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Abstract

This thesis explores the possibility of using a more complex machine learning approach combined
with model interpretability methods to solve the attribution problem. Criteria are formulated to
show how the current leading attribution methodologies, such as last-touch attribution, simple
probabilistic attribution, Shapley value attribution, and logistic regression, are dominant because
of their inherent algorithmic interpretability. The classifier XGBoost (eXtreme Gradient Boosting)
is proposed to be used in conjunction with SHAP (Shapley Additive exPlanations) to create an
attribution model. Data from a Dutch financial provider is used to create the attribution model.
The XGBoost model is compared against a logistic regression model on predictive and explanatory
power. Within the final section of this thesis, the predictive performance is compared. It was
observed that XGBoost has a better predictive performance as opposed to logistic regression. The
explanatory performance of the XGBoost + SHAP method was benchmarked against last-touch
attribution, logistic regression coefficient interpretation, and logistic regression + SHAP. The most
important features were consistent among the three methods.
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1 Introduction

1.1 Motivation

Nielsen (2021) recently reported that 2020 was the year that online advertising spending exceeded
the spending for offline advertising in the Dutch advertising market for the first time, of which 52
percent was spent on online advertising. Despite the 6.3 percent decrease to 4.4 billion euros in the
total media spending in 2020 as opposed to 2019 in the Netherlands, online advertising has still
grown by 7 percent compared to offline advertising (Deloitte, 2021). It is expected that the total
Dutch advertising spending will grow by 12 percent on average by 2022, in which the fraction of
spending on online advertising is expected to grow to 64 percent (Magna, 2021).

The shift from offline to online advertising is accelerated due to the drawbacks of offline advertising.
In offline advertising, it is difficult to target a certain audience resulting in less personalized adver-
tising content. It is also an intricate process to determine the effectiveness of the advertisement on
the audience as there is no tracking behavior that allows marketers to see the exposure of the offline
advertisements on the audience. Online advertising, on the other hand, can track the users on the
internet in their click behavior. It allows the advertisers to evaluate the online advertisements
or the channels on which the advertisements are shown to internet users. However, determining
the contribution of channels on the actual sale, also known as a conversion, is rather challenging
to do in practice. The problem of researching the contribution of advertising campaigns towards
conversion is referred to in the marketing literature as the attribution problem (Shao & Li, 2011).

In the past decade, initial efforts have been made to solve the attribution problem by setting up
attribution methodologies based on intuition and heuristics. The most popular used attribution
methodology is the last-touch attribution method, in which the last channel a visitor interacted
with is given all of the credits. Nonetheless, these efforts do not yield adequate results. Rule-based
attribution methodologies presume a particular (a priori) distribution regarding the contribution in
a set of channels the visitor has interacted with. There is a consensus in marketing literature that
these rule-based approaches do not account for important interaction effects amongst the various
channels an internet user interacted with (Anderl, Becker, von Wangenheim, & Schumann, 2016;
Dalessandro, Perlich, Stitelman, & Provost, 2012; Kannan & Li, 2017; Shao & Li, 2011).

As more and refined data is stored on the interactions an internet user has with an advertiser,
marketers move away from rule-based attribution methodologies by addressing the attribution
problem via the use of data. This had led to scholars proposing the use of simple data-driven
models, such as logistic regression, probabilistic approaches, and the Shapley value for attribution
modeling. Each of these methods differs in its ways of solving the attribution problem. However,
the methodologies all have in common that the model itself is highly interpretable. The output
yielded by a model needs the ability to be understandable terms to humans that allows for verifying
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whether its reasoning is valid.

Consequently, the efforts made in the current literature focus on interpretable machine learning
methods, mainly the ones named previously, that are proposed to address the attribution problem.
However, it is important to note that higher interpretability often leads to sacrificing the model’s
accuracy. More complex machine learning models, such as gradient boosting and neural networks,
often provide greater accuracy with the major disadvantage of lower interpretability. In the field of
machine learning, the literature on the problem of accuracy sacrifice for higher accuracy is growing.
Scholars in this field have been proposing methods, such as, SHAP that allow for the use of complex
machine learning models while still providing interpretability.

1.2 Objective of this research

This thesis aims to add a novel way for creating attribution models that combines a high degree
of accuracy and interpretability to the growing marketing literature implemented in Python. The
data used in the thesis is obtained from a Dutch financial provider that sells car insurance in the
Netherlands. For the empirical part, a specific gradient boosting algorithmic called XGBoost will
be used to be compared against a simple algorithmic approach, which is logistic regression, for
classification performance. The interpretability method to be used is SHAP on both XGBoost
and the logistic regression and will be put against the built-in interpretation approach for logistic
regression.

1.3 Structure of the thesis

The remainder of the thesis is structured as follows. Chapter 2 gives an overview of the literature
focused on attribution modeling in which topics such as attribution modeling, rule-based models,
data-driven models, and explainable machine learning are discussed. Chapter 3 briefly discusses
the data obtained from the Dutch financial provider used for training and evaluating the models.
The focus in Chapter 4 is on the methodology used in this research, where an extensive description
is given of the machine learning algorithms. Chapter 4 also dives into the empirical evaluation of
these methodologies. In Chapter 5, the predictive performance of the models is compared, and
the feature importances are compared. Finally, Chapter 6 concludes this research on attribution
modeling using machine learning with the added explainability.
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2 Theoretical background

This chapter dives deeper into the theory and literature of digital marketing and attribution mod-
eling. Section 2.1 discusses what digital marketing is. Then, Section 2.2 looks into the attribution
problem and defines what attribution modeling is. Furthermore, criteria to which an attribution
model should satisfy will be defined. Section 2.3 existing attribution models will be touched upon
and evaluated based on the defined criteria. Lastly, Section 2.4 introduces the concept of inter-
pretable machine learning.

2.1 Digital marketing

In the last decade, the use of digital media has become so widespread that consumers can quickly and
instantaneously get access to information via the internet. According to recent statistics published
by Statista (2021), 4.66 billion people use the internet to access information, 59.5 percent of the
global population. This new media type has facilitated the transition of bringing conventional
marketing to the digital landscape (Bughin, 2015). The result of this shift towards the digital
landscape is known as digital marketing. Digital marketing differs from traditional marketing
because online channels create, communicate, and deliver value to the desired target audience.

2.1.1 Digital advertising

In a global advertising report published by Letang & Stillman (2020), it is shown that digital ad-
vertising has a more significant market share of the total advertising revenues globally as opposed
to non-digital advertising. Digital advertising allows a marketer to perform mass-personalization
on its advertisements and is a subset of digital marketing (Durai & King, 2015; Jiang & Benbasat,
2007). Advertising personalization is defined as a firm-initiated action in which the advertising
content, message, or visual representation is geared towards the preferences of a specific grouped
audience or an individual (Arora et al., 2008). The personalization of advertisements allows mar-
keters to target the right audience, at the right time, at the right place and is, thus, more relevant
to that corresponding audience. Greater digital ad relevancy has been linked positively to a higher
probability of a consumer turning into a lead or conversion (Bleier & Eisenbeiss, 2015; Hayes,
Golan, Britt, & Applequist, 2020).

2.1.2 Online marketing channels

Advertisements are shown to the customer via a certain channel, and the action to be undertaken
by the customer linked to the advertisement is the touchpoint. For instance, when a consumer sees
an advertisement on a social media platform, the platform itself is seen as the channel where a
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firm and its customers can interact (Neslin et al., 2006). Typical digital marketing channels used
for digital advertising include search engines, display, email, online video, social media, affiliates,
and price comparisons (de Haan, Wiesel, & Pauwels, 2016). In the literature, there is a consensus
on the categorization of these channels using the origin of the interaction (Anderl, Becker, von
Wangenheim, & Schumann, 2016; de Haan, Wiesel, & Pauwels, 2016; Kannan & Li, 2017). A
customer can interact with a channel by its own initiative or by the initiative from the brand.
Consider a customer that directly visits the brand’s website directly by typing in the URL in
the browser bar – this type of contact is customer-initiated. Whereas, for example, showing an
advertisement to a customer using social media is seen as firm-initiated contact. The advertisements
also contain a messaged action to be undertaken by the customer, for example, signing up for a
newsletter on the brand’s website, and this is considered a touchpoint since it is an immediate
goal with the channels website and social media seen as the facilitators (Hallikainen, Alamäki, &
Laukkanen, 2019).

2.1.3 Online customer journey

The shift from conventional marketing to digital marketing also enables marketers to instantly
track responses from the consumer who interacted with the brand via an advertisement (Kannan
& Li, 2017; Shao & Li, 2011). Brands, also seen as advertisers, employ different channels to reach
customers via the internet. For each interaction the consumer has with the brand, data is gathered
on the channel, the timestamp the customer interacted with the channel, and whether the customer
has undertaken proceeding interactions. All these recorded interactions with the channels are then
used to construct the online customer journey. Online customer journeys describe the interactions
with the channels using the click pattern on an individual level before the purchase (conversion)
or non-purchase (non-conversion) (Anderl, Becker, von Wangenheim, & Schumann, 2016). It is
also important to note that the online customer journey can also contain interactions that are not
initiated by the firm but initiated by the customer. A customer could, for instance, type in the
URL of the brand and visit the website (Kannan & Li, 2017).

start search social email affiliate conversion

Figure 1: Graphical example of the constructed online customer journey

In Figure 1, a graphical representation of a constructed customer journey using click pattern data
is used as an example that contains four interactions - excluding the start and end node. It can
be observed that the first channel the customer had interaction with was a search result displayed
in the search engine, followed by a social media advertisement shown by the social media channel.
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Subsequently, the customer received an email from the brand and eventually interacted with an
affiliate. The combination and sequence of these customer journey interactions have led to a
conversion in this example. The example used in Figure 1 shows a relatively linear multi-stage
customer journey indicated by interactions with touchpoints, as the journey is solely based on
online click behavior. However, this constructed customer journey does not include the phases in
which the customer moves during the decision-making process (Lemon & Verhoef, 2016). In the
broadest sense, customer journeys include three general stages that are consistent in the marketing
literature (Howard & Sheth, 1970; Lemon & Verhoef, 2016; Neslin et al., 2006). The first stage,
prepurchase, embodies all customer interactions with the brand before a conversion occurs. The
prepurchase stage is characterized by behavior, such as need recognition, search, and consideration.
The second stage, purchase, includes behavior, such as choice, purchasing, and payment. The last
stage, postpurchase, is characterized by usage, engagement, and service. According to Lemon &
Verhoef (2016) the prepurchase and purchase stage are the most important stages for marketers.
They imply that marketers should focus on identifying specific channels that lead customers to
continue or discontinue these stages in the customer journey.

It is essential to point out that it is also possible that the customer is exposed to offline advertising,
such as TV or outside bannering advertisements, and, therefore, interacts with the brand. However,
the effects cannot be measured on an individual level as there is no means to track the exposure
accurately other than estimation. Hence, this thesis only focuses on the online component of the
customer journey. This implies that all online interactions prior to the (non-)conversion are solely
taken into account.

