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This research shows that traffic congestion prediction systems can be highly accurate, even 

without the use of traffic flow data. Out of a comparison between multiple machine 

learning techniques, an XGBoost model is found to predict the occurrence of traffic 

congestion most accurately with an accuracy on unseen test data of 90.39%. The ratio of 

highway kilometres to the number of inhabitants of a region and the gross regional product 

per capita are found to be the most important predictors of traffic congestion. Other 

important predictors are road accidents and commuter obligations.  
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1. Introduction 

Road transport has been an omnipresent part of society for centuries. Over time, the number of 

passengers and goods being transported by road has increased exponentially (Barker & Gerhold, 

1993). Currently, road transport forms an essential part of the contemporary economy: in 2018, 

more than 70,000 kilometres of highway extended over Europe and approximately 173,970 

million vehicle-kilometres have been driven over these roads for freight transport alone 

(European Commission, 2020). Despite the imminent advantages of road transport, some 

negative externalities arise from this type of transport as well. An oversupply of vehicles on a 

certain road section inherently results in traffic congestion. The societal costs of traffic 

congestion are immense. The direct societal costs of traffic congestion mainly consist of longer 

travel times, travel time unreliability and deviation behaviour. In 2018, the costs related to these 

factors in the Netherlands were 1.2 billion, 0.7 billion and 1.4 billion Euros, respectively (Ministry 

of Infrastructure and Water Management, 2019). Additionally, traffic congestion also results in 

indirect costs. For example, people arrive late at their work, which lowers their overall 

productivity. Indirect traffic congestion costs were estimated to be between 0 and 1.0 billion 

Euros in 2018 in the Netherlands (Ministry of Infrastructure and Water Management, 2019). In 

total, societal costs related to traffic congestion are expected to be between 3.3 and 4.3 billion 

Euros in the Netherlands in 2018, which equals approximately 0.5% of the Dutch GDP. 

Throughout 2019, traffic congestion levels have reached record heights (Directorate-General for 

Public Works and Water Management (Rijkswaterstaat), 2020). Although exact numbers are not 

available yet, higher congestion levels are likely to result in even higher societal costs. The trend 

of growing congestion levels should be reversed to avoid continuous increases in societal costs 

related to traffic congestion.  

Various initiatives have been proposed to mitigate the vast societal costs of traffic congestion. 

Simply constructing more roads is often not considered to be the proper solution; this policy is 

hard to execute for political, economic and environmental reasons and is said to even result in 

more congestion due to an increased demand for vehicle travel (Strickland & Berman, 1995). 

Therefore, congestion mitigation approaches have become more aimed at travel demand 

management (TDM) (Kitamura, Fujii, & Pas, 1997). A mixture of coercive and noncoercive TDM 

measures have proven to be the most efficient to reduce traffic congestion (Gärling & Schuitema, 

2007). Coercive measures are, for example, creating car-free zones or road pricing. Noncoercive 

TDM policies are more aimed at nudging travellers to change their usual behaviour, such as 

providing up-to-date traffic information or rewarding public transport use. Regarding traffic 
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information, a distinction can be made between en-route and pre-route traffic information. En-

route traffic information is provided while someone is already on its way, whereas pre-route 

information is provided before someone has started a trip. Multiple studies have shown that en-

route traffic information can incentivise car users to deviate from their originally planned route 

or to use a different transport mode (e.g., Abdel-Aty, Kitamura and Jovanis (1997), and Jou, Lam, 

Liu and Chen (2005)). Pre-route traffic information can create the same incentive, but it also 

offers the choice to postpone or advance a journey (Polydoropoulou, Ben-Akiva, & Kaysi, 1994). 

Both traffic information types have in common that the quality of the information is an 

important determinant of the compliance behaviour of commuters (Chen, Srinivasan, & 

Mahmassani, 1999). Travellers are less probable to deviate from their original route when the 

provided traffic information is perceived as inaccurate or unreliable. The combination of traffic 

information being an effective TDM measure and the impact of the quality of the information 

systems demonstrates the need for a highly accurate and reliable traffic information system that 

can provide both pre-route and en-route traffic information. 

Multiple companies or organisations already offer such information systems. In the Netherlands, 

the Royal Dutch Touring Club (ANWB) provides a daily forecast of traffic congestion levels 

during morning and evening rush hours. This forecast contains a country-level prediction of the 

traffic congestion severity and mentions a specific region in which traffic congestion is expected 

to be most severe. An example of such a forecast could be: traffic congestion severity is expected 

to be moderate during the morning rush hour with a high probability of traffic jams around 

Rotterdam1. The predictions are based upon historic traffic flow data on Dutch highways, 

weather forecast, planned road works and specific events. The data is not publicly available and 

performance levels of the predictive models are not reported. Although the traffic congestion 

forecast by the ANWB provides some insights into congestion levels on Dutch highways, the 

predictions are rather undetailed. The forecast only provides information about expected 

congestion levels on a country level and the forecast is only made for rush hour periods. A result 

of the lack of detail in the traffic forecast is that it does not allow road users to deviate from their 

original route, as it does not report traffic jam probabilities per road section. This research aims 

to improve the traffic forecast system in the Netherlands by providing a more detailed traffic 

flow forecast. A model is developed that predicts the probability of a traffic jam occurring for 

every hour of the day and every road section independently. The accuracy and reliability of this 

 
1 See https://www.anwb.nl/verkeer/nederland/verkeersverwachting for a real-life example of the ANWB 
traffic congestion forecast (in Dutch). 

https://www.anwb.nl/verkeer/nederland/verkeersverwachting
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model are crucial factors to consider, as these are found to strongly affect the compliance 

behaviour of road users to deviate to a less congested route.  

Existing literature on traffic information prediction systems mainly focuses on how congestion 

can be predicted by means of historic traffic flow data (e.g., Elfar, Talebpour and Mahmassani 

(2018), Min and Wynter (2011), and Zhang, Liu, Yang, Wei and Dong (2013)). The highest 

observed performance is found in research conducted by Elfar, Talebpour and Mahmassani 

(2018), with an accuracy of 93% and 96% of the congested observations being correctly labelled. 

This model predicts congestion by means of a logistic regression with detailed information about 

cars’ trajectories (e.g., location, speed, and acceleration) on a highway stretch of 0.6 kilometres 

in California as predictors. However, in a recent overview of machine learning applications in 

traffic congestion prediction Akhtar and Maridpour (2021) identify some problems that arise 

when using traffic flow data. This data type can be gathered in two manners: by using sensors 

that collect spatiotemporal traffic data, or by using a GPS that collects traffic data continuously. 

A major disadvantage of the first method is that these sensors are costly and fail relatively often. 

As such, the number of road networks that are fully equipped with traffic sensors remains 

relatively low. If this data type is used in research, it is most commonly data about one specific 

highway stretch in California, of which the research by Elfar, Talebpour and Mahmassani (2018) 

is an example. Although the ANWB uses historic traffic flow data measured by sensors on Dutch 

highways in their traffic forecast, the coverage of the Dutch road network by these sensors is 

sparse. The second data type that is frequently used predominantly suffers from inaccuracies in 

the GPS software. This could result in significant fluctuations in the GPS data. Moreover, 

tracking the position of vehicle users by GPS comes with some serious privacy issues that 

disallow the usage of such tracking systems on a large scale. Lastly, it is impossible to use the 

model that is built with data for one city to predict traffic congestion in other cities, due to the 

unique characteristics of the GPS coordinates. This data collection method is currently only used 

on a large scale in the city of Beijing, where all taxis have been equipped with tracking software. 

The shortcomings of both data collection methods limit the geographical scope of the studies 

investigating the possibilities to predict traffic congestion.  

Considering the disadvantages of using historic traffic flow data, this research tries to overcome 

these problems by avoiding the use of traffic flow data. Instead, the prediction of whether or not 

traffic congestion will arise on highways is solemnly based on external variables related to the 

supply and demand of traffic. Data about traffic congestion occurring on highways in the 

Netherlands between 2015 and early 2020 is gathered to construct a traffic congestion prediction 
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model. Sudden disruptions are incorporated in the model by determining so-called accident 

hotspots, which are road sections that have an increased probability of such disruptions. Models 

without historic traffic flow data can serve as complementary or even substitutionary models if 

their predictive performance is found to be comparable to the accuracy of models that do use 

historic traffic flow data. This results in the following research question: 

 

To what extent can traffic jam occurrences be predicted without using traffic flow data? 

 

The structure of the remainder of this research is as follows. Section 2 discusses the existing 

literature about traffic congestion prediction considered from a supply and demand perspective. 

The section is finalised by a conceptual framework covering the determinants of traffic 

congestion according to the existing literature. Then, section 3 presents the data that is used for 

this research, and section 4 explains the methods that are applied. Subsequently, section 5 

shortly presents the results that are obtained. Section 6 provides an intensive discussion about 

the results that are found and their implications. Lastly, section 7 contains a conclusion of this 

research including an answer to the aforementioned research question. 

2. Theoretical framework 

The forming of traffic congestion can be considered as a typical non-equilibrium between supply 

and demand (Sugiyama, et al., 2008). The gap between the supply and demand for a piece of 

road is a classic example of market failure caused by road space being a public good (Rothenberg, 

1970). As long as supply, the maximum capacity of a road section, is larger than demand, the 

number of vehicles willing to use a road section, traffic jams do not occur. The supply and 

demand of a road section can be visualised by means of a fundamental diagram of traffic flow, 

which is shown in Figure 1. Congestion levels on a road are generally measured in traffic flow 

and traffic density. Traffic flow is the number of vehicles that pass through a road section during 

a given time frame. Traffic density is the number of vehicles per kilometre on a road section. A 

low traffic flow in combination with a low traffic density indicates that traffic is flowing freely. 

However, as traffic flow starts to increase, traffic density will initially increase as well but traffic 

flow is still unimpeded. At the point that supply and demand are exactly equal, traffic flow is at 

its highest; the road section cannot handle more vehicles per hour. In this situation, road users 

already have to adjust their speed to the increased traffic density. If demand maintains 

increasing regardless, actual congestion starts to form. Traffic flow will decrease as vehicles are 

no longer able to achieve their original average speed, and traffic density keeps increasing. In 
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the unlikely case that the congestion has risen to such a severe level that not a single car is 

passing through the road section, traffic flow is equal to zero. 

 

 

 

Considering the imminent effect of supply and demand on congestion, these two factors are 

likely to play an important role in predicting the occurrence of a traffic jam. A problem that 

immediately arises, however, is that both supply and demand are hardly measurable on a large 

scale. Supply and demand data for every road section in a country on an hourly basis would be 

required to predict the occurrence of traffic congestion with enough detail. Therefore, the 

determinants of supply and demand will be reviewed and used to predict traffic congestion 

instead.  

2.1. Road capacity 

Supply can be defined as the maximum capacity of a road section. Changes in this supply can be 

divided into two types: long term and short term changes. Long term changes in road space 

supply are relatively seldom. Political, economic and environmental reasons have made the 

construction of new highways or new highway lanes less common (Strickland & Berman, 1995). 

Short term fluctuations in supply, however, are more frequently occurring. A short term change 

in supply means that the capacity of a road section is temporarily reduced, but that the road 

section’s capacity will return to its original level. The main causes of such short term changes 

are road accidents, weather conditions and roadworks (Snelder, Van Zuylen, & Immers, 2012).  

2.1.1. Constructing additional highway lanes 

Expanding the number of lanes on a highway is undoubtedly the most straightforward way to 

increase the capacity of a road section. Creating more lanes indisputably means that more 

vehicles can pass through. One might expect that this would result in less traffic congestion 

accordingly. Research conducted on the relationship between travel demand and road capacity 

has shown that this is not the case though. Multiple efforts to estimate the long-run elasticity 

Flow 

Flowmax 

Density 
Densityoptimal Densityjam 

Figure 1: Fundamental diagram of traffic flow 
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between the length of highway lanes and vehicle kilometres travelled (VKT) have resulted in a 

range between 0.7 and 1.03 (Duranton & Turner, 2011; Hansen & Huang, 1997; Noland, 2001). 

Considering the high value of this elasticity, traffic density seems to be only marginally affected 

in the long term by adding more lanes to existing highways. Given that the traffic density is 

unchanged by an increase in the length of highway lanes, constructing more highway lanes 

seemingly does not influence the chance of a traffic jam occurring.  

2.1.2. Road accidents 

The occurrence of road accidents often results in a short term reduction in road capacity, for 

example due to one or multiple highway lanes being blocked, or having to be closed temporarily. 

With demand being unaffected, congestion can possibly emerge out of a road accident. 

Approximately 12% to 15% of the traffic jams in the Netherlands is caused by road accidents 

(Marchesini & Weijermars, 2010). It is not easy, though, to predict the happening of a road 

accident. The foremost predictors of a road accident taking place are age, gender, time of the 

day, weather, and a driver’s physical condition (e.g. Åkerstedt and Kecklund (2001), and Park, 

Kim and Ha (2016)). How could one, for example, obtain future percentages of drivers’ gender 

at a certain road section? It is found, however, that so-called road accident hotspots exist (e.g., 

Anderson (2009), Cheng and Washington (2005), Dong, Huang, Lee, Gao and Abdel-Aty (2016), 

and Montella (2010)). These are road sections where traffic accidents occur more frequently 

compared to other road sections. This indicates that the location of an accident happening is 

not random but dependent on the local characteristics of the road. The existence of accident 

hotspots also suggests that the likelihood of an accident occurring can be predicted by the 

number of accidents that have happened in the past. In addition to the accident hotspots, the 

sleep deprivation caused by the spring transition into daylight saving time results in an increased 

car crash risk (Smith, 2016). Accidents are found to be more likely to occur the day after daylight 

saving time has started. 

