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I - Introduction 
 

American hospitals have been overloaded with patients requiring healthcare services at times during 

the COVID-19 pandemic. One recent example is the hospitals in Sacramento County, Los Angeles. 

Last December, all intensive care beds (ICU) were filled, and no additional beds were available for 

most Southern Californians (Bernstein, 2020). In spring 2020, hospitals in New York City were 

overwhelmed by the early outbreak and had a shortage of ventilators to treat infected patients (BBC 

News, 2020). As of writing, it has been over a year that the World Health Organization (WHO) 

characterized the COVID-19 outbreak as a pandemic (WHO, 2020). Even though vaccines are 

society’s getaway ticket out of this pandemic, the death toll has been considerable. The number of 

COVID-19 infections in the United States (US) has surpassed the 30 million mark, with the number 

of deaths around 560.000. The impact of the COVID-19 outbreak is heterogeneous across the 

States. For instance, the case-fatality ratio (CFR) of COVID-19 patients, the fraction of positive 

cases who die from the coronavirus, ranges from 0.5% to 2.9% at the State level, with an average 

of 1.8% at the National level. This thesis is concerned with explaining those regional variations of 

COVID-19 deaths within the US and links regional mortality differences ex post to regional hospital 

capacity ex ante at the smallest administrative unit possible, the county level.   

 

The Global Health Score (GHS) index ranked countries (in October of 2019) according to their 

preparedness for a global pandemic based on six different indicators. The supply of healthcare 

services was considered as an indicator, dubbed as a ‘sufficient and robust health system’, assessing 

health capacity, personnel, and equipment (GHS Index, 2019, p. 20). With the ongoing pandemic, 

analysing the supply side of healthcare services is more relevant than ever. Substantial academic 

progress has been achieved on the relationship between healthcare supply and variations in deaths. 

Several papers have found negative associations of regional variations in mortality with hospital 

bed supply (total and/or intensive care), the number of available medical personnel and healthcare 

expenditures. Yet, empirical supply-side models are often narrowly defined (e.g., intensive care 

units are the sole control variable of supply). As infected patients may require different healthcare 

services, based on the severity of their symptoms, a broader healthcare supply model is adopted to 

explain regional variations in covid mortality. The main model includes total, staffed and intensive 

care bed supply, medical personnel, healthcare expenditures and ventilator usage of regional 

healthcare. Additional supply-side control variables used are the type, ownership, and quality of 

hospitals in American counties.   

 

By doing so, it is possible to gain insight into the relationship of regional pandemic health 

outcomes ex-post and the detailed dimension of supply ex-ante. Additionally, flattening the curve can 

be framed as a cost-benefit decision (Thunstrom et al, 2020, p. 1). Examining this relationship can 

clarify to what extent benefits result from investing in healthcare services ex-ante. This is both 

relevant to economists and policymakers since the ultimate economic costs of this pandemic will 

have a considerable effect. Accessing the relationship of deaths given the pre-existing supply of 

healthcare can help understand the associated benefits of investing in health care services. 

 

Before analysing COVID-19 related mortality in the United States, it is necessary to look through 

an epidemiologist’s lens to understand the current events. Firstly, I describe how pandemics may 
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arise and what their merits are in general. Secondly, COVID-19 its features and causes are examined 

in more detail, and how the current pandemic fits into the overall pandemic scheme. This should 

suffice in giving the reader an overview from a medical perspective. After this overview, this 

framework focuses on COVID-19 medical and socioeconomic mortality covariates and, finally on 

healthcare within the United States. The remaining sections describe the dataset, methodology and 

outcomes including a robustness analysis of the supply-side model. 

 

II - Theoretical framework 

 
Pandemics 

 

The WHO defines a pandemic as ‘the worldwide spread of a new disease’ (WHO, 2020b). The definition 

of worldwide is if at least two different countries within a continent and one country from a 

different continent have known cases. As the WHO is the leading organization in global health, 

and advises governments on various health-related matters, it defined a phase description of 

pandemics and subsequent recommendations for influenza pandemics (WHO, 2020c). An influenza 

virus is an overarching term for contagious viruses that infect the nose, throat, and lungs, of which 

flu is an example (CDC, 2020a). Influenza typically circulates amongst animals and may or may not 

be transmittable to humans. Once influenza is capable of infecting humans locally, 

an outbreak occurs in a local community. Then, if the virus further spreads through local or regional 

communities, this refers to an epidemic (CDC, 2020b). Figure 1 portrays the gradience of an 

influenza pandemic as described by the WHO. Interestingly, influenza may develop into a seasonal 

disease post its peak, which is similar to the flu.  

 

 
 

Figure 1: Phases of an influenza pandemic. 

Source: WHO, 2020c 

Morens, Kolkers & Fauci (2009) highlight additional components of pandemics: the severity, 

contagiousness, and minimal population immunity. Opposed to the WHO, the CDC incorporates 

severity and transmissibility (the reproduction rate R) in its Pandemic Framework (CDC, 2016a). 

Although the exact definition (as is often in science) of a pandemic may be debated, most 

definitions agree that a pandemic happens at a global scale and affects several countries or 

continents.  
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Historically, pandemics are rare but recurring events.  The most known pandemic is the Plague 

(the Black Death) in medieval Europe, which recurred incidentally for 300 years (Stenseth et al, 

2008), with the London and Italian plague as the most notable events. Bacteria spread from rats to 

humans via infected fleas and wiped out 30-50% of Europe’s population with 200 million 

causalities (LePan, 2021). Interestingly, most early pandemics were caused by bacteria in rats or 

water (Cholera). Most pandemics in more recent times are caused by new influenza viruses. A 

hundred years ago, the Spanish flu pandemic had an estimated death toll of 40-50 million (LePan, 

2021). The same type of H1N1 virus recurred one hundred years later, known as the Swine Flu.  

The SARS coronavirus, a similar virus to COVID-19, although with a lower death toll, was detected 

in 2002.  The current pandemics are HIV/AIDS and COVID-19.  

Table 1: Overview of several pandemics1 

Name Period Cause Death toll 

Black Death 1347-1351 Bacteria from rats / Fleas 200M 

Great Plague of London 1665 Bacteria from rats / Fleas 100.000 

Italian Plague 1629-1631 Bacteria from rats / Fleas 1M 

Cholera Pandemics 1-6 1817-1923 Cholera Bacteria 1M+ 

Yellow Fever Late 1800 Virus / Mosquitoes 100.000-150.000 

Spanish Flu 1918-1919 H1N1 Virus / Pigs 40-50M 

HIV/AIDS 1918-present Virus / Chimpanzees 25-35M 

Swine Flu 2009-2010 H1N1 Virus / Pigs 200.000 

SARS 2002-2003 Coronavirus / Bats 770 

Ebola 2014-2016 Ebolavirus 11.000 

COVID-19 2019-present Coronavirus  2.5M+ 

 

Epidemiologists have several tools at their disposal to analyse historic and current pandemics. The 

most relevant are their knowledge of diseases and modelling their outcomes, such as the spread 

and death toll (CDC, 2016b). A major modelled determinant is contagiousness, known as the 

reproduction ratio R, which measures the average number of secondary cases per primary case 

(Boelle et al, 2009). If the overall R > 1, this means that an epidemic will occur, since infections 

will grow over time. If the ratio is smaller than one, the disease will fade out over time (Nikbakht 

et al, 2019).  Most epidemics grow approximately exponentially during the initial phase of the 

outbreak. This means that the relationship between the number of infected or deaths is linear to a 

unit of time (log-linear) (Ma, 2020). The logistic model is not the sole model to provide an insight 

into contagiousness, but several models are used to analyse the (future) behaviour of the disease.  

 

 
1 Redacted, see full table at: https://www.visualcapitalist.com/history-of-pandemics-deadliest/ 

 

https://www.visualcapitalist.com/history-of-pandemics-deadliest/
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Ultimately, differences in R are an indicator of why an outbreak may result in a pandemic and its 

subsequent death toll. However, not all diseases lead to mortality. For instance, a reported 60 

million American people were infected during the Swine Flu pandemic (2009), yet 0.02% of those 

cases resulted in death (Ricardson, 2020). Nevertheless, the Black Death in medieval Europe had 

a case-fatality ratio of 30% to 60% (Maassen, 2020), so mortality greatly varies in 

pandemics.  Diseases may differ in contagiousness and mortality rate, yet most pandemics had a 

significant death toll. The usual timeline of a pandemic features 1) a local outbreak of a new disease 

transmitted via animals to humans 2) an epidemic due to a high level of contagiousness (R >1) and 

3) simultaneous infections at the global level.  

 

COVID-19 

 

COVID-19, officially named SARS-CoV-2, is the disease stemming from a new coronavirus, that 

first appeared in December 2019 in Wuhan, China (Sauer, 2021). The virus is spread through 

human-to-human transmission by droplets (RIVM, 2021), officially called respiratory droplets 

(CDC, 2020d). A respiratory droplet is only contagious if it contains a certain amount of viral load 

(Kawasuki et al, 2020) and this viral load differs for each infected human (Maassen, 2021). Humans 

produce respiratory droplets in several manners, but most commonly by breathing, coughing, 

singing, and sneezing (CDC, 2020d). The virus can then spread in three different ways: contact 

transmission (contact with infected person or surface), droplet transmission (near an infected 

person) and airborne transmission (droplets in the air over longer distances) (Medicine, 2020). 

 

The most common symptoms of COVID-19 are fever, dry cough, and fatigue. However, more 

severe symptoms may also arise including shortness of breath, persistent pressure in the chest, 

confusion, and high body temperatures (WHO, 2020d). In the United States, it is advised to seek 

emergency medical care immediately if someone is showing those severe symptoms (CDC, 2020d). 

Overall, the WHO states that about 80% of infected people recover without requiring hospital 

treatment. For the remaining 20%, 3 out of 4 require oxygen treatment and 1 out 4 need intensive 

care (WHO, 2020d). 

 

As of March 11th 2020, the WHO declared SARS-CoV-2 a pandemic (Cucinotta & Vanelli, 2020). 

The outbreak had alarming levels of spread and severity, with a global number of 118319 cases and 

4292 deaths (WHO, 2020). The new coronavirus spread in Wuhan (an outbreak), affected multiple 

communities in China (an epidemic) and ultimately affected almost every country and continent 

globally (a pandemic). Furthermore, the overall reproduction ratio (R) of COVID-19 was estimated 

at around 3 without any control measures and its case-fatality ratio (CFR) in the range of 2,5-2,75% 

(Yadav & Yadav, 2020). A feature of pandemics is generally a high reproduction value and usually 

a high death toll, which COVID-19 is capable of.  

 

When comparing the current pandemic to pandemics in the past, it may seem that COVID-19 is 

severely less deadly than other novel diseases. Nevertheless, it is an insidious virus due to its high 

levels of contagiousness. For instance, the Ebola virus transmits via blood or body fluids (CDC, 

2021), whereas COVID-19 can spread in three different manners (contact, droplet, and airborne 

transmission). Additionally, the overall reproduction ratio (R) of Ebola was estimated at 1.5-2.5 in 

West Africa (Althaus, 2014), which is also considerably lower than COVID-19 R of 3. 
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Table 2 sets out a simple comparison of the case-fatality ratio and reproduction ratio of the selected 

pandemics in Table 1. The case-fatality ratio is a measure that depicts the percentage of deaths of 

infected humans. As my knowledge of medicine is limited, I do not intend to explain variations in 

case-fatality rates of the selected pandemics. Nonetheless, symptoms of the disease, medicinal 

recourses and healthcare have a great influence on this outcome. Note that these variables are 

subject to how they are measured. This means that the time frame of the pandemic, the region and 

general assumptions may alter both the case-fatality ratio and reproduction rate. COVID-19 can 

be characterized as a relatively contagious novel disease, as yellow fever is the only pandemic that 

had a higher R. Regarding the case-fatality ratio, COVID-19 is somewhat less deadly than the 

average pandemic. As of March 17th 2021, the total number of recorded coronavirus cases is 121.5 

million with around 2.6 million deaths, which is a case fatality ratio of 2.2% (Worldometer, 2021a). 

 

The case-fatality ratio of COVID-19 depicts which percentage of known infected people ultimately 

die from contracting SARS-CoV-2, which is 2.2% on average globally (with an estimated 2.5%-

2.75% in March 2020). Besides time variation, regional differences can vary greatly. For instance, 

the case fatality ratio is 4.8% in China, 2.9% in the United Kingdom and 1.1% in New Zealand 

(Jhon Hopkins University, 2021). And even within the same country, COVID-19 related mortality 

may differ. The average mortality rate in the United States is around 1.8%. Nevertheless, the 

mortality rate differs widely across states. Vermont, for instance, has the lowest mortality rate with 

1.3%, whereas New Jersey, it’s neighbouring state, has the highest with 2.8% (Worldometer, 2021c) 

What factors can explain ex-ante how a 1.5 percentage point difference in case fatality arises 

between two states ex-post? In other words: what are determinants of mortality from COVID-19?  

 

Table 2: The Case-fatality ratio and reproduction rate of a selection of pandemics 

Name Death toll CFR Source R Source 

Black Death 200M 30%-60% Maassen, 2020 1.4-1.5 Sichone et al (2020) 

Yellow 

Fever 

100.000-

150.000 

20%-60% Hamer (2018) 4.8 Lui & Rocklöv (2020) 

Spanish Flu 40-50M >2.5% Taubenberger, & Morens 

(2006) 

1.2-3.0 Vynnycky et al (2007) 

Swine Flu 200.000 0.02% Richardson (2020) 1.33 Furushima et al (2017). 

SARS 770 11% Moira & Rui‐Heng (2003) 2.0-3.5 WHO (2003) 

Ebola 11.000 50% WHO (2021) 1.5-2.5 Althaus (2014) 

COVID-19 2.5M+ 2.2% Worldometer, 2021a 3 Yadav & Yadav, 2020 
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Medical mortality covariates 

 

Medical mortality covariates tend to account for factors that affect the outcome of a clinical trial 

(Segen’s Medical Dictionary, 2011) implying the need to account for factors at the patient’s level. 

