

The model is calibrated on the cumulative hospitalization between 1 October and 31 October.

The municipality of Delft calibrated well, with a R2 and Pearson’s r of 0.976 and 0.997

respectively for the number of hospitalizations before 31 October. Similarly, the model

validated well on the number of hospitalizations between 1 November and 30 November,

supported by the R2 and Pearson’s r of 0.970 and 0.989 respectively. Apeldoorn calibrated

well with a R2 and Pearson’s r of 0.966 and 0.985, and validated with 0.821 and 0.966

respectively. The hospitalization for both municipalities is shown in Figure 4. The validation

R2 of Apeldoorn decreased substantially more than the validation R2 of Delft. The lower R2

can be explained by the relatively large number of observed hospitalized individuals right

before the end of the calibration period and at the start of the validation period. Finally,

the K-S two-sample statistic did not reject the null hypothesis for both the calibration and

validation period for both municipalities, depicted in Table 6. Indicating that the simulated

and observed hospitalizations distribution functions did not significantly differ from each

other.
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Figure 4: The cumulative hospitalization of Delft and Apeldoorn for the calibration (1
October until 31 October) and validation (1 November until 30 November) period. Vertical
lines depict government enacted NPIs days (14 October and 4 November). Dark grey shaded
represent the 95% bootstrap C.I., while the light grey shaded area depicts the IQR.

The model was not trained using data on deaths, therefore the data on the complete

period between 1 October and 30 November can be used to validate the model in terms of

goodness of fit using data on deaths. Figure 5 depicts the fit of predicted deaths for both

Delft and Apeldoorn. The model provided a good fit for the number of deaths between 1

October and 30 November, with a R2 and Pearson’s r of 0.926 and 0.981 for Delft. The R2

and Pearson’s r for Apeldoorn are 0.382 and 0.982 respectively. Indicating that the deaths

for Delft are well explained by the model, while the model does not explain the deaths

Delft Apeldoorn

Days
Kolmogorov-Smirnov

statistic
p-value

Kolmogorov-Smirnov
statistic

p-value

Hospitalization
1 - 31 0.097 0.999 0.129 0.959
32 - 61 0.100 0.999 0.200 0.586

Deaths
1 - 61 0.197 0.189 0.279 0.018**
15 - 61 0.213 0.238 0.255 0.093*

Table 6: KS-statistic for cumulative hospitalization and deaths for Delft and Apeldoorn.
Note: *** p < 0.01, ** p < 0.05, * p < 0.10.

27



Delft

Apeldoorn

Intervention 1 Intervention 2

20

40

60

80

1 October 16 October 31 October 15 November 30 November

cu
m

ul
at

iv
e 

de
at

hs

Observed

Simulation (validation)

Figure 5: The cumulative deaths of Delft and Apeldoorn for the validation (1 October until
30 November) period. Vertical lines depict government enacted NPIs days (14 October and
4 November respectively). Dark grey shaded depicts the 95% bootstrap C.I., while the light
grey shaded area depicts the IQR.

well for Apeldoorn. Although the model could not predict the deaths in Apeldoorn well,

the observed and simulated deaths were highly correlated as indicated by the Pearson’s r.

This can be explained by the overestimation of the deaths in Apeldoorn at the start of the

simulation, while later it matches the observed deaths growth. This relation was further

confirmed by the KS two-sample test of Apeldoorn shown in Table 6. The KS two-sample

test showed that the probability functions significantly differed when looking at all 61 days

for Apeldoorn. However, when the first two weeks are omitted, the distributions of the

observed and simulated growth would not significantly differ at a 5% significance level.