2.1.3. Weather conditions 

Local weather conditions can have a severe short term impact on the capacity of a road section. 

A clear negative relationship between road capacity and rainfall exists: the capacity of a road 

decreases by 4% to 10% during light rain conditions and up to 30% during severe rainfall (Chung, 

Ohtani, Warita, Kuwahara, & Morita, 2006; Smith, Byrne, Copperman, Hennessy, & Goodall, 

2004). This is mainly a result of drivers adapting their speed to the weather conditions. Traffic 

flow is also negatively affected by snow, hail, poor visibility and high wind speeds (Kwon, Liping, 
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& Jiang, 2013). The effect of snow is particularly strong: road capacity decreases by 27% during 

snowfall (Agarwal, Maze, & Souleyrette, 2005). In the extreme scenario of a road blockage, 

capacity can even become zero. Eventually, the reduced road capacity that is caused by adverse 

weather conditions appears to result in a higher probability of traffic congestion occurring (Van 

Stralen, Calvert, & Molin, 2015). It is recognised, however, that an individual’s travel behaviour 

is influenced by weather conditions as well, meaning that the probability of traffic congestion 

occurring could also be affected by changes in highway travel demand2. 

2.1.4. Road works 

Although the general aim of road works is to enhance either safety or road capacity in the long 

term (Archondo-Callao, 2008), road works can temporarily lower the capacity of a road (Kerner, 

2009). Possible explanations for this effect are lane closures or a reduction in the maximum 

speed limit to below-average free-flow speed required to carry out the maintenance (Yousif, 

2002). The following reduction in road capacity makes traffic congestion more probable to arise. 

Approximately 4% of traffic jams in the Netherlands are caused by road works (Marchesini & 

Weijermars, 2010). A distinction can be made between planned and unplanned road works 

(Stopher & Stanley, 2014). Planned road works, such as road resurfacing, are announced 

beforehand and can be taken into account when predicting whether or not congestion will occur. 

Unplanned maintenance, on the other hand, is harder to incorporate in predictions. This is due 

to this type of road works resulting from unexpected events, such as the guard rail being 

damaged by a road accident or strong winds rupturing road information signs.  

2.2. Travel demand 

Travel demand can be defined as the number of people that want to travel from one location to 

another. A person’s desire to travel is based on a multitude of individual choices, such as trip 

purpose, frequency, time of the day, destination, and mode of travel (McFadden, 1974). As these 

choices can change on a day-to-day basis, fluctuations in travel demand are inevitable. Managing 

the travel demand of individuals is considered an important instrument against traffic 

congestion (Kitamura, Fujii, & Pas, 1997). The most important determinants of highway travel 

demand are user costs (Levinson & Gillen, 1998), weather conditions (Maze, Agarwal, & 

 
2 The effect of weather conditions on the demand side of traffic congestion is discussed in detail in Section 
2.2.2. 
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Burchett, 2006), commuter obligations (McKenzie & Rapino, 2011) and economic growth 

(Deming, 1975). 

2.2.1. User costs 

A general conception in economics is that the demand for a product is negatively related to its 

price. This holds true for travelling as well: car travel demand is negatively related to car user 

costs (Levinson & Gillen, 1998). People tend to lower their VKT by car as the price per kilometre 

rises. Examples of such costs are operating costs, maintenance costs, insurance costs, and 

licensing costs. It is found that especially fuel prices and toll costs have a profound impact on 

one’s highway travel demand (De Jong & Gunn, 2001). These costs are more visible than other 

costs, making car users more aware of price levels. Although parking costs, for example, share 

the same characteristics, this is less relevant for highway travel demand. Considering that toll 

costs do not apply in the Netherlands, the main user cost aspect is limited to fuel costs.  

Car user costs are not the only user costs that influence car travel demand, though. Changes in 

the user costs of substitutes of a car can affect car travel demand as well. Most notably, people 

tend to travel by car less frequently if public transport prices decrease, and vice versa (Redman, 

Friman, Gärling, & Hartig, 2013). Moreover, although not a typical monetary cost, the effort that 

is required to use a certain transport mode can be considered a user cost as well. It is found that 

people who live proximal to a public transport utility travel by public transport more often than 

people that live further away from public transport utilities (Badland, Garrett, & Schofield, 2010). 

In a similar manner, people tend to travel by car more frequently in areas with a high road 

density, as the road infrastructure provides more convenience than in regions with a lower road 

density (Tseng, et al., 2018).  

2.2.2. Weather conditions 

The effect of weather conditions on the capacity of highways has been discussed in an earlier 

paragraph. The impact of weather conditions is not limited to the supply-side of traffic 

congestion, though. For example, people tend to cancel leisure trips during rainy, snowy, or 

stormy conditions, resulting in less travel demand (Cools, Moons, Creemers, & Wets, 2010). 

Traffic volumes are found to be approximately 5% lower during rainfall, and 7% to 80% lower 

during snowstorms, dependent on its severity (Maze, Agarwal, & Burchett, 2006). The effect on 

highway travel demand is highly dependent on the type of adverse weather conditions. It is 

found that fewer people travel by public transport during extremely warm, extremely cold, or 
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rainy weather (Miao, Welch, & Sriraj, 2019). Under these circumstances, people prefer to travel 

by car, resulting in increased travel demand. Similarly, precipitation and fog result in people 

tending to travel by motorised vehicle instead of by bicycle or foot (Hranac, Sterzin, Krechmer, 

Rakha, & Farzaneh, 2006). 

2.2.3. Commuter obligations 

The obligatory journeys of people travelling to their work make up for a large part of travel 

demand, especially during weekdays (McKenzie & Rapino, 2011). Considering that most people 

start and stop working around the same time, a steep increase in travel demand can be seen 

during these moments. The peak rush hours in the Netherlands during weekdays are from 7 am 

to 9 am and from 4 pm to 6 pm (Oakil, Nijland, & Dijst, 2016). There are no peak rush hours 

during weekends and holidays since significantly fewer people have to travel to work (Ben-Elia 

& Ettema, 2011).  

The COVID-19 pandemic has substantially changed the commuting behaviour of employees 

(e.g., Brynjolfsson et al. (2020), and Shibayama, Sandholzer, Laa and Brezina (2021)). There is a 

clear negative relationship between more stringent COVID-19 measures and workplace visits 

(Hale, et al., 2021). People are urged to practise social distancing and to stay at home, which 

decreases travel demand (De Vos, 2020). In April 2020, approximately 50% of the Dutch 

employees solemnly worked from home (Felstead & Reuschke, 2020). Therefore, months in 

which the traffic flow in the Netherlands was severely distorted by the COVID-19 pandemic are 

excluded from the analyses in this research.  

2.2.4. Economic growth 

The final predictor of highway travel demand that is discussed is economic growth. Economic 

growth is strongly correlated to economic production and, subsequently, results in more 

transport by truck (Deming, 1975). As a result of this, economic growth is positively related to 

the number of truck journeys. This effect is found to be particularly strong in the surroundings 

of cities that are highly economically active (Sweet, 2011). There is no evidence found that the 

number of car journeys also increases as a result of economic growth.  
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2.3. Conceptual framework 

A conceptual framework in Figure 2 summarises the findings in the existing literature. Four 

factors affect the supply of road space: constructing more highway kilometres, road accidents, 

weather conditions, and road works. Out of these four, only the construction of more highway 

kilometres is found to be unrelated to traffic congestion occurring. This is due to more highway 

kilometres being almost perfectly correlated to more VKT. Road accidents and road works both 

diminish the capacity of a road section and, thus, positively relate to the probability of traffic 

jams arising. Factors influencing the happening of a road accident are a driver’s age, gender, and 

physical condition, weather conditions, accident hotspots, and daylight saving time. 

Considering these predictors, only the latter two are suitable for predicting the probability of an 

accident taking place in the future. The effect of weather conditions on traffic congestion is 

dependent on the type of weather conditions. In general, it can be stated that traffic congestion 

is more likely to occur during cold and wet weather.  

Four factors influence highway travel demand: user costs, weather conditions, commuter 

obligations, and economic growth. These four are all related to the probability of traffic 

congestion occurring as well. Higher car user costs per kilometre result in lower highway travel 

demand and, in this manner, a lower probability of traffic congestion arising. The main user 

costs in the Netherlands are fuel costs. Since user costs of substitutes of the car can also affect 

the highway travel demand, public transport user costs should also be taken into consideration. 

Additionally, the effort that has to be undertaken to use a transport mode can be seen as a non-

monetary user cost. Therefore, the availability of both highways as public transport influences 

demand. The effect of weather conditions on highway travel demand is slightly ambiguous and 

highly dependent on the type of weather. For example, leisure trips are usually postponed or 

cancelled during wet weather conditions and people are more inclined to use motorised vehicles 

for their journeys during extreme temperatures or when it is raining. It appears, however, that 

the former effect is stronger, meaning that highway travel demand is lower during cold or wet 

weather conditions. Commuter obligations have a particularly strong effect on the probability 

of traffic congestion occurring. As people usually start and stop working at approximately the 

same time, sharp increases in highway travel demand are found during peak commuting hours. 

Factors influencing the number of commuters travelling to work are the time of the day, the day 

of the week, public holidays, and the COVID-19 pandemic. Lastly, economic growth is found to 

increase both highway travel demand and the probability of traffic congestion arising as a result 
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of an increased level of transport by truck. There is no evidence suggesting a relationship 

between economic growth and increased levels of transport by car.  

 

 

 

 

 

 

 

 

 

 

 

 

3. Data 

The data that is used for this research is gathered from multiple sources. This section discusses 

which source the data originates from, and how the distinct data sources have been combined. 

In the end, some required data extrapolations are explained and descriptive statistics of the 

variables are provided. 

3.1. Dependent variable 

The primary data source is the Network Management Information System that is maintained by 

the Directorate-General for Public Works and Water Management (Rijkswaterstaat). A list 

containing all traffic jams on Dutch roads between January 1st 2015 and February 29th 2020 has 

been collected from this source. Traffic jams are added to this list as soon as they are reported 

by the Dutch Traffic Control Centre (VCNL). VCNL manually labels traffic jams arising on Dutch 

highways as part of their traffic information service. This specific period is chosen as traffic jam 

data was not administered before 2015 and various COVID-19 measures distorted the traffic 

behaviour in the Netherlands from March 2020 onwards. In total, 747,665 traffic jams were 

reported on Dutch highways within this period.  
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Figure 2: Conceptual framework 
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A data set is created dividing all days between January 1st 2015 and February 29th 2020 into 24 

one-hour periods, and all highways in the Netherlands into sections of 20 kilometres. Only the 

last road section of a highway is shorter; the length of this section is the remaining road length 

when it is no longer possible to create a new road section of 20 kilometres. Lanes travelling in 

opposite directions are considered separate road sections. This results in a data set of 13,850,784 

observations. A binary variable is created that states whether or not traffic congestion has 

occurred at any time or place within the specific time frame and road section of an observation. 

It is found that traffic congestion occurs for 3.164% of all observations. 

3.2. Independent variables 

Firstly, detailed daily weather data from the same period as the traffic jam data is assembled 

from the Royal Netherlands Meteorological Institute (KNMI), including data about wind speeds, 

temperatures, sunshine hours, visibility, overcast, precipitation and humidity. Considering that 

weather conditions can vary within a country, the data of weather stations in five different 

locations (i.e., Beek, De Bilt, De Kooy, Eelde, and Vlissingen) distributed over various regions in 

the Netherlands is gathered. To combine the weather conditions data with the existing traffic 

jam data set, it is assumed that the weather conditions for a road section are similar to the 

nearest weather station. The distance is measured from the middle of the section to the weather 

station as the crow flies.  

Secondly, data about road works on Dutch highways is gathered from the National Road Traffic 

Data Portal (NDW). All road works in the Netherlands for the period between January 2015 and 

February 2020 are assembled from this source. In total, 381,907 instances of road works are 

reported on highways within this period. The road works data only provides geographic 

coordinates of the road works’ locations instead of human-readable locations. Therefore, the 

coordinates of the road works’ locations are transformed into an actual address or location by 

reverse geocoding. This is accomplished by means of web scraping from Bing Maps through an 

application programming interface (API). Ultimately, a binary variable is created labelling 

whether or not road works were in operation based upon the gathered locations.  

Thirdly, data about user costs of both cars and public transport is collected from the Dutch 

Central Agency for Statistics (CBS). Three different car user costs measures are gathered: total 

user costs per kilometre, fuel costs, and road availability. When considering public transport 

user costs, only total user costs per kilometre and distance to public transport facilities are 
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collected. The total user costs per kilometre are measured monthly as a consumer price index 

with 2009 being the base year. Fuel costs are available daily for Euro 95 gasoline, diesel, and LPG 

and are measured in euro per litre. Road availability and distance to public transport facilities is 

measured on a provincial level. Road availability is calculated as the number of highway 

kilometres in a province per 100,000 inhabitants. The distance to public transport facilities is 

defined as the average distance in kilometres of all houses in a province to the nearest train 

station. Road sections are assigned the value of the province that the middle of the road section 

is in. 

Lastly, yearly data about the gross regional product (GRP) per province is retrieved from the 

Dutch Central Agency for Statistics (CBS) and data about holidays is collected from the 

Government of the Netherlands. Public and school holidays are accounted for independently. 

Public holidays include New Year’s Day, Easter, King’s Day, Liberation Day, Ascension Day, 

Pentecost, and Christmas. From the same source, the start date of daylight saving time has been 

gathered. 

3.3. Data extrapolations 

Data about some variables is not yet available for the most recent years. Total user costs data is 

only available until November 2018, and data about the GRP per capita until the end of 2019. 

