
ERASMUS UNIVERSITY ROTTERDAM 

Erasmus School of Economics 

Master Thesis MSc Economics & Business 

 

What Determines Change in Individual 
Football Skills?  

Performance Prediction in Professional 
Football Using Machine Learning 

Abstract 

Keywords: machine learning, football, performance prediction, Artificial Neural Network, 
Random Forest, Bayesian Hyperparameter Optimisation 
 

Student: Rogier de Bruin 

Student ID: 451943 

 
Supervisor: Dr. J.E.M. van Nierop 

Second assessor: Dr. F. Frasincar 

 
Date version: 31-07-2020 

 

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second assessor, 

Erasmus School of Economics or Erasmus University Rotterdam. 

This study identifies the determinants of future performance levels of male professional 

football players by applying a variety of machine learning techniques. For this purpose, 

data from the football video game FIFA from 2007 until 2020 is used. With this data, 

a comparison between an Artificial Neural Network, Random Forest, and LASSO-

regularised Linear Regression is performed. The results show that it is possible to 

predict the future performance level of football players fairly accurately. An Artificial 

Neural Network yields the best results when predicting future performance in one year, 

whereas a Random Forest gives the most accurate predictions when predicting future 

performance in three years. The results also show that a small number of football skills, 

such as standing tackle, sliding tackle, finishing, and marking, has the most profound 

impact on future performance. Which football skills are the most influential change per 

prediction period. 
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“We are card counters at the blackjack table. And we’re 

gonna turn the odds on the casino. (…) If we pull this off, 

we change the game. We change the game for good.” 

-  

Billy Beane 

General Manager of the 2002 Oakland Athletics 
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1. Introduction 

With an estimated number of 3.5 billion fans (Das, 2020), football can be considered among 

the most popular sports worldwide. 380 million people have watched the 2018 Champions 

League final (Goble, 2019), and the revenue of multiple football clubs has exceeded 500 

million euros in the 2018/2019 season (Lange, 2019). For the same season, the total 

European football market revenue equalled €28.9 billion (Deloitte, 2020). Stadiums are 

filled with people who pay high prices to support their club and who do not want to be 

disappointed by a team’s performance. Coaches and technical directors have to ensure that 

a team performs at its best. Despite all this interest and effort, a major problem in the global 

sports industry is that information about the future performance of a player is lacking. An 

example will explain this. Imagine a person seeing a shiny and good-looking red apple in the 

supermarket, and he decides to buy the apple for breakfast the following day. As the person 

wakes up the following morning, the apple is not that nice and shiny anymore but has some 

bruises and bad spots on it. The person is disappointed by this, as he would not have bought 

the apple knowing this beforehand. The same holds for football players; there is no certainty 

about how well a player will perform in the future. 

 

The story of the 2002 Oakland Athletics shows that statistical applications can change an 

entire sport (Lewis, 2004). Playing in the Major League Baseball (MLB), the Oakland 

Athletics had the third-lowest budget and, thus, had to compete against teams with more 

financial possibilities. By contracting players based on statistics, such as the on-base 

percentage (i.e., the ratio of having achieved a base to total at-bats), instead of subjective 

measures, which was common at that time, the Oakland Athletics achieved outstanding 

results. The team won the American League West title, only to be defeated in the American 

League Division Series (ALDS). To this day, they are the only team to have won 20 

consecutive games in the MLB. The success of the Oakland Athletics shows that recognising 

undervalued players and exploiting this knowledge can make a team compete with 

financially superior opponents (Hakes & Sauer, 2006). Despite the success in baseball, 

Gerrard (2007) states that this method is less likely to succeed in complex invasion team 

sports, such as football. This is said to be due to problems that arise when trying to separate 

highly interdependent team plays into individual player actions. It is difficult to measure 

whether a striker scored a goal because of his excellent finishing skills, or because his 



7 
 

teammates play exceptionally well and deliver a good assist. The same question arises 

regarding opponents: the goalkeeper of the opposing team may perform poorly, allowing 

the striker to score relatively easily. This study tries to overcome the interdependency 

problem by using highly-detailed individual statistics of players. 

 

The high level of uncertainty regarding the future performance of players causes significant 

problems for many. Three parties benefit immediately from a reduction in uncertainty. 

Firstly, football clubs profit from lower levels of uncertainty. Commonly, players are offered 

contracts for multiple years, despite it being unknown how well a player will perform in the 

future. For example, the development of a player that excels in youth teams may stop at a 

certain age, causing the player not to breakthrough at a professional level. The age at which 

the skills of a player start declining differs per player. These are just two examples of the 

uncertainty that football clubs face when contracting players. Football clubs worldwide can 

benefit from understanding how football players will develop in the future. Secondly, 

coaches benefit from having a better understanding of what aspects of football influence 

future performance of players. In this manner, they can adapt their training program to the 

aspects of football that positively influence future performance. For instance, at a younger 

age, more time can be spent to the aspects that are found to result in higher levels of overall 

quality of players in the future. More profound knowledge about what drives football talent 

will help players train more efficiently and, in the end, become a better player. Lastly, the 

uncertainty that many players face could be solved by a predictive model. Players can benefit 

from knowing what their future level will be, for example during salary negotiations. Also, 

youth players can have more insight into their future level and, based on this, determine 

whether they want to continue playing professional football. For instance, a player that is 

predicted to be not good enough for professional clubs at the age of sixteen can decide to 

focus on his educational career, rather than pursuing a football career. In the end, it can be 

stated that football clubs, coaches, and players benefit from experiencing lower levels of 

uncertainty about future performance of players. 

 

Many articles have been written on performance prediction and player development. These 

studies are not necessarily focussed on sports but, for example, on professional expertise 

(Björkman, Ehrnrooth, Mäkelä, Smale, & Sumelius, 2013), musical capabilities (Baum, 

Owen, & Oreck, 1996), or the ability to learn something new (Feldhusen, 1994). Others do 
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specifically try to identify talents in sports. Mills, Butt, Maynard, and Harwood (2014) try to 

identify the effect of the environment that is created by football coaches on the development 

of youth players. Abbott and Collins (2004) state that the quality of the process of a player’s 

development is the best predictor of talent and, therefore, advocate that a player’s skills are 

continuously monitored. An overview of the main findings regarding future performance 

prediction is provided by Williams and Reilly (2000). Based on the number of articles, many 

people from all sorts of industries seemingly want to predict future individual skills. Despite 

the dissimilarities between the previously mentioned articles, they all seem to have one 

thing in common: future skills predictions are based on sociological, physiological, or 

psychological factors. Williams and Reilly (2000) are one of the few that mention the 

existence of a relationship between physical predictors and talent. In this case, however, 

physical predictors are limited to body type measures, such as length, weight, and body fat. 

An exception to this is the research by Reilly, Williams, Nevill, and Franks (2000), which 

states that 15 or 16 years old elite football athletes score higher on agility, sprint time, ego 

orientation, and anticipation skills than equally old sub-elite athletes. However, these 

conclusions should be handled cautiously, as only 31 athletes are used to investigate this 

difference. This illustrates the lack of scientific research into the relationship between sport-

specific skills and the development of players, let alone that advanced machine learning 

techniques have been applied to this subject. 

 

A significant problem found in many articles is that it is troublesome to gather detailed 

player information on a large scale. To exemplify this, the research by Reilly et al. (2000) 

required 28 different tests to be carried out onto 31 participants. Gathering detailed data is 

a time-consuming task, making it almost impossible to replicate the same research on a 

larger scale. It seems that the unavailability of data is one of the main reasons why this 

subject has not been researched more thoroughly. Reilly et al. (2000) mention privacy 

legislation and difficulties regarding the measuring of some subjective skills (e.g., mentality) 

as other reasons that limit the research possibilities in this field. For this study, data from 

the popular football video game FIFA will be gathered. This game contains detailed 

information about many professional football players around the world. As a result, plenty 

of data will be available to investigate the relationship between sport-specific skills and 

overall development of a player. 
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Since the sociological, physiological, and psychological factors of skills development have 

been investigated relatively often, the scope of this article will be limited to sport-specific 

factors. Also, due to the unavailability of data about women and non-professional players, 

only professional male football players will be taken into account. Therefore, the research 

question that will be investigated is:  

 

What sport-specific player characteristics influence the future performance level of 

male professional football players? 

 

Sport-specific player characteristics are the abilities that a football player needs. Examples 

of this are how well a player heads, how fast he can run, or how well he defends. These 

characteristics are typically related to a player’s performance level. This indicates at what 

level a player commonly performs. Some subquestions will help to answer the research 

question: 

1) How are player characteristics related to future performance? To answer the 

research question, it is not only essential to predict a football player’s future 

performance level accurately, but also to understand which factors drive the prediction. 

Both the direction and the size of the effect have to be taken into consideration.  

 

2) How does the variable importance differ when the period between the 

observation of a player’s current level and characteristics of the past change? 

Different models can be created by changing the future moment in time that has to be 

predicted. A model that predicts the level of a player in three years is probably less 

accurate than a model that predicts the progress in only one year. On the other hand, 

being able to predict over an extended period may give other relevant insights into the 

development of players. For example, football clubs may be interested in a longer-term 

prediction as well, despite the probably lower accuracy. It is possible that the importance 

of variables changes according to the different models. 

 

3) How does the relationship between variables and future performance level 

differ depending on the age of players? It may be the case that different 

characteristics are responsible for the improvement and the decline of players of 

different ages. For example, the characteristics that predict the improvement of a young 
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player may not be the same as the ones that predict the decline of an older player. 

Therefore, it would be interesting to see if any changes occur based on the age of a 

player. 

4) How does the relationship between variables and future performance level differ 

depending on the preferred position of players? Defenders likely require other skills 

than attackers do. Therefore, it is interesting to investigate whether the variable 

importance changes depending on the position of a player. 

 

5) Which machine learning model yields the highest predictive power? Eventually, 

football clubs are most likely to be interested in the model that predicts player 

development most accurately. It has to be determined what kind of model achieves the 

highest accuracy.  

 

Firstly, the existing literature regarding this subject will be discussed in the second section. 

This includes reviews of determinants of performance in football and machine learning in 

sports. After this, the data and methods used for this research are presented in the third and 

fourth section, respectively. In the fifth section, the obtained results will be provided. Lastly, 

the implications of the results will be presented in the sixth section, and a conclusion will 

be discussed in the seventh section. 

 

2. Theory about performance prediction in sports 

In this section, the existing literature about performance prediction in sports will be 

discussed. To start, an introduction to the determinants of performance in football will be 

provided. Factors that are negatively related to performance, as well as those that are 

positively related, will be discussed. This will be followed by an overview of existing articles 

that applied machine learning techniques in sports. Articles that use machine learning 

techniques to predict future performance will be reviewed in particular. Finally, a 

conceptual framework summarising the existing literature regarding future performance 

prediction will be presented. 
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2.1. Performance predictors in football 

To understand what drives the future performance of football players, it is essential to gain 

insights into what determines their performance in general. According to Ali (2011), 

performance in football is determined by cognitive, perceptual and motor skills. Since 

football is a free-flowing game, many skills have to be executed in a dynamic context. That 

means that players not only have to perform their technique well but also at the right time. 

Therefore, football players should possess all three skills to perform at a high level. Besides 

this, it is also recognised that the skills of players decline from a certain age (Ali, 2011). 

Firstly, the positive relationship between football performance and cognitive, perceptual, 

and motor skills will be discussed. Additionally, the decline of player skills caused by both 

physical and mental causes will be reviewed. Lastly, an overview of the existing literature 

about the relationship between youth and future sports results will be provided.  