The epidemic outbreak in Wuhan in early 2020 provided early data on possible medical mortality 

covariates of COVID-19 mortality (comorbidities). Caramelo et al (2020, p.8) estimated odd ratios of 

mortality based on age, gender, and common comorbidities of the Wuhan outbreak. Age is the 

most important predictor of dying: a patient of 80 years or older is 87 times more likely to die from 

COVID-19 than an individual who is younger than 80 (Caramelo et al, 2020, p. 8). A similar result 

was found by Michelozzi et al (2020, p.1) during the early outbreak in Italy, with excess in mortality 

(compared to the mortality rate pre-pandemic), which increased with age. Levin et al (2020, p. 1130) 

find an exponential relationship between age and deaths. And to put matters into perspective: 85+-

year-olds have a 7900 times higher likelihood of dying to covid than a 5- to 17-year-old (CDC, 

2020c). The measured CFR by age is increasing for each age group at the global scale (Worldometer, 

2021a). 

 

The stark evidence of age as a crucial determinant of mortality has been highlighted by many 

government agencies, academic and news articles, and politicians. Interestingly, gender also 

contributes to variations in mortality. Genderhealth50/50 (2021), a data-driven project tracking 

gender equality in global health, finds that males are relatively harder hit in terms of infections, 

hospital admissions and deaths. Michelozzi et al (2020. p.2) report higher excess mortality on 

average for males than females, which holds for every specified age group. Caramelo et al (2020, 

p.8) estimate that males are 1.85 times more likely to die from COVID-19 than females.  Additional 

to age and gender, the role of comorbidities is assessed by several articles from medical journals, 

more commonly known as underlying health issues or pre-existing health conditions. Most articles use 

patients’ data to delve into statistical relationships of health issues and COVID-19 mortality. Table 

3 gives insight into a selection of common underlying health issues associated with an increase in 

regional deaths. Comorbidities are generally associated with a considerably increased risk of 

COVID-19 mortality and are very relevant for the effectiveness of COVID-19 related clinical 

trials.  

 

Although some underlying health issues may be more of significance than others, health issues are 

an indicator of overall health. Even though overall health may decline due to age, which increases 

the risk of dying, an older individual is also more at risk of an underlying health issue. Age and 

comorbidities are therefore reinforcing, so the wide variety of medical academic articles provides 

an overwhelming amount of information on comorbidities. It proves it is additionally hard to assess 

all relevant health-related factors which play a role in a possible death of an infected individual. 

Nonetheless, one should at least try to account for such underlying health issues to properly analyse 

regional differences in deaths and this limited overview of comorbidities show the possible impact 

on mortality can be considerable on an aggregate level. To sum up: age, gender and comorbidities 

play a role in the overall mortality of COVID-19 and may explain regional variances from a clinical 

perspective. 
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Table 3: A selection of comorbidities associated with COVID-19 mortality.  

Comorbidity Effect Source 

Hypertension Hypertension is associated with a 2.5x 

higher mortality risk 

Lippi et al (2020) 

Diabetes Patients with diabetes are more at risk of 

rapid deterioration 

Guo et al (2020) 

Cardiac disease Risk of mortality is 2.35x higher than 

non-cardiac patients 

Inciardi et al (2020) 

Chronic respiratory disease A higher risk odd ratio of mortality Caramelo et al (2020) 

Cancer Cancer is associated with higher all-cause 

COVID-19 mortality 

Kuderer et al (2020) 

Smoking Current smokers have an increased 

likelihood of hospitalitation (1.8x) 

Reddy et al (2020) 

Obesity Severe obesity increases the mortality rate 

up to fivefold for patients under 50 years 

old 

Klang et al (2020) 

 

Socioeconomic mortality covariates  

 

Socioeconomic refers to a wide realm in which economic theory is applied in a social realm and 

links behaviour to social outcomes (Durlauf & Young, 2001), of which COVID-19 death may be 

such an outcome. Although general health and impediments of clinical trials may explain regional 

variances in covid mortality, several papers have analysed a wide range of socioeconomic mortality 

covariates related to regional differences in COVID-19 deaths, which include: demographic 

structure, meteorological variables, economic outcomes, inequality, modes of transportation, 

mobility, political stance, government policies and household characteristics (Allcot et al, 2020; 

Brown & Ravallion, 2020; Ding et al, 2020; Glaeser et al, 2020; Knittel & Ozaltun, 2020; Wu et al, 

2020; Desmet & Wacziarg, 2021; Perone, 2021). 

 

Knittel & Ozultan (2020) use a model of correlations to inspect the relationship between the 

regional death rates and US county-level characteristics. Although a model of correlations does not 

yield a causal result, the model confirms some basic findings from medicinal literature. The share 

of elderly, obesity and diabetics are positively correlated with the death rate (Knittel & Ozultan, 

2020, p. 7).  Brown & Ravallion (2020) use a maximum likelihood regression model, incorporating 

behavioural responses, to analyse excess mortality. Pre-existing health conditions have a weak 

effect (close to zero), although asthmatics and COPD have a weakly significant effect on death 

rates. Those effects tend to be weaker once more socio-economic covariates are included (Brown 

& Ravallion, p. 25). This shows that using medical mortality covariates associated with the 

effectiveness of a clinical trial (age, gender, comorbidities) cannot adequately explain regional 

differences of covid mortality without including socioeconomic controls.  

 

Sannigrahi et al (2020, p .1) argue that demographic factors (total population, age, life expectancy) 

have a substantial impact on regional mortality differences in thirty-two European countries. 

Perone (2021) studied the impact of demographic factors in sixteen different Italian regions and 

found a similar result. A lot of academic attention is devoted to demographic structures and 

regional differences, albeit with a focus on racial disparities within the United States. Some papers 
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report a positive correlation/association of deaths and the share of Black Americans within US 

Counties (Knittel & Ozultan 2020, Brown & Ravallion, 2020; Alcott et al, 2020; Wu et al, 2020). It 

shows that the socioeconomic context is highly relevant for the differences in mortality rates since 

the racial effect can be associated with a difference in social-economic status (SES). The Black 

community in the US is more often living in poverty, has lower education attainment and have 

overall worse health than the White communities (American Psychology Association, 2016).  

 

Therefore, SES is an important indicator of explaining regional mortality differences. Brown & 

Ravallion (2020, p.27) excellently theorized how income and poverty jointly affect social distancing 

behaviour. Poorer families are likelier to have greater marginal costs of social distancing since these 

families cannot easily maintain their consumption level in isolation. Self-protective behaviour is a 

costly prospect for lower-income groups (Papagreorge et al, 2021, p. 716) and compliance to social 

distancing is lower in low-income neighbourhoods in New York City (Coven & Gupta, 2020, p. 

1). These outcomes are often linked to the inability to telework (either by the nature of the job or 

not owning a computer at home) or using the cheaper public transit rather than own transport. 

Yet, one would expect that the median household income is negatively associated with covid 

mortality due to the ability to social distance. Desmet & Wacziarg (2021, p. 12) find this negative 

association, whereas Wu et al (2020, p. 12) report a positive association. Income inequality, 

measured by a Gini coefficient, is positively associated with mortality (Stojkoski et al, 2020). 

Empirical models are not unanimous on the effect of median household income and poverty.  

 

Here, Brown & Ravallion (2020) note that the effect of income on the number of infections and 

deaths may vary, since income has a dual effect and should be analysed in conjunction with poverty. 

As discussed, a lower income decreases the possibility of social distancing, advocating a negative 

association of income with deaths. On the other hand, high-income families tend to have greater 

marginal costs to adjust to a lower level of social and economic interactions during a pandemic 

than low-income families (e.g. forgoing business trips, online meetings rather than physical). Which 

effect dominates when increasing income is not clear beforehand. Ultimately, Brown & Ravallion 

(2020) conclude that the joint effect of poverty and income is that both variables increase the 

number of expected cases, but the significance of poverty decreases when controlling for state 

fixed effects. 

 

Poverty is also considered to be of lesser relevance in the model of Knittel (2020, p. 4), but poverty 

is described as a risk factor for COVID-19 mortality within these communities. Nonetheless, 

multiple reports describe how a lower median income and poverty decrease compliance with social 

distancing. Even though the exact relationship of a lower median income and higher poverty rate 

with mortality may vary in empirical models, most evidence regards these variables as mortality 

increasing. The same arguments apply to the unemployment rate: usually, a (weakly) positive 

association is estimated, but in some models, their role is negligible (e.g., Stojkoski et al, 2020).  

 

As mentioned before, the SES comprises income, health, and educational attainment, of which 

the latter is not discussed yet. Most empirical models show that higher educational attainment 

yields a negative association with mortality (Desmet & Wacziarg, 2020). In academic literature it 

is often said that higher education is associated with better health and thus lower mortality 
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(Lynch, 2003, p 323). Additionally, workers with lower levels of education are less likely to work 

from home (Yasenov, 2020, p. 1), which is a disadvantage in a pandemic.  

Some papers mention the relationship of meteorology with COVID-19 mortality, such as 

temperatures, humidity, and air pollution. Brandt et al (2020, p. 61) argue that relatively more dense 

populations see higher concentrations of air pollution based on New York City data. Comorbidities 

of COVID-19 are also somewhat linked to pollution. Zhu et al (2020, p. 5) also conclude air 

pollution is a relevant factor, based on data from the early pandemic in Wuhan, China. A rationale 

for affecting deaths is that air pollution may make citizens more susceptible to aerosols, the air 

transmission of COVID-19 (Van Doremalen et al, 2020). Ma et al (2020, p.6) find that absolute 

temperature and humidity are negatively associated with mortality. A similar result was found by 

Perone et al (2021) based on Italian data. The authors find that temperature is negatively associated 

with mean temperature and humidity. The rationale for this is that heat decreases the survival time 

of the respiratory droplets of the coronavirus on surfaces (Pawar et al, 2020), lowering the 

probability of transmission. Other noteworthy papers estimate positive associations of the use of 

public transportations (Knittel & Ozaltun, 2020; McLaren, 2020), less home ownership, average 

persons per household (Desmet & Waziarg, 2021) and regional mortality.   

 

Socioeconomic mortality covariates provide information on possible relationships with regional 

covid mortality. Still, it should not give the impression that the number of deaths is a given based 

on medical and socioeconomic mortality covariates. Regional governments may influence the 

course of a pandemic with policies. Guzetta et al (2021) estimated that a two-week lockdown in 

Italy resulted in a reproduction value R below 1 for the next three weeks, using a Bayesian model 

approach comparing behavioural responses in a controlled intervention and an uncontrolled one 

(Guzetta et al, 2021). Liang et al (2020) find that governments that implement effective lockdown 

policies may reduce COVID-19 mortality significantly. Using the Oxford Government Response 

Tracker regarding implemented lockdown restrictions for 37 European Countries, Fullet et al 

(2021) estimate that a one-unit increase in the Stringency Index reduces mortality with 12.5 

cumulative deaths per 100.000. The Stringency Index is a time-variant index comprised of 20 

indicators regarding closure policies (e.g. closing schools), economic policies (e.g. income support) 

and health system policies (e.g. investments in healthcare), and together it records the strictness of 

national or regional lockdown policies (Hale et al, 2021). 

 

Policies generally require a choice based on beliefs and therefore are politically sensitive, and the 

same applies to lockdown policies. Desmet & Wacziarg (2021, p.8) report an interesting pattern 

regarding Democratic and Republican US Counties based on Voting Data in the 2016 elections. 

Trump-leaning counties see a overall higher death toll in later stages of the pandemic, whereas 

Clinton-leaning counties did in the early stages due to population density. Republican voters are 

less likely to adopt social distancing measures (Alcottt et al, 2020) and hence the local conditions 

of Republican-leaning counties may worsen over time. 

  

To give an overview of all relevant socioeconomic variables discussed in the literature, Table 4 sets 

out a comparison of variables and their association with COVID-19 related mortality. These 

control variables may differ in relative importance for an empirical model, yet it is only a description 

of the expected sign. 
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Table 4: Overview of socioeconomic variables and their association with COVID-19 related mortality. 

Category Variable Association Source(s) 

Demographic Structure  Age (years) Positive Caramelo et al (2020) 

 Gender (Male) Positive Michelozzi et al (2020) 

 Race (Black) Positive Alcott et al (2020) 

Brown & Ravallion (2020) 

Knittel & Ozultan (2020)  

Wu et al (2020) 

 Total population / 

Population density 

Positive Sannigrahi et al (2020) 

Economical Inequality (GINI) Positive Stojkoski et al (2020) 

 Median income Mixed Brown & Ravallion (2020) 

Knittel & Ozultan (2020) 

Desmet & Wacziarg (2021) 

 Poverty Positive Brown & Ravallion (2020) 

 Unemployment (Weakly) Positive Stojkoski et al (2020) 

Education Educational 

attainment 

Negative Desmet & Wacziarg (2021) 

Government policy Stringency Index Negative Fullet et al (2021) 

Health Life expectancy Negative Sannigrahi et al (2020) 

 Obesity Positive Knittel & Ozultan (2020) 

 Pre-existing health 

conditions  

(Weakly) Positive Knittel & Ozultan (2020) 

Brown & Ravallion (2020) 

 Smoking Positive Brown & Ravallion (2020) 

Household Home ownership Negative Desmet & Wacziarg (2021) 

 Persons per 

household 

Positive Desmet & Wacziarg (2021) 

Meteorology  Air pollution Positive Zhu et al (2020) 

Perone et al (2021) 

 Humidity Negative Ma et al (2020) 

 Temperature Negative Ma et al (2020) 

Perone et al (2021) 

Transportation Use of public transit Positive Knittel & Ozaltun (2020) McLaren 

(2020) 

 

A crucial regional variation is yet to be discussed and requires a separate section, which is 

healthcare. To understand the interaction between healthcare supply and COVID-19 mortality, I 

first explain the dynamics of healthcare supply. In the last section, the American healthcare system 

is analysed in more depth to concretize features of American healthcare supply in a pandemic. 
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Healthcare supply in a pandemic 

 

Healthcare resource availability has been one of the main arguments to implement lockdown 

policies. The rationale for a lockdown is straightforward: with a decline in the number of cases 

(lowering R), the total number of infections is lowered in the short term. The total number of 

COVID-19 cases should therefore decrease, guaranteeing the availability of healthcare resources. 

In March 2020, much emphasis was put on ‘flattening the curve’.  Almost all governments around 

the world took measures to spread out the number of infections over time, thereby reducing short-

term demand for healthcare services (The Economist, 2020). Figure 2 entails an example of 

flattening the curve. 

Figure 2: A visual representation of how lockdowns may affect the pandemic’s peak.  