Firstly, the remaining values of both car and public transport user costs are estimated by means 

of an autoregressive integrated moving average (ARIMA) model. This is a model type that 

predicts future values based upon its own values and forecast errors in the past. Based upon the 

autocorrelation function (ACF) and the partial autocorrelation function (PACF), the values of 

both car and public transport user costs are forecasted by an ARIMA(1,1,2) model. This means 

that one lagged forecast error and two lags of the predictor in combination with a first-order 

difference of the variable are used to forecast future values. The ACF, PACF, and actual and 

predicted values of the ARIMA model are shown in Appendix A. Secondly, data about GRP per 

capita for 2020 have been extrapolated based upon time and province-level fixed effects. As 

ARIMA does not incorporate fixed effects into its forecasting, a different prediction method is 

used for this variable. A single linear regression model with time as independent variable and 

province-level fixed effects is applied instead. The coefficients of this model are displayed in 

Appendix B. 
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3.4. Descriptive statistics 

Combining all variables results in a data set of 13,850,784 observations and 31 variables. 

Descriptive statistics of the continuous variables are shown in Table 1. Wind direction is the only 

categorical variable. The wind direction is west for 4,842,234 observations, south for 4,437,653 

observations, east for 2,422,502 observations and north for 2,148,395 observations. More 

thorough descriptive statistics about differences in mean and standard deviation according to 

whether or not congestion arises for an observation are included in Appendix C. 

Table 1: Descriptive statistics of continuous variables 

 Mean Std. dev. Min. Max. 

Road conditions     
Congestion (1 = congestion, 0 = no congestion) 0.032 0.174 0.000 1.000 
Road works (1 = road works, 0 = no road works) 0.285 0.442 0.000 1.000 

Weather conditions     

Daily mean windspeed (in m/s) 4.521 2.349 0.700 18.000 
Daily minimum hourly mean windspeed (in m/s) 2.332 1.889 0.000 16.000 
Daily maximum hourly mean windspeed (in m/s) 6.763 3.060 1.000 24.000 
Daily maximum wind gust (in m/s) 11.383 4.402 2.000 39.000 
Daily mean temperature (in degrees Celsius) 10.910 6.053 -7.800 30.900 
Daily minimum temperature (in degrees Celsius) 7.101 5.634 -9.700 23.200 
Daily maximum temperature (in degrees Celsius) 14.582 7.026 -5.400 39.600 
Daily sunshine duration (in hours) 5.152 4.238 0.000 15.700 
Daily precipitation duration (in hours) 1.706 2.842 0.000 23.500 
Daily precipitation (in mm) 2.161 4.371 0.000 49.700 
Daily maximum hourly precipitation (in mm) 0.841 1.756 0.000 47.700 
Daily minimum visibility (in km) 4.314 2.227 0.000 8.100 
Daily maximum visibility (in km) 7.559 0.809 0.100 8.300 
Daily average overcast (on a scale from 0 to 9) 5.920 2.184 0.000 8.000 
Daily average humidity (in %) 79.799 10.031 33.000 100.000 
Daily minimum humidity (in %) 63.850 15.025 16.000 99.000 
Daily maximum humidity (in %) 93.467 6.113 43.000 100.000 

User costs     
Public transport user costs (index with base year 2009) 121.240 1.471 118.800 122.800 
Car user costs (index with base year 2009) 118.373 2.778 112.300 123.400 
Gasoline price (in euro/litre) 1.574 0.080 1.368 1.743 
Diesel price (in euro/litre) 1.260 0.096 1.022 1.444 
LPG price (in euro/litre) 0.630 0.049 0.529 0.753 
Road availability (in highway kms per 100,000 inhabitants) 33.857 9.206 72.840 21.990 
Distance to public transport (in km) 5.392 2.443 3.500 17.300 

Extraordinary days     
School holiday (1 = school holiday, 0 = no school holiday) 0.304 0.460 0.000 1.000 
Public holiday (1 = public holiday, 0 = no public holiday) 0.023 0.151 0.000 1.000 
Daylight saving time start (1 = start, 0 = no start) 0.003 0.056 0.000 1.000 

Economic growth     

GRP per capita (in thousands of euros) 42.158 0.801 43.490 62.005 

Figure 3 shows the distribution of traffic congestion encounters over multiple time-related 

variables. As various COVID-19 measures have distorted the regular flow from March 2020 
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onwards, it should be noted that the upper left and lower left graphs are corrected for the 

absence of data about March until December 2020. As a result of the absence of these months, 

fewer observations with congestion would be encountered in 2020 and in the months from 

March until December. Therefore, the distribution of congestion over years is divided by the 

number of months for which data was available per year, and the distribution of congestion over 

months is divided by the number of years for which data was available per month. Figure 3 

illustrates that the occurrence of congestion is highly dependent on time-related factors. The 

monthly average of congestion encounters per year was increasing until 2020. In the first months 

of 2020, the relative number of traffic jams per month was slightly lower than in 2019. Also, a 

substantially higher number of traffic jams is reported during weekdays than during weekends. 

Throughout the week, it is noticeable that less congestion has been reported on Wednesdays 

and Fridays. When looking at the months, there are relatively fewer congestion encounters 

during July and August. The opposite effect is shown for October and November, however, 

where a peak in congestion occurrences is visible. The distribution of congestion over the time 

of the day illustrates two clear peaks during which congestion arises more often. These are the 

typical rush hour peaks between 7 to 9 am and 4 to 6 pm. Reports of congestion during the night 

are seldom. 

Figure 3: Distribution of traffic congestion encounters over time-related variables  

(a) (b) 

(c) (d) 
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3.5. Balancing 

As previously mentioned, traffic congestion occurs for only 3.164% of the observations in the 

data set. This entails that the data set is highly unbalanced: the number of positive encounters 

is much lower than the number of negative encounters. A balanced data set would indicate that 

the proportion of congestion and free traffic flow is exactly equal. Balancing an unbalanced data 

set tends to result in improved predictive performance (Batista, Prati, & Monard, 2004). The 

original data set is balanced by randomly selecting a subset from the observations with negative 

encounters. The size of the subset is equal to the number of positive encounters in all 

observations. By combining all observations with congestion arising and the subset of the 

observations without congestion, a perfectly balanced data set consisting of 876,416 observations 

is created. A comparison of the descriptive statistics of the unbalanced and balanced data set is 

represented in Appendix C. It is found that the descriptive statistics of the balanced data set are 

similar to those of the unbalanced data set. 

4. Methods 

The aim of this research is to train a model that predicts whether or not traffic congestion will 

occur as accurately as possible. A common method to model a binary dependent variable is a 

logistic regression. This model type fits the coefficients of the independent variables to the data 

based upon the logistic function. Although this method is suitable for finding relationships 

between variables, it is less useful when the goal is to train a model with high predictive 

performance. This is due to the logistic regression being a high bias model: there is a relatively 

large difference between the average prediction of the model and the value that should be 

predicted. With the goal of training a high predictive performance model in mind, it is important 

to consider the bias-variance trade-off. This states that predictive models should balance bias 

and variance (e.g., Belkin, Hsu, Ma and Mandal (2019)). In this case, variance refers to the 

amount that the predicted values will change when provided with different training data. A 

combination of high bias and low variance results in underfitting: the model fails to capture all 

relationships in the data. On the other hand, a combination of low bias and high variance results 

in overfitting: the model represents the training data well but performs poorly on unseen or 

noisy data. The ideal predictive model is rich enough to express underlying structures in data 

sets but simple enough to avoid fitting spurious patterns. In this case, both bias and variance are 

low. The bias-variance trade-off is exemplified by Figure 4. Methods with higher levels of 

variance than the logistic regression are desired to achieve a balance between bias and variance. 



20 
 

Therefore, multiple machine learning techniques are used to predict the occurrence of traffic 

congestion.  

 

Figure 4: Examples of predicted values under possible combinations of bias and variance 

The no free lunch theorem (Wolpert, 1996) is highly applicable to machine learning algorithms: 

it is impossible to know beforehand which model performs best on the task-specific data. 

Therefore, the predictive performance of multiple models is compared to determine which type 

of model performs best. For this purpose, 10% of the balanced data set is randomly selected and 

taken apart to serve as test set. This data is completely unseen by any of the trained models and 

is only used to assess the eventual predictive performance of the models. The traffic congestion 

data is highly structured. For this reason, machine learning techniques that are capable of 

handling this data type are used. Firstly, an unregularised logistic regression is constructed to 

serve as a benchmark for the other models. Then, three other models are trained to evaluate 

their performance in comparison to the benchmark model. The first model is a lasso-regularised 

logistic regression. The main difference with the benchmark model is that regularisation is 

applied, which reduces the variance of a model. The second model is an extreme gradient 

boosting (XGBoost) model. Various comparisons have shown that XGBoost models obtain the 

highest accuracies when models are trained on structured data (e.g., Mangal and Kumar (2016), 

and Nielsen (2016)). The third model is a feedforward neural network. Neural networks have 

been used regularly to predict traffic congestion (e.g. Alarcon-Aquino and Barria (2006), 

Chakraborty et al. (2018), and Fouladgar, Parchami, Elmasri and Ghaderi (2017)). However, 

unstructured data has been used in all of these cases. This means that traffic congestion is being 

predicted based on the input of visual maps on which traffic congestion levels have been marked. 

Although neural networks are generally used to model unstructured data, it has achieved high 

prediction accuracies on structured data before (e.g., Abdelwahab and Abdel-Aty (2001), and 

Yang, Yeo and Kim (2003)).  
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To mitigate the risk of overfitting, ten-fold cross-validation is applied to optimise the models’ 

hyperparameters (Hastie, Tibshirani, & Friedman, 2001). Hyperparameters are parameters 

whose values are used to control the learning process (Goodfellow, Bengio, & Courville, 2016). 

Changing the hyperparameters of a model affects its predictive performance. Therefore, values 

of hyperparameters should be chosen in a manner that maximises a model’s performance. It is 

essential to evaluate the performance of a hyperparameter set on unseen data to prevent 

overfitting. The requirement of unseen data is why ten-fold cross-validation is used. Ten-fold 

cross-validation randomly divides the training data into ten equally sized folds. Then, ten 

separate models are trained and every fold is withheld from the model once. Thus, the model is 

trained on the remaining nine folds. The performance of this model is evaluated on the withheld 

fold. The error of the model on the withheld fold is referred to as the out-of-sample error. The 

hyperparameter combination that results in the lowest out-of-sample error is used for the final 

model. 

In the end, the accuracy, sensitivity, and specificity of the models on the test subset are used to 

assess the models’ predictive performance. The accuracy is equal to the correctly predicted 

observations as a percentage of the total number of observations. The sensitivity and specificity 

refer to the percentage of correctly predicted positive and negative encounters, respectively. It 

is essential to note that maximising accuracy may not be the solemn goal of the model (Parikh, 

Mathai, Parikh, Chandra Sekhar, & Thomas, 2008). A trade-off between sensitivity and 

specificity exists, which comes down to the question: do we prefer wrong predictions in negative 

or positive encounters? This can be exemplified by COVID-19 tests (Kumleben, et al., 2020). You 

want to make sure that every person infected by the Coronavirus receives a positive test result. 

Providing a positive test result to someone that is not infected is inconvenient, but the 

consequences are less severe than providing a negative test result to someone that is infected. 

Therefore, COVID-19 tests should aim at achieving a high sensitivity rather than a high 

specificity. However, without neglecting the importance of high sensitivity, overall accuracy 

should still adhere to a high standard. Otherwise, people might deem the tests unreliable if the 

accuracy drops too low. In the same manner, it can be argued that road users consider the 

sensitivity more important than the specificity. People dislike encountering a traffic jam when 

free traffic flow was predicted but might be less displeased about facing free traffic flow when 

congestion was predicted. The remainder of this section discusses the theoretical background of 

the various techniques. 
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4.1. Lasso-regularised logistic regression 

The lasso-regularised logistic regression is a relatively simple regression model to predict binary 

outcomes. The base of this model is an ordinary logistic regression. As the aim of the model is 

to predict traffic congestion as accurately as possible, all available variables and road, time, 

weekday, month, and year effects are included in the model. A common issue concerning 

unregularised regressions with large data sets is overfitting (Goodfellow, Bengio, & Courville, 

2016). To avoid overfitting, Tibshirani (1996) has proposed to add a least absolute shrinkage and 

selection operator (lasso) penalty term to regressions, which makes the regression coefficients 

shrink. As a result of the shrinkage of the coefficients, the model’s variance and the risk of 

overfitting reduce.  

The coefficients in a logistic regression are calculated by minimising its loss function: the logistic 

loss. In a lasso-regularised logistic regression, a penalty term is added to the logistic loss 

function. Equation (1) depicts the resulting loss function ℒ of a lasso-regularised logistic 

regression: 

 
ℒ(𝛽) = ∑ −𝑦𝑖

𝑛

𝑖=1

log (ℎ𝛽(𝑥𝑖)) + (1 − 𝑦𝑖) log (1 − ℎ𝛽(𝑥𝑖)) + 𝜆 ∑|𝛽𝑗|

𝑚

𝑗=1

 (1) 

In this equation, 𝛽 is the set of coefficients, 𝑛 is the number of observations, 𝑦𝑖 is the observed 

value for observation 𝑖, ℎ𝛽(𝑥𝑖) is the predicted value for observation 𝑖 and coefficients 𝛽, 𝜆 is the 

lasso penalty parameter, and 𝑚 is the number of variables. The last part of equation (1) contains 

the penalty term. It illustrates that the regression coefficients are shrunk by adding the sum of 

the absolute values of all beta coefficients to the loss function. To avoid prioritising one variable 

over another, all variables should be on the same scale. Therefore, the independent variables are 

standardised beforehand. Also, categorical variables have to be one-hot encoded. By one-hot 

encoding, a separate binary variable is created for all categories of a categorical variable. The 

severity of the lasso penalty is determined by the lasso penalty parameter 𝜆. The magnitudes of 

the coefficients are negatively related to 𝜆: the coefficients shrink more as 𝜆 becomes larger and 

vice versa. The coefficients tend to zero if 𝜆 tends to infinity, and the coefficients are similar to 

ordinary logistic regression coefficients if 𝜆 is exactly zero.  