2.2 Attribution modeling

In the previous section, it was discussed how digital marketing allows for constructing the online
customer journey from the click pattern data. This tracking ability has resulted in growing popu-
larity for attribution models. From these customer journeys, the credit of each interaction with a
channel is assigned to a conversion on an individual level. Understanding the contribution of each
channel on the decision to purchase or not to purchase seen from the perspective of the customer
allows marketers to analyze, report, and optimize an advertising campaign (Dalessandro, Perlich,
Stitelman, & Provost, 2012; Shao & Li, 2011).

The process of assigning credits to multiple channels on a user level in a customer journey is
known as attribution modeling. It tries to estimate the effect of an intervention – exposure to an
advertisement – has on the conversion. The estimation of the effect is done via observing the click
pattern, thus, a descriptive analysis. Quantifying the degree to which a channel contributes to a
conversion is a demanding task due to the rise in online channels and the complexity of online
journeys (Anderl, Becker, von Wangenheim, & Schumann, 2016). The attribution of each channel
can be expressed as a percentage of the total amount of conversions by channel or as an absolute
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number of conversions by channel. Figure 2 is a graphical representation of the credit assignment
process in attribution modeling.

start search social email affiliate conversion

assign credit to each touchpoint

Figure 2: Graphical example of the credit assignment in attribution modeling

2.2.1 Attribution model criteria

In the field of attribution modeling, there are currently lots of attribution techniques available for
use, raising the question on which of these techniques attribute the ‘true’ accurate contribution
to a touchpoint. This fundamental question has led to scholars being concerned with formulating
adequate criteria to determine what a ‘good’ attribution model includes. It is important to pinpoint
that the relative importance of each touchpoint is inherently unobservable as there is no evaluation
method on how close the generated outcome generated by attribution modeling comes to the reality
of it (Dalessandro, Perlich, Stitelman, & Provost, 2012; Kelly, Vaver, & Koehler, 2018; Singh, Vaver,
Little, & Fan, 2018). Hence, the topic of attribution modeling is inevitably subjective to an extent.

Nevertheless, in the literature, efforts are still made to formulate criteria. Shao & Li (2011) put
forward that a ‘good’ attribution model should have a high degree of accuracy. The accuracy of
a model indicates how correctly a model can classify whether a customer ends in a conversion or
a non-conversion. The authors measure the accuracy based on the out-of-sample misclassification
error rate – a high accuracy implies a low out-of-sample misclassification error rate. However,
as previously said, an attribution model is a descriptive method to show how much a channel
contributes to a conversion, and therefore, the main goal is not to predict (Anderl, Becker, von
Wangenheim, & Schumann, 2016). Nonetheless, it can be argued that attribution modeling shows
how much a channel contributes to conversion; these insights could be used in the binary classifi-
cation prediction of a conversion.

Dalessandro, Perlich, Stitelman, & Provost (2012) build further on the criteria for attribution
by adding that attribution models should include fairness, data-drivenness, and interpretability.
Fairness reflects the ability of the model to attribute a channel according to its influence to affect
the likelihood of the conversion – this is inherently a causal attribution problem as an intervention
(exposure to an advertisement) is expected to impact the outcome of interest (Kelly, Vaver, &
Koehler, 2018). A problem with this criteria is that the actual advertisement exposure is not
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known to the advertiser. Kelly, Vaver, & Koehler (2018) and Singh, Vaver, Little, & Fan (2018)
argue that fairness is theoretically only achievable by doing a real-world experiment but states
this is a very costly and impractical method. Data-driven refers to the model being based on
data in which the distribution of the conversion is not a priori determined. Sapp & Vaver (2016)
underpin this notion by the need to also consider non-converting paths in an attribution model.
By taking non-converting paths in the equation, it is implicitly assumed that advertising can also
have adverse effects on the outcome. This is a reasonable thought, as there can be instances where
the effect of an advertisement may cause a visitor not to convert. Lastly, interpretability refers to
the model being generally accepted by all relevant parties based on statistical merit and intuitive
understanding, according to Dalessandro, Perlich, Stitelman, & Provost (2012). Interpretability of
the model is expressed by understanding the effects of advertisement on an individual level (local
explanation) as it is a means to know how each interaction with an advertisement contributes to a
conversion. The global importance should be consistent with the local importance. According to
Shao & Li (2011) this also helps with the interpretability as consistent results are easier to accept
by marketers. The criteria found in the literature can be summarized as follows:

1. Ability to predict. An attribution model should be able to accurately predict based on
a customer journey prior to ending whether the path will end in a conversion or a non-
conversion. The ability to predict gives an objective measure on the evaluation of the empir-
ical performance of the model.

2. Data-driven. The model should be based on an algorithmic data-driven approach and not
make use of a priori determined distribution of the weights of the channels. A priori based
credit assignment is biased as it does not use the objective distribution of the conversion that
is available in the data.

3. All outcomes are considered. The model should not be solely based on converting cus-
tomer journey paths but also on non-converting journey paths to see which channels encour-
age or discourage the customers to end their journeys in a conversion or non-conversion.

4. Fair attribution. Estimates on the contribution of each channel to a conversion should be
in accordance with the actual influence of the channel to affect the likelihood of conversion.
Although it is very difficult to evaluate the causal effects in a descriptive model, from a
conceptual viewpoint this is a desirable criterion.

5. Interpretable. An attribution model should be easily able to interpret and generally ac-
cepted. The model should be able to assign credit to an individual journey and to aggregate
the credits on global level with clear interpretation.

2.3 Attribution models

Before the models are introduced, it is useful to define the mathematical notation used in this
thesis. Let 𝑖 = {1, 2, 3, ..., 𝑁} denote the visitors that have interacted with the advertiser. A visitor
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interaction with a channel is denoted as 𝑥𝑗 for 𝑗 = {1, 2, 3, ..., 𝑀} channels. An interaction of visitor
𝑖 with channel 𝑗 is denoted by 𝑥𝑖𝑗. The visitor can either end up in a conversion or non-conversion,
which is represented by:

𝑦𝑖 =
⎧{
⎨{⎩

1 if visitor 𝑖 converts

0 else

and

𝑥𝑖𝑗 =
⎧{
⎨{⎩

1 if channel 𝑗 is present in the customer journey of customer 𝑖
0 else

2.3.1 Heuristic-based attribution

Heuristic-based attribution is based on a non-statistical method to perform multi-credit assign-
ment to channels. In other words, a weight distribution that is determined beforehand is used to
determine the contribution each channel has on the conversion. The most popular heuristic-based
attribution approaches will be discussed in this subsection.

2.3.1.1 Last-touch attribution The most common attribution method is last-touch attri-
bution, which assigns all of the weight to the last channel. In this sense, it is making the last channel
the customer interacted in the whole customer journey the most important. Last-touch attribution
is intuitive as it can be argued that the last interaction as a customer has is only one step away
from the conversion. However, it completely ignores the prior interactions of the customer, making
it fundamentally flawed as it is positively biased towards the last interaction.

2.3.1.2 Linear touch attribution Another common attribution method is linear touch
attribution, which assigns equal weights to all the channels that are present in the customer journey.
It is less fundamentally flawed as it takes all the channels into account, but the weight that is
assigned to each channel is still arbitrarily determined as it is not based on the actual underlying
effect each channel has on the conversion.

2.3.1.3 Time decay attribution One of the other common attribution methods is time
decay attribution, which assigns decaying weights to the channels that the customer has interacted
with. This means that the weight is the lowest for the interaction in the beginning, and the weight
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gradually increases towards the latest interaction. Time decay attribution takes all channels into
account, but the weights, nevertheless, are also arbitrarily determined.

It can be concluded that despite these heuristic-based approached being computationally inexpen-
sive to compute, the general disadvantage of using heuristics is since all of the methods assume
an a priori distribution regarding the weights, none of the methods are data-driven. Subsequently,
these rule-based methods are not indicative of the reality regarding the channel importance that is
captured in the data.

2.3.2 Algorithmic-based attribution

Algorithmic-based attribution is based on a statistical base to perform multi-credit assignment
to channels. This implies that the parameters that determine the credit assignment are derived
from the data. This section gives an overview of the most relevant developments in the attribution
literature. The approaches can be generally classified into three categories: a probabilistic approach,
the Shapley value, and logistic regression.

2.3.2.1 Simple Probabilistic The simple probabilistic model is a non-parametric approach
that is used to solve the attribution problem proposed by Shao & Li (2011). In the context of
attribution modeling, the model determines the attribution of a channel based on the successful
customer journeys with one or two channels interactions. The computation is rather simple, and the
intuition is that first, the model learns the distribution of the channels regarding the conversion in
an aggregate manner. Then, the learned conversion distribution is applied on the individual visitor
level to generate the attribution of an individual channel. So, first, the conditional probability of
conversion given the channel needs to be calculated:

𝑃(𝑦 = 1 ∣ 𝑥𝑗 = 1) =
𝑁(𝑥𝑗=1∩𝑦=1)

𝑁(𝑥𝑗)
. (1)

To take the interaction between channels into account, a second-order interaction term is taken into
account. Let the interaction with the second-order interaction denoted as 𝑥𝑘 for 𝑘 = {1, 2, 3, ..., 𝑀}
channels, where 𝑘 ≠ 𝑗:

𝑃(𝑦 = 1 ∣ 𝑥𝑗 = 1 ∩ 𝑥𝑘 = 1) =
𝑁(𝑥𝑗=1∩𝑥𝑘=1;𝑦=1)

𝑁(𝑥𝑗∩𝑥𝑘)
. (2)

To calculate the contribution of channel 𝑗, the conditional probability of channel 𝑗 and second-order
interaction probability of channels 𝑗 and 𝑘 are summed at each converting user level:
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𝐶(𝑥𝑗) = 𝑝(𝑦 = 1 ∣ 𝑥𝑗 = 1)⏟⏟⏟⏟⏟⏟⏟
conditional probability

+ 1
2𝑁𝑗≠𝑘

∑
𝑗≠𝑘

{𝑝(𝑦 = 1|𝑥𝑗 ∩ 𝑥𝑘 = 1) − 𝑝(𝑦 = 1|𝑥𝑗 = 1) − 𝑝(𝑦 = 1|𝑥𝑘 = 1)}
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

second-order interaction effect minus conditional probabilities

.

(3)

The first term is the base conditional probability for conversion of channel 𝑗, whereas the second
term is the second-order interaction probability of channels 𝑗 and 𝑘 minus their individual condi-
tional probabilities. It is assumed by the authors that the net interaction effect is equally divided
between the channels; thus, the sum of the second term is divided by two

The advantage of using the simple probabilistic approach for attribution modeling is that it is data-
driven as it does not use a priori distribution of weights but rather uses the data to find the relative
contribution of each channel. Another advantage is that this approach is pretty straightforward
and easy to interpret. However, a major disadvantage of the simple probabilistic model is that
it is not possible for this method to predict the probability of conversion for a visitor based on
the present interactions. Furthermore, it does not take all outcomes into account regarding the
customer journeys as this method only looks at the converting customer journeys. Next, it can also
be argued that fairness is also lacking since the method assumes that the net interaction effect is
equally divided between two channels. The question then arises if this division of the net interaction
effect by two is fair.