Furthermore, the age-distribution of deaths in Delft and Apeldoorn are depicted in Figure

6. The Chi-squared test null hypothesis of no differences between the simulated and observed

age-distribution is rejected for both Delft and Apeldoorn, as the age-distribution of deaths

showed significant differences, χ2(df = 4) = 48.7, p < .01 and χ2(df = 4) = 57.2, p < .01

respectively. While the null hypothesis of the Chi-squared test is rejected, the model still

explained the observed deaths for the individuals above the age of 45 years relatively well
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Figure 6: The age-distribution of deaths for Delft and Apeldoorn. Error bars denote the
95% confidence interval.

for Delft and Apeldoorn. The model does poorly for younger individuals, and the high χ2

value can be attributed to the age categories below 45 years. However, the individuals aged

45 or younger only account for 1.4% of the total deaths in the Netherlands (RIVM, 2021c).

Nonetheless, this difference might be caused by differences in underlying characteristics of

municipalities (e.g., Delft has many students) that are not being captured in the observed

age-distribution of deaths as this distribution comes from the Netherlands as a whole.

Finally, the simulated daily number of infections and the daily number of positive test

per day for both Delft and Apeldoorn are shown in Figure 7. While Delft has a smaller

population, its daily number of positive tests is comparable to Apeldoorn. This can be

explained by the fact that Delft had the most infections of all municipalities per person

at the start of the considered period. Furthermore, as expected, the simulated number of

infections per day considerably outnumbers the observed positive test results on most days.

This difference can be attributed infected individuals that are not willing to get tested and

individuals unaware of their COVID-19 infection.

Concluding, the model could explains the cumulative hospitalization well for two Dutch
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Figure 7: The daily infections for Delft and Apeldoorn as validated (purple) and 3-day
averaged observed for Apeldoorn (red and black respectively). Vertical lines depict days on
which the dutch government enacted NPIs (14 October and 4 November).

municipalities. Furthermore, deaths could be explained well for Delft. The model overesti-

mated the number of deaths in the first two weeks for Apeldoorn, however it correctly mod-

eled the deaths after these two weeks. As expected, the model overestimated the observed

positive test results per day. While the model could not explain the observed age-distribution

of deaths in the studied municipalities over all age groups, it estimated the age-distribution

of deaths for individuals aged 45 or older to some extent.

5.2 NPI strategies evaluation

Next, varying intervention strategies are simulated. First, a strategy is adopted where no

interventions are enacted. Hereafter, the enacted NPIs by the Dutch government, are imple-

mented on other days than the original NPIs. Specifically, the enacted NPIs are scheduled 7

days earlier and 7 days later. Where the original dates were 14 October and 4 November for

the original two enacted NPIs. Thirdly all enacted NPIs are scheduled on a single day, 14

October, instead on the original two separate dates. Finally, the following additional NPIs
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are investigated: closure of religious locations, closure of primary and secondary schools,

closure of higher education, and the closure of all schools. All enacted on 14 October, the

first stringent intervention date of the second wave. The results of the varying intervention

strategies are displayed in Figure 8 for Delft and Apeldoorn. The output of each intervention

strategy is based on 100 simulations for both municipalities, as discussed in the performance

analysis (Appendix 8.2).

The ‘what-if’ intervention strategies display the importance of closures. For each strategy,

percentage differences are calculated between the strategy and the original simulated gov-

ernment strategy in terms of the cumulative hospitalizations on the final day (30 November)

for Delft and Apeldoorn.

The top panels of Figure 8 depict the spread of COVID-19 when no intervention would

have been enacted and the effect of closing religious places in Delft and Apeldoorn. The num-

ber of hospitalized individuals would have been drastically higher for both municipalities if

no NPIs were to be enacted by the Dutch government (Delft: +51.7%, Apeldoorn: +59.1%).

The additional intervention of closing religious places on 14 October resulted in a decrease

in the hospitalized individuals for Delft (-5.9%), while a minor decrease was observed for

Apeldoorn (-0.5%).

The middle panels show the effect of different timings of the NPIs implemented by the

Dutch government. If the government had acted sooner and thus implemented the NPIs

on 14 October and 4 November 7 days earlier, the model predicted a significant decrease in

the number of hospitalizations on the 30th of November (Delft: -10.9%, Apeldoorn: -7.4%).