Source: The Economist, 2020 

The definition of the supply of healthcare services in a pandemic is not clear at first sight. Often, 

papers refer to healthcare capacity. The GHS Index (2019, p.99) defined medical personnel and 

hospital beds as health capacity when assessing the preparedness of countries for a pandemic 

(indicator 4.1). Bamford (2009) sums up some problems of healthcare capacity measurement (e.g. 

specification problems) and notes that capacity units are most often defined as bed capacity in the 

literature. Although it makes sense to view bed capacity as the main capacity unit in a pandemic, 

this definition is somewhat narrow. Hospital capacity planning involves several dimensions, 

including investments in facilities, equipment, and allocation of human resources (Ettelt, 2008, p.5). 

Furthermore, a healthcare system consists of different layers of national and regional actors, and 

national governments are usually the financers of healthcare.  

 

Therefore, I use the definition of healthcare services of Ransom & Olsson (2017): healthcare 

services comprise of all materials, personnel, facilities, and funds that can be used for services, such 

as treating COVID-19 patients. I opt for this definition since it includes funds. Bonovas et al (2012) 

argued that the more severe recession in Greece, which hampered the ability to fund its healthcare, 

is a reason why a higher mortality rate was observed during the 2009 Swine Flu pandemic. 

Regarding to the treatment of a covid-infected patient, not all infected patients require medical 

treatment. And for those requiring treatment, these patients differ in demand for ‘regular’ or 

intensive care. For those patients requiring medical care, the treatment of one COVID-19 patient 
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requires a hospital/ICU bed, protective equipment (e.g., ventilator, N95 masks) and trained 

personnel (Crowe et al, 2021, p. 57). Additionally, governments finance these necessities. Those 

components are what is understood as the supply of healthcare services for a COVID-19 infected 

patient. A hospital has a limited capacity to treat COVID-19 patients. The total number of patients 

a hospital can treat is defined by hospital capacity and at the national level, this is referred to as 

healthcare capacity. 

 

Several features of healthcare supply during a pandemic should be mentioned. One feature of 

healthcare services is quality. Patients seek to improve their health and medical personnel optimizes 

its services given some medical or financial constraint. The higher the quality of healthcare services, 

the more likely health improvements occur. Healthcare quality is therefore associated with 

procedural mortality rates (Dimick et al, 2004). Secondly, adjusting the total healthcare supply takes 

time (e.g., personnel needs training, the building of ICU, purchasing protective equipment) to 

adjust and is therefore inflexible in the short term. The inflexibility of hospital capacity is best 

explained by Roemer’s Law: hospitals are built where beds can be filled (Goodwin, 2011). Thirdly, 

a healthcare system can reallocate its capacity to meet short-term demand. Lefrant et al (2020) 

describe how France was able to double the number of physicians, ICU beds and ventilators to 

treat infected patients. However, this does not imply that healthcare capacity was doubled: medical 

personnel was reallocated and only 1 out of 8 added ICU beds was newly built. Reallocation implies 

that COVID-19 healthcare is prioritized while reducing capacity for other types of healthcare. Both 

in the US (Berlin et al, 2020) and UK (The Lancet Rheumatology, 2021), a significant backlog in 

non-emergency surgical procedures is reported because of reallocation. 

 

The total demand for hospitalization consists of the demand for COVID-19 related 

hospitalizations and non-COVID-19 related demand. To see how a problem may arise, consider 

the following example. In Lombardy (Italy), 85% to 90% of the ICU beds are on average occupied 

for ‘regular’ care in the winter in pre-pandemic years (Manca et al, 2020). This would imply that a 

maximum of 85 ICU beds is available for patients infected by covid in that period. Assuming a 5% 

ICU rate, the demand for ICU beds would exceed hospital capacity if the total number of active 

cases in Lombardy is above 1.700. With a total number of 700.000 cases in the Lombardy region 

in a year (New York Times, 2021), averaging more than 1.700 new active cases every day, one can 

easily see why healthcare capacity should be reallocated during a pandemic.   

 

Fisher et al (1994) note that physicians consider to what extent hospital resources are available 

when referring patients, therefore a physicians’ clinical decision resembles a threshold function 

related to hospital capacity. In non-pandemic times, physicians would act as an agent managing 

and prioritizing healthcare capacity. If hospital beds are scarce, then physicians are reluctant when 

referring a patient to a hospital. The events of the pandemic would only reinforce this principle, 

meaning that both hospitals (directly) and physicians (indirectly) prioritize COVID-19 related 

healthcare.  

 

Concluding, healthcare capacity has a two-fold constraint in a pandemic: i) the supply of services 

it can offer to COVID-patients and ii) the remaining supply of regular healthcare services. Since 

physicians act accordingly to the availability of healthcare resources, a government is effective in 
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prioritizing the type of supply of healthcare services, but at the expense of the healthcare services 

that have to be deprioritized. 

 

Several papers have assessed the pressure on (regional) healthcare capacity in the surge of a 

pandemic by (micro-)simulation models. For instance, Ferstad et al (2020, p. 9) estimated in March 

2020, that twenty US Counties would see a 500% or higher utilization of ICU beds if 1% of the 

total regional population would have COVID-19 related symptoms. Murray (2020, p.7) forecasted 

that during the peak of the pandemic, there is an excess demand of 9359 ICU beds (above 

healthcare capacity) and that excess demand would occur for circa 6 weeks in the US.  

 

Not being able to treat infected patients, or needing to lower standards of care, may result in a 

higher number of COVID-19 related deaths (Miller et al, 2020, p. 1212). However, it is not clear 

cut whether a higher supply of healthcare services leads to lower mortality levels. A cross-sectional 

study from Crowe et al (2021) finds a positive association between the number of ICU beds per 

100.000 and COVID-19 deaths. The authors state that population density seems to be the main 

driver of deaths, controlling for a higher number of ICU beds that can be found in more populated 

areas. Knittel & Ozultan (2020) find a non-significant correlation between the number of ICU beds 

and covid mortality, arguing that the supply is not what matters most. This model controls for 

some comorbidities, race, age, temperature, and poverty.  

 

However, I suspect those models are driven by two methodological issues. Firstly, an OLS 

regression analysis with the number of deaths and ICU beds would likely suffer from an omitted 

variable bias. Since these two variables are positively correlated, a naïve regression would report a 

positive sign. Secondly, only assessing the number of ICU beds does not fully capture healthcare 

supply in a pandemic. As short-term supply is inflexible but can be reallocated, the number of 

actual ICU beds is underreported in the data. Including the total number of hospital beds, pre-

pandemic would therefore more adequately capture the correlation between ICU beds and 

mortality to account for unobservable reallocation.  

 

Most academic papers do report a negative association of healthcare supply (most commonly the 

number of beds) and mortality with different type of approaches (Total Deaths, CFR and Excess 

Mortality). Looking at Table 5, a vast number of papers find a negative relationship between the 

number of ICU/Hospital beds and either total COVID-19 deaths, excess mortality, or the CFR. 

In some models, the number of beds is not of significance. However, almost all papers fail to 

capture the full healthcare supply in their models. One model comes close to this paper’s definition 

of healthcare supply during a pandemic. Perone et al (2021) include healthcare expenditures and 

medical personnel in an OLS model to estimate the association of hospital beds on the CFR. 

Nonetheless, supply is still not adequately captured. The number of ventilators is also an important 

denominator, which only Moreira (2020) includes in its mortality regression model. This gap in this 

research has, to my knowledge, not been filled yet. Therefore, this gives rise to the necessity of a 

socioeconomic model which includes all the supply side’s relevant components (all materials, 

personnel, facilities, and funds).   
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Table 5: An overview of academic literature on the relationship of healthcare supply and a measure of 

COVID-19 mortality. 

Supply Variable Approach Variable of interest Result Source Data 

Healthcare 

expenditures 

Cross-sectional OLS 

regression 
CFR Negative association Bonovas (2012) European Countries 

Healthcare 

expenditures 

Cross-sectional OLS 

regression 
CFR Positive association Perone et al (2021) Italy (Provinces) 

Healthcare 

expenditures 

Cross-sectional OLS 

regression 
CFR Negative association Sorci et al (2020) European Countries 

Healthcare 

expenditures 

Bayesian model 

ranking 31 variables  
COVID-19 deaths 

Significant impact 

(3th out of 31)  
Stojkoski et al (2020) 106 Countries 

Hospital beds 
Cross-sectional OLS 

regression 
CFR Negative association Ergönül et al (2021) 34 Countries 

Hospital beds Correlation model CFR Negative association Lansiaux et al (2020) France  

Hospital beds 
Cross-sectional OLS 

regression 
CFR Negative association Liang et al (2020) 169 Countries 

Hospital beds 
Cross-sectional OLS 

regression 
CFR Negative association Perone et al (2021) Italy (Provinces) 

Hospital beds 
Cross-sectional OLS 

regression 
CFR Negative association Sorci et al (2020) European Countries 

Hospital beds Correlation model COVID-19 deaths Negative association Hradsky (2021) 210 Countries 

Hospital resource 

availability index 

Bayesian model 

ranking 31 variables 
COVID-19 deaths 

Average impact (16th 

out of 31)  
Stojkoski et al (2020) 106 Countries 

ICU and non-ICU 

bed usage % of bed 

capacity 

Estimation model COVID-19 deaths Negative association 
Karaca-Mandi et al 

(2020) 
US (States) 

ICU beds Correlation model CFR 
No significant 

relationship 

Knittel & Ozaltun 

(2020) 
US (Counties) 

ICU beds Cohort study Covid Deaths Positive association Bravata et al (2021) 
US (Veteran 

Hospitals) 

ICU beds 

Demand model to 

estimate shortage of 

critical care bed 

supply 

Excess Mortality 
12.203-19.594 excess 

deaths in four weeks 
Branas et al (2020) US (Counties) 

ICU beds 
Cross sectional 

spatial model 
Excess Mortality Positive association  Moreira (2020) Brazil (Provinces) 

ICU beds Time series Excess Mortality 

40% of Excess 

Mortality is due to 

COVID-19 

Sjödin et al (2020) Sweden (Provinces) 

ICU beds and 

acute care beds 

Cross-sectional OLS 

regression 

Deaths per 100.000 

population 
Positive association Crowe et al (2021) 183 countries 

ICU beds per 1000  Predictive model CFR 
No significant 

relationship 
Malki et al (2020) Italy (Provinces) 

Medical personnel 
Cross-sectional OLS 

regression 
CFR Negative association Ergönül et al (2021) 34 Countries 

Medical personnel Pearson Test CFR Negative association Lansiaux et al (2020) France (Provinces) 

Medical personnel 
Cross-sectional OLS 

regression 
CFR Negative association Perone et al (2021) Italy (Provinces) 

Ventilators 
Cross sectional 

spatial model 
Excess Mortality Negative association  Moreira (2020) Brazil (Provinces) 
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American Healthcare in the pandemic 

 

In 2018, the US contained more than 919.539 hospital beds and 131.564 intensive care beds, which 

are spread out over more than 6090 hospitals. There are 5141 community hospitals, of which 24% 

is a private for-profit, 57% is a private non-profit, and 19% is a government organization 

(AHA,2021). American society spent on average $11.072 per capita on healthcare of which $1,150 

is out of pocket expenses in 2019 (OECD, 2019). Contrary to most European Healthcare models, 

American healthcare is most known for its private healthcare market and a lack of a compulsory 

insurance scheme. The US does have a national health insurance programme named Medicare (for 

the elderly) and a programme for Veteran Aid.  In the first half of 2020, around 31 million 

Americans did not have health insurance, which is around 10.5% of all adults (Adavelli, 2021). In 

most cases, the employer pays for its employees' health insurance, but this varies due to differences 

in State law.  

Americans may face medical expenses if hospital treatment due to a covid infection is required. 

FairHealth (2021) estimates these costs at $73.300 for an uninsured individual or an insured 

individual who received hospital treatment outside of the insurance company’s network. Even 

insured individuals may face costs due to deductibles. Many empirical models, based on US 

Counties data, therefore included the rate of uninsured adults as an explanatory variable. Health 

insurance is also associated with a better Social Economic Status (SES). The US is also known for 

its large SES-inequalities, based on race, region, and age. And as was discussed before, these factors 

may impact COVID-19 mortality apart from the financial ability to seek medical treatment.  

Turning to the events of the pandemic in the US, there have been over 30.6 million infections and 

556.000 deaths, a CFR of 1.8% (Worldometers, 2021c). It has been the country which is affected 

the most over of a year. At the beginning of the pandemic (spring 2020), New York City was the 

epicentre of the novel coronavirus in the US, and it was also one of the most densely populated 

areas (Alcott et al, 2020). Various states had to make emergency adjustments to their healthcare 

later. As of 2021, Los Angeles is the worst off and the State of California has recorded the highest 

number of covid deaths in March 2021 (Worldometers, 2021c).  

Why the US has one of the highest covid deaths per capita, is a difficult question to answer. 

Nonetheless, some American issues, which are likely to affect the course of a pandemic, are worth 

mentioning. Firstly, States can enact lockdown (related) policies, but lockdown policies are also 

politically sensitive. Republicans and Democrats differ in their willingness to adhere to social 

distancing measures (Alcott et al, 2020), so elected governors may enact different social distancing 

policies (or not at all).  

Secondly, the Federal US government implemented relatively smaller stimulus packages than other 

developed nations, worth 14% of its GDP in 2019 (Buchholz, 2020). Hence, several economic 

developments occurred as the US has lower socials security standards and had smaller stimulus 

packages (compared to the EU). In April 2020, the unemployment rate rose from 4.4% to 14.7%. 

However, the current unemployment rate is 6% (FRED, 2021). Being unemployed may affect an 

individual's health insurance and financial ability to seek medical treatment. Additionally, 41 million 

Americans were at risk of being evicted in 2020 (CBS News, 2020). Being evicted may affect an 

individual’s health and deprives individuals of a place to safely self-isolate. Also, States differ in 

laws preventing evictions and utility shutoffs (O’Connell, 2021).  
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Lastly, US hospitals were faced with a shortage of ventilators from March to April in 2020, and the 

problem was related to the global supply chain (Iyengar et al, 2020). Most countries faced this 

ventilator shortage and had to divide the existing and new stock. However, all States bought a new 

stock of ventilators separately on the market. Since ventilators were scarce, this meant that States 

enacted in a bidding war. Ventilators were thus not divided from the federal level to the State level 

according to a necessity principle, but the States with the highest willingness to pay received the 

first supplies. Whether this affects regional deaths positively or negatively is not clear (since the 

willingness to pay would increase with necessity), yet it is a feature of the American healthcare 

system that should be mentioned.  