2.3.2.2 Shapley Value The Shapley value approach is a well-established cooperative concept
from Game Theory that is used to fairly distribute a payoff generated by a coalition to each
individual player. In attribution modeling, a marketing campaign can be seen as the game, whereas
the channels are reflected by the players. The ideal outcome of a marketing campaign is, in this
case, a conversion. Coalitions refer to the customer journeys as a prospect can have interaction with
all channels or with a subset of the channels. The Shapley value method calculates the differences
in generated payoff when one specific player is not present in the game versus when the player is
present. The difference is called the marginal contribution with respect to a certain player.

In the context of attribution modeling, a campaign is defined by a set 𝑊 = {1, 2, 3, ..., 𝑀} channels
and a characteristic function 𝑣 ∶ 2𝑊 → ℝ that maps the value of subsets of channels to real
numbers. All channels given in the campaign together are referred to as the grand coalition 𝑊
with 𝑀 channels, whereas other possible coalitions (subsets) excluding the grand coalition 𝑊 are
referred to as 𝑆. Characteristic function 𝑣 assigns to each coalition 𝑆 the value brought by a certain
coalition under the assumption that all channels in that coalition cooperate with 𝑣(∅) = 0, where ∅
denotes an empty coalition. The equation to calculate the marginal contribution using the Shapley
Value method for channel 𝑗 is given by:
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𝜙𝑗(𝑣) = ∑
𝑆⊆𝑊\{𝑗}

|𝑆|!(|𝑊| − |𝑆| − 1)!
|𝑊|!⏟⏟⏟⏟⏟⏟⏟⏟⏟

weighting factor

(𝑣(𝑆 ∪ {𝑗}) − 𝑣(𝑆))⏟⏟⏟⏟⏟⏟⏟⏟⏟
marginal conttribution

(4)

In Equation 4, |𝑊| is the total number of channels in the grand coalition, and |𝑆| denotes the number
of channels in subset 𝑆 ⊆ 𝑊 . In the equation, the sum is given of the marginal contribution of a
channel 𝑗 averaged over all possible combinations in which the coalition can be build up.

The advantage of using the Shapley value for attribution modeling is that it is a data-driven
approach as it uses the distribution of the importance found in the data. Furthermore, the intuition
behind the Shapley value calculation is rather straightforward and is, therefore, interpretable.
Another major advantage of the Shapley value is fairness property, which means that channels that
do not contribute to the payoff in a game get a 0 score attributed. Nevertheless, the Shapley value
itself does not have the property to generate predictions on an individual customer journey level as
the Shapley value only is a measure of player importance. Another major disadvantage is that the
importance weights yielded are aggregated and only take the journeys ending in conversion into
account.

2.3.2.3 Logistic Regression Logistic regression is a regression model which is specific for
when the dependent variable is binary. In this case of attribution modeling, 𝑦 = {𝑦1, 𝑦2, 𝑦3, ..., 𝑦𝑖 ∣
𝑖 = 1, 2, 3..., 𝑁} is the outcome, also known as a conversion or non-conversion, for customer 𝑖. 𝑥 =
{𝑥1,1, 𝑥1,2, 𝑥1,3, ..., 𝑥𝑖,𝑗 ∣ 𝑖 = 1, 2, 3, ..., 𝑁; 𝑗 = 1, 2, 3, ..., 𝑀} is defined as the presence of interaction
with channel 𝑗 for customer 𝑖. Do note that other variables representing the journey properties
can also be used, such as the number of clicks per channel. However, in this case, it is about the
relative importance of a channel as opposed to all channels, which falls in the scope of the thesis.
Thus, in the case of logistic regression, the attribution problem is treated as a binary classification
problem. The log-odds of conversion of observation 𝑖 given the interactions is given by:

log (𝑃(𝑦𝑖 = 1|𝑥𝑖𝑗)
𝑃 (𝑦𝑖 = 0|𝑥𝑖𝑗)

) = 𝛽0 +
𝑀

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗, (5)

where the 𝛽-coefficients reflect the overall importance of channel 𝑗 in all customer journeys.

The advantage of using logistic regression for attribution modeling is that it does not use a priori
distribution of weights but rather uses the data to find the relative contribution of each channel.
Additionally, logistic regression is easy to interpret as the methodology behind it is intuitive how the
relative contribution is computed. Logistic regression is also able to predict whether the presence
of channels will lead to a conversion, and the model is trained using both converting and non-
converting customer journeys in the data set. Lastly, the fairness property is assumed to be valid
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with regard to the properties of logistic regression.

2.3.3 Other models

Other attribution model approaches have also been proposed in the marketing literature. Anderl,
Becker, von Wangenheim, & Schumann (2016) put forward a solution for the attribution problem
in which the customer journey is modeled as a Markov chain, which is a stochastic model that
describes a series of possible states in where the probability of a certain state only depends on
the previous state. The attribution of each channel is calculated through what is known as the
removal effect. The effectiveness of channel 𝑗 is determined by looking at the change in probability
of conversion when channel 𝑗 is removed from the customer journey. Danaher & Heerde (2018)
introduce an approach that is based on the probit model by estimating the uplift in the probability
of the conversion at each state in the customer journey. It uses the same principle as the Shapley
Value by looking at the marginal contribution of channel 𝑗 and comparing the contribution with and
without channel 𝑗. However, the probit model approach uses the marginal change in the conversion
probability. These models are not discussed in this thesis as these approaches are putting emphasis
on the ordering of the interactions and on the spillover effects to attribute conversion credit, which
is beyond the scope of this thesis.

2.3.4 Theoretical evaluation

In the previous sections, the most common approaches for the attribution problem found in the
marketing literature have been discussed. Table 1 summarizes the findings of the evaluation of the
attribution models based on the criteria previously discussed. A model complies with a certain
criterion indicated by a ‘+,’ whereas no compliance with a criterion is indicated by ‘-’ in Table 1.
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Table 1: Evaluation of attribution techniques based criteria

Criteria Rule-based Simple probabilistic Shapley value Logistic regression
Ability to predict - - - +
Data-driven - + + +
All outcomes - - - +
Fair attribution - - + +
Interpretable + + + +

All models comply with the post-hoc interpretability as the models are all able to yield a clear
overview of which channel contributes the most to a conversion. However, the rule-based methods
are not data-driven as the importance of a channel is determined a priori. The three other models
are, on the other hand, data-driven. Nevertheless, the simple probabilistic model does not comply
with fair attribution as the process of credit attribution is based on certain assumptions. Another
major drawback is that neither the simple probabilistic model and Shapley value approach takes
the non-converting journeys into account, thus, violating the criterion that states that all customer
journeys should be taken into account. The model that complies with all criteria is logistic re-
gression. Based on this conclusion, logistic regression will be used in this thesis as the benchmark
regarding the evaluation for the heavier machine learning approach.

2.4 Interpretable Machine Learning

As was previously mentioned in the prior section, a good attribution model should be interpretable
while also maintaining great accuracy. Great interpretability is achieved, for example, by using
generalized linear models (GLMs), which are additive models where the outcome depends on the
sum of inputs and parameters, resulting in the model being able to provide a clear interpreta-
tion. The logistic regression approach is such a method that is derived from the GLM. Another
comprehensible methodology is the simple classification and regression tree (CART), which is a
graphical model where the outcome depends on the path from the root node to the terminal node.
The graphical representation allows for a clear interpretation of the features in the case of CART
(Freitas, 2014). The high degree of interpretation for GLM and CART methods is referred to
as intrinsic interpretability, i.e., the interpretability of the learner. These models are inherently
interpretable due to restricting the complexity in these methodologies - also known as white-box
models (Molnar, 2018). The post-hoc interpretability refers to the understanding of why the model
has made a certain prediction without necessarily understanding the underlying mechanisms of the
model - referred to as black-box models (Lipton, 2016; Molnar, 2018). In the criterion found in the
literature study, interpretability reflects the post-hoc interpretability of a model. Therefore, in this
thesis, interpretability will be used to refer to post-hoc interpretability.
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For the interpretability of machine learning models, two methods are employed: model-specific
and model-agnostic (Adadi & Berrada, 2018). Model-specific interpretation is specific for a certain
class of machine learning algorithms. These methods leverage on the inherent structure of the
machine learning model to explain the prediction. As previously used as an example, a class-
specific approach could be to explain the predictions made by a decision tree that has an inherently
graphical structure. Model-agnostic interpretation, on the other hand, is not specific for a certain
class of machine learning models. In this case, the explanation technique considers the model as an
unknown function and tries to reverse engineer the behavior based on input and output (Guidotti
et al., 2018).

The interpretability can also be further categorized into two scopes: local and global interpretability
(Adadi & Berrada, 2018; Lipton, 2016; Molnar, 2018). Local interpretability refers to explaining
predictions on observation level, whereas global interpretability considers explaining the outcomes
of the machine learning model as a whole. An example of local interpretability in the case of
attribution modeling is to see how the presence or non-presence of certain channels contribute to
the observation of its predicted outcome by the model. Conversely, global interpretability would
try to explain which channels are important on a general level, so for all observations. In the
literature, two model agnostic interpretation methods are commonly used: LIME and SHAP.
LIME is the acronym for Local Interpretable Model-agnostic Explanations, which uses a local linear
model (surrogate model) to explain the effect of each feature for an observation’s prediction put
forward by Ribeiro, Singh, & Guestrin (2016). SHAP stands for Shapley Additive exPlanations
that uses the Shapley value to calculate the feature importance for each instance in the data set
by looking at the prediction scores with and without the feature to be investigated proposed by
Lundberg & Lee (2017). A major advantage of SHAP over LIME, is that SHAP can approximate
the local explanation while still providing global explanations. The ability to explain an outcome
on an observational level is a criterion found in the literature study.
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3 Data

This chapter will dive into the data used in the empirical part of this research. Section 3.1 gives
an impression of the background of the company from where the data is obtained. Section 3.2
describes the data set by defining the customer journey and the variables. Section 3.3 focuses on
the data pre-processing. Section 3.4, focuses on the key statistics and important findings before
proceeding with the empirical analysis. The last section, Section 3.5, briefly discusses how the data
is processed in order for the empirical analysis.

3.1 Company background

In this research, the data is obtained from a Dutch financial provider that offers a range of financial
products and services under its various brands. The company its offerings span from health to life
and non-life insurance products and services in both the B2C and B2B markets in the Netherlands.
The insurer advertises its offerings both above-the-line (ATL), e.g., TV and radio, and also below-
the-line (BTL), e.g., email and phone. However, for research purposes, ATL and BTL cross-channel
effects are not taken into account. Instead, the focus will be on below-the-line advertising as these
effects on the conversion can be measured on an individual level as opposed to estimated from the
mass. The provided data set include the customer journeys focused on the car insurance product
of a specific brand, thus, mapped product-based and brand-based.