Would the government have waited 7 days more for both intervention responses, the model

predicted an significant increase in hospitalization for both municipalities (Delft: +10.0%,

Apeldoorn: +11.1%). If the Dutch government enacted the original NPI responses on a

single day, 14 October, the cumulative hospitalization were projected to decrease for both

municipalities (Delft: -14.7%, Apeldoorn: -6.1%). The difference in effect from the early or

stringent NPI strategy between Delft and Apeldoorn can be explained by the difference in
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Figure 8: NPI strategy evaluation for Delft (left) and Apeldoorn (right). Vertical lines depict
government original NPI dates (14 October and 4 November). The dashed lines represent
the IQR of the estimates.

number of students. As Delft has many students, and thus benefits more from the mandatory

face mask wearing in education institutions compared to Apeldoorn.

The bottom panels in Figure 8 depict the strategies related to education. The model

predicts that interventions related to schools had a significant impact on the reduction of
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hospitalizations for both municipalities. In Delft, the closure of higher education type schools

(-15.8%) had a larger impact on the hospitalization than primary and secondary schools (-

5.9%). This difference can be explained by the relative large number of students living in

Delft that attend higher education, as discussed in section 3. In Apeldoorn, the closure of

primary and secondary schools was related to a larger reduction in hospitalization (-5.9%)

than higher education institutions (-1.8%). This result is in line with the expectations, as

a relatively low number of higher education students compared to primary and secondary

school students are living in the municipality of Apeldoorn. When all schools are closed

additional to the enacted NPIs on 14 October, the spread is drastically reduced for both

municipalities (Delft: -34.9%, Apeldoorn: -18.5%). This result is in line with related liter-

ature on NPIs that show that interventions targeting education institutions produce large

impacts.

6 Sensitivity analysis

The sensitivity of parameters are analyzed by performing an one-factor-at-a-time (OAT)

sensitivity analysis. In OAT, parameters are varied one at a time, while keeping all others

fixed to generate output diversity (Pianosi et al., 2016). The variation in output caused

by varying a single parameter can be used to investigate the type of relationship between

a parameter and the output. For instance, the relationship could be linear, nonlinear or a

tipping point where the output drastically varied due to a minor change in a parameter value

(ten Broeke, 2017). Investigating these dependencies, the mechanism of the model can be

better understood and guide future research.

In the OAT sensitivity analysis, 9 equidistant points within ±20% of the normal param-

eter value are used to analyze the sensitivity of each parameter. For each of the 9 parameter

values, 25 replications of the simulation are used to estimate the output due to stochasticity.

Earlier results on the coefficient of variation in Appendix 8.2 indicated that 25 replications
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Figure 9: Sensitivity analysis results by varying parameters containing uncertainty between
-20% and +20% of their nominal value denoted by the vertical line.

would suffice to roughly estimate the output as the variance stabilizes around 25. During

the sensitivity analysis, the model is not recalibrated when varying a single parameter. As

the purpose of the OAT is to investigate the change in output by small variations of single

parameters.

In the model, 20 parameters were identified to contain some uncertainty. All 20 param-

eters were analyzed, the 15 parameters that produced the largest variation of output are

depicted in Figure 9.

Parameters related to the disease progression produced the largest variation in output

of the model. Specifically, the infectiousness of an individuals (Pk) and the difference in

contagiousness between symptomatic and asymptomatic individuals (c) impacted the out-
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put the most. The duration of the symptomatic and asymptomatic period had a lesser,

but still large impact on the output. These results were to be expected, as an increased

infectiousness of individuals (Pk) accelerates the rate of which the disease spreads exponen-

tially. Furthermore, changes in the symptomatic period produced larger differences in the

output than changes in the asymptomatic period. This can be explained by the difference

in infectiousness between asymptomatic and symptomatic individuals. Thus a change in

the symptomatic infectious period produces larger differences, as symptomatic individuals

contribute more to the contagion risk at locations.