Even though the pandemic still yields considerable problems in the US, vaccines are considered 

the solution. The US started vaccinating on the 14th of December 2020 (BBC, 2020). As of March 

19th, 2021, 100 million vaccine shots were administered in the US (NYTimes, 2021). At least 1 out 

of 8 American adults is now fully vaccinated, with 1 out of 4 having received the first shot (CDC, 

2021). Being immune to the coronavirus reduces the overall number of cases and ultimately 

mortality. The focus is therefore now on reducing overall mortality, instead of managing it, and 

lifting lockdown policies gradually. 

III - Data 
 

I use daily data on the number of COVID-19 cases, deaths at the county-level2, total vaccinations3 

and lockdown policies at the state level4 (since there is no county-level dataset available). The data 

period is 21-01-2020 until 20-3-2021, except for the vaccine data, as the US started vaccinating on 

December 14th, 2020. The first dataset consists of daily data on the number of cases and deaths in 

US Counties provided by the New York Times. Lockdown policies are implemented by either the 

Federal, State, or sub-State governments and may differ. The Oxford University excellently maps 

the daily variations in State Policy Responses based on economic, social distancing and health 

policies. It provides for a Stringency Index: an overall measure of how strict States respond at a 

given date. This measure does not reflect effectiveness, but merely the behaviour of government 

policy over time. Together with daily vaccine data at the State level, the main developments in the 

US pandemic can be accurately tracked daily. The CDC has a county level vaccination database, 

but has, unfortunately, not published it for the public yet, therefore state-data is used. 

 

As this paper analyses how the supply of healthcare services is related to regional differences in 

deaths, several hospital datasets are used. The dataset of Definitive Healthcare5 provides the most 

extensive dataset of 6,629 hospitals in the US. This number is higher than mentioned before since 

it includes Children, Religious and Veteran hospitals (~300 hospitals). It includes several supply-

related variables: ICU beds, total hospital beds, staffed beds, average bed utilization, average 

ventilator usage and potential bed capacity increase (measured as the difference in normal and ICU 

beds). Unfortunately, this data is not a time series and has no time variation in hospital capacity, 

but hospital information was updated regularly (the exact update date is unknown to the public). 

 
2 The New York Times, 2021 https://github.com/nytimes/covid-19-data. 
3  OurWorldInData, 2021 https://covid.ourworldindata.org/data/vaccinations/us_state_vaccinations.csv 
4 Hale et al, 2021 https://github.com/OxCGRT/USA-covid-policy 
5 ESRI, 2021 https://coronavirus-resources.esri.com/datasets/definitivehc::definitive-healthcare-usa-hospital-
beds?geometry=-99.492%2C-16.820%2C74.531%2C72.123  

https://github.com/nytimes/covid-19-data
https://covid.ourworldindata.org/data/vaccinations/us_state_vaccinations.csv
https://github.com/OxCGRT/USA-covid-policy
https://coronavirus-resources.esri.com/datasets/definitivehc::definitive-healthcare-usa-hospital-beds?geometry=-99.492%2C-16.820%2C74.531%2C72.123
https://coronavirus-resources.esri.com/datasets/definitivehc::definitive-healthcare-usa-hospital-beds?geometry=-99.492%2C-16.820%2C74.531%2C72.123


19 
 

The project started in 2016, so the data period of this data is 2016-2020. To elaborate on hospital 

information, a dataset (2017) on the features and quality of Medicare registered hospitals are 

linked6, including the type of hospitals, ownership (public, private, government) and overall quality 

measures (e.g. mortality, effectiveness). Albeit the data is from 2017, it comprises detailed 

information at the hospital level. For instance, the CMS has rated hospitals on a 1-5 scale to provide 

quality information to healthcare patients. Furthermore, it compared mortality, patient experiences, 

readmission rate and effectiveness, safety, timeliness of care of those hospitals with the national 

average. All things considered, there are detailed quality dimensions present in the data and 

therefore an asset for analysis. The literature has analysed the relationship between hospital beds 

and COVID-19 mortality in several manners; to add relevance to the literature, I use detailed data 

on hospital supply information at the expense of recent quality data and some hospital bed data 

(yet most papers use 2019 bed data). As the quality of healthcare may be related to procedural 

mortality rates, and therefore the number of deaths, this is also a supply dimension that is not 

covered yet by the literature. It also allows for differentiating between the type of hospital beds. 

Not all covid infected patients require intensive care treatment, so a distinction is necessary 

between normal and ICU beds.  

 

The pandemic sparked many data scientists to put together extensive datasets, one of which 

contains a wide set of socioeconomic and health-related outcomes at the county-level7. Data has 

been pooled from CDC Social Vulnerability Data (2016), Community Health Rankings Data (2020) 

and Weather data (2020).  It provides for many socioeconomic covariates, but also the number of 

patients a physician treats on average within a county. Merged with data on healthcare expenditures 

at the state level8, I believe that a broad scope of supply features is captured in the data. The 

socioeconomic covariates are extensive (e.g. mental distress, physical exercise, access to healthcare, 

segregation). It explores health-, healthcare-, socioeconomic-, housing-, meteorological-, 

demographic- and commute-related outcomes. Nevertheless, additional control variables are added 

to this dataset. Firstly, I use a county level dataset of the Economic Research Service of the US 

Department of Agriculture based on 2019 data (USDA)9. This includes the Social Economic Status 

(SES), based on poverty, unemployment, median household income and education. Lastly, this is 

pooled with data on the voting behaviour of county citizens in the 2016 and 2020 Presidential 

elections10.  An overview of the data can be found in Table 6. 

 

The construction of this county dataset has two main advantages. Firstly, it features detailed 

information at the county level in multiple manners. It is inspired by what the literature has found 

today on various socioeconomic relationships with COVID-19 mortality, yet it is more detailed 

than the data that is used in other papers. Secondly, the supply-side dimension is an addition. 

Although some papers have included supply-side elements such as the division in hospital beds, or 

healthcare expenditures, this data can shed light on the interaction of supply-side elements with 

the regional differences in deaths more extensively. This construction comes also at the expense of 

 
6 Centers for Medicare & Medicaid Services,2017 https://www.kaggle.com/cms/hospital-general-information  
7 Davis, 2020 https://www.kaggle.com/johnjdavisiv/us-counties-covid19-weather-sociohealth-data  
8 CMS (2017), https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-
Reports/NationalHealthExpendData/NationalHealthAccountsStateHealthAccountsProvider  
9 USDA, 2019 https://www.ers.usda.gov/data-products/county-level-data-sets  
10 Schacht (2020) https://www.kaggle.com/etsc9287/2020-general-election-polls  

https://www.kaggle.com/cms/hospital-general-information
https://www.kaggle.com/johnjdavisiv/us-counties-covid19-weather-sociohealth-data
https://www.ers.usda.gov/data-products/county-level-data-sets
https://www.kaggle.com/etsc9287/2020-general-election-polls
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the recency of the data in some cases. However, this applies to health-related outcomes mainly. 

The ESRI Hospital dataset is updated regularly, so it can be assumed that hospital information is 

not outdated. 

 

Table 6: Overview of variables in the dataset 

Category Variable Level Period Source 

COVID-19 Cases* County 2020-2021 NYTimes (2021) 

 Deaths* County 2020-2021 NYTimes (2021) 

 Lockdown* State 2020-2021 Hale et al (2021) 

 Vaccines* State 2020-2021 OurWorldInData 

(2021) 

Healthcare  Physicians  County 2020 Davis (2020) 

supply Hospitals County 2016-2021 ESRI (2021) 

 Healthcare expenditures State 2020  

 Quality of hospitals County 2017 CDC (2017) 

 Hospital beds County 2016-2021 ESRI (2021) 

 Ventilator usage County 2020 ESRI (2021) 

Socioeconomic &  Demographics County 2020 Davis (2020) 

Medical mortality  Socioeconomic status County 2019 Davis (2020) 

covariates Meteorology  County 2020 Davis (2020) 

 Health related County 2016/2020 Davis (2020) 

 Voting behaviour County 2020 Schacht (2020) 

Variables denoted with * are timeseries (unit: daily), the remaining variables are structural. 

 

The merge of several public datasets had an insurmountable loss of data for different reasons. 

Firstly, 1% of the New York Times county dataset consisted of unidentifiable counties. Secondly, 

data was pooled on a unique identifier of state and county name denoted by FIPS (federal 

information processing standards) code. Not all datasets had a FIPS-identifier, so much attention 

has been devoted to ensuring data entries had this identifier. Thirdly, New York City COVID-19 

data is tabulated at the city level, instead of divided over the five counties. Therefore, some statistics 

were mean-weighted based on population share. Overall, 99% of the data on cases, deaths, 

vaccinations, lockdown policies and main supply variables are maintained. Missing supply variables 

are only set to 0 when this fits within the context (number of hospitals, personnel, beds etc), but a 

loss of data is inevitable when using a wide set of control variables (up to 30%) and/or additional 

supply-side control variables conditional on having at least one hospital in a county (e.g. quality of 

hospitals, up to 10%). Therefore, a trade-off exists within this panel dataset.  

 

As stated before, the number of COVID-19 deaths may differ regionally. New York has the highest 

death toll with 48916 deaths and Vermont the fewest with 219. Massachusetts is the State that is 

relatively hit hardest, with an average CFR of 2.9%. In comparison, Utah has a CFR of 0.5%. The 

national average is 1.8%, the same as found in the statistics of international covid trackers. The 

number of cases and deaths differs slightly from the current figures on March 20th 2021 (around 1 

million cases and 30.000 deaths), but this would be due to lost data and is not expected to be of 

major influence. Table A1 provides descriptive statistics on the supply side of hospital services 

during a pandemic. For each county, several variables were derived: the total number and type of 

hospitals, various types of hospital beds and medical resources (ventilators, patient per physician 



21 
 

and expenditures). Additionally, quality indicators of hospitals on a 1 to 5 scale are included. On 

average, 323 total hospital beds are available for patients with 31 of those being ICU beds. ESRI 

defined the potential capacity of hospitals as the difference in all hospital beds and ICU beds, so 

this variable measures the capacity to meet short term demand in a pandemic. Twenty-one per cent 

of the Counties did not have a hospital. Since COVID-19 data of New York City is tabulated at 

the city level, instead of divided over the five counties, New York City is the absolute leader in 

healthcare supply with 106 hospitals and 23854 hospital beds. Table A2-A5 report descriptive 

statistics on the main supply, quality, medical- and socioeconomic mortality covariates.  

 

IV - Methodology 
 

The goal of this paper is to adequately capture the interaction of the supply side of healthcare 

services in a pandemic and deaths of COVID-19.  The CFR can be easily estimated by dividing the 

cumulative number of confirmed COVID-19 deaths (X) by the cumulative number of lab-tested 

COVID-19 cases over time (t) within a region (r).  

 𝐶𝐹𝑅𝑟 =
∑ 𝑋𝑟𝑡 + 𝑋𝑟𝑡+1 +  𝑋𝑟𝑡+2 + ⋯ +  𝑋𝑟𝑛 𝑛

𝑖=𝑡

∑ 𝐶𝑟𝑡 + 𝐶𝑟𝑡+1 +  𝐶𝑟𝑡+2 + ⋯ +  𝐶𝑟𝑛 𝑛
𝑖=𝑡

=
𝑋𝑟

𝐶𝑟
 (1) 

 

The CFR is therefore relatively straightforward: the higher the number of deaths given an 

exogenous number of cases, the higher the CFR is and vice versa. Supply of healthcare services is 

defined as all material, personnel, facilities, and funds that can be used for providing COVID-19 

treatment. The supply side of health care services is inflexible in the short term; meaning some 

capacity exists at a given time, assuming that there is no or little additional supply after capacity is 

reached. Specifically, a patient requires a hospital/ICU bed, medical assistance and a ventilator if 

needed. Those three components are jointly the medical service.  The capacity of the supply side 

of healthcare services in a pandemic is some minimum function related to these components since 

either may be a capacity constraint. 

 𝑆̅ = 𝑚𝑖𝑛{B, P, V} (2) 

 

The demand for (regional) healthcare services is forecasted in many epidemiologist papers with 

complex equations. Here, a relatively simple demand equation is used based on the number of 

cases within a region. An infected individual may or may not require medical services based on the 

development of symptoms with probability η. If the patient’s health deteriorates during the 

infection due to difficulty with breathing, he or she receives intensive care medical services. The 

WHO estimated that η=0.2 for general medical services and η=0.05 for intensive care treatment 

on average. However, η can vary for individuals and, therefore, at the regional level. So, the total 

demand for healthcare services at time t within a region can be denoted as a fraction of the total 

infected individuals at date t requiring medical services: 

 𝐷𝑟𝑡 =  η𝑟𝑡 ∗ 𝐶𝑟𝑡 (3) 

 

To explore how regional covid deaths relate to healthcare supply, assume that the number of deaths 
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can be computed by calculating the number of individuals who do not receive medical care 

(demand exceeds supply). Deaths would depend on supply by: 

 𝑋𝑟𝑡 = 𝐷𝑟𝑡 − 𝑆𝑟̅   (4) 

 

It would be better to include the treatment effect of healthcare services on the total number of 

deaths (since some patients are treated but may die). Assume that death would still depend on the 

ability to provide treatment s, but the probability of a successful treatment is Ψ (patient survives) 

and a random probability of dying σ occurs. Then the equation reads: 

 Pr(𝑋𝑟𝑡|𝑠 = 1) = Ψ𝑟𝑡 − σ𝑟𝑡 (5) 

 

 𝑋𝑟𝑡 = η𝑟𝑡 ∗ 𝐶𝑟𝑡 − (Ψ𝑟𝑡 − σ𝑟𝑡)𝑆𝑟̅ (6) 

 

 
𝑋𝑟𝑡

𝐶𝑟𝑡
= 𝜂𝑟𝑡 −

(𝛹𝑟𝑡 − 𝜎𝑟𝑡)𝑆𝑟̅

𝐶𝑟𝑡
 (7) 

 

Equation (6) shows some basic features to be expected. Firstly, regional deaths increase if the 

probability of hospitalization is high (the covariate effect). Secondly, a higher treatment effect of 

supply decreases the expected number of deaths (the quality of supply effect). Thirdly, rewriting 

deaths to the CFR in equation (7) reveals that deaths decrease when a higher supply per infected 

(active cases) is achieved (relativity of supply effect). Although this equation is not a realistic 

scenario to estimate differences in regional deaths, a simple mathematical exercise does give insight 

into the three mechanisms of regional covid deaths and supply if deaths occur through excessive 

demand. Through these three mechanisms, differences in deaths can arise. 