 

2.1.1.  Cognitive skills 

Cognitive skills refer to how well a player understands football from a mental perspective 

(Ali, 2011). Cognitive skills are vital for football players, as they have to quickly assess all the 

aspects of the game that change around them (Williams & Reilly, 2000). Ali (2011) states 

that a challenge in measuring cognitive skills is identifying whether a player does not know, 

or does not recognise what to do. It is a sign of lacking cognitive skills if a player does not 

know what to do. Nevertheless, it may be possible that a player knows which actions to 

perform in certain situations, but is unable to recognise this. In this case, the player’s 

cognitive skills are well-developed, but his perceptual skills, which will be examined in the 

following section, are lacking. Generally, it can be stated that the cognitive skills of a player 

are more developed when a player is more experienced (Ali, 2011; Elferink-Gemser, Visscher, 

Richart, & Lemmink, 2004).  

 

2.1.2. Perceptual skills 

Perceptual skills indicate how well players can react to specific actions and movements in 

their surroundings (Ali, 2011). This is commonly measured by showing players a variety of 

football situations and ask them what they would do, after which their answers are 

compared to those of an experienced football coach. A problem regarding measuring 

perceptual skills in this manner is that it will always be subjective what the right decision is 

(Ali, 2011). There may be a disagreement between coaches what the right decision is in a 
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certain situation. Despite this, multiple studies have found that perceptual skills are 

positively related to player experience, as is the case for cognitive skills (McMorris & 

Graydon, 1996; McMorris & Graydon, 1997; Williams & Davids, 1998). This is confirmed by 

a model predicting the adult performance level of football players based on positioning and 

deciding skills at the age of 17 achieving an accuracy of 70% (Kannekens, Elferink-Gemser, 

& Visscher, 2011).  

 

2.1.3. Motor skills 

Motor skills describe how well a player can control his body movements. As such, motor 

skills are directly related to, amongst others, passing, controlling, dribbling and shooting 

the ball. Research has shown that a positive relationship between motor skill competence 

and general fitness exists (Haga, 2009). It is also proven that this relationship can be used 

to predict future general fitness levels; children with well-developed motor skills are more 

likely to have a better general fitness at a later age (Barnett, van Beurden, Morgan, Brooks, 

& Beard, 2008). Research by Di Cagno et al. (2014) demonstrates this as well by showing 

that gymnasts of approximately twelve years old with well-developed motor skills achieve 

better results three years later than gymnasts with less-developed motor skills. Furthermore, 

79% of the variance in general fitness can be explained by a person’s ability to jump, throw, 

and kick (Stodden, Langendorfer, & Roberton, 2009). Especially jumping can be considered 

an essential predictor for fitness, while kicking seems less critical. Although general fitness 

levels do not cover all aspects of football, players do need the ability to perform many 

physically challenging movements during the game. Besides a positive relationship between 

motor skills and general fitness, it is found that top-level players are better in juggling the 

ball than other players (Hoare & Warr, 2000; Rösch, et al., 2000). Also, elite football players 

appear to have a better balance ability in comparison to less proficient players (Hrysomallis, 

2011). Furthermore, more advanced motor skills lead to a better kicking technique (Stratton, 

Reilly, Williams, & Richardson, 2004). Additionally, Gonaus and Müller (2012) state that 

youth football players who perform better in speed, power and flexibility, and coordination 

and endurance are more likely to be drafted later in their career. In the end, it appears that 

there is a positive relationship between motor skills and football skills. An important notion 

is that the required motor skills differ per position (Di Salvo, et al., 2007). For example, it is 

shown that midfielders need more running capabilities than players in other positions. 
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The exact determinants of a player’s motor skills are not so clear, however. Many studies 

show that most motor skills are primarily developed before the age of six (Chow, Henderson, 

& Barnett, 2001; Iivonen, Sääkslahti, & Nissinen, 2011; McKenzie, et al., 2002). In this short 

period that motor skills improve most, habitual and frequent physical activity is a significant 

predictor (Bürgi, et al., 2011; Cliff, Okely, Smith, & McKeen, 2009; Fisher, et al., 2005; 

Williams, et al., 2008). This means that the extent to which children gain control over their 

body movements during early childhood is a determinant for motor skills later at a later age. 

Furthermore, a negative relationship exists between a person’s motor skills and certain 

medical conditions during early childhood, such as prematurity, intrauterine growth 

restriction, many hospitalisations, and immobility (Sanders-Woudstra, Verhulst, & De 

Witte, 1993). In the end, it can be stated that multiple circumstances during early childhood 

affect a person’s motor skills during the remainder of his life. As such, a significant part of 

the performance of football players is determined by childhood development. 

 

2.1.4. Physical strength 

In this research, the causes of the decline of individual skills are divided into two parts: 

physical and mental causes. Starting with physical causes, an important aspect regarding 

the decline of individual skills is a player’s peak performance age. This is the age at which 

an athlete performs best. Before the peak performance age, the performance of an athlete is 

still improving, while the performance is deteriorating after the peak performance age. The 

peak performance age differs per sport and athlete, making it hard to accurately state the 

age at which an athlete excels (Baltes & Baltes, 1990). In general, athletes that participate in 

sports that require a high level of explosiveness peak at a relatively young age, while athletes 

that are participating in endurance sports peak later (Schulz & Curnow, 1988). The same 

research states that, since football can be considered a sport that requires explosiveness, the 

peak performance age of a football player is around 25 years. The main reason why the 

performance of older players deteriorates is the ageing of skeletal muscles, which causes the 

numbers of fibres in muscles starting to diminish (Faulkner, Davis, Mendias, & Brooks, 

2008). This has an immediate effect on the motor skills of football players.   

 

2.1.5. Mental strength 

Secondly, there are mental causes that can lead to a decline in a player’s skills. There is a 

broad variety of articles that supply different ages at which cognitive decline starts, ranging 
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from 18 to 70 years old. Some papers suggest that mental decline starts at a relatively high 

age. Examples of this are that decline begins when people are 70 years old (Aartsen, Smits, 

Van Tilburg, Knipscheer, & Deeg, 2002), 60 years old (Plassman, et al., 1995), or 55 years 

old (Rönnlund, Nyberg, Bäckman, & Nilsson, 2005). These conclusions are based on 

multiple cognitive tests per person. However, Salthouse (2009) suggests that most of these 

findings are unreliable due to the longitudinal comparisons that are made. As a result of 

this, the age-related decline is said to be masked by positive effects associated with prior test 

experience. According to Schroeder and Salthouse (2004), cognitive decline starts in a 

person’s early 20’s. Many others support this age (Allen, Bruss, Brown, & Damasio, 2005; 

Fotenos, Snyder, Girton, Morris, & Buckner, 2005; Salat, et al., 2004; Sowell, et al., 2003; 

Sullivan & Pfefferbaum, 2006). Therefore, it seems more likely that cognitive skills start to 

decline slowly at the age of 20. The decline accelerates when a person reaches the age of 

approximately 50 years old. Although professional football players are almost always 

younger than 50, this implies that their cognitive and perceptual skills could gradually 

decline over the years. However, this appears paradoxical to the earlier mentioned finding 

that cognitive and perceptual skills improve when players become more experienced. It is 

plausible that both statements are correct, but that the effect of being more experienced is 

stronger than the effect of the gradual mental decline. 

 

It must be noted that the two causes of individual decline seem certain. The preceding 

findings leave little to no doubt that a player will deteriorate both physically and mentally 

starting at a particular age. It is impossible to stop the process of an ageing body. Although 

the deterioration age differs per player and is unknown on beforehand, the performance of 

all players will certainly decline in the future. However, it is not certain that a player’s 

performance will improve at any point in time. Despite cognitive and perceptual skills being 

related to experience, it is not certain that a player’s performance will increase. As a result, 

it can be argued that predicting the decline of performance is easier than predicting the 

increase. A decline will certainly occur at some point in time, whereas it is unclear if a player 

will better its performance. As such, it can be stated that predicting decline is not about 

whether a player’s performance will decrease, but when they will decrease and at what rate. 
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2.1.6. Youth results 

Besides all other aspects that are related to future performance, it appears sensible that 

athletes who perform well at a young age, are more likely to obtain good results in the future 

as well. However, excelling in a specific sport as a child appears to be unrelated to 

performing well at a later age (Elferink-Gemser, Jordet, Coelho-E-Silva, & Visscher, 2011). 

This is confirmed by the findings that youth results in tennis are not a good predictor for 

success later on (Brouwers, de Bosscher, & Sotiriadou, 2012). A possible explanation for this 

may be the relative maturity of youth players. It is shown that attributes in which youth 

players can have only a temporary advantage over other players are not related to career 

success (Unnithan, White, Georgiou, Iga, & Drust, 2012). Examples of such temporary 

advantages are higher body mass and bigger stature at a young age. Unnithan et al. (2012) 

state that these attributes are related to kicking with more force and a higher vertical jump 

capacity. A youth player will be better than other youth players from the same age in these 

two skills due to its relatively early physical maturity. In the long term, however, this 

advantage will disappear since his peers will catch up to him. As such, it can be stated that 

achieving good results at a certain age is not necessarily a good predictor for future success. 

Nevertheless, the background of why a player achieves these results could be a determinant. 

 

2.2. Machine learning in sports 

In the preceding sections, the determinants of future performance have been discussed. 

Before machine learning can be applied to predict future performance of football players, it 

is vital to explore how other studies have tried to use machine learning in sports. Although 

statistics have played a role in sports for a long time, the use of advanced machine learning 

techniques is less common. Machine learning techniques use computer algorithms that 

improve through experience. It can be considered a subset of artificial intelligence. 

According to Bunker and Thabtah (2019), Purucker (1996) was one of the first to use 

machine learning techniques predicting results in the National Football League (NFL) based 

on five team features. The Artificial Neural Network (ANN) constructed by Purucker 

achieved an accuracy of 61%, which is lower than the 72% accuracy achieved by experts. An 

extended version of Purucker’s model, however, managed to perform better than NFL 

experts (Kahn, 2003). The ANN achieved an accuracy of 75%, compared to an accuracy of 

63% by experts. Although the results are relatively accurate, both studies use a relatively 

small data set of 64 and 208 matches, respectively. A more extensive study gathered data 
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about all matches in four major league sports (i.e., National Rugby League (NRL), Australian 

Football League (AFL), Super Rugby and English Premier League (EPL)) starting from 2002 

(McCabe & Trevethan, 2008). The constructed ANN achieved an accuracy of approximately 

67.5%. According to McCabe and Trevethan (2008), this is higher than the accuracy of 

sports analysts’ predictions, who achieved an accuracy between 60% and 65%. Another 

study uses Bayesian inference and rule-based reasoning to predict the outcome of the 2002 

World Cup Soccer (Min, Kim, Choe, Eom, & McKay, 2008). Although it is hard to calculate 

exact numbers about the achieved accuracy due to the nature of their study, the predictions 

appear reasonable and stable. It must be noted, however, that advanced machine learning 

techniques do not necessarily outperform less complicated models in these types of study. 

A comparison between a Logistic Regression, ANN, Support Vector Machine (SVM) and 

Naive Bayes shows that the Logistic Regression performs best when predicting National 

Basketball Association (NBA) outcomes (Cao, 2012).  

 

As mentioned before, the 2002 Oakland Athletics achieved outstanding results in the MLB 

by using machine learning techniques. The main idea was that teams with lower budgets 

could compete with the high budget teams by buying undervalued players (Lewis, 2004). It 

would be expected that a player’s salary reflects his performance. However, one of the main 

findings was that, at that time, on-base percentage (i.e., the ratio of having achieved a base 

to total at-bats) is a significant predictor of a team winning, but not of player salaries. 