3.2 Data description

The customer journey data contains information regarding the source of the click (touchpoints),
timestamp, and whether a conversion has taken place. Furthermore, the data is recorded from 19
January 2019 to 28 March 2021. Subsequently, The touchpoints themselves are mapped into at
least two levels, which can be a combination of channel, product, user device, search engine, or
product. Consequently, 462 touchpoints are observed in the data set. However, it should be noted
that this level of granularity is not needed for this research as it is only of interest to determine the
attribution of each channel. Hence, the level of granularity will be solely based on channel and the
most important differences in intention. In Table 2, a summary is given of the data set.
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Table 2: Variables in the customer journey dataset

Variable Description

journey_id A unique identifier on the individual journey
touchpoint An identifier on which touchpoint was interacted with
timestamp The exact time and date the visitor interacted
journey_step An numeric indicator of the step in the journey
conversion An indicator on the (non-)conversion

Table 3: Snippet of customer journey data set

journey_id touchpoint timestamp journey_step conversion

20813613 search 29-10-2019 19:24:23 1 0
20813613 phone 30-10-2019 08:11:00 2 1
… … … … …
74690286 direct 12-11-2020 09:13:35 1 0

In Table 3, it can be seen that every journey is recognized by its unique id (journey_id), which is
assigned to a visitor whenever the website is visited for the first time - or whenever one of the three
business rules regarding the customer journey is violated. In this data set, a customer journey is
defined as a sequence of interactions, indicated by the touchpoint variable, that either leads to
a conversion (buy) or non-conversion (no buy). For example, it can be observed that a customer
(20813613) had the first interaction with the paid search touchpoint and then, on the following
day, had a phone conversation (second interaction) with the company to purchase a car insurance.
Notice that the first and step are captured by the journey_step variable and are also be able to
be deducted from the timestamp variable. Another customer (74690286), for instance, interacted
with the insurer by going directly to the website on 12 November 2020, so the first interaction and
has not led to a conversion indicated by the ‘0’ shown in the conversion column. Note that the
conversion is not stored as an individual touchpoint in the dataset but rather in a separate column.
It is also important to pinpoint that the insurer uses a set of rules to define a customer journey:

1. Maximum duration of a customer journey is 70 days
2. Maximum time difference between steps is 14 days
3. Maximum number of steps in a customer journey is 20

If one of these numbers is exceeded, then a new customer journey is created via the assignment of
a new journey id. Lastly, it should also be outlined that whenever a visitor converts, the customer
journey ends.
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3.3 Data pre-processing

This section will look into the data pre-processing process to make the data ready for the empirical
analysis. Subsection 3.3.1 discusses the process of making the touchpoints less specific as the
current level granularity exceeds the purpose of this research. Subsection 3.3.2 focuses on creating
the actual customer journeys to be used in modeling the actual attribution model.

3.3.1 Lowering the granularity of the touchpoints

As was already previously stated, the number of touchpoints amounts to 462, due to the high level
of granularity on which the touchpoints are mapped by. See Appendix A for a summary of the
touchpoints. Please note that in Appendix A, the number of touchpoints is 15 but in the processed
data there are 47, the representation in Appendix A is purely for comprehension.

To understand which touchpoints can be merged safely to lower the detail of information, an analysis
was performed on the touchpoints present in the dataset in consult with the financial provider.
The mapped touchpoints that have a big enough relative difference in the ratio of conversion to
non-conversion are then compared to each other within the same base mapping. For instance, the
aggregated conversion rate of touchpoint Direct is relatively low. However, within this aggregation
there are different groups for which the conversion rate differs, e.g., a direct visit to the brand’s
landing page for the product car insurance (Direct_car) has a higher conversion rate for this
product as opposed to a direct visit to a non-related product (Direct_noncar) with regards to
the conversion rate of the product car insurance. Therefore, it is important to make distinctions
between certain touchpoints. In the footnote of Appendix A, the touchpoints that have been
submapped are shown.

3.3.2 Creating the customer journeys

To create the actual customer journeys, the data set provided by the insurer has to be transformed.
In order to perform the transformation, the following steps were taken:

• Inspect whether customer journeys have been cut off in the data set. As was previously said,
the dataset contains information on the customer journey ranging from 19 January 2019 to
28 March 2021. Using this range of dates results in some of the customer journeys being
cut off. For example, a conversion that has taken place on 19 January 2019 by a visitor
misses information on the previous touchpoints the visitor interacted with. Similarly, the
problem also occurs for visitors that interact with the touchpoints on 28 March 2021, the
customer journey is being cut off resulting in no information on the further interaction and
even whether a conversion has taken place. To overcome this problem, all customer journeys
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are taken into account that have occurred between 19 February 2019 and 28 February 2021.
If the customer journey has additional touchpoints outside this range, then the touchpoints
are retrieved from the additional months, 19 January 2019 till 19 February 2019 and 28
February 2021 till 28 March 2021.

• The data set has to be coded in the correct format, which is done via one-hot encoding the
touchpoints. This method will result in one customer journey per row (row-wise) in which
the touchpoints are reflected by binary variables. The presence of a touchpoint in a certain
customer journey is, thus, indicated by a 1, whereas the value of 0 means that that the
visitor has not interacted with the touchpoint. In Table 4, it can be seen that the visitor of
customer journey 24729421 interacted with the touchpoints direct and webcare indicated
by the value of 1 in the corresponding columns, which has ultimately led to a conversion
indicated by the value of 1. It is important to point out that one-hot encoding omits the
order of the touchpoint and due to the nature of the Shapley Value attribution this is justified.

Table 4: Snippet of one-hot enconded customer journey data set

journey_id affiliate app dealer direct ... webcare other conversion

24729421 0 0 0 1 ... 1 0 1
24835022 1 0 0 0 ... 0 0 0
25937402 0 1 0 1 ... 1 0 1

3.4 Data insights

This section will briefly discuss the insights found in the data set provided by the insurer. Subsection
3.4.1 focuses on key statistics to describe the data set. Subsection 3.4.2 looks deeper into the
distribution of the touchpoints occurring in all the customer journeys. Subsection 3.4.3 discusses
the distribution of the conversion rate aggregated for all customer journeys and seen per touchpoint.

3.4.1 Key statistics of the data set

As was previously stated, the number of touchpoints used in this data set amounts to 36, which
is a result of a lower level of granularity. The number of interactions captured in the data is
124,827,038, which comes from the 61,189,553 customer journeys. Furterhmore, the average journey
length is 2.04 steps. Please note that this includes 1-step journeys, excluding 1-step journeys, the
average journey length is 4.34 steps that last on average 272,13 hours (11 days, 8 hours and 8
minutes). Lastly, the average is conversion rate is 0.70 percent, excluding 1-step journeys the
average conversion rate is 1.81 percent. See Table 5 for a summary on the key statistics.
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Table 5: Key numbers in the data set

Key number indicator Key number

Number of different touchpoints 47
Number of interactions 124,827,038
Number of journeys 61,189,553

Interacted with ≥ 3 touchpoints 10,936,861
Interacted with ≥ 5 touchpoints 5,164,183

Average journey length1 2.04
Average duration between steps2 272,13 hours
Average conversion rate1 0.70%
1 Includes 1-step journeys
2 Excludes 1-step journeys

3.4.2 Distribution of the touchpoints

Appendix B gives insight in the number of interactions with each touchpoint. It can be observed
that the majority of the traffic interacts with the touchpoint email totaling to almost 50 percent
of all interactions. 18.03 percent of the traffic interacts with the insurer via the direct touchpoint,
meaning that the website is directly visited via the browser. 11.06 percent of the traffic interacts
with the search touchpoint, from which 63.3 percent of the traffic comes from paid search (SEA),
the remaining 36.7 percent comes from organic search (SEO). 9.62 percent of the traffic interacts
with Independer, implying that almost one out of ten interactions are using the comparison website.
These four touchpoints dominate the traffic regarding the interactions.

The amount touchpoints present in a customer journey is also seen to be positively correlated
with the conversion rate. A one unit increase in touchpoint within a journey, is correlated with
an average of 0.50 percent higher conversion rate not taking the type of touchpoint into account.
As was already shown in Table 5, the majority of the customer journeys consists out of one-step
customer journeys.

3.4.3 Distribution of the conversion rate

It is important to note that the data set also recorded data on the period during the COVID-19
pandemic. In 2020, the pandemic had a negative affect on the sales of car insurance in the month
March as that was the beginning of the intelligent lockdown. The rest of the year, was only slightly
affected as there was even an 2.8% increase in the sales of occasions in 2020 compared to 2019
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totaling to 2,025,309 sold occasions (BOVAG, 2021a). Nevertheless, there were 20% less new cars
being registered in 2020 as opposed to 2019, from 444,217 in 2019 to 356,051 in 2020. (BOVAG,
2021b). However, the volume of sold occasions far exceeds the volume of sold new cars in 2020. In
the following year, 2021, the negative effects of the pandemic were more prominent with regards to
the sales of car insurance. The beginning of 2021 was led by a second intelligent lockdown, which
has resulted in less sales of both used and new cars (BOVAG, 2021c). As most of the recorded
periods of data has only been slightly affected by the COVID-19 pandemic, it should not pose any
problem for the empirical research. Figure 3 gives an overview of the average conversion rate of
the car insurance product per month.

Figure 3: Conversion rate (%) per month for period February 2019 till February 2021
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3.5 Data processing

All data is pre-processed in SAS Enterprise using SAS and SQL. Afterwards, the data is loaded
in Python to be used in the empirical analysis. As the data set itself is too large to handle for
Python due to memory limitations, 50 percent of data set is randomly sampled as base data. As
the data itself imbalanced, the majority class had to be undersampled using weights for the training
set. The test set had the original distribution to keep the data set representative to simulate the
real-life scenario in which the data set is imbalanced.
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4 Method

This chapter explains the method to build a multi-touch attribution model that satisfies the five
criteria put forward in the previous chapter. Section 4.1 and Section 4.2 focuses on the machine
learning methods used to create a classification model. Section 4.3 describes how the models will
be evaluated using the classification error yielded by the model and how variability of the model is
measured. Finally, section 4.4 focuses on the interpretable machine learning method for obtaining
feature importance from the model.

4.1 Classification with Logistic Regression

This research focuses on the application of plain logistic regression algorithm to explore the possi-
bility of building an adequate attribution model. In Section 3.1.1 odds and log-odds are explained
to understand how the transformation is applied to logistic regression. Next in Section 3.1.2 the
logistic regression approach itself is discussed.