The OAT showed that parameters related to the contagion risks of different locations (β)

had a substantial impact on the variation of the output for both municipalities. Specifically,

contagion risk of workplaces had a large impact on the output. Contagion risks of schools was

identified to have a large impact in Delft, while it had a smaller impact in Apeldoorn. These

results are in line with expectations, as Delft has a large amount of students. Furthermore,

research by (RIVM, 2021a) projected that most infections occur at workplaces and schools,

which is reflected in the sensitivity of the parameters related to workplaces and schools.

Similar, but to a lesser extent, the contagion risk in households, eating establishments, shops

and public transport had a impact on the output variation. While healthcare, religious and

leisure related locations had the smallest impact on the output of the parameters related to

location dependent contagion risk.

Uncertainty surrounding parameters on testing was found to have some impact on the

output. The time until an individuals receives its test result had the largest impact of these

parameters. The willingness of individuals to get tested had a smaller impact. This difference

can be attributed to the number of individuals affected by changes in the parameters. As a

change in the time until a test result is received, impacts all individuals that get a test in the

model. Which in turn affects the time that individuals spent infecting others. While a change

in the percentage of individuals that get tested, only affect a relative small proportion of this

population. Thus, varying the time until a test result is received, affects the propagation of
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the disease more than varying the percentage of people willing to get tested. The willingness

of housemates to get tested when their housemate got a positive test result, was found to

have a small impact on the output.

The analysis revealed that parameters related to the initialization of individuals, such as

social network size, classroom size and social similarity threshold values of social networks,

did not produce large differences in the output for both municipalities. Thus, the model

is quite robust regarding changes in the initialization of individuals. While changes in the

parameters regarding the disease progression, testing and contagiousness at locations affected

the output substantially.

7 Discussion

In this paper an ABM was presented to simulate the disease spread of COVID-19 through

Dutch municipalities. The model initialized the synthetic locations and households of two

Dutch municipalities successfully. The synthetic buildings and facilities were mapped to

districts of Dutch municipalities with high positional accuracy. Furthermore, the generated

households closely matched the census data of municipalities, and the assignment individuals

to workplaces and students to schools is in accordance with employment and student data.

With the use of real world activity patterns, the model simulated the spread of COVID-19

through the synthetic population.

The model was trained using hospitalization data of one month, and validated on the

data of the subsequent month. The proposed ABM was able to closely match the recorded

hospitalizations for both municipalities during the validation period. Furthermore, while the

model was not trained using data on deaths, it could explain the deaths well for Delft during

the two month period. The model overestimated the deaths in Apeldoorn in the first two

weeks, while it correctly estimated the number of deaths in the following six weeks. The

age-distribution of deaths significantly differed from the observed distribution. However, the

model explained the age-distribution of deaths of older individuals well, whom make up the
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largest portion. Various NPI strategies were analyzed, and the closure of religious places

were found to have no large impact on reducing the spread of COVID-19. Furthermore,

the closure of schools was related to large decreases of COVID-19 hospitalizations in both

municipalities. The sensitivity analysis revealed which parameters had strong relationships

with the output of the model, especially parameters related to the disease progression pro-

duced large variation in the output of the model. All relationships and their sizes could be

explained, indicating that the model performs as expected.

However, the proposed ABM has its shortcomings. First, in the model only isolated mu-

nicipalities are analyzed, omitting travel between municipalities. Many employees commute

between municipalities for their work in the Netherlands, thus by omitting these depen-

dencies between neighboring municipalities the model fails to capture the propagation of

the disease between municipalities. However, neighboring municipalities displayed similar

infection rates per 100.000 residents compared to the studied municipalities. Thus, while

the studied individuals were not able to contract the disease outside their municipality, they

were roughly exposed to the same infection risk. Second, individuals did not differ in behav-

ior other than their activity patterns. All individuals had the same probabilities of getting

tested, or working from home for an industry type. While some individuals would be more

likely to not adhere to multiple social distancing guidelines (e.g., getting tested, working

from home and abiding the maximum visitors allowed). Third, while travel is explicitly

modeled, public transportation is aggregated and not specified into different transportation

possibilities (e.g., bus, train, or subway). Thus the model is currently unable to capture

the spread of the disease through parts of the population that uses a specific type of public

transport. Finally, locations are aggregated in a number of categories, omitting difference

between location types and thus their inherent differences of contagious risk. For instance,

theatres and cinemas are both categorized as leisure. While people in theatres could be

reacting to a show by laughing or cheering, increasing the contagious risk in the venue.