Traditionally, teams often considered a player’s batting average (i.e., the ratio of hits to total 

at-bats) or slugging rate (i.e., the ratio of bases reached to total at-bats). The main difference 

is that the on-base percentage also accounts for walk-offs, while both batting average and 

slugging rate disregard this. As a result, players with a high on-base percentage were often 

undervalued. Similarly, it was found that the same holds for closers (i.e., a pitcher being 

specialised in getting the final outs in a close game when his team is leading) being overrated 

and overpaid. Although many baseball experts doubted these statements, they are 

confirmed by scientific research (Hakes & Sauer, 2006). It must be noted, however, that 

these abnormalities in player’s salaries were quickly resolved. It is shown that on-base 

percentage was a better predictor for salary than slugging rate in 2004 (Hakes & Sauer, 

2007). This indicates that it is vital to update predictive models continuously and to stay 

ahead of the curve in order to identify undervalued players. 
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The above mentioned studies all applied machine learning on a team level. The performance 

of an athlete can be predicted by machine learning techniques on an individual level as well. 

The performance of a javelin thrower has been predicted by both a regression model as well 

as an ANN (Maszczyk, et al., 2014). It is found that the ANN yields more accurate results 

than the regression model. Additionally, the result of the 200-meter backstroke women’s 

final at the Olympic Games in 2000 has been predicted by using an ANN (Edelmann-Nusser, 

Hohmann, & Henneberg, 2002). The error of the prediction was only 0.05 seconds on a 

total swimming time of more than two minutes. Both studies underline the importance of 

their results for high-performance staff to identify the factors that determine success. In 

biathlon competitions, it is found that predicting shooting hit rates using a Tree-based 

model with Boosting is more successful than using a Logistic Regression or ANN (Maier, 

Meister, Trösch, & Wehrlin, 2018). 

 

In sum, it appears that ANNs in particular can predict performance in sports relatively 

accurately, both for individuals as for teams. Moreover, ANNs are often found to be more 

accurate than other models. However, some studies indicate that other methods are more 

reliable than ANNs. Therefore, it cannot be assumed that an ANN is necessarily the best 

method to predict performance in sports, indicating that other methods have to be 

considered as well. 

 

2.3. Conceptual model 

 
 

Figure 1: Conceptual model 
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To summarize the existing literature about performance prediction in sports, a conceptual 

model is presented in Error! Reference source not found.. As stated in Section 2.1, 

cognitive, perceptual, and motor skills are the main predictors of performance in football 

(Ali, 2011). Cognitive (Ali, 2011; Elferink-Gemser, Visscher, Richart, & Lemmink, 2004) and 

perceptual skills (Kannekens, Elferink-Gemser, & Visscher, 2011; McMorris & Graydon, 1996; 

McMorris & Graydon, 1997; Williams & Davids, 1998) are positively related to experience, 

which is highly correlated to age. This means that older football players are cognitively and 

perceptually more skilled. Mental strength is positively related to both cognitive and 

perceptual skills as well and depreciates as a player becomes older (Schroeder & Salthouse, 

2004). Since age is positively related to cognitive and perceptual skills but negatively related 

to mental strength, it is unclear how cognitive and perceptual skills develop over the years. 

It is suggested, however, that the positive effect of experience is stronger than the negative 

impact of mental strength. As a result of cognitive and perceptual skills being related to the 

same factors, these two skills are highly inter-related. Players with well-developed cognitive 

skills are likely to have excellent perceptual skills as well, and vice versa.  

 

Furthermore, motor skills are positively related to childhood development. Detrimental 

circumstances during childhood will result in lower motor skills level at a later age (Bürgi, 

et al., 2011; Cliff, Okely, Smith, & McKeen, 2009; Fisher, et al., 2005; Sanders-Woudstra, 

Verhulst, & De Witte, 1993; Williams, et al., 2008). Additionally, there is a positive 

relationship between physical strength and motor skills (Faulkner, Davis, Mendias, & 

Brooks, 2008). Physical strength, however, is negatively related to age (Schulz & Curnow, 

1988). As soon as a player has passed its peak performance age, his skeletal muscles will 

deteriorate (Baltes & Baltes, 1990). This will have an immediate effect on his motor skills, 

indicating that these will decline when a player becomes older.  

 

Lastly, it is recognised that a player’s position may influence the effect of these skills on 

performance (Di Salvo, et al., 2007). For example, defenders are likely to require a different 

set of skills than goalkeepers, midfielders and attackers. Also, it is necessary to control for 

physical characteristics and which foot a player prefers when measuring performance. 

Especially for young players, the maturity rate differs per player (Baltes & Baltes, 1990). 

According to the existing literature, this may affect the performance development for 

players. Although there is no literature found that suggests a relationship between the 
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preferred foot of a player and its performance, it is plausible that this relationship exists. 

Therefore, it is accounted for when constructing the model. 

 

3. Data 

To investigate the research question, a data set containing detailed information about 

football players is constructed. The information is gathered from multiple editions of the 

popular football video game FIFA, in which gamers can control and play with real-life 

football players. Only professional male football players that are active in the major football 

leagues are included in the game. Since it differs per year which leagues are covered, an 

overview of the leagues per year is depicted in Table 6 (Appendix A). In addition to all 

players active in these leagues, players from approximately ten clubs from other leagues are 

included. Again, it varies per year which teams are chosen. The data in FIFA is constructed 

by approximately 6,000 FIFA Data Reviewers, who monitor the development of individual 

football players. As a result, the data is highly accurate and closely related to the 

performance of a player in reality. A player’s capabilities are based on a variety of variables, 

such as heading accuracy, agility, and aggression. Player attributes are stored in FIFA as well, 

which include, for example, a player’s age and physical characteristics. 

 

Data about all football players present in FIFA from 2007 until 2020 is merged in a data set 

with 158,062 observations, featuring 39,719 players. These players have 179 different 

nationalities from all continents except Antarctica. It is important to note that there is a 

difference between the calendar year and the release date of a FIFA edition. For example, 

FIFA 20 is released on the 24th of September 2019. Although the information in the game is 

updated continuously, the gathered data is always from the release date of the game. The 

data can be divided into player attributes and football data. To start with the former, the 

available player attributes are age, height, weight, preferred foot and preferred position. Age 

is measured in years, height in centimetres, and weight in kilograms. Preferred foot indicates 

whether a player is right-footed or left-footed. Lastly, preferred position indicates in which 

position a player is most often active. Secondly, football data is stored in the data set. This 

consists of both attacking and defensive work rate, an overall score, and 33 football-specific 

skills, including goalkeeper-related skills. Attacking and defensive work rate are categorised 

into ‘low’, ‘medium’, or ‘high’. All other football data is scaled from 1 to 99 with 1 being the 
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lowest score. Descriptive statistics of the continuous and categorical variables are shown in 

Table 7 and Table 8 (Appendix B), respectively.  

 

In the previous section, a conceptual model of football performance was presented. 
Variables representing most concepts of the model are present in the data set. However, 
some variables in the model cannot be found in the data. This is visualised in  

Figure 2. The green boxes in the model represent variables that can be observed in the data 

set, whereas the red boxes denote unobserved variables. The main reason for those variables 

not being present in the data set is the difficulty to measure them. These variables are not 

possible to review during matches without some sort of interactions with a player. 

Therefore, these variables are not included in this study. 

 

 

 

Figure 2: Overview of observed (green) and unobserved (red) variables in the conceptual model 

 

Most variables contained some missing values. This was mainly due to FIFA Data Reviewers 

being unable to determine these values. 195 missing values belonged to players that did not 

play any matches. As their skills have not been assessed, these observations contained only 

missing values. Additionally, some skills have not been evaluated for certain players, as FIFA 

Data Reviewers did not have enough information about the skills of a player. This was mainly 

the case for some highly specific skills, such as goalkeeping skills and volleys. Lastly, FIFA 

did not always include a player’s preferred position before 2015. As a result, the preferred 

position of players active before 2015 was missing relatively often. In total, 13,883 
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observations of 1,367 players contain missing values. The observations containing missing 

variables are kept in the data set momentarily. Eventually, after some other data processing 

steps, the observations with missing values are removed. 

 

4. Methods 

This study aims to predict future performance levels of football players and to find out what 

drives these predictions. The main method that is used to predict future performance levels 

is a feed-forward ANN. Section 2.2 showed that this method is most likely to result in the 

most accurate predictions. However, Section 2.2 also indicated that the results should be 

compared to other machine learning methods, as there is no certainty that this method is 

the best. Therefore, a Random Forest and LASSO-regularised Linear Regression are 

constructed to compare the performance of the ANNs. For this study, two different 

prediction periods are considered: a period of one year, and a period of three years. A 

separate model is created per prediction period. In the first part of this section, the theory 

of three separate machine learning methods will be explained. In the remaining parts, the 

application of the theory is discussed. 

 

4.1. Theoretical basis of the models 

In this section, the theory about the machine learning methods that are used will be 

discussed. Firstly, the theory behind an ANN will be provided. Afterwards, the same will be 

done for a Random Forest and a Regularised Linear Regression. 

 

4.1.1. Artificial Neural Network 

The idea of a Neural Network has been brought forward in an article by McCulloch and Pitts 

(1943). They made use of electrical circuits to develop a simple Neural Network. Over the 

decades, progress in research led to the development of more complicated Neural Networks. 

An example of this is the construction of an Artificial Neural Network (i.e., a Neural Network 

created with the help of computers) by Rochester, Holland, Haibt and Duda (1956). A 

schematic overview of the architecture of an ANN is visualised in Figure 3. An ANN aims to 

create a set of linkages between the input layer and the output layer of the model. The input 

layer consists of raw data, whereas the output layer contains the eventual prediction. The 

value in the output layer is determined by passing the input data through several hidden 
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layers. The number of hidden layers in an ANN creates a trade-off between accuracy and 

computational costs. Additional hidden layers may improve the prediction accuracy, but 

also enlarges the training time. Generally, two hidden layers are sufficient, but three hidden 

layers can be used when the main aim of the model is to achieve a high prediction accuracy 

(Karsoliya, 2012). Adding a fourth hidden layer is shown to increase computational costs 

without increasing prediction accuracy. Therefore, the number of hidden layers is held 

constant at three for this study, which is the same number of hidden layers as displayed in 

Figure 3. The circles that are visible in Figure 3 are referred to as neurons and determine the 

actual predicted value. Every hidden layer contains a pre-set number of neurons. This 

number is a hyperparameter, which means that it has to be set manually before the training 

process begins. Hyperparameters have to be optimised to achieve the best results. 

 

 

Figure 3: Schematic representation of the architecture of an Artificial Neural Network 

 

The neurons in an ANN work similarly to the neurons in a human brain. All neurons are 

connected by dendrites, through which information is transmitted. The neurons receive 

information, transform it, and subsequently send it to the next neuron. This process is 

schematically depicted in Figure 4. In this figure, three inputs 𝑥𝑖 are visualised. All inputs 

are assigned a weight 𝑤𝑖. This weight reflects the importance of the connection between two 

neurons. A higher weight assigns more importance to a particular input. The value of the 

neuron 𝑧 is calculated as the weighted sum of the input, including a bias term 𝑏. This is 

mathematically depicted in equation (1): 

 𝒛𝑙 = 𝒘𝑙
𝑇𝒂𝑙−1 + 𝒃𝑙 

𝒂𝑙 = 𝑓(𝒛𝑙) 
(1) 

In this equation, 𝒂𝑙 is the activation vector of hidden layer 𝑙 and 𝒛𝑙 the weighted input to 

neurons in hidden layer 𝑙. The weighted input is dependent on the transpose of the weights 

 𝒘𝑙
𝑇 of hidden layer 𝑙, the activation vector of the previous hidden layer 𝒂𝑙−1, and the bias 
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term 𝒃𝑙 of hidden layer 𝑙. The weighted sum is passed through the activation function f, 

which results in the eventual output. 

 

 

Figure 4: Schematic representation of the process involving a neuron 

 

With only one hidden layer and one neuron, the mathematical steps are relatively simple. 