Drawing from these three mechanisms, I use a State Fixed Effect (FE) regression model to estimate 

the effect of regional supply on the regional deaths. As mentioned, the supply side consists of a 

wide dimension of covariates. To account for the effectiveness of healthcare, quality of hospital 

data is included in the regression model. The probability of hospitalization η𝑟𝑡 and total deaths 𝑋𝑟𝑡 

are likely to be strongly related, so the regression model deploys a wide set of socioeconomic 

control variables to account for omitted variable bias (to counter overestimation of β). The control 

variables can be categorized in health, demographic, SES, political, policy and meteorology 

outcomes (η𝑟𝑡 ).  The number of cases is also included in the model, such that δ𝑐𝑟 + ωp𝑟𝑡 +

φ𝑣𝑠𝑡 + 𝜋𝐶𝑟𝑡  ≍  η𝑟𝑡 ∗ 𝐶𝑟𝑡.  

As the number of deaths is a time-variant outcome variable partially based on the time-variant 

effects of i) overall infections 𝐶𝑟𝑡, ii) preventing infections due to lockdown policies p𝑟𝑡  and iii) 

immunization of the population 𝑣𝑠𝑡 , the model allows for lagged variables. The median number of 

days to die after a covid infection is 14 days (Wang et al, 2020), such that the standard lagged 

variable is 14 days. The same period applies to lockdown policies since the R-value is often 

measured after 14 days (Guzetta et al, 2021). Regarding immune population effects on deaths, the 

lag would depend on the administrated vaccine. Additionally, the administrated vaccines yield 

different levels of immunity before being fully immune after a possible first or second shot 
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depending on the type of administrated vaccine. To overcome this unobservable variance, the fully 

vaccinated (either after the 1st or 2nd shot) per hundred at the state level are included. For the sake 

of simplicity, I assume that the effect of this shot is prevalent 14 days after administrating the last 

required shot. This vaccination rate 𝑣𝑠𝑡 is 0 for all Counties before 14/12/2020. 

Lastly, there are many unobservable differences between Counties. If the socio-economic control 

variables can solve this problem at the regional level, state-fixed effects λ𝑠 may further limit this 

threat to the internal validity of the model.  

The model reads: 

 𝑋𝑟𝑡 = α𝑟 + β𝑆𝑟 + δ𝑐𝑟 + ωp𝑟𝑡−14 + φ𝑣𝑠𝑡−14 + 𝜋𝐶𝑟𝑡−14 + λ𝑠  + ε𝑟𝑡 (8) 

 

𝑋𝑟𝑡   = the number of COVID-19 deaths at county level (r) at a given date (dd-mm-yyyy). 

α𝑟   = a county varying constant 

β𝑆𝑟̅   = regional supply  

δ𝑐𝑟   = socioeconomic and medical mortality covariates at county level 

ωp𝑟𝑡−14  = social distancing policies at county level at a given date (day-month-year). 

φ𝑣𝑟𝑡−14   = fully vaccinated at State level at a given date.  

𝜋𝐶𝑟𝑡−14  = the number of cases at county level at a given date 

λ𝑠   = State fixed effects 

ε𝑟𝑡   = County-time specific error term 

 

V - Results 
 

The supply side model 

 
To understand how the supply model interacts with the number of regional deaths, Table A6 gives 

a selection of correlations of the main supply variables and the number of deaths. None of these 

supply indicators is negatively correlated with the number of deaths. Most strongly correlated are 

the factors of direct supply (beds, hospitals), except for the number of patients per physician. This 

is what should be expected: counties with more (direct) supply tend to have a higher population or 

a population with a high healthcare demand pre-covid. Both would lead to a higher number of 

expected deaths. It also highlights a threat to the internal validity of a model including supply as its 

explanatory variable, as selection bias may alter the sign of the coefficient of interest. 

Turning to the supply model estimation, Table 7 sets out a basic OLS supply-side model without 

control variables with the number of regional deaths as the dependent variable. Since this model 

does not have any time variation, the model analyses between-county variance only. Suppressing 

time variation has a caveat, with the constant in the model able to account for a large share of the 

regional variance. Nonetheless, it provides for an intuition of the relationship between healthcare 

supply and regional covid mortality. Four model specifications are used, building up to the 

definition of the supply of healthcare services used in this paper (all materials, personnel, facilities, 

and funds).  
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In the first naïve model specification, hospital supply is defined in the narrowest definition: hospital 

beds, the use of those beds and the number of hospitals. Note that the adjusted R-squared is quite 

considerable in size, showing that some time variation is needed to analyse regional mortality. The 

hospital bed coefficient is positive, yet the use of beds is associated with mortality decreasing at a 

significance level of 0,1. Adopting a distinction in the total supply of beds (total hospital beds, 

hospital beds with staff and ICU beds in model 2) displays an interesting relationship. The total 

supply of hospital beds drops its significance. Although staffed beds have a positive sign, the ICU 

beds have a large negative significant coefficient for all model specifications.  

Moreover, the supply of doctors and primary care workers is associated with a increase in the 

number of regional deaths (model 3): the more patients per medical personnel, the more deaths. 

As medical personnel can be overloaded with the treatment of infected patients simultaneously, 

one would expect this sign to be positive. Interestingly, the use of beds loses its significance when 

controlling for medical personnel supply. A rationale for including the use of beds is to account 

for possible healthcare pressure or scarcity of healthcare services. The number of beds that can be 

used is correlated to some extent (0.264, see Table A6) to the supply of medical personnel in 

hospitals and therefore the medical workforce can more adequately account for variances in 

healthcare pressure. Turning to the full supply model (4), circa 350 Counties do not have known 

state-level data of healthcare expenditures (funds). Funds are associated with mortality increasing, 

whereas the use of ventilators is decreasing (although not significant). As the model does not 

include any control variables, conclusions should not be drawn yet, but an intuition of further 

models can be derived from Table 7. 

Table 7: Basic OLS supply side model without medical or socioeconomic mortality covariates 

 (1) (2) (3) (4) 

 Deaths Deaths Deaths Deaths 

Hospital beds 0.846*** 0.213 0.244 0.253 

 (0.327) (0.424) (0.419) (0.422) 

Staffed beds  1.392*** 1.357*** 1.365*** 

  (0.402) (0.388) (0.393) 

ICU beds  -6.064** -5.959** -5.858** 

  (2.885) (2.816) (2.741) 

Average Beds utilized -1.437* -1.485** -0.066 0.714 

 (0.773) (0.665) (0.457) (0.586) 

Hospitals -41.227 -39.935 -39.758 -44.537 

 (56.903) (41.347) (40.510) (43.958) 

Patient per physician   -1.231*** -1.119*** 

   (0.362) (0.283) 

Patient per primary care worker   -0.888*** -0.827*** 

   (0.223) (0.191) 

Average Ventilators used    -15.303 

    (12.986) 

Healthcare spending per capita    0.013* 

    (0.007) 

Constant 43.694 51.223** 144.398*** 41.891 

 (31.462) (25.680) (42.256) (61.094) 

Observations 3,104 3,104 3,104 3,104 

Adjusted R-squared 0.747 0.790 0.798 0.800 

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Although quality of care is relevant, model (4) reduces the potential value of including a quality 

control variable. Note that the overall hospital rating loses its significance and decreases in size. 

Moreover, the efficiency of care and the patient’s experience ratings are displayed negative and 

significant coefficients, whereas the other quality measures (timing and safety of care, readmission 

rate and mortality rate) seem less relevant. Disregarding the individual coefficients of the additional 

control variables, the main supply variables do not swap signs, lose significance or in- or decrease 

in size. Therefore, I conclude that additional supply-side control variables are mostly correlated 

with the constant in the model and a fixed-effect model can account for this variance. Since 

including additional supply and quality of supply control variables come with a trade-off of 

excluding Counties that do not have any hospital supply, further models will not include additional 

supply and/or quality controls unless specified otherwise.  

However, a supply-side model without control variables would be futile. Table 9 covers the full 

state-FE supply-side model including medical and socioeconomic mortality covariates. Both types 

of mortality covariates will be discussed after analysing the full supply-side model. The number of 

deaths, cases, vaccinated and lockdown policies are time-variant, so time-variance is present in the 

model. Interestingly, the main supply variables are comparable to the naïve OLS regression, 

although most coefficients are now significant and smaller in size. This indicates that the constant 

in the time-invariant models were indeed able to absorb a large part of regional variation. Although 

a state-level FE mitigates this problem, it also excludes healthcare expenditures from the model. 

Healthcare expenditures are measured at the state level rather than the county level and this implies 

that the state-level fixed effects account for this instead of control in the model separately. 

Unfortunately, no data was available at a lower level, so funds can not directly be assessed in a 

State-FE model. The positive association of healthcare expenditures is discussed in the next 

section.  

Turning to the time-variant controls for the course of the pandemic. The number of cases 

(increasing) and the Stringency Index (decreasing) behave as expected. However, the positive sign 

of vaccinations is unexpected and an explanation for this would be the presence of an omitted 

variable bias correlated with both the fully vaccinated and the number of deaths. This can be the 

case for comorbidities: individuals with comorbidities are likelier to be fully vaccinated and regional 

mortality is positively associated with comorbidities. Not accounting for these medical mortality 

covariates fully may explain the positive sign. In an uncontrolled model, the fully vaccinated 

produces a negative significant coefficient, yet it is positive in a controlled one. Considering this 

unexpected sign of vaccines, a takeaway of the model should be that comorbidities are not fully 

included in the medical mortality covariates, discussed more in-depth in the next section. 
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Table 8: Extensive supply side model without medical or socioeconomic mortality covariates 

 (1) (2) (3) (4) 

 Deaths Deaths Deaths Deaths 

Hospital beds 0.260 0.260 0.259 0.258 

 (0.422) (0.422) (0.422) (0.421) 

Staffed beds 1.366*** 1.366*** 1.365*** 1.366*** 

 (0.390) (0.391) (0.390) (0.393) 

ICU beds -5.896** -5.885** -5.877** -5.884** 

 (2.730) (2.727) (2.727) (2.732) 

Hospitals -43.892 -43.959 -43.736 -43.871 

 (44.334) (44.485) (44.494) (44.743) 

Average Beds utilized 0.630 0.650 0.621 0.638 

 (0.420) (0.432) (0.432) (0.443) 

Patient per physician -1.271*** -1.262*** -1.204*** -1.147*** 

 (0.326) (0.323) (0.324) (0.319) 

Patient per other primary care worker -0.889*** -0.896*** -0.908*** -0.921*** 

 (0.231) (0.234) (0.234) (0.240) 

Average Ventilators used -12.524 -12.164 -12.670 -12.303 

 (11.713) (11.615) (11.581) (10.871) 

Healthcare spending per capita 0.012 0.015* 0.015* 0.016* 

 (0.008) (0.008) (0.008) (0.009) 

Emergency Services Hospitals % 1.420*** 1.444*** 1.484*** 1.408*** 

 (0.512) (0.520) (0.519) (0.491) 

Non-profit Hospitals (Base: Government hospitals)  -17.381* -13.673 -12.277 

  (9.932) (10.147) (9.541) 

For-profit Hospitals (Base: Government hospitals)  -0.941 -1.595 -4.250 

  (19.266) (19.299) (19.488) 

Critical care Hospitals (Base: Acute care Hospitals) 39.397 39.434 42.311* 42.933* 

 (24.571) (25.166) (24.993) (21.897) 

Children's care Hospitals (Base: Acute care Hospitals) -6.017 -9.281 -6.083 -21.724 

 (79.401) (77.889) (79.391) (81.296) 

Hospital rating (1-5)   -15.444** -3.052 

   (6.719) (7.896) 

Efficiency of care rating (1-5)    -17.066* 

    (9.875) 

Mortality rate rating (1-5)    4.976 

    (12.812) 

Patient's experience rating (1-5)    -9.898** 

    (4.286) 

Readmission rate rating (1-5)    -5.249 

    (4.386) 

Safety of care rating (1-5)    -2.848 

    (2.846) 

Timing of care rating (1-5)    1.336 

    (6.253) 

Constant -86.411 -104.048 -57.662 -18.993 

 (62.806) (66.063) (67.219) (74.194) 

     

Observations 2,753 2,753 2,753 2,753 

Adjusted R-squared 0.801 0.801 0.801 0.801 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Considering that hospital beds are the total denominator for total bed supply, its coefficient should 

be jointly read with the number of staffed beds and ICU beds. Staffed beds are beds that are created 

for patient care (ranging from giving birth to long term care). Having patient care reduces the 

expected number of deaths, similar to ICU beds. Yet, it is not so relevant to zoom in on those 

coefficients, but more on the supply side mechanism it shows. Hospitals are, given a fixed number 

of licensed hospital beds, able to reduce the expected number of covid deaths by creating a higher 

number of staffed beds and/or increasing the number of beds in the intensive care. Hospitals may 

manage to meet short term demand for hospital services by reallocating beds and care towards 

infected patients, and the more the hospital does so, the fewer the number of deaths. If the hospital 

fails to do so (# hospital beds are high, but # ICU beds are low), a higher number of deaths are 

expected. This is what the coefficients jointly indicate rather than hospital beds are mortality 

increasing. However, it could be that the number of hospital beds coefficient is upwards biased 

since comorbidities and supply are positively correlated. Still, one would expect that this would be 

applicable to staffed beds and ICU, and these coefficients are negative. Additionally, the ratio of 

these three coefficients is likely to be similar in a bias-free model, implying that reallocation is the 

main supply-side force of decreasing covid mortality.  

Although the supply data does indicate that there is some benefit to reallocating healthcare services, 

the coefficients are relatively small. The average county has a supply of 323 licensed beds, of which 

9.6% consists of ICU beds and 85.3% of staffed beds. Excluding Counties with zero hospital 

supply, this yields an average of 408 licensed beds. In an unrealistic scenario in which a county was 

able to increase the share of ICU beds to 100%, an expected 50 regional deaths could be prevented 

in a year, according to this FE model. This weak effect was somewhat expected, due to some 

literature finding that there is no significant relationship between the number of ICU beds and 

covid mortality. On the other hand, 2,437 Counties are in the hospital database: for those regions, 

121.850 deaths could be prevented. Shifting 10% of the total hospital supply to the intensive care 

units would decrease the expected number of deaths by 12.185 at the national level.  Nonetheless, 

the possible benefits of increasing healthcare capacity may be small when adding hospital beds 

only. Reallocating healthcare towards patient care or intensive care seems more beneficial for 

driving down covid mortality and this should be the main takeaway. 