Finally, some directions of future research are presented. First, the ABM could be im-

37



proved by including more municipalities in the simulation. As shown in the computational

results (Appendix 8.2), this can easily be achieved by employing more computational power

as the model scales linearly in time and space complexity. Second, various vaccination strate-

gies could be included in the model to analyze their impact on the hospitalizations in Dutch

municipalities. For example, vaccinating younger individuals first, as the NPI evaluation

showed that these individuals had a significant impact on the disease propagation. Third,

as changes in parameters of the disease progression are shown to have strong relationships

with the output, more research into these parameters can make the model more robust. For

instance, the infectiousness variability between individuals and the difference of infectious-

ness between symptomatic and asymptomatic cases were found to have the largest impact

on the output.

38



References

Aizawa, K., Motomura, K., Kimura, S., Kadowaki, R., and Fan, J. (2008). Constant time
neighbor finding in quadtrees: An experimental result. pages 505–510.
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8 Appendix

8.1 Location types

Category OSM amenity key Comment
Home N/A Obtained from Dutch Cadaster data
Work N/A Obtained from Dutch Cadaster data

Healthcare Clinic
Dentist
Doctors
Hospital

Pharmacy
Shop Supermarket

Beauty
Hairdresser

Bank
Post Office

Shop
Religion Place Of Worship
School N/A Obtained from Dutch school data
Leisure Arts Centre

Museum
Theatre
Library

Zoo
Theme Park

Sauna
Casino
Cinema

Public transport N/A Modeled as synthetic locations
Horeca Nightclub

Restaurant
Fast Food

Pub
Café
Bar

Ice Cream
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8.2 Performance and coefficient of variation

The performance of the ABM is determined by simulating municipalities with varying pop-
ulation sizes for 7 days. The performance is evaluated in terms of time and memory usage
depicted in Figure 10. The simulations are executed on a i5-4670K processor with 32 GB
RAM using Java version 8. The results show that the simulation of the ABM scales linearly
in computational time and memory usage for various population sizes. These results suggest
that the model scales well, as the time and space complexity scale linearly in the popula-
tion size and thus populations at the size of the Netherlands can be simulated by linearly
increasing the computational power.
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Figure 10: The ABM performance in terms of CPU computational time (left) and memory
usage (right) for 7 simulated days for various population sizes.

The stability of the simulation results are analyzed by performing a number of replications
with a default parameter set for the municipalities of Delft and Apeldoorn. The coefficient
of variation is equal to

cv =
σ(n)

µ(n)
, (7)

where σ(n) is the standard deviation and µ(n) the mean of the output, where n indicates
the number of simulations with the parameter set. This stability is investigated for varying
values of n for Delft and Apeldoorn on the calibration period of 31 days for the cumulative
hospitalization. Figure 11 shows that the coefficient stabilizes after 25 simulation runs for
both municipalities. The difference between coefficient values for Delft and Apeldoorn can
be attributed to the difference in municipality population. Apeldoorn experiences more
hospitalizations, resulting in a higher µ(n), which results in a decrease in the cv. Based on
this outcome, 100 replications is deemed to be sufficient to estimate the output of the model.

The output of the model, the number of infected, hospitalized and deaths are aver-
aged over all 100 replications of a simulation run for each simulated day. Furthermore, the
percentile bootstrap method with replacement using 1000 resamples is applied to estimate
the 95% confidence interval of the averages. Increasing the number of replications is com-
putationally expensive, while applying resampling with bootstrapping is computationally
inexpensive.
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Figure 11: The coefficient of variation for both Delft and Apeldoorn.
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