However, when multiple hidden layers and neurons are connected and transformed by non-

linear functions, complex and non-linear relationships can be captured. At the same time, 

this increases the chance of overfitting. Overfitting means that a model performs well on 

predicting the training data, but poorly on unseen test data. This is a result of the model no 

longer being trained by the training data, but simply memorising it. To overcome this 

problem, dropout between two hidden layers can be applied. This indicates that a 

percentage of the neurons is randomly set to zero. The percentage, also referred to as 

dropout rate, is a hyperparameter. 

 

A variety of activation functions exist to transform the weighted sums of neurons. For this 

study, the Rectified Linear Units (ReLU) activation function is used, as proposed by Nair 

and Hinton (2010), for both the hidden layers and the output layer. This activation function 

is chosen as it is proven to be a good default choice (Goodfellow, Bengio, & Courville, 2016). 

The ReLU activation function is depicted mathematically in equation (2): 

 𝑓(𝑧) = max (0, 𝑧) (2) 

In this equation, 𝑧 denotes the weighted input to a neuron. 

 

In the end, the goal of the ANN is to determine the weights between the layers of the model. 

This is accomplished by minimising a loss function ℒ. Due to the size of an ANN, it is hard 

to define the optimum of ℒ analytically. Therefore, a method called backpropagation is 

applied to find the optimum of the loss function, as proposed by Rumelhart, Hinton and 
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Williams (1985; 1986). This method propagates the error of the model backwards through 

the network. This means that data passes through the network forwards and backwards 

more than once. One full passage of all data is referred to as an epoch. When passing through 

the network, the data can be split into batches that pass through the network independently. 

The number of observations that each batch contains is the batch size. The number of 

epochs and batch size are hyperparameters. Backpropagation tries to identify the optimum 

of the loss function by computing its partial derivatives 
𝜕ℒ

𝜕𝑤𝑗,𝑘,𝑙
 and 

𝜕ℒ

𝜕𝑏𝑗,𝑙
 with respect to any 

weight 𝑤𝑗,𝑘,𝑙 between neurons 𝑗 and 𝑘 in hidden layer 𝑙 or bias 𝑏𝑗,𝑙 of neuron 𝑗 in hidden layer 

𝑙. Subsequently, these partial derivatives are used to minimize the loss function ℒ. It is 

important to note that 
𝜕ℒ

𝜕𝑾𝑙
=

𝜕ℒ

𝜕𝒂𝑙

𝜕𝒂𝑙

𝜕𝒛𝑙

𝜕𝒛𝑙

𝜕𝑾𝑙
 and 

𝜕ℒ

𝜕𝒃𝑙
=

𝜕ℒ

𝜕𝒂𝑙

𝜕𝒂𝑙

𝜕𝒛𝑙

𝜕𝒛𝑙

𝜕𝒃𝑙
 both contain the component 

𝜕ℒ

𝜕𝒂𝑙

𝜕𝒂𝑙

𝜕𝒛𝑙
. As a result, the local error 𝜀𝑗,𝑙 of neuron 𝑗 in hidden layer 𝑙 can be defined as shown 

in equation (3): 

 
𝜀𝑗,𝑙 ≡

𝜕ℒ

𝜕𝒛𝑗,𝑙

 (3) 

Then, the error for each layer has to be calculated. This error can be propagated through the 

network backwards. This means that the error 𝜀𝑗,𝑁+1 for layer 𝒍𝑁+1 has to be defined. This is 

visualised in equation (4): 

 
𝜀𝑗,𝑁+1 =

𝜕ℒ

𝜕𝑎𝑗,𝑁+1

𝑓′(𝑧𝑗,𝑁+1) (4) 

Equation (4) consists of two terms. The first term measures the degree of change in the loss 

function as a function of the 𝑗-th output activation. The second term represents the 

derivative of the activation function used in the output layer as evaluated in 𝑧𝑗,𝑁+1. Equation 

(4) is rewritten in matrix-based form in equation (5) to ease further derivation of the 

backpropagation formulas: 

 𝜺𝑁+1 = 𝛻𝑎ℒ⨀𝑓′(𝒛𝑙) (5) 

In this equation, ∇aℒ denotes a 𝑘-dimensional vector consisting of the partial derivatives 

𝜕ℒ

𝜕𝑎𝑗,𝑁+1
 for all 𝑘 neurons in the output layer. Similarly, f′(𝐳l) represents the partial derivatives 

𝑓′(𝑧𝑗,𝑁+1) for all j. The symbol ⨀ denotes the Hadamard product of the terms on the left and 

the right. Based on equation (5), equation (6) represents the error 𝜀𝑙 in layer 𝑙 as a function 

of the error 𝜀𝑙+1 in the next layer: 

 𝜀𝑙 = ((𝑾𝑙+1)𝑇𝜀𝑙+1) ⊙ 𝑓′(𝒛𝑙) (6) 
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In this equation, 𝑾𝑙+1 represents the weight matrix of the (𝑙 + 1)-th layer, containing all 

weights between the 𝑙-th and the (𝑙 + 1)-th layer. By combining equation (1), (5) and (6), 

the partial derivatives 
𝜕ℒ

𝜕𝑤𝑗,𝑘,𝑙
 and 

𝜕ℒ

𝜕𝑏𝑗,𝑙
 can be represented as shown in equation (7): 

 𝜕ℒ

𝜕𝑤𝑗,𝑘,𝑙

= 𝑎𝑘,𝑙−1𝜀𝑗,𝑙 

𝜕ℒ

𝜕𝑏𝑗,𝑙

= 𝜀𝑗,𝑙 

(7) 

 

As the partial derivatives are now calculated through backpropagation, the loss function can 

be minimised using iterative algorithms, of which the Gradient Descent (GD) method is 

mostly used. The GD algorithm aims to optimise the parameters that are used by the 

network. This is schematically represented in Figure 5. It accomplishes this by calculating 

the loss for ℒ(𝜃), in which 𝜃 denotes a set of parameters and then take a small step of the 

size of the learning rate 𝛼 towards the negative gradient. This is mathematically depicted in 

equation (8): 

 𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝛼𝛻𝜃ℒ(𝜃) (8) 

In this equation, ∇θℒ(θ) denotes the gradient of ℒ(θ). A disadvantage of the GD algorithm 

is that, since this is an iterative algorithm, the computation time is high. Therefore, 

Stochastic Gradient Descent (SGD) is often applied to reduce computation time. SGD uses 

only a random sample of 𝑛′ observations {𝒙1, 𝒙2, … , 𝒙𝑛′} ∈ 𝑿 to calculate the gradient instead 

of all observations. Given that 𝑛′ is sufficiently large and under the assumption that ℒ(𝜃) =

1

𝑛
∑ ℒ𝑖(𝜃)𝑛

𝑖=1 , equation (9) holds: 

 
𝛻𝜃ℒ(𝜃) =

∑ 𝛻𝜃,𝑥ℒ(𝜃)𝑋

𝑛
≈

∑ 𝛻𝜃,𝑥𝑗
ℒ(𝜃𝑚′

𝑗=1 )

𝑚′
 (9) 

 
Figure 5: Schematic representation of Gradient Descent method 
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A disadvantage of (Stochastic) Gradient Descent, however, is that the learning rate 𝛼 has to 

be chosen manually. Other optimisation techniques are capable of automatically adapting 

the learning rate and finding individual learning rates per parameter. Therefore, the 

Adaptive Moment (Adam) optimiser is used for this study, as proposed by Kingma and Ba 

(2014). The main idea behind the Adam optimiser is that it uses estimations of the first and 

second moments of the gradient to adapt the learning rate for every weight of a Neural 

Network. The 𝑁-th moment 𝑚𝑛 of a random variable 𝑥 is equal to the expected value of that 

variable to the power 𝑛. This is formalised in equation (10): 

 𝑚𝑛 = 𝐸[𝑥𝑛] (10) 

To calculate the moments, the Adam optimiser uses the moving average of the gradient 𝑚𝑡 

and the squared gradient 𝑣𝑡. The calculation of the moving averages is depicted in equation 

(11): 

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 

(11) 

In this equation, 𝛽1 and 𝛽2 are hyperparameters, and 𝑔𝑡 represents the gradient on the 

current random sample of observations. Experiments with multiple types of methods – 

including ANNs – have shown that values of 0.9 for 𝛽1 and 0.999 for 𝛽2 yield good results 

(Kingma & Ba, 2014). Therefore, 𝛽1 and 𝛽2 are held constant at 0.9 and 0.999, respectively. 

 

The first iteration always uses vectors of zeroes as the moving averages. As a result, there is 

substantial bias in the moving average for small numbers of 𝑡 and the calculated moving 

averages have to be corrected. This is depicted in equation (12):  

 
�̂�𝑡 =

𝑚𝑡

1 − 𝛽1
𝑡  

�̂�t =
𝑣t

1 − β2
t  

(12) 

The weights of the model can now be updated using the moving averages. The weights are 

updated as shown in equation (13): 

 
𝒘𝑡 = 𝒘𝑡−1 − 𝜂

�̂�𝑡

√�̂�𝑡 + 𝜀
 (13) 

In this equation, 𝐰t represents the model weights after iteration 𝑡, η is a hyperparameter 

and ε the error term. The same experiments that determined the values of 𝛽1 and 𝛽2 also 

indicate that a value of 0.001 for η yields good results for a variety of methods (Kingma & 

Ba, 2014). Therefore, the hyperparameter η is held constant at 0.001 for this research. 
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4.1.2. Random Forest 

The Random Forest algorithm, as developed by Breiman (2001), is a tree-based ensemble 

method. It is based on the tree-based models of Breiman, Friedman, Stone and Olshen 

(1984) and extends the bagging algorithm of Breiman (1996). As the Random Forest 

algorithm is an ensemble method, multiple decision trees are constructed and the eventual 

predicted value is determined by combining the trees. An important distinction compared 

to other ensemble methods is that the Random Forest algorithm tries to reduce the 

correlation between the distinct decision trees. This is accomplished by using a randomly 

selected data set per decision tree, and a randomly selected number of variables for each 

split. 

 

Decision trees aim to split the data set based on several conditions. All connected parts of a 

decision tree are referred to as nodes. The first node of a tree is named the root node, 

whereas the last nodes are called leaf nodes. Any nodes between the root node and the leaf 

nodes are referred to as internal nodes. All nodes are connected by branches. Although most 

tree-based algorithms allow a node to be split into more than two nodes, the Random Forest 

algorithm does not. A schematic representation of a decision tree is shown in Figure 6. The 

predicted value of an observation is the value of the leaf node that it belongs to. The value 

of the leaf nodes is the average of all observations in that node. At every split, the residual 

sum of squares (RSS) is minimised. The RSS is represented mathematically in equation (14): 

 
𝑅𝑆𝑆𝑗 = ∑ (𝑦𝑗 − 𝑦𝑖)

2
𝑛𝑗

𝑖=1
 (14) 

In this equation, 𝑛𝑗 refers to the number of observations in node 𝑗, 𝑦𝑗 is the predicted value 

of observations in node 𝑗 and 𝑦𝑖 the actual value of observation 𝑖. 

 

 

Figure 6: Schematic representation of a decision tree 
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Figure 7: Schematic representation of the Random Forest algorithm 

 

A schematic representation of the Random Forest algorithm is depicted in Figure 7. The 

algorithm uses two methods to reduce the correlation between the distinct trees. Firstly, a 

different randomly selected set of observations is used per tree. This set is selected through 

bootstrapping. This means that 𝐵 bootstrap samples 𝑿∗𝑏 with the same size as the original 

data set are created. The bootstrap samples are filled with replacement, meaning that an 

observation can occur in a sample more than once, or not at all. As all decision trees are 

based on different data, there is less correlation between the trees. For all bootstrap samples, 

the predicted value 𝑓∗𝑏(𝑿) is calculated, in which 𝑓∗𝑏 denotes the decision tree of bootstrap 

sample 𝑏. The eventual predicted value is determined by the average of all bootstrap 

samples. This is formalised in equation (15): 

 
𝑓𝑎𝑙𝑙(𝑿) =

1

𝐵
∑ 𝑓∗𝑏(𝑿)

𝐵

𝑏=1
 (15) 

Secondly, only a restricted number of variables 𝑚 is considered at each split. Although 𝑚 

remains the same per split, the variables that are used change. A pre-set number of 𝑚 

variables is randomly selected for every split. By doing so, the splitting conditions differ per 

tree, which reduces correlation in the distinct trees. The number of variables randomly 
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selected at each split is a tuneable hyperparameter. There is some disagreement in the 

existing literature on whether the value of this hyperparameter influences the results of the 

Random Forest. Breiman (2001) states that although the number of variables divided by 

three is a good estimate for regression problems, the number of variables divided by two 

and the number of variables multiplied by two should both be considered. At the same time, 

Liaw and Wiener (2002) empirically show that the number of variables considered per split 

does not affect the results of a Random Forest. 