4.1.1 Odds and log-odds

The odds of conversion (𝑦 = 1) is the ratio of 𝑃(𝑦 = 1) to 𝑃(𝑦 = 0), where 𝑃 ∈ [0, 1]. In other
words, it is the ratio of the outcome conversion to the outcome non-conversion. Then the odds of
the event occurring are:

odds = 𝑃(𝑦 = 1)
𝑃(𝑦 = 0), (6)

where the odds ∈ [0, ∞]. To make interpretation easier, taking the log of the odds allows for
uniform outcomes that can be expressed in both positive or negative values:

log-odds = exp(log(odds))
1 + exp(log(odds)) , (7)

where the log-odds ∈ [−∞, +∞].
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4.1.2 Logistic regression

Logistic regression was previously mentioned in Chapter 2. It was stated logistic regres-
sion is a regression model that is specific for when the dependent variable is binary. Let
𝒟 = {(𝑥1,1, 𝑥1,2, ..., 𝑥1,𝑗, 𝑦1), ..., (𝑥𝑖,𝑗, 𝑦𝑖) ∣ 𝑖 = 1, 2, ..., 𝑁; 𝑗 = 1, 2, ...𝑀} be the data set. For
the thesis, the sci-kit learn logistic regression classification implementation was used in Python.
Logistic regression is a GLM with a transformation that the output (𝑌 ) of the model is limited
between 0 and 1. Thus, the probability of conversion for visitor 𝑖 given the explanatory variables
𝑋𝑖𝑗 using Equation 8:

𝑃(𝑦𝑖 = 1 ∣ 𝑥𝑖𝑗) = 1
1 + exp(𝛽0 + ∑𝑀

𝑗=1𝛽𝑗𝑥𝑖𝑗)
. (8)

The odds are given by:

𝑃(𝑦𝑖 = 1|𝑥𝑖𝑗)
1 − 𝑃 (𝑦𝑖 = 1|𝑥𝑖𝑗)

= 𝑃(𝑦𝑖 = 1|𝑥𝑖𝑗)
𝑃 (𝑦𝑖 = 0|𝑥𝑖𝑗)

= exp(𝛽0 +
𝑀

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗). (9)

The log-odds are given by:

log (𝑃(𝑦𝑖 = 1|𝑥𝑖𝑗)
𝑃 (𝑦𝑖 = 0|𝑥𝑖𝑗)

) = 𝛽0 +
𝑀

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗. (10)

For ease of notation, let 𝒟 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑖, 𝑦𝑖) ∣ 𝑖 = 1, 2, ..., 𝑁} be the data set where
each 𝑥𝑖 is an input vector of features 𝑀 and 𝑦𝑖 is the corresponding label. The goal of logistic
regression is to estimate the 𝑀 + 1 unknown coefficients 𝛽 through maximum likelihood estimation
(MLE) that finds the best set of coefficients for which the likelihood is the greatest for the observed
data while minimizing the difference between the predicted class ̂𝑦𝑖 and the actual class 𝑦𝑖 using
the log-likelihood loss function:

𝑁
∑
𝑖=1

ℓ( ̂𝑦𝑖, 𝑦𝑖) = − 1
𝑁

𝑁
∑
𝑖=1

[𝑦𝑖 log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) ∗ log(1 − 𝑝(𝑦𝑖))] . (11)
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4.2 Classification with XGBoost

This research focuses on the application of the XGBoost algorithm to explore the possibility of
building an adequate attribution model. In Section 4.2.1 the general idea of Boosting is explained.
Next in Section 4.2.2 the Gradient Descent is introduced which is the fundamental part of Gradient
Boosting. Section 4.2.3 elaborates on the Gradient Boosting methodology itself. Then, Section
4.2.4 introduces XGBoost which is a newer implementation of regular Gradient Boosting that is
used for the actual model creation. Finally, Section 4.2.5 focuses on tuning the hyper parameters
to tune the model and Section 4.2.6 briefly shows the application of k-fold cross-validation.

4.2.1 Boosting

Boosting is an ensemble method that uses meta-learning to increase the prediction accuracy. The
Boosting method was introduced by Kearns & Valiant (1989) when the authors posed the question
of whether a set of weak learners could be transformed into a strong learner. A weak learner
refers to any machine learning algorithm that provides an accuracy that is only slightly better
than random guessing. In the case of binary classification this means that the error rate (𝜀) of a
weak learner is always less 0.5. A strong learner, on the other, has a greater accuracy and has
arbitrarily a smaller error rate as opposed to a weak learner. Schapire (1990) affirms this thought
and showed that weak learners can be combined to generate a strong learner. In Boosting a model
is sequentially trained and improves its predictive ability from adapting to the misclassification of
the model in each iteration.

4.2.2 Gradient Descent

The Gradient Descent algorithm was introduced by Cauchy (1847) and is an itera-
tive optimization algorithm that looks into minimizing a loss function. Consider again,
𝒟 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑖, 𝑦𝑖) ∣ 𝑖 = 1, 2, ..., 𝑁} as the data set. Let 𝐹(𝑥) be the model that
maps the explanatory variables 𝑥 to outcome 𝑦. Consider 𝐹𝑤(𝑥), with model parameters 𝑤, that
maps the explanatory variables 𝑥 to outcome 𝑦. The goal is to minimize the loss function 𝐿(𝑧, 𝑤)
The minimization of the loss function that models the performance of 𝐹𝑤(𝑥). Gradient descent
looks into the derivative of the loss function 𝛿𝐿(𝑧,𝑤)

𝛿𝐿(𝑤) or gradient of the loss function ∇𝐿(𝑧, 𝑤) to
minimize the loss with respect to the parameters 𝑤.

4.2.3 Gradient Boosting

Gradient boosting was proposed by Friedman (2001) and uses the idea of boosting while using
gradient descent for the minimization of the loss function. Consider again, the data set 𝒟 =
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{(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑖, 𝑦𝑖) ∣ 𝑖 = 1, 2, ..., 𝑁}. For each observation 𝑖 the differentiable loss function
can be denoted by 𝐿(𝑦𝑖, 𝐹 (𝑥𝑖)), which describes the loss between the actual outcome (𝑦𝑖) and the
predicted outcome by the model (𝐹(𝑥𝑖)) for observation 𝑖. Boosting uses multiple weak learners
referred to as ℎ(𝑥) to create a strong learner 𝐹(𝑥). As the model learns sequentially, the best initial
guess for 𝐹0(𝑥) would be ℎ0(𝑥) that minimizes the loss function:

𝐹0(𝑥) = argmin
𝛾

𝑁
∑
𝑖=1

𝐿(𝑦𝑖, 𝛾). (12)

After the calculation of 𝐹0(𝑥), the goal of gradient boosting is to find a weak learner that gives the
largest reduction in the loss function. The optimization of the loss function 𝐿 is done by searching
for the steepest descent in function space. For each model 𝑡 that is iteratively trained on the errors
of model 𝑡 − 1, the negative gradient, also called pseudo-residuals, of the loss function of the most
recent model 𝐹𝑡−1(𝑥) for every observation pair (𝑥𝑖, 𝑦𝑖) is calculated:

𝑟𝑖𝑡 = − [𝛿𝐿(𝑦𝑖, 𝐹 (𝑥𝑖))
𝛿𝐹(𝑥𝑖)

]
𝐹(𝑥)=𝐹𝑡−1(𝑥)

, (13)

where the negative gradient 𝑟𝑖𝑡 is the steepest descent in function space for observation 𝑖. Then,
the weak learners are fitted ℎ𝑡 on 𝑟𝑖𝑡 with the weak learner chosen that best approximates the
pseudo-residuals. As was previously said, gradient boosting learns sequentially meaning that the
weak learners are added to the one another to create a strong learner. Thus, after finding the best
weak learner ℎ𝑡 fitted on the pseudo-residuals 𝑟𝑖𝑡, the best weak learner needs to be added to the
most recent model 𝐹𝑡−1(𝑥) using a proper scaling parameter 𝛾. The proper scaling parameters 𝑝𝑡
to be multiplied with the best weak learner ℎ𝑡 is found via one-dimensional optimization over all
observations 𝑛 and gives:

𝛾𝑚 = argmin
𝛾

𝑁
∑
𝑖=1

𝐿(𝑦𝑖, 𝐹𝑡−1(𝑥𝑖) + 𝛾ℎ𝑡(𝑥𝑖)). (14)

The properly scaled weak learner is then added to the most recent model to create an updated
model:

𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + 𝛾𝑡ℎ𝑡(𝑥). (15)
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The model stops training until the pre-specified number of iterations 𝑇 are reached. Algorithm 1
summarizes the steps discussed previously in this subsection into algorithmic form.

Algorithm 1: Gradient Boosting
Input : 𝒟 = {(𝑥𝑖, 𝑦𝑖) ∣ 𝑖 = 1, ..., 𝑛}, loss function 𝐿(𝑦, 𝐹(𝑥)), number of iterations 𝑇 .
Output: 𝐹𝑇 (𝑥).

1 𝐹0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑𝑁
𝑖=1 𝐿(𝑦𝑖, 𝛾).

2 for 𝑡 = 1 to 𝑀 do
3 𝑟𝑖𝑡 = − [𝛿𝐿(𝑦𝑖,𝐹(𝑥𝑖))

𝛿𝐹(𝑥𝑖) ]
𝐹(𝑥)=𝐹𝑡−1(𝑥)

.

4 Fit weak leaner ℎ𝑡(𝑥) to 𝑟𝑖𝑚 using the training set {(𝑥𝑖, 𝑦𝑖) ∣ 𝑖 = 1, ..., 𝑛}.
5 𝛾𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑𝑁

𝑖=1 𝐿(𝑦𝑖, 𝐹𝑡−1(𝑥𝑖) + 𝛾ℎ𝑡(𝑥𝑖)).
6 𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + 𝛾𝑡ℎ𝑡(𝑥).
7 end

4.2.4 eXtreme Gradient Boosting (XGBoost)

The XGBoost method was introduced by Chen & Guestrin (2016) and follows the principle of
gradient boosting with the major advantage that it is a more regularized implementation that
controls for overfitting. For the thesis, the sci-kit learn XGBoost classification implementation
was used in Python. The algorithm makes use of second-order gradients of the loss function to
approximate the the true cost function resulting in real-life application where the use of XGBoost
can be up to 10 times faster than regular gradient boosting algorithms (Chen & Guestrin, 2016).

The XGBoost algorithm uses a gradient boosted decision tree approach to build the model. Thus, in
this case, the weak learner 𝑓𝑡(𝑥) is a decision tree with 𝐽 terminal nodes. The loss function used for
XGBoost classification is an additive function of logarithmic loss that calculates the error between
predicted outcome ( ̂𝑦𝑖) and the observed outcome (𝑦𝑖) plus a penalty term (Ω) that penalizes the
complexity of the weak learners (𝑓𝑡) against overfitting. This results in a regularized loss function:

𝐿 =
𝑁

∑
𝑖=1

ℓ( ̂𝑦𝑖, 𝑦𝑖) +
𝑇

∑
𝑡=0

Ω(𝑓𝑡), (16)

𝑁
∑
𝑖=1

ℓ( ̂𝑦𝑖, 𝑦𝑖) = − 1
𝑁

𝑁
∑
𝑖=1

[𝑦𝑖 log(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) ∗ log(1 − 𝑝(𝑦𝑖))] , (17)
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𝑇
∑
𝑡=0

Ω(𝑓𝑚) = 𝛾𝐽𝑡 + 1
2𝜆||𝑤𝑡||2, (18)

where 𝑡 represents the iteration of the 𝑇 XGBoost models. 𝛾 and 𝜆 are the regularisation pa-
rameters, where �penalizes for the number of the terminal node (𝐽𝑡) and �penalizes the weights of
the terminal node (𝐽𝑡) for tree (𝑓𝑡) via ℓ2 regularization. The goal is to minimize the regularized
loss function with regards to its parameters. As can be derived from the regularized loss function
in Equation 9, the trade-off between model accuracy and model complexity has to be found by
optimization.