A disadvantage of applying lasso regularisation to regressions is that the coefficients lose their 

interpretability. This is due to two reasons. Firstly, the regression coefficients do not represent 

the strength of a relationship anymore. Due to the penalty term shrinking the coefficients, the 

regression coefficient simply signifies a numerical parameter rather than an actual relationship. 
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This makes it impossible to make exact statements about causal relationships between variables. 

Secondly, it is fiercely debated how standard errors and significance levels of lasso-regularised 

regressions should be calculated and to what extent these values are meaningful (e.g., Goeman, 

Meijer and Chaturvedi (2016), Kyung, Gill, Ghosh and Casella (2010), and Reid, Tibshirani and 

Friedman (2016)). The calculation method that is considered most appropriate for lasso-

regularised regression still severely biases standard errors. Therefore, the original authors of the 

algorithm advise not to report standard errors and significance levels of predictors in lasso-

regularised regressions, as it can result in an erroneous or biased representation of reality (Reid, 

Tibshirani, & Friedman, 2016).  

An essential difference between an unregularised and lasso-regularised logistic regression is how 

the loss function as described in equation (1) is minimised. An unregularised logistic regression 

uses gradient descent to optimise its regression coefficients. The loss function is minimised by 

repeatedly altering the coefficients of the model in the opposite direction of the gradient of the 

loss function. This method cannot be applied to a lasso-regularised logistic regression, however, 

due to the absolute value of the regression coefficients in the penalty term. Absolute values are 

not differentiable, making it impossible to calculate the gradient of the loss function of a lasso-

regularised regression. Therefore, the loss function of a lasso-regularised regression is optimised 

by the cyclic coordinate descent method (Friedman, Hastie, & Tibshirani, 2010; Tseng, 2001). 

This approach successively minimises along coordinate directions to find the minimum of the 

loss function. In other words, the coordinate descent method updates one parameter at a time, 

whereas the gradient descent method tries to update all parameters at once. 

The eventual value of 𝜆 that will be used for this model is a hyperparameter. To find the optimal 

value of 𝜆, a separate model is trained through ten-fold cross-validation with all values of 𝜆 of 

10−𝑠 with 𝑠 between -10 and 10 by incremental steps of 0.25. The value that results in the highest 

out-of-sample cross-entropy is chosen as the optimal value of 𝜆. Cross-entropy is calculated as: 

 
𝐻 = − ∑ 𝑦𝑖

𝑛

𝑖=1

log(𝑦̂𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖) (2) 

In this equation, 𝑦𝑖 is the observed value and 𝑦̂𝑖 is the probability predicted by the model for 

observation 𝑖. 
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4.2. Extreme gradient boosting 

The second technique that is used to predict the probability of traffic congestion arising is 

extreme gradient boosting. The model is based on decision trees but incorporates various other 

statistical techniques. More specifically, the XGBoost algorithm developed by Chen and Guestrin 

(2016) is applied. XGBoost is a decision tree based ensemble algorithm that uses a gradient 

boosting framework. Like other boosting algorithms, XGBoost aims to come up with a high-

quality prediction by training a sequence of weak models that compensate for the weaknesses 

of its predecessors. Again, the same variables including road, time, weekday, month, and year 

effects are used to predict traffic congestion. On the contrary to the lasso-regularised logistic 

regression and feedforward neural network, data standardisation is not required. As XGBoost 

demands numerical data, categorical variables are one-hot encoded.  

Decision trees are non-parametric models that can be used for predictive purposes. A decision 

tree consists of nodes and branches. A schematical representation of a decision tree is shown in 

Figure 5. At every node, a certain variable is evaluated in order to split the observations to make 

a data point follow a certain path when making a prediction. The first node of a decision tree is 

the root node and the final nodes are leaf nodes. All data points are assigned the value of the leaf 

node that they end up in by following the decision tree. The value of a leaf node is equal to the 

class that is represented most often in that leaf node. Nodes are connected in a top-down manner 

through branches. At every split of a branch, the Gini index is minimised. A Gini index of zero 

means that all observations belong to the same class, while a score of one denotes that all 

observations are randomly distributed across classes. The Gini index can be calculated as: 

 
𝐺 = 1 − ∑(𝑝𝑖)2

𝑛

𝑖=1

 (3) 

In this equation, 𝑝𝑖 denotes the probability of an observation being assigned to a particular class. 

To avoid that a tree continues to grow until every training observation has been assigned its own 

leaf node, multiple stopping conditions are set. Training a tree without stopping conditions 

would result in overfitting. The maximum number of nodes between the root node and a leaf 

node is referred to as the depth of a tree. This number cannot exceed a certain threshold that is 

set beforehand. Also, an additional split should result in a minimum loss. The height of this 

additional loss can be determined by means of the gamma parameter. Both the maximum depth 

of a tree and the gamma parameter are hyperparameters. 
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Figure 5: Schematic representation of a decision tree 

The predictive performance of just one decision tree is generally limited. Therefore, multiple 

trees can be combined by the bootstrap aggregating method, abbreviated to bagging. This is a 

technique developed by Breiman (1996) that reduces variance and the risk of overfitting for 

predictive models. The bagging process is schematically shown in Figure 6. Firstly, 𝑙 distinct 

bootstrap samples are taken from the original data set 𝐷 of size 𝑛 × 𝑚, with 𝑛 and 𝑚 denoting 

the number of observations and variables, respectively. The bootstrap samples consist of 𝑝𝑛 

observations and 𝑞𝑚 variables, in which 𝑝 and 𝑞 represent the proportion of the observations 

and variables that are used in every bootstrap sample. The samples are filled by collecting 

observations from the original data set randomly and with replacement. This means that 

observations can occur in a bootstrap sample multiple times or not at all. Eventually, 𝑙 decision 

trees are constructed based upon the bootstrap samples. The actual prediction for an individual 

observation is determined by majority vote.  

 

Figure 6: Schematic representation of the bagging process 

The bagging method is a simultaneous process: the separate decision trees are constructed at 

the same time and do not exchange information between each other. The boosting technique 
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developed by Freund and Schapire (1996) is a variation on the bagging method that aims to teach 

decision trees the weaknesses of other trees by training them sequentially. Every time a decision 

tree has been trained, the model evaluates which observations are misclassified. The weight of 

these observations is increased making it more likely that they will be predicted correctly in the 

following decision tree. By repeating this process multiple times, the successive trees correct for 

the mistakes made by other trees. An extension of the boosting method is the gradient boosting 

technique that is developed by Friedman (2001). This algorithm starts by assuming an initial 

weights distribution across the original sample 𝐷1 such that 𝐷1,𝑖 = 1/𝑁 for all 𝑖 ∈ 𝑁. Then, some 

learning rate 𝛼𝑡 is assumed for tree 𝑡 and a new weak classifier 𝑐𝑡 is created. The initial learning 

rate is a hyperparameter. The weight distribution is updated in the following manner: 

 
𝐷𝑡+1,𝑖 =

𝐷𝑡,𝑖𝑒−𝛼𝑡𝑦𝑖𝑐𝑡(𝑥𝑖)

∑ 𝐷𝑡,𝑖𝑒−𝛼𝑡𝑦𝑖𝑐𝑡(𝑥𝑖)𝑁
𝑖=1

 (4) 

In this equation, 𝑦𝑖 is the observed outcome of observation 𝑖, and 𝑐𝑡(𝑥𝑖) is the class predicted by 

tree 𝑡 for independent variables 𝑥𝑖. With 𝜀𝑡 being the error of tree 𝑡, the learning rate of a tree is 

calculated as: 

 
𝛼𝑡 = 0.5 log (

1 − 𝜀𝑡

𝜀𝑡
) (5) 

This process is repeated until no significant improvements are made, or until the maximum 

number of iterations has been reached. The maximum number of iterations is a hyperparameter. 

The final prediction is computed by using the weighted average of the outputs of all trees, with 

𝛼𝑡 as the weight for each tree. The extreme gradient boosting method that is developed by Chen 

and Guestrin (2016) extends the gradient boosting algorithm. Although three different variants 

of the XGBoost algorithm exist, this research solemnly uses the basic exact greedy algorithm3. 

It is clear that training an XGBoost model comes with many hyperparameters that can be 

optimised: the number of iterations, tree depth, initial learning rate, training and variable 

proportions, and gamma parameter are all hyperparameters. The hyperparameters are 

optimised by the Bayesian Hyperparameter Optimisation (BHO) method (Snoek, Larochelle, & 

Adams, 2012). Multiple separate XGBoost models are sequentially trained through ten-fold 

cross-validation with different hyperparameter combinations. BHO calculates the probability 

that a certain hyperparameter set outperforms previous sets based upon the expected 

improvement as proposed by Jones, Schonlau and Welch (1998)4. This is opposed to most 

 
3 Discussing the entire functioning of this algorithm is beyond the scope of this research. See Chen and 
Guestrin (2016) for a complete description of the algorithm. 
4 The concept of expected improvement was originally proposed by Močkus (1975) but was not yet 
implemented in the optimisation process of black-box functions.  
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hyperparameter optimisation methods that do not use the information provided by previous 

combinations to pick the next set of hyperparameter values. The combination with the highest 

probability of performing better than the previous sets is trained and its out-of-sample 

performance is then evaluated by means of cross-entropy. Thus, every evaluated combination 

provides more information about the optimal hyperparameter values. In total, 30 different 

combinations are evaluated through the BHO method. The ranges of the hyperparameter values 

have to be pre-set. The number of iterations ranges between 10 and 400, and the depth per tree 

between 3 and 50. The initial learning rate varies between 0 and 1. Moreover, the optimal 

proportion of training observations and variables that is used to train the decision trees has to 

be determined. As it is a proportion, the possible values range from 0 to 1. Lastly, the gamma 

parameter has to be between 0 and 10. 

An XGBoost model is a classic example of a black-box method: the user provides input data to 

the model and the model provides an output value, but what exactly happens in between is 

largely unknown. The number of parameters in black-box methods can grow very rapidly. This 

hinders the interpretation of such models and makes it hard to detect relationships between 

variables. It is still possible to gain some insights into the relationship between independent and 

dependent variables, though. Two methods are used in this research for this purpose. Firstly, a 

variable importance plot (VIP) is constructed that shows which variables have the most 

profound impact on the predictive performance of the model (Breiman, 2001). A VIP is 

constructed by randomly permuting the values of a variable and recording the drop in predictive 

performance. The variable that causes the largest drop in performance measured in terms of 

accuracy can be considered as the most influential variable for predicting the dependent 

variable. The second interpretation method that is applied is individual conditional expectation 

(ICE) curves, as developed by Goldstein, Kapelner, Bleich and Pitkin (2015). This technique 

considers the change in the predicted value for individual observations while the variable of 

interest 𝑥𝑠 changes and all other variables 𝒙𝑐 are held constant. A separate line is plotted in a 

graph for every observation. More formally, it can be stated that for each instance in 

{(𝑥𝑠
(𝑖)

, 𝒙𝑐
(𝑖)

)}
𝑖=1

𝑁
 the curve 𝑓𝑠

(𝑖)
 is plotted against the range of 𝑥𝑠

(𝑖)
, while 𝒙𝑐

(𝑖)
 remains fixed. For the 

sake of clarity, only the ICE curves of 1,000 randomly selected observations are plotted.  

4.3. Feedforward neural network 

The third and last predictive model that is applied to the data is a feedforward neural network. 

Again, all available variables are included in the neural network, including road, time, weekday, 
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month, and year effects. The concept of a neural network was first conceptualised by McCulloch 

and Pitts (1943). A neural network consists of a set of links between the raw data in the input 

layer and the actual prediction in the output layer. A simplified schematic representation of the 

architecture of a neural network is shown in Figure 7. A neural network consists of at least one 

hidden layer that is responsible for transforming the data. Every hidden layer contains at least 

one neuron. These neurons carry a certain weight that alters the value that is fed to the neurons. 

Both the number of hidden layers and the number of neurons in a hidden layer are 

hyperparameters.  

 

Figure 7: Schematic representation of a neural network 

The neurons in a neural network behave similarly to the neurons in a human brain. Dendrites 

through which information is transmitted form connections between the neurons in successive 

hidden layers. Once a neuron receives a value from a preceding neuron, this value is altered by 

the weight of the neuron and then sent to the next neuron. The working of a neural network’s 

neurons is schematically represented in Figure 8. The figure shows that three input values 𝑥0, 𝑥1 

and 𝑥2 are sent to the neuron. As for the lasso-regularised logistic regression, the data should be 

standardised beforehand and categorical variables should be one-hot encoded. The weights 𝑤0, 

𝑤1 and 𝑤2 belonging to values 𝑥0, 𝑥1 and 𝑥2 are parameters in the network reflecting the 

importance of the connection between two neurons. The values of the neurons in the first 

hidden layer are calculated by: 

 𝒉(1) = 𝑓1(𝑾(1)𝑇𝒙) + 𝒃(1) (6) 

For all other layers, the values are calculated by: 

 𝒉(𝑙) = 𝑓𝑙(𝑾(𝑙)𝑇𝒉(𝑙−1)) + 𝒃(𝑙) (7) 

In these equations, 𝒉(𝑙) is the 𝑙-th hidden layer, with 𝑓𝑙 its activation function. This activation 

function is a fixed nonlinear function that allows for nonlinear relationships between neurons. 

The neural network in this research uses the rectified linear unit (ReLu) activation function for 
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all layers except the last one5. The ReLu activation function states that 𝑓(𝑧) = max(0, 𝑧). 