 

The algorithm uses multiple decision trees for its prediction. The number of trees that are 

used is a hyperparameter. When using too few trees, variance in the data set is likely to be 

unexplained. On the other hand, adding too many trees leads to high computational costs. 

Due to the trade-off between prediction accuracy and computational costs, tests on 29 

distinct data sets show that the optimal number of trees in a Random Forest is between 64 

and 128 (Oshiro, Perez, & Baranauskas, 2012). To be on the safe side, this study uses 128 

trees in a Random Forest. Since the Random Forest algorithm is an ensemble method, 

adding more trees does not increase the risk of overfitting the model (Breiman, 2001). 

 

4.1.3. LASSO-regularised Linear Regression 

The main idea of a LASSO-regularised Linear Regression is that a penalty term is applied to 

the coefficients of an Ordinary Least Squares (OLS) Regression. This penalty term shrinks 

the coefficients towards zero and, by doing so, prevents overfitting. Adding many variables 

to a model results in a highly complex model, which is likely to result in excellent results on 

the training data. However, as it is too specific for the training data, it performs poorly on 

unseen test data. Therefore, shrinking the coefficients towards zero and reducing the 

complexity of the model decreases the risk of overfitting. 

 

The size of the penalty term is determined by the penalty parameter 𝜆. This is a tuneable 

hyperparameter under the constraint that it is positive. The penalty term equals 𝜆 times the 

sum of all coefficients. This means that no penalty term exists if 𝜆 = 0 and that the model is 

simply an OLS Regression. When 𝜆 increases, the size of the model’s coefficients starts to 

decrease. All coefficients are equal to zero if 𝜆 → ∞. The resulting loss function of a LASSO-

regularised Linear Regression is mathematically depicted in equation (16): 
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𝐿(𝑏1, … , 𝑏𝑚) = ∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝑏𝑗

𝑚

𝑗=1
)2

𝑁

𝑖=1
+ 𝜆 ∑ |𝑏𝑗|

𝑚

𝑗=1
 (16) 

In the equation, 𝑏𝑗 represents an unknown regression weight for variable 𝑗 = 1, … , 𝑚. Also, 

𝑥𝑖𝑗 is an element of the 𝑛 × 𝑚 predictor variable matrix 𝑿 and 𝑦𝑖 is the value of the dependent 

variable for 𝑖 = 1, … , 𝑛. 

 

4.2. Dependent and independent variables 

The dependent variable is the same for all models, namely the overall performance of a 

player in year t. The independent variables, however, differ per model. Although the same 

predictors are used for the models, their lag is different. All models use age, height, weight, 

preferred position, attacking and defensive work rate, and 33 football-specific skills as 

independent variables. The models that predict performance one year later use the values 

of these predictors in the year t – 1. Although using the same predictors, the three-year 

predictive models take the values of the year t – 3.  

 

4.3. Data transformations 

Due to the lag in the independent variables and the way the models are constructed, some 

data transformations are required. Firstly, the data transformations that are necessary as the 

model uses data from either one or three years prior will be discussed. As a result of the lag 

between the dependent and independent variables, several observations were lost. To 

maintain as much data as possible, two separate data sets are constructed: one data set for 

the models that predict one year in the future, and one for the models that predict three 

years in the future. Regarding the former data set, observations of a player that was not in 

FIFA one year earlier are removed. This was necessary to ensure that all independent 

variables were available for all observations. Afterwards, observations with missing values 

are removed. These transformations resulted in a data set of 98,240 observations, featuring 

25,588 players. This data set is further referred to as D1. 

 

Almost the same holds for the data set that is required for the model that predicts three 

years in the future. In this case, however, observations of a player that was not in FIFA one 

year or three years prior are removed. A player is kept in the data set in the unlikely scenario 

when he is in FIFA one and three years prior, but is excluded from the game two years prior. 

Observations of a player with lacking data for the year before are removed to be able to 
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compare the predictive performance of models that predict over a different period, while 

using the same data. After removing observations with missing values, a data set of 52,181 

observations containing 15,385 players is left. This data set is a subset of D1, and is referred 

to as D3. 

 

Secondly, three data transformations were required to create the desired models. The first 

transformation is that both data sets were randomly split into training, validation, and test 

sets. This means that it is possible for observations about one player to be scattered over the 

three data sets. The training set consists of 70% of the data, while both others contain 15% 

of the data. The second transformation has to be carried out due to ANNs not being able to 

handle categorical variables. Therefore, all categorical variables have been one-hot encoded 

before an ANN is constructed. This means that for every category of a categorical variable, 

a new variable is created. The variable takes the value one if an observation belongs to that 

category, and the value zero if it does not. One category of every categorical variable is 

removed to avoid multicollinearity when constructing the ANNs. The standard categorical 

variables have been used to construct the Random Forests and Linear Regressions. Lastly, it 

has to be ensured that all independent variables are on the same scale. Otherwise, the 

models will prioritise variables with high values over variables with smaller values. 

Therefore, all continuous football-related independent variables are divided by 100. Since 

these variables were already on a scale from zero to 100, dividing by 100 brings them on a 

scale from zero to one. This eases the interpretation of the results compared to when these 

variables would have been normalized. Additionally, other continuous independent 

variables are normalised to ensure that they are on a scale from zero to one as well. As these 

variables are on a different range than the football-related variables, simply dividing by 100 

would yield erroneous results.  

 

4.4. Hyperparameter optimisation 

As mentioned before, the performance of three separate types of machine learning methods 

are evaluated in this study: an ANN, Random Forest, and LASSO-regularised Linear 

Regression. All three methods required some hyperparameters to be determined. The 

number of neurons in a hidden layer, dropout rate, number of epochs, and batch size have 

to be set before the learning process of an ANN can start. Also, it is tested whether or not 

the number of variables used at each split affects the results of a Random Forest, due to the 
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disagreement in the existing literature on this subject. Regarding the LASSO-regularised 

Linear Regression, the penalty parameter 𝜆 has to be determined.  

 

4.4.1. Grid Search method 

A straightforward approach into choosing the optimal hyperparameters for a specific data 

set is the Grid Search method. This means that a broad range is set for every hyperparameter 

and that all possible combinations of hyperparameters within their pre-set range are 

considered. This method is used to determine the optimal hyperparameters of the Random 

Forests and the LASSO-regularised Linear Regressions, as the number of possible 

combinations is relatively small. Regarding the Random Forest, the possible values of the 

number of variables used at each is split are those proposed by Breiman (2001). Therefore, 

the number of variables divided by six, the number of variables divided by three, and the 

number of variables divided by 1.5 are tried. This means that the values thirteen, seven, and 

twenty-six are considered as the number of variables used per split. The possible values of 

the penalty parameter 𝜆 in the LASSO-regularised Linear Regressions are 10𝑠, in which 𝑠 

varies between -5 and 5, with incremental steps of 0.2. The accuracy of the model for every 

value is calculated based on the validation set, measured in root mean squared error (RMSE). 

The hyperparameter values with the lowest RMSE are used to train the eventual model. 

 

4.4.2. Bayesian Hyperparameter Optimisation 

Considering the many hyperparameters of an ANN, applying the Grid Search method to 

these models would be a highly time-consuming process. Almost 10,000 combinations of 

hyperparameters would have to be tried to derive the best combination. A method that 

largely overcomes the time-complexity problem of the Grid Search method is the Random 

Search method. This method relies on the same principle as the Grid Search method, namely 

that many combinations within a pre-set range are tested. The difference is that the Random 

Search method only tries a certain percentage of the combinations, while the Grid Search 

method tests all combinations. A downside of this approach, however, is that it does not use 

the knowledge obtained from prior attempts for choosing its next combination of 

hyperparameters. Therefore, Bayesian Hyperparameter Optimisation (BHO) as proposed by 

Snoek, Larochelle and Adams (2012) is applied to tune the hyperparameters. The main 

difference between the Random Search method and BHO is that the latter uses knowledge 

obtained from prior efforts to choose its next combination of hyperparameters. BHO 
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continuously calculates the probability of an improvement of the accuracy given a certain 

set of hyperparameters. This probability is updated after every iteration. In this article, 

sequential model-based hyperparameter optimisation is used. This means that trials are run 

one after another while trying better hyperparameters each time by updating the probability 

model through Bayesian reasoning.  

 

BHO is mainly based on the surrogate function, which can be defined as 𝑃(𝑦|𝑧) (Snoek, 

Larochelle, & Adams, 2012). In this function, 𝑦 is binary and indicates whether there is an 

improvement of the accuracy and 𝑧 is a set of hyperparameters. This function is responsible 

for calculating the probability of a set of hyperparameters resulting in higher accuracy. This 

is schematically visualised in Figure 8. In Figure 8a, only two sets of hyperparameters have 

been evaluated and it is visible that the black line of the surrogate function is quite far away 

from the true value. However, Figure 8b shows that after eight evaluations, the surrogate 

function matches the true value closely. This illustrates how BHO can calculate the optimal 

combination of hyperparameters. 

 

 
(a) 

 
(b) 

Figure 8: Schematic representation of Bayesian Hyperparameter Optimisation 
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The surrogate function is calculated through a Gaussian process (Frazier, 2018). The 

optimisation problem is summarised by an objective function 𝑓. The values 𝑧1, … , 𝑧𝑘 ∈ ℝ of 

𝑓, in which 𝑘 equals the number of prior tries, are used to identify the optimal set of 

hyperparameters. This results in a vector of values [𝑓(𝑧1), … , 𝑓(𝑧𝑘)] or shortened as 𝒇(𝑧1:𝑘). 

For every 𝑧𝑖, the mean vector 𝜇𝑖 is calculated. Additionally, a covariance matrix ∑𝑖 for each 

pair of point 𝑧𝑖 , 𝑧𝑗 is determined through a Gaussian kernel (Rasmussen, 2004). This causes 

points 𝑧𝑖 , 𝑧𝑗 that are close in the input space to have a large positive correlation. This 

represents that these points have more similar value functions than points that are further 

away from one another in the input space. The resulting distribution of 𝒇(𝑧1:𝑘) is shown in 

equation (17): 

 𝒇(𝑧1:𝑘) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇(𝑧1:𝑘), ∑(𝑧𝑖 , 𝑧)) (17) 

All values of 𝒇(𝑧1:𝑘) are known and the aim is to calculate 𝑓(𝑧) for a new point 𝑧. To do so, 

it is assumed that 𝑘 = 𝑛 + 1 and 𝑧𝑘 = 𝑧, indicating that (17) is still valid for [𝒇(𝑧1:𝑘), 𝑓(𝑧)]. 