Doctors and primary care workers are scaled to the population. It depicts how many patients a 

doctor/primary care worker serves in a county. If this ratio increases, a higher number of deaths 

are expected for doctors (physicians). More physicians therefore imply less deaths, opposed to 

other types of primary care provides (nurses, assistants). Both physicians and nurses/assistants are 

concerned with the direct care of an infected individual, if necessary. A division in the sign is not 

straightforward to explain. The coefficient is likely to have a downward bias. More healthcare 

personnel is required to treat comorbidities, but can prevent covid mortality to some extent. 

The usage of beds and ventilators have an expected sign. Ventilators/beds are used if a patient has 

trouble with breathing (a severe symptom of covid). A strong positive association is therefore 

expected, which the model shows. The use of beds or ventilators implies healthcare resources are 

relatively more used in that region and therefore serve as a control for healthcare pressure.  Lastly, 

the most significant coefficient is the number of hospitals in a county. Counties with relatively 

more hospitals are expected to decrease covid mortality with circa 11 deaths per hospital. 
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Table 9: The supply side model controlling for socioeconomic and medical mortality covariates. 

 Coefficient 95% CI 

   

Hospital beds 0.120***  

 (0.001) (0.119 - 0.122) 

Staffed beds -0.042***  

 (0.001) (-0.045 - -0.040) 

ICU beds -0.241*** - 

 (0.005) (-0.251 - -0.231) 

Hospitals -11.074***  

 (0.084) (-11.237 - -10.910) 

Average Beds utilized 0.172***  

 (0.006) (0.159 - 0.184) 

Patients per physician 0.212***  

 (0.005) (0.203 - 0.221) 

Patient per other primary care worker -0.170***  

 (0.002) (-0.175 - -0.166) 

Average Ventilators used 1.202***  

 (0.059) (1.086 - 1.318) 

Cases t-14 0.015***  

 (0.000) (0.015 - 0.015) 

Fully vaccinated per 100 t-14 0.145**  

 (0.061) (0.026 - 0.264) 

Stringency Index t-14 -0.048***  

 (0.010) (-0.067 - -0.029) 

Constant -857.279***  

 (17.694) (-891.959 - -822.600) 

   

Observations 919,310  

Number of states 42  

Adjusted R-squared 0.842  

Medical mortality covariates Yes  

All socioeconomic mortality covariates Yes  

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 

Medical mortality and socioeconomic covariates 

 

Medical mortality covariates of covid can be defined broadly. To categorize these variables, the 

model has a functional approach: all control variables that can explain differences in health status, 

assuming that health status can account for covid mortality. Unfortunately, the prevalence of all 

comorbidities is not known at the county level. Noteworthy health controls are diabetes, obesity, 

age, psychical health, mental health, smoking and drinking behaviour. In this section, attention is 

devoted to the behaviour of medical mortality covariates and the differences in a FE and OLS 

model. This yields four different model specifications in Table 10. 

Due to a time-invariant explanatory variable (supply), a State-FE model does not differ significantly 

as opposed to an OLS regression as it solely captures unobservable between-State rather than 

within-State variation. For all four model specifications, the categorization in the type of hospital 

beds yields the same result: total beds and staffed beds are associated with an increase in mortality, 
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yet the ICU are death decreasing. As the socioeconomic medical covariates are not included, the 

signs and magnitude are different from the main supply model.  

Most health controls have an expected sign: diabetes, age, physically inactive, physically unhealthy 

days are all mortality increasing. The contrary applies to obesity, mental well-being, low birth 

weight, drinking and smoking behaviour. Although some of those controls may be unambiguous 

(mental well-being, smoking and drinking), obesity should be positively associated with covid 

mortality, as medical research indicates. An explanation for an unexpected sign of health controls 

is that the model does not control for socioeconomic outcomes. And as discussed before, this 

paper argues that both medical and socioeconomic mortality covariates should be used to explain 

variations in regional mortality. In general, the four supply model specifications do not differ that 

much when including medical mortality covariates. Only the patient per physician rate changes sign 

in model (4). A rationalization is that unobservable between state variation is in some way positively 

correlated to the total supply of doctors and negatively with covid deaths within a county (e.g., 

educational attainment). Also, note that the vaccine and Stringency Index coefficient both change 

sign compared to Table 10.  The positive association of healthcare expenditures in (1) and (3) is 

not surprising. Perone et al (2021) deploy a similar supply-side model and find a positive association 

when controlling for socioeconomic variables. The authors state that healthcare expenditures are 

only one measure of healthcare effectiveness, so a positive sign may be expected when controlling 

for multiple effectiveness measures.  On the other hand, the models of Bonovas (2012, based on 

Swine Flu data) and Sorci et al (2020) indicate a negative association. 

Some health variables do not have the expected sign when trying to explain the regional number 

of deaths. For instance, the level of obesity and diabetes (two comorbidities of covid) has a negative 

sign, whereas the medical literature is unanimous on a positive sign. All things considered; the 

health control variables do a poor job in explaining covid mortality. Firstly, suppressing health-

related variables does not alter the supply model coefficients significantly. The supply-side model 

is therefore not strongly correlated with those variables. Secondly, obesity is a variable that 

maintains a negative sign for several model specifications (only supply and health as control 

variables, only health, only socioeconomic covariates). It should be noted that a weakness of this 

paper is the health-related side of modelling covid mortality since many relevant health covariates 

are not included. Even when controlling for many possible cofounders and using fixed effects, 

there is a possible omitted variable bias in the model for health-related coefficients. Comorbidities 

which should be included are the regional prevalence of cancer, hypertension, cardiac disease, and 

chronic respiratory disease. Since this paper cannot dispute articles from the medicine academics 

based on a FE-regression, I conclude that an omitted variable bias is present in the model. Most 

health variables differ in the correlation of supply-side variables, this may yield a positive or 

negative omitted variable bias based on the effect of the cofounder on the number of deaths. For 

instance, the coefficient of age is downward biases since elderly have relatively more comorbidities. 

There is a vast array of academic literature on possible socioeconomic influences on covid mortality 

(Table 4). To provide an overview, the following categorization of socioeconomic control variables 

is used: demographics (excluding age), socioeconomic status (including education) and community 

differences (commuting, political preferences, meteorology, and housing). For all categories, two 

models are specified: (1) the supply-side model including only socioeconomic variables of that 

category and (2) the full supply model including all socioeconomic variables for comparison. The 
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goal is to illustrate the gravity of the type of socioeconomic mortality covariates and the difficulty 

to decipher the “true” empirical model of covid regional mortality. 

Starting with demographics in Table A7, the explanatory power of model (1) is surprisingly higher 

than the full supply-side model. Even so, most demographic control variables do not have the 

expected effect on covid mortality. Most of these control variables do change sign when controlling 

for all three categories of socioeconomic mortality covariates. The differences in these models 

display why an empirical analysis of regional covid mortality is highly subject to an omitted variable 

bias. Virtually all papers include demographic control variables to account for population 

differences, notwithstanding it is equally an area that is correlated with other types of mortality 

covariates. For instance, the fraction of youth is associated with mortality increasing (+5), whereas 

this is mortality decreasing (-1.5) in the full supply-side model. The same principle applies to the 

total population, which is mostly mortality increasing in model specification (1). When controlling 

for these three categories of control variables, most control variables have the expected sign based 

on literature. Contrary to Michelozzi et al (2020), the share of females is estimated to be positively 

related to covid mortality. This is due to the incompleteness of comorbidities in the model: 

comorbidities that are positively correlated with the female gender and covid mortality create an 

upward bias. For instance, hypertension is more prevalent for females (Tran et al, 2018) and 

positively associated with covid mortality. And teenagers are expected to have less comorbidities 

than elderly, explaining why the fraction of youth is positively associated at first. 

Regarding ethnicity, the expected death per cent point is higher for the share of the Black and 

American Indian population than White and Hispanic. Some papers have assessed the racial 

mortality disparities of Black and White communities, and this model hints at the same outcome 

(three expected deaths per percentage point increase of Blacks relative to White). Also, note the 

significant and considerable negative coefficient of Native Hawaiian. This may be due to a data 

technicality. Hawaii is one of the harder hits regions but lacks data on numerous control variables 

and is therefore not included in the regression model. On average, 0.1% of the County population 

consists of Native Hawaiians. The standard deviation for this ethnicity is, therefore, larger and may 

be associated with downward trends in regional covid mortality. Furthermore, some basic 

outcomes of Sannigrahi et al (2020) are confirmed in the model: a higher population, a higher 

population density (overcrowding) and less rural communities see a higher number of casualties. 

Except for gender, all covariates are comparable to those found in Table 4. 

The second categorization of socioeconomic mortality covariates is socioeconomic status. These 

variables include information on median household income, unemployment, poverty, access to 

health, uninsured and educational attainment (Table A8). Opposed to the demographic control 

variables, many of the coefficients have the same sign in both model (1) and (2), except for access 

to health and the fraction of uninsured for healthcare services.  

The rationale for including a set of income controls (income, poverty, and inequality) stem from 

the models of Stojkoski et al (2020) and Brown & Ravallion (2020). In these models, inequality was 

associated with mortality increasing, and the same holds for the 80th-20th income ratio and 

individuals earning below the poverty line. Brown & Ravallion (2020) argued that the expected sign 

of median household income varies when including poverty, as particular income groups may 

respond differently to social distancing policies. In this model, both poverty and median household 

income are positively associated, and the same result was found in the author’s model.  
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Two associations should be highlighted found in Table A8. The first is the unexpected negative 

sign of the unemployment rate: several papers have established a positive association. Again, these 

types of empirical models are at risk of biases, so it is a possibility that other papers were not able 

to control for sufficient outcomes. Secondly, the fraction of uninsured individuals is significantly 

mortality increasing (five times the size of ICU supply and 1.5 times building a new hospital). This 

indicates that the widely debated issue with American privatized healthcare and access to healthcare 

services is also a concern in the event of a pandemic. 

The modal educational attainment is additionally considerable in size. Comparing to primary level 

schooled (primary schooled or no diploma), both secondary education level (high school) and 

tertiary educational attainment (college or university degree) decrease expected regional mortality 

significantly. The difference in secondary and tertiary educational attainment is not sizeable. 

Overall, the SES control variables appear to have a common trend: if the SES indicators are poor 

in a county, then the expected number of deaths may increase ceteris paribus. This is also why 

many papers focused on racial disparities in covid mortality, which can be partially explained by 

differences in the SES indicators. I conclude that the SES indicators are highly relevant indicators 

for variations in regional covid mortality at the county level.  

The final category consists of a set of community outcomes (political, commuting and housing) 

that the literature marks as relevant in Table A9. The main supply-side variables in model (1) do 

not differ significantly from the full supply-side model, which is a sign that community variables 

are a relevant input. Starting with traffic movements, owning a vehicle is a significant predictor of 

decreasing covid mortality. The use of public transit was reported to have a positive association 

(Knittel & Ozaltun (2020); McLaren (2020). If the individuals who do not own a car, are relatively 

more likely to use public transit, then this outcome is similar to the public transit models. It is 

however a different control variable, so the direct comparison might be inadept. The commuting 

variables do reveal a pattern: communities, where relatively more traffic movements happen 

(average traffic volume, long commutes), see an increase in the number of deaths, controlled for 

the fraction of individuals that drive alone to work (so no carpooling). Traffic movements have 

been the centre of debate in many countries, with restrictions on the distance citizens can travel 

from home (e.g. 15 km). Accordingly, these types of restrictions are based on a rationale. 

Political preferences do play a role in covid mortality. As Alcott (2020) found, Republican Counties 

are hit later and harder in the pandemic than Democratic. This is why the 2016 Republican-

Democrat election difference is a negative coefficient (those counties are Republican at the start of 

the pandemic). As the pandemic continues, Republican counties are worse off, indicated by the 

positive sign of the 2020 difference. The model discovers this mechanism displayed by Alcott 

(2020) and political preference is, therefore, a relevant and considerable control factor. 

Turning to the housing outcomes, the fraction of homeowners is negatively associated with 

regional mortality, as was also reported by Desmet & Waziarg (2021). Areas that are faced with 

severe housing costs and housing problems, and possibly more homelessness, are also worse hit in 

terms of expected deaths. Some other outcomes of Perone et al (2021) & Zhu et al (2020) are also 

found by the full supply-side model. Pollution (PM2.5) is death increasing and temperature 

associated with death decreasing, although the coefficients indicate that these controls have a 

smaller impact than other control variables. 
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Table 10: Supply model with lagged pandemic data and medical mortality covariates 

 (1) (2) (3) (4) 
 OLS FE OLS FE 

     
Hospital beds 0.598*** 0.611*** 0.601*** 0.614*** 
 (0.020) (0.002) (0.020) (0.002) 
Staffed beds 0.181*** 0.170*** 0.172*** 0.166*** 
 (0.014) (0.003) (0.014) (0.003) 
ICU beds -3.469*** -3.344*** -3.437*** -3.304*** 
 (0.127) (0.012) (0.126) (0.012) 
Hospitals -66.732*** -70.998*** -66.379*** -70.239*** 
 (2.066) (0.196) (2.083) (0.200) 
Average Beds utilized 0.775*** 0.774*** 0.798*** 0.865*** 
 (0.023) (0.016) (0.025) (0.017) 
Patient per physician -0.150*** -0.138*** -0.034*** 0.079*** 
 (0.010) (0.010) (0.009) (0.012) 
Patient per other primary care worker -0.272*** -0.279*** -0.303*** -0.378*** 
 (0.006) (0.005) (0.006) (0.006) 
Average Ventilators used -12.944*** -12.553*** -12.403*** -10.322*** 
 (0.614) (0.154) (0.587) (0.160) 
Healthcare expenditures per capita 0.022***  0.033***  
 (0.000)  (0.000)  
Cases t-14 0.019*** 0.019*** 0.019*** 0.019*** 
 (0.000) (0.000) (0.000) (0.000) 
Fully vaccinated per 100 t-14 -2.513*** -2.754*** -2.632*** -2.759*** 
 (0.267) (0.162) (0.274) (0.165) 
Stringency Index t-14 0.528*** 0.419*** 0.429*** 0.416*** 
 (0.022) (0.027) (0.026) (0.027) 
Access to exercise %   -0.003 -0.068*** 
   (0.010) (0.016) 
Average mentally unhealthy days   -16.846*** -107.350*** 
   (1.604) (2.290) 
Average physically unhealthy days   20.542*** 190.946*** 
   (2.127) (2.786) 
Diabetes %   0.751*** 0.799*** 
   (0.035) (0.094) 
Median Age   0.433*** 1.386*** 
   (0.045) (0.083) 
Obese %   -1.135*** -0.918*** 
   (0.044) (0.073) 
Excessive drinking %   -1.509*** -2.406*** 
   (0.111) (0.264) 
Fair or poor health %   3.987*** -6.026*** 
   (0.151) (0.251) 
Low birthweight %   -5.030*** -9.664*** 
   (0.313) (0.216) 
Physically inactive %   2.872*** 3.517*** 

   (0.056) (0.077) 
Smokers %   -6.408*** -6.736*** 
   (0.139) (0.264) 
Constant -137.396*** 46.871*** -191.341*** -61.117*** 
 (2.433) (1.427) (4.826) (10.491) 
     

Observations 1,051,047 1,051,047 1,025,759 1,025,759 
R-squared 0.734 0.729 0.735 0.733 
Number of states  49  49 

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
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Robustness analysis 

 

The last section consists of two robustness analyses of the supply side of the covid mortality model. 