4.2.5 Hyperparameter tuning

The XGBoost scikit-learn implementation has a variety of hyperparameters that need to be tweaked
in order to maximize classification performance while still maintaining generalization. The hyper-
parameters that are tuned for the XGBoost model are the following:

• Learning rate. The XGBoost algorithm learns sequentially, thus, the learning rate scales
the weights for the features per iteration. A lower learning rate makes the boosting process
more conservative and slower. The default learning rate is 0.3 in the XGBoost algorithm.

• Maximum tree depth. A higher maximum depth of a tree means that more splits are
created for each individual decision tree per iteration until the maximum depth is reached.
Increasing the maximum tree depth can lead to overfitting and higher complexity of the
model. The default maximum tree depth is 6 in the XGBoost implementation.

• Minimum child weight. The minimum child weight refers to mininum number of instances
that need to be in each terminal node to make the node be part of the model. Lowering the
minimum child weight makes the model less conservative. The default minimum child weight
is 1 for XGBoost.

• Minimum split loss. The minimum split loss specifies what minimum reduction in the loss
should be to make the split in a terminal node be part of the model. Increasing the minimum
split loss makes the model more conservative. The default value of the minimum split loss is
0.

• Scale positive weights. The scaling of positive weights is used for the presence of unbal-
anced classes. A higher scaling towards positive weights, favors the weights found in the
positive classes. The default positive weights scale value is 1. In order determine a indicative
value is to divide the positive class by the negative class ∑𝑁

𝑖 𝑦𝑖=1
∑𝑁

𝑖 𝑦𝑖=0 .

In order to determine what settings to use for the hyperparameters, a random grid search is
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performed. This technique to tune the parameters makes random combinations of the hyper-
parameters to increase the generalizability for the XGBoost model. For the learning rate, the
values {0.01, 0.05, 0.1, 0.15, 0.20} were used. The best maximum tree depth was found by using
the range {5, 10, 15, 20, 25}. The find the best performing minimum child weight the settings
used were the values {1, 3, 5, 7, 9}. The minimum split loss was determined by using the range
{1, 2, 3, ..., 10}. Lastly, the best scale positive weights was found by using the following values
{1, 25, 50, 100, 150, 200}. The random combinations of hyperparameters are examined using k-fold
cross-validation. The final hyperparameters used in the XGBoost model are described in the results
section.

4.2.6 K-fold cross-validation with random search

K-fold cross-validation is used to determine the best distribution for the hyperparameters 𝐶 of a
machine learning to maintain its generalizing abilities, which is for the model to predict accurately
on not seen data. In k-fold cross-validation, the training data set is split into 𝑘 folds. One the 𝑘 −1
folds, the model is trained. The minus one represents the fold that is used for evaluation, which
functions as an out-of-sample test. The process repeats itself 𝐾 times where the hyperparameters
its values are randomly determined for each 𝑐 ⊆ 𝐶. Then, the test error 𝜀 is averaged for all 𝐾
evaluations, resulting in an evaluation measure for the out-of-sample test for a model. Additionally,
this thesis also performs a split of the data in a test and training set before the actual K-fold cross-
validation (outer split). The final model itself will be tested on the outer test data set.

Algorithm 2: Nested K-fold cross-validation with Random Search
Input : data set 𝒟 = {(𝑥𝑖, 𝑦𝑖) ∣ 𝑖 = 1, ..., 𝑛}, set of hyperparamaters 𝐶, number of outer folds

𝐾1, number of inner fold 𝐾2

1 for 𝑖 = 1 to 𝐾1 do
2 Split 𝒟 into 𝒟𝑡𝑟𝑎𝑖𝑛

𝑖 , 𝒟𝑡𝑒𝑠𝑡
𝑖 , for the i’th split

3 for 𝑗 = 1 to 𝐾2 do
4 Split 𝒟𝑡𝑟𝑎𝑖𝑛

𝑖 into 𝒟𝑡𝑟𝑎𝑖𝑛
𝑗 , 𝒟𝑡𝑒𝑠𝑡

𝑗 , for the j’th split
5 for each 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒(𝑐) ⊆ 𝐶 do
6 Train model 𝐹(𝑥) on 𝒟𝑡𝑟𝑎𝑖𝑛

𝑗 with set 𝑝
7 Compute test error 𝜀𝑡𝑒𝑠𝑡

𝑗 for model with 𝒟𝑡𝑟𝑎𝑖𝑛
𝑗

8 end
9 Select best set 𝑐∗ ⊆ 𝐶 where 𝜀𝑡𝑒𝑠𝑡

𝑗 is optimal
10 Train model 𝐹(𝑥) with 𝒟𝑡𝑟𝑎𝑖𝑛

𝑖 using 𝑐∗

11 Compute 𝜀𝑡𝑒𝑠𝑡
𝑖 for model 𝐹(𝑥) with 𝒟𝑡𝑒𝑠𝑡

𝑖
12 end
13 end
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4.3 Evaluation of the model

In order to evaluate the predictive performance of the models proposed in the previous sections, an
adequate evaluation metric has to be used. Section 3.3.1 addresses the problem of imbalance in the
data set. In section 3.3.2 touches upon precision and recall which are two classification evaluation
metrics. Section 3.3.3 discusses the use of the precision-recall curve (PRC) which is used in the
case of severe data set imbalance.

4.3.1 Imbalanced data set

The product of car insurance has the nature that the amount of actual converting customer journeys
as opposed to non-converting customer journeys is significantly less. As was seen in the previous
chapter, the actual conversion rate is 0.70 percent. It is evident that a product of this nature is
one which the consumer does not buy every day, e.g., toilet paper. Therefore, a more lengthy and
rational decision-making process is involved resulting in a severely imbalanced data set

In this case the non-converting customer journeys are overrepresented and the converting customer
journeys underrepresented. Consequently, the severely imbalanced data set creates an issue for
classification metrics. Take for instance, the classification metric accuracy that calculates the
fraction of observations correctly classified over all observations. Using this evaluation metric
would result in a extremely high accuracy as the model would tends to be more biased towards
the non-conversion event in the case of an imbalanced data set. However, observations that indeed
converted but were incorrectly predicted are ignored using this classification metric. In the case of
attribution modeling, it is also of great interest to correctly predict a converting customer based
on the interactions with certain channels.

4.3.2 Precision, Recall and F1 score

Figure 4 shows the confusion matrix, also known as the error matrix, for a binary classification
problem. The confusion matrix gives a global overview of the observed classifications against the
predicted classifications made by the model. The number of incorrect and correct predictions are
summarized by each class for the observed values. The name confusion matrix stems from the
way this approach of a contingency table allows to see how the model confuses the two classes of
conversion and non-conversion. A true positive (TP) occurs when the model correctly predicts the
positive class, whereas, a false positive (FP) occurs when the model incorrectly predicts the positive
class. Similarly, a true negative (TN) occurs when the model correctly predicts the negative class,
whereas, a false negative (FN) occurs when the model incorrectly predicts the negative class.
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Figure 4: Confusion matrix for binary classification problem

Precision scores the fraction of correctly positive classified instances over all the predicted positive
classified instances yielded by the model:

Precision = True positive
True positive + False positive . (19)

Recall scores the fraction of correctly positive classified instances over the observed positive classified
instances:

Recall = True positive
True positive + False negatives . (20)

The precision score evaluates how many of the positive classified observations were correctly iden-
tified of all predicted positive classified observations by the model. If the score is rather low, one
could say that the model indeed classifies new observations as positive despite the imbalanced data
set. However, the actual correctly predicted positive observations is rather low and, thus, not great
at identifying positive observations. The recall, on the other hand, scores how many of the positive
classified observations were correctly identified of all observations that were observed in the positive
class. Note that both metrics are emphasizing the classification performance with regards to the
positive class. In the case of attribution modeling, a conversion is a rare event.

When aiming to maximize the classification performance of the model based on these two metrics,
a trade-off is to be dealt with. While recall evaluates the model’s ability to identify all the instances
of interest (positive class) in the data, the precision scores the proportion of the instances of interest
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the model was able to identify, i.e., maximizing the classification performance based on one of the
two metrics leads to lowering the classification performance regarding the one of the two metrics.
The 𝐹1-score evaluates the model’s predictive ability while taking both the metrics into account:

𝐹1-score = 2 ⋅ precision ⋅ recall
precision + recall . (21)

The precision-recall curve plots the precision of against the recall at varying thresholds for a classi-
fication model. The threshold impacts the classification of the instances resulting in different recall
and precision scores. A classification model that has no ability to discriminate the two classes
would yield random classes or constant classes for the instances in the data set. Figure 5 illustrates
the precision-recall curve. The dotted line, indicates the baseline which is the ratio between the
positive and the negative class in the data set. The baseline curve would be present if the model
had a random predictive ability. A perfect classifier, indicated by the blue line, would show a
combination of two straight lines. A precision-recall of a model closer to the perfect classifier curve
have a better predictive performance than the models closer to the baseline.

Figure 5: Precision-recall curve
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To illustrate which of the machine learning approaches performs better, the precision-recall curve
is used as it shows for every possible threshold what the performance of the model would be. The
determination of the optimal threshold to translate the performance to a concrete confusion matrix,
the 𝐹1-score is utilized as this metric scores the model both on the recall and precision and, thus,
gives the best cut-off value while optimizing recall and precision. Furthermore, the area under the
curve of the precision-recall score, the average precision score, is used to compare the models for
all possible thresholds.
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4.4 Feature importance extraction

To extract the relative importance of a certain channel, feature importance extraction methods have
to be used. Subsection 4.4.1 dives briefly into the feature importance extraction using last touch
attribution. Subsection 4.4.2 discusses how to relative feature importance is calculated for logistic
regression using the weights from the model. In Subsection 4.4.3 SHAP is introduced to extract
the relative feature importance in both the XGBoost and logistic regression model. Ultimately, the
three methods have to be compared to each other.

4.4.1 Last touch attribution

In the literature review, the last touch attribution method was already introduced. It assigns all of
the weight to the last interaction making it the most important. It does this by using taking the
ordering of the touchpoints into account. Despite the fact that the ordering of the interactions falls
beyond the scope of this thesis, it is still of value to take the last touch attribution approach into
account as it is the most common method to get the feature importance in the field of attribution
modeling.

To denote the method mathematically, a new notation needs to be introduced takes the order into
account. Let 𝑖 = {1, 2, 3, ..., 𝑁} denote the visitor that have who have an online customer journey
with 𝑠 = {1, 2, 3..., 𝑆𝑖} steps in duration. Then, the channel importance for visitor 𝑖 is notated as:

importance𝑖 =
⎧{
⎨{⎩

0 ⋅ 𝑥𝑖𝑗 where 𝑠 = {1, 2, 3, ..., (𝑆𝑖 − 1)}
1 ⋅ 𝑥𝑖𝑗 where 𝑠 = 𝑆𝑖

(22)

Consequently, for every visitor 𝑖, channel 𝑗 is added to a count for a every channel (count𝑗). In SAS
the use of a count-function is used to determine the relative importance of a channel. The counts
are then transformed into fractions, which is seen as the probability distribution of the channels,
and eventually converted to log-odds for comparison use. It should be noted that the total data set
instead of the weighted data set, discussed in the previous chapter, was used for this calculation as
SAS is better able to handle large data sets.