Then, Bayes’ rule can be used to determine the conditional distribution of 𝑓(𝑧), as visualised 

in equation (18): 

 𝑓(𝑧)|𝒇(𝑧1:𝑛) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑛(𝑧), 𝜎𝑛
2(𝑧)) 

𝜇𝑛(𝑧) = ∑(𝑧, 𝑧1:𝑛)∑(𝑧1:𝑛, 𝑧1:𝑛)−1 𝒇(𝑧1:𝑛) − 𝜇(𝑧1:𝑛) + 𝜇(𝑧) 

𝜎𝑛
2 = ∑(𝑧, 𝑧) − ∑(𝑧, 𝑧1:𝑛)∑(𝑧1:𝑛, 𝑧1:𝑛)−1∑(𝑧1:𝑛, 𝑧) 

(18) 

 

Afterwards, the selection function determines which set of hyperparameters will be tried 

next. The criteria for this is expected improvement, as proposed by Močkus (1975) and later 

modified by Jones, Schonlau and Welch (1998). This means that the set of hyperparameters 

that is expected to result in the highest improvement is chosen for the next try. The selection 

function is visualised in equation (19): 

 
𝐸𝐼𝑛(𝑧) = [∆𝑛(𝑧)]+ + 𝜎𝑛(𝑧)𝜑 (

∆𝑛(𝑧)

𝜎𝑛(𝑧)
) − |∆𝑛(𝑧)|𝜑 (

∆𝑛(𝑧)

𝜎𝑛(𝑧)
) (19) 

In this equation, ∆𝑛(𝑧) = 𝜇𝑛(𝑧) − 𝑓𝑛
∗, which equals the difference between the accuracy of 

the proposed set of parameters 𝑧 and the previous best set. This equation shows that a trade-

off is present in the algorithm between high improvement in accuracy, depicted by ∆𝑛(𝑧), 

and high uncertainty, depicted by 𝜎𝑛(𝑧). 

 

For this study, 30 different combinations of hyperparameters are tried to determine the 

optimal set. To maximise accuracy while avoiding large computational costs, the number of 
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hidden layers is held constant at three. Furthermore, the ReLU activation function is always 

applied. The best learning rate per model is determined by the Adam optimiser. The chosen 

ranges of the remaining hyperparameters of the ANNs are depicted in Table 1. The algorithm 

stops evaluating a combination when the value of the loss function has not improved for 50 

epochs, even when it has not completed its pre-set number of epochs. The epoch from which 

no further improvement was detected, is considered the optimal number of epochs. The 

maximum batch size is equal to the total number of observations in the training set.  

 

Table 1: Ranges of the ANN hyperparameters 

Hyperparameter Possible values 

Number of hidden layers 3 

Activation function ReLU 

Number of neurons 𝑖 ∈ ℤ: 𝑖 ∈ [3,200] 

Dropout rate 𝑖 ∈ ℝ: 𝑖 ∈ [0.00001, 0.5] 

Number of epochs 𝑖 ∈ ℤ: 𝑖 ∈ [50, 8,000] 

Batch size 𝑖 ∈ ℤ: 𝑖 ∈ [10,000, max(𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒)] 

 

4.5. Model performance evaluation 

In the end, it has to be determined which model predicts the future performance of football 

players best. Firstly, it has been reviewed whether the expectation that the long-term model 

is less accurate than the short-term can be confirmed. This is determined by comparing the 

prediction accuracy of the short-term and long-term models for the three types of models. 

To avoid any bias due to inequalities between the two data sets, the long-term model is 

compared to a short-term model that is constructed with the same data. Therefore, one-year 

models are constructed based on both data set D1 and D3. The model based on data set D1 is 

considered the predictive model, whereas the model based on data set D3 is considered the 

comparative model. The prediction accuracy is measured in RMSE on the test set. When the 

long-term models have a higher RMSE than the short-term models, it is confirmed that the 

long-term models are less accurate. Additionally, it has to be determined which of the three 

types of methods predicts future performance most accurately. This is done by comparing 

the prediction accuracy of the three types of methods, both for the short-term and the long-

term. The model with the lowest RMSE is considered to predict the future performance of 

football players best. The model with the best prediction performance per prediction period 

is used for interpretation purposes. 
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4.6. Model interpretation 

A disadvantage of black-box methods, of which ANN and Random Forest are examples, is 

that the interpretation of the models is less straightforward than it is for less complicated 

models. Due to the sheer size of black-box methods, it is hard to fully understand what 

happens between the input and output of the model. The two prediction periods are 

interpreted separately. Only the best performing model per prediction period is interpreted. 

Two distinct methods are used to interpret the black-box methods in this research. The test 

set is used to compile the interpretation of the models. 

 

Firstly, Partial Dependence Plots (PDPs), as suggested by Greenwell, Boehmke and 

McCarthy (2018), are used to measure the effect of one or more independent variables on 

the dependent variable. To construct these PDPs, the original training data is copied and 

the values of variable 𝑥1 are replaced with the constant 𝑥1𝑖, in which 𝑥11, 𝑥12, … , 𝑥1𝑘 are 

unique predictor values. Then, the average of the predicted values 𝒇1
̅̅ ̅(𝑥1𝑖) is calculated. The 

PDP for variable 𝑥1 is constructed by plotting {𝑥1𝑖, 𝒇1
̅̅ ̅(𝑥1𝑖)} for 𝑖 = 1,2, … , 𝑘. If a second 

variable is added to the PDP, not only the values of 𝑥1 but also those of 𝑥2 are replaced. The 

average of 𝒇1,2
̅̅ ̅̅ ̅(𝑥1𝑖, 𝑥2𝑖) is calculated for every combination of 𝑥1𝑖 and 𝑥2𝑖. This is visualised 

in a plot using a colour scale representing 𝒇1,2
̅̅ ̅̅ ̅(𝑥1𝑖, 𝑥2𝑖), and with 𝑥1𝑖 on the horizontal axis 

and 𝑥2𝑖 on the vertical axis. Similarly, more variables can be added to the PDP, although 

visualising the results can become troublesome due to the requirement of more than two 

dimensions in a visualisation.  

 

Secondly, a Variable Importance Plot (VIP) containing Permutation Feature Importance 

Scores (PFISs), as suggested by Breiman (2001), is constructed to determine which variables 

contribute most to the prediction. It is recognised that the future performance of 

goalkeepers and non-goalkeepers is likely to be dependent on different variables. Future 

performance of goalkeepers is expected to be determined by goalkeeping-related skills, 

while the opposite is true for non-goalkeepers. Therefore, separate VIPs are created for 

goalkeeping and non-goalkeeping skills. Only goalkeepers in the test set are taken into 

account when constructing the goalkeeping VIPs, while only non-goalkeepers are used for 

the non-goalkeeping VIPs. To calculate the PFISs, a baseline of the model accuracy 𝑠 on the 

original data set measured in RMSE is taken. Then, the values of variable 𝑥1 are randomly 

shuffled, creating data set 𝐷𝑥1
. The model accuracy 𝑠𝑥1

 is calculated again, but now by using 



37 
 

data set 𝐷𝑥1
. The difference between 𝑠 and 𝑠𝑥1

 is the PFIS 𝑖𝑥1
 of variable 𝑥1. This is repeated 

for all variables. 

 

5. Results 

This section is divided into three subsections. Firstly, the optimal hyperparameters for the 

models will be presented. Then, it will be determined which models yield the best results 

per prediction period. Lastly, the best performing model per prediction period will be 

interpreted.  

 

5.1. Hyperparameter optimisation 

Firstly, the hyperparameters of the models are determined. The hyperparameters of the 

ANNs are determined through Bayesian Hyperparameter Optimisation. The Grid Search 

method is applied to optimise the hyperparameters of the Random Forests and LASSO-

regularised Linear Regressions. The optimal hyperparameters are depicted in Table 2. These 

values are used to construct the distinct models. 

 

Table 2: Optimal hyperparameter values 

 One-year 
predictive 

model 

Three-year 
predictive 

model 

One-year 
comparative 

model 

Data set D1 D3 D3 

Training observations 68,768 36,526 36,526 
Validation observations 14,736 7,828 7,828 

Artificial Neural Network    
Number of neurons 174 40 127 
Dropout rate 0.00001 0.2512 0.00001 
Number of epochs 1,139 76 1,991 
Batch size 19,749 6,428 25,034 

Random Forest    
Number of variables per split 7 13 7 

LASSO-regularised Linear Regression    
Penalty parameter 10−2.6 10−2.8 10−2.8 

 

5.2. Model performance evaluation 

As the models can now be constructed, it is determined how the predictive performance of 

the ANNs compares to the predictive performance of the Random Forests and the LASSO-

regularised Linear Regressions. In addition to this, the accuracy of the different prediction 
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periods is compared. The RMSE of a model is used as comparison measure. Whereas the 

models are trained on the training and validation set, the accuracy of the model is calculated 

based on the test set. Table 3 shows the predictive performance and computational cost per 

model. The computational costs are based on the usage of a 2.40 GHz 2397 MHz dual-core 

CPU. Figure 9 shows a scatterplot of the fit of the one-year predictive ANN. Scatterplots 

showing the fit of the other one-year predictive models are depicted in Appendix C.  

 

Table 3: Comparison of the different models 

 One-year predictive 
model 

Three-year 
predictive model 

One-year 
comparative model 

 
RMSE 

Training 
time 

RMSE 
Training 

time 
RMSE 

Training 
time 

Artificial Neural Network 2.742 47m 39s 5.985 1m 59s 2.418 37m 44s 

Random Forest 2.811 105m 53s 3.441 22m 23s 2.445 13m 15s 

LASSO-regularised Linear 
Regression 

3.806 < 1s 4.459 < 1s 3.548 < 1s 

 

 
Figure 9: Scatterplot of actual and predicted values per position of the one-year predictive Artificial Neural Network 

 

Based on Table 3, Figure 9, and Figure 16 and Figure 17 in Appendix C, it can be stated that 

the ANN performs best when predicting performance in one year. It must be noted, 

however, that the difference in prediction accuracy between the ANN and the Random 
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Forest is small for the one-year predictive model. Despite their similarities in prediction 

accuracy, the Random Forest takes more than double the training time to achieve this. It is 

visible in Figure 17 in Appendix C that the LASSO-regularised Linear Regression predicts 

relatively similar to the other two models regarding moderate players. When it comes to the 

most extreme values, however, it is visible that the other two models achieve a higher 

accuracy. The LASSO-regularised Linear Regression appears to overestimate the future 

performance of low-skilled players and to underestimate the future level of high-skilled 

players. As only the best performing model will be interpreted, the ANN one-year predictive 

model will be chosen for this purpose. 

 

 

Figure 10: Scatterplot of actual and predicted values per position of the three-year predictive Random Forest 

 

Figure 10 shows a scatterplot of the predicted and actual values of the three-year Random 

Forest. Based on Table 3, Figure 10, and Figure 18 and Figure 19 in Appendix C, it can be 

stated that the Random Forest predicts future performance best of the three-year predictive 

model. In this case, it seems that the ANN is simply too inaccurate for all values. The longer 

training time of the Random Forest is justified by its better performance. The LASSO-
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regularised Linear Regression appears to suffer from the same problem as for the one-year 

predictive model: it predicts similar to the Random Forest for moderate values, but the 

Random Forest predicts better for extreme values. However, it is notable that the LASSO-

regularised Linear Regression performs better than the ANN, especially when considering 

the difference in training time. In the end, the Random Forest is used for interpretation. 