However, the desired output of the model is the probability of traffic congestion occurring at a 

certain stage. The ReLu function is not restricted to values between 0 and 1; 𝑧 could theoretically 

grow towards infinity. Therefore, the sigmoid activation function is used in the final layer, which 

does result in a value between 0 and 1. The sigmoid function states that 𝑓(𝑧) =
1

1+𝑒−𝑧. 𝑾(𝑙)𝑇 is 

the transpose of the weights of hidden layer 𝑙 and 𝒃(𝑙) is the bias term of the hidden layer. The 

bias term can be seen as the constant in a linear regression model. 𝒙 is the input data, which is 

only relevant for the first hidden layer. The manner in which the values in a hidden layer are 

calculated means that they are always dependent on the values in the previous layer. 

 

Figure 8: Schematic representation of the working of a neuron 

Neural networks are extremely prone to overfitting due to their high complexity levels. To 

mitigate the risk of overfitting, dropout is applied to the network (Srivastava, Hinton, 

Krizhevsky, Sutskever, & Salakhutdinov, 2014). Dropout is a technique that randomly changes 

the weights of neurons to zero during training. This is accomplished by multiplying the value of 

a neuron with a binary value. The probability that such a binary value is zero is referred to as the 

dropout rate, which is a hyperparameter. The architecture of a neural network with dropout 

applied to it is schematically shown in Figure 9. As a result of dropout being applied to the 

network, the calculation of the values of the neurons in hidden layers as described in equation 

(7) changes to: 

 𝒉(𝑙) = 𝑓𝑙(𝑾(𝑙)𝑇𝒉(𝑙−1) + 𝒃(𝑙))𝒓𝑙 (8) 

In this equation, 𝒓𝑙 is the dropout rate of 𝑙-th hidden layer. The dropout rate follows the 

Bernoulli distribution. 

 
5 In an extremely detailed overview of multiple neural network techniques, Goodfellow, Bengio and 
Courville (2016) recommend to use the ReLu activation function as developed in multiple stages by Jarrett, 
Kavukcuoglu, Ranzato and LeCun (2009), Nair and Hinton (2010), and Glorot, Bordes and Bengio (2011) 
in all neural networks. 
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Eventually, the neural network aims to find parameters that result in the best predictive 

performance. Neural networks use the gradient of the loss function, which is the cross-entropy, 

to train its parameters. The gradient provides the direction in which the loss function increases 

faster, meaning that the weight parameters should move in the opposite direction to minimise 

loss. Although an expression for the gradient is relatively straightforward, it would be too 

computationally expensive to numerically evaluate this expression. Therefore, the technique of 

backpropagation as developed by Rumelhart, Hinton and Williams (1986) is applied. 

Backpropagation uses multiple first-order derivatives to obtain the gradient of the loss function. 

The technique attempts to minimise loss by calculating the first-order derivative of the loss 

function of the model with respect to every weight in the network6. The most uncomplicated 

method to obtain the minimum loss is the gradient descent method. This method updates the 

weights after every iteration by altering them with the product of the learning rate 𝛼 and the 

gradient of the loss function. Training the model takes several epochs and iterations. One epoch 

equals all data being propagated forward and backwards through the network once. As an entire 

data set is too large to feed to a neural network though, the data set is divided into multiple 

equally large subsets called batches. Both the number of epochs and the batch size are 

hyperparameters. Too few epochs or a too large batch size results in underfitting, while too many 

or a too small batch size results in overfitting. Every time a batch is passed into the neural 

network counts as an iteration. The change in the network parameters can be mathematically 

depicted as: 

 
𝑤𝑖𝑗,𝑡+1

𝑙 = 𝑤𝑖𝑗,𝑡
𝑙 − 𝛼

𝜕ℒ(𝑋, 𝜃)

𝜕𝑤𝑖𝑗
𝑙  (9) 

 
6 See Section 6.5. of Deep Learning by Goodfellow, Bengio and Courville (2016) for a detailed explanation 
and mathematical derivation of the backpropagation technique.  

(a) (b) 

Figure 9: Schematic representation of a neural network with dropout 
Source: Srivastava et al. (2014) 
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In this equation, 𝑤𝑖𝑗,𝑡
𝑙  is the weight of neuron 𝑖 in hidden layer 𝑙 receiving input from neuron 𝑗 

during iteration 𝑡, 𝛼 is the learning rate, and ℒ(𝑋, 𝜃) is the derivative of the loss function with 

using hyperparameter set 𝜃. However, as the gradient descent method indicates that the 

gradient of the loss function with respect to the network weights has to be calculated for the 

entire data set, this method is highly computationally intensive. A solution for this problem is 

to perform a parameter update for every combination of input 𝒙𝑖 and output 𝑦𝑖. This technique 

is referred to as the stochastic gradient descent method and is based upon work by Robbins and 

Monro (1951). The usage of this method changes equation (9) into: 

 
𝑤𝑖𝑗,𝑡+1

𝑙 = 𝑤𝑖𝑗,𝑡
𝑙 − 𝛼

𝜕ℒ(𝒙𝑖, 𝑦𝑖  , 𝜃)

𝜕𝑤𝑖𝑗
𝑙  (10) 

A challenge that remains, though, is that it is hard to find the optimal learning rate. A learning 

rate that is too small results in slow convergence, whereas a too high learning rate hinders the 

convergence of the network. Also, by picking just one learning rate, the same rate applies to all 

parameter updates. To remedy this challenge, the adaptive moment estimation (Adam) method, 

as developed by Kingma and Ba (2015), is used in combination with the stochastic gradient 

descent method. The Adam method uses estimates of the exponentially decaying average of past 

squared and non-squared gradients to compute an adaptive learning rate. The weight 

parameters are then updated as follows: 

 𝑤𝑖𝑗,𝑡+1
𝑙 = 𝑤𝑖𝑗,𝑡

𝑙 −
𝛼

√𝑣𝑡 + 𝜖
𝑚𝑡 (11) 

In this equation, 𝑣𝑡 is the estimate of the average of the past squared gradients, 𝑚𝑡 is the estimate 

of the average of the past non-squared gradients, and 𝜖 is a smoothing term that avoids division 

by zero. The learning rate 𝛼 of the first iteration is a hyperparameter. The bias-corrected 

estimates of the decaying average of the squared and non-squared gradient are calculated as 

follows: 

 
𝑚𝑡 =

𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡

1 − 𝛽1
 

𝑣𝑡 =
𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡

2

1 − 𝛽2
 

(12) 

In this equation, 𝑔𝑡 is the gradient of the loss function, while 𝛽1 and 𝛽2 are hyperparameters.  

As the XGBoost model, training a neural network comes with some hyperparameters that have 

to be optimised. To reduce the computational costs of the hyperparameter optimisation process, 

default values can be used for some hyperparameters. Kingma and Ba (2015) have shown that 

the effect of optimising the Adam parameters is neglectable. They propose values of 0.002 for 

the initial learning rate 𝛼, 0.9 for 𝛽1, 0.999 for 𝛽2 and 10−8 for 𝜖. Considering the marginal effect 
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of optimising these hyperparameters, these values are used to train the model. The training of 

the model is halted as soon as the loss function has not improved by at least 0.1 over the last 20 

epochs. In this manner, the number of epochs is dependent on the training behaviour of the 

neural network. The remaining hyperparameters are optimised through the BHO method. The 

number of hidden layers ranges from 1 to 10. The range of the number of neurons in a hidden 

layer stretches from 3 to 200. The dropout rate varies between 0.0001 to 0.9999 and the batch 

size from 500 to 100,000. For interpretational purposes, the same methods are used as for the 

XGBoost model. 

5. Results 

Firstly, the hyperparameters of all models are optimised. A grid search shows that a λ parameter 

of 10−5.25 results in the highest cross-validated cross-entropy for the regularised logistic 

regression. The BHO method indicates that the optimal hyperparameters of the XGBoost model 

are 342 iterations, a maximum tree depth of 35 nodes, a learning rate of 0.063, a gamma of six, 

and both a sample and variable proportion of one. In the same manner, three hidden layers, 113 

neurons per layer, a batch size of 4,574 and a dropout rate of 0.0651 are found to be the optimal 

architecture of a neural network. It is interesting to note that regularisation levels are low for all 

three models. This suggests that models with relatively high variance levels perform best when 

predicting traffic congestion. The values of other hyperparameters are comparable to the values 

of other applications of these machine learning techniques.   

A benchmark model in the form of an unregularised logistic regression is constructed. As 

common for an unregularised logistic regression, its loss function is optimised through the 

gradient descent method. The benchmark model achieves an out-of-sample accuracy of 84.69% 

and an accuracy on the unseen test data of 84.85%. A comparison between the predictive 

performance of the benchmark model and the other three models is shown in Table 2. The 

predictive performance of a regularised logistic regression is found to be only marginally better 

than the performance of the benchmark model. This is expected as the loss functions of the 

benchmark model and the regularised logistic regression differ only slightly due to the small 

penalty parameter. The coefficients of the both regressions are depicted in Appendix D. There 

are substantial differences between the coefficients of the benchmark model and the regularised 

logistic regression though. These differences are a result of the loss function of the regularised 

logistic regression being optimised through the cyclic coordinate descent method instead of the 

gradient descent method. To highlight the marginal effect of such a small penalty parameter, 
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the coefficients of an unregularised logistic regression optimised through the cyclic coordinate 

descent method are also included in Appendix D. In contrast to the regularised logistic 

regression, the XGBoost model performs substantially better than the benchmark model. The 

XGBoost model achieves an out-of-sample accuracy of 90.13% and an accuracy on the test set of 

90.39%. Although the performance of the neural network is better than the logistic regressions’ 

performance, it does not perform as well as the XGBoost model. An accuracy of almost 89% is 

achieved both on out-of-sample observations and the test data set. The mean ICE curves of the 

independent variables visualising their relationship with the probability of congestion arising 

are depicted in Appendix E for both the XGBoost model and neural network. 

Table 2: Comparison between the predictive performance of the benchmark model and other predictive models 

 Benchmark 
model 

Regularised 
logistic regression 

XGBoost model Neural network 

Training accuracy 84.70% 84.69% 94.39% 89.88% 
Out-of-sample accuracy 84.69% 84.69% 90.13% 88.96% 

Test accuracy 84.85% 84.86% 90.39% 88.96% 
Test sensitivity 86.70% 86.70% 91.25% 86.95% 
Test specificity 83.00% 83.02% 89.55% 90.97% 

6. Discussion 

The findings in the previous sections indicate that traffic congestion is well-predictable by 

machine learning techniques, even without the use of traffic flow data. The XGBoost model 

achieves an accuracy on unseen test data of almost 91%. Its accuracy is comparable to the best-

performing model based upon historic traffic flow data that is found in the existing literature, 

which achieves an accuracy of 93%. Despite the comparable predictive performance, the manner 

in which the predictions have been obtained are completely different. The best-performing 

model in the existing literature uses highly detailed data about vehicles’ trajectories on a 

highway section of less than a kilometre. The model that has been trained in this research uses 

a broader variety of data resources to predict congestion states on a nationwide level. 

 

Notwithstanding the high predictive performance that has been obtained by the XGBoost model, 

it should be noted that, as mentioned beforehand, it is not only about maximising accuracy, but 

also about the sensitivity-specificity trade-off. The best observed historic traffic flow model 

achieves an accuracy of 93% in combination with a sensitivity of 96%. The accuracy, sensitivity, 

and specificity of models can be influenced by changing the threshold at which a positive 

encounter is predicted to different values than the default of 0.5. For example, if a traffic 

congestion occurrence is predicted as soon as the probability of traffic congestion exceeds 0.6, 

fewer congestion encounters will be predicted relative to a threshold of 0.5. This increases 
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sensitivity but decreases accuracy and specificity. The dependency of the accuracy, sensitivity 

and specificity on the prediction threshold is visualised in Figure 10. The graph shows that the 

accuracy is relatively stable between thresholds of 0.15 and 0.85, but deteriorating rapidly outside 

this range. To achieve a sensitivity of 96%, the prediction threshold has to be set at 0.875. This 

would result in an overall accuracy of 84.62% and a specificity of 71.34%. Improving the 

sensitivity of the XGBoost model clearly comes at the cost of lower overall accuracy. The 

relatively low accuracy that results from a high sensitivity illustrates that the XGBoost model is 

still lacking some predictive performance compared to the best-observed performance of a 

historic traffic flow model. 

 

 

 

 

 

 

It is desired that models not only predict accurate results but also confident results. A predicted 

probability of 0.501 comes with more uncertainty than a predicted probability of 0.999. Despite 

these probabilities both resulting in a traffic jam being predicted, the latter value is much more 

confident about its prediction. The predicted probabilities on the test set per model in Figure 11 

visualise that both logistic regressions predict values that are further away from zero or one than 

the other two models. This effect is particularly strong when it comes to predicted probabilities 

that are close to one. Whereas the neural network and XGBoost model predict relatively many 

probabilities that are extremely close to one, the number of predicted probabilities by the logistic 

regressions eases as the predicted probabilities approach one. When comparing the two best 

performing models, the XGBoost model is found to predict slightly more confidently than the 

neural network. However, the difference between the neural network and XGBoost model is less 

strong than between those two models and the logistic regressions. In the end, Figure 11 confirms 

that the XGBoost model performs best when predicting traffic congestion not only when it 

comes to actual accuracy, but also when looking at the confidence of the predictions. 