4.4.2 Feature regression weights

In logistic regression, the coefficients (𝛽s) of the model can be used as a means of feature importance.
It was previously defined that for visitor 𝑖 the presence of channel 𝑗 in the customer journey is
denoted as 𝑥𝑖𝑗 for which the value can be either 0 or 1. A feature weight 𝛽𝑗, as seen in Equation
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11, can be interpreted as the change in the log-odds of conversion when channel 𝑥𝑗 is present. A
𝛽𝑗 > 0 means a positive change in the log-odds of conversion when channel 𝑥𝑗 is present, whereas,
a 𝛽 < 0 implies a negative change in the log-odds of conversion when channel 𝑥𝑗 is present. The
weights are derived from the scikit learn logistic regression model in Python.

4.4.3 SHapley Additive exPlanations (SHAP)

SHAP introduced by Lundberg & Lee (2017) is, as was previously introduced, a model-agnostic
method of explaining a model, i.e., SHAP can be used on every machine learning method where
an output is yielded. In this case, SHAP is applied on both the logistic regression and XGBoost
model to investigate further if the feature importance is different for both approaches.

To explain the model locally, SHAP uses an additive feature attribution approach in combination
with the Shapley Value. In this methodology, the explanation model is linear function of binary
variables as seen in Equation 24. The original prediction function 𝑓 of input features is being
explained by 𝑔 the explanation model in which 𝑔 is the linear function with binary variables. The
prediction function 𝑓 is a function of 𝑥, where 𝑥 ∈ ℝ𝑀 with 𝑀 input features. Let 𝑧′ ∈ {0, 1}𝑀

represent the presence of the features. If the feature 𝑗 is present, then 𝑧′
𝑗 = 1, otherwise 𝑧′

𝑗 = 0. To
come to this linear model, a mapping function ℎ𝑥(𝑥′) is needed that transforms the original input
to a simpler input denoted by 𝑥′, such that 𝑥 = ℎ𝑥(𝑥′). Thus, ℎ𝑥 converts the simplified vector 𝑧′

back to the original input vector 𝑥. The linear additive feature function of binary variables is then
defined as:

𝑔(𝑧′) = 𝜙0 +
𝑀

∑
𝑗=1

𝜙𝑗𝑧
′
𝑗, (23)

where 𝜙𝑗 is the effect of each feature on the approximated prediction output of 𝑓(𝑥). The sum of
the effect of feature 𝑗 results in the approximation of 𝑓(𝑥).

The Shapley value was introduced in Chapter 2 as a means of to distribute the payoff among
all players, assuming that all players collaborate. It calculates the marginal contribution of each
player by considering all the possible orderings in which the player can be arranged. SHAP uses
this calculation to calculate the marginal contribution of each feature 𝑗 to attribute a weight 𝜙𝑗 to
each feature. It uses the probability yielded by function 𝑓(𝑥) as the payoff to be distributed over the
whole collection of 𝑊 with 𝑀 features. The possible sets of 𝑀 input features is denoted as 𝑆. The
order in which features are added affects the yielded probability, however, for the individual values
are averages across all possible orderings calculating an average effect. Using these definitions, the
formula to calculate 𝜙𝑗 can be written as follows:
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𝜙𝑗 = ∑
𝑆⊆𝑊\{𝑗}

|𝑆|!(|𝑊| − |𝑆| − 1)!
|𝑊|! (𝑓𝑥(𝑆 ∪ {𝑗}) − 𝑓𝑥(𝑆)), (24)

where the input values are approximated using the conditional expectation function of the original
prediction model 𝑓𝑥(𝑆), where 𝑆 represents the set of non-zeros in 𝑧′ , and 𝐸[𝑓(𝑥)|𝑥𝑠] is the expected
value of the conditional function given a set of input features 𝑆. This is denoted as 𝑓𝑥(𝑆) =
𝑓(ℎ𝑥(𝑧′)) = 𝐸[𝑓(𝑥)|𝑥𝑠].

The weights 𝜙𝑗 are approximated using the SHAP implementation in Python introduced by Lund-
berg & Lee (2017). As the XGBoost model is inherently a decision-tree model, it uses the Tree-
SHAP implementation to approximate the Shapley value for each feature. In the XGBoost model,
𝐸[𝑓(𝑥)|𝑥𝑠] is estimated recursively using the structure of the tree and then used as input for Equa-
tion 25. For logistic regression, the LinearSHAP implementation is used to approximate the Shapley
value for each feature. In the logistic regression model, the Shapley values are directly estimated
from the weight coefficients 𝛽𝑗 of the logit model.

In this case of attribution modeling, the outcome variable is binary, therefore, raw prediction of 𝑓𝑥
is expressed in log-odds. The feature importance is expressed as a Shapley value on the scale of
log-odds and does allow for a direct comparison with the coefficients of logistic regression. As this
thesis is more interested in the magnitude of the effect, the exact contribution on the probability
score is less important. Therefore, the Shapley values are used to determine the magnitude of the
presence of a feature 𝑗. For global feature importance per class, the sum of Shapley Values 𝜙𝑗
per feature 𝑗 for each observation 𝑖 is taken with regards to the presence of feature 𝑗 in the online
customer journey, where 𝑥𝑗 ∈ {0, 1}:

𝐼𝑗|𝑥𝑗 =
𝑁

∑
𝑖=1

𝜙(𝑖|𝑥𝑖𝑗)
𝑗 (25)
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5 Results

This chapter presents the empirical results of the thesis. First, section 5.1 discusses the performance
of the XGBoost model compared to the logistic regression model based on the predictive power using
out-of-sample observations. Then, section 5.2 outlines the model explanation performance for the
three methodologies, i.e., last-touch attribution, feature regression weights, and SHAP presented
in the previous chapter.

5.1 Predictive performance

5.1.1 Logistic regression model

Using the trained logistic regression model to classify the instances in the hold-out data set results
in a precision score of 0.658 and a recall score of 0.629. Remember the trade-off between precision
and recall discussed in the previous chapter. The slightly higher precision score shows that the
model marginally overpredicts the positive class compared to the negative class. Table 8 verifies
this finding as the number of instances that are false positives slightly exceeds the number of
instances that are false negatives. Furthermore, it should be noted that there is a severe class
imbalance in the data set, as shown in Table 8, which makes it harder for the model to learn a
relation. Lastly, the best threshold for the logistic regression model is 0.613, while maximizing the
𝐹1-score. The 𝐹1-score using this optimal threshold for the logistic regression model results in a
score of 0.643.

Table 6: Confusion matrix of the logistic regression model on the hold-out set.

Predicted

Conversion No conversion

O
bs

er
ve

d Conversion 13,473 (0.44%) 7,081 (0.23%)

No conversion 6,984 (0.23%) 3,031,147 (99.07%)

5.1.2 XGBoost model

In Table 7, the best set of hyperparameters for the XGBoost model are presented that were deter-
mined using a randomized grid search while maximizing the 𝐹1-score.

38



Table 7: Best set of hyperparameters for XGBoost model

Hyperparameter Value

Learning rate 0.15
Maximum three depth 15.00
Minimum child weight 3.00
Minimum split loss 7.00
Scale positive weights 1.00

Using the trained XGBoost model with the best set of hyperparameters to classify the instances in
the hold-out data set results in a precision score of 0.714 and a recall score of 0.687. The slightly
higher precision score shows that the model marginally overpredicts the positive class compared to
the negative class. Table 9 verifies this finding as the number of instances that are false positives
slightly exceeds the number of instances that are false negatives. There is also severe class imbalance
present in the data set, as shown in Table 9, which makes it harder for the model to learn a relation.
Furthermore, the best threshold for the XGBoost model is 0.639, while maximizing the 𝐹1-score.
The 𝐹1-score using this optimal threshold for the XGBoost model results in a score of 0.700.

Table 8: Confusion matrix of the XGBoost model on the hold-out set.

Predicted

Conversion No conversion

O
bs

er
ve

d Conversion 14,316 (0.47%) 7,924 (0.26%)

No conversion 5,725 (0.19%) 3,032,406 (99.08%)

5.1.3 Model comparison

When comparing the two models, it can be seen that the XGBoost model is better able to classify
unseen instances based on the higher 𝐹1-score of 0.700 as compared to the logistic regression with
a lower 𝐹1-score of 0.639. Additionally, the recall score is higher for the XGBoost model, implying
that it is able to classify 68.7 percent of the instances in the positive class in the hold-out data
set correctly, whereas the logistic regression model can classify 62.9 percent of the actual positive
instances correctly. Lastly, Figure 6 shows that the XGBoost model has a better classification
performance despite the use of the same data set with severe imbalanced classes. It can be seen
that for every possible threshold, XGBoost scores better than logistic regression. The XGBoost
has an average precision score of 0.716, while the logistic regression has an average precision score
of 0.607.
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Figure 6: Precision-recall curve for XGBoost and logistic regression model
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5.2 Explanatory performance

5.2.1 Last touch attribution

Performing last touch attribution on the data set, the most important feature becomes the phone
car commercial with a mean change in log-odds of 2.17 when the feature is present in the online
customer journey. Figure 7 gives an overview of the five most important features based on the
absolute count of the amount of interactions.

Figure 7: Five most important features based on last touch attribution
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5.2.2 Feature regression weights

Logistic regression yields phone car commercial as the most important feature based on the positive
change in log-odds when the feature is present in the online customer journey. The change in log-
odds for conversion with feature phone car commercial is 8.32. It should be noted that the phone
car commercial is also seen as the most important channel in the online customer journey by the
last-touch attribution method. Figure 8 summarizes the five most important features found by
using the weights in logistic regression.

Figure 8: Five most important features based on feature weights for logistic regression
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5.2.3 SHAP

5.2.3.1 Logistic regression Using SHAP decomposition on logistic regression yields phone
car commercial as the most important feature based on the mean Shapley value on the log-odds
scale. If the feature phone car commercial is present in the online customer journey, then the
mean increase in log-odds is 7.41. Note the consistency of the most important touchpoint phone
car commercial with the two approaches discussed previously. Figure 9 summarizes the five most
important features based based on the average impact in absolute terms on the model output
magnitude in log-odds.
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Figure 9: Five most important features based on logistic regression using SHAP
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5.2.3.2 XGBoost Using SHAP decomposition on the XGBoost model yields phone car com-
mercial as the most important feature based on the mean Shapley value on the log-odds scale. If
the feature phone car commercial is present in the online customer journey, then the mean increase
in log-odds for conversion is 7.20. Once again, note the consistency for the most important feature
phone car commercial with the previously discussed approaches. Figure 10 summarizes the five
most important features based on the mean change in log-odds for conversion if a feature is present
in a customer journey.

Figure 10: Five most important features based on XGBoost using SHAP
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5.2.4 Explanation comparison

When comparing the three methods, it can be seen that the feature phone car commercial comes up
as the most important channel in the online customer journey for all four approaches. However, it
should be noted that the last-touch attribution is solely focusing on the number of interactions and
whether the interaction is the last step. The fact that phone car commercial is the last interaction
has to do with the nature of the product, for which lots of consumers prefer to gather information
from a customer representative before converting. Nevertheless, the two data-driven approaches,
feature regression weights and model + SHAP, also yield the same result.