 

Additionally, a comparison between the prediction periods is made. To do so, the 

performance of the three-year predictive model and the one-year comparative model is 

compared. This is done to ensure that the same data set, namely data set D3, is used for both 

models in the comparison. Table 3 shows that the RMSE of the one-year comparative model 

is substantially lower than the RMSE of the three-year predictive model for all three 

methods. Furthermore, an important notion is that the RMSE of the one-year comparative 

models is also lower than the RMSE of the one-year predictive models. This seems 

counterintuitive: the one-year predictive model is trained on more observations than the 

one-year comparative model and is, therefore, expected to predict more accurately. A 

possible explanation for this lies in the difficulty of the data. Data set D1, which is used for 

the one-year predictive model, contains all players that were in FIFA for two consecutive 

years. Players were required to be present in the game for four consecutive years in order to 

be included in data set D3, which is used for the one-year comparative model. Figure 11 shows 

a scatterplot of the actual and predicted values of the one-year comparative ANN. The actual 

and predicted values of the one-year predictive model are depicted in Figure 9. It is visible 

that data set D3 has fewer players with an overall score below 55 than data set D1. There are 

only 28 players with an overall score below 55 in data set D3, whereas there are 330 players 

scoring lower than 55 in data set D1. It is likely that players present in data set D1 but not in 

data set D3 have a relatively low overall score. Otherwise, they would have continued their 

professional football career and would be present in FIFA for a longer period. Both models 

overestimate the future performance of these low-skilled players. However, as the one-year 

predictive model has to predict more low-skilled players, it has a more profound influence 

on its RMSE than the three-year predictive model. This potentially explains why the one-

year comparative model achieved a higher predictive performance using less data.  
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Figure 11: Scatterplot of actual and predicted values of the one-year comparative Artificial Neural Network 

 

5.3. Model interpretation 

As the performance of the models has now been evaluated, the model with the best 

performance per prediction period will be interpreted. Therefore, the ANN is interpreted for 

the prediction period of one year, whereas the Random Forest is interpreted for the 

prediction period of three years.  

 

5.3.1. One-year prediction 

PDPs are constructed for all variables in the one-year predictive ANN. All PDPs are depicted 

in Appendix D. It is visible that short passing, dribbling, ball control, reactions, standing 

tackle and sliding tackle are all strongly positively related to overall performance in the 

upcoming year. This indicates that players who perform well regarding these skills are likely 

to achieve higher levels of overall performance in the next year than players who perform 

worse on these skills. All other football-related variables are either positively related or 

unrelated to future performance. The only negative relationship observed is between age 

and future performance. This means that a player is likely to obtain a lower overall level in 
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the upcoming year than a younger player. According to the PDP of age, the age-related decay 

of a player starts from the beginning. Weight, height, and preferred foot appear to be 

unrelated to future performance. Lastly, there is some variety visible regarding the average 

predicted performance depending on the player position. Goalkeepers are expected to 

perform best on an average level, whereas centre backs perform worst compared to players 

on other positions. This difference does not result in a disparity of the prediction 

performance between player positions. Table 4 shows that the RMSE per player position is 

approximately equal. 

 

Table 4: Predictive performance of one-year predictive Artificial Neural Network per player position 

Position RMSE Observations 

Centre attacking midfielder CAM 2.957 864 
Centre back CB 2.539 2,592 

Centre defensive midfielder CDM 2.775 1,286 
Centre midfielder CM 2.783 1,628 

Goalkeeper GK 2.886 1,715 
Left back LB 2.675 1,110 

Left midfielder LM 2.641 787 
Left winger LW 2.797 323 
Right back RB 2.755 1,165 

Right midfielder RM 2.787 783 
Right winger RW 2.865 296 

Striker ST 2.740 2,187 

 

The previously discussed PDPs only represent the main effect of a variable on future 

performance. Possible interaction effects, however, have not been studied yet. In addition 

to the main effect of football skills on future performance, it is also investigated how the 

relationship between these two differs per player position and age. Firstly, PDPs are created 

for all variables in the one-year predictive model, which visualise the interaction effect of 

player position. These PDPs are shown in Appendix E. Mixed results are found from the 

PDPs, as shown in Figure 12. It must be noted that the predicted performance levels are also 

influenced by the main effect of player position and the specific skill. The PDPs of some 

variables show that the relationship between future performance and a football skill differ 

per player position. On the left side of Figure 12, it is visible that heading accuracy has more 

impact on the future performance of right backs than centre backs, for example. However, 

most PDPs show that the relationship is fairly similar for the different player positions. This 

is shown on the right side of Figure 12, where the marginal effect of an increase in positioning 

skills is approximately the same for all positions.  
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              (a)         (b) 

Figure 12: Comparison of Partial Dependence Plots of a variable with a clear interaction effect with player position 
(left) and without (right) based on the one-year predictive Artificial Neural Network 

 

Secondly, the same has been performed for the interaction effect of age. The PDPs are 

depicted in Appendix F. In general, most PDPs show the effect as depicted in Figure 13. The 

combination of high age and low performance level of a skill leads to a low predicted 

performance level, compared to a younger player that performs better in that skill. It is 

important to note, however, that this is likely to be the result of the main effects of age and 

the particular skill. Age is negatively related to future performance on its own, while skill 

levels are positively related to this factor. As a result, it appears that there is no interaction 

between age and skill levels when it comes to their relationship with future performance.  

 

 

Figure 13: Partial Dependence Plot of standing tackle and age based on the one-year predictive  
Artificial Neural Network 

 

Besides PDPs, a VIP of the permutation scores is constructed to determine which variables 

influence the predictions most. Separate VIPs are constructed for goalkeeping and non-

goalkeeping skills. Only goalkeepers are used to identify the most important goalkeeping 

skills, while only non-goalkeepers are used to determine the most important non-

goalkeeping skills. The VIP containing the 25 most important non-goalkeeping skills is 

depicted on the left of Figure 14, whereas the VIP of the goalkeeping skills is shown on the 
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right. On the left side of Figure 14, it is visible that randomly shuffling the data of both sorts 

of tackles has the strongest impact on the RMSE of the model. This indicates that these two 

variables contribute most to the predictions. It is depicted that being a centre back, and 

finishing and marking skills are important predictors as well. On the right side of Figure 14, 

it can be seen that diving, reflexes, positioning, and handling are almost equally important 

for the predictions of goalkeepers. It can be stated that the kicking skills of a goalkeeper 

contribute little to the model.  

 

 

Figure 14: Permutation scores of the 25 most important non-goalkeeping variables (left) and the goalkeeping variables 

(right) of the one-year predictive Artificial Neural Network 

 

5.3.2. Three-year prediction 

As the Random Forest performs best on a three-year prediction period, this model is used 

for interpretation purposes. All steps taken to interpret the one-year predictive ANN are 

repeated for the three-year predictive Random Forest. The PDPs visualising the main effect 

of a variable on future performance are shown in Appendix G. Again, it is visible that all 

football skills are positively related or unrelated to future performance. The variables with 

the strongest relationship in the three-year predictive Random Forest are partly similar to 

those in the one-year predictive ANN. The PDPs show that ball control, reactions, vision, 

standing tackle and sliding tackle possess the strongest relationship with future 
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performance. Passing and dribbling, which were both found to be strongly related to future 

performance in the one-year predictive ANN, also show strong positive relationships with 

future performance in the three-year predictive Random Forest. A clear negative 

relationship is present between a player’s age and his future performance. The PDP is 

gradually sloping down from a normalised age of 0.25, which equals an actual age of 

approximately 23. Height, weight, and preferred foot appear to be unrelated to future 

performance. As for the one-year predictive ANN, some variety in predicted performance is 

visible per player position. However, this time goalkeepers and centre backs are expected to 

perform best. This is in contrast with the one-year predictive ANN, which showed that 

centre backs are expected to perform worst. Nevertheless, no major differences in prediction 

accuracy per position are found, as shown in Table 5. 

 

Table 5: Predictive performance of three-year predictive Random Forest per player position 

Position RMSE Observations 

Centre attacking midfielder CAM 3.607 422 
Centre back CB 3.364 1,402 

Centre defensive midfielder CDM 3.460 695 
Centre midfielder CM 3.528 821 

Goalkeeper GK 3.594 893 
Left back LB 3.434 611 

Left midfielder LM 3.316 439 
Left winger LW 3.296 161 
Right back RB 3.095 632 

Right midfielder RM 3.273 392 
Right winger RW 3.536 175 

Striker ST 3.564 1,185 

 

As for the one-year predictive ANN, PDPs visualising the interaction effects of player 

position and age are created. These PDPs are shown in Appendix H and I, respectively. The 

PDPs visualising the interaction effect of player position all look highly similar. The 

relationship between football skills and future performance is the same for all player 

positions. As a result, it can be stated that there is no interaction effect of player position 

when it comes to predicting performance in three years. More variety is visible in the PDPs 

depicting the interaction effect of age. However, the extreme values shown in the PDPs can 

be explained by a combination of two separate main effects, as is the case for the one-year 

predictive ANN. Therefore, there is also no interaction effect of age on the relationship 

between football skills and performance in three years.  
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Again, two separate VIPs are created for goalkeeping and non-goalkeeping skills. The VIP of 

the non-goalkeeping skills is shown on the left side of Figure 15, while the VIP of the 

goalkeeping skills is depicted on the right side of that figure. It is visible that, as in the one-

year predictive ANN, sliding tackle is the most important predictor in the model. For the 

three-year predictive Random Forest, however, standing tackle is less important than for the 

one-year predictive ANN. When considering the three-year predictive Random Forest, ball 

control, reactions, and vision skills appear to be more important. On the right side of Figure 

15, it can be seen that reflexes contribute most to the prediction of performance in three 

years. The difference in permutation scores between the other skills is small. 

 

 

Figure 15: Permutation scores of the 25 most important non-goalkeeping variables (left) and the goalkeeping variables 
(right) of the three-year predictive Random Forest 

 

6. Discussion 

At the beginning of this study, five subquestions have been presented that build towards 

answering the main research question. In this section, these subquestions will be answered 

in order and compared to the existing literature. 
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The first subquestion asks how player characteristics are related to future performance. It 

can be stated that all football skills are either positively related or unrelated to future 

performance. No football skills were found to be negatively related to future performance. 

It was recognised, however, that age is negatively related to future performance. This 

negative relationship is present for all ages in the one-year predictive ANN. Players were 

found to lose approximately one point every seven years, under the assumption that all other 

variables are held constant. This seemingly contradicts the research by Schulz and Curnow 

(1988), which states that the peak performance age of football players is 25. At the same 

time, however, it appears to confirm the statement of Schroeder and Salthouse (2004) that 

mental decline starts in a person’s early 20’s. Despite this, it was expected that the positive 

effect of more physical strength would be stronger than the negative effect of mental decline. 

Nevertheless, this is not confirmed by the results. The three-year predictive Random Forest, 

on the other hand, shows that the decline in performance only starts at an age of 25. From 

this point, players lose approximately half a point every seven years. This results appears to 

confirm both the peak performance age as stated by Schulz and Curnow (1988) and the 

starting age of mental decline as stated by Schroeder and Salthouse (2004). 

 

The second subquestion examines how the importance of football skills differs when the 

prediction period changes. In this study, two prediction periods were taken into 

consideration: one year and three years. As goalkeeping and non-goalkeeping skills are 

deemed too different to be compared, the interpretation of these two types of skills was split. 

Considering the one-year prediction period, it was found that standing tackle, sliding tackle, 

finishing, and marking are the non-goalkeeping football skills that influence the predictions 

most. Regarding the goalkeeping skills, it can be stated that kicking has a marginal effect on 

the predictions. The other goalkeeping skills (i.e., diving, positioning, reflexes, and 

handling) were almost equally important for the predictions. When looking at the three-

year prediction period, it can be stated that sliding tackle, ball control, reactions, and vision 

are the most important predictors of future performance. Reflexes were the most influential 

goalkeeping skills. Most of these skills (e.g., tackling, finishing, reflexes, and ball control) 

can be considered motor skills, whereas marking and positioning are more related to 

perceptual skills, for example. As a result of this, it is hard to connect these findings to 

existing literature. Literature stated that motor skills are the most important predictors of 

future performance. In that case, it would be expected that all motor skills are important 
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determinants of future performance. Nevertheless, it is found that only some motor and 

perceptual skills are important when predicting future performance. It is unclear why this 

division in importance exists. It appears, however, that future performance is not necessarily 

dependent on motor, perceptual, and cognitive skills, but on distinct football skills. 