Figure 10: Dependency of accuracy, sensitivity and specificity on the prediction threshold 
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Figure 11: Histogram of predicted probabilities per model 

The difference in prediction confidence between the models is also visible in their respective 

logistic loss. The logistic loss function does not only account for whether or not a prediction is 

correct, but also for the actual difference between the observed outcome and the predicted 

probability. A low logistic loss indicates that the predictions are closer to the observed values in 

comparison to a high logistic loss, and vice versa. To determine whether or not the models’ 

prediction confidence is dependent on certain variables, the logistic loss per variable quartile is 

represented in Appendix F. As expected, differences between logistic losses per quartile of the 

benchmark and regularised logistic regression are largely similar, whereas the neural network 

and XGBoost model achieve substantially lower logistic losses. Despite this, major differences in 

logistic loss per variable quartile dependent on which model the predictions are based upon are 

not found. 

As the geographical landscape of the Netherlands varies strongly, it is possible that differences 

in predictive performance between regions exist. The Netherlands is divided into twelve 

provinces. The three provinces Zuid-Holland, Noord-Holland and Utrecht, commonly referred 

to as the Randstad, are the most densely populated and form the economic heart of the country. 

On the other hand, the provinces Zeeland, Drenthe, Groningen and Friesland are the least 

densely populated. Two maps in Figure 12 illustrate the accuracy and logistic loss per province 

of the XGBoost model. It is noticeable that the highest predictive performance both in terms of 

logistic loss and accuracy is achieved in the sparsely populated provinces. The model achieves a 

slightly lower predictive performance when predicting traffic congestion in the Randstad 

provinces. The maps clearly show that the performance of the XGBoost model is dependent on 
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the geographical location of the prediction. Despite the geographical dependency, the model is 

still useful for predicting traffic congestion. The lowest achieved accuracy in any province is 

88.30% in Noord-Limburg, which is still a relatively high accuracy. A possible explanation of the 

better predictive performance in the sparsely populated regions could be that it is somewhat 

easier to predict traffic congestion in these regions. Traffic jams in the four sparsely populated 

provinces are scarce. This means that a relatively high accuracy can already be achieved simply 

by predicting no traffic congestion for all observations in these provinces.  

 

Figure 12: Accuracy and logistic loss per province 

VIPs containing the fifteen variables with the highest variable importance scores of the models 

have been created to find which variables are the most important when it comes to predicting 

traffic jams. This is measured by assessing the change in predictive performance when the 

observations of a certain variable are randomly permuted. The VIPs in Figure 13 show that road 

availability plays an important role in predicting traffic congestion. Road availability belongs to 

the two most important variables in every model. GRP per capita is also found to have a strong 

influence on the predictive performance of the neural network and the XGBoost model, albeit 

the effect is weaker than road availability’s effect. However, GRP per capita seemingly does not 

play a major role in predicting traffic congestion in both logistic regressions. Public and school 

holidays are important determinants of traffic jams in these regressions, though. Holidays are of 

much lesser importance in the neural network and XGBoost model. The two aforementioned 

differences can potentially explain the gap in predictive performance between the logistic 

regressions and the other models. It should be noted, though, that this difference is also likely 

to be at least partly caused by the fact that interaction effects are not included in the logistic 

regressions, whereas the other two models automatically incorporate those. When comparing 

the most important variables of the neural network and XGBoost model, the extreme importance 

of road availability in the XGBoost model stands out. It appears that the neural network uses 

(a) (b) 
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multiple variables to acquire accurate predictions, whereas the XGBoost model mainly relies on 

road availability to predict traffic congestion.  

 

 

 

 

 

 

 

 

 

 

Figure 2 in section 2.3 contained a conceptual framework summarising the factors that influence 

either the supply or demand of road space according to the existing literature. Four factors are 

found to affect the supply-side of road space: constructing more highway kilometres, road 

accidents, weather conditions, and road works. Literature states that only the first factor of these 

four is not directly related to the occurrence of traffic congestion. Moreover, the probability of 

congestion arising is influenced by four factors from the demand-side: user costs, weather 

conditions, commuter obligations, and economic growth. To assess to what extent the results of 

this research are in accordance with the findings in the existing literature, the effect of the 

aforementioned factors on the arising of traffic jams in the models is evaluated. 

The first factor that is said to affect the supply-side of road capacity is the construction of more 

highway kilometres. According to the existing literature, constructing more highway kilometres 

is unrelated to traffic congestion, as an increase in road capacity is nullified by a potentially even 

Figure 13: VIPs containing the fifteen most influential variables per model 

(c) (d) 

(a) (b) 
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steeper increase in demand. The findings in this research are in sharp contrast with this 

conception, though. The VIPs in Figure 13 show that road availability does have a severe impact 

on the probability of traffic congestion arising. To understand the effect of road availability in 

the black-box methods, ICE curves of road availability in both the XGBoost model and neural 

network are visualised in Figure 14. The grey lines are individual curves depicting the change for 

one observation, while the red line is the average of all individual curves. The ICE curves indicate 

that a higher road availability actually does lower the probability of congestion occurring. More 

specifically, a steep descent in the probability of congestion occurring is visible around 35 

kilometres of highway per 100,000 inhabitants. This is supported by the regression results in 

Table 3. The unregularised regression indicates a negative relationship between road availability 

and the probability of traffic congestion, which is significant at the 1% level. Although causal 

statements based upon the regularised regression should be made cautiously, the negative 

coefficient of this regression also suggests that a higher road availability lowers the probability 

of a traffic jam. A potential reason why this result seemingly does not correspond to findings in 

the existing literature could be how road availability is measured. In this research, road 

availability has been calculated as the single length of all highways in a province divided by its 

population. In contrast, articles stating that constructing additional highway kilometres does 

not reduce the probability of traffic jams arising all multiply the number of highway kilometres 

by the respective lanes on a section. For example, a one-kilometre high section consisting of 

three lanes counts for three highway kilometres, whereas it would only account for one highway 

kilometre in this research. Combining the findings of this research with those in the existing 

literature, it appears that adding more lanes to an existing highway does not reduce the 

probability of traffic congestion arising, but that constructing a completely new highway does. 

Table 3: Summary of both logistic regressions' coefficients containing all variables related to road capacity 

 
Dependent variable 

Congestion 

 Benchmark model Lasso-regularised regression 

Road availability -0.088*** 

(0.001) 
-0.736 

Standard errors are reported in parentheses7. 
*, **, *** indicate significance at the 10%, 5%, and 1% level, respectively. 

 

 

 
7 As thoroughly discussed in Section 4.1., it is preferred not to report standard errors of the regularised 
logistic regression. 
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A second factor that is found to influence the forming of traffic congestion through the supply-

side is road accidents. Although road accidents are not directly included in the models, they are 

incorporated as so-called accident hotspots. Research has found that the likelihood of accidents 

occurring on a road section is mainly dependent on the road section’s individual characteristics. 

Therefore, the addition of road fixed effects to the model accounts for differences in the 

likelihood of accidents occurring on a certain road. Moreover, existing literature found that the 

start of daylight saving time in the spring can increase the likelihood of road accidents 

happening. The effect of incorporating road accidents into the models is evaluated by training 

an XGBoost model excluding the daylight saving time variable and road fixed effects. All other 

variables and hyperparameters are unchanged. This model obtained an accuracy on the unseen 

test data of 86.29%, which is approximately four percentage points lower than the original 

XGBoost model. Although the obtained accuracy might be slightly higher after reoptimizing the 

hyperparameter, this result suggests that incorporating accident hotspots in a traffic congestion 

prediction model improves its performance. It must be noted, however, that road fixed effects 

also account for other differences between road sections, such as variations in the supply and 

demand ratio between roads. Hence, it is hard to make strong statements about the effect of 

adding accident hotspots to the models.  

Another factor that affects the capacity of a road section and, subsequently, the probability of 

congestion occurring is road works. Figure 13 shows that road works are of major importance for 

both logistic regressions. The unregularised regression coefficients in Table 4 indicate a positive 

relationship between road works and the probability of traffic congestion, which is significant at 

the 1% level. Although this positive relationship is supported by the coefficient of the regularised 

regression, it is disputed by both the XGBoost model and the neural network. The VIPs in Figure 

Figure 14: ICE curves of road availability in XGBoost model and neural network 

(a) (b) 
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13 illustrate that road works are not an important variable in neither the XGBoost model nor 

neural network. Moreover, the ICE curves in Figure 15 show that the effect of road works being 

carried out to a road section has a neglectable effect on the predicted probability. This finding 

contradicts the general notion that a limitation to the capacity of a road section results in an 

increased chance of traffic congestion occurring. A possible explanation could be that the 

information provision in the Netherlands about road works reaches enough people to 

sufficiently reduce the number of vehicles travelling via the road section. If this is the case, the 

reduction in capacity is offset by a reduction in traffic flow.  

Table 4: Summary of both logistic regressions' coefficients containing all variables related to road works 

 
Dependent variable 

Congestion 

 Benchmark model Lasso-regularised regression 

Road works 0.290*** 
(0.022) 

0.195 

Standard errors are reported in parentheses. 
*, **, *** indicate significance at the 10%, 5%, and 1% level, respectively. 

 

 

 

 

 

 

When looking at the demand-side of traffic congestion, user costs are one of the factors that is 

found to affect the probability of traffic congestion occurring. For example, higher fuel costs 

result in fewer people travelling by car and, thus, less traffic congestion arising. The VIPs in 

Figure 13 confirm that user costs are important to predict the occurrence of traffic congestion. 

Most variables related to transport user costs are frequently mentioned as important variables 

in the models. Especially fuel costs are highly ranked when it comes to variable importance. 

Despite the clear importance of user costs to predict traffic congestion, it is harder to make firm 

statements about possible causal relationships. This is mainly due to the models disagreeing 

with each other on the strength and even the sign of the relationship. For example, the 

unregularised logistic regression coefficients in Table 5 indicate that car user costs, public 

Figure 15: ICE curves of road works in XGBoost model and neural network 

(a) (b) 
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transport user costs and the gasoline price are all negatively related to traffic congestion arising. 

The relationship of all three variables is found to be significant at the 1% level. However, mean 

ICE curves in Appendix E indicate that changes in these variables do not substantially affect the 

average predicted probability in the XGBoost model or neural network. Although conclusions 

about causal relationships cannot be made, it does appear that user costs interact with other 

variables. This is based upon the notion that user costs are important variables to predict traffic 

congestion when looking at the VIPs, but the ICE curves showing only marginal changes in the 

average predicted probability, especially in the XGBoost model. 

Table 5: Summary of both logistic regressions' coefficients containing all variables related to user costs 

 
Dependent variable 

Congestion 

 Benchmark model Lasso-regularised regression 

Public transport user costs -2.063*** 
(0.181) 

0.007 

Car user costs -0.017*** 
(0.006) 

-0.045 

Gasoline price -1.128*** 
(0.206) 

0.003 

Diesel price 1.279*** 
(0.202) 

0.089 

LPG price 0.750*** 

(0.228) 
-0.023 

Distance to public transport 0.070 
(0.004) 

0.140 

Standard errors are reported in parentheses. 
*, **, *** indicate significance at the 10%, 5%, and 1% level, respectively. 

A second factor that influences the demand for road space, according to the existing literature, 

is commuter obligations. Figure 3 already partially confirmed this conception by pointing out 

that traffic jams usually occur during weekdays and peak rush hours. Moreover, the figure 

illustrated that the number of traffic jams drops substantially during holiday months. However, 

just as road accidents, commuter obligations are not directly incorporated into the models, but 

are accounted for by fixed effects. Only public and school holidays are directly included in the 

models. Consequently, it is only possible to evaluate the effect of these two holiday types on the 

probability of congestion arising. All models undoubtedly point at a significantly lower 

probability of traffic congestion occurring during both public and school holidays. The 

unregularised regression coefficients in Table 6 indicate a negative relationship significant at the 

1% level. The ICE curves of public and school holidays are depicted in Figure 16. The figure shows 

that the predicted probability of the XGBoost model and neural network decreases by 

approximately twenty and twenty-five percentage points on average, respectively, during public 
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holidays, and by approximately seven and five percentage points on average, respectively, during 

school holidays. To assess the overall effect on the predictive performance of variables related 

to commuter obligations, an XGBoost model is trained with the same variables and 

hyperparameters, but excluding the holiday variables and fixed effects related to commuter 

obligations. This model achieved an accuracy on the unseen test data of 80.65%, confirming the 

importance of accounting for commuter obligations when predicting traffic congestion.  

Table 6: Summary of both logistic regressions' coefficients containing all variables related to commuter obligations 

 
Dependent variable 

Congestion 

 Benchmark model Lasso-regularised regression 

School holiday -0.541*** 
(0.011) 

-0.534 

Public holiday -1.002*** 
(0.029) 

-0.981 

Standard errors are reported in parentheses. 
*, **, *** indicate significance at the 10%, 5%, and 1% level, respectively. 

 

Figure 16: ICE curves of public and school holiday in XGBoost model and neural network 

(a) (b) 

(c) (d) 
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The third factor that is affecting the probability of traffic congestion arising through the 

demand-side is economic growth. The existing literature states that an increase in economic 

activity results in more congestion. The VIPs in Figure 13 show that the impact of GRP per capita 

is limited in the logistic regressions, but that GRP per capita substantially influences the 

predictions in the neural network and XGBoost model. The limited impact of GRP per capita in 

the logistic regressions is confirmed by the regression coefficients in Table 7. ICE curves of GRP 

per capita in Error! Reference source not found. show the effect of this variable on the 

predicted probability of traffic congestion arising in these models. Despite the high importance 

of GRP per capita in predicting traffic jams, the average predicted probability is relatively stable. 