Figure 11 summarizes the five most important features according to the three feature importance
approaches discussed previously. Last-touch attribution performs the worst for feature importance
extraction as the importance is determined a priori and leads to feature importances that do not
represent the actual distribution in the data. Overall, the feature importances between the logistic
regression coefficients and SHAP values are consistent among these two data-driven two methods.
Moreover, it can be seen that the differences in the mean change in log-odds are marginal. See
Appendix C for the total overview of all features in mean change in log-odds for the four approaches.

Figure 11: Five most important features for feature importance approaches
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6 Conclusion and Discussion

6.1 Main findings

This thesis studied the use of the explainable machine learning method, SHAP, in combination
with a more complex machine learning method for the creation of an attribution model. It was
put forward that A more complex machine learning is able to capture relationships more sufficient
than simpler machine learning approaches. It is shown that the use of a well-tuned XGBoost model
has predictive superiority over the simpler logistic regression. The feature importance results are
consistent among XGBoost/Logit + SHAP and the coefficient interpretation in the built-in logistic
regression and are more accepted as ‘true’ as compared to last-touch attribution since last-touch
attribution lacks the use of data to determine the feature importance.

6.2 Discussion

This research started with the objective to investigate the possibility of an attribution model that
combines a high degree of accuracy while still allowing for interpretability. Existing marketing
literature has formulated five criteria to which an attribution model should measure up. The
possible candidates are the logistic regression model and the XGBoost model that both have the
capability to determine their classification performance. Likewise, there is growing research on
model interpretability, which has yielded methodologies regarding feature importance extraction
of black-box models. The methodology used is SHAP, which uses the Shapley value to generate
the importance of a feature. The results were in line with the expectations of the research. The
XGBoost outperforms the logistic regression based on classification performance. However, in this
thesis, the difference in predictive performance between logistic regression and XGBoost is marginal
as no other variables other than the presence in the online customer journey were taken into account.
The feature importance yielded by Logit/XGBoost + SHAP is consistent with the standard feature
importance approach of logistic regression, which confirms that these two data-driven approaches
are persistent and logical. In the theoretical evaluation, it was stated that rule-based methodologies,
such as last-touch attribution, are fundamentally flawed due to the lack of the use of data. It is
confirmed that this holds true for last-touch attribution as the feature importance yielded by this
method is not consistent. The major advantage of the use of XGBoost in combination with SHAP,
it that it allows one to create more complex models while still maintaining interpretability. Overall,
it can be concluded that SHAP, in combination with a black-box model, e.g., XGBoost, can be
seen as a new means to perform attribution modeling in the field of marketing.
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6.3 Managerial implications

This research provides evidence for the use of more black-box models, such as XGBoost, while still
providing interpretability that fits the purpose of attribution modeling in marketing. Despite the
fact that this research only examined the feature importance based on the presence of an interaction
within a customer journey, the strength of using black-box models is the addition of more user-level
variables, e.g., age. The application of a more complex model allows for a deeper understanding of
which channels, in combination with other user-level variables within the online customer journey,
are leading to conversion through the use of SHAP. It opens up the possibility to create a holistic
model that allows seeing whether a campaign for a certain audience is effective whilst taking all
the other interactions with other channels into account. Organizations could benefit from this
knowledge by making a better-informed decision on what to spend budget more effectively when
wanting to drive the conversion rate up.

6.4 Limitations

A limitation of this research is that the order of the interactions within the customer journey was
not taken into account, whereas it could be argued that the order in which the customer interacts
with a channel plays an important role with respect to the nature of the customer journey. It
would, therefore, be pertinent to extend the research on the introduced XGBoost + SHAP model to
investigate the effect of channel ordering. Another limitation of this study is that no other variables
were taken into account other than the presence of interaction within an online customer journey.
Further research could include more variables, such as behavioral and demographic variables, that
allow for deeper mapping within the online customer journey. Using the XGBoost approach allows
for more complex relations, which can be used with SHAP to find complex underlying dependencies
between variables that are related to (non-)converting journeys. Lastly, this research did not take
exposure to offline channels within the customer journey into account but rather solely focused
on the online customer journey based on online click behavior. It could be said that the ‘true’
importance of a channel can be better approximated if the effects of offline channels are also taken
into consideration.
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Appendix

Appendix A: Description of touchpoints

Table 9: Overview of online marketing touchpoints in the data set

Touchpoint name Definition Initiation type

Affiliate Affiliate program of the financial provider redirects a visitor to their
website of their focal brand for a reward given to the publisher.

Customer

App App of the insurer’s focal brand is a way on how users can interact with
the company that can generate online sales and leads.

Customer

Dealer Car dealer tries to sell car insurance for the brand to new car owners when
picking up the car at the dealer.

Firm

Direct1 Direct visit to the website of the focal brand done by a customer typing in
the brand’s domain in the browser’s address bar.

Customer

Display Display advertising from the insurer containing a graphic message on it to
site visitor displayed on a website.

Firm

Email2 Sending commercial messages via email to potential or current customers
to generate leads and online sales.

Firm

File Existing customers having their extension of car insurance executed by the
insurer.

Customer/Firm

Independer3 Insurance-specific comparison website that redirects visitor the insurer’s
website for a reward given to the publisher (affiliate-based).

Customer

Referral Word-of-mouth marketing to generate new sales and leads by incentivizing
current customers by the insurer.

Customer

Phone4 Phone contact with the customer representative of the brand to either
generate sales and leads or to change or terminate insurance contract.

Customer/Firm

Post Physical mail post to inform customers about their current products /
services or to generate news sales and leads.

Customer

Search5 Use of certain keywords in search engines by the consumer in where the
results shown by the search engine generate online sales and leads by
redirecting to the website.

Customer

Social Social media platforms, such as, Facebook, Twitter, and LinkedIn to
communicate commercial messages for online sales and leads.

Firm

Webcare6 Web contact with the customer representative of the brand to either
generate sales and leads or to change or terminate insurance contract.

Customer

Other Other includes all forms of advertising the insurer uses that do not fit in
one of the previous mentioned categories.

Customer/Firm

1 Direct is mapped by car/non-car
2 Email is mapped by inbound/outbound * acquistion/commercial/newsletter/satisfaction/service/welcome/other
3 Independer is mapped by car/non-car * above_fold/below_fold
4 Phone is mapped by car/non-car * commercial/terminate/change/other
5 Search is mapped by organic * car/non_car + paid * branded/non_branded
6 Webcare is mapped by car/non-car * commercial/terminate/change/other
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Appendix B: Interactions per touchpoint

Table 10: Number of interactions per touchpoint

Touchpoint # Visits % Visits

Affiliate 2,091,709 1.68%
App 99,928 0.08%
Dealer 41,426 0.03%
Direct 22,507,596 18.03%
Display 984,289 0.79%

Email 62,060,000 49.72%
File 803,069 0.64%
Independer 12,011,999 9.62%
Referral 3,384,166 2.71%
Phone 3,219,844 2.58%

Post 2,908,753 2.33%
Search 13,800,000 11.06%
Social 416,485 0.33%
Webcare 470,892 0.38%
Other 16,352 0.01%
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Appendix C: Comparison table in mean change in log-odds per
touchpoint and approach

Table 11: Comparison table in mean change in log-odds per touchpoints [A-I]

Touchpoint Last-touch Logit Logit + SHAP XGBoost + SHAP
Affiliate 0.516 1.343 1.320 1.213
App -0.033 2.790 2.790 2.307
Dealer visit 0.385 3.438 3.438 4.201
Direct car 0.910 2.183 1.986 2.177
Direct non-car 0.213 -0.260 -0.197 0.066
Display -1.134 0.173 0.172 0.616
Dossier -0.224 -0.717 -0.710 0.062
Email -0.241 -0.543 -0.391 -0.085
Email commercial 0.299 0.493 0.478 0.895
Email inbound acquistion -1.581 -1.581 0.000
Email inbound commercial -0.256 -0.233 -0.095
Email inbound newsletter -0.184 -0.182 0.001
Email inbound satisfaction 0.091 0.091 0.232
Email inbound service -1.173 -1.173 -0.575
Email inbound welcome -0.869 -0.869 -0.510
Email newsletter -1.757 -0.992 -0.972 -0.873
Email other -0.166 -0.166 -0.181
Email outbound acquisition 0.586 0.586 0.000
Email outbound commercial -0.031 -0.030 0.023
Email outbound newsletter -0.101 -0.094 -0.056
Email outbound satisfaction -0.193 -0.193 -0.176
Email outbound service -1.231 -1.231 -0.607
Email outbound welcome -1.454 -1.454 -0.666
Independer car above fold 1.186 1.703 1.413 2.216
Independer car below fold 0.009 1.057 0.994 1.147
Independer non-car above fold -0.638 0.140 0.135 0.438
Independer non-car below fold -1.722 0.113 0.110 0.059
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Table 12: Comparison table in mean change in log-odds per touchpoints [J-Z]

Touchpoint Last-touch Logit Logit + SHAP XGBoost + SHAP
Phone car change 1.821 6.872 6.597 6.198
Phone non-car change 0.819 2.453 2.404 2.406
Phone car commercial 2.177 8.322 7.406 7.200
Phone non-car commercial 1.429 4.881 4.735 4.606
Phone car other -0.084 0.890 0.881 1.402
Phone non-car other 1.163 1.348 1.226 1.739
Phone car terminate 0.556 3.123 3.060 2.691
Phone non-car terminate -0.477 0.152 0.152 0.759
Post -0.027 -1.090 -1.068 -0.324
Referral 0.587 0.699 0.650 1.057
Search car organic 0.650 2.068 1.985 2.260
Search non-car organic -0.407 -0.696 -0.641 -0.126
Search car branded paid 1.006 3.006 2.946 2.817
Search non-car branded paid -0.140 -0.028 -0.028 0.472
Search car non-branded paid 0.697 1.783 1.712 2.411
Search non-car non-branded paid -1.629 -1.612 -1.451 -0.901
Social -1.922 -0.969 -0.969 -0.312
Webcare car change 0.049 2.969 2.969 2.436
Webcare non-car change -1.178 -0.243 -0.243 0.161
Webcare car commercial 0.676 6.434 6.434 5.668
Webcare non-car commercial -0.237 2.408 2.408 2.833
Webcare car other -1.595 -0.337 -0.337 -0.157
Other -0.914 4.205 4.205 3.660
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Appendix D: Conversion rate over time per model

Figure 12: Conversion rate (%) over time per model
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Both the XGBoost and logistic regression model underestimate the instances that convert as the
conversion rate is in most cases lower than the observed conversion rate. The conversion rate of
both the XGBoost and logistic regression follow a pattern that is similar to the actual observed
conversion rate, indicating that the two model are able to generalize the relations found over time.
However, it seems that XGBoost overstimates more than logistic regression as can be seen in Figure
12. Most notably during the beginning of the year 2021.
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