All socioeconomic and medical covariates are included for each model. The first robustness check 

is whether the model specification alters the conclusions of the association between supply-side 

factors and regional covid mortality. Table A10 compares the state-level FE model with three 

different models: the same FE model with quality and supply control variables, a standardized OLS 

coefficient and an OLS regression with no time-variance. As was analysed earlier, the additional 

quality and supply control variables do not alter the coefficients significantly, justifying the 

exclusion of these controls in the main analysis (model 2) with the benefit of including counties in 

which supply is zero. All quality control variables are negatively associated with the number of 

deaths and significant. Additionally, for-profit hospitals have an associated 8,2 higher death number 

than government hospitals. However, the model loses a small fraction of explanatory power in 

terms of the R-squared. The type, ownership and quality of supply therefore seem less relevant 

when analysing regional variation. 

Data is sensitive to how it is measured, and this may give measurement or outlier bias in the current 

model. Standardizing all variables to the unit of 1 overcomes the problem of measurement bias 

(although most control variables are measured in percentage points in the FE model). On the other 

hand, standardized coefficients assume that the relative importance of variables within a model can 

be expressed by a constant scale of standard deviation, and the model may be unfit to do so in this 

case. The standardized coefficient displays a similar sign to the FE model, except for the fully 

vaccinated per hundred. Both the Stringency Index (lockdown policies) and vaccinated are 

negatively associated with deaths, which did not occur in any of the FE models. The two most 

important variables are the number of mortalities increasing hospital beds and the number of cases 

according to the model. Other supply-side variables tend to be small (the ICU coefficient is 

significantly smaller for example). Concluding, this model specification does not support the 

conclusion that counties, that can reallocate resources towards intensive care, are more successful 

in decreasing covid mortality. It does support that outlier or measurement bias is not the driver of 

the found results. The time-invariant model (4) does support this outcome; however, the R-squared 

of 0.97 is too problematic. As described throughout this paper, the regional constant can account 

for a large share of the variance and it does in this type of analysis. Ultimately, this harms the 

validity of the meta-regression considerably. The current state-FE methodology produces results 

that are similar to other model specifications and balances methodological issues in a more concise 

matter than the three other specified models.  

A robustness analysis also covers the specification or measurement of relevant variables. Four 

different specifications are compared in Table A11: not using lags for time-variant data (1), using 

the CFR as the dependent variable (2), using the daily change in time-variant data (3), and using 

the share of ICU beds instead of the division of beds (4). 

The non-lagged Stringency Index loses its significance in the model (1) of Table A11. Additionally, 

the R-squared decreases slightly and the effect of total cases increases relative to the FE supply-

side model. The supply variables of interest remain similar and not much change is observed. The 

argument to use lagged variable proves to be sensible. The main takeaways of the FE supply model 

are stable since these occur in most estimations, yet it is a poor model to explain regional differences 
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in the CFR (2) or daily deaths (3). The coefficients are close to zero in both models and have little 

variation. Both dependent variables are small in size, as the CFR is a percentage with little variation. 

The number of daily deaths is also small with a low variation. An additional weakness of the supply 

model is that it can only be used to estimate the number of regional deaths, which can be a threat 

to external validity. On the other hand, model (4) directly specifies the share of ICU beds as the 

dependent variable and finds a small negative association as expected, similar to Karaca-Mandi et 

al (2020). This reinforces the main takeaway of the supply-side model: counties that can raise ICU 

supply relative to total supply, are associated as mortality decreasing. Given that this is a 

confirmation of the main state-FE model used in this paper. I conclude that the model is not driven 

by measurement bias, model or variable specification and therefore the results are robust.  

VI - Discussion 

 
This paper was concerned with a meta-analysis on the relationship of regional covid mortality and 

supply of healthcare services. Several points should be raised after an extensive literature review 

and empirical analysis. Firstly, numerous papers have been concerned with this exact relationship 

since it is of great significance during the pandemic. However, most papers do not adequately or 

systematically define supply when examining this relationship. Perone et al (2021) include 

numerous dimensions of supply within their model based on hospital beds, healthcare expenditures 

and medical personnel. Yet, most of the academic research assesses the supply of hospital beds and 

medical personnel, excluding possible resource availability, healthcare pressure or funding of 

healthcare services. Those components are certainly relevant when shedding light on the supply-

side of healthcare in a pandemic and its linked outcome of covid mortality.  

 

Secondly, another dimension of supply that most papers fail to capture is the division of healthcare 

supply based on the demand of covid infected patients for healthcare services. This occurs if 

models do not separate between normal and intensive care hospital beds, but also if ventilators are 

not accounted for. Sen-Crowe et al (2020) separate global hospital bed supply, acute care beds and 

intensive care units. Although this paper does not directly focus on this distinction within hospital 

bed supply, it is an example of illustrating that numerous factors are likely to affect covid mortality. 

Furthermore, Moreira (2020) analyses the supply of ventilators to assess regional covid mortality 

variations in Brazilian provinces. Both papers show that the starting point of analysis, including the 

supply-side of healthcare services, is to assess how the relevant supply dimension should be 

categorized or defined. 

 

Thirdly, it proved to be valuable to include both medical and socioeconomic mortality covariates. 

Although medical mortality covariates are not properly controlled for in this paper, excluding 

socioeconomic mortality covariates reduces the explanatory power of the supply-side model and 

the combination of the two is therefore highly relevant. To discover the true empirical model of 

regional covid mortality thus requires an interdisciplinary focus, combining both medical and socio-

economic knowledge. Since county-level data on the prevalence of comorbidities is scarce, such 

analysis may require different methods or data collection. 
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Fourthly, the academic debate on the significance of intensive care supply (Malki et al (2020); 

Moreira (2020); Bravata et al (2021); Knittel & Ozaltun (2020); Stojkoski et al (2020)) for covid 

mortality is due to not accounting for the different dimensions of healthcare services. This debate 

does not occur in papers that assess the total number of hospital beds as the explanatory variable. 

The main takeaway of the supply-side model answers this contradiction to some extent. Regional 

mortality is expected to decrease if a county is successful in reallocating its healthcare capacity to 

meet short term covid demand. As healthcare capacity is inflexible, this reallocation mechanism of 

supply does have a theoretical basis. On the other hand, it must be noted that the hospital bed 

coefficients are relatively small in the model: one extra intensive care bed at the expense of a regular 

hospital bed does not decrease covid mortality significantly. Therefore, this supply-side mechanism 

both explains why there is an academic debate on the significance and the expected sign of intensive 

care units.  

 

Healthcare policymakers should therefore critically assess the definition of healthcare capacity 

when preparing or managing a surge in short-term healthcare demand. Treatment of infected covid 

patients requires multiple dimensions of healthcare services: the type of hospital beds, ventilators, 

masks, medical personnel, and funds are the most apparent dimensions. Ultimately, healthcare 

supply is inflexible in the short term, so expanding healthcare capacity is unlikely to be a direct 

solution since healthcare capacity is reallocated to meet short-term demand. And this pragmatic 

solution of reallocating is associated to be mortality decreasing, implying that prioritizing care is 

effective in the event of a pandemic. Nevertheless, it also threatens a reduction of long-term 

healthcare capacity as regular care is faced with backstops and postponements. A policymaker 

should therefore identify which link of the healthcare supply chain is under the most pressure and 

reallocate capacity towards this input factor. A long-term solution could therefore be to 

accommodate swift reallocation (e.g., by emergency facilities or training of personnel) of healthcare 

input factors to handle surges in short-term demand. 

 

The methodology and findings of this paper contain several limitations. Firstly, the supply-side 

variables are time-invariant. This weakens the internal validity of the empirical model and could be 

improved if this type of variation were accounted for. Future research may be able to exploit both 

time variation in hospital bed supply and covid mortality. Secondly, the prevalence of the relevant 

comorbidities within counties is not adequately captured due to data unavailability, and this yields 

an omitted variable bias affecting elements of the model. Possible improvements would be to 

include the prevalence rate of hypertension, chronic diseases, cardiac disease, and cancer. Thirdly, 

the model is not able to explain regional variations of deaths when adjusting the dependent variable 

to the case-fatality ratio or daily deaths. This is a threat to the external validity, as the reported 

coefficients may only be applicable in the American-county setting analysing total deaths. Fourthly, 

including the number of ventilators available at the hospital level would improve the model, as the 

average use is included in the model as a control variable. This control variable is only partially able 

to exploit the time-variation of the supply of ventilators. Finally, this research does not shed light 

on the costs and benefits of reallocating healthcare capacity. An evaluation of the optimal 

healthcare capacity during a pandemic requires to adequately assess the direct prevention of deaths 

and the indirect health outcomes due to a backlog of normal care as the benefits to it. The benefit 

of reallocation of healthcare can be derived from the empirical model, yet it lacks a cost estimation 
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to assess to which extent it is beneficial to reallocate healthcare capacity to the treatment of infected 

patients (e.g., limitations to transferring medical personnel).   

 

To conclude, several supply-side factors and their association with covid mortality are analysed by 

exploiting regional variation at the county level. Additionally, medical and socioeconomic mortality 

covariates have been included in a Fixed-Effect model. As the American healthcare and pandemic 

setting is unique, further analysis would be needed to decipher how several socioeconomic 

mortality covariates have affected the course of the pandemic. The pandora’s box of these type of 

relationships has just been opened by academics: one may expect to read future literature on how 

the socioeconomic status and private health insurance of an American is not only highly relevant 

for the citizen’s quality of life, but also in the event of a global pandemic.    
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Appendix 
 
 

Table A1: State-by-state cases, deaths, vaccinations, and CFR.  

    Cases Deaths  CFR 

% 

Vaccinations  

per hundred 

 Alabama 511087 10436 2 19.6 

 Arizona 835765 16733 2 24.2 

 Arkansas 325349 5533 1.7 21.7 

 California 3640704 57469 1.6 24.2 

 Colorado 452174 6148 1.4 23.9 

 Connecticut 295648 7823 2.6 29.0 

 Delaware 91741 1526 1.7 24.5 

 Florida 2000840 32712 1.6 23.1 

 Georgia 1015421 17954 1.8 18.1 

 Hawaii 28762 450 1.6 26.7 

 Idaho 177501 1944 1.1 21.4 

 Illinois 1223884 23070 1.9 24.8 

 Indiana 680420 12926 1.9 21.4 

 Iowa 344644 5675 1.6 25.8 

 Kansas 302223 3917 1.3 24.5 

 Kentucky 423989 5777 1.4 26.1 

 Louisiana 437872 9953 2.3 22.3 

 Maine 48292 728 1.5 27.8 

 Maryland 399200 8114 2 24.5 

 Massachusetts 576651 16822 2.9 28.0 

 Michigan 690929 16885 2.4 23.4 

 Minnesota 503789 6777 1.3 26.1 

 Mississippi 302677 6955 2.3 21.4 

 Missouri 530160 8167 1.5 21.8 

 Montana 103042 1415 1.4 25.8 

 Nebraska 206685 2243 1.1 24.9 

 Nevada 300972 5171 1.7 23.0 

 New Hampshire 79242 1212 1.5 27.1 

 New Jersey 861394 24134 2.8 27.4 

 New Mexico 165808 3481 2.1 32.3 

 New York 1779291 48916 2.7 24.9 

 North Carolina 900319 11848 1.3 24.2 

 North Dakota 101602 1461 1.4 28.3 

 Ohio 998819 18339 1.8 23.3 

 Oklahoma 432781 4788 1.1 26.5 

 Oregon 161342 2373 1.5 23.2 

 Pennsylvania 989336 24841 2.5 24.4 

 Rhode Island 120584 2560 2.1 28.3 

 South Carolina 540390 8977 1.7 22.0 

 South Dakota 113643 1873 1.6 29.6 

 Tennessee 775509 11487 1.5 20.4 

 Texas 2752597 47462 1.7 21.4 

 Utah 379249 2047 .5 20.3 

 Vermont 17547 219 1.2 27.6 

 Virginia 603748 10106 1.7 24.9 

 Washington 357376 5224 1.5 24.4 

 West Virginia 137478 2600 1.9 26.1 

 Wisconsin 629167 7241 1.2 25.6 

 Wyoming 55581 693 1.2 23.2 

Total / Average 29.403.224 535.205 2,0 23,7 
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Table A2: Descriptive statistics on healthcare supply and quality  

    Mean  Std. 