On average, slightly higher probabilities are predicted for high GRP levels than for low GRP 

levels, but the difference is less than ten percentage points. The grey individual curves do show 

substantial changes between low and high GRP levels, though. As the changes are both positively 

and negatively related to the predicted probability of traffic congestion arising, it appears that 

other variables strongly interact with the relationship between GRP per capita and traffic 

congestion. For example, the combination of a high GRP per capita and low road availability in 

a region is likely to result in a high probability of traffic congestion occurring. However, high 

GRP levels combined with high road availability might cause fewer problems from a traffic flow 

perspective. This exemplifies how GRP per capita can be a major determinant of traffic jams 

arising, despite a clear direct relationship between the two is absent.  

Table 7: Summary of both logistic regressions' coefficients containing all variables related to economic growth 

 
Dependent variable 

Congestion 

 Benchmark model Lasso-regularised regression 

GRP per capita 0.000*** 
(0.000) 

0.058 

Standard errors are reported in parentheses. 
*, **, *** indicate significance at the 10%, 5%, and 1% level, respectively. 

 

 

 

 

(a) (b) 

Figure 17: ICE curves of GRP per capita in XGBoost model and neural network 
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Lastly, weather conditions affect the probability of traffic congestion occurring both through 

supply and demand, according to the existing literature. Adverse weather conditions are found 

to decrease a road section’s capacity but also changes people’s individual travel behaviour. It is 

impossible to assess the effect of weather conditions on supply or demand based upon the 

models, as neither of them is directly incorporated into the models. Nevertheless, it is possible 

to evaluate how certain weather conditions affect the probability of traffic congestion arising. 

Based upon the sign of the effect, it can be argued whether the demand-side or supply-side effect 

is stronger. Variables about the temperature, wind speed, precipitation, or sunshine are 

frequently mentioned among the most important variables in Figure 13. The regression 

coefficients of the variables related to weather are depicted in Table 8. To evaluate the combined 

importance of all weather-related variables, an XGBoost model is trained with the same 

variables, fixed effects and hyperparameters, but excluding all weather-related variables. The 

accuracy on the unseen test data of this model is still 89.94%, which is only marginally lower 

than the accuracy of the original model. This suggests that weather variables are not a critical 

component of congestion prediction models. 

Table 8: Summary of both logistic regressions' coefficients containing all variables related to weather conditions 

 
Dependent variable 

Congestion 

 Benchmark model Lasso-regularised regression 

Mean windspeed -0.012 
(0.007) 

-0.024 

Minimum hourly mean windspeed -0.003 
(0.005) 

-0.008 

Maximum hourly mean windspeed -0.032*** 
(0.005) 

-0.096 

Maximum wind gust 0.023*** 
(0.002) 

0.095 

Wind direction north -0.016 
(0.013) 

-0.015 

Wind direction south 0.007 
(0.012) 

0.013 

Wind direction west -0.033*** 
(0.012) 

-0.031 

Mean temperature -0.002 
(0.007) 

0.009 

Minimum temperature 0.000 
(0.003) 

-0.010 

Maximum temperature 0.009** 
(0.004) 

0.046 

Sunshine duration 0.016*** 
(0.002) 

0.070 

Precipitation duration 0.029*** 
(0.002) 

0.081 
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Dependent variable 

Congestion 

 Benchmark model Lasso-regularised regression 

Precipitation amount 0.011*** 
(0.002) 

0.052 

Maximum hourly precipitation -0.011*** 
(0.004) 

-0.020 

Minimum visibility 0.000*** 
(0.000) 

-0.029 

Maximum visibility 0.000*** 
(0.000) 

0.023 

Mean overcast -0.005* 
(0.003) 

-0.013 

Mean humidity 0.001 
(0.001) 

0.014 

Minimum humidity 0.000 
(0.001) 

. 

Standard errors are reported in parentheses. 
*, **, *** indicate significance at the 10%, 5%, and 1% level, respectively. 
. indicates that the respective coefficient is shrunk to zero. 

7. Conclusion 

In recent years, some concerns have been voiced about the use of traffic flow data to predict 

traffic congestion. Although accurate and reliable traffic information has proven to be an 

efficient method to mitigate traffic congestion, gathering traffic flow data either is highly 

expensive or comes with serious privacy and data management issues. The results of this 

research indicate that the performance gap between predictive models trained on traffic flow 

data, and a model trained on more general determinants of traffic congestion is small. An 

XGBoost model is found to predict traffic congestion most accurately, out of a comparison 

between three machine learning techniques differing in complexity. The accuracy of this model 

(i.e., 90.39%) is only slightly lower than the accuracy of the best-performing model found in the 

existing literature (i.e., 93%). However, the XGBoost model appears to lack some sensitivity 

compared to the best-performing model based on traffic flow data. Despite scientific research 

conducted into this subject is missing, it seems logical that people prefer encountering a 

situation of free-traffic flow while congestion was predicted, instead of the opposite situation. 

According to this assumption, it would be beneficial to improve the model’s sensitivity by 

changing the prediction threshold. However, doing so lowers the overall accuracy of the model, 

which might lower the users’ trust in the system. For this reason, further research should be 

conducted into the optimal balance between accuracy, sensitivity and specificity when it comes 

to traffic congestion prediction models. Although the data used in this research is limited to the 
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extent that it only contains traffic jams in the Netherlands between January 2015 and February 

2020, there is no reason to assume that the same results cannot be obtained for different 

countries or time frames. The high adaptability of the method proposed in this research is a 

major advantage over methods using traffic flow data. The methods used in this research can be 

applied to construct a model, with newly-optimised hyperparameters, for any other region or 

time frame. 

When looking at the most important determinants of traffic congestion occurring, one predictor 

stands out in all compared models: road availability. It is clear that an increase in the number of 

highway kilometres in a region relative to the number of inhabitants decreases the probability 

of traffic congestion arising. By combining the findings of this research with the findings in the 

existing literature, it seems that building new highways is more efficient than adding more lanes 

to an already existing highway. Other factors that are found to be influential predictors of traffic 

congestion are GRP per capita in a region, changes in commuting behaviour, for example due to 

holidays, and road accidents.   

Some policy recommendations can be made based upon the findings of this research. Firstly, 

although further research into this subject is definitely required, the results provide some 

preliminary evidence that simply constructing more highways mitigates the traffic congestion 

problem. Nevertheless, executing such a policy will presumably result in resistance from various 

other parties. In an era of increasing sustainable and environmental awareness, it seems 

undesirable to change the road infrastructure of a country into a frenzy of countless separate 

highways. Therefore, one of the main questions to be answered by further research into this 

subject is how a balance between sustainability and connectivity can be maintained from a road 

capacity perspective. This problem is generally approached from a demand perspective: coercive 

and non-coercive TDM measures are combined to lower the traffic flow on a road section. 

However, the effectiveness of such measures is not confirmed by this research. Secondly, the 

expected future GRP per capita of regions in the Netherlands should be monitored and 

infrastructural projects should be planned accordingly. GRP per capita is an important predictor 

of traffic congestion and a positive relationship appears to exist. Therefore, infrastructural 

investments have to be made in regions with strong economic growth. Preferably, these 

investments are made well in advance of the actual growth as existing literature warns that 

congestion slows economic growth. Lastly, employees should be nudged to spread their in-office 

working days over the week. The effect of commuting behaviour on the occurrence of traffic 

congestion is enormous. The COVID-19 pandemic provides an excellent opportunity to make 
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long-lasting changes to people’s commuting behaviour. It is likely that people will continue 

working from home on a regular basis even after the pandemic. This could lower the number of 

traffic jams on highways, but it is essential to avoid that everyone decides to work in-office on 

the same days. Nudging employees, either directly or through their employers, appears to be the 

easiest manner to achieve such a change in commuting behaviour.  

Finally, the findings in this research open up possibilities for companies and                                   

(semi-)governmental organisations to use models trained without traffic flow data to predict 

traffic congestion. It is recognised that this research does not offer a fully implementable traffic 

congestion prediction algorithm as of yet. However, the results do show that such an algorithm 

is capable of achieving an excellent predictive performance. Organisations that are currently 

predicting traffic congestion at least partly by traffic flow data, for example the ANWB in the 

Netherlands, could start experimenting with predictions based upon general supply and demand 

characteristics. The method proposed in this research solves many of the problems that arise 

when using traffic flow data, such as the high data collection costs and the relatively undetailed 

end result. An additional feature that could be incorporated in the model when applied on a 

large scale is information about the severity of traffic congestion. Currently, the model only 

predicts whether or not a traffic jam will occur, but does not provide information about the 

duration of the delay. An example of how such a prediction can be achieved is by changing the 

dependent variable into a multinomial variable. Potential classes of this variable could be ‘no 

delay’, ‘between 0 and 19 minutes delay’, ‘between 20 and 39 minutes delay’ and ‘more than 40 

minutes delay’. Almost the exact same method as in this research can be applied. If doing so, the 

model does not only indicate whether or not a traffic jam will arise, but also offers an 

approximation of the length of the delay.  
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Appendix A: Results of ARIMA model to extrapolate car and 
public transport user costs data 

 

  

Figure 19: Extrapolations of the consumer price index of public transport and car user costs per kilometre 

(b) (a) 

Figure 18: ACF and PACF of car and public transport user costs 
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Appendix B: Coefficients of the fixed effects single 
regression model of GRP per capita 

Table 9: Regression results of the province-fixed effects single regression model of GRP per capita 

 
Dependent variable 

GRP per capita 

Constant 25,689.07*** 
(507.05) 

t (2015 is t = 1, 2016 is t = 2, etc.) 1,351.51*** 
(88.27) 

Province: Flevoland 2,668.20*** 
(611.52) 

Province: Friesland 61.60 
(611.52) 

Pr0vince: Gelderland 6,689.00*** 
(611.52) 

Province: Groningen 11,939.60*** 
(611.52) 

Province: Limburg 8,338.00*** 
(611.52) 

Province: Noord-Brabant 14,104.00*** 
(611.52) 

Province: Noord-Holland 27,336.80*** 
(611.52) 

Province: Overijssel 6,343.20*** 
(611.52) 

Province: Utrecht 23,418.40*** 
(611.52) 

Province: Zeeland 4,866.60*** 
(611.52) 

Province: Zuid-Holland 13,233.60*** 
(611.52) 

Standard errors are reported in parentheses. 
*, **, *** indicate significance at the 10%, 5%, and 1% 
level, respectively. 
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Appendix C: Descriptive statistics of balanced and 
unbalanced data set 

Table 10: Mean and standard deviation of continuous variables in unbalanced and balanced data set 

 Unbalanced Balanced 

 
All 

Congestion 
All 

Congestion 
 0 1 0 1 

Road conditions       
Congestion (1 = congestion, 0 = no 
congestion) 

0.032 
(0.174) 

0.000 
(0.000) 

1.000 
(0.000) 

0.500 
(0.500) 

0.000 
(0.000) 

1.000 
(0.000) 

Road works (1 = road works, 0 = no 
road works) 

0.285 
(0.442) 

0.248 
(0.431) 

0.309 
(0.462) 

0.282 
(0.450) 

0.249 
(0.433) 

0.314 
(0.464) 

Weather conditions       

Daily mean windspeed (in m/s) 
4.521 

(2.349) 
4.516 

(2.346) 
4.686 

(2.444) 
4.585 

(2.388) 
4.494 
(2.333) 

4.677 
(2.438) 

Daily minimum hourly mean 
windspeed (in m/s) 

2.332 
(1.889) 

6.757 
(3.055) 

6.947 
(3.196) 

2.377 
(1.916) 

6.731 
(3.045) 

6.936 
(3.192) 

Daily maximum hourly mean 
windspeed (in m/s) 

6.763 
(3.060) 

2.328 
(1.886) 

2.448 
(1.963) 

6.834 
(3.124) 

2.314 
(1.874) 

2.440 
(1.955) 

Daily maximum wind gust (in m/s) 
11.383 

(4.402) 
11.376 

(4.400) 
11.568 

(4.459) 
11.449 

(4.427) 
11.343 

(4.393) 
11.554 

(4.458) 
Daily mean temperature (in degrees 
Celsius) 

10.910 
(6.053) 

10.913 
(6.065) 

10.820 
(5.683) 

10.926 
(5.888) 

11.002 
(6.078) 

10.849 
(5.691) 

Daily minimum temperature (in 
degrees Celsius) 

7.101 
(5.634) 

7.096 
(5.643) 

7.256 
(5.363) 

7.230 
(5.509) 

7.184 
(5.641) 

7.277 
(5.374) 

Daily maximum temperature (in 
degrees Celsius) 

14.582 
(7.026) 

14.592 
(7.039) 

14.289 
(6.595) 

14.504 
(6.840) 

14.683 
(7.064) 

14.325 
(6.604) 

Daily sunshine duration (in hours) 
5.152 

(4.238) 
5.154 

(4.237) 
5.091 

(4.269) 
5.117 

(4.252) 
5.134 

(4.232) 
5.101 

(4.272) 
Daily precipitation duration (in 
hours) 

1.706 
(2.842) 

1.701 
(2.836) 

1.850 
(3.009) 

1.762 
(2.898) 

1.700 
(2.820) 

1.824 
(2.971) 

Daily precipitation (in mm) 
2.161 

(4.371) 
2.154 

(4.359) 
2.397 
(4.711) 

2.267 
(4.537) 

2.161 
(4.372) 

2.373 
(4.694) 

Daily maximum hourly precipitation 
(in mm) 

0.841 
(1.756) 

0.839 
(1.751) 

0.898 
(1.896) 

0.870 
(1.836) 

0.847 
(1.768) 

0.894 
(1.901) 

Daily minimum visibility (in km) 
4.314 

(2.227) 
4.314 

(2.228) 
4.334 

(2.190) 
4.315 

(2.211) 
4.298 

(2.226) 
4.332 

(2.195) 

Daily maximum visibility (in km) 
7.559 

(0.809) 
7.560 

(0.810) 
7.529 

(0.793) 
7.542 

(0.803) 
7.554 

(0.813) 
7.530 

(0.794) 
Daily average overcast (on a scale 
from 0 to 9) 