 

The third and fourth subquestions are about the influence of age and player position on the 

relationship between player characteristics and future performance. The results showed no 

interaction effect of age. This means that the effect of having a certain level of skills is 

approximately the same for every age. The results considering the interaction effect of player 

position were slightly mixed. It was found that the relationships between most football skills 

and future performance are unaffected by player position. Only a highly limited number of 

football skills, such as heading accuracy, were influenced by player position. For example, 

heading accuracy turned out to have a stronger influence on the future performance of 

centre backs than the future performance of players in other positions. This partly 

contradicts research by Di Salvo et al. (2007) stating that a different set of skills per position 

determines a player’s performance. 

 

The fifth subquestion asks which machine learning model yields the highest predictive 

power. When considering the one-year prediction period, the ANN was found to yield the 

lowest RMSE. It must be noted, however, that the difference with the Random Forest was 

relatively small. The results showed that the Random Forest yields the lowest RMSE when 

predicting over a three-year period. This is largely in accordance with the existing literature. 

Literature about this subject stated that ANNs typically result in the highest predictive 

power, but that better performance of other methods is possible. This was confirmed by the 

results of this research. 

 

7. Conclusion 

The aim of this study was to answer the research question on what sport-specific player 

characteristics influence the future performance level of male professional football players. 

By doing so, the future performance of professional soccer players can be predicted as 

accurately as possible, and the determinants of the predictions can be identified. For this 
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purpose, data from the soccer video game FIFA was used and multiple predictions methods 

were compared. 

 

It was found that an ANN yields the best results when predicting on the short-term (i.e., one 

year), whereas a Random Forest yields the best results on the long-term (i.e., three years). 

Based on scatterplots depicting the actual and predicted levels of performance, it can be 

concluded that the predictions are stable and accurate. Therefore, the models are deemed 

suitable to be used on real player data. As expected, the prediction accuracy decreases as the 

prediction period increases. Although existing literature suggested that future performance 

of football players is mainly dependent on motor skills, this was not confirmed by the results 

of this study. It was found that a small number of individuals football skills are strongly 

related to future performance. These skills included cognitive and perceptual skills as well. 

Which skills influence future performance most differed per prediction period.   

 

This study faces some limitations that are mainly related to the data that was used. Firstly, 

it should be noted that the data was somewhat subjective. Although the data can be deemed 

reliable due to 6,000 reviewers determining player scores, it is unclear what the actual 

difference is between players scoring 80 and 90 on sprint speed. Ideally, all players would 

be tested objectively on all skills listed in the game with a certain performance resulting in 

a corresponding score. This would be a highly time-consuming process and almost 

unfeasible in a short time span. However, it can be investigated how accurately video game 

data matches real player data on a smaller scale. Many sports video games use highly 

detailed player data. If it turns out that this data represents the real situation fairly 

accurately, this data can be used for other sport-related research. This is something that has 

not been investigated yet. Secondly, the data used only contains professional male soccer 

players. It is unclear if the results are also valid for female or non-professional players. 

Including these groups would highly increase the study’s validity. It is recognised, however, 

that it is even harder to find reliable data for these types of players. For example, both female 

and amateur leagues are rarely broadcasted on television, making it difficult to review the 

quality of the players by a large group of reviewers. 
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9. Appendix A: Leagues included in FIFA per year 

Table 6: Leagues included in FIFA per year 

League ‘07 ‘08 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 ‘17 ‘18 ‘19 ‘20 

A-League  x x x x x x x x x x x x x 

Airtricity League1  x x x x x x x x x x x x x 

Allsvenskan x x x x x x x x x x x x x x 

Belgian Pro League x x x x x x x x x x x x x x 

Bundesliga (AT) x x x x x x x x x x x x x x 

Bundesliga (DE) x x x x x x x x x x x x x x 

Campeonato Nacional2        x x x x x x x 

Casa Liga 1              x 

Championship x x x x x x x x x x x x x x 

3. Liga            x x x 

Ekstraklasa x x x x x x x x x x x x x x 

Elitserien3 x x x x x x x x x x x x x x 

Eredivisie x x x x x x x x x x x x x x 

Gambrinus Liga  x x x x x x        

J1 League           x x x x 

K League Classic x x x x x x x x x x x x x x 

League One x x x x x x x x x x x x x x 

League Two x x x x x x x x x x x x x x 

Liga Dimayor4        x x x x x x x 

Liga do Brasil5 x x x x x x x x   x x x x 

Liga MX x x x x x x x x x x x x x x 

Liga Portuguesa6 x x x x x x x x x x x x x x 

Ligue 1 x x x x x x x x x x x x x x 

Ligue 2 x x x x x x x x x x x x x x 

Major League Soccer x x x x x x x x x x x x x x 

Premier League (RU)    x x x x x x x x x   

Premier League (UK) x x x x x x x x x x x x x x 

Premiership7 x x x x x x x x x x x x x x 

Primera División (AR)        x x x x x x x 

Primera División (ES) x x x x x x x x x x x x x x 

Saudi Football League8       x x x x x x x x 

Segunda División x x x x x x x x x x x x x x 

Serie A x x x x x x x x x x x x x x 

Serie B x x x x x x x x x x x x x x 

Super League (CH) x x x x x x x x x x x x x x 

Super League (CN)             x x 

Süper Lig x x x x x x x  x x x x x x 

Superliga x x x x x x x x x x x x x x 

2. Bundesliga x x x x x x x x x x x x x x 
1 League of Ireland before 2013 
2 Primera División before 2015 
3 Tippeligaen before 2018 
4 Categoría Primera A before 2016 
5 Campeonato Brasileiro before 2014 
6 Primeira Liga before 2014 
7 Premier League before 2013 
8 ALJ League before 2020 
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10.  Appendix B: Descriptive statistics 

Table 7: Descriptive statistics of the continuous variables 

Variable Obs. NA’s Mean Std. dev. Min. Max. 

Player attributes       

Age 158,062 0 24.72 4.72 15.00 47.00 

Height 158,062 0 181.50 6.59 154.00 208.30 

Weight 158,062 0 75.88 6.95 45.80 110.20 

Football skills       

Overall 157,867 195 66.34 7.25 33.00 94.00 

Attacking: crossing 157,832 230 51.11 17.88 2.00 95.00 

Attacking: finishing 157,799 263 46.46 19.16 1.00 97.00 

Attacking: heading accuracy 157,833 229 53.96 17.13 1.00 95.00 

Attacking: short passing 157,866 196 59.02 14.86 3.00 97.00 

Attacking: volleys 156,380 1,682 45.01 17.95 1.00 93.00 

Skill: dribbling 157,840 222 55.56 18.40 1.00 97.00 

Skill: curve 156,404 1,653 48.59 18.25 2.00 94.00 

Skill: free kick accuracy 157,843 219 45.00 17.65 1.00 97.00 

Skill: long passing 157,867 195 53.63 15.10 3.00 97.00 

Skill: ball control 157,867 195 59.29 16.28 5.00 97.00 

Movement: acceleration 157,867 195 65.46 13.88 11.00 97.00 

Movement: sprint speed 157,867 195 65.77 13.61 11.00 97.00 

Movement: agility 156,434 1,628 63.89 13.87 11.00 96.00 

Movement: reactions 157,867 195 62.89 9.45 20.00 96.00 

Movement: balance 156,434 1,628 64.23 13.45 10.00 99.00 

Power: shot power 157,866 196 57.45 16.64 2.00 96.00 

Power: jumping 156,434 1,628 65.61 11.43 13.00 97.00 

Power: stamina 157,867 195 64.33 14.75 10.00 97.00 

Power: strength 157,867 195 65.88 12.39 12.00 98.00 

Power: long shots 157,824 238 48.81 18.81 1.00 96.00 

Mentality: aggression 157,867 195 57.44 16.93 2.00 97.00 

Mentality: interceptions 157,844 218 48.90 19.86 1.00 96.00 

Mentality: positioning 157,755 307 51.69 18.94 2.00 96.00 

Mentality: vision 156,392 1,670 54.48 14.89 1.00 97.00 

Mentality: penalties 157,862 200 51.04 15.88 2.00 96.00 

Defending: marking 157,816 246 45.79 20.81 1.00 96.00 

Defending: standing tackle 157,839 223 48.28 21.39 1.00 95.00 

Defending: sliding tackle 156,402 1,660 46.28 21.28 2.00 95.00 

Goalkeeping: diving 153,278 4,784 16.32 17.99 1.00 94.00 

Goalkeeping: handling 153,361 4,701 17.32 16.90 1.00 93.00 

Goalkeeping: kicking 153,437 4,625 20.90 20.82 1.00 97.00 

Goalkeeping: positioning 153,357 4,705 17.38 17.09 1.00 96.00 

Goalkeeping: reflexes 153,343 4,719 17.76 18.17 1.00 96.00 
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Table 8: Descriptive statistics of the categorical variables 

Variable Category Frequency Relative 

frequency 

Player attributes    

Preferred position Goalkeeper (GK) 16,568 0.105 

 Centre back (CB) 27,283 0.173 

 Left back (LB) 11,850 0.075 

 Right back (RB) 11,807 0.075 

 Centre defensive 

midfielder (CDM) 
13,085 0.083 

 Centre midfielder (CM) 17,854 0.113 

 Centre attacking 

midfielder (CAM) 
9,563 0.061 

 Left midfielder (LM) 8,628 0.055 

 Right midfielder (RM) 8,293 0.052 

 Striker (ST) 24,494 0.155 

 Left winger (LW) 3,282 0.055 

 Right winger (RW) 3,552 0.022 

 NA 1,803 0.011 

Preferred foot Right 120,448 0.762 

 Left 37,419 0.237 

 NA 195 0.001 

Football skills    

Attacking work rate Low 8,147 0.052 

 Medium 112,148 0.710 

 High 35,764 0.226 

 NA 2,003 0.013 

Defensive work rate Low 18,112 0.115 

 Medium 116,562 0.737 

 High 23,193 0.147 

 NA 195 0.001 
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11. Appendix C: Scatterplots of the fit per model 

 
Figure 16: Scatterplot of actual and predicted values per position of the one-year predictive Random Forest 

 
Figure 17: Scatterplot of actual and predicted values per position of the one-year predictive LASSO-regularised Linear 

Regression 
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Figure 18: Scatterplot of actual and predicted values per position of the three-year predictive Artificial Neural Network 

 
Figure 19: Scatterplot of actual and predicted values per position of the three-year predictive Artificial Neural Network 
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12.  Appendix D: Partial Dependence Plots of main effect 

in one-year predictive Artificial Neural Network 

 

 

 

 

 



63 
 

 

 

 

 

 

 



64 
 

 

 

 

 

 

 



65 
 

 

 

 
Figure 20: Partial Dependence Plots of all variables in the one-year predictive Artificial Neural Network 

 

 

 

 



66 
 

13.  Appendix E: Partial Dependence Plots of interaction 

effect of player position in one-year predictive 

Artificial Neural Network 
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Figure 21: PDPs of all variables in the one-year Artificial Neural Network with player position included as  

interaction effect 
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14. Appendix F: Partial Dependence Plots of interaction 

effect of age in one-year predictive Artificial Neural 

Network 
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Figure 22: PDPs of all variables in the one-year predictive Artificial Neural Network with age included as  

interaction effect 
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15.  Appendix G: Partial Dependence Plots of main effect 
in three-year predictive Random Forest 
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Figure 23: Partial Dependence Plots of all variables in the three-year predictive Random Forest 
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16. Appendix H: Partial Dependence Plots of interaction 

effect of player position in three-year predictive 

Random Forest 
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Figure 24: PDPs of all variables in the three-year predictive Random Forest with player position included  
as interaction effect 
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17.  Appendix I: Partial Dependence Plots of interaction 

effect of age in three-year predictive Random Forest 
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Figure 25: PDPs of all variables in the three-year predictive Random Forest with age included as interaction effect 