Dev. 

 min  max  N 

 Hospital beds 303.3 1057.9 0 23854 3104 

 Staffed beds 258.4 926.5 0 22423 3104 

 ICU beds 29.1 104.4 0 2262 3104 

 Hospitals 2.1 4.7 0 106 3104 

 Average Beds utilized 29 22.3 0 100 3104 

 Patient per physician 51.6 35.6 0 514.4 3104 

 Patient per other primary care worker 83.8 61.9 0 1557 3104 

 Average Ventilators used 1.9 2.4 0 33 3104 

 Healthcare spending per capita 7939.1 856.8 5982 10559 2753 

 Emergency Services Hospitals % 91.8 17.3 0 100 2753 

 Hospital rating (1-5) 3.3 .8 1 5 2753 

 Efficiency of care rating (1-5) 2.8 .7 1 5 2753 

 Mortality rate rating (1-5) 2.9 .6 1 5 2753 

 Patient's experience rating (1-5 3.3 1.3 1 5 2753 

 Readmission rate rating (1-5) 3.3 1.3 1 5 2753 

 Safety of care rating (1-5) 3.4 1.3 1 5 2753 

 Timing of care rating (1-5) 3.6 1.2 1 5 2753 

 

Table A3: Descriptive statistics of demographic and community variables 

    Mean  Std. Dev.  min  max  N 

 <18 year-old % 22.1 3.4 7.1 42 3104 

 American Indian % 2 6.5 0 85.7 3104 

 Asian % 1.5 2.7 0 43 3104 

 Black % 9 14.3 0 85.4 3104 

 Female % 49.9 2.2 26.8 56.9 3104 

 Hispanic %   9.7 13.8 .6 96.4 3104 

 Mean C 17.4 3.9 0 30.8 3104 

 Native Hawaiian % .1 .4 0 13 3104 

 PM2.5 (Pollution) 52.7 36.4 3 99 2812 

 Population density 224 1019.6 .1 37510.5 3104 

 Rural community % 58.6 31.4 0 100 3104 

 Total Population 26668.9 94402.4 22 2997389 3104 

 White % 76.4 19.8 2.7 97.9 3104 

 

Table A4: Descriptive statistics of health variables  

    Mean  Std. 

Dev. 

 min  max  N 

 Access to exercise % 62.5 23.2 0 100 3104 

 Average mentally unhealthy days 4.2 .6 2.5 6.3 3104 

 Average physically unhealthy day 4 .7 2.4 6.6 3104 

 Diabetes % 12.1 4.1 1.8 34.1 3104 

 Excessive drinking % 17.5 3.1 7.8 28.6 3104 

 Fair or poor health % 17.9 4.7 8.1 41 3104 

 Low Birthweight % 8.2 2 2.9 24.4 3007 

 Median age 41.3 5.4 21.7 67 3104 

 Obesity % 32.9 5.4 12.4 57.7 3104 

 Physically inactive % 27.4 5.7 9.5 49.9 3104 

 Smokers % 17.4 3.5 5.9 41.5 3104 
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Table A5: Descriptive statistics of SES and political preference  

    Mean  Std. 

Dev. 

 min  max  N 

 80-20 percentile Income ratio 4.1 1.4 0 8.8 3102 

 Limited Access to Healthcare % 8.6 8.2 0 71.8 3085 

 Median HH income 52670.4 13811.4 25385 140382 3104 

 Below poverty line % 16.4 6.5 1.8 48.7 3104 

 Unemployment % 4 1.4 .7 18.3 3104 

 Uninsured % 11.4 5.1 2.3 33.7 3104 

 Some college degree % 30.8 5.2 5.2 60.6 3104 

 Bachelor’s degree % 21.9 9.5 0 77.6 3104 

 Lower than HS diploma % 13.1 6.3 1.1 73.6 3104 

 HS diploma % 34.2 7.2 7.3 57.4 3104 

 Republican County 2016 % 84.5 36.2 0 100 3104 

 Republican County 2020 % 82.9 37.7 0 100 3104 

 
 
Table A6: Correlations of supply and COVID-19 deaths  

  Variables   (1)   (2)   (3)   (4)   (5)   (6)   (7)   (8)   (9) 

 (1) Total deaths 1.000 

 (2) Hospitals 0.560 1.000 

 (3) Hospital beds 0.659 0.947 1.000 

 (4) Staffed beds  0.655 0.951 0.994 1.000 

 (5) ICU beds 0.595 0.942 0.975 0.976 1.000 

 (6) Patient per physician 0.072 0.221 0.231 0.227 0.224 1.000 

 (7) Average Ventilators used 0.174 0.215 0.307 0.303 0.296 0.330 1.000 

 (8) Average Beds utilized 0.116 0.189 0.216 0.213 0.201 0.264 0.451 1.000 

 (9) Healthcare expenditures per capita 0.070 0.014 0.037 0.037 0.018 0.170 0.036 0.055 1.000 
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Table A7: Supply model including socioeconomic mortality covariates - Demographics. 

 (1) (2) 
 FE FE 

Hospital beds 0.224*** 0.125*** 
 (0.002) (0.001) 
Staffed beds 0.455*** -0.045*** 
 (0.002) (0.001) 
ICU beds -2.622*** -0.223*** 
 (0.009) (0.005) 
Hospitals -22.131*** -11.922*** 
 (0.161) (0.091) 
Average Beds utilized 0.477*** 0.111*** 
 (0.013) (0.007) 
Patient per physician -0.267*** 0.249*** 
 (0.009) (0.005) 
Patient per other primary care worker -0.570*** -0.196*** 
 (0.004) (0.002) 
Average Ventilators used -4.215*** 0.813*** 
 (0.122) (0.065) 
Cases t-14 0.019*** 0.015*** 
 (0.000) (0.000) 
Fully vaccinated per 100 t-14 -3.141*** 0.138** 
 (0.124) (0.068) 
Stringency Index t-14 0.403*** -0.045*** 
 (0.020) (0.011) 
American Indian % 7.593*** 9.290*** 
 (0.309) (0.179) 
Asian % -5.018*** 7.418*** 
 (0.350) (0.210) 
Black % 3.242*** 8.113*** 
 (0.310) (0.178) 
Female % -4.300*** 2.061*** 
 (0.130) (0.082) 
Hispanic % 2.395*** 7.135*** 
 (0.299) (0.172) 
<18 year % 5.591*** -1.468*** 
 (0.113) (0.077) 
Native Hawaiian % 8.513*** -18.128*** 
 (1.310) (0.789) 
White % 7.506*** 7.529*** 
 (0.307) (0.177) 
Rural community % 0.089*** -0.292*** 
 (0.013) (0.008) 
Total Population -0.002*** 0.001*** 
 (0.000) (0.000) 
Population density 0.167*** 0.033*** 
 (0.000) (0.000) 
Constant 343.547*** -737.749*** 
 (33.049) (19.125) 
   

Observations 1,025,759 827,329 
Number of states 49 42 
Adjusted R-squared 0.850 0.838 
Medical mortality covariates Yes Yes 
All socioeconomic mortality covariates No Yes 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table A8: Supply model including socioeconomic mortality covariates - Socioeconomic Status & Education 

 (1) (2) 

 FE FE 

Hospital beds 0.615*** 0.124*** 

 (0.002) (0.001) 

Staffed beds 0.166*** -0.045*** 

 (0.003) (0.001) 

ICU beds -3.313*** -0.234*** 

 (0.012) (0.005) 

Hospitals -70.331*** -11.441*** 

 (0.201) (0.084) 

Average Beds utilized 0.891*** 0.148*** 

 (0.017) (0.006) 

Patient per physician 0.039*** 0.229*** 

 (0.012) (0.005) 

Patient per other primary care worker -0.355*** -0.183*** 

 (0.006) (0.002) 

Average Ventilators used -10.228*** 1.019*** 

 (0.161) (0.060) 

Cases t-14 0.019*** 0.015*** 

 (0.000) (0.000) 

Fully vaccinated per 100 t-14 -2.757*** 0.156** 

 (0.166) (0.061) 

Stringency Index t-14 0.413*** -0.049*** 

 (0.027) (0.010) 

80-20 percentile Income ratio 1.725*** 0.779*** 

 (0.207) (0.077) 

Limited Access to Health % -1.089*** -0.044*** 

 (0.045) (0.017) 

Median HH Income 0.000*** 0.001*** 

 (0.000) (0.000) 

Below poverty line % 0.717*** 0.124** 

 (0.118) (0.049) 

Unemployment rate % -0.207 -1.415*** 

 (0.329) (0.137) 

Uninsured % -0.254* 1.377*** 

 (0.139) (0.063) 

Majority is secondary level schooled (Base: primary schooled) -31.456*** -27.260*** 

 (3.070) (1.184) 

Majority is tertiary level schooled (Base: primary schooled) -39.066*** -27.067*** 

 (3.096) (1.213) 

Constant -78.115*** -712.631*** 

 (12.976) (17.333) 

   

Observations 1,019,050 919,310 

Number of states 49 42 

Adjusted R-squared 0.733 0.837 

Medical mortality covariates Yes Yes 

All socioeconomic mortality covariates No Yes 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table A9: Supply model including socioeconomic mortality covariates - Community. 

 (1) (2) 
 FE FE 

Hospital beds 0.134*** 0.120*** 
 (0.001) (0.001) 
Staffed beds -0.019*** -0.042*** 
 (0.001) (0.001) 
ICU beds -0.125*** -0.241*** 
 (0.005) (0.005) 
Hospitals -10.879*** -11.074*** 
 (0.084) (0.084) 
Average Beds utilized 0.233*** 0.172*** 
 (0.006) (0.006) 
Patient per physician 0.233*** 0.212*** 
 (0.005) (0.005) 
Patient per other primary care worker -0.229*** -0.170*** 
 (0.002) (0.002) 
Average Ventilators used 1.571*** 1.202*** 
 (0.060) (0.059) 
Cases t-14 0.016*** 0.015*** 
 (0.000) (0.000) 
Fully vaccinated per 100 t-14 -0.157** 0.145** 
 (0.062) (0.061) 
Stringency Index t-14 -0.040*** -0.048*** 
 (0.010) (0.010) 
Drive alone to work % -1.092*** 0.106*** 
 (0.025) (0.028) 
Long commute drives alone % 0.534*** 0.037*** 
 (0.012) (0.013) 
No own vehicle % 3.436*** 1.863*** 
 (0.057) (0.062) 
Average traffic volume 0.101*** 0.069*** 
 (0.001) (0.001) 
Difference R-D (2016) -1.335*** -2.258*** 
 (0.030) (0.032) 
Difference R-D (2020) 1.678*** 2.910*** 
 (0.029) (0.033) 
PM2.5 (Pollution) 0.010*** 0.055*** 
 (0.003) (0.003) 
Mean °C -0.469*** -0.656*** 
 (0.073) (0.073) 
Homeowners % 0.040 -0.631*** 
 (0.029) (0.030) 
Multi-unit housing % -4.027*** -6.164*** 
 (0.041) (0.044) 
Severe housing costs % 0.427*** 2.847*** 
 (0.089) (0.102) 
Housing problem % 2.172*** 0.704*** 
 (0.084) (0.091) 
Constant 237.265*** -857.279*** 
 (5.037) (17.694) 
   

Observations 925,672 919,310 
Number of states 42 42 
Adjusted R-squared 0.831 0.842 
Medical mortality covariates Yes Yes 
All socioeconomic mortality covariates No Yes 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table A10: Different type of model specifications: fixed-effect, quality & supply controls and standardized 

coefficient.  

 (1) (2) (3) (4) 

 FE FE Beta No time 

     

Hospital beds 0.120*** 0.122*** 0.400 -0.674 

 (0.001) (0.001)  (0.473) 

Staffed beds -0.042*** -0.043*** -0.060 1.403** 

 (0.001) (0.001)  (0.645) 

ICU beds -0.241*** -0.229*** -0.153 -10.191*** 

 (0.005) (0.005)  (2.952) 

Hospitals -11.074*** -11.469*** -0.152 63.154* 

 (0.084) (0.089)  (35.511) 

Average Beds utilized 0.172*** 0.144*** 0.019 -0.530 

 (0.006) (0.007)  (2.651) 

Patient per physician 0.212*** 0.238*** 0.025 -8.569*** 

 (0.005) (0.005)  (1.896) 

Patient per other primary care worker -0.170*** -0.184*** -0.051 2.343*** 

 (0.002) (0.002)  (0.873) 

Average Ventilators used 1.202*** 0.943*** 0.017 -20.757 

 (0.059) (0.064)  (28.152) 

Healthcare spending per capita   0.102 2.512*** 

    (0.134) 

Total cases    0.019*** 

    (0.000) 

Fully vaccinated per 100    -358.707*** 

    (29.935) 

Stringency Index    20.343** 

    (8.908) 

Cases t-14 0.015*** 0.015*** 0.683  

 (0.000) (0.000)   

Fully vaccinated t-14 0.145** 0.134** -0.002  

 (0.061) (0.067)   

Stringency Index t-14 -0.048*** -0.045*** -0.015  

 (0.010) (0.011)   

Constant -857.281*** -895.787*** . 2,745.930 

 (17.694) (19.586)  (6,054.723) 

     

Observations 919,309 827,329 919,309 2,700 

R-squared 0.842 0.843 0.844 0.971 

Number of states 42 42 42 42 

Medical mortality covariates Yes Yes Yes Yes 

All socioeconomic mortality covariates Yes Yes Yes Yes 

Quality and Supply control variables No Yes No No 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 



49 
 

Table A11: Different type of variable specifications 

 (1) (2) (3) (4) 

 No lags CFR Daily change % ICU 

Hospital beds 0.118*** 0.000*** 0.000***  

 (0.001) (0.000) (0.000)  

Staffed beds -0.045*** -0.000*** -0.000  

 (0.001) (0.000) (0.000)  

ICU beds -0.216*** -0.001*** -0.000***  

 (0.005) (0.000) (0.000)  

ICU % Total Beds    -0.056*** 

    (0.019) 

Hospitals -11.058*** -0.036*** -0.001** -5.004*** 

 (0.083) (0.003) (0.001) (0.078) 

Average Beds utilized 0.170*** 0.002*** -0.000 0.096*** 

 (0.006) (0.000) (0.000) (0.008) 

Patient per physician 0.208*** 0.002*** 0.000 0.298*** 

 (0.005) (0.000) (0.000) (0.006) 

Patient per other primary care worker -0.163*** -0.001*** -0.000* -0.155*** 

 (0.002) (0.000) (0.000) (0.003) 

Average Ventilators used 1.040*** 0.001 0.002*** 2.374*** 

 (0.059) (0.002) (0.000) (0.068) 

Cases t-14    0.015*** 

    (0.000) 

Fully vaccinated per 100 t-14    0.074 

    (0.076) 

Stringency Index t-14    -0.050*** 

    (0.012) 

Constant -821.854*** -5.197*** -0.180 -968.758*** 

 (17.508) (0.659) (0.119) (21.983) 

     

Observations 957,109 957,109 916,609 739,392 

Number of states 42 42 42 42 

Adjusted R-squared 0.833 0.020 0.001 0.838 

Medical mortality covariates Yes Yes Yes Yes 

All socioeconomic mortality covariates Yes Yes Yes Yes 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 