5.920 
(2.184) 

5.918 
(2.185) 

5.989 
(2.163) 

5.963 
(2.164) 

5.940 
(2.164) 

5.986 
(2.164) 

Daily average humidity (in %) 
79.799 
(10.031) 

79.785 
(10.040) 

80.246 
(9.755) 

80.064 
(9.828) 

79.909 
(9.898) 

80.220 
(9.756) 

Daily minimum humidity (in %) 
63.850 
(15.025) 

63.819 
(15.033) 

64.796 
(14.751) 

64.351 
(14.861) 

63.954 
(14.957) 

64.748 
(14.753) 

Daily maximum humidity (in %) 93.467 
(6.113) 

93.471 
(6.118) 

93.370 
(5.964) 

93.471 
(5.947) 

93.574 
(5.925) 

93.369 
(5.968) 

User costs       
Public transport user costs (index 
with base year 2009) 

121.240 
(1.471) 

121.236 
(1.471) 

121.370 
(1.442) 

121.286 
(1.458) 

121.213 
(1.470) 

121.360 
(1.443) 

Car user costs (index with base year 
2009) 

118.373 
(2.778) 

118.366 
(2.778) 

118.603 
(2.751) 

118.459 
(2.772) 

118.331 
(2.783) 

118.588 
(2.755) 

Gasoline price (in euro/litre) 
1.574 

(0.080) 
1.574 

(0.080) 
1.580 

(0.079) 
1.577 

(0.080) 
1.574 

(0.081) 
1.580 

(0.079) 
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 Unbalanced Balanced 

 
All 

Congestion 
All 

Congestion 
 0 1 0 1 

Diesel price (in euro/litre) 
1.260 

(0.096) 
1.259 

(0.096) 
1.271 

(0.096) 
1.265 

(0.096) 
1.259 

(0.096) 
1.270 

(0.096) 

LPG price (in euro/litre) 
0.630 

(0.049) 
0.629 

(0.049) 
0.634 

(0.048) 
0.632 

(0.049) 
0.630 

(0.049) 
0.634 

(0.048) 
Road availability (highway kms per 
100,000 inhabitants) 

33.857 
(9.206) 

34.013 
(9.242) 

29.138 
(6.413) 

31.595 
(8.330) 

34.049 
(9.253) 

29.141 
(6.414) 

Distance to public transport (in km) 5.392 
(2.443) 

5.412 
(2.470) 

4.783 
(1.234) 

5.101 
(1.984) 

5.419 
(2.479) 

4.783 
(1.235) 

Special days       
School holiday (1 = school holiday, 0 = 
no school holiday) 

0.304 
(0.460) 

0.308 
(0.462) 

0.182 
(0.385) 

0.248 
(0.432) 

0.313 
(0.464) 

0.183 
(0.387) 

Public holiday (1 = public holiday, 0 = 
no public holiday) 

0.023 
(0.151) 

0.024 
(0.153) 

0.007 
(0.083) 

0.015 
(0.123) 

0.024 
(0.152) 

0.007 
(0.083) 

Daylight saving time start (1 = start, 0 
= no start) 

0.003 
(0.056) 

0.003 
(0.057) 

<0.001 
(0.017) 

0.001 
(0.038) 

0.003 
(0.052) 

<0.001 
(0.017) 

Economic growth       

GRP per capita (in thousands of 
euros) 

42.158 
(8.012) 

41.625 
(8.120) 

44.958 
(7.396) 

43.295 
(7.947) 

41.629 
(8.127) 

44.960 
(7.397) 

Standard deviations are reported in parentheses. 

Table 11: Proportion of the wind directions in unbalanced and balanced data set 

  North East South West 

Unbalanced 
All observations 15.207% 17.147% 31.411% 34.274% 
Observations with congestion 15.668% 17.354% 32.618% 34.507% 
Observations without congestion 15.193% 17.142% 31.374% 34.268% 

Balanced 
All observations 15.541% 17.354% 32.345% 34.760% 
Observations with congestion 15.692% 17.319% 32.599% 34.389% 
Observations without congestion 15.390% 17.388% 32.091% 35.131% 
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Appendix D: Coefficients of logistic regressions 

Table 12: Results of the various logistic regressions 

 Dependent variable 
 Congestion 

 Benchmark model 
Lasso-regularised 

regression 

Comparative 
unregularised 

regression 

Constant 245.695*** 
(21.603) 

-2.801 -2.875*** 

(0.224) 

Road works 0.290*** 
(0.022) 

0.195 0.199*** 

(0.022) 

Mean windspeed -0.012 
(0.007) 

-0.024 0.026 
(0.020) 

Minimum hourly mean windspeed -0.003 
(0.005) 

-0.008 -0.008 
(0.017) 

Maximum hourly mean windspeed -0.032*** 
(0.005) 

-0.096 -0.100*** 

(0.010) 

Maximum wind gust 0.023*** 
(0.002) 

0.095 0.102*** 

(0.011) 

Wind direction north -0.016 
(0.013) 

-0.015 -0.021 
(0.015) 

Wind direction south 0.007 
(0.012) 

0.013 0.005 
(0.013) 

Wind direction west -0.033*** 
(0.012) 

-0.031 -0.036** 

(0.013) 

Mean temperature -0.002 
(0.007) 

0.009 -0.006 
(0.046) 

Minimum temperature 0.000 
(0.003) 

-0.010 -0.007 
(0.021) 

Maximum temperature 0.009** 
(0.004) 

0.046 0.058* 

(0.033) 

Sunshine duration 0.016*** 
(0.002) 

0.070 0.072*** 

(0.009) 

Precipitation duration 0.029*** 
(0.002) 

0.081 0.083*** 

(0.008) 

Precipitation amount 0.011*** 
(0.002) 

0.052 0.048** 

(0.012) 

Maximum hourly precipitation -0.011*** 
(0.004) 

-0.020 -0.020** 

(0.009) 

Minimum visibility 0.000*** 
(0.000) 

-0.029 -0.028*** 

(0.006) 

Maximum visibility 0.000*** 
(0.000) 

0.023 0.027** 

(0.006) 

Mean overcast -0.005* 
(0.003) 

-0.013 -0.010 
(0.007) 

Mean humidity 0.001 
(0.001) 

0.014 0.015 
(0.017) 

Minimum humidity 0.000 
(0.001) 

. 0.005 
(0.016) 



vi 
 

 Dependent variable 
 Congestion 

 Benchmark model 
Lasso-regularised 

regression 

Comparative 
unregularised 

regression 

Public transport user costs -2.063*** 
(0.181) 

0.007 -0.011 
(0.030) 

Car user costs -0.017*** 
(0.006) 

-0.045 -0.043** 

(0.020) 

Gasoline price -1.128*** 
(0.206) 

0.003 0.005 
(0.016) 

Diesel price 1.279*** 
(0.202) 

0.089 0.088** 

(0.022) 

LPG price 0.750*** 

(0.228) 
-0.023 -0.021 

(0.011) 

Road availability -0.088*** 

(0.001) 
-0.736 -0.737*** 

(0.010) 

Distance to public transport 0.070 
(0.004) 

0.140 0.140*** 

(0.008) 

School holiday -0.541*** 
(0.011) 

-0.534 -0.537*** 

(0.012) 

Public holiday -1.002*** 
(0.029) 

-0.981 -1.004*** 

(0.033) 

Daylight saving time start -0.128 
(0.119) 

-0.169 -0.141 
(0.103) 

GRP per capita 0.000*** 
(0.000) 

0.058 0.059*** 

(0.007) 

Observations 788,774 788,774 788,774 

Optimisation method Gradient descent 
Cyclic coordinate 

descent 
Cyclic coordinate 

descent 

Regularisation No Yes No 

Road fixed effects Yes Yes Yes 

Time fixed effects Yes Yes Yes 

Weekday fixed effects Yes Yes Yes 

Month fixed effects Yes Yes Yes 

Year fixed effects Yes Yes Yes 

Standard errors are reported in parentheses8. 
*, **, *** indicate significance at the 10%, 5%, and 1% level, respectively. 
. indicates that the respective coefficient is shrunk to zero. 

 
8 As thoroughly discussed in Section 4.1., it is preferred not to report standard errors of the regularised 
logistic regression. 
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Appendix E: Mean ICE per variable of the neural network 
and XGBoost model 

 

Figure 20: Mean ICE per variable in XGBoost model. The vertical axis represents the predicted probability. Note that 
the scale of the vertical axis of LPG price, distance to public transport, road availability, public holiday, and GRP per 

capita differs from the scale of the other variables. 
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Figure 21: Mean ICE per variable in neural network. The vertical axis represents the predicted probability. Note that the 
scale of the vertical axis of distance to public transport, road availability and public holiday differs from the scale of the 

other variables. 



 
 

ix 
 

Appendix F: Logistic loss per variable quartile per model 

Table 13: Logistic loss per variable quartile per model 

 
Benchmark model 

Regularised logistic 
regression 

XGBoost model Neural network 

 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

Daily mean windspeed 0.349 0.358 0.348 0.332 0.349 0.358 0.348 0.333 0.236 0.245 0.234 0.228 0.267 0.271 0.262 0.257 
Daily minimum hourly mean windspeed 0.352 0.352 0.347 0.337 0.352 0.352 0.347 0.334 0.238 0.245 0.232 0.229 0.266 0.275 0.260 0.259 
Daily maximum hourly mean windspeed 0.352 0.353 0.340 0.337 0.352 0.353 0.340 0.334 0.240 0.237 0.228 0.229 0.270 0.266 0.256 0.257 
Daily maximum wind gust 0.352 0.355 0.344 0.332 0.352 0.355 0.344 0.330 0.240 0.241 0.235 0.223 0.269 0.268 0.265 0.255 
Daily mean temperature  0.321 0.331 0.342 0.394 0.321 0.331 0.342 0.394 0.220 0.226 0.238 0.258 0.249 0.250 0.266 0.295 
Daily minimum temperature  0.327 0.328 0.345 0.386 0.327 0.328 0.345 0.387 0.224 0.222 0.237 0.259 0.254 0.247 0.265 0.292 
Daily maximum temperature  0.322 0.327 0.348 0.391 0.322 0.327 0.348 0.390 0.221 0.224 0.241 0.255 0.250 0.248 0.270 0.292 
Daily sunshine duration 0.319 0.349 0.343 0.377 0.319 0.349 0.343 0.377 0.217 0.240 0.232 0.254 0.243 0.270 0.263 0.285 
Daily precipitation duration 0.354 0.328 0.349 0.333 0.354 0.328 0.349 0.333 0.239 0.213 0.239 0.227 0.269 0.241 0.265 0.258 
Daily precipitation 0.354 0.336 0.347 0.334 0.354 0.336 0.347 0.334 0.239 0.224 0.238 0.228 0.269 0.251 0.265 0.257 
Daily maximum hourly precipitation  0.354 0.344 0.339 0.339 0.354 0.344 0.339 0.341 0.239 0.229 0.231 0.234 0.269 0.258 0.256 0.263 
Daily minimum visibility 0.335 0.338 0.351 0.363 0.335 0.338 0.351 0.364 0.230 0.233 0.240 0.240 0.258 0.264 0.267 0.270 
Daily maximum visibility 0.320 0.339 0.364 0.367 0.320 0.339 0.364 0.365 0.221 0.231 0.246 0.246 0.248 0.261 0.273 0.278 
Daily average overcast 0.362 0.348 0.330 0.330 0.362 0.348 0.330 0.330 0.244 0.234 0.228 0.228 0.273 0.266 0.254 0.254 
Daily average humidity 0.374 0.350 0.338 0.323 0.374 0.350 0.338 0.319 0.252 0.238 0.228 0.222 0.284 0.267 0.255 0.252 
Daily minimum humidity 0.372 0.355 0.338 0.322 0.372 0.355 0.338 0.320 0.250 0.242 0.225 0.223 0.283 0.270 0.255 0.250 
Daily maximum humidity 0.356 0.349 0.343 0.336 0.356 0.349 0.343 0.332 0.241 0.236 0.233 0.229 0.269 0.266 0.262 0.258 
Public transport user costs 0.344 0.358 0.338 0.341 0.345 0.358 0.338 0.342 0.229 0.244 0.234 0.233 0.261 0.272 0.254 0.260 
Car user costs 0.344 0.365 0.326 0.351 0.344 0.365 0.326 0.354 0.234 0.243 0.228 0.237 0.263 0.275 0.254 0.266 
Gasoline price 0.342 0.346 0.348 0.351 0.342 0.346 0.348 0.351 0.231 0.239 0.236 0.236 0.261 0.266 0.264 0.268 
Diesel price 0.351 0.347 0.355 0.334 0.351 0.347 0.355 0.334 0.238 0.236 0.239 0.228 0.269 0.264 0.268 0.257 
LPG price 0.366 0.353 0.328 0.339 0.366 0.353 0.328 0.339 0.246 0.238 0.226 0.231 0.276 0.272 0.250 0.260 
Road availability 0.312 0.359 0.380 0.343 0.366 0.353 0.328 0.339 0.226 0.242 0.264 0.210 0.250 0.272 0.291 0.251 
Distance to public transport 0.365 0.325 0.343 0.351 0.365 0.325 0.343 0.305 0.250 0.233 0.239 0.259 0.278 0.258 0.268 0.262 
GRP per capita 0.354 0.356 0.336 0.347 0.354 0.356 0.336 0.341 0.222 0.247 0.238 0.235 0.255 0.280 0.265 0.264 

The logistic loss is calculated based upon all observations of the test set that belong to a certain quartile. For example, the logistic loss of the first quartile of daily mean 
windspeed is the logistic loss of all observations in the test set for which the values of daily mean windspeed belong to the first quartile.  

